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| CHAPTERI1

| THE PROBLEM AND ITS SETTING

| INTRODUCTION

| Control charts were originally developed by Dr. Walter A. Shewhart in order to

determine if a sequence of data (measurements) obtained from an industrial process may

be used for predictions of what this process will yield in the future. Shewhart reached the
brilliant conclusion that it would be desirable and possible to set limits upon the natural
variation of any process, so that fluctuations within these limits could be readily
explained by chance or common causes, but any variation outside these limits would

indicate the presence of special or assignable causes of variation in the process. When

uncontrolled variation. When only common causes are present, the process is said to be

in state of statistical control (SOSC) and prediction is feasible. According to Shewhart

|

|

I

|

|

|

|

|

|

|

|

' special causes are present, prediction is not feasible due to the presence of sources of
|

|

|

|

|

|

l

. (16, p. 6), "A phenomenon will be said to be controlled when, through the use of past
|
l
|
|
|

experience, we can predict, at least within limits, how the phenomenon may be expected

'to behave in the future."

| Any quality characteristic of an industrial process can be studied by some type of
|

|
| control chart which has limits of variation based on the inherent or natural variability of
|

'the process. If the quality characteristic is measurable, it is common practice to organize
|

‘ . . . - - .
'the data in a rational manner in order to monitor the level and dispersion of the values
|

|
'generated by the process under study. Normally samples or subgroups of four or five
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measurements are taken and the average X and the range R of the subgroup are
calculated to measure level and variability, respectively. Then, a series of such X and R
values are plotted in graphs in order to construct the X and R control charts.

The setting of limits on the average X control chart and range R control chart is
based on the assumption of normal distribution underlying the process in study. For the
average control chart the assumption is justified by the central limit theorem. The normal
assumption is introduced into the X and R control charts through the use of the control
chart constants A,, D;, and D,. Many researches have been done to justify the robustness
of the average X and range R control charts when the underlying distribution is non-
normal.

In some cases, the use of the average and range control charts is not appropriate
because natural subgrouping is not possible. This might happen when the process is too
slow in producing results being operationally impractical to wait until a subgroup of four
or five can be formed, or when each measurement represents a given condition of a batch
at a given time. Under these circumstances the logical subgroup size is n=1 and a
combination of individual measurement X and moving range MR based on two
consecutive observations can be used to monitor the level and dispersion of the process
simultaneously. This is accomplished by constructing a control chart for individuals and
a control chart for the moving range of two consecutive items. After all subgroups based
on two consecutive observations are formed, the moving range MR for each subgroup
and the average moving range MR for all subgroups are calculated. Then, one can set the

upper control limit for the moving range control chart UCL,g using the equation D, MR



(the lower control limit for the moving range n = 2 MR control chart does not exist). If
there are MRs > UCL,, the delete and revise procedure should be applied one

time and the average moving range MR and the UCL,, recalculated. From the revised
average moving range of two consecutive measurements MR, one can estimate the

standard deviation of the process o using & - MR This estimate is likely to be only

slightly affected by uncontrolled variation in individuals due to special causes. Then, one

can set the control limits for the individual measurement control chart using X =+ MR

The assumption of normality underlying the process is more critical for the
individual measurement X control chart because the effect of the central limit theorem is
not present. In addition, it is a well-known fact that many of the distributions encountered
in our every-day experience cannot be described as normal distributions. Chemical,
economical, biological, and physical factors have distributions which are commonly
skewed in character. One of the commonest causes of non-normality is that the
distribution may be unable to go beyond a certain point, such as zero. According to Burr
(2, p. 67), "The Pearson type III family of distributions can be used as a second
approximation of practical data when asymmetry is present." However, the individual
measurement X and moving range n =2 MR control charts are used widespread in
industry under the blind assumption of normality. According to Duncan (1, p.400),
"Control charts for individuals must be very carefully interpreted if the process shows
evidence of marked departure from normality. In such cases, the multiples of o used to
set control limits might be better derived from other distributions for which the

percentage points have been computed.” Not too much work has been done to justify the



validity of the widespread use of the individual measurement X and moving range n = 2

MR control charts in industry when the underlying process distribution is non-normal.

GENERAL STATEMENT OF THE RESEARCH PROBLEM

This creative component research attempts to evaluate the effects of skewed
distributions represented by the Pearson type III family of distributions with location
parameter ¢ = 0 (gamma distributions) on the control limits for individual measurement X
and moving range n =2 MR control charts.

The objectives of the study are stated as follows:

(1)  Evaluate the performance of the individual measurement X and moving range

n =2 MR control charts, using the control chart constants d,, d;, and D, under the
assumption of normality, when the underlying distribution is Pearson type III family of
distributions with location parameter ¢ = 0 (gamma distributions) so often encountered in
industry.

(2)  Determine empirical functions f (a, p) for the control chart constants d,, d,, and
D, when the process distribution can be approximated by a Pearson type I1I distribution
with location parameter ¢ = 0, shape parameter «, and scale parameter 3.

3) Compare the performance of the individual measurement X and moving range

n =2 MR control charts, using the normal control chart constants, with the performance
of these control charts using the Pearson type 1II ¢ = O control chart constants evaluated
in objective two, when 10, 30, and 50 data values are available from an unknown process

distribution.



STATEMENT OF THE HYPOTHESES

The first hypothesis is that individual measurement X and moving range n =2
MR control charts, through the values of the normal curve control chart constants d,, d,,
and D, used in the calculation of the control limits, work well for practical purposes in
industry when the underlying process distribution can be approximated for a Pearson type
III distribution with location parameter ¢ = 0 (gamma distribution). For the X control
chart, practical purpose in industry means a minimum average run length (ARL) of 100
without run rules when the process is in state of statistical control (no shifts) and
maximum average run lengths (ARLs) of 43.9, 6.3, and 2 without run rules when the
process is under shifts in the process average of 1, 2, and 3 process standard deviations,
respectively. For the n =2 MR control chart, practical purpose in industry means a
minimum average run length (ARL) of 100 without run rules when the process is in
control.

The second hypothesis is that the individual measurement X and moving range
n =2 MR control charts, using gamma control chart constants, have better performance
than the control charts using the normal curve control chart constants, when 10, 30, and
50 data values are available from an unknown process distribution. Better performance
means less empirical false alarm rate in control (X and MR control charts) and power of
detection (X chart), for shifts in the process average of 1 and 2 sigma, at least equal to the
theoretical power using the normal assumption (0.0228 and 0.1587 respectively for shifts

in the process average of 1 and 2 sigma).



THE DELIMITATIONS

The study is limited to the effects of non-normality on the control limits for
individual measurement X and moving range n =2 MR control charts when the
underlying process distribution is approximated for a Pearson type 1II distribution with
c=0.

The study will not address composite distributions (mixtures) as a severe test to
evaluate the effects of non-normality because the consideration of a mixture of processes
in a control chart is outside the good use of the control chart technique.

The evaluation of the type I error (a') does not include the effects of run rules. It
means that only a point outside control limits is considered a signal.

The evaluation of the average run length (ARL) considers only shifts in the
process average. It means that no shifts in the process standard deviation o are
considered.

In the evaluation of the performance of the individual measurement X control
chart, using the Pearson type III ¢ = 0 (gamma) bias correction factor d,, only the
probability of type I error and two shifts in the process average (1 and 2 sigma) are
considered.

In the evaluation of the performance of the moving range n =2 MR control chart,
using the gamma control chart constant D,, only the probability of type I error is
considered.

The quality characteristic X under study cannot take negative values. This is due

to the fact that the Pearson type III family of distributions with location parameter ¢ = 0



(gamma distributions) does not take negative values. The range is (0, +e).

THE DEFINITION OF TERMS

> Central limit theorem: Let X, X,, ..., X, be a random sample from a distribution
with mean "u" and standard deviation "a". Then, if "n" is sufficiently large, the
sample average has approximately a normal distribution with mean "p" and
standard deviation "o/yh". The larger the value of "n" the better the
approximation.

> Population or Process: The totality of the set of items, units, measurements, etc.,
real or conceptual, that is under consideration or study.

> Sample or subgroup: A group of units, or portion of material, taken from a large
collection of units, or quantity of material, which serves to provide information
that can be used as a basis for judging the quality of the larger quantity
(population), or as a basis for action on the larger quantity or on the production
process.

> Random sample: A sample that contains independent observations selected from
the same population or universe.

> Pearson type III family of distributions: This is a particular type of the Pearson
system of distributions which was developed to cover different combinations of
curve-shape characteristics a; and «,, where 2a, - 3a,% - 6 = 0. According to Burr
(2, p. 67), the Pearson type III of distributions can be used as a second

approximation to practical data when asymmetry is present. The normal curve is



considered as at least a first approximation to practical data if there is one mode
and if the frequencies decrease on both sides with something like symmetry. Type
II1 distributions with location parameter ¢ = 0 are gamma distributions which go
from a J-shaped curve with range (0,+«) to a bell-shaped curve with range (0,+).
Skewness (a;): It is a measure for curve shape designed to measure the extent to
which the distribution is unsymmetrical around the mode. For normal data «;=0.
It is defined as the ratio between the third central moment and the standard
deviation to the third power.

Kurtosis (a,): It is a second measure for curve shape, supplementing skewness,
and it basically measures the relative rapidity of the frequencies to approach zero.
For normal data «,=3. It is defined as the ratio between the fourth central moment
and the standard deviation to the fourth power.

Range: It is an order statistic; that is, its measure depends on the ordering of the
individual values in a sample or subgroup, which serves as a measure of
dispersion mainly in the quality control field. It is the difference between the
largest and smaliest values of the sample or subgroup.

Moving range n = 2 MR: It is the successive differences between the individual
values. It represents the short-term variation for a sequence of individual values.
Control chart: A graphical chart with control limits and plotted values of some
statistical measure for a series of samples or individual values. It is a tool created
by Walter Shewhart in order to detect the presence of uncontrolled variation. It

helps people to understand when they can make predictions regarding future



observations safely and when they cannot do so.

Individual measurement X control chart: It is a control chart for evaluating the
process level in terms of a single observation per sample used when rational
subgrouping is not appropriate.

Moving range n = 2 MR control chart: It is a control chart for evaluating the
variability within a process in terms of the range of the latest two observations in
which the current observation has replaced the oldest of the previous two
observations.

Control limits: Limits on a control chart based on the data or standards given
which are used as criteria for action or for judging the significance of variations
between samples or individual values.

d,: A bias correction factor, varying with the sample size n, used to convert
ranges into o.

d;: A bias correction factor, varying with the sample size n, used to transform
ranges into oy .

D,: Control chart constant, varying with the sample size n, used to calculate the
upper control limit for range R and moving range MR control charts.

E,: Control chart constant, varying with the sample size n, used to set control
limits for the individual measurement X control chart.

Robustness: Even though the data used to compute the control limits come from a
non-normal distribution, the individual measurement X and moving range n =2

MR control charts based on the normal theory are capable of identifying non-



random variation with not too much type I error (false alarm rate).

Run length: The run length of any control procedure is the number of sampling
periods or subgroups before an out-of-control signal is given on the control chart.
Average run length (ARL): It is the average number of subgroups or samples
taken before an out-of-control condition is given on the control chart. It is a
measure of control chart performance. A large ARL is desired when the process is
stable or in control, and a small ARL (quick detection) otherwise.

Average run length curve: It is a curve that shows the performance of a particular
control chart under different shifts in the process average.

Type I error (false alarm rate): It is the probability of thinking that the process is
unstable when it really is stable. In other words, it is the probability of looking for

problems when nothing has happened

ABBREVIATIONS AND NOTATION

Symbol Term Definition
u Population or process mean
O Or Oy Population or process standard deviation
X Observed value or observation
X Sample or subgroup average D Xin
s Sample or subgroup standard deviation Z:(Xi—)_()2 n-1)
R Sample or subgroup range X .~ Komin.
Or Standard deviation of the theoretical d;o

distribution of ranges
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=1

Pl
IID
U(@,1)

X (a, B)

Average range /N
Moving range n = 2 | Xe- X
Average moving range ) MR/(N-1)
Sample or subgroup size

Number of samples or subgroups

Number of individual observations

Number of new individual observations

Skewness parameter [ (X - wy¥ /o’ fix)dx
Kurtosis parameter [ (X - WY o*lf(x)dx
Skewness statistic Y x-Xy ins
Kurtosis statistic Y x-X ins*

Shape parameter gamma distribution

Scale parameter gamma distribution

Location parameter Pearson type III distribution

Type I error (false alarm rate)

Average Run Length 1/Porl/P
Probability of detection X chart Prob. (UCL<X<LCL)
Probability of detection MR chart  Prob. (MR>UCL,)
Independent and identical distributed

Uniform distribution between O and 1

Gamma distribution with parameters o and f3

Coefficient of determination 1-[Z(yi- ?)YE(y; -4
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X chart
MR chart
SOSC
UCLx
LCLx
CLx

UCL,

Individual measurement control chart
Moving range of n = 2 control chart
State of statistical control

Upper control limit for individuals
Lower control limit for individuals
Center line for individuals

Upper control limit for moving ranges
Center line for moving ranges

Bias correction factor

Bias correction factor

Control chart constant

Control chart constant

ASSUMPTIONS

X3MR/d,

X3MR /d

|

D, MR
MR

R/c or MR/o
ogr/ o

1 +3dy/d,

3/4d,

Average run lengths of a minimum of 100 for both control charts (X and

MR),when the process is in a state of statistical control, are quite acceptable in

industry for practical purposes. It means that people in industry are willing to

accept a maximum risk of 1 % (1/100).

There is not correlation between individual measurements (batches).

The widespread use in industry of individual measurement X and moving range

n =2 MR control charts will continue in the future.

12



THE IMPORTANCE OF THE STUDY

The importance of this thesis research is to create the quantitative foundations to
support the widespread use in industry of the individual measurement X and moving range

n =2 MR control charts.
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CHAPTER I

REVIEW OF THE LITERATURE

An overview of the literature relevant to the research objectives is presented in
this chapter. Also, related research efforts are reviewed. This chapter is divided into
seven sections. They are:

2.1 An historical overview of quality control and the control chart technique.

2.2 A discussion of the basis of control charts.

2.3 A description of the main types of variables control charts, their control limits,

and related formulas.

2.4 A discussion about the estimation of the process standard deviation ¢ required

to set control limits for the X chart and X chart.

2.5 A discussion of the estimation of the range standard deviation o required to

set control limits for the R chart and MR (n=2) charts.

2.6 Estimation of the bias correction factors d, and d, used to evaluate the control

chart constants A,, D;, D,, and E,.

2.7 Identification and discussion of previous researches related to the effects of

non-normality in control charts.

2.1 Quality Control and Control Charts - An Historical Overview

Quality Control includes efforts to manage quality and maintain assurance of

continued high quality of products and services. The word quality here refers to customer

14



satisfaction through the fitness of a product or service for its intended use. It means
customer satisfaction by providing products or services which meet customer needs
(product features) and are free from deficiencies (conformance to requirements). This
definition of quality and others are discussed in detail in Juran (10), Crosby (11),
ANSI/ASQC Standard A3 (12), and Juran and Gryna (13).

Even though most of the developments in quality control are fairly recent, the
need for it has existed for a long time. The need for inspection of manufactured products
has been around since processes and factories that produce these products have existed.
Before the industrial revolution, workers and artisans inspected their own work.
However, as work became more complicated and specialized, inspectors were hired to
inspect the work of others. In this way, production workers left the responsibility for
quality up to the inspector. As industries became larger and larger, the inspection job
became too much for inspectors. Therefore, the technology of Quality Control was
developed to design tools and techniques which have helped inspectors and quality
control personnel to do their job.

According to Wadsworth, et al. (14, p. 6), "From 1925 to 1941, the development
of quality control and quality assurance methodology was remarkable. In the December
issue of The Journal of the American Statistical Association, Shewhart set the tone with
his paper: The Application of Statistics as an Aid in Maintaining Quality of a
Manufactured Product." In this paper, Shewhart (15) introduced the control chart
concept.

The control chart is one of the earliest techniques developed in the quality control

15



field. When control charts are employed in their original form, they are called Shewhart
charts. Dr. Walter Shewhart developed control charts in order to determine if a sequence
of data (measurements) obtained from an industrial process may be used for predictions
of what this process will yield in the future. Shewhart reached the brilliant conclusion
that it would be desirable and possible to set limits based upon the natural variation of
any process, so that fluctuations within these limits could be readily explained by chance
or common causes, but any variation outside these limits would indicate the presence of
special or assignable causes of variation. When special causes are present, prediction is
not feasible due to the presence of sources of uncontrolled variation. When only common
causes are present, the process is said to be in state of statistical control (SOSC) and
prediction is feasit;le. According to Shewhart (16, p. 6), "A phenomenon will be said to
be controlled when, through the use of past experience, we can predict, at least within
limits, how the phenomenon may be expected to behave in the future. Here it is
understood that prediction within limits means that we can state, at least approximately,

the probability that the observed phenomenon will fall within the given limits."
2.2 The Basis of Control Charts

As stated in 2.1, control charts were developed by Dr. Walter Shewhart in 1925 to
determine if a sequence of observations obtained from an industrial process may be used
for prediction of what this process will yield in the future. It means that the control chart
technique represents a scientific basis for prediction.

The basis of all control charts is the following: Any varying quantity (whether an
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individual measurement X, an average X, a sample standard deviation s, a range R, a
moving range MR, a fraction defective p, or a count on the number of defects c) forms a
distribution if chance causes alone are present. Any such distribution has a mean and a
standard deviation. According to Burr (2, p. 92), "Quite regardless of the shape of the
distribution (unless extremely badly behaved), there will be, by chance causes only, very
few points outside of the band between the mean minus three standard deviations and the
mean plus three standard deviations. Hence, having set such limits, we have a band of
normal variability for the statistical measure in question." Then, when a point falls
outside this three sigma band, it is a much better bet to think that the point is due to the
presence of special causes of variation than to think that the point is due to chance
(common) causes alone. On the other hand, when a point falls inside the 3¢ band, one
can safely say that there is not evidence that an assignable (special) cause of variation is
present and the process is said to be in state of statistical control (SOSC).

The primary concern of statistical control is predictability. According to Wheeler
and Chambers (17, p. 38). "A process is predictable when it is in a state of statistical
control, and it is unpredictable when it is not in state of statistical control ... Since the
decision is to be based on past experiences, it follows that one will need to begin with
data generated by the phenomenon in question. When a reasonable amount of these data
have been accumulated, they are used to calculate appropriate limits. If the historical data
fall within these limits, and if data collected after the limits have been calculated also stay
within these historical limits, then it becomes reasonable to make a prediction regarding

future observations."
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The control chart technique is a powerful tool for making more fruitful people's
efforts in stabilizing and controlling industrial processes at desired levels of performance.
2.2.1 The basis for establishing control limits

Any quality characteristic of an industrial process can be represented by a
distribution function f (x). Therefore, according to Shewhart (16, p. 275), "Knowing the
distribution function f (x), it is possible, in general, to find a distribution function f; (6, n)
for a given statistic 0 calculated from samples of size n such that the integral

P= 9ffe(e,n)de
gives the probability that the statistic 0 vjill have a value lying within the limits 6, and
9, " However, people normally do not know f (x) and f, (6, n) in sufficient detail to set up
such control limits.

As a consequence, Shewhart says (16, p. 276) that the basis for establishing such
allowable limits on the variability of sample statistics must be empirical. Under such
conditions, Shewhart states (16, p. 276) that it seems reasonable to choose limits 6, and
0, on some statistic 6 such that the associated probability P is economic. It means,
according to Shewhart (16, p. 276), that "if more than one statistic is used, then the limits
on all the statistics should be chosen so that the probability of looking for trouble when
any one of the chosen statistics fall outside its own limits is economic."

Shewhart stresses (16, p. 276) that one must find a balance between the
advantages of increasing the value of P through reduction in the probability of looking
for trouble when none exist (type I error) and the disadvantages occasioned by failing to

detect troubles when they really exist (type I error).

18



For all these reasons, Shewhart recommends (16, p. 277) a symmetrical range

characterized by limits

0+ tog
symmetrically spaced in reference to 8. Experience indicates that t = 3 seems to be an
acceptable economic value.

According to Wheeler and Chambers (17, p. 60), "The strongest justification of
three sigma limits is the empirical evidence that three sigma limits work well in practice
... that they provide effective action limits when applied to real world data."

Wheeler and Chambers (17) use part three of the Empirical Rule to empirically
justify the selection of t = 3. Part three of the Empirical Rule states that given an
homogeneous set of data, approximately 99% to 100% of the data will be located within
three sigma units on either side of the average, regardless of the distribution function of
the data. In order to evaluate the robustness of part three of the Empirical Rule, Wheeler
and Chambers (17) use six different probability models: uniform, triangular, normal, the
Burr distribution, chi-square, and exponential. The results showed that only for the chi-
square distribution (98.6%) and exponential distribution (98.2%), the percentage of the
data within three sigma units on either side of the average is scarcely less than the 99% to
100% stated in part three of the Empirical Rule. Therefore, Wheeler and Chambers
(17, p. 64) conclude that "No matter how skewed, no matter how heavy-tailed, virtually
all of the distribution will fall within three standard deviations of the mean ... Since data
which display statistical control are, by definition, reasonably homogeneous, part three of

the Empirical Rule provides an explanation why the control chart technique with t =3
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will yield very few false alarms. At the same time, when a point falls outside 3o limits it
is very likely to be due to the presence of an assignable cause of variation."

2.2.1.1 Standard given

According to ANSI/ASQC Standard A1 1978 (18, p. 1), "Control chart with
standard given is a control chart whose control limits are based on adopted standard
values applicable to the statistical measure plotted on the chart." This type of control
chart is used to discover whether observed values of X, X, p, ¢, etc., for samples differ
from standard values X, X,, P, Co, €tc., by an amount greater than should be attributed to
chance alone.

According to the ASTM special technical publication 15D (19, p. 75), "The
standard value X, X,, p,, C,, €tc., may be an experienced value based on representative
prior data, or an economic value established on consideration of needs of service and
costs of production, or a desired or aimed-at value designated by specifications."The
problem with this method of setting control limits at 8, + 30, is that people almost never
know the standard value of the mean 6, and standard deviation g, of the statistic 6.
Therefore, this method is rarely used in industry to set control limits for the statistical
measure plotted on the chart.

2.2.1.2 No standard given

According to ANSI/ASQC Standard A1 1978 (18, p. 1), "Control chart with no
standard given is a control chart whose control limits are based on the sample or
subgroup data plotted on the chart." These control charts are based entirely on the data

from the samples being evaluated. This type of control chart is used to determine whether
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observed values of X, X, R, MR, etc., for a series of samples or subgroups vary among
themselves by an amount greater than should be attributed to chance alone.

In this thesis research, control charts with no standard given are the ones to be
considered because, normally in industry, control limits are based on data rather than on

standards.

2.3 Shewhart Control Charts based on Variables Data

Any quality characteristic of an industrial process can be studied and analyzed by
some type of Shewhart control chart which has limits of variation based on the inherent
or natural variability of the process. If the quality characteristic is measurable (variable),
it is common practice to organize the data in a rational manner (rational subgroups) in
order to monitor the level and dispersion of the values of the quality characteristic
generated by the process in study. Usually, subgroups of n observations are taken and the
average X and the range R of the subgroup are calculated to measure level and
variability, respectively. Then, a series of such X and R values are plotted in a time series
with control limits to construct the average X and range R control charts.

The idea behind the use of subgroups to monitor the process in study is to
minimize the sources of variation within a subgroup in order to make the control charts
more sensitive to changes in the level and dispersion of the process (tighter control
limits). According to the ASTM special technical publication 15D (19, p. 76), "One of
the essential features of the control chart method is what is referred to as breaking up the

data into rationally chosen subgroups called rational subgroups; that is, classifying the
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observations under consideration into subgroups or samples, within which the variation
may be considered on engineering grounds to be due to nonassignable chance causes
only, but between which the differences may be due to assignable causes whose presence
is suspected or considered possible."
2.3.1_X and R control charts

The variable control charts that are most commonly used are average, or X charts,
and range, or R charts. According to Duncan (1, p. 381), "When control is undertaken by
using variables instead of attributes, it usually takes the form of employing an X chart to
control the average of the process and an R chart to control the general variability of the
process. The two taken together will give reasonably good control of the whole process."

Normally, samples or subgroups of four or five measurements are taken and the
average X and the range R of the subgroups are calculated. In fact, these two statistics (X
and R) are the ones actually used to monitor the process. Individual measurements X are
primarily used to get values for the subgroup average and the subgroup range.

2.3.1.1 X charts

An X chart is a control chart for evaluating the process level or subgroup
differences in terms of the subgroup average X. According to ANSI/ASQC Standard Al-
1978 (18, p. 3), "Averages are generally used for the purpose of determining whether
there are differences between subgroup levels."

The setting of limits on the average X control chart is based on the assumption of
normality justified by the central limit theorem. The normal assumption is introduced into

the X charts through the use of the control chart constants d, and A,. The central line is
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set at

3
f
pall

where X is the average of all the data.

The control limits UCL; and LCL; are set at + 3 &, from X

>

UCL; = X+3

51
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<l

ICL; = X-3%;

A

where 0; is an estimate of o; derived from the data.

Due to the central limit theorem

0y = 0y / \/n_

where o, is an estimate of the process standard deviation oy derived from the data. It is
shown in section 2.4 below that &, is equal to R / d,. Factor d, is the bias correction
factor used in estimating the process standard deviation using the average sample range
as a measure of dispersion.
Then,

UCL; = X+3(8,/yn)=X+3(R/dyn)
where 3 / d,yn is known as the control chart constant A,.

Therefore,

In the same way

2.3.1.2 R charts

An R chart is a control chart for evaluating the variability within a process in
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terms of the subgroup range R. According to ANSI/ASQC Standard A1-1978 (18, p. 3),
"Ranges of the individual observations within the subgroup or sample are used to
estimate the variability from chance causes within short time intervals and ordinarily
should not include assignable causes. These ranges serve to estimate the inherent
variability within an essentially unchanging process." Ranges are usually easier to
compute than sample standard deviations but they are not recommended for n > 10.

The setting of limits on the R chart is based on the assumption of normality
underlying the process in study. The normal assumption is introduced into the R charts

through the use of the control chart constants d,, d;, and D,. The central line is set at

CLy=R

where R is the average of the subgroup ranges.
The control limits UCLy and LCL; are set at = 35, from R

UCL,; = R+35,

LCLg = R-335,
where G, is an estimate of the range standard deviation oy derived from the data. It is
shown in section 2.5 below that &, =d; o, =(d;/ d,) R. Factor d, is the bias correction
factor used in estimating the range standard deviation.
Then,

UCL,=R+38, =R+3(d,/d)R=R[1+3(d,/d,)]

where 1 + 3 (d; / d,) is known as the control chart constant D,.

Therefore,

UCL, = D,R
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In the same way
LCLy = R-38, =R -3(ds/d) R=R[1-3(dy/dy)]=D;R
where 1 - 3 (d; / d,) is known as the control chart constant D,
For n < 6 the lower control limit for the range LCL; does not exist.

2.3.2 Individual measurement X and moving range n =2 MR control charts

In some cases, the use of the average and range control charts is not appropriate
because natural subgrouping is not possible. This might happen when the process is too
slow in producing results, being operationally impractical to wait until a subgroup of four
or five can be formed, or when each measurement represents a given condition of a batch
at a given time. Under these circumstances the logical subgroup size is n=1 and a
combination of individual measurements X and moving ranges MR based on two
consecutive observations can be used to monitor the level and dispersion of the process,
respectively.

2.3.2.1 Control chart for individual observations (X chart)

An X chart is a control chart for evaluating the process level in terms of a single
observation per visit to the process. According to Wadsworth, et al. (14, p. 143), "Their
use is generally reserved for process and product characteristics for which it is
impractical or unreasonable to replicate observations and to form subgroups of
observations to aid the study of process variation."

The setting of limits on the individual measurement X control chart is based on
the assumption of normality underlying the process under study. The normal assumption

is introduced into the X chart through the use of the control chart constants d, and E,. The
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central line is set at

CLy= X
where X is the average of all the data.

The control limits UCLy and LCLy are set at + 3 &, from X

UCLy= X+35,
LCLy= X-35,

where &, is an estimate of the process standard deviation oy derived from the data. It is
shown in section 2.4 below that &, is equal to MR / d,. Factor d, is the bias correction
factor used in estimating the process standard deviation using the moving range (n=2) as
a measure of dispersion.
Then,
UCLy = X+3 (MR /d,)
where 3 / d, is known as the control chart constant E,.
Therefore,
UCLy= X + E, MR
In the same way
LCLy= X-3(MR/d,)= X - E, MR

2.3.2.2 Moving range n = 2 MR control charts

A moving range n = 2 MR control chart is a chart for evaluating the variability
within a process in terms of the range of the latest two observations in which the current
observation has replaced the older of the previous two observations.

The setting of limits on the MR chart is based on the assumption of normality
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underlying the process under study. The normal assumption is introduced into the MR
chart through the use of the control chart constants d,, d;, and D,. The central line is set at
CL,x = MR
where MR is the average of the k - 1 moving ranges formed of n = 2.
The upper control limit UCL, is set at 35,, above the central line MR
UCLyg = MR+35,,
where 8, is an estimate of the moving range standard deviation for n =2 (o, ) derived
from the data. It is shown in section 2.5 below that &,, =d; 8, =(d;/d,) MR. Factor d,
is the bias correction factor used in estimating the moving range standard deviation for
n=2
Then,
UCLyg =MR +3 8, =MR+3(d;/d,) M= MR[1+3(dy/d,)]
where 1 + 3 (d; / d,) is known as the control chart constant D,.
Therefore,
UCL,g = D, MR
Due to the fact that the lower control limit for the range does not exist forn < 6,

the lower control limit for the moving range with n =2 does not exist.

The values of the bias correction factors d, and d, and the values of the control
chart constants A,, D,, D,, and E,, when the underlying process distribution is assumed
normal, are given in Appendix A. This table is reproduced from ANSI/ASQC Standard
Al1-1978 (18, p. 13).

In section 2.6 below, the meaning of the bias correction factors d, and d, is
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explained in detail. The other control chart constants used in this creative component

research (A,, D;, D,, and E,) derive from the two bias correction factors d, and d,.

2.4  Estimation of the Process Standard Deviation required to set control limits

for the X and X charts.

In small samples or subgroups, the standard deviation and the range are likely to
vary together. Thus, if the sample standard deviation is large, the sample range is also
likely to be large. If the sample standard deviation is small, the sample range is likely to
be small, too. However, in large subgroups, the occurrence of one extreme value will
cause the sample range to be large, but it may have much less effect on the sample
standard deviation. Therefore, if one is interested in finding an estimate of the process
standard deviation, the sample range may often be employed as a substitute for the
standard deviation with little loss in efficiency for small subgroup sizes. Grubbs and
Weaver (21, p. 224-225) state that "The range should not be used when the sample size is
greater than about 15 or 20. The reason for this is due to the practical loss in the
efficiency of the range as compared to the standard deviation for sample sizes greater
than about 10." Thus, the sample range is not recommended to estimate the process
standard deviation for subgroup size n > 10.

A table which provides the efficiency of the estimator & based on the sample
range statistic was published by David (20, p. 185). From the table, David states that "the
efficiency of & seems to be adequate for n < 12 and very good for the small sample sizes

(typically n = 5) generally used in quality control work." Mathematical statisticians
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define the most efficient estimator & of a parameter 0 as the estimator that has the
minimum variance. The efficiency of any other unbiased estimator is defined as the ratio
of the variance of the sampling distribution of the efficient estimator to the variance of
the sampling distribution of the other estimator. David (20, p. 185) defines the efficiency
of & based on the sample range statistic as:

eff(6)=VarS'/ Var &
where S'is the unbiased root mean square estimator of o.

The sample range, in addition to being nearly as efficient as the sample standard
deviation for small samples (n < 10), is easy to calculate. For that reason, it is usually
preferred to the standard deviation in quality control analysis.

In statistical quality control, the average subgroup range is used to estimate the
process standard deviation. However, the average range is a biased estimator of o.
Therefore, a bias correction factor (d,), as a function of the subgroup size n, is required to
get an unbiased estimator of the process standard deviation ¢ based on the average
subgroup range.

6 =R/d,
According to Grubbs and Weaver (21, p. 224), "A measure of the true variation in a lot
could be estimated by simply taken the difference between the largest and smallest
observations in a sample of n items and dividing the range obtained by a factor which
depends on the sample size. Although the sample standard deviation is a more efficient
estimate of dispersion, it may be desirable from a practical standpoint to use the range in

view of its simplicity and since only a slight loss in efficiency is suffered in the case of
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small samples."

This estimator & = R / d, of the process standard deviation ¢ based on the
average subgroup range has been also emphasized in the quality control literature by
Shone (22), Nelson (23), and Masuyama (24).

In cases where natural subgrouping is not possible, because the process is too
slow in producing results being operationally impractical to wait until a subgroup of four
or five can be formed or because each measurement represents a given condition of a
batch at a given time, the logical subgroup size is n=1. In this situation, a combination of
individual measurement X and moving range MR based on two consecutive observations
can be used to monitor the level and dispersion of the process simultaneously. When
subgroup size n = 1, the subgroup range is impossible to be evaluated. Therefore, the
process standard deviation o required to set control limits for the X chart cannot be
estimated using the equation

6=R/d,

According to Cryer and Ryan (25, p. 187), "The standard approach to estimating
sigma for an individual observation control chart is to use moving ranges of two
consecutive observations." From the average moving range of two consecutive
measurements MR , one can easily estimate the process standard deviation o by using the
equation

o =MR/d,
This estimate is likely to be slightly affected by uncontrolled variation in individuals due

to special causes. In this regard, Keen and Page (26, p. 13) state that "a rapid estimate of
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the standard deviation of a distribution that is nearly normal can be obtained by regarding
the mean successive differences between adjacent readings, arranged in order of
collection, as an approximation of the mean range of two. This method was suggested by
Mr. W. J. Jennett for control chart work carried out in the MO Valve Company Ltd. in
1942, and has since been used extensively in The General Electric Company Ltd. The
calculation of the standard deviation is made in three steps: (1) take the differences
between the consecutive values, (2) average the differences (ignoring sign), and (3)
regarding them as ranges in random samples of two, divide the mean difference by the

bias correction factor d, (n=2)=1.128."

2.5  Estimation of the Range Standard Deviation o, required to set control limits

for the R chart and MR (n = 2) charts.

Considering moving ranges of two consecutive measurements MR as ranges R in
random samples of two (n = 2), the setting of control limits for the MR (n = 2) chart can
be seen as a particular case of the R chart with n = 2. Therefore, in this section, only the
estimation of the range standard deviation oy, is discussed.

As described in sections 2.3.1.2 (p. 23) and 2.3.2.2 (p. 26), the setting of limits on
the R chart and MR chart is based on the general Shewhart equations:

UCLy= R+3 &,
LCLy=R-3 &,
where @, is an estimate of the range standard deviation oy derived from the data.

The estimator & = R / d, is a biased estimator of the range standard deviation.
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Therefore, a bias correction factor (d,), as a function of the subgroup size n, is required to
get an unbiased estimator of the range standard deviation o based on the process
standard deviation.

6, =d; 5=(d;/dy) R
In the same way

8, =d; 8 =(d;/d,) MR

2.6  Estimation of the Bias Correction Factors d, and d; used to evaluate the

control chart constants A,, D;, D, and E,.

The difficulty in the estimation of the bias correction factors d, and d, is that the
distribution of the sample range does not have a particular probability distribution which
represents it. According to Burr (28, p. 636-637) "Formidable difficulties of
approximation are usually involved in finding the density function and the first four
moments of the range. This is especially true when the population distribution function,
F(x) can only be expressed in terms of an integral." In this regard, Grant (41, p. 86) states
that for the distribution of the range no simple formula gives either R or o . However,
theory fully defines the expected distribution of R when the parent population is normal.
According to Duncan (1, p. 126) "Fortunately, tables of the distribution of the relative
range W = R / ¢ have been worked out for a normal universe." In addition, the sample
range distribution is greatly affected by the shape of the parent distribution. According to
Hartley (32, p. 334), "extensive investigations have shown that its random sampling

distribution is markedly dependent on the parental population.” In the same way,
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Shewhart (16, p. 202) states that "We do not know the distribution function of the range
... there is a marked influence of the functional form of the universe upon the distribution
function of the ranges."

As mentioned in chapter I (in the definition of terms), the range is an order
statistic which serves as a measure of dispersion mainly in the quality control field. It is
the difference between the largest and smallest values of the sample or subgroup.
Because of its simplicity, the sample range is often used instead of the sample standard
deviation as an estimator of the process standard deviation. David (20), Grubbs and
Weaver (21), Shone (22), Nelson (23), Masuyama (24), Cryer and Ryan (25), Keen and
Page (26), and others have used the sample range, the sample mean range, the sample
moving range of two consecutive observations, and the average sample moving range of
two consecutive measurements as estimators of the process standard deviation in normal
theory tests.

Since the early paper by Tippett (1925), interest in the distribution of sample
ranges and associated applications has steadily grown. In his paper, Tippett (27) states
that "It has not been found possible to write down the distribution of ranges in any useful
form, so the procedure has been to find those constants involving the first four moments."
Values of the bias correction factors d,= R / ¢ and d; = o, / o were found by Tippett
(27) for all sample sizes from two to one thousand when the underlying process
distribution is normal.

According to Burr (28, p. 636), "Since the first paper by Tippett (27), the

distribution of ranges from independent observations from a normal distribution has been
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well covered." Pearson (29, 1926), Pearson (30, 1932), Pearson (31, 1942), Hartley (32,
1942), Harter (33, 1960), and others have showed interest in the range and its properties
including quality control applications. All this work has generated tables giving the
standardized mean values (d,) and the standardized standard deviation (d;) of the range
from random samples drawn from the normal distribution as well as tables of the
probability integral of the range.

The effect of non-normality on the mean range has been experimentally studied
by Pearson (34, 1928) and Shone (22, 1949). Pearson (35, 1950) has summarized earlier
empirical studies on the effect of non-normality on the range and concluded that the
range may be used with the appropriate adjustment (d,) for a normal population as an
estimator of the process standard deviation, provided that samples of not more than 10
observations are taken. David (36, 1954) derived some exact results regarding the mean
and probability integral of the range in samples from a number of non-normal
populations such as the rectangular, exponential and others. Cox (37, 1954) got a general
picture of the effect of process kurtosis on the mean and coefficient of variation of the
range in small samples and assessed the effect of non-normality on the common
applications of the range.

As mentioned before, Burr (28, p. 636-637) states that "Formidable difficulties of
approximation are usually involved in finding the density function and the first four
moments of the range. This is especially true when the process distribution function,
F(x), can only be expressed in terms of an integral. When, however, F(x) can be given in

closed form, the calculations become more feasible." Burr (28), using 81 distributions
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from the Burr system of distributions F(x) = 1 - (1 + x°)* for x > 0 and ¢, k> o,
evaluated the four moments (ug, Og, 035, ®45) for the corresponding 81 range
distributions generated from the 81 parent distributions.

Due to the complexity in finding the density function and the four moments of the
range mentioned by Burr (28), and due to the fact that d, and d; have been tabulated
when the parent population is normal, the quality control field has centered its attention
only in the use of the normal d, and d, bias correction factors. These normal bias
correction factors are used in the process of setting control limits for the X chart, R chart,
X chart, and MR (n = 2) control charts.

It is one of the objectives of this thesis research to evaluate the performance of
these normal d, and d, bias correction factors when the underlying process distribution is
a Pearson type III with location parameter ¢ = 0. In addition, another objective of this
study is to find the empirical (approximate) values of d, and d, when the process

distribution is approximated by a Pearson type III with ¢ = 0.
2.7  Previous researches - Effects of non-normality in control charts.

Researches in this field have been mainly concentrated on the effects of non-
normality in the average X and range R control charts where the central limit theorem
plays an important role in the assumption of normality.

2.7.1 Niemann's experimental thesis

Niemann (38) in an unpublished master thesis studied the effect of lack of

symmetry of the population upon the control chart constants. The population sampled is
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approximately a Pearson type III curve. In his experiment, 4000 samples of n = 4 each
were drawn with replacement. The values of the mean, standard deviation, and range
were calculated for each subgroup and the results tabulated. Then, the values of the
control chart constants were approximated and compared with the corresponding values
for the normal curve control chart constants for n = 4. Comparison of the two set of limits
indicates similarity, although the subgroup size is small (n = 4) and the process
distribution is quite skewed.

Niemann's general conclusion is that if control chart constants for the normal
curve are used, when the process distribution is non-normal through lack of symmetry,
tighter control limits should be observed. Thus, it is slightly more likely for assignable
causes to be indicated when none exist (type I error). Therefore, it is also a bit more
difficult to get a process into a perfect state of statistical control than if the unknown
correct constants are used.

This experimental study is described in Burr (2, p. 163-165). According to Burr
(2, p. 163), "This experimental thesis has given us good grounds for confidently using the
normal curve constants even for moderately non-normal populations. For J-shaped or
very strongly skewed populations, the normal curve constants probably cannot be much
relied upon."

2.7.2 Irving Burr's research

Irving Burr (39, 1967) published a paper in which he discusses the effect of non-
normality on the control chart constants. He presents a set of tables where the values of

eight control chart constants (d,, d;, A,, E,, and D,-D,) are exactly calculated for 28
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different non-normal distributions given by different combinations of skewness and
kurtosis. Burr states (39, p.563) that "a literature search, involving about 100 papers,
revealed that the sampling distribution for ranges is known for only a very few
populations, of which only the normal distribution is of any appreciable practical
importance ... the present article provides information on the effects of various practical
degrees of non-normality upon the control chart constants for X and R charts."
From the 81 non-normal distributions considered by Burr (28), 28 distributions
are selected by Burr (39) in this study to cover to some extent a wide band of the plane o
(skewness) - «, (kurtosis). In reference (28), Burr calculates E (R), 0y, &35, and a5 for
the 81 sampling distributions of ranges corresponding to the 81 non-normal parent
populations chosen. This allows Burr to obtain the control chart constants required for
three standard deviation control charts for measurements. The first two constants d, and
d, (bias correction factors) were evaluated using the equations:
d,=E(R)/o=R/o
d;=ox/0
The last six constants (A,, E,, and D,-D,) were all determined from d, and d; using the
equations:
A,=3/d,yn
E,=3/d,
D, =d,-3d,
D,=d,+3d,

D,=1-3(d,/d,)
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D,=1+3(d;/d,)

From the values of the control chart constants obtained, Burr (39, p. 567)
concludes that "study of constants given in Tables I to IV reveals that they are quite
stable, in some cases surprisingly so, as for example A,. Thus we can use the ordinary
normal curve control chart constants unless the population is markedly non-normal.
When it is, the tables provide guidance on what constants to use."

2.7.3 Schilling's and Nelson's research

As mentioned before, the setting of limits on X control charts are based on the
assumption of normality justified by the central limit theorem. This theorem states that
the distribution of sample means will approach the normal distribution for large sample
sizes. Schilling and Nelson (40) address the questions, "How large?" and "To what
approximation?"

According to Schilling and Nelson (40, p. 183), "By numerically inverting the
appropriate characteristic functions, tables are provided which show the manner of
approach to normality for various underlying distributions and sample sizes. Also,
sample sizes are given such that, at selected points, the sum of the tail areas of the
distribution of sample means will be within given values." They investigated nine
different populations such as rectangular, right triangular, gammas with f=1 and a=1/2,
1, 2, 3, and 4, symmetric bimodal, and asymmetrical bimodal.

The results of this study indicate that the approach to normality of the distribution
of sample means is slower than is often indicated in the literature, especially for the

exponential and mixed distributions. In relation with applications to control charts for the
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mean X, Schilling and Nelson (40, p. 187) state that "If the risk of a false signal is held to
0.3% for a three sigma control chart, samples of considerable size would be required to
be plotted for the exponential (n = 166) and asymmetric bimodal distributions (n =47) ...
The risk of 0.003 for three sigma control charts is often quoted on the basis of normal
theory; 0.3% should however not be considered sacrosanct. When used with non-normal
distributions, reasonably small probabilities of a type I error should suffice for
construction of the chart. Experience over the years has shown 30 limits with small
sample sizes to be of utmost practical value. Examination of Table 1 (p. 186-187)
indicates that such charts assure the risk of a false signal to be 1.4% or less when plotting
subgroups of size 4 or more, over all the distributions studied. A maximum risk of 1 in 72
for the most extreme case studied (gamma with a=1/2) seems to imply that samples of
this size are sufficient for most practical applications."

2.7.4 Individual measurement X and moving range n =2 MR control charts

For the individual measurement X and moving range n =2 MR control charts, no

work was found that addresses the effects of non-normality on these control charts.
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CHAPTER III

GENERAL PROCEDURE

3.1 Objective one. The first objective is to evaluate the performance of the individual
measurement and moving range n=2 MR control charts, using the control chart constants
d,, d;, and D, under the assﬁmption of normality, when the underlying distribution is the
Pearson type I1I family of distributions with location parameter c=0 (gamma
distributions) so often encountered in industry.
PROCEDURE 1

The detailed procedure designed to accomplish objective one is the following:
1. Forty gamma distributions are selected using different combinations of shape
parameter « and scale parameter P in order to have a representative set of gamma
distributions which go from J-shaped curves to bell-shaped curves approximating the
normal distribution as « increases.

Ten values of the shape parameter « are selected. They are:

«=05,1,15,2,3,4, 5 10, 50, and 100
Four values of the scale parameter 8 are selected. They are:
B=05,1,5, and 10

2. Generate ten thousand (10,000) random variates for each gamma distribution
indicated in step one of this procedure.

General gamma random variates are more complicated to generate than other

continuous distributions because the distribution function has no simple closed form for
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which one can find an inverse in order to use the inverse transform method. However,
given Y ~ gamma distribution («, p=1), any gamma distribution («, ) can be easily
obtained by letting X = BY. Therefore, if one can generate a gamma distribution
(«, B=1), more general gamma distributions («, ) can be easily generated using the
equation X = BY indicated above.

The algorithm to be used in the generation of the 10,000 random variates for each
gamma distribution depends upon the value of the shape parameter «.
2.1 Case 0 < a < 1. This algorithm is due to Ahrens and Dieter (3). Atkinson and
Pearce (4) tested three algorithms for the generation of gamma variates and recommend
Abhrens and Dieter algorithm for a "one-time" simulation which is the case in this thesis
research. In addition, Law and Kelton (5) recommend the use of this algorithm to
generate general gamma random variates with shape parameter o less than one.
Algorithm:

2.1.1 Generate U, as an independent and identical distributed uniform U (0, 1),

andlet P=bU,and b=(e+a)/e

where

e = constant 2.718281828

IfP > 1, go to step 2.1.3. Otherwise, proceed to step 2.1.2.

2.12 Let ZP%, and generate U, ~U (0, 1). If U, < %, return Y = Z and

X = PBY where

B is the scale parameter of the general gamma distribution to be generated.

Otherwise, go back to step 2.1.1.
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2.1.3 Let Z=-1n[(bai] , and generate U, ~U (0, 1). If U, < Z*! [ return Y =Z
and X = Y. Otherwise, go back to step 2.1.1.
2.2  Case a =1. A gamma distribution with shape parameter @ = 1 and scale
parameter [ is an exponential distribution with mean 3. The algorithm to be used in
order to generate gamma variates (« = 1, B) is based on the inverse transform method.
Algorithm:
2.2.1 Generate U~ U (0, 1)
222 Return X=-f In (U)
23 Case a > 1. According to Law and Kelton (5, p. 489), "There are several good
algorithms for the case a > 1." However, they recommend a method due to Cheng (6),
who called this the GB algorithm.
Algorithm:
23.1 Generate U,and U,asIID U (0, 1) andleta=1/(2a-1)"*, b = a-In (4),
q=(atl)/a, 6=45, and d = 1+In (8).
232 LetV=aln[U,/(1-U)],Z=a(e)", T=U2U,and W=b+qV-Z
233 IfW+d-0T >0, return Y =Z and X = Y. Otherwise, proceed to the
next step (2.3.4.).

234 IfW:>In(T), return Y =Z and X = BY. Otherwise, go back to step 2.3.1.

In order to generate correct gamma variates, it is essential that a statistically reliable
U (0, 1) random-number generator be available. In this thesis research the random-
number generator used is the one included in Minitab for windows release 10. This

random-number generator generates U,'s which resemble values of true independent and
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identically distributed uniform U (0, 1) random variables. This generator was tested
statistically to see how closely the U;'s generated resemble IID U (0, 1) random variables.
The test used is a special case of the chi-square test with all parameters known. This test
is recommended by Law and Kelton (5, p. 437). The results are shown in Appendix B
and they indicate that the generator is good enough to generate reliable gamma variates.
3. Calculate the average X of the 10,000 gamma variates for each of the forty
gamma distributions using the equation () X;) / 10,000.
4. Group the 10,000 gamma variates X;, X,, X,..., Xs000, X5001--+> 259999, X10000 fOT
each gamma distribution generated in step 2 in subgroups of two consecutive
measurements in the following manner:
Xy X)) O X5, s Ksooos Xsoor)s s o095 X10000)-

At the end there will be 9,999 (N-1) subgroups of n = 2 consecutive
measurements for each of the forty gamma distributions generated in step~2.

Then, for each subgroup, calculate the moving range n = 2 MR using the
equation:

MR = Absolute value (X;,, - X))

In this way, the empirical moving range n = 2 MR distributions are obtained from
the 9,999 moving ranges already calculated for each gamma distribution.
5. Evaluate the expected value of each of the forty empirical moving range n =2
MR distributions. This evaluation is done using the equation:

E (MR) = MR = (Y MR,)/ 9,999

6. With the average moving range MR for each empirical moving range n = 2 MR
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distribution and the value of the normal control chart constants d, and D,, control limits
are set for the individual measurement and moving range n =2 MR control charts for
each of the forty gamma distributions using the following equations:
UCLy= X +3 MR /d,= X+2.6596 MR
LCL, = X-3 MR /d,= X - 2.6596 MR
UCL, = D,MR =3.268 MR
where

d, is the bias correction factor which has a value of 1.128 for n = 2 under the
assumption of normality.

D, is the control chart constant which has a value of 3.268 for n = 2 under the
assumption of normality.

7. Evaluate the performance of the individual measurement and moving range n =2
MR control charts for each of the forty gamma distributions defined in step 1 of this
Procedure I.

For the individual measurement control charts, the performance will be measured
through the average run length (ARL) for several shifts in the process average ko where
k =0 (0.2) 3 using the equation:

ARL=1/P
where

P is the probability of detection evaluated by the equation:

P = Probability (X > UCLy) + Probability (X < LCLy)

These probabilities will be evaluated using the gamma cumulative distribution
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function routine contained in Minitab for windows release 10.

Then, empirical ARL curves will be drawn for each of the forty X charts in order
to show the performance of the individual measurement X control charts, using the
control chart constants d, and D, under the assumption of normality, when the underlying
process distribution is Pearson type III with location parameter ¢ = 0 (gamma
distributions).

For the moving range n = 2 MR control charts, the performance will be measured
through the probability of type I error since only shifts in the process average are
considered in this research.

Since the moving range n =2 MR distribution is theoretically unknown when the
parent distribution is Pearson type III with ¢ = 0, the probability of a type I error and
empirical ARL in control must be evaluated empirically using the equations:

Empirical probability (type I error), =P'=B /9,999
Empirical ARL in control = ARL'=1/P'
where

B is the number of moving ranges greater than the UCL, for each of the forty
moving range (n=2) control charts corresponding to the forty gamma distributions

generated in step 2.

3.2 Objective two. The second objective is to determine the empirical formulas f (a, )
for the control chart constants d,, d;, and D, when the process distribution can be
approximated by a Pearson type III distribution with location parameter ¢ = 0, shape

parameter «, and scale parameter 3.
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PROCEDURE 1T

The detailed procedure designed to accomplish objective two is the following:
1. Forty gamma distributions are selected using different combinations of shape
parameter « and scale parameter B in order to have a representative set of gamma
distributions which go from J-shaped curves to bell-shaped curves approximating the
normal distribution as a increases.

Ten values of the shape parameter « are selected. They are:

a=05,1,15,2,3,4,5, 10, 50, and 100
Four values of the scale parameter 8 are selected. They are:
B=05,1,5, and 10

2. Generate ten thousand (10,000) random variates for each gamma distribution
indicated in step 1 of this Procedure II.

The algorithm used in the generation of the 10,000 random variates for each
gamma distribution depends upon the value of the shape parameter «.
2.1 Case 0<a<1.
Algorithm:

2.1.1 Generate U, as an independent and identical distributed uniform U (0, 1),

andlet P=bU,and b=(e+a)/e

where

e = constant 2.718281828
IfP > 1, go to step 2.1.3. Otherwise, proceed to step 2.1.2.

1

2.1.2 Let zP*, and generate U, ~ U (0, 1). If U, < %, return Y = Z and
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X = BY where
B is the scale parameter of the general gamma distribution to be generated.
Otherwise, go back to step 2.1.1.
2.13 Let Z=—1n[(bai], and generate U, ~U (0, 1). If U, < Z*! [retun Y=Z
and X = BY. Otherwise, go back to step 2.1.1.
22 Case a=1.
Algorithm:
2.2.1 Generate U~U (0, 1)
2.2.2 Return X =-f In (U)
23 Case o > 1.
Algorithm:
2.3.1 Generate U;and U,asIID U (0, 1) and leta=1/(2a-1)"?, b = a-ln (4),
q=(a+l)/a,06=4.5, and d = 1+ln (6).
232 LetV=aln[U,/(1-U)],Z=a(e)", T=UU, and W=b+qV-Z
233 IfW+d-06T>0,returnY =Z and X = BY. Otherwise, proceed to the
next step (2.3.4.).
234 IW:>In(T), return Y =Z and X = BY. Otherwise, go back to 2.3.1.
3. Calculate the average X of the 10,000 gamma variates for each of the forty
gamma distributions using the equation () X;) / 10,000.
4. Group the 10,000 gamma variates X;, X,, X,,..., Xs000, X5001---» X9999, X10000 fOT
each gamma distribution generated in step 2 in subgroups of two consecutive

measurements in the following manner:
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(Xl’ XZ)’ (XZ’ X3)’ HA] (XSOOO’ X5001)a Ty (X9999’ XlOOOO)'

At the end there will be 9,999 (N-1) subgroups of n = 2 consecutive
measurements for each of the forty gamma distributions generated in step 2 of this
Procedure II.

Then, for each subgroup, calculate the moving range n = 2 MR using the
equation:

MR = Absolute value (X,,; - X))

In this way, the empirical moving range n =2 MR distributions are obtained from
the 9,999 moving ranges already calculated for each gamma distribution.

5. Evaluate the expected value of each of the forty empirical moving range n =2
MR distribution. This evaluation can be done using the equation:

E (MR) = MR = (¥ MR,) / 9,999
6. Evaluate the standard deviation o, of each of the forty empirical moving range
n =2 MR distributions obtained from the 9,999 moving ranges already calculated for
each of the forty gamma distributions. The evaluation of 0,5 can be done using the
equation:

oz =[ Y (MR, - MR)*/ 9,998 ]"2
7. With the average moving range MR and standard deviation o, for each
empirical moving range n =2 MR distribution and the theoretical process standard
deviation o (a, ) of each gamma distribution, approximate control chart constants d,,
d;, and D, can be calculated using the equations:

d,= MR / 6 (e, B)
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d;=oux/ 0 (a, B)
D,=1+3d;/d,
where
o (a, B) = (B*a)"
8. Find models in which the expected value of the control chart constants d,, d,, and

D, can be written as functions of two independent variables «, . It means

d, =1, (e, B)
d; =1, (a, B)
D4=f3(a’= B)

The method to be used in order to build the models for d,, d;, and D, is the
method of fitting multiple regression models using the least-squares approach.

A statistical program package (Minitab for windows release 10), which features
regression software, will be used to test different multiple regression models. The model
which maximizes the multiple coefficient of determination R* will be the one selected to
predict the mean value of the control chart constants d, ,d,, and D,.

The multiple coefficient of determination R is a sample statistic that tells us how
well the model fits the data, and thereby represents a measure of adequacy of the model.
R? is defined as:

R*=1-[Z(y;- )’/ Z (y;- »)’1=1- SSE/ SSyy

The global F test will be used in order to test the validity of the multiple

regression model selected. In this F test the null hypothesis

Ho:Ay=Ay=....= A, =0
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is tested against the alternative hypothesis
Ha : at least one of the A parameters does not equal zero
The test statistic is defined by
F=R*/k)/{(1-R})/[n-(+1)]}
and the rejection region by
F>Fa'(k,n-(k+1))

where

n is the number of data points

k is the number of A parameters in the model excluding the constant term A.

A/'s are the parameters of the multiple regression model, and

' is the significance level.

3.3 Objective three. The third objective is to compare the performance of the individual

measurement X and moving range n =2 MR control charts, using the normal control
chart constants, with the performance of these control charts using the Pearson type III
¢ = 0 (gamma) control chart constants calculated in objective two, when 10, 30, and 50
data values are available from an unknown process distribution. The performance of the
control charts will be evaluated using the proportion of control charts which indicate at
least one signal when the process is in control and for shifts in the process average of 1
and 2 process standard deviations.

The motivation of this objective is due to the fact that normally people in industry
use the normal control chart constants to set individual measurement and moving range

control charts only having 10, 30, or 50 pieces of data from an unknown process
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distribution.

The idea is to evaluate the performance of the X and MR control charts under the
blind assumption of normality and then compare this performance with the performance
of these control charts using the Pearson type III (gamma) constants which cover a bigger
range of underlying process distribution than the normal constants.

PROCEDURE 111

The detailed procedure designed to achieve objective three is the following:

1. Five different process distributions are selected to represent unknown parent
distributions. Thus, the performance of the individual measurement X and moving range
n =2 MR control charts based on normal control chart constants can be compared with
those control charts based on gamma control chart constants under different process
distributions generally unknown by people in industry.

The five process distributions selected are:

- Lognormal (0, 1%)

- Normal (40, 10%)

- Exponential (6 = 1)

-Gamma(a=15p=1)

- Chi-square (df = 4)

2. Generate one thousand (1,000) sets of k = 10, 30, and 50 observations for each of
the five distributions selected in step 1 of Procedure III.
2.1 Lognormal (0, 1%) algorithm

Law and Kelton (5, p. 492) recommend the following algorithm to generate
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lognormal random variates LN (y, o°).
2.1.1 Generate Y ~ Normal (u, 6°). See algorithm in 2.2 of this Procedure
ML
2.1.2 Return X = ¢

2.2 Normal (40, 10%) algorithm

Given that Y ~ N (0, 1), X ~ N (u, 0?) can be obtained by using X = u + 0.
Therefore, if one generates standard normal random variates, normal distributions N
(u, o) can be easily generated.

The algorithm to be used in order to generate standard normal random variates is
known as the polar method. This method is recommended by several authors including
Law and Kelton (5, p. 491).

Algorithm:

2.2.1 Generate U; and U, as IID U (0, 1), let V;=2U; ; fori=1,2, ..,k
andlet W=V *+ V%

222 If W> 1, go back to step 2.2.1. Otherwise, let Z = [(-2 In W) / W ]'2,
Y, =V,Z and Y,=V,Z Y, and Y, are IID N ~ (0, 1) random variates.
223Return X; =p+0Y,and X, = p + 0¥, X, and X, are IID N (y, ¢
random variates.

2.3 Exponential (0 = 1) algorithm

The algorithm to be used to generate exponential random variates with mean

© =11is described in 2.2 (Case o = 1), Procedure I (p. 42).

52



2.4 Gamma (a = 1.5, = 1) algorithm

The algorithm to be used to generate gamma random variates with shape
parameter & = 1.5 and scale parameter § = 1 is described in 2.3 (Case o > 1), Procedure I
(p. 42).

2.5 Chi- square with 4 degrees of freedom algorithm

Knowing that a chi-square distribution is a gamma distribution with shape
parameter a = d.o.f. / 2 and scale parameter 3 = 2, the algorithm used to generate chi-
square (d.o.f. = 4) random variates is the same algorithm as the one to generate gamma
a =2 and B =2 random variates. This algorithm is described in 2.3 (Case a > 1),
Procedure I (p. 42).
3. Calculate the average X for each run of k = 10, 30, and 50 observations generated
from the five distributions selected in step 1 of Procedure III using the equation:

X=(IX)/k
4, Group the runs generated in subgroups of two consecutive measurements and
calculate the moving range for each subgroup using the equation:
MR,; = Absolute value ( X;., - X;)

The manner how to form the subgroups of two consecutive observations is
explained in step 4, Procedure I (p. 43).
5. Evaluate the average moving range for each run using the equation:

MR = (T MRy) / (k - 1)

6. In order to get the Pearson type III with ¢ = 0 (gamma) control chart constants d,,

d;, and D, to be used in setting control limits for each run of k observations, Pearson type
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IIT parameters o and {3 have to be estimated from the k observations generated.

Since the process distribution is supposedly unknown, the idea is to fit the data
with a Pearson type III with ¢ = 0 distribution by estimating the parameters « and p from
the k data values (gamma distribution assumption as the underlying process distribution).
According to Fisher (7, p. 332), the method of moments is inefficient to estimate
parameters of a gamma distribution, except for a distribution closely resembling the
normal distribution. Kendall and Stuart (8, p. 38) show that the efficiency of the
estimated shape parameter a of a gamma distribution by the method of moments may be
as low as 22 percent. Therefore, Fisher (7, p. 332) and Law and Kelton (5, p. 331)
recommend the method of maximum likelihood estimation (MLE) in order to estimate
the parameters o and f§ of type III from the data.

The difficulty in applying the method of maximum likelihood estimation to
estimate the parameters o and B of a gamma distribution is that closed expressions for
the maximum likelihood estimators @ and B cannot be obtained analytically. Therefore,
numerical methods must be used to estimate the parameters o and f§ of a gamma
distribution.

Choi and Wette (9, p. 683) developed a numerical technique of the maximum
likelihood method to estimate the parameters of a gamma distribution. This method is
recommended by Law and Kelton (5, p. 331) to estimate « and B. Therefore, this method
is the one to be used in this Procedure III to estimate « and  from the data in order to fit
a Pearson type IlI distribution with location parameter ¢ = 0 (gamma distribution).

In this numerical technique of the maximum likelihood method, the statistic T is

54



evaluated using the equation:
T=[lnX-YInX/k]"
Then, using Table 6.19 in Law and Kelton (5, p. 411) the estimator & is obtained as a
function of the statistic T. This table is reproduced in Appendix J of this thesis research.
With the estimator & and using the equation:
B=X/a

the scale parameter [ is estimated.

Using the estimators & and B and the functions (models) generated in Procedure
II by multiple regression analysis

d, =1, (, B)
d; =1, (o, B)
D,=f;(a, p)=1+3d;/d,

one can obtain the approximate or empirical mean value of the Pearson type III with
¢ = 0 (gamma) control chart constants d,, d;, and D, in order to set control limits for the
individual measurement X and moving range n = 2 MR control charts.
7. Given the gamma control chart constants and using the control chart constants
under the assumption of normality, two sets of control limits are obtained for each
simulation run of k = 10, 30, and 50 observations. One set of control limits is obtained
using the normal constants and the other one is obtained using the Pearson type II1
(gamma) constants.

The equations to be used to set control limits for X and MR control charts are:
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LCL, = X -3 MR/ d,
UCL,g = D,MR
8. Generate three sets of 1,000 new samples of k' = 30 observations for each of the
five process distributions using the same algorithms described in step 2 of this Procedure
III. The first set of 1,000 new samples is left as it is (no shift in the process average), the
second set of 1,000 new samples is shifted up by one process standard deviation, and the
third set of 1,000 new samples is shifted up by two process standard deviations. The
shifts of 1 and 2 standard deviations in the process average are considered only up since
the quality characteristic cannot take negative values (see delimitations of this research).
9. Determine if the first observation (k'=1), the first ten observations (k'=10), and the
thirty observations (k'=30) of the first new sample of k' = 30 data values fall outside
normal and gamma control limits for the first X control chart. This step is executed
repeatedly for the five process distributions and for the three sets of 1,000 new samples
(k'=30). Each time it is compared the n™ new sample of k' = 30 with the normal and
gamma control limits corresponding to the n™ X control chart calculated from the n™ old
sample of k = 10, 30, and 50 observations.
10.  Group the first set of 1,000 new samples of k' = 30 data values (no shift in the
process average) in subgroups of two consecutive measurements and calculate the
moving range for each subgroup using the equation:
MR;' = Absolute value (X', - X})
At the end, there are 30 moving ranges for each of the 1,000 new samples of

k'=30. This is different to the logical 29 moving ranges (N-1) because an additional
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subgroup is formed using the last observation of the 1,000 old samples of k = 10, 30, and
50 observations with the first observation of the new 1,000 samples of k' = 30
observations (no shift).

11. Determine if the first moving range (MR,"), the first ten moving ranges (MR, ,,),
and the thirty moving ranges (MR, ;") fall above the normal and gamma upper control
limits corresponding to the first MR control chart. This step is done repeatedly for the
five process distributions and for the first set (no shift) of 1,000 new samples of k' = 30.
Each time it is compared the n™ new sample of k' = 30 with the normal and gamma limits
corresponding to the n™ MR control chart calculated from the n® old sample of k = 10,
30, and 50 observations.

12. Calculate for each of the five distributions and for k = 10, 30, and 50 the
proportion of individual measurement X and moving range n = 2 MR control charts
which show at least one out-of-control signal. This is done comparing the first
observation (k'=1), the first ten observations (k'=10), and the thirty observations (k'=30)
of the three sets of 1,000 new samples generated with the two sets of control limits
calculated using the 1,000 old samples of k = 10, 30, and 50 data values.

This step is done separately for the X and the MR control charts, set with the
normal control chart constants d,, d;, and D,, and for those X and MR control charts set
with the gamma control chart constants d,, d;, and D,. The equation to be used to
evaluate the proportion is:

P=N/1000

where
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- P is the proportion of X and MR control charts which show at least one out-of-
control signal for both sets of control limits (normal and gamma limits).
- N is the number of control charts which show at least one out-of-control
signal.
The proportion P is evaluated separately for each of the five distributions, for each k
(10, 30, and 50), for each of the three sets (no shift, 1 sigma shift, and 2 sigma shift) of k'

(1, 10, and 30) and for each set of control limits (normal and gamma).
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CHAPTER1V

RESULTS AND ANALYSIS

The results of this thesis research are presented following the three objectives
described in chapter I.

4.1 Objective one.

The first objective is to evaluate the performance of the individual measurement
X and moving range n =2 MR control charts, using the control chart constants d,, d;, and
D, under the assumption of normality, when the underlying process distribution is the
Pearson type III family of distributions with location parameter ¢ = 0 (gamma
distributions) so often encountered in industry.

Following Procedure I, described in detail in chapter III (p. 40), forty gamma
distributions are generated using ten values of the shape parameter « (0.5, 1, 1.5, 2, 3, 4,
5, 10, 50, and 100) and four values of the scale parameter § (0.5, 1, 5, and 10).

For each gamma distribution, ten thousand (10,000) gamma random variates are
generated in a spreadsheet designed in Quattro Pro for Windows using the random
number generator included in Minitab for Windows release 10 and following the
algorithm described in Procedure I. Portions of the gamma distributions generated can be
observed in Appendix D. The algorithm used to generate gamma variates is tested
statistically to see how closely the values generated resemble IID gamma distributions
(a, B). The test is a goodness of fit test for 100 and 1,000 observations for the gamma

distribution (1, 1). The results of the test are shown in Appendix C and they indicate that
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the algorithm is good enough to generate reliable gamma variates. Then, for each gamma
distribution the following values are calculated:
- Average X of the 10,000 gamma variates.
- Average moving range MR of the 9,999 subgroups of two consecutive
measurements.
- Control limits for the individual measurement X control charts (UCLy and
LCL,) using the normal bias correction factor d, = 1.128.
- Upper control limits for the moving range n = 2 MR control charts (UCL,g)
using the normal control chart constant D, = 3.268.
These values are summarized in Table 4.1.

TABLE 4.1

SUMMARY TABLE - VALUES CALCULATED USING PROCEDURE L.

0.5 0.2476 0.3149 1.0851 -0.5899 1.0291
1.0 0.5045 0.6374 2.1997 -1.1908 2.0831
- 5.0 2.4525 3.0912 10.6737 -5.7688 10.1020
10.0 4.9689 6.3167 21.7687 -11.8308 20.6430
0.5 0.4966 0.5006 1.8280 -0.8348 1.6360
1.0 1.0207 0.9976 3.6738 -1.6323 3.2600
Ho 5.0 4.9572 4.9450 18.1089 -8.1945 16.1604
10.0 9.9641 10.1105 36.8536 -16.9254 33.0410
0.5 0.7451 0.6300 2.4205 -0.9303 2.0587
1.5 1.0 1.4920 1.2539 4.8267 -1.8427 4.0976
5.0 7.5528 6.3645 24.4797 -9.3741 20.7992
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1.5 10.0 15.0286 12.7060 48.8212 -18.7641 41.5234
0.5 0.9971 0.7352 2.9524 -0.9582 2.4026
1.0 1.9625 1.4976 5.9454 -2.0204 4.8940
20 5.0 9.9023 7.3454 29.4380 -9.6335 24.0049
10.0 20.0860 15.1945 60.4969 | -20.3249 49.6556
0.5 1.5018 0.9459 4.0174 -1.0139 3.0911
1.0 3.0280 1.8759 8.0171 -1.9611 6.1304
30 5.0 15.1172 94211 40.1733 -9.9389 30.7881
10.0 30.1224 18.7847 80.0816 -19.8368 61.3882
0.5 1.9969 1.0826 4.8761 -0.8823 3.5379
1.0 4.0032 2.1963 9.8443 -1.8379 7.1774
0 5.0 19.9459 11.0745 49.3993 -9.5074 36.1913
10.0 40.2152 22.0412 98.8354 -18.4051 72.0307
0.5 2.5080 1.2346 5.7916 -0.7756 4.0347
1.0 5.0065 2.4833 11.6111 -1.5982 8.1156
>0 5.0 24.9952 12.3467 57.8322 -7.8419 40.3492
10.0 49.8423 24.3149 114.5095 | -14.8250 79.4611
0.5 4.9852 1.7319 9.5913 0.3791 5.6598
1.0 9.9423 3.5097 19.2765 0.6081 11.4696
100 5.0 50.1309 17.4940 9606574 3.6044 57.1703
10.0 100.6372 34.9837 193.6788 7.5955 114.3266
0.5 24.9684 3.9957 35.5952 14.3416 13.0579
1.0 49.9587 7.9154 71.0104 28.9071 25.8676
200 5.0 250.2511 39.4540 355.1820 | 145.3202 | 128.9358
10.0 500.8203 80.2515 7142551 | 287.3855 | 262.2619
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0.5 49.9843 5.6459 65.0001 34.9686 18.4509
1.0 100.1233 11.2389 130.0140 | 70.2325 36.7288
1000 5.0 499.9215 55.5181 647.5760 | 352.2670 | 181.4331
10.0 | 1001.3230 | 112.9637 | 1301.7580 | 700.8875 | 369.1654

More details about the forty gamma distributions and their values can be observed in the

spreadsheets shown in Appendix D.

Then, using the values of the individual measurement X control limits (UCL, and

LCLy) and the gamma cumulative distribution function routine contained in Minitab for

Windows release 10, the average run lengths (ARLSs) for several shifts in the process

average (ko, where k = 0 (0.2) 3) are computed using the equation:

where

P is the probability of detection evaluated by the equation:

ARL=1/P

P = Probability (x > UCLy) + Probability (x < LCLy)

The probabilities of detection (P) calculated in Minitab and the average run lengths

(ARLs) are summarized in Tables 4.2 and 4.3 respectively for the forty gamma

distributions generated in Procedure 1.
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TABLE42a
PROBABILITIES OF DETECTION (P) FOR DIFFERENT SHIFTS IN THE PROCESS

AVERAGE ko WHERE k=0(0.2) 1.4

0.5 0.0372 | 0.0440 | 0.0520 | 0.0617 | 0.0732 | 0.0872 | 0.1040 | 0.1244
1.0 | 0.0360 | 0.0425 | 0.0502 { 0.0595 | 0.0706 | 0.0840 | 0.1002 | 0.1198
o> 5.0 [ 0.0388 [ 0.0459 | 0.0543 | 0.0644 | 0.0765 | 0.0911 | 0.1087 | 0.1302
10 | 0.0369 | 0.0436 | 0.0516 | 0.0612 | 0.0726 | 0.0864 | 0.1031 | 0.1234
0.510.0258 | 0.0316 | 0.0385 [ 0.0471 | 0.0575 [ 0.0702 | 0.0858 | 0.1048
1.0 | 0.0254 | 0.0310 | 0.0379 | 0.0462 | 0.0565 | 0.0690 | 0.0843 | 0.1029
b0 5.0 1 0.0267 | 0.0327 | 0.0399 | 0.0487 | 0.0595 | 0.0727 | 0.0888 | 0.1084
10 | 0.0251 | 0.0306 | 0.0374 | 0.0457 | 0.0558 | 0.0682 | 0.0833 | 0.1017
0.510.0215 | 0.0268 | 0.0335 | 0.0418 | 0.0521 | 0.0648 | 0.0806 | 0.0999
1.0 [ 0.0218 | 0.0272 | 0.0340 | 0.0424 | 0.0528 | 0.0657 | 0.0816 | 0.1012
b 5.0 1 0.0204 | 0.0255 [ 0.0319 | 0.0398 | 0.0496 | 0.0617 | 0.0768 | 0.0952
10 [ 0.0207 | 0.0259 | 0.0323 [ 0.0403 [ 0.0502 | 0.0625 [ 0.0777 | 0.0964
0.5 10.0188 | 0.0240 | 0.0304 [ 0.0386 | 0.0488 | 0.0616 | 0.0775 | 0.0972
1.0 [ 0.0182 | 0.0231 | 0.0294 | 0.0373 | 0.0472 | 0.0596 | 0.0750 | 0.0941
20 5.0 1 0.0191 | 0.0243 | 0.0309 | 0.0391 | 0.0495 | 0.0624 | 0.0786 | 0.0986
10 | 0.0166 | 0.0212 [ 0.0269 | 0.0342 | 0.0433 | 0.0547 | 0.0689 | 0.0866
0.5 (0.0134 | 0.0175 | 0.0229 | 0.0297 | 0.0385 | 0.0497 | 0.0639 | 0.0818
1.0 10.0136 | 0.0178 | 0.0232 | 0.0301 | 0.0390 | 0.0504 | 0.0648 | 0.0828
30 5.0 10.0134 | 0.0175 [ 0.0229 | 0.0297 | 0.0385 | 0.0498 | 0.0640 | 0.0818
10 | 0.0137 [ 0.0179 | 0.0233 | 0.0303 | 0.0393 | 0.0507 [ 0.0652 | 0.0834
4.0 [{0.510.0124 | 0.0165 | 0.0220 { 0.0290 | 0.0382 | 0.0500 | 0.0652 | 0.0843
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1.0 ] 0.0116 ] 0.0155 | 0.0206 | 0.0272 | 0.0359 | 0.0471 | 0.0613 | 0.0795
4.0 [5.0]0.0113 ]0.0151 | 0.0201 | 0.0266 | 0.0350 [ 0.0460 | 0.0599 | 0.0777
10 | 0.0113 | 0.0150 | 0.0200 [ 0.0265 | 0.0349 | 0.0458 | 0.0598 | 0.0775
0.5 10.0101 | 0.0138 | 0.0186 [ 0.0250 | 0.0334 | 0.0443 | 0.0584 | 0.0765
1.0 { 0.0099 | 0.0135 | 0.0183 | 0.0245 [ 0.0328 | 0.0436 [ 0.0574 | 0.0752
>0 5.0 10.0103 | 0.0139 [ 0.0188 | 0.0253 | 0.0338 | 0.0448 | 0.0590 | 0.0772
10 [ 0.0111 | 0.0151 | 0.0203 | 0.0273 | 0.0363 | 0.0481 | 0.0633 | 0.0827
0.5 [0.0079 | 0.0114 | 0.0161 | 0.0225 | 0.0312 | 0.0429 | 0.0582 [ 0.0782
1.0 | 0.0076 | 0.0108 | 0.0153 | 0.0214 | 0.0298 | 0.0409 | 0.0557 | 0.0749
o 5.0 1 0.0073 [ 0.0105 | 0.0148 | 0.0208 | 0.0289 | 0.0398 | 0.0542 | 0.0730
10 [ 0.0072 | 0.0103 | 0.0146 | 0.0204 | 0.0284 | 0.0391 | 0.0533 | 0.0718
0.5 10.0037 | 0.0056 | 0.0087 { 0.0134 | 0.0202 | 0.0299 | 0.0436 | 0.0622
1.0 [ 0.0039 | 0.0059 | 0.0092 | 0.0141 [ 0.0212 | 0.0315 | 0.0457 | 0.0650
» 5.0 1 0.0039 | 0.0059 { 0.0091 | 0.0140 [ 0.0211 | 0.0313 | 0.0454 | 0.0646
10 | 0.0034 | 0.0052 [ 0.0081 | 0.0125 | 0.0189 { 0.0281 | 0.0411 | 0.0587
0.5 10.0032 |1 0.0047 | 0.0075 | 0.0118 [ 0.0183 | 0.0279 | 0.0414 | 0.0600
1.0 1 0.0032 | 0.0047 | 0.0075 { 0.0118 | 0.0183 | 0.0278 | 0.0413 | 0.0599
10 5.0 1 0.0037 | 0.0054 | 0.0084 | 0.0132 | 0.0203 | 0.0307 | 0.0454 | 0.0654
10 | 0.0031 | 0.0045 | 0.0072 | 0.0114 | 0.0177 | 0.0269 | 0.0400 | 0.0581
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TABLE 4.2Db
PROBABILITIES OF DETECTION (P) FOR DIFFERENT SHIFTS IN THE PROCESS

AVERAGE ko WHERE k = 1.6 (0.2) 3.0

0.50.1495 1 0.1803 | 0.2188 | 0.2676 [ 0.3306 | 0.4153 | 0.5372 | 0.7544
1.0 10.1438 | 0.1733 { 0.2101 | 0.2564 | 0.3160 | 0.3953 | 0.5073 | 0.6921
03 5.0 | 0.1566 [ 0.1892 | 0.2299 | 0.2818 | 0.3495 | 0.4414 | 0.5779 | 0.8698
10 | 0.1482 | 0.1787 [ 0.2168 | 0.2650 | 0.3273 | 0.4107 | 0.5302 | 0.7389
0.510.1280 | 0.1563 | 0.1909 | 0.2332 | 0.2848 | 0.3479 | 0.4249 | 0.5189
1.0 1 0.1257 | 0.1535 [ 0.1875 | 0.2290 | 0.2798 | 0.3417 | 0.4173 | 0.5097
b0 5.010.1324 [ 0.1617 [ 0.1975 | 0.2413 [ 0.2947 | 0.3599 | 0.4397 | 0.5370
10 10.1243 { 0.1518 | 0.1854 [ 0.2264 | 0.2765 | 0.3378 | 0.4126 | 0.5039
0.510.1237 | 0.1529 | 0.1884 | 0.2315 | 0.2835 | 0.3458 | 0.4197 | 0.5061
1.0 1 0.1253 | 0.1548 | 0.1907 { 0.2343 | 0.2868 | 0.3498 | 0.4243 | 0.5116
b 5.0 {0.1180 { 0.1458 { 0.1798 | 0.2211 { 0.2710 | 0.3309 | 0.4020 | 0.4856
10 [ 0.1194 [ 0.1476 | 0.1819 | 0.2237 | 0.2741 | 0.3346 | 0.4064 | 0.4907
0.5]0.1216 | 0.1515 [ 0.1880 | 0.2322 | 0.2851 | 0.3478 | 0.4211 [ 0.5051
1.0 10.1178 | 0.1469 | 0.1823 | 0.2253 | 0.2769 | 0.3382 | 0.4099 | 0.4924
20 5.0 10.1233 [ 0.1536 | 0.1905 | 0.2351 | 0.2886 | 0.3520 | 0.4259 | 0.5105
10 ] 0.1085 [ 0.1355 [ 0.1684 | 0.2085 | 0.2568 | 0.3144 | 0.3822 | 0.4607
0.510.1041 | 0.1318 [ 0.1658 | 0.2070 | 0.2565 | 0.3151 | 0.3830 | 0.4603
1.0 { 0.1054 | 0.1334 | 0.1677 | 0.2094 | 0.2593 | 0.3183 | 0.3868 | 0.4645
>0 5.0 10.1042 | 0.1318 | 0.1658 | 0.2071 | 0.2566 | 0.3151 | 0.3831 | 0.4603
10 1 0.1061 | 0.1342 [ 0.1686 | 0.2105 | 0.2607 | 0.3199 | 0.3887 | 0.4666
4.0]0.5]0.1083 | 0.1381 [ 0.1747 | 0.2190 | 0.2718 | 0.3336 | 0.4043 | 0.4833
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1.0 [ 0.1023 | 0.1307 | 0.1657 | 0.2081 | 0.2589 [ 0.3185 | 0.3873 | 0.4645
4.0 15.010.1001 | 0.1279 | 0.1623 | 0.2040 | 0.2540 | 0.3129 | 0.3808 [ 0.4573
10 | 0.0998 | 0.1276 | 0.1619 | 0.2036 | 0.2535 1 0.3123 | 0.3801 | 0.4566
0.5 [ 0.0993 | 0.1279 | 0.1631 { 0.2059 | 0.2571 [ 0.3171 | 0.3859 | 0.4627
1.0 | 0.0977 | 0.1259 | 0.1607 | 0.2030 | 0.2537 | 0.3131 | 0.3813 | 0.4577
>0 5.0 1 0.1003 [ 0.1291 [ 0.1646 | 0.2077 [ 0.2592 | 0.3195 | 0.3886 | 0.4657
10 [ 0.1071 | 0.1376 | 0.1749 | 0.2202 | 0.2739 | 0.3365 | 0.4078 | 0.4867
0.510.1037 | 0.1358 | 0.1754 | 0.2233 | 0.2798 { 0.3448 | 0.4176 | 0.4965
1.0 | 0.0995 | 0.1306 | 0.1690 | 0.2156 | 0.2708 | 0.3346 | 0.4064 | 0.4845
9 5.0 1 0.0971 [ 0.1276 | 0.1654 | 0.2112 | 0.2657 | 0.3287 | 0.3998 | 0.4775
10 [ 0.0956 | 0.1257 | 0.1630 | 0.2083 | 0.2623 | 0.3249 | 0.3956 | 0.4729
0.510.0868 [ 0.1187 [ 0.1586 | 0.2074 | 0.2651 [ 0.3312 | 0.4044 | 0.4825
1.0 [ 0.0905 | 0.1233 | 0.1644 | 0.2143 | 0.2731 [ 0.3402 | 0.4141 | 0.4926
>0 5.0 1 0.0899 [ 0.1226 | 0.1635 | 0.2133 [ 0.2719 | 0.3389 | 0.4127 | 0.4912
10 [ 0.0823 | 0.1128 { 0.1514 [ 0.1987 | 0.2549 [ 0.3197 | 0.3918 | 0.4693
0.510.0850 | 0.1174 | 0.1583 | 0.2082 | 0.2671 | 0.3343 | 0.4083 | 0.4867
1.0 1 0.0848 | 0.1171 | 0.1580 | 0.2078 | 0.2667 | 0.3338 | 0.4078 | 0.4862
109 5.0 1 0.0921 | 0.1265 | 0.1695 | 0.2217 | 0.2827 [ 0.3517 | 0.4270 | 0.5061
10 10.0825 ( 0.1142 | 0.1543 [ 0.2034 | 0.2616 | 0.3281 | 0.4016 | 0.4797
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TABLE 43 a
AVERAGE RUN LENGTHS (ARLs) FOR DIFFERENT SHIFTS IN THE PROCESS

AVERAGE ko WHEREk=0(0.2) 1.4

05| 269 22.7 19.2 16.2 13.7 11.5 -96 8.0
10| 278 235 19.9 16.8 14.2 11.9 9.9 83
o3 50 258 21.8 18.4 155 13.1 10.9 9.2 7.7
10 | 27.1 229 194 16.3 13.8 11.6 9.7 8.1
05| 387 31.7 259 21.2 17.4 14.2 11.7 9.5
1.0| 394 323 26.4 21.6 17.7 14.5 11.9 9.7
Ho 50| 374 30.6 25.1 20.5 16.8 13.8 11.3 9.2
10 | 399 32.6 26.7 219 17.9 14.7 12.0 9.8
05| 46.6 373 29.8 239 19.2 15.4 12.4 10.0
1.0 459 36.8 294 23.6 18.9 15.2 12.3 9.9
2 50| 489 39.2 31.4 251 20.2 16.2 13.0 10.5
10 | 484 38.7 30.9 248 19.9 159 12.9 10.4
0.5 53.1 41.7 329 259 | 205 16.2 12.9 10.3
1.0 | 549 43.2 34.0 26.8 212 16.8 13.3 10.6
20 50| 523 41.1 324 256 | 202 16.0 12.7 10.1
10 | 60.1 47.2 37.1 293 23.1 18.3 14.5 11.5
05| 747 571 43.7 336 | 259 20.1 15.6 12.2
1.0 | 73.7 56.3 43.2 33.2 25.6 19.8 15.4 12.1
>0 50 747 57.1 43.7 33.6 259 20.1 15.6 12.2
10 | 73.2 55.9 42.9 329 | 254 19.7 153 11.9
40 105 ] 808 60.5 45.5 344 26.2 199 15.3 11.9
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1.0 863 64.7 48.6 36.7 | 279 21.2 16.3 12.6
4.0 |50 ] 88.6 66.3 498 376 | 285 21.8 16.7 12.9
10 | 88.9 66.5 49.9 377 286 21.8 16.7 12.9
05| 985 72.6 53.7 39.9 299 22,6 17.1 13.1
1.0 | 1004 | 739 54.7 40.7 30.5 229 17.4 13.3
>0 50| 973 71.8 53.1 39.6 29.6 22.3 16.9 12.9
10 | 90.0 66.4 49.2 36.7 | 275 20.8 15.8 12.1
051 1252 | 879 62.2 44 4 32.0 233 17.2 12.8
1.0 1320 | 92.6 65.4 46.7 33.6 24 4 17.9 13.4
9 50| 1362 | 954 67.4 48.0 34.6 25.1 18.4 13.7
10 | 1390 | 974 68.7 49.0 352 25.6 18.8 13.9
052734 | 1789 | 115.1 74.8 49.5 333 229 16.1
1.0 | 255.7 | 1685 | 1088 | 70.9 47.0 31.8 21.9 15.4
» 50| 2558 | 1696 | 1096 | 71.4 | 473 31.9 220 15.5
10 | 2939 | 1928 | 123.8 | 803 529 35.6 244 17.0
0.5 315.1 | 2114 | 1337 | 84.6 54.5 359 242 16.7
1.0 | 310.2 | 2109 | 133.9 | 849 54.7 35.9 24.2 16.7
100 50| 274.1 | 186.7 | 119.1 759 | 49.1 32,5 220 15.3
10 | 324.7 | 2199 | 1393 88.1 56.6 37.2 25.0 17.2
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TABLE 43 b
AVERAGE RUN LENGTHS (ARLs) FOR DIFFERENT SHIFTS IN THE PROCESS

AVERAGE ko WHERE k=1.6(0.2)3.0

10| 6.9 5.8 4.8 3.9 32 2.5 1.9 1.4
- 50| 64 53 43 3.5 2.9 23 1.7 1.2
10 | 6.7 5.6 4.6 3.8 3.1 24 1.9 14
05 7.8 6.4 52 4.3 3.5 2.9 2.4 1.9
1o 7.9 6.5 53 4.4 3.6 2.9 2.4 1.9
Ho 50 7.6 6.2 5.1 4.1 34 2.8 23 1.9
10 | 8.0 6.6 54 4.4 3.6 29 2.4 1.9
05| 8.1 6.5 53 4.3 3.5 2.9 24 1.9
1.0 8.0 6.5 52 43 35 2.9 2.4 1.9
b 50| 85 6.9 56 4.5 3.7 3.0 2.5 2.0
10 | 84 6.8 55 4.5 3.6 3.0 2.5 2.0
05| 82 6.6 53 43 3.5 29 2.4 1.9
1.o| 85 6.8 5.5 4.4 3.6 3.0 24 2.0
29 50| 8.1 6.5 52 43 3.5 2.8 23 1.9
10 | 92 7.4 59 4.8 3.9 32 2.6 2.1
05| 96 7.6 6.0 4.8 3.9 32 2.6 2.1
1.0 95 7.5 6.0 4.8 3.9 3.1 2.6 2.1
0 501 96 7.6 6.0 4.8 3.9 32 2.6 2.1
10 | 94 7.5 59 4.7 3.8 3.1 2.6 2.1
40 105 92 7.2 5.7 4.6 3.7 3.0 25 2.0
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40 |50] 99 7.8 6.2 49 39 3.2 2.6 2.1
10 { 10.0 7.8 6.2 49 39 32 2.6 22
0.5 10.1 7.8 6.1 4.9 39 32 2.6 2.1
1.0| 10.2 7.9 6.2 4.9 3.9 2 2.6 2.1
>0 50| 10.0 1.7 6.1 4.8 3.9 3.1 2.6 2.1
10 ] 93 73 5.7 4.5 3.7 3.0 25 2.0
05| 96 7.4 5.7 4.5 3.6 2.9 2.4 2.0
1.0| 100 1.1 59 4.6 3.7 3.0 2.5 2.0
o 50| 103 7.8 6.0 4.7 3.8 3.0 25 2.1
10 | 10.5 7.9 6.1 4.8 3.8 3.1 25 21
0.5 115 8.4 6.3 4.8 3.8 3.0 2.5 2.0
1.0 | 11.1 8.1 6.1 4.7 3.7 2.9 24 2.0
» 50 11.1 8.2 6.1 4.7 3.7 2.9 24 2.0
10 | 12.2 8.9 6.6 5.0 3.9 3.1 2.6 2.1
05( 11.8 85 6.3 4.8 3.7 3.0 2.4 2.0
1.0 11.8 8.5 6.3 4.8 3.7 3.0 2.5 2.0
1090 50| 109 7.9 5.9 4.5 3.5 2.8 23 1.9
10 | 121 8.8 6.5 4.9 3.8 3.0 25 2.0

More details about the calculations of the probabilities of detection (P) and average run

lengths (ARLSs) are shown in Appendix E.

for each of the forty X control charts corresponding to each of the forty gamma
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From Table 4.3 (a and b), empirical average run length (ARL) curves are drawn




distributions generated. These ARL curves show the overall performance of the
individual measurement X control charts, using the normal bias correction factor
d, = 1.128, when the underlying process distribution is Pearson type III with location
parameter ¢ = 0 (gamma distribution).

The empirical average run length (ARL) curves for the different combinations

between shape parameters « and scale parameters B can be observed from Figure 4.1 to

Figure 4.10.

H
f

¢
f

i
[ A A )

4
L2 N R B B

2

LA A A |

[
0794
0.5, , ;
- 1_’, Beta=0.5
P
18,
22,4

SAhift in process 1vcr¢ée)“7»8 3

Figure 4.1 Empirical ARL curve for shape parameter a = 0.5.

71



=1.0

Alpha

NN NN
L2200 O BN N B AT AN N N Y SN B B B
(2 N A N AN N B N N A BN B B B AN )
LN N NN I B B BN N BN I B N B B B B /
LA A N B B R B A BV AN A N |
[ A A NN
(A AR A N EEE
[N B S A B B Y B A B B A )
LN S I R A B N AN B B N B |
2N R N S A N I B N B )
T2 N I N O B A O B B |
[N A A I A A A )
[ A I B N B B A A
Fi i ibddl

m
L]
o~

.
&~
L]
N
\H
a
~ 3
o d
- U
- %
i
NN
ML
-
< K
-
-~ 3
®© W

=1.5

Alpha

Frif bbb i i idinidristid
fidddddidittilreriidiid
(FFFTF bbbl et idiifesry
[N R A A I BT IS A A Y A I N A A A N/
LECAE AR AT A R AN N N B BN B A O BN I O Y B )
IR
RN NN NN NN NNENE
fHry e bbb bbb biiiiigy
FORFFFPdi i iisdsaidd
Fidprpdiiidiiiddini
PRSP IET PN R
IR NN NN
LA A AN )
FHidtlt et iei
PEEELIEN Y

GBOYUNANQUOVNNOCBUNNQOIOVNNGAONNG
_\.“‘4433338 QQQPJI_JWI_

(T¥V) W3vaT uny a3vsoay

2.4

SAilft in process :vcra.gc""- L

Oand 1.5.

=1

al ARL curves for shape parameters o

iric

Figures 4.2 and 4.3. Emp

72



=2.0

Ailpha

PP it iy b idy
[N NN NN
[ A AN AN AN AR A A A
L2 I A S N N BN B A A
[ I A I A A N A B O B A B N
[V A AV N A A NN
[ A A A A A A A A ]
I NN RN
P B N N Y A B A N B A A |
LI 2N A B A Y BN B B B B B B B B B/
2N AN B I N BN B A B Y B N}
LA N A 2 A B B B B B AN N
LN I N B B B A AV A A |
L N B A A B B B A )
2 A A A I B )

2.8 5

2.6

‘1
SRhift in process average

=32.0

Alpha

[ AN A A A AN A A A A
VAN AV AN A N
PP EF L P PR PR
[ NN S Y AN A N B N A N A A A
L 2 R N B R A B A N B B B B B B '/
[N 200 A N S B I B N N AN BT N B
[ 2 A Y S B VI BV A B A BN AN A/
LA B 2 A R B B N A A A A |
20 N N N N N N N A B B B B A |

SAlft in process avcr&g}

0 and 3.0.

=2

ARL curves for shape parameters o

rical

i

Figures 4.4 and 4.5. Emp

73



Alpha=4.0

NN NN NN NN
I NN NN NN
LA RN NN RN
L A A NN NN NN/

AL ETE AT R i I Sy

~

N NN NN NN RN ol

NN NN NN o8

E Y

N NN NN NN NN o %

PRI BEL VPRI = m

FEELT I FLEELE b v 4

R

NN NN NNENY ~ A

NN NN o B
INENNNNY 1

-~ 32

@ L}

cA LR AR ALERER

QAU NBNGONDN
WaANDNDVVOINNENN SN NN
?

(T4Y) W3VaT ¥ny adviaay

=5.0

Rata=0. 5

Alpha

LN R A B B B A B A A A A A N |

nmamnmoane GG MnMaWnanane
”“9938776655“337711
(T¥v) W3uaT uny afviaay

FET S8 b i i T s ddinig as

NN EY. S

NN NN NN NN NN NN S

~

NN NN NN o

NN NN NN NN TN

>

NN RN NN ~ o

NN RN, « i

-

NN NN v 4

~ 8

FEF PR ET PP R’
ha |

NN EY o &
NN NN n

~ 3

@ 9

4.0 and 5.0

ical ARL curves for shape parameters o

1r

Figures 4.6 and 4.7. Emp

74



N A S A S
S R R R PR L R S e

IR NN
AN A A A N
NN
A AN NN NN
LN A N N A N B Y A A B B B AN |
NN RN
FEEL PP EN TR AR
LA A A NN
LN 2N N B N A B AN AV A B AN AV N N |
A A NN
A NN NN/
LN A A I B B B A A A Y ]
LA NN NEN/
[ A AN NN
L2 2 N B B B B B B
LI I B A A A |

Alpha=10.0

CaaMmawNNae
5“3”1
__

nYy adviaay

=50.0

mm\\mmxmm‘u»m\\mmxnummxsmmm\u
PRI T EEd ST EeiE s dFieididiy
RN NN NN RN
FRTTEF T3P F0F R IFT IS
FABFFEEPFF IR IFEEFT R IEREIITTE
RSB RF I LT RFRETETI T RFEEEY
I NN NN NN NN NN
FELFIEFR I PRI ETEF7 110647770
AR NN NN NN NNNE RN NN
FPITEFFFPFEEFIdTdTIETHITY
RN N NN N NN

Alpha

3

gz

wa

Beta=D.§

SAlft in process avcraéc

=10 and 50.

al ARL curves for shape parameters o

iric

Figures 4.8 and 4.9. Emp

75



Alpha=100

[ A B B B A A |
(R B R N B A B A A N |
Fré e bbb il
(NS ARV A A A RV AN B A N A A N
A NN NN
NN NN NN
FEIF AT P E LB
LA B B B A N B A B B B A B B A A )
N N NN NN
FAF AP FFPEF LT HFIT L
[ R A R B A B B B B O AN AN B A )
L A A B B B B B B B B B B B B N B B A )
LA S S R N B Y I B A B N Y B B A O A |
FE TP F i i b il i

L
®
w
¥ 7 r Py Pl I I rrrrrryrry

0
020 4o
0.8
1,5 )
PP
18,
2254

SAYt In process avcrigc" X s

Figure 4.10. Empirical ARL curve for shape parameter a = 100

From the empirical average run length (ARL) curves, it is observed that for shape
parameters a < 5 the ARLs in control (no shift) are substantially less (from 15% to 74%)
than the 100 stated in the first hypothesis as the minimum accepted in industry for
practical purposes. However, the average run lengths (ARLSs) for shifts in the process
average of ko = 1, 2 and 3 process standard deviations are smaller, for most of the shape
parameter a values, than the 43.9, 6.3, and 2 stated in the first hypothesis for shifts in the
process average of k=1, 2, and 3 sigma, respectively. Only for a few combinations of
shape parameter o and scale parameter p (for example @ = 50 and = 10), the ARLs for
shifts in the process average of k = 2 and 3 process standard deviations are a little bit

higher (approximately 4.5%) than the theoretical ARL for normal distributions. It is the
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author's belief that these tiny differences (approximately 4.5%) in some cases are due to
the presence of random error in the simulation process.

Additionally, it can be seen from the empirical ARL curves that the ARL values
do not vary with the scale parameter . This is due to the fact that the scale parameter 8
does not affect the shape of the gamma distribution.

For the moving range n = 2 MR control charts, using the values of the upper
control limits (UCL, ) and the moving range values (MR,), the empirical probabilities of
type I error and empirical ARLs in control are calculated for each of the forty gamma
distributions generated. The equations used are:

Empirical probability (type I error) =P'=B /9,999
Empirical ARL = ARL'=1/P
where

B is the number of moving ranges (MR,) above the UCL,, for each of the forty
gamma distributions.

The empirical probabilities of type I error (P') and the empirical ARL' in control
are shown in Table 4.4.

TABLE 4.4
EMPIRICAL PROBABILITIES OF TYPE I ERROR (P') AND EMPIRICAL ARL' IN

CONTROL FOR THE MR (n=2) CONTROL CHARTS

0.5 0.0536 18.7 0.5 0.0176 56.8
0.5 4.0
1.0 0.0597 16.8 1.0 0.0177 56.5
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5.0 0.0558 17.9 5.0 0.0151 66.2
0.5 4.0

10 0.0571 17.5 10 0.0187 53.5

0.5 0.0396 253 0.5 0.0162 61.7

1.0 0.0386 259 1.0 0.0163 61.3
1.0 5.0

5.0 0.0415 24.1 5.0 0.0183 54.6

10 0.0367 273 10 0.0155 64.5

0.5 0.0304 32.9 0.5 0.0129 71.5

1.0 0.0301 332 1.0 0.0129 71.5
1.5 10

50 0.0288 34.7 50 0.0143 69.9

10 0.0301 332 10 0.0156 64.1

0.5 0.0220 45.5 0.5 0.0100 100.0

1.0 0.0271 36.9 1.0 0.0112 89.3
2.0 50

5.0 0.0252 39.7 5.0 0.0104 96.2

10 0.0248 40.3 10 0.0089 112.3

0.5 0.0218 45.9 0.5 0.0107 93.5

1.0 0.0220 45.5 1.0 0.0087 114.9
3.0 100

5.0 0.0194 515 50 0.0099 101.0

10 0.0204 49.0 10 0.0096 104.2

More details about the calculations of the empirical probabilities of type I error P' and the
empirical ARL' in control for MR (n=2) control charts can be seen in the spreadsheets
shown in Appendix D.

From table 4.4, it is observed that for shape parameters o < 10 the empirical ARL'
in control (no shift) are substantially less (from 30% to 83%) than the 100 value stated in

the first hypothesis as a minimum accepted value in industry for practical matters. It is
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not only until the shape parameter o reaches a value of 50 when the empirical ARL' in
control begin to approach the practical 100 value. In normal theory the ARL in control
has a value of 107.14.

For all of the reasons mentioned above, the first hypothesis is rejected. It means
that for practical purposes in industry the individual measurement X control chart, using
the normal bias correction factor d,, does not work well when the underlying process
distribution is skewed (asymmetric) represented by gamma distributions with shape
parameter ¢ < 5. In relation with the moving range n = 2 MR control chart, it means that
for practical matters this control chart does not perform well either when the underlying
process distribution is asymmetric represented by gamma distributions with shape
parameters a < 10.

As a consequence, individual measurement X and moving range n = 2 MR control
charts must be very carefully interpreted if the underlying process distribution is skewed
(asymmetric). According to Duncan (1, p. 400), "In such cases, the multiple of ¢ used to
set control limits might be better derived from other distributions for which the
percentage points have been computed." This is exactly what this thesis research is trying
to accomplish with objective three using the Pearson type I1I family of distributions with
¢ = 0 (gamma distributions) as the assumption to set control limits for X and MR (n=2)

control charts.

4.2 Objective two.

The second objective is to determine empirical functions f («, ) for the control

chart constants d,, d;, and D, when the process distribution can be approximated by a
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Pearson type III distribution with location parameter ¢ = 0, shape parameter «, and scale
parameter [3.

Using the same forty gamma distributions generated in Procedure I and based on
Procedure II described in page 45, the following values are computed for each
distribution:

- Average X of the 10,000 gamma variates.

- Average moving range MR of the 9,999 subgroups of two consecutive
measurements.

- Moving range standard deviation o, obtained from the 9,999 MR,

- Approximate values for the bias correction factors d, and d; and the control

chart constant D,

These values are summarized in Table 4.5.
TABLE 4.5

SUMMARY TABLE - VALUES CALCULATED USING PROCEDURE II

0.5 | 02476 | 03149 | 0.3536 | 03726 | 0.8907 | 1.0538 | 4.5493
1.0 | 0.5045 | 0.6374 | 0.7071 0.7858 [0.9014 | 1.1112 | 4.6982

- 50| 24525 | 3.0912 | 3.5355 | 3.7717 [0.8743 | 1.0668 | 4.6604
10 | 49689 | 6.3167 | 7.0711 7.6504 | 0.8933 | 1.0819 | 4.6334
0.5 | 04966 | 0.5006 | 0.5000 | 0.4979 |1.0012 | 0.9958 | 3.9838
o 1.0 { 1.0207 | 0.9976 1.0000 1.0008 | 0.9976 | 1.0008 | 4.0098

50 | 49572 | 49450 | 5.0000 | 5.0334 {0.9890 { 1.0067 | 4.0536
10 | 9.9641 | 10.1105 | 10.0000 | 10.0519 { 1.0110 | 1.0052 | 3.9826
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0.5 | 0.7451 0.6300 | 0.6124 | 0.5831 | 1.0287 | 0.9522 | 3.7768
1.0 | 1.4920 1.2539 1.2247 1.1480 | 1.0238 | 0.9374 | 3.7468
b 50 | 7.5528 | 6.3645 6.1237 | 5.8146 | 1.0393 | 0.9495 | 3.7408
10 | 15.0286 | 12.7060 | 12.2475 | 11.8153 | 1.0374 | 0.9647 | 3.7897
0.5 | 0.9971 0.7352 | 0.7071 0.6406 | 1.0397 | 0.9060 | 3.6141
1.0 | 1.9625 1.4976 1.4142 1.3258 | 1.0589 | 0.9375 | 3.6559
20 5.0 | 9.9023 7.3454 | 7.0711 6.4374 | 1.0388 | 0.9104 | 3.6291
10 | 20.0860 | 15.1945 | 14.1421 | 13.1893 | 1.0744 | 0.9326 | 3.6041
0.5 | 1.5018 | 09459 | 0.8660 | 0.8067 | 1.0922 | 0.9315 | 3.5587
1.0 | 3.0280 1.8759 1.7321 1.5935 |11.0830 [ 0.9200 | 3.54385
0 5.0 | 15.1172 | 9.4211 8.6603 7.8210 | 1.0879 | 0.9031 | 3.4905
10 | 30.1224 | 18.7847 | 17.3205 | 15.7486 | 1.0845 | 0.9093 | 3.5151
0.5 | 1.9969 1.0826 1.0000 | 0.8836 ([ 1.0826 | 0.8836 | 3.4487
1.0 | 4.0032 | 2.1963 |{ 2.0000 1.7963 | 1.0981 | 0.8982 | 3.4537
0 5.0 | 19.9459 | 11.0745 | 10.0000 | 8.9646 | 1.1075 | 0.8965 | 3.4285
10 | 40.2152 | 22.0412 | 20.0000 | 18.1502 | 1.1021 | 0.9075 | 3.4704
0.5 | 2.5080 1.2346 1.1180 | 0.9972 | 1.1043 | 0.8919 | 3.4230
1.0 | 5.0065 | 2.4833 2.2361 2.0015 |[1.1106 | 0.8951 | 3.4179
>0 5.0 | 24.9952 | 12.3467 | 11.1803 | 10.0514 | 1.1043 | 0.8990 | 3.4423
10 | 49.8423 | 24.3149 | 22.3607 | 19.5458 | 1.0874 | 0.8741 | 3.4116
0.5 | 4.9852 1.7319 1.5811 1.3572 | 1.0953 | 0.8583 | 3.3509
1.0 | 9.9423 3.5097 | 3.1623 2.7479 |[1.1099 | 0.8690 | 3.3489
1090 5.0 | 50.1309 | 17.4940 | 15.8114 | 13.7233 | 1.1064 | 0.8679 | 3.3534
10 | 100.637 | 34.9837 | 31.6228 | 27.5975 | 1.1063 | 0.8727 | 3.3666
50.0 | 0.5 | 24.9684 | 3.9957 | 3.5355 | 3.0206 | 1.1302 | 0.8544 | 3.2679
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1.0 | 49.9587 | 79154 | 7.0711 6.0473 [ 1.1194 | 0.8552 | 3.2920
50.0 | 5.0 | 250.251 | 39.4540 | 35.3553 | 29.9551 | 1.1159 | 0.8473 | 3.2777
10 | 500.820 | 80.2515 [ 70.7107 | 60.6941 | 1.1349 | 0.8583 | 3.2689
0.5 | 49.9843 | 5.6459 | 5.0000 | 4.2898 | 1.1292 | 0.8580 | 3.2794
1.0 | 100.123 | 11.2389 | 10.0000 | 8.4914 [ 1.1239 | 0.8491 | 3.2666
10 5.0 | 499.921 | 55.5181 | 50.0000 | 42.1747 | 1.1104 | 0.8435 | 3.2790
10 [ 1001.32 | 112.964 | 100.000 | 85.6926 | 1.1296 | 0.8569 | 3.2758

The details about the calculations performed to set Table 4.5 are shown in the

spreadsheets contained in Appendix D.

In order to find models in which the expected values of the control chart constants

d,, d;, and D, are written as functions of two independent variables o and {3, the

empirical values of d,, d,, and D, shown in Table 4.5 are plotted against « and p. These

graphs can be observed in Figures 4.11, 4.12, and 4.13
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Figure 4.11. Bias correction factor d, as a function of a and f.
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It is obvious from the graphs (Figures 4.11, 4.12, and 4.13) that there are non-
linear patterns in the three control chart constants d,, d;, and D, as functions of the shape
parameter a. Also, it seems that the control chart constants d,, d,, and D, do not vary
with the scale parameter f3.

Based on this information, different quadratic, cubic, and exponential models are
generated in Minitab for Windows release 10 using the method of fitting multiple
regression models with the least-squares approach. The Minitab outputs for the different
models tried can be seen in Appendix F.

Combinations of exponential functions for the shape parameter « are found to be
the ones which better fit the data for the three control chart constants d,, d;, and D,. The
scale parameter [3, as suspected, is found not significant for all the models generated.

4.2.1 Bias correction factor d,.

For the bias correction factor d,, the combination of exponential functions which

best fits the data is:
d,=0.64282 +0.09775 (1 - €% ) +0.35736 (1 - €2*) +0.02483 ( 1 - €*1*)

This model has a multiple coefficient of determination R? of 97.9%. This value of
R? indicates that the model is useful for predicting the population of d,.

The global F test is used as indicated in Procedure II to test the validity of the
multiple regression model selected. From the Minitab output (Appendix G - Models
selected), the value of the test statistic F is:

F =566.07

Using a significance level o' = 0.01, the rejection region for the test is defined by
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the value of FC o (4 1)) From an F table, this critical value is:
FC g01(3,36) = 4.39
Clearly the null hypothesis Ho: A, = A, = A; = 0 is rejected since the value of the
F statistic is greater than the critical value Fc:
F>FC o (i naee)
566.07 > 4.39
Therefore, it is concluded that one can be very confident that this model is useful
for predicting d,.
Graphs are built to compare the simulated values of d, (empirical) with the
regressed values of d,. These graphs are shown in Appendix H.
In addition, a residual model diagnostic is performed to validate the assumption of
normality for the residuals. Figure 4.14 shows the residual model diagnostic generated by
Minitab. From this Figure 4.14, it can be concluded that the residuals ( €; ) follow a

normal distribution with mean zero and variance ¢ (g; ~ N ( 0, 0?)).
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Figure 4.14. Residual model diagnostic for the bias correction factor d,.
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4.2.2 Bias correction factor d;.

For the bias correction factor d,, the combination of exponential functions which
best fits the data is:

d; =0.859457 - 0.2964 e +0.29099 ¢%°* + 0.4758 ¢**

This model has a multiple coefficient of determination R of 96.5%. This value of
R? indicates that the model is useful for predicting the population of d;.

The global F test is used as indicated in Procedure II to test the validity of the
multiple regression model selected. From the Minitab output (Appendix G - Models
selected), the value of the test statistic F is:

F=32734

Using a significance level o' = 0.01, the rejection region for the test is defined by

the value of Fc . n.q+1))- From an F table, this critical value is:
FC 4.01(3,36)=4.39

Clearly the null hypothesis Ho: A, = A, = A4, = 0 is rejected since the value of the
F statistic is greater than the critical value Fc:

F>FC o ngen))
327.34>439

Therefore, it is concluded that one can be very confident that this model is useful
for predicting d,.

Graphs are built to compare the simulated values of d; (empirical) with the
regressed values of d;. These graphs are shown in Appendix H.

In addition, a residual model diagnostic is performed to validate the assumption of
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normality for the residuals. Figure 4.15 shows the residual model diagnostic generated by
Minitab. From this Figure 4.15, it can be concluded that the residuals ( €; ) follow a

normal distribution with mean zero and variance o (¢; ~ N ( 0, ¢%)).
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Figure 4.15. Residual model diagnostic for the bias correction factor d;.

4.2.3 Control chart constant D,.

For the control chart constant D, , the combination of exponential functions which
best fits the data is:

D, =3.28976 + 1.87067 ¢ + 0.13663 ¢*!*

This model has a multiple coefficient of determination R* of 98.0%. This value of
R? indicates that the model is useful for predicting the population of D,.

The global F test is used as indicated in Procedure II to test the validity of the
multiple regression model selected. From the Minitab output (Appendix G - Models
selected), the value of the test statistic F is:

F=925.12

Using a significance level a' = 0.01, the rejection region for the test is defined by
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the value of Fc . (4 ,.41)) From an F table, this critical value is:
FC g01(2,37)=35.243

Clearly the null hypothesis Ho: A, = A, = 4; = 0 is rejected since the value of the

F statistic is greater than the critical value Fc:
925.12>5.243

Therefore, it is concluded that one can be very confident that this model is useful
for predicting D,

Graphs are built to compare the simulated values of D, (empirical) with the
regressed values of D,. These graphs are shown in Appendix H.

In addition, a residual model diagnostic is performed to validate the assumption of
normality for the residuals. Figure 4.16 shows the residual model diagnostic generated by
Minitab. From this Figure 4.16, it can be concluded that the residuals ( ¢; ) follow a

normal distribution with mean zero and variance o (¢; ~ N ( 0, 0?)).
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Figure 4.16. Residual model diagnostic for the control chart constant D,
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4.3 Objective three.

The third objective of this thesis research is to compare the performance of the
individual measurement X and moving range n = 2 MR control charts, using the normal
control chart constants, with the performance of these control charts using the Pearson
type III ¢ =0 (gamma) control chart constants computed in objective two, when 10, 30,
and 50 data values are available from an unknown process distribution. The performance
of the control charts will be evaluated using the proportion of control charts which
indicate at least one signal when the process is in control and for shifts in the process
average of 1 and 2 process standard deviations o.

The results of Objective three are presented separately for each of the five
unknown process distributions. Then, an overall analysis is performed over the results of
the five distributions to test the second hypothesis stated in Chapter I (p. 5).

According to Procedure III, one thousand samples of k = 10, 30, and 50
observations are generated in Quattro Pro for Windows using the random number
generator included in Minitab and following the algorithms described for each of the five
process distributions. The algorithms used to generate gamma and normal variates are
tested statistically to see how closely the values generated resemble IID gamma (o, B)
and normal (u,0?) distributions, respectively. The tests are goodness of fit tests for 100
and 1,000 observations for the gamma distribution (2, 1) and for the normal (40, 10%).
The results of the tests are shown in Appendix C and they indicate that both algorithms
are good enough to generate reliable gamma and normal variates respectively. The other

algorithms are not tested statistically because they are particular cases of either the
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gamma algorithm or the normal algorithm.

Spreadsheets which place 250 samples of k = 10, 30, and 50 observations are
designed to perform the whole analysis contained in objective three. Therefore, for each
distribution and for k = 10, 30, and 50 observations, the spreadsheets are run four times
to complete the 1,000 samples required in Procedure III. A portion of the spreadsheets
and a subset of the results for each of the five process distributions and for k = 10, 30,
and 50 observations can be seen in Appendix L.

Then, for each of the five distributions and for each sample generated of k = 10,
30, and 50 observations, the following values are calculated:

- Sample average X.

- Sample average moving range MR from the 9, 29, and 49 subgroups of two

consecutive measurements formed respectively for k = 10, 30, and 50.

- Sample shape parameter « and sample scale parameter 8. In order to estimate

these parameters « and 8, the numerical technique developed by Choi and Wette

(9, p. 683) and described in Procedure I1I is used. The statistic T is evaluated for

each sample. Then, using the table reproduced in Appendix J and included in the

spreadsheets designed (Appendix I), the values of a and 3 are estimated.

- Gamma bias correction factors d, and d; and gamma control chart constant D,

using the exponential models selected in objective two

d, = fi(a)
d; =f(a)
D, =f;(a)
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- Two sets of control limits for the X and MR (n=2) control charts are calculated
for each simulation run of k = 10, 30, and 50 observations. One set of control
limits is obtained using the normal control chart constants and the other one is
obtained using the gamma constants computed before.
A subset of the details of these calculations performed for each of the five distributions
and for each simulation run of k = 10, 30, and 50 observations can be seen partially in the
spreadsheets included in Appendix 1.

Next, as indicated in Procedure III, three sets of 1,000 new samples of k' = 30
observations are generated for each of the five process distributions. The first set is left as
it is (no shift), the second set is shifted up one process standard deviation, and the third
set is shifted up two process standard deviations. Only for the first set of 1,000 new
samples (no shift in the process average), the observations are grouped in subgroups of
two consecutive measurements and the moving range values are calculated. The first
subgroup is formed using the last observation of the old samples of k = 10, 30, and 50
observations with the first observation of the new 1000 samples of k' = 30. Therefore,
there are thirty moving ranges for each new sample of k'= 30 data values.

Then, the first observation (k'=1) and first moving range, the first ten observations
(k'=10) and first ten moving ranges, and the thirty observations (k'=30) and thirty moving
ranges of the first new sample of k' = 30 data values, are compared with the two sets of
control limits calculated before for the first sample of k = 10, 30, and 50 measurements
and for each of the five process distributions. This step is executed repeatedly for each of

the 1,000 samples contained in the three sets of new samples (k'=30) and for each of the
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five distributions. Each time the comparison is between the n® new sample of k' = 30
with the normal and gamma control limits corresponding to the n™ old samples of k = 10,
30, and 50 observations, respectively. It is important to clarify that for the moving range
the step is repeated only for the first set of 1,000 new samples because only shifts in the
process average are considered in this research.

Thus, for each of the five process distributions and for k = 10, 30, and 50 data
values, the proportion of individual measurement X and moving range n = 2 MR control
charts which indicate at least one signal are recorded. This is done for the three
comparisons described before (k'=1, 10, and 30 new observations) and for the two set of
control limits (normal and gamma). For the moving range, the proportions are computed
only for the first set of 1,000 new samples of k' = 30.

A subset of the details about the calculations of the number of X and MR control
charts which indicate at least one signal for each of the five distributions, for k = 10, 30,
and 50, for k' =1, 10, and 30, and for both sets of control limits (normal and gamma), can
be observed partially in the spreadsheets included in Appendix I.

4.3.1 Lognormal (0, 1%)

The number of normal and gamma individual measurement X and moving range
n =2 MR control charts which indicate at least one signal are summarized in Table 4.6
for the lognormal distribution. This table indicates the number of normal and gamma
control charts out of the 1,000 generated which show at least one false alarm (no shift in
the process average) and signal at least one out-of-control condition (shift in the process

average of 1 and 2 sigma) for values of k = 10, 30, and 50 and k' = 1, 10, and 30.
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TABLE 4.6
NUMBER OF X AND MR (n=2) CONTROL CHARTS WHICH INDICATE AT

LEAST ONE SIGNAL OUT OF THE 1,000 GENERATED FOR THE LOGNORMAL

0 62 453 714 55 413 667
1 216 673 834 197 628 799
2 558 844 927 512 815 904

0 45 367 678 39 323 622
1 129 622 858 106 566 814
2 449 874 964 367 814 934

0 33 328 664 28 283 605
1 116 621 864 94 537 796
2 395 866 974 303 806 944

10 83 469 718 56 381 623
30 60 379 669 45 283 559
50 60 343 656 40 242 545
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From the values in Table 4.6, the reductions in false alarm rate and power of

detection in percentage due to the use of gamma control limits rather than normal control

limits are computed. These results are presented in Table 4.7.

TABLE 4.7

REDUCTION IN SIGNALS FROM NORMAL TO GAMMA CONTROL CHARTS

FOR THE LOGNORMAL DISTRIBUTION (IN PERCENT)

Shift k=10 k=30 k=50

ino | k'=1 | k'=10 | k'=30 | k'=1 | k'=10 | k'=30 '=1 | k'=10 | k'=30
0 13.33 15.15
1 8.79 6.69 420 | 17.83 | 9.00 513 | 1897 | 13.53 7.87

k k'=1 k'=10 30
10 32.53 18.76 13.23
30 25.00 25.33 16.44
50 33.33 29.45 16.92

Note: Values marked are the biggest reduction (in percent) in the k' column.

In order to test the second part of the second hypothesis (power of detection at

least equal to the theoretical power using the normal assumption for shifts of 1 and 2

process standard deviations), the performance of the gamma X control chart for k'=1is

compared with the performance of the theoretical normal X control chart. This

comparison is shown in Table 4.8. Table 4.8 indicates percentages of signals for shifts in

the process average of 1 and 2 sigma for the lognormal distribution.
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TABLE 4.8
PERCENTAGE OF SIGNALS (%) - GAMMA X CONTROL CHARTS vs.
THEORETICAL NORMAL X CONTROL CHARTS FOR SHIFTS OF 1 AND 2

SIGMA AND k' =

1 19.7 2.28 10.6 2.28 9.4 2.28

2 51.2 15.87 36.7 15.87 30.3 15.87
NT: Normal theory.

In order to evaluate the effect of the number of observations used to set control
limits (k = 10, 30, and 50), the performance of only the normal X control charts for
k = 10 are compared with the performance of those normal X control charts for k = 30. In
the same way, the performance of only the normal X control chart constants for k = 30
are compared with those normal X control charts for k = 50. The values used to do the
comparison are taken from Table 4.6. The comparison is shown in Table 4.9. Table 4.9
indicates the differences in percentage of signals between k = 10 and 30 and between

k =30 and 50 for the normal X control chart.
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TABLE 4.9

DIFFERENCES IN PERCENTAGE OF SIGNALS (%) DUE TO THE VALUE OF k

FOR THE NORMAL X CONTROL CHART - LOGNORMAL DISTRIBUTION

(27.42) | (18.98) (5.04) (26.67) (10.63) (2.06)
(40.28) (7.58) 2.88 (10.08) (0.16) 0.70
(19.53) 3.55 3.99 (12.03) (0.92) 1.04

Note: Values in parenthesis are negative percentages (reduction in percentage of signals).

4.3.2 Normal (40, 10%)

The number of normal and gamma individual measurement X and moving range
n =2 MR control charts which indicate at least one signal are summarized in Table 4.10
for the normal distribution. This table indicates the number of normal and gamma control
charts out of the 1,000 generated which show at least one false alarm (no shift in the
process average) and signal at least one out-of-control condition (shift in the process

average of 1 and 2 sigma) for values of k =10, 30, and 50 and k' =1, 10, and 30.
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TABLE 4.10
NUMBER OF X AND MR (n=2) CONTROL CHARTS WHICH INDICATE AT

LEAST ONE SIGNAL OUT OF THE 1,000 GENERATED FOR THE NORMAL

235

229

10

66

0 10 72 165 154
1 35 276 532 33 260 509
2 167 742 912 164 734 906

143

136

0 4 54 4
1 31 263 535 26 252 514
2 169 786 948 161 774 942

10 31 194 350 28 188 336
30 15 119 276 13 108 253
50 11 115 256 9 99 238
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From the values in Table 4.10, the reductions in false alarm rate and power of
detection in percentage due to the use of gamma control limits rather than normal control
limits are computed. These results are presented in Table 4.11.

TABLE 4.11
REDUCTION IN SIGNALS FROM NORMAL TO GAMMA CONTROL CHARTS

FOR THE NORMAL DISTRIBUTION (IN PERCENT)

Shift k=10 k=30 k=350

ino '=1 | k'=10 | k'=30 | k'=1 | k'=10 | k'=30 | k'=1 | k'=10 | k'=30
0 0.00 0.00 1.85
1 0.00 2.97 2.43 5.80 4.32 . 3.93
2 2.55 2.11 1.19 1.08 0.66 | 4.73 1.53 0.63

k k'=1 k'=10 k'=30
10 9.68 3.09 4.0
30 13.33 9.24 8.33
50 18.18 13.91 7.03

Note: Values marked are the biggest reduction (in percent) in the k' column.

In order to test the second part of the second hypothesis (power of detection at

least equal to the theoretical power using the normal assumption for shifts of 1 and 2

process standard deviations), the performance of the gamma X control chart for k' =1 is

compared with the performance of the theoretical normal X control chart. This

comparison is shown in Table 4.12. Table 4.12 indicates percentages of signals for shifts

in the process average of 1 and 2 sigma for the normal distribution.
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TABLE 4.12
PERCENTAGE OF SIGNALS (%) - GAMMA X CONTROL CHARTS vs.
THEORETICAL NORMAL X CONTROL CHARTS FOR SHIFTS OF 1 AND 2

SIGMA AND k' =

1 6.70 2.28 33 2.28 2.6 2.28

2 22.9 15.87 16.4 15.87 16.1 15.87
NT: Normal theory.

In order to evaluate the effect of the number of observations used to set control
limits (k = 10, 30, and 50), the performance of only the normal X control charts for
k = 10 are compared with the performance of those normal X control charts for k = 30. In
the same way, the performance of only the normal X control chart constants for k = 30
are compared with those normal X control charts for k = 50. The values used to do the
comparison are taken from Table 4.10. The comparison is shown in Table 4.13. Table
4.13 indicates the differences in percentage of signals between k = 10 and 30 and

between k = 30 and 50 for the normal X control chart.
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TABLE 4.13

DIFFERENCES IN PERCENTAGE OF SIGNALS (%) DUE TO THE VALUE OF k

FOR THE NORMAL X CONTROL CHART - NORMAL DISTRIBUTION

(66.67) | (52.00) | (45.18) | (60.00) (25.00) (13.33)
(47.76) | (18.10) (0.75) (11.43) 4.71) 0.56
(28.94) 436 8.19 1.20 5.93 3.95

Note: Values in parenthesis are negative percentages (reduction in percentage of signals).
4.3.3 Exponential (mean=1)
The number of normal and gamma individual measurement X and moving range
n =2 MR control charts which indicate at least one signal are summarized in Table 4.14
for the exponential distribution. This table indicates the number of normal and gamma
control charts out of the 1,000 generated which show at least one false alarm (no shift in
the process average) and signal at least one out-of-control condition (shift in the process

average of 1 and 2 sigma) for values of k = 10, 30, and 50 and k' = 1, 10, and 30.
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TABLE 4.14
NUMBER OF X AND MR (n=2) CONTROL CHARTS WHICH INDICATE AT

LEAST ONE SIGNAL OUT OF THE 1,000 GENERATED FOR THE EXPONENTIAL

0 47 342 608 38 300 533
1 138 596 817 115 526 742
2 347 792 912 288 729 859

0 34 280 548 21 208 451
1 89 5438 825 65 444 737
2 231 820 950 172 728 902

0 28 246 555 22 181 448
1 86 537 863 57 443 776
2 221 858 983 159 757 956

10 58 353 614 32 254 468
30 55 278 552 20 153 360
50 44 248 552 23 133 330
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From the values in Table 4.14, the reductions in false alarm rate and power of
detection in percentage due to the use of gamma control limits rather than normal control
limits are computed. These results are presented in Table 4.15.

TABLE 4.15
REDUCTION IN SIGNALS FROM NORMAL TO GAMMA CONTROL CHARTS

FOR THE EXPONENTIAL DISTRIBUTION (IN PERCENT)

Shift k=10 k=30 k=50

ino | k=1 | k=10 | k'=30 | k'=1 | k'=10 | k'=30 | k'=1 | k'=10 | k'=30
0 21.43
1 16.67 | 11.74 | 9.18 | 26.97 | 18.98 | 10.67 17.50 | 10.08
2 17.00 [ 7.95 5.81 |[2554( 11.22 505 [2805 | 11.77 | 275

k k'=1 =30
10 44 83 28.05 23.78
30 63.64 44 .96 34.78
50 47.73 46.37 40.22

Note: Values marked are the biggest reduction (in percent) in the k' column.

In order to test the second part of the second hypothesis (power of detection at
least equal to the theoretical power using the normal assumption for shifts of 1 and 2
process standard deviations), the performance of the gamma X control chart for k' =1 is
compared with the performance of the theoretical normal X control chart. This
comparison is shown in Table 4.16. Table 4.16 indicates percentages of signals for shifts

in the process average of 1 and 2 sigma for the exponential distribution.
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TABLE 4.16
PERCENTAGE OF SIGNALS (%) - GAMMA X CONTROL CHARTS vs.
THEORETICAL NORMAL X CONTROL CHARTS FOR SHIFTS OF 1 AND 2

SIGMA AND k'=1

1 11.5 2.28 6.5 2.28 5.7 2.28

2 28.8 15.87 17.2 15.87 15.90 15.87
NT: Normal theory.

In order to evaluate the effect of the number of observations used to set control
limits (k = 10, 30, and 50), the performance of only the normal X control charts for
k = 10 are compared with the performance of those normal X control charts for k = 30. In
the same way, the performance of only the normal X control chart constants for k =30
are compared with those normal X control charts for k = 50. The values used to do the
comparison are taken from Table 4.14. The comparison is shown in Table 4.17. Table
4.17 indicates the differences in percentage of signals between k = 10 and 30 and

between k = 30 and 50 for the normal X control chart.
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TABLE 4.17

DIFFERENCES IN PERCENTAGE OF SIGNALS (%) DUE TO THE VALUE OF k
FOR THE NORMAL X CONTROL CHART - EXPONENTIAL DISTRIBUTION

(27.66) | (18.13) (9.87) (17.65) (12.14) 1.28
(35.51) (8.05) 0.98 (3.37) (2.01) 4.61
(33.43) 3.54 4.17 (4.33) 4.63 3.47

Note: Values in parenthesis are negative percentages (reduction in percentage of signals).
4.3.4 Gamma («=1.5, $=1.0)
The number of normal and gamma individual measurement X and moving range
n =2 MR control charts which indicate at least one signal are summarized in Table 4.18
for the gamma distribution. This table indicates the number of normal and gamma control
charts out of the 1,000 generated which show at least one false alarm (no shift in the
process average) and signal at least one out-of-control condition (shift in the process

average of 1 and 2 sigma) for values of k = 10, 30, and 50 and k' =1, 10, and 30.
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TABLE 4.18
NUMBER OF X AND MR (n=2) CONTROL CHARTS WHICH INDICATE AT

LEAST ONE SIGNAL OUT OF THE 1,000 GENERATED FOR THE GAMMA

0 36 287 539 33 252 474
1 111 506 755 99 456 692
2 304 743 896 257 691 856

0 28 238 524 20 195 433
1 66 489 809 58 416 742
2 232 807 958 190 733 925

0 19 216 497 14 170 418
1 57 483 811 48 412 752
2 207 827 977 162 744 948

10 55 297 534 36 230 433
30 32 247 528 20 164 370
50 26 227 511 11 139 354
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From the values in Table 4.18, the reductions in false alarm rate and power of
detection in percentage due to the use of gamma control limits rather than normal control
limits are computed. These results are presented in Table 4.19.

TABLE 4.19
REDUCTION IN SIGNALS FROM NORMAL TO GAMMA CONTROL CHARTS

FOR THE GAMMA DISTRIBUTION (IN PERCENT)

Shift k=10 k=30 k=150

ino | k'=1 | k'=10 | k'=30 | k'=1 | k'=10 | k'=30 | k'=1 | k'=10 | k'=30
0
1 10.81 | 9.88 834 | 12.12 | 14.93 828 | 1579 | 1470 | 7.27

k kK'=1 k'=10 k'=30
10 34.55 22.56 18.91
30 37.50 33.60 29.92
50 57.69 38.77 30.72

Note: Values marked are the biggest reduction (in percent) in the k' column.

In order to test the second part of the second hypothesis (power of detection at
least equal to the theoretical power using the normal assumption for shifts of 1 and 2
process standard deviations), the performance of the gamma X control chart for k'=1 is
compared with the performance of the theoretical normal X control chart. This
comparison is shown in Table 4.20. Table 4.20 indicates percentages of signals for shifts

in the process average of 1 and 2 sigma for the gamma distribution.
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TABLE 4.20
PERCENTAGE OF SIGNALS (%) - GAMMA X CONTROL CHARTS vs.
THEORETICAL NORMAL X CONTROL CHARTS FOR SHIFTS OF 1 AND 2

SIGMA ANDKk'=1

1 9.90 2.28 5.80 2.28 4.80 2.28

2 25.70 15.87 19.00 15.87 16.20 15.87
NT: Normal theory.

In order to evaluate the effect of the number of observations used to set control
limits (k = 10, 30, and 50), the performance of only the normal X control charts for
k = 10 are compared with the performance of those normal X control charts for k = 30. In
the same way, the performance of only the normal X control chart constants for k = 30
are compared with those normal X control charts for k = 50. The values used to do the
comparison are taken from Table 4.18. The comparison is shown in Table 4.21. Table
4.21 indicates the differences in percentage of signals between k = 10 and 30 and

between k = 30 and 50 for the normal X control chart.
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TABLE 4.21

DIFFERENCES IN PERCENTAGE OF SIGNALS (%) DUE TO THE VALUE OF k

FOR THE NORMAL X CONTROL CHART - GAMMA DISTRIBUTION

(22.22) | (17.07) (2.78) (32.14) (9.24) (5.15)
(40.54) (3.36) 7.15 (13.64) (1.23) 0.25
(23.68) 8.61 6.92 (10.78) 2.48 1.98

Note: Values in parenthesis are negative percentages (reduction in percentage of signals).
4.3.5 Chi-Square y* (df=4)
The number of normal and gamma individual measurement X and moving range
n =2 MR control charts which indicate at least one signal are summarized in Table 4.22
for the chi-square distribution. This table indicates the number of normal and gamma
control charts out of the 1,000 generated which show at least one false alarm (no shift in
the process average) and signal at least one out-of-control condition (shift in the process

average of 1 and 2 sigma) for values of k = 10, 30, and 50 and k' = 1, 10, and 30.
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TABLE 4.22
NUMBER OF X AND MR (n=2) CONTROL CHARTS WHICH INDICATE AT

LEAST ONE SIGNAL OUT OF THE 1,000 GENERATED FOR THE CHI-SQUARE

108

509

93

662

291

729

263

846

29 194 449 23 161 397
1 80 504 773 70 437 718
2 219 790 955 195 736 931

72

201

175

10 56 282 500 44 243 414
30 35 213 474 23 156 363
50 34 181 444 22 124 335
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From the values in Table 4.22, the reductions in false alarm rate and power of
detection in percentage due to the use of gamma control limits rather than normal control
limits are computed. These results are presented in Table 4.23.

TABLE 4.23
REDUCTION IN SIGNALS FROM NORMAL TO GAMMA CONTROL CHARTS

FOR THE CHI-SQUARE DISTRIBUTION (IN PERCENT)

Shift k=10 k=30 k=50

ino | k'=1 | k'=10 | k'=30 '=1 [ k'=10 | k'=30 | k'=1 | k'=10 | k'=30
0 10.42
1 6.68 570 | 12.50 | 13.29 712 | 972 | 13.51 9.01
2 9.62 521 397 [ 1096 | 6.84 251 {1294 833 3.18

k k'=1 '=30
10 21.43 13.83 17.20
30 34.29 26.76 23.42
50 35.29 31.49 24.55

Note: Values marked are the biggest reduction (in percent) in the k' column.

In order to test the second part of the second hypothesis (power of detection at

least equal to the theoretical power using the normal assumption for shifts of 1 and 2

process standard deviations), the performance of the gamma X control chart for k' =1 is

compared with the performance of the theoretical normal X control chart. This

comparison is shown in Table 4.24. Table 4.24 indicates percentages of signals for shifts

in the process average of 1 and 2 sigma for the chi-square distribution.
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TABLE 4.24
PERCENTAGE OF SIGNALS (%) - GAMMA X CONTROL CHARTS vs.
THEORETICAL NORMAL X CONTROL CHARTS FOR SHIFTS OF 1 AND 2

SIGMA AND k'=1

1 9.30 2.28 7.00 2.28 6.50 2.28

2 26.30 15.87 19.50 15.87 17.50 15.87
NT: Normal theory.

In order to evaluate the effect of the number of observations used to set control
limits (k = 10, 30, and 50), the performance of only the normal X control charts for
k = 10 are compared with the performance of those normal X control charts for k = 30. In
the same way, the performance of only the normal X control chart constants for k = 30
are compared with those normal X control charts for k = 50. The values used to do the
comparison are taken from Table 4.22. The comparison is shown in Table 4.25. Table
4.25 indicates the differences in percentage of signals between k = 10 and 30 and

between k = 30 and 50 for the normal X control chart.
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TABLE 4.25

DIFFERENCES IN PERCENTAGE OF SIGNALS (%) DUE TO THE VALUE OF k
FOR THE NORMAL X CONTROL CHART - CHI-SQUARE DISTRIBUTION

(39.58) | (27.07) (8.37) (20.69) (14.95) (6.01)
(25.93) (0.98) 10.11 (10.00) (1.59) 3.36
(24.74) 8.37 8.40 (8.22) 1.77 2.09

Note: Values in parenthesis are negative percentages (reduction in percentage of signals).

4.3.6 Overall Analysis of the Results

The overall analysis of the results described from section 4.3.1 to section 4.3.5 is
based on the second hypothesis stated in Chapter 1.

The second hypothesis of this thesis research states that the individual
measurement X and moving range n =2 MR control charts, using gamma control chart
constants, have better performance than the same control charts using the normal
constants, when 10, 30, and 50 data values are available from an unknown process
distribution. Better performance means less false alarm rate in control and power of
detection (X chart), for shifts in the process average of 1 and 2 sigma, at least equal to the
theoretical power using the normal assumption (0.0228 and 0.1587 respectively for shifts
in the process average of 1 and 2 sigma).

From Tables 4.6, 4.10, 4.14, 4.18, and 4.22, it is clearly seen that the gamma
control charts (X and MR) always vyield less false alarm rate than the normal control

charts (X and MR) because the gamma limits are always wider than the normal limits.
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However, this reduction in false alarm rate leads to reductions in the power of detection
too. This is the statistical price that the gamma control charts have to pay in order to
reduce the number of false signals when the underlying process distribution is
asymmetric (skewed distribution).

The higher power of detection in the normal X control charts is unquestionable.
However, in general, when the power increases the probabilities of a type I error or alpha
risk also increases. According to Walker, et al. (42, p. 248), "Occasions arise in practice
when a signal from the chart is automatically interpreted as an indication of an out-of-
control process. Operators may be instructed to stop the process in order to search out
and remove assignable causes. Under such circumstances, spurious signals can lead to
counterproductive changes."

In this regard, it is important to have a criterion that does not indicate trouble too
often when such trouble is not present. This statement has been stressed by Shewhart and
many other quality experts. This criterion is better accomplished by the Pearson type I1I
with ¢ = 0 (gamma) control charts (less false alarm rate at the expense of reductions in
the power of detection when shifis are present).

In addition, from Tables 4.7, 4.11, 4.15, 4.19, and 4.23, it is observed that in
almost all of the cases for the X chart, the reductions in false alarm rate (%) are greater
than the reductions in power of detection (%) for shifts of 1 and 2 process standard
deviations when gamma control limits are used instead of the normal control limits. For
the MR charts, the reductions in false alarm rate are always substantially big (from 14%

to 63%). Therefore, based on the empirical evidence, it seems that the gamma control
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charts have better performance than the normal control charts.

Now, even though the empirical power of detection for the gamma X control
charts is always less than the empirical power of detection for the normal X control
charts, the empirical power of detection for the gamma X control charts is always greater
than the theoretical power of detection for the normal control charts (0.0228 and 0.1587
for shifts in the process average of 1 and 2 sigma respectively). It is clearly seen in
Tables 4.8, 4.12, 4.16, 4.20, and 4.24.

In conclusion, based on the empirical results, it could be said that there is not
evidence to reject the statement of the second hypothesis. It means that, based on the
empirical evidence, the gamma control charts (X and MR) seem to have better
performance than the same control charts set with the normal constants d,, d,, and D,.
However, even though the performance of the gamma control charts is better than the
performance of the normal control charts when the process distribution is non-normal, the
number of empirical false alarms (no shift) is still too big (greater than the 1% accepted
for practical purposes and greater than the theoretical value 0.27%). For instance, it is
observed in Table 4.14 (exponential distribution) that the false alarm rates for k' =1 are
3.8%, 2.1%, and 2.2% for k = 10, 30, and 50 data values, respectively. These false alarm
rate values are far away the theoretical normal curve false alarm rate (0.27%) and the
practical false alarm rate used in industry (1.0%). It is the author's belief that these high
false alarm rates using the gamma control charts are due to the following three factors:

- The empirical nature of the study (# of observations).

- The skewness of the process distribution which affects the number of data values above
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the three sigma upper control limit (tail area).
- The use of symmetric control limits (X chart) for asymmetric process distributions.

In relation to the effects of the number of observations used to set control limits
(k =10, 30, and 50) in the performance of the individual measurement X and moving
range n = 2 MR control charts there are not conclusive results. However, from Tables
4.9,4.13,4.17, 4.21, and 4.25, it seems that the differences in performance k = 10 versus
k =30 are more inconsistent than the differences in performance k = 30 versus k = 50. In
addition, the number of false alarms (X and MR), when k = 10 is used to set control
limits, is always much greater (from 28% to 65% for the asymmetric distributions and
from 150% to 200% for the normal distribution) than the number of false alarms when
k =30 and 50 data values are used to set control limits.

Therefore, it is the author's belief that k = 10 observations is not a good sample
size to set reliable control limits (X and MR) for future predictions. This goes against
some authors who believe that control charts always perform well no matter what number
of observations are available. Additionally, from the empirical evidence, it seems that
there is not too much difference in performance between k = 30 and k = 50 data values
used to set control limits. As a consequence, it seems to be safe to say that k =30
measurements is a good sample size to set control limits (X and MR) for future

predictions.
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CHAPTERYV

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions and recommendations

- The empirical ARL curves (from Figure 4.1 to Figure 4.10) indicate that the
individual measurement X control chart, using the normal curve bias correction factor

d, = 1.128, does not work well when the underlying process distribution shows a marked
departure from normality (highly skewed distributions). This departure from normality is
represented in this thesis research by a Pearson type III with ¢ = 0 family of distributions
(gamma distributions). For gamma distributions with shape parameter o < 5, the ARLs in
control (no shift) are substantially less (from 15% to 74%) than the 100 accepted in
industry as a minimum for practical purposes and much less than the 370 stated in the
normal theory (1 /0.0027). Therefore, if the process is suspected to have a skewed
(asymmetric) distribution, the individual measurement X control chart, using the normal
bias correction factor d,, must be very carefully used and interpreted.

In general, it is recommended not to use the X chart, under the assumption of
normality, when it is suspected that the process distribution is markedly non-normal
(represented in this research by asymmetric distributions). According to Duncan
(1, p. 400), "In such cases, the multiple of ¢ used to set control limits might be better
derived from other distributions for which the percentage points have been computed.”

- The empirical ARL values in control (Table 4.4) indicate that the moving range

n=2 MR control chart, using the normal curve control chart constant D, = 3.268, does
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not work well when the underlying process distribution is skewed . From Table 4.4, it is
observed that for gamma distributions with shape parameter « < 10 the empirical ARLs
in control are substantially less (from 30% to 83%) than the 100 accepted in industry as a
minimum for practical purposes and much less than the 107.14 given by the normal
theory (1 / 0.0093).

Therefore, if the process has a skewed (asymmetric) distribution, the moving range n =2
MR control chart, using the normal D,, must be very carefully used and interpreted.

In general, it is recommended not to use the MR (n=2) chart, under the
assumption of normality, when it is suspected that the process distribution is markedly
non-normal (represented in this research by skewed distributions). Instead, the control
limits must be based on the percentiles of a probability distribution which better fits the
moving range distribution. Another approach could be to transform the original data to a
new variable that can be approximated by a normal distribution. In the latter case, the
control charts under the assumption of normality can be used safely on the transformed
data.

- The bias correction factors d, and d; and the control chart constant D, show an
exponential behavior approaching the normal curve values as the shape parameter «
increases when the underlying process distributions are represented by gamma
distributions. This behavior can be observed from Figure 4.11 to Figure 4.13 for the three
constants, respectively.

The apparent exponential behavior is corroborated by the regression model

selected to fit the values of d,, d;, and D, (Appendix G) when the underlying process
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distribution is gamma with shape parameter o and scale parameter 3. The regression
models, using the least-squares approach, which best fit the data for the three constants
are combinations of exponential functions for the shape parameter «. The scale parameter
B, as suspected, is found not to be significant in all the models generated.

- For four out of the five distributions selected to represent unknown process
distributions (lognormal, exponential, gamma, and chi-square), the individual
measurement X and moving range n = 2 MR control charts, set with the gamma control
chart constants d,, d;, and D,, have better performance than the same control charts set
with the normal curve constants d,, d;, and D,. Better performance means less false alarm
rate in control, for the X and MR control charts, and power of detection at least equal to
the theoretical power using the normal assumption for the X chart. This can be observed
in Tables 4.6 and 4.8, 4.14 and 4.16, 4.18 and 4.20, and 4.22 and 4.24 for the four process
distributions, respectively.

For the fifth distribution (normal), the individual measurement X and moving
range n = 2 MR control charts, set with the gamma constants, have approximately the
same performance as those control charts set with the normal constants. This can be seen
in Table 4.10 for the normal curve. The similar performance is due to the fact that the
gamma constants d,, d;, and D, approach the normal values when the gamma distribution
approaches the normal curve (a increases).

In addition, for all cases (five distributions), the reductions in false alarm rates are
bigger than the reductions in power of detection for shifts of 1 and 2 sigma when the

gamma control limits are used instead of the normal limits. This can be observed in
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Tables 4.7, 4.11, 4.15, 4.19, and 4.23.

Therefore, based on the empirical evidence, it is recommended that the gamma
control chart constants d,, d,, and D, be used to set control limits for X and MR (n=2)
control charts when the underlying process distribution is suspected to be a skewed
distribution (asymmetric distribution).

However, even though the performance of the gamma control charts is better than
the performance of the normal curve control charts when the process distribution is
skewed, the number of empirical false alarms (no shift) is still too big. These high false
alarm rates are far away the theoretical normal curve false alarm rate (0.27%) and the
practical false alarm rate used in industry (1.0%). It is the author's belief that these high
false alarm rates, using the gamma control charts, are due to the following three factors:
1. The empirical nature of the study (# of observations).

2. The skewness of the process distribution which affects the number of data values
above the three sigma upper control limit (tail area).
3. The use of symmetric control limits (X chart) for asymmetric process distributions.

As a consequence, more research is needed in this area to improve the
performance of the X and MR (n=2) gamma control charts.

- The number of empirical false alarms, when k = 10 observations are used to set
control limits, is always much greater (from 28% to 65% for the asymmetric distributions
and from 150% to 200% for the normal distribution) than the number of false alarms
when k = 30 and 50 data values are used to set control limits. In addition, it is observed

from Tables 4.9, 4.13, 4.17, 4.21, and 4.25 that the differences in performance k=10
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versus k=30 have more variation than the differences in performance k=30 versus k=50.
It means that the performance of X and MR (n=2) control charts are more consistent
when k=30 and 50 data values are used to set control limits.

Therefore, based on the empirical evidence, it is not recommended to use k =10
observations to set reliable control limits (X and MR control charts) for future
predictions. Instead, it seems safe to say that k = 30 measurements is a good sample size

to set these control limits for future predictions.

5.2 Research contributions

- This thesis research supplies the empirical evidence required to avoid using the
individual measurement X and moving range n =2 MR control charts when the
underlying process distribution is suspected to be a skewed (asymmetric) distribution.
This is on behalf of people in industry who use this pair of control charts (X and MR),
under the assumption of normality, indiscriminately without knowing the approximate
shape of the underlying process distribution.

- This research provides empirical equations to calculate approximately the correct
control chart constants d,, d;, and D, when the underlying process distribution is a
gamma distribution with shape parameter o and scale parameter 3.

- This thesis provides empirical evidence that supports the hypothesis that the
gamma control charts (X and MR) perform better than the normal curve control charts (X
and MR) when the process distribution has a marked departure from normality
(represented in this research by skewed distributions). However, more research is needed

in this area since the number of empirical false alarms in control for the gamma control
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charts is still unacceptable.

In this regard, this research opens ways for future research providing a new
methodology for setting control limits (X and MR) under skewed (asymmetric)
circumstances.

- This thesis research sets the empirical foundations that support the fact that k = 10
observations is not a good sample size to calculate reliable control limits for future
predictions (X and MR). This goes against some authors who believe that X and MR
(n=2) control charts always perform well no matter what number of observations are
available. In addition, this research shows that there is not too much difference in
performance between k = 30 and k = 50 data values used to set control limits. As a
consequence, it seems to suggest that k = 30 observations is a good sample size to set

those control limits for future predictions.

5.3 For future research

The fact that the gamma control charts (X and MR) still signal a large number of
false alarms when the process is in control suggests that more research is needed in this
area. It is the author's belief that these higher false alarm rates, using the gamma control
charts, are due to the following three factors:

1. The empirical nature of the study (# of observations).

2. The skewness of the process distribution which affects the number of data values
above the three sigma upper control limit (tail area).

3. The use of symmetric control limits (X chart) for asymmetric process distributions.

In Figure 5.1, the effects of the skewness and symmetrical control limits can be observed.
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Asymmetrical process distribution
y A 3*(MR/d2(Alpha))
3*(MR/d2(Alpha))

>>>0.0027

~ [/

LCLx CLx UCL x x
Symmetrical control limits

Note: - Alpha is the shape parameter

Figure 5.1. Effects of skewness and symmetrical control limits (X chart).

In order to get rid off these three factors, additional research is recommended in
the field of setting asymmetric control limits (X and MR) based on the number of
observations available, k, and the shape parameter, a. Following the methodology
developed in this research, gamma control limits for the individual measurement X
control chart are set at:

UCLy =X +J, (MR / d, (a))= X + E,, (k, &) MR
LCLy =X - J,(MR / d, (a)) = X - E, (k, «) MR
E,k, a)=J,(k, a)/d,(a)
E,k a)=J (k, a)/d,(a)
where:

- d, (&) is the gamma bias correction factor evaluated in this research.

- E,, (k, a) is the gamma control chart constant used to set the individual
measurement upper control limit. It is a function of the number of observations available

k and the shape parameter o.
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- E, (k, o) is the gamma control chart constant used to set the individual
measurement lower control limit. It is a function of the number of observations available
k and the shape parameter «.

- J, (k, @) is a value which yields an upper tail area similar to the normal theory in
control (0.00135). This value depends upon the sample size k used to set control limits
and the shape parameter «.

- J, (k, o) is a value which yields a lower tail area similar to the normal theory in
control (0.00135). This value depends upon the sample size k used to set control limits
and the shape parameter o.

The proposed idea is seen in Figure 5.2.

Asymmetrical process distribation
y 1} E21(Alpha,k) * MR
el Ezu(Alpha,k) * MR
0.60135 0.00133
N VA
LCLx CLx UCLx :
Asymmetrical control limits
Note: - Alpha is the shape parameter
- k is the number of observations

Figure 5.2. Asymmetric gamma control limits (X chart) for asymmetric
process distributions.

For the MR (n=2) control charts, the same logic is used.
UCLyg = MR + L,* 0y = MR + L(k, 0)*(dy(0)/dy(o))* MR
UCLyg = (1+Ly(k, a)*(dy(e)/dy(a)))* MR
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where:
- d, () is the gamma bias correction factor evaluated in this research.
- d; (o) is the gamma bias correction factor evaluated in this research.
- Lk, ) is a value which yields an upper tail area similar to the normal theory in
control for the range distribution (0.0093). This value depends upon the sample
size used to set control limits k and the shape parameter «.

The proposed idea for the moving range n = 2 MR control chart is seen in Figure 5.3.

A etrical MR distributi

v 4 1+Lu(Alpha,k)* (@3 (Alpha)/d2(Alpha))] * FTR
/

0.0093

WA

CL mx UCL »x

u

Note: - Alpha is the shape parameter

- k is the number of data

Figure 5.3. Gamma upper control limit (MR chart) for asymmetric distributions.
Future research can also be done in the following areas:
- Evaluate the performance of the gamma control charts (X and MR) under shifts in the
process standard deviation (variability).
- Use a more generic family of distributions (for instance, the Burr family of
distributions) to fit any set of data available to set control limits. Then, using the same
methodology developed in this research, appropriate control chart constants and

asymmetric control limits can be calculated.
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APPENDIX A

VALUES OF THE BIAS CORRECTION FACTORS d, AND d; AND CONTROL

CHART CONSTANTS A,, D,, D,, AND E, - NORMAL ASSUMPTION
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ANSI/ASQC Standard A1-1978
IV. FACTORS AND FORMULAS FOR CONTROL CHARTS FOR VARIABLES

Table 1
Factors for Computing Central Lines and 3-sigma Control Limits for X, s, and R Charts
Chart for Averages Chant for Standard Dewiations Charnt for Ranges
Faciors for Faciors for Facrors for
Obscrvauons Control Limits Central Line Factors for Control Limis Central lane Factors for Conirol Limus
n
Sample. n 4 4, 4, /e, 8, B, B, B 4, 1/d. 4. n,__n, D0
2 212t 1.880 2659 0.7979 1.2533 0 3267 0 2606 1128 08865 085 0 3686 0 3267
3 1,732 1023 1954 08862 1.128¢ 0 258 0 05907 0888 0 4358 0 2574
4 1.500 0729 1628 09213 108% O 2266 0 04857 0880 O 4698 0 2 28
3 1.342 0577 1427 09400 10638 o 2089 0 . 04299 0864 0 4918 0
6 1225 0483 1.287 09515 10510 0030 1970 0029 1874 2514 01946 0848 O 5078 0
7 1134 0419 1182 09394 10423 0118 1882 0.113 1.806 2704 03698 0833 0204 5204
8 1.060 0373 1.099 09650 10363 0.185 1815 0.179 1.751 2847 0.3512 0820 0388 5306
9 1000 0337 1.032 09693 10317 0239 1.761 0232 1707 2970 03367 0808 0547 5393
10 0.949 0308 0975 09727 1.0281 0284 1716 0276 1669 3.078 0349 0.797 0687 5469
11 0905 0285 0927 09734 1.0252 0321 1679 0313 1637 3173 03152 0787 0811 5535
12 0866 0266 0886 09776 10229 0354 1646 0346 1610 3258 03069 0778 0922 558
13 0832 0249 0850 0979 10210 0382 1.6)8 0374 1585 3336 02998 0770 1025 5647
14 0802 0235 0817 09810 10194 0406 1594 0399 1.563 3407 02935 0763 1118 569
15 0.775 0223 0789 09823 10180 0428 1572 0421 1544 3472 02880 075 1.203 574}
16 0750 0212 0763 09835 1.0168 0448 1552 0440 1526 3532 02881 075 1282 5.782
17 0728 0203 0739 09845 10157 0466 1534 0458 1511 3588 02787 0.74¢ 1.3% 580
18 0.707 0.194 0718 09854 1.0148 0482 1518 0475 (.49 3640 02747 0.739 1424 585
19 0688 0187 0698 09862 1.0140 0497 1503 049 1483 3689 02711 0.734 1487 589t
20 067] 0180 0680 09869 1.0133 0510 1490 0504 1470 3.735 02677 0729 1544 59
21 0655 0173 06b3 09876 1.0126 0523 1477 0516 1459 3778 02647 0724 1605 5951
n 0640 0167 0647 09882 10119 053¢ 1466 0528 1.448 3819 02618 0720 1659 5979
23 0626 0162 0633 09887 1.0114 0545 1455 0339 1438 3858 0259 0716 1.710 600
24 0612 0157 0619 09892 1.0109 0555 1445 0549 1429 3895 0257 0712 1.759 6031 0451 1548
25 0600 0135 0606 0989 10105 0565 1435 0559 1420 3931 02544 0.208 1806 605 0459 1541

132



APPENDIX B

CHI-SQUARE TEST - RANDOM NUMBER GENERATOR IN MINITAB
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This particular case of the chi-square x> test is designed to check whether the U;'s
generated appear to be uniformly distributed between 0 and 1. The idea is to evaluate
how well the generated U;'s resemble values of true IID U(0, 1) random variates.

Test procedure:

1. Divide the interval [0, 1] into k subintervals of equal length and generate U1,
U2,..., Un.
Rules of thumb:

- k should be at least 100.

- n/ k should be at least 5.
2. Calculate the statistic x* using the equation:

1= €mY_g-(/f

Where

fj is the number of U/'s that are in the j* subinterval.
3. The null hypothesis is:

Ho: Ujs are IID U(0, 1) random variables
4 The rejection region is defined by:
Xt 1

Where

«' is the confidence level.

k-1 is the degrees of freedom.

5. Reject the null hypothesis if the x” statistic is greater than x*.; .-
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Results of the test:
The test is performed three times with different samples generated and different
values of k and n.
First test: n = 5000 observations.
k = 100 subintervals.
a'=0.01
1. n/k = 5000/100 = 50 which is greater than the value 5 recommended in the rules
of thumb.
2. The value of the x? statistic is:
x> =118.88
3. The null hypothesis is:
Ho: Uj's are IID U(0, 1) random variables
4. The rejection region is defined by:
17 59, 099 = 134.6392
5. There is not reason to reject the null hypothesis since x> < %7 g5 0.9 -
Second test: n = 1000 observations.

k = 100 subintervals.

a'=0.01
1. n/k = 1000/100 = 10 which is greater than the value 5 recommended in the rules
of thumb.
2. The value of the ¥ statistic is:

x> =92.0
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3. The null hypothesis is:
Ho: U's are IID U(0, 1) random variables
4. The rejection region is defined by:
X 99 090 = 134.6392
5. There is not reason to reject the null hypothesis since x> < x7 g5 0.9 -
Third test: n = 5000 observations.
k = 200 subintervals.
a'=0.01
1. n/k = 5000/200 = 25 which is greater than the value 5 recommended in the rules
of thumb.
2. The value of the x? statistic is:
x> =168.16
3. The null hypothesis is:
Ho: Uj's are IID U(0, 1) random variables
4. The rejection region is defined by:
x2 199, 0.90 = 248.3332
5. There is not reason to reject the null hypothesis since x° < x* 109, 0.99-

Therefore, based on the results of the three tests, it could be said that this random

number generator does not behave in a way that is significantly different from that would

be expected from truly IID U(0, 1) random variables.
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n=5000 3 interval f e [P n=1000 K Interval [ ko ORr2
k=100 1 0.0t 3 50 9 k=100 1 0.01 14 10 16
2 0.02 59 50 8 2 0.02 9 10 1
3 003 46 50 18 3 0.03 " 10 1
4 004 33 50 289 4 0.04 8 10 1
5 005 53 50 9 5 0.05 -] 10 1
[] 008 46 50 18 6 0.06 9 10 1
7 0.07 56 50 38 7 007 8 10 4
8 0.08 47 50 9 8 0.08 14 10 16
9 0.08 54 50 16 9 0.08 10 10 0
10 0.1 51 50 1 10 0.1 10 10 0
" 011 50 50 " 011 10 10 1]
12 0.12 8 50 381 12 0.12 8 10 4
13 8.13 49 50 1 13 8.13 4 10 38
14 0.14 50 50 0 14 0.4 1" 10 1
15 0.15 59 50 81 15 0.15 " 10 1
16 0.18 58 50 84 16 0.18 12 10 4
17 017 51 50 1 17 017 10 10 0
18 0.18 56 50 38 18 018 10 10 ]
19 o.19 50 50 0 19 018 8 10 1
20 0.2 42 50 64 20 02 12 10 4
21 021 60 50 100 21 0.21 7 10 9
22 022 44 50 38 22 022 12 10 4
23 023 50 50 a 23 023 14 10 16
24 024 59 50 81 24 024 9 10 1
25 025 58 50 84 25 025 10 10 0
26 028 42 50 64 26 0.26 ] 10 4
27 027 48 50 4 27 027 L] 10 4
28 0.28 53 50 9 28 028 14 10 18
29 029 33 50 289 29 028 10 10 0
30 03 57 50 49 30 03 17 10 49
H 031 83 50 169 31 03 4 10 36
32 032 46 50 16 32 032 12 10 4
33 0.33 45 50 25 33 0.33 10 10 0
34 0.34 59 50 2] 34 034 8 10 4
36 0.35 48 50 4 35 035 8 10 1
36 0.38 45 50 25 36 036 ] 10 1
37 037 60 50 100 k14 037 10 10 ]
38 28 0.38 1 10 1
39 38 03¢ 10 10 0
40 40 04 19 10 81
41 41 041 8 10 1
42 42 042 7 10 9
43 43 043 7 10 9
44 4 044 10 10 0
45 45 048 18 10 64
48 48 046 3 10 49
47 47 047 12 10 4
48 48 048 7 10 9
49 48 049 5 10 25
50 50 05 L] 10 1
51 51 051 13 10 9
52 52 052 8 10 1
53 53 053 1" 10 1
54 54 054 11 10 1
55 &5 055 8 10 4
56 58 058 18 10 81
57 57 057 11 10 1
58 58 0.58 12 10 4
58 59 059 e 10 4
60 80 08 7 10 9
61 61 061 9 10 1
62 82 0862 10 10 ]
63 63 063 9 10 1
84 64 064 6 10 16
85 65 0.65 8 10 4
86 66 066 15 10 25
87 87 067 12 10 4
68 68 0.68 14 10 16
69 69 069 14 10 16
70 70 07 L] 10 1
ral 7 0.7 ] 10 16
72 72 072 8 10 1
73 73 073 12 10 4
74 74 074 10 10 0
75 75 078 10 10 0
78 76 0.78 18 10 25
77 77 077 12 10 4
78 78 o078 9 10 1
79 78 079 13 10 9
80 80 08 10 10 [}
81 81 081 -] 10 1
82 a2 082 1 10 1
83 83 0.83 6 10 18
84 84 084 6 10 16
85 85 085 17 10 49
26 86 086 13 10 9
87 87 087 9 10 1
88 88 088 ) 10 16
89 89 089 10 10 0
90 20 09 9 10 1
91 91 091 9 10 1
92 92 092 8 10 1
83 93 083 4 10 38
84 94 094 ] 10 4
95 95 0.95 " 10 1
96 96 0.98 ] 10 4
87 a7 097 9 10 1
88 98 098 10 10 0
98 29 088 7 10 9
100 100 1 10 10 0
===szze am=zzss m=ssss==
Total: 5000 5000 5844 Total: 1000 1000 920
Chi-square value = (k/n) Sum [f-(n%)}'2 Chi-square value = (k/n) Sum [f-(nK)}"2
Chi-squars value = 11888 Chi-square value = 92
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n=5000 K Intervel [ nk  [fOMP2 k interval 5 nk  [fHOMP2
34 25 1 24 1

=200 1 0.005 101 0.505 25
2 001 30 25 25 102 051 19 25 38
3 0015 30 25 25 103 0515 33 25 84
4 0.02 24 25 1 104 052 21 25 18
5 0.026 22 25 9 105 0525 27 25 4
8 0.03 22 25 9 108 0.53 21 25 16
7 0.035 18 25 49 107 0.535 30 25 25
] 0.04 24 25 1 108 0.54 25 25 0
9 0.045 27 25 4 109 0545 26 25 1
10 0.05 21 25 16 110 055 25 25 o
11 0.055 36 25 121 111 0.555 33 25 84
12 0.06 33 25 64 112 0.56 22 25 9
13 0.085 29 25 18 113 0.565 26 25 1
14 0.07 24 25 1 114 057 28 25 9
15 0.075 19 25 36 15 0575 24 25 1
16 0.08 29 25 16 118 058 21 25 16
17 0.085 21 25 16 17 0.585 26 25 1
18 0.09 21 25 16 118 059 23 25 4
19 0.085 24 25 1 118 0.595 28 25 9
20 0.1 28 25 9 120 06 19 25 38
21 0.108 30 25 25 121 0.805 25 25 0
22 0.11 29 25 18 122 081 24 25 1
23 0.115 30 25 25 123 0.615 28 25 8
24 0.12 18 25 48 124 0.62 21 25 16
25 0.125 27 25 4 125 0.625 24 25 1
28 0.13 35 25 100 126 083 25 25 0
27 0.135 29 25 18 127 0.835 22 25 9
28 0.14 24 25 1 128 0.64 29 25 16
28 0.145 33 25 84 129 0.845 18 25 49
30 0.16 22 25 9 130 065 27 25 4
31 0.155 24 25 1 131 0.855 30 25 25
32 0.16 23 25 4 132 0.66 24 25 1
33 0.185 20 25 25 133 0.865 18 25 48
34 0.47 21 25 16 134 0.87 22 25 9
35 0176 27 25 4 135 0.875 28 25 9
36 0.18 28 25 9 138 0.68 34 25 81
37 0.186 28 25 1 137 0.685 29 25 18
38 0.18 25 25 0 138 0.68 21 25 16
39 0.195 18 25 81 138 0.695 23 25 4
40 0.2 28 25 16 140 0.7 15 25 100
4 0.205 32 25 49 141 0.705 21 25 16
42 0.21 28 25 9 142 0.71 22 25 9
43 0215 24 25 1 143 0.715 15 25 100
44 022 28 25 9 144 0.72 28 25 8
45 0.225 21 25 16 145 0.725 33 25 64
48 0.23 17 25 84 146 0.73 26 25 1
47 0.236 28 25 9 147 0.735 20 25 25
48 0.24 24 26 1 148 0.74 27 25 4
48 0.245 15 25 100 149 0.745 24 25 1
50 0.26 17 25 64 150 0.75 18 25 49
51 0.255 33 25 64 151 0.766 19 25 38
52 0.26 28 25 9 152 0.7¢ 27 25 4
53 0.265 20 25 25 153 0.765 25 25 0
54 0.27 32 26 49 154 0.77 19 25 38
56 0275 23 25 4 155 0.775 25 25 [
56 0.28 27 25 4 156 0.78 25 25 o
§7 0.285 26 25 1 157 0.785 28 25 9
58 0.28 30 25 25 158 0.79 23 25 4
58 0.285 27 25 4 159 0.795 25 25 [}
60 0.3 2% 25 0 160 08 26 25 1
61 0.306 16 25 81 161 0.805 26 25 1
62 0.31 30 25 25 162 0.81 22 25 9
83 0.315 30 25 25 163 0815 25 25 0
64 032 28 25 9 164 0.82 17 25 64
85 0325 A 25 36 1856 0.825 22 25 9
66 0.33 21 25 16 166 0.83 32 25 49
67 0.335 20 25 25 167 0.835 24 25 1
68 0.34 27 25 4 168 0.84 29 25 16
€9 0.345 A 25 16 169 0.845 30 25 25
70 035 28 25 1 170 085 21 25 16
7 0.356 23 25 4 17 0.856 29 25 16
72 0.36 21 25 16 172 0.86 16 25 81
73 0.365 30 25 25 173 0.865 27 25 4
74 0.37 26 25 0 174 0.87 27 25 4
75 0.375 34 25 81 175 0875 15 25 100
76 0.38 33 25 64 176 0.88 24 25 1
77 0.385 23 25 4 177 0.885 26 25 1
78 0.39 23 25 4 178 089 25 25 0
79 0.385 27 25 4 179 0895 25 25 0
80 04 27 25 4 180 09 21 25 18
81 0405 26 25 1 181 0.805 24 25 1
82 041 17 25 64 182 0.81 23 25 4
83 0415 20 25 25 183 0915 29 25 16
84 042 26 25 1 184 0.92 17 25 64
86 0425 28 26 16 185 0.826 28 25 1
86 043 29 25 16 186 0.83 18 25 49
87 0435 27 25 4 187 0.935 25 25 0
88 044 32 25 49 188 084 29 25 16
88 0445 18 25 48 189 0.845 25 25 0
80 045 33 25 64 190 0.95 28
81 0455 20 25 25 191 0.955 31
92 046 24 25 1 192 0.96 16
93 0.465 28 25 9 183 0.965 25
94 047 27 26 4 184 097 26
95 0475 31 25 36 185 0.875 25
96 048 20 25 25 196 098 30
97 0.485 21 25 16 187 0.985 23
98 049 24 25 1 188 0.99 25
99 0495 22 25 9 198 0.895 30
100 05 27 25 4 200 1 23
zzzarz= ===
Total: 5000 5000 4204

Chi-square value = (k) Sum [fi-(Vk)}'2
Chi-square value = 168.16
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APPENDIX C

GOODNESS OF FIT TESTS - GENERATION GAMMA AND NORMAL

RANDOM VARIATES
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The generation of gamma and normal random variables is tested statistically to
check whether the values generated, in fact, agree with the underlying probabilistic
model assumed for these data. The test used is the x* goodness-of-fit test.

Only the generation of gamma and normal random variates is tested statistically
because the other distributions generated in this research are either particular cases or
derivations from these two distributions. The exponential and chi-square distributions are
particular cases of the gamma distribution. The lognormal distribution is derived from the
normal distribution.

For the gamma distribution, four tests are performed using different parameters
and number of observations. For the normal distribution, two tests are run using different
number of observations.

1. Gamma distribution

1.1 First test

Gamma distribution with shape parameter « = 1 and scale parameter = 1. This
is equivalent to an exponential distribution with mean 1. The number of observations
used to perform the test is 1000.

The null hypothesis Ho to be tested is:

Ho: The data generated can be regarded as a gamma (1, 1) distribution.

From the spreadsheet designed in Quattro Pro, the x* chi-square statistic is:

x2=17.20

Using a significance level of «' = 0.01, the rejection region is defined by the

following critical value:

140



x? kel = x> 099,12 = 20.217

Since the y? chi-square statistic is not greater than the critical value 3 o, 15 ,
there is not statistical reasons to reject the null hypothesis that the 1000 data values
generated come from a gamma (1, 1) distribution.

1.2 Second test

Gamma distribution with shape parameter « = 1 and scale parameter p = 1. This
is equivalent to an exponential distribution with mean 1. The number of observations
used to perform the test is 100.

The null hypothesis Ho to be tested is:

Ho: The data generated can be regarded as a gamma (1, 1) distribution.
From the spreadsheet designed in Quattro Pro, the x> chi-square statistic is:
x2=2.396

Using a significance level of a' = 0.01, the rejection region is defined by the

following critical value:
X2 a k1 " X2 099,6 16.8119

Since the x” chi-square statistic is not greater than the critical value x> o ¢ , there
is not statistical reasons to reject the null hypothesis that the 100 data values generated
come from a gamma (1, 1) distribution.

1.3 Third test

Gamma distribution with shape parameter o = 2 and scale parameter p = 1. The
number of observations used to perform the test is 1000.

The null hypothesis Ho to be tested is:
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Ho: The data generated can be regarded as a gamma (2, 1) distribution.
From the spreadsheet designed in Quattro Pro, the x* chi-square statistic is:
x>=13315

Using a significance level of ' = 0.01, the rejection region is defined by the

following critical value:
x? okl = x> 099,14 = 29.1413

Since the x” chi-square statistic is not greater than the critical value % g0 14,
there is not statistical reasons to reject the null hypothesis that the 1000 data values
generated come from a gamma (2, 1) distribution.

1.4 Fourth test

Gamma distribution with shape parameter a = 2 and scale parameter § = 1. The
number of observations used to perform the test is 100.

The null hypothesis Ho to be tested is:

Ho: The data generated can be regarded as a gamma (2, 1) distribution.
From the spreadsheet designed in Quattro Pro, the x? chi-square statistic is:
x> =5.4973

Using a significance level of a' = 0.01, the rejection region is defined by the

following critical value:
X2 okl X2 0.99,8 20.0902

Since the y? chi-square statistic is not greater than the critical value ¥ o g , there

is not statistical reasons to reject the null hypothesis that the 100 data values generated

come from a gamma (2, 1) distribution.
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2. Normal distribution

2.1 First test

Normal distribution with mean p = 1 and standard deviation o = 10. The number
of observations used to perform the test is 1000.

The null hypothesis Ho to be tested is:

Ho: The data generated can be regarded as a normal (40, 10%) distribution.

From the spreadsheet designed in Quattro Pro, the x> chi-square statistic is:

x2=17.80

Using a significance level of &' = 0.01, the rejection region is defined by the

following critical value:
x? okl x> 099,15 = 30.5779

Since the y* chi-square statistic is not greater than the critical value % 40 15 »
there is not statistical reasons to reject the null hypothesis that the 1000 data values
generated come from a normal (40, 10?) distribution.

2.2 Second test

Normal distribution with mean u = 1 and standard deviation ¢ = 10. The number
of observations used to perform the test is 100.

The null hypothesis Ho to be tested is:

Ho: The data generated can be regarded as a normal (40, 10%) distribution.

From the spreadsheet designed in Quattro Pro, the x* chi-square statistic is:

x> =2.624
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Using a significance level of o' = 0.01, the rejection region is defined by the
following critical value:
X a1 = X’ 09,3 = 20.0902
Since the ¥’ chi-square statistic is not greater than the critical value % ;4 5 , there
is not statistical reasons to reject the null hypothesis that the 100 data values generated

come from a normal (40, 10%) distribution.
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|
|
\Gamma (1, 1) ; n=1000 ; k=20.
|

Colapsed
“ Colapsed
| k Interval Interval Frequency Oi
| 1 0.45 354 354
! 2 09 235 235
‘ 3 1.35 135 135
| 4 1.8 101 101
5 225 70 70
! 6 27 41 41
J 7 315 28 28
| 8 3.8 11 11
| 9 4.05 8 8
“ 10 45 5 5
‘ 11 4.95 5 5
| 12 5.4 * 2 5
13 5.85 * 1
: 14 6.3 * 0
| 15 6.75 * 2
| 16 7.2 - 1 2
! 17 7.65 - 0
J 18 8.1 - 1
| 19 8.55 - 0
| 20 9 - 0
1000 1000

|
|
|
I Chi-square statistic = Sum [ (Oi - Ei)*2/ Ei ]
|

| Chi-square statistic  7.200321

I
[
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
|
|

Appendix C - Goodness of fit tests

Frequency Cumulative

Probability

0.362372
0.59343
0.74076

0.834701

0.894601

0.932795

0.957148

0.972676

0.982578

0.988891

0.982817

0.985483
0.99712

0.998164

0.998829

0.999253

0.999524

0.992696

0.999806

0.999877

Expected
Frequency

Probability Ei (OI-Ei)*2 / Ei
0.362372 362.372 0.19342108
0.231058 231.058 0.06725309
0.14733 147.33 1.03189371
0.093941 93.941 0.53043379

0.0599 59.9 1.70300501
0.038194 38.194 0.20614851
0.024353 24.353 0.54615895
0.015528 16.528 1.32037506
0.009902 9.902 0.36534074
0.006313 6.313 0.27308237
0.004026 4.026 0.23563736
0.002566 5912 0.14068742
0.001637

0.001044

0.000665

0.000424 1.171 0.58688386
0.000271

0.000172

0.00011

7.1E-05

0.999877 1000 7.20032094

Gamma (1, 1); n~=1000.

405 295 385 675 765 835
X values




Appendix C - Goodness of fit tests

Gamma (1, 1) ; n=100 ; k=10.

Colapsed Expected
Colapsed Frequency Cumulative Frequency
k Interval  Interval Frequency Oi Probability Probability Ei (Oi-Eiy*2 / Ei
1 0.4 37 37 0.32968 0.32968 32.968 0.49311526
2 0.8 25 25 0550671 0.220991 22.0991 0.38079473
3 1.2 1 11 0.698806 0.148135 14.8135 0.98172483
4 1.6 10 10 0.798103 0.099297 9.9297 0.00049771
5 2 6 6 0.864665 0.066562 6.6562 0.06469133
6 24 * 2 6 0909282 0.044617 7.4525 0.28309376
7 2.8 * 4 0.93919  0.029908
8 32 - 2 5 0.959238 0.020048 6.081 0.19216593
9 3.6 - 1 0.972676 0.013438
10 4 - 2 0.981684  0.009008
100 100 0.981684 100 2.39608365

Chi-square statistic = Sum [ (Oi - Ei)*2/ Ei ]

Chi-square statistic 2.396084 Gamma (1, 1); n=100.

!

X values
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Appendix C - Goodness of fit tests

Gamma (2, 1) ; n=1000 ; k=20.

Colapsed Expected
Colapsed Frequency Cumulative Frequency
k Interval  Interval Frequency Oi Probability Probability Ei (Oi-Ei)*2 / Ei
1 0.525 122 122 0.097878 0.097878 97.878 5.94485874
2 1.05 180 180 0.282628 0.18475 184.75 0.12212449
3 1.575 187 187 0.466956 0.184328 184.328 0.03873304
4 21 136 136 0620385 0.153429 153.429 1.97987369
5 2625 114 114 0737406 0.117021 117.021 0.07798977
6 3.15 84 84 0.822164 0.084758 84,758 0.00677888
7 3.675 66 66 0.881492 0.059328 59.328 0.7503301
8 42 38 38 0.922023 0.040531 40.531 0.1580509
9 4725 29 29 0.949215 0.027192 27.192 0.12021418
10 5.25 15 15 0.967203 0.017988 17.988 0.49633889
11 5.775 8 8 0.978969 0.011766 11.766 1.20540167
12 6.3 10 10 0.986595 0.007626 7.626 0.73903436
13 6.825 5 5 0.9915 0.004905 4905 0.00183996
14 7.35 * 4 0.994634 0.003134
15 7.875 * 1 5 0.996626 0.001992 5.126 0.00309715
16 8.4 - 0 0.997886 0.00126
17 8.925 - 0 0.99868 0.000794
18 9.45 - 0 0.999178 0.000498
19 8.975 - 0 0.999489 0.000311
20 10.5 - 1 1 0.999683 0.000194 3.374 1.67038411
1000 1000 0.999683 1000 13.3150499
Chi-square statistic = Sum [ (Oi - Ei)*2 / Ei ]
Chi-square statistic = 13.31505 Gamma (2, 1); n=1000.

Frequenc

oS8E8524885

528 1.575 2.625 3675 4728 5775 6825 7875 8925 9978
X values
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Appendix C - Goodness of fit tests

Gamma (2, 1) ; n=100 ; k=10.

Colapsed Expected
Colapsed Frequency Cumulative Frequency
k Interval Interval Frequency Oi Probability Probability Ei (Oi-Ei)*2 / Ei
0.66 13 13 0.142027 0.142027 14.2027 0.10184594
1.32 25 25 0.380246 0.238219 23.8219 0.05826234
1.98 17 17 0588554 0.208308 20.8308 0.70448704
2.64 15 15 0.740245 0.151691 15.1691 0.00188507
33 11 11 0.841402 0.101157 10.1157 0.07730424
3.96 9 9 0.905447 0.064045 6.4045 1.05185733

462 * 3 0.944627  0.03918

528 * 1 4 0968019 0.023392 6.2572 0.81425427

5.94 3 3 0981734 0.013715 1.3715 1.93365822
6.6 3 3 0.989661 0.007927 1.8266 0.75378712

100 100 0.989661 100 5.49734157

QOWONOGAWN-=

—_

Chi-square statistic = Sum [ (Oi - Ei)*2 / Ei ]

Chi-square statistic = 5.497342

Gamma (2, 1); n=100.

Frequency (O1)
SZ6 %8

066 132 198 264 33 39 462 $28 394 66
X values
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Appendix C - Goodness of fit tests

Normal (40, 10*2) ; n=1000 ; k=20.

k

OCOONOOOTEA WN =

[ T QR G G G G G QY
CoONOODDWN2O

20

Interval

8.5
12
155
19
22.5
26
29.5
33
36.5
40
435
47
50.5
54
57.5
61
64.5
68
715
75

Colapsed
Interval

*

*

*

Colapsed Expected
Frequency Cumulative Frequency
Frequency Oi Probability Probability Ei (OI-Ei)*2 / Ei
2 0.000816 0.000816
2 0.002555 0.001739
3 7 0.007143 0.004588 7143 0.0028628
11 11 0.017864 0.010721 10.721 0.00726061
19 19 0.040059 0.022195 22,195 0.45992453
29 29 0.080757 0.040698 40.698 3.36240611
75 75 0.146859 0.066102 66.102 1.1977611
90 90 0.241964 0.095105 95.105 0.27402371
128 128 0.363169 0.121205 121.205 0.38094159
133 133 0.5 0.136831 136.831 0.1072605
149 149 0636831 0.136831 136.831 1.08224424
113 113 0.758036 0.121205 121.205 0.55543934
93 93 0.853141 0.095105 95.105 0.04659087
73 73 0.919243 0.066102 66.102 0.71983305
41 41 0.959941 0.040698 40.698 0.00224099
14 14 0.982136 0.022195 22195 3.02581775
19 19 0.992857 0.010721 10.721 6.38323207
5 0.997445 0.004588
1 0.999184 0.001739
0 6 0.999767 0.000583 7.143 0.1828992
1000 1000 0.989767 1000 17.8007385

Chi-square statistic = Sum [ (Oi - Ei)*2 / Ei ]

Chi-square statistic = 17.80074

Frequency (Oi)
cxBREEB22A8RREEE
- :

Normal (40, 10*2) ; n=1000.

25 295 365 435
X values

50.5

57.5

64.5

718
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Appendix C - Goodness of fit tests

Normal (40, 10%2) ; n=100 ; k=10.

Colapsed Expected

Colapsed Frequency Cumulative Frequency
k Interval  Interval Frequency Oi Probability Probability Ei (OI-Eiy*2 / Ei
1 20 2 2 0.02275 0.02275 2275 0.03324176
2 25 5 5 0.066807 0.044057 4.4057 0.08016717
3 30 10 10 0.158655 0.091848 9.1848 0.07235335
4 35 19 19 0.308538 0.149883 14.9883 1.07375332
5 40 15 15 0.5 0.191462 19.1462 0.89787918
6 45 21 21 0691462 0.191462 19.1462 0.1794912
7 50 14 14 0.841345 0.149883 14.9883 0.06516662
8 55 8 8 0.933193 0.091848 9.1848 0.15283414

9 60 * 6 0.97725 0.044057

10 65 * 0 6 0.99379 0.01654 6.6807 0.06935688
100 100 0.99379 100 2.62424362

Chi-square statistic = Sum [ (Oi - E)*2/Ei ]

Chi-square statistic = 2.624244

Normal (40, 10*2) ; n=100.

SBRBERRS

Frequency

X values
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APPENDIX D

FORTY GAMMA DISTRIBUTION SPREADSHEETS
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05 Alphs=0 5
05 Betas0's
007106
037686
012434
002838
© 10807
005252
0 46956
003791
000065
067519
059999
030009
0 12582
041056
045514
007586
027915
037238
003226
003073
0 18287
005217
005349
000816
006164
02511
005211
00188
000733
000018
040017
001809
000366
000675
005287
297792
119821
005519
0042
201538
026307
G 15992
004044
001114
067781
026085
02164
06485
074857
000959
023855
013573
038473
007609
009503
005429
004913
0.2685
0 12041
139815
005211
082486
001064
025089
0
6.0221
0.01461
007533
0.00168
064507
04475
023988
044228
071065

0 3058
025252
009595
007968
005555
041704
0 43165
003728
067454

00752

02999
017427
028474
004458
037628
020028
009323
034012
000153
0 15214

Q1307
000132
004333
005348
018946
019899
003331
Q01147
000715
039999
038408
001243
000309
004512
292508
177871
114302
001319
197338
175231
010315
011948

00293
0 66667
0 41696
0.04445

04322
009997
073898
022896
010282

0.249
0 30664
001694
004074
000516
021947
014819
127774
134804
077278
081422
024025
0.25089

0.0221
000749
006072
0.07365
064338
0 19757
020764
020242
026837

(MRLMRY*2

8 3E-0%
0003891
0047939
0055328
0067262
0010433
0013631
0077084
0129341
0057456
0000225
0019777

00009t
0073073
0003768
0013133
0049138
0000636
G 088201
0026491

003393
0098332
0 072668

006834
0015738
0013436
0.079293

009207
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@ 00724
0004786
0091488
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2066147
0044338
0038189
0081567
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0.010418
0073143
0013759
0045195
0 178844
0007386
0044978
0.004342
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0.08a7e
0075164
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0 009107
Q027792
0927061
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0.200627

0.24932
0.005573
0.004097
0085732
0094501
0 064607
0 058202
0 107508
0013766
0011505
0.012652
0002165

00118
005033
038478
006282

00159
001426
024561
050023
001124

00013
000142
044383
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023606
039737
0 06872

00798
000336
004684

09369
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026592
019736
029003
014152
042176

MR
003981
003853
033445
032196
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000164
023135
025462
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000012
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001961
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007624
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004097
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0078703
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0016592
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0007855
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0013338
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OO0 DOOCOOORC0 -« 00R00000C0N00000R0+“0Luaull00000000lO000000V0TBRBOOVOVBABOOO
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7114648 01371
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2006854 00235
23651 90451
1633 121 16821
290359 21629
2739713 09142
346819 70M2
5208472 14223
4056165 0 8696
3702206 92022
3740433 15045
5405473 54693
3182405 39118
1433748 0614
0045793 32 2062
909 0462 10 3827
6823028 21951
155016 14 8389
782137 52144
1557492 10.308
3266217 40838
375096 84148
1899223 13692
2064165 13598
3078818  0.5258
1295062 17.4259
6622428 141886
275206 00032
0222688 95247
5721701 173368
9976803 14316
235643 20811
1930201 38921
1084341 00007
1017487 12962
593895 04363
1661221 66005
2395914 56363
31,8695 20358
8199188 00138
£6.27239 07313
0688887 190262
0383171 00473
2963195 22285
3374889 17 5442
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217903 56452
20 63256 208
1520172 0071
2126139 51848
3400532 00248
0447438 1
1523503 120371
2707128 3001
149638 12346
6899068 2 3400
1320601 05305
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4715973 102619
1450766 2.338
2359934 08509
7363468 20 4043
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9266592 06557
0742411 08019
0051396 4 4627
1100586 00528
4998055 116576
6292611 04497
2193337 110328
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4006 24 16812

28 86784
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6 105385
7 316442
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34 05782

25 8847
0038594
0 496754
33 22279
4063822

1.90714

553147
22.65006
9113604
638 8508
240 4608
3.500238
40 66731
1127417
1500889
0004123
24.55904
5 159293
3978213
30 06008
108 7482
11 40688
61.88485
0632355
30 19934
9193918
3211724

17 10242
8098188
89.03984
8085915
1247155
12 44472
1448987
133751
2285088
17 38717
7 395084
20 88771
27 38717
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Sum MR > UCLmr

Normal constamt d2 ( n=2 )
Normal constant D4 ( n=2 }
Upper contro limit for X ( UCLx
Lower controf limit for X ( LCLx
Upper control limkt MR (UCLmr
MR Standard deviation
Process standsrd deviation
Gamma d2
Gamma d3
Gamma D4

05 Alpha=0 5

0.5 Betas0 5
Proportion MR > UCLmr
Percentage
ARL for MR

026728
000796

00389
000103
0 00081

001763

00643
0 47652
000673
0 39782
0232754
024588
002827
010633
111819

0 24064
029272
00157

00782

4 549322

0 0536805
5 360538
18 85485

009497 0048369

100986 0 482969

10178 0493787
0 14208 0029877
005208 0069074
027702 0001438

01689 0021028

01074 0042056
030013 3.3€-05

00407 0075186

©.2022 0012701
017261 0020246
000786 0 084274
002858 0081979
000887 0094882
030808 35605
028612 0000353
002347 0084931
012188 0037257
007883 0085729
000134 008832
002871 008133
005137 0060448
055469 0057499
061782 0091781
013717 0031588
013879 0031018
0.01374 0.090697

07437 0.133869
0.55417 0.05728

0.1622 0023217
011241 0.041002
082307 0084960
037015 0.065153
013054 0033980
0.05038 0069971
000418 0096547
035708 0001779
012495 0.036081
000531 0.095048
0.21703 0.00957%
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Sum X
X Average
MR A
Normal constant d2 (n=2)
Normal constant 04 { n=2 )
Upper contro limit for X ( UCLx
Lower control limk for X { LCLx
Upper control limk MR (UCLme
MR Standard deviation
Process standard deviation
Gamma d2
Gamma d3
Gamma D4

06 Alpha=0.5

Betas=1

0 14695
0 11608

000074
000652
001614
004122

0 18832
0.35743
0.02357
028544
0.04517
001894

4124.014

0059706
5.970997
18.74874

2401728

081312
002184
013794
0 18911

0.20187
0.24027
0.02523

0241083
0 367892
0321468
0331058
0 398958
0394122
0374949
0023498
0029795

0 34551
0 389902
0 174431
0 184868
0 160828
0 026987
0.044109
0387883
0212246
0070252
0.0048368

0.25838
0161588
0002107
0932584
0288532
0 750942
Q077844
0141317
8517402

0403427
0233133

0.0280%
0.520876
3 167969
0845852
0.030874
0379174
0.249471
0200874
0082143
0141031
0187721
0.374766
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Sum X
X Average
MR Average
Normal constant d2(n=2)
Normal constant D4 ( n=2)
Uppet contro mit for X { UCLX
Lower control timR for X ( LCLx
Uppet contral imk MR (UCLMI
MR Standard devistion
Process standard devistion
Gamma d2
Gamms 93
Gamma D4

0.5 Alpha=0.8

6 Beta=3

Proportion MR > UCLmr
Percentage
ARL for MR

19753.38
2452478
3081189

1128

3268
10.67373
-6 78877
10 10201
3771874
3535534

0.87432
1086791
4860411

0055808
5580558
17 91938

4982318
3342354
8935851
5003769
8086569
2637017
4 186482
8 483965
0 195885

874747

912396

9 54062
$3.26242
2936048
4 468528
12 80216
3.280463
8550971
0005608
0781084
3.403617
9 242751
0415109
0.930828
0.016515
0.057128
5.384671
8200156
2694818
6518734

. 483848
2724775
0782322
0 185508
0314508
8807707
8.909564
7986781

8.41748
1.962831

3.03704
0.113844
0.088352
8.870108
8762272
3218039
8200717
4 443258
8475608
5.356881
7 459395
8615237
8 369387
2.001083
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26008368
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Sum X
X Average
MR Average
Normal constant d2 (n=2)
Normat constant D4 { ne2 }
Upper contro fimit for X  UCLx
Lower control #mit for X { 1 CLx
Upper controt limR MR (UCLm
MR Standard deviation
Process standard deviation
Gamma d2
Gamma d3
Gamma D4

05 Aphe=05

10 Beta=10

Proportion MR > UCLmr
Percentage
ARL for MR

0057108
5710571
1751138

00227

2811y
243179

00487
45443
29889
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1 Alpha=1
05 Betax0 5
12252

108785
103371
0 15638

0.21572

000187

074972
0 22861
0 16444

0.02426
04578
0 49644

0 46389
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070033
021503
034795
005414
087733
002338
000464
06396
© 6457
012901
009209
028638
028593
032667
023455
004135
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019185
00345
044529
055118
037901
026151
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10594
004552
067324
010139
012585
045736
0 19215
028026
0 10485
019365
1385722
148688
001679
0 14978

042796
023091
060907
079583
0 10876

0.0753

032769
042016
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006447
007459
021477
043354
003864

{MRMR)"2

003989
0081554
0023304
0198332
0141921
0227744
0245382
0019319
0021052
0 138083
0 166825
0045893
0046086
0030254
0070786
0210918
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009533
0217285

000306
0002558
0014786
0057167
0170244
0312251
0207103
0 029803
0 159373
0 140442

0.00187
0095143
0048552
0156781
0094222
0733788
0972737
0234078

0087157
0153843
0180385
0.01207
0021758
0010958
00299
0006472
0 00042
0190476
0181489
0081702
0004498
0213412
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07146
0 10065
027807
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02838
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114085
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022718
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016301
192421
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075537 0064905
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104917 0300923
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008014 O 176791
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035188 0022119
012827 0 138634
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041412 000748

0.0769 0 179527

17612 1589098
178067 1638564
0.02539 022583
0 10681 0 185078
071764 0047104
048172 0001512
112039 0384133
0.33202 0028421
012123 0 143926
002879 0.22261
094426 0 196829
084326 0117412
010231 0 15884
007513 0.18103
170496 1675383
1.35458 0729272
035896 0.020064
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020175 0089315
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008883
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027738
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059768
025765
020084
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0 25508
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167972
006344
2 89585
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043755

01576
031021

0.3397
107356
068191
211784
028928
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156448
0.26144
048726
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0597578
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0008966
0 709984
0192056
0596913
0223088
0825793
0814347
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0081441
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032673
077299
228554
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078731 0044206
053068 0217978

125144 0064454
139815 0 160471
033813 043488
023259 0585182
138312 0133633
187625 0460618
027977 0515225
060385 0 155166
019579 0642338
125012 0063788
0.9909 4.4E-05
0.83978 0 209582
083229 0.00426
112133 0015319
1 44403 0 199324
148012 0232863

0.30518 0479392
0682523 0 138631
180197 038531
0.18223 0 884766
138423 0149512
174462 0.558096
103952 0001761
290276 362978%
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07687
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33291
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014
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11 5502
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159525t 39747
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2203582 122909
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2053682 10 4843
1971567 05298
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2412414 30078
1366017 06898
1401055 39949
8184363 24336
0669505 6 1344
0403012 01034
1780277 23268
2920793 287197
1398111 15076
2208185  8.3522
1615825 19567
7111996 0089
3249305  8.3612
1079538 16 4371
0658842 3
12 10267 107327
2611238 4.8241
1414085 170841
2233193 00825
1250075 13 1538
0751746 64773
1450494 3.587
0.18213 11357
0879033 14772
2309699 01963
106.2668  18.8155
3 145541 75383
3695881 07624
2308834 50219
1988692 47925
231081 20982
1305473 34447
2262385 1.2862
2160168 96022
9790845 07474
1756242 208905
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0976277 10 1264
1118657 32088
2036924 31659
3365143 02304
0544301 15739
690755 237723
230028 20059
0053264 80254
07786042 07011
032455 306
0933443 02092
2393492 04756
1417924 08618
19.08525 11758
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1956941 130846
0425147 7075
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4362024 107741
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3 8007
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124811
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(MREMRY'2
1849033
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1366
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16767
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83539
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229595
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130531
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100 3815
0012692
122 4818
23 45409
207 9953

436724
0543896
11 35459
3107887
45 58063
12 68754
364 9301
289 6038
0307534
2739877
0 542075
3087628
67 76841

62.6608
76 46553
1617876
53 23248
8745374

889718
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0891433
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114952
3 085494
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0001133
328976
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2463945
4828014
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2324338
10 10886
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42559
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120794
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25 70954
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Sum MR > UCLmr
Sum X

X Average
MR Average
Normatl constant d2( n=2)
Normal constant D4 { n=2 )
Upper contro (imit for X { UCLx
Lower control Hmit for X ( LCLx
Upper controt limkt MR (UCLmr
MR Standard deviation
Process standard deviation
Gamma d2
Gamma a3
Gamma D4
1 Alpha=1

0.5 Betav0 5
Propostion MR > UCLmr
Percentage
ARL for MR

007049 0185
016531 0 112423
024813 0064758
109137 0 349002
027152 005248

0742 0058271
200679 2 268591
023452 0070802
02329 0071666
018334 0 113748
318447 7203127
24282 371562

0758 0066252
122832 0529568
122817 052935
019097 0095874
001384 0.236941
031347 003502
045682 0001917
007768 0 178856
007559 0 180638
023682 0069583
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962 3167 Sum X
X Average
MR Ay
Normal constant d2/ n=2)
Normal constant D4 ( n=2 )
Upper contro imit for X ( UCLx
Lowet control timR for X { LCLx
Upper control limit MR (UCLmr
MR Standard deviation

053345
029328
079815
000093
1 60457
0 42744
0 76066
0 49469
015408
118545
0 46504
033544
041341

8114779
1.020747
0997562

1128

3268
3673837
-163234
3.260031
1000811

1
0997562
100081%
4009771

0.038504
3.860386
2590415

125489
024617
0 50487
LiRi 2yl
160364
117713
023322
© 26597
034061
103837
0 72441
01296
007797
058729
188093
178104
05389
195457
230718
099762
122155
0.51642
055321
0 14587
055684
05273
005514
1.0808
0 45064
0.60381
104967
075903
087668
113888
0 19988
083867
0.82083
1.92873
0 48448
035588
015132
091898
148374
1.84764
0.4378
0.34981
161181
01468
1229
25714
267617
053024
0.00459
1.88452
021312
0 15958

2092 696

Sum X
X Average
MR

Normal constant d2 ( n=2)
Nosmal constant D4 ( n=2 )
Upper contro Hmit for X { UCEx
Lower control Hmit for X ( LCLx
Upper control imit MR {UCLmr
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8

MR Standard devistion

Process standard deviation

Gamma d2
Gamma d3
Gamma D4

1 Aipha=1

L]
Proportion MR
Perce
ARL for MR

= UCLme

117813
94845
28387
01275
0 1984
17445
0 1567
69385

0041504
4150415
2403398

10 9486

86478
27082
0.0709
15464
15878
87818
25481
27389
10.2705
3 3651
69557
67752
26183

34587
1.2253

10 3806
11.2747

36 05483
7013136
2899417
4 998948
271517
1155274
11.27101
14 72078
§ 745288
2298118

28.3806
2 496187
4.042783
3348513
5 422996

0.98996
2209185
13.83641

14 45838
17 41837
2396722
12 60628
2101244
17 89312
2005487

10079 35
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Sum X

X Average

MR Aversge

Norimal constant d2 { n=2 )
Normal constant D4 { n=2 )
Upper contro tnit for X ( UCtx
Lower controi limk for X  LCLx
Upper control #mit MR (UCLmr
MR Standard devistion
Process standard deviation
Gamms d2

Gamms d3

Gamma D4

Proportion MR > UCLm¢
Peicentage
ARL for MR

157718
61942
31325
27743

04

283578
82077
39984
40203

23 8567
20488
12431
54 482
75993

113126
52008
69378
22875
17632
7 4464
08837

0038704
3670367
27 24523

96943
95774

0173187
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15 Alphas15

03 Beta=0 5
127855
114682
131989
058622
085396
007728
086472
022639

MR (MRLMRY'2

012873 0251222
017277 0209014
073337 0010696
026774 0 131196
077868 002153
038744 0001307
043833 0036718
003531 0353597
018923 0 194234
046247 002805
066148 0000994
005465 033097
051426 0013384
053199 0 00959
074873 0014109
140152 059532
043018 0039918
151843 0791174
125371 0389076
0953857 0 107991
127188 0412202
155277 0851597
161493 0970188
028001 0122458
114827 0 266586
1231938 0475314
008929 0292313
136836 0545240
132281 0 480193
020272 0 182526
423498 0 155094
068425 0 002948
037808 0063439
108845 0210222
21837 2414139
00121 0381739
0.21344 0 172481
037086 006728
114178 0261948
053658 0008718
024872 0 145338
039582 0.05477
058411 0.002101
109321 021461
027637 0 125018
022694 0 182417
0.3156 0098816
105107 0 177342
104125 0 169168
011813 026196
010057 0.280243
063165 29E-06
0 53881 0.006307
042791  G.04082
066747 0001408
004912 0337364
073795 0011664
036843 0068293
038202 0.071305
1323 0430018
085831 0052148
003945
022064 O 167538
© 16076 0220139
162042 0981031
230439 2.804419
001611  0.3768
053209 0008403
005423 0.331454
034871 0.079096
02025 D 182714
039878 005344
035082 0077858
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118541
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007411
050755
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020957
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027893
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125308
060724
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072543
058227
G 13494
0 03086
041783
002548
068329
0 53506
1.4862
044108
0 9028
097713
021653
01268
0.08455
0 19668
02073
0.22713
07539
0.83253
035601
0.1323
018593
0 35667
0.50838
0216843
044395
055931
0.42588
0.28752
0.0249
003842
023987
0 15535
041027
0.38024
073418
036208
046817
0 83906
0.09669
0 13444

252566
197348
007955

125367
010891
006513
010513
0 40796
0.2540%
007387
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3868 0 241348
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1 66947
0294925
0308536
0214785
0 225084
0 308958
0014982
0 099636
0176718
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0123215
0131454
0087325
0 964402
0388291
0000516
0 286964
0008118
0002273
0.245035
0358149
0044953
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00O CCCO-00ON0000000DOC00000000000000000-000000RO000R00000000D00000000VCOO00

15 Aipha=15

OCOOCOCDO0O0+ 0000000000000 0000000C0000000BC00C0000000Aa00000C00R0000000000O00a

MR (MRLMRP2

01571 1 202878
00747 1290414
13417 0007716
07523 025156
12965 0001818
Q1116 12304753
03646 079078
09711 0079952
134 000742
08237 0180759
14511 0038904
00029 1584896
05512 0493728
10709 0033474
01291 126508
04121 0708556
17878 0 285094
20574 084568
02056 1090845
08621 0 153474
13674 0012892
11536 0010052
03104 0890113
1.838 0333889
11461 0011812
018 1953471
03635 0782737
01974 1116103
1207¢ 0.002112
11256 001645

MR
18388
20683
11613
0213
3978
31423
22188
09094
01345
02422
16197
12601
0873
08282
02589
04259
1361
048283
04157
91203
0 2668
D 5478
1.66684
15284

09605 O

038428
11382

0.783
01873
02946
00718
29903
06547
22020

0873

00241
1.1691

09172
10548

(MR-MRY'2
014818
0660062
0008567
1083385
742095
3566213
0921113

0170191
0074116
086059

03504182
0013843
0250859
1137646
0820178

1.39797
3038104

035899
1036817
1981456
1.885432

0000+ -00C00000000 000000 R000000000000SA000000000CB0000000000OB0CH000000

15 Aphas15

000D eO000C0CO0O0O0C00O00D000DODO000000000C0000000000C00000000000000000R000000a

19445
22517
10 1043
s1217

(MR-MR}*2
4

19 53662
1691533
13 58592
0413224
1389511
13 19851
4 030557
40 47283
2208271
21 24495
6019283
0515489
4012108
180 2434
249 4485
31351054
27 60215
4848294

MR
109285
4 8438
62838
110572
3 3052
15 2608
78735
49754
20699
81952
07107
64209
3302
5874
29887
10029
50338
14 8657
14 8525
75749
41819
81152
8.3758
22438
13 1013
10 1748
42593
17628
0.1091
46131
28503
5.7095
41827
767
11849
103513
113782
74182
92683
1143
0.2278
329%
5 4886
17 4223
15.2857
143707
11.9685
0 1955
36918
1.3626

22831

(MRI-MR)2
2081162
2313212
1.167966
220212
9 350468
79 14371
2.277008
1929667
18 4438
3351372
31.96573
0004274
9 379058
0240614
1139619
28 74702
1.770828
72 26998
7204572
1 465008
4763851

4419
209922
39 13034
3.067488
12.34978

152722 79.34668

94792
73232
97784
13278
90758
20875
15838
08087
07237

9651431
0919058
11 65454
25 3686
7351014
18 2075
22 85533
30 86719
31 8189

000004 ~00000000OC000000000000000000000DORR00000E000N00000CD0~00000C0000T00w

15 Alpha=1$

19187

kr3 il

0000000000000 0EROO00000000000000000000000000000000000000N00000R0A000C0000
s

3129

13691
25990
11852
41073
5837
1599
2204
3998
2034
4812
4536
432
2443
23503
2884
0421

2452

21

17 637

(MREMR)"2

0970141
176 6761
0729388
804 968
2085 197
10 78438
110 2929
743 8688
113 8928
62 31391
66 74959
70 32571
105.33
116 5743
260 3048
150 8223

1141274
24 31434

1297

MR
gy
4125

13098

15823
8415
5181

15938

28177

(MREMRY'2

76.72082
T3 63429
0151288
9715426

OO OECC0RE000B0C0R000D000000000000000000000000N00000OOD000000D0ROC00 =000

OO0 00NOODERO00OONP0000000R0000000000R00RU0N0-00000RDON0C00N0BRVNO0-00000000



LST

Sum X

X Average

MR A

Normal constant d2{ n=2)
Normal constant D4 (n=2 )
Upper contro limk for X { UCLx
Lower control limit for X { LCLx
Upper control imit MR {UCLm1
MR Standard deviation

1% Alpha=15
0.5 Beta=0.5
Proportion MR > UCLmr
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Sum X
X Average
MR Aves
Notmal constant d2 ( n=2)
Normal constant D4 ( n=2 )
Upper contro hmR for X ( UCLx
Lower control Hmk for X { LCLx
Upper control limit MR (UCLmy
MR Standarg deviation
Process standard deviation
Gamma d2
Gamma d3
Gamma D4
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1 Beta=1

Proportion MR > UCLmr
Percentage
AR for MR
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10724
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1293
1246
28182
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19657
03713
10834
06615
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47199
07092
02955
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09169
10984
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0.206652

0.91845
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1124147
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Bum X
X Average
MR A
Normal constant d2( n=2)
Notmal conssnt D4 ( n=2 )
Upper contra limit for X ( UCtx
Lower controf limit for X ( LCLx
Upper control iimit MR (UCLm?
MR Standard deviation
Process standard devistion
Gamma d2
Gamma d3
Gamma D4
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S BetaxS

Proportion MR > UCLmr

10.2371
5274
3485

9 3693
15.0543
60714 63
7 552795

6.364525
1.128

3.268
24 47972
-9 37413
20 79927
5.814637
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1039323
0849528
3.740803

0028803
2880288
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37955
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145774
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Sum X
X Average
MR Average
Normal constant 42 ( n=2)
Norms! constant D4 { n=2 )
Upper contro Hmit for X ( UCLx
Lowet control tmit for X { LCLx
Uppes controt limR MR (UCLmr
MR Standard deviation
Process standard devistion
Gamma a2
Gamms d3
Gamma D4
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10 Beta=10
Proportion MR > UCLmY
Percentage
ARL for MR
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0 186681
8514971
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Sum X

X Average

MR Average

Normal constant 92 ( n=2)
Normal constant D4 ( n=2 )
Upper contro limit for X { UCLx
Lower control limit for X { LCLx
Upper control imkt MR (UCLm1
MR Standard deviation
Process standard deviation
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Gamma d3

Gamma D4
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Normal constant d2{ n=2)
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Upper contro limit for X { UCLx
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MR Standard deviation

Proportion MR > UCLmr
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ARL for MR
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19578 22

goooaocoocooeaeooaecoooaeeeoooecoeoeeeooeooecoooaoooooooc

@
Sum X

X Average

MR Aver

Normal constent d2 ( 2 )
Nomal constant D4 ( n=2 )
Upper contro limR for X ( UCLx
Lower control fimR for X ( LCLx
Upper controt iimk MR (UCLMI
MR Standsrd devistion

161813 4
20 08601
15 19443

1128

3268
60 49637
-20 3249
49 85587
13 18933
14 14214
1074412
0932626
3604102

0024802
2480248
4031858

2159
8108

4.344
14054
G514
7993
41934
38032

24626
857

18 417
19891

4567

2263

36 42707
8258419
117 6896

RALRES]
1.300704
2155188
5186137
715.0017
521 5521
159 8585
88 95349

92 6307

2221738
110 8278

488 477
6 77367
2216074
53.82448
1.244305
83 58995
19 34694

787 2242

39046 714



091

3 Alpha=3

05 Bate=05
1133%
096998
0 79264
086384
249578
1199%
198204
085691
196639
15281
045312
09751
1980568
113806
219589
082639
135417
160076
048815
255708
095808
120081
260557

297
197377
114768
153538

087223
170928

13893
228271
057613
0.21655

18863

MR (MREMR)2
109!

D 16358 0611993
017734 0 590654

00712 0 765065
163194 0470678
129622 0122738
078248 0.0267
112513 0032121
110948 0026765
043829 0 257648
107498 0016687
052198 0 179691
093055 0000235
076759 0031787
105783 0012533

13695 0 179454
052778 0 174808
0 24659 0 489007
111261 0027799
206833 1261241

100897 0.00398
007285 0 762182
018459 0579563
067662 0072501
0.84739

03675 0334524
111728 0029378
029696 0 421097
145052 0.254661
030173 0 414929
157816 02395778
024575 0 490182
033798 0369543
159749 0 424595
134742 0161234

0.2475 0487735
066939 0.076447
242704 2 196502
240607 2 132155

10815 0 018393
174814 0 645226
254066 2543323
059077 0 126103
007021 0766798
198206 1076535
022593 0518328

184679
114922

0553
180332
201896
071546

16397
274353
167423
320693
0 80944

052879
186026
124244
117627

14547
210122
081374
251738

157144

MR
028038
085021
079757
191748
25137
125032
021364
13015
128452
036028
110883
10743
16227
248749
109109
137174
133147
081782
006617
027843
064652
148748
190362
133753
039161
027439
134735
1.7415
180812
006331
027384

003792
084384
065929
116874
0 44446
0.1139
078184
116308
051887
087452
058518

(MR-MR)*2
0 44289
0009153
0021996
0 344006
2458059
0092634
0536176
0 126466
0 114677
0342927
0026553
0018492
0458085
2376561
0021086

0000000000000 0000RCO0C00000CC00000000000R00000000CC000000000000E00O000R00

000000000 RO0000POO000DO000000000000000000G000RE0000N000000D000CN00C0REAR0B0

MR (MReMR)2

02077 2762846
1329 0299085
22533 0142819
46505 769848
00683 3267369
26803 0647081
09863 0 790297
36369 3101168
30007 1265203
02406 2674162
23638 0237864
22947 0175405
1281 035389
15833 0093995
09372 0681132
07032 1375184
27388 074482
10748 064174
16608 0046262
00564

13152 0314369
093 0894701
09861 079172
068368

15235 0124176
20847 0043603
0.6477 1 508442
05544 1748327
01354 3.030338
1.6442 0033679
1.7143 002611t

MR
32043
21782
11773
02453
12214
07369
18142
22127
20072
43261
03293
35653
Q 4342
15123
35032
4 9469
01449
05825
20431
39134
08438
05379
39179
24874
07875
14084
0.0911
12718

0.788
5 4841
72088
07637
1.1078
07684
0.7182
1.7378
01767
0.0832
1.5328

5009
46872
0.0944
09722
1.2485
1.3208
0 4445
0.9185
36983
0.2313
31248
26057
147688

(MRVMRP2
1764682

0117846
98164

7 95981
3173684
0.816649
0.393614
0.308121
2048857
0920423
3azng
2 704665
1559285
0532628
0 157043
6018256
0431273
021817
2906878
1541289
0.351546
7 693488
0267773
1808112
16.78676
0.612285

00000000000 0RO00000A00«00000000000N0000000DN0PORO00DON000D0R0000DGB0O000O0

00000000000 00000000000000P0000000000A00000N-0000N00000N000000000D000O000000

MR (NR+MR)*2
12

128955 1207149
14 8561 29 53928
33369 3701743
06201 77 4575¢
13 4867 1632914
140526 21 45084
79072 2291878
150268 31 42169
137848 19 12929
55561 1493818
0.0343 88 11182
65244 8390842

97552 0 111626
1.0275 70 45244
17 6375 67 50931
238162 207 219
150567 31 76004
18 6538 85 24284
81122 1713208
7 1645 § 082224
128396 9 725073
25128 47 72454

31978 387204
81999 1491317
149 6290227
3948 29 95477
10398 70 24611
92418 0032218
75299 3576619
95562 0018253
41179 28 12383
137584 1882089
48575 2269184
05774 78 21084
114215 4.00162
119822 8 559258
17996 5808719
11152 6898789
177814 69 8947
4105 20 26087
109577 2.361158
372 Ban
4.95 19 99069
114166 398204
19 1165 9405906
08288 72 12247
14 3877 24.86718
110798 2751302
44835 24 28119
92738 0.021696
57941 1315509
4.9185 2027336
58519 1273915
30045 4117269

(MReMR)*2
220333

10 22653
36 34999
65 90672
78 73714
22 80449
0.056361
70.21594
0639048
547124

13 60131

CCO0DOC000OPOO000D00000000000000BA000000000000E-00000A00+=-000000DOO0000D0000

3 Aipha=3

CC0 0000000000000 00000000000ND00000000000000CO00000000000000000000000RO000000

15651
20005
Q883
23052
24066
12 168
36 077
22665
19 847
16434
4527

(MRFMR)*2

9819763
1489254
320 4691
1821028
27 89266
43 78006
2990254
1505712
1128587

1167158
0 003324
30 62903
3412388
23 85687
8180569
812 2699

322 5838
149 5154
330 9282
58 83248
299 4509
284 2478
2756812
796 3317
1372 432
164 3947
2316073
397 4182

278137
25 46868
54 44448
28 94817
342 8293
47 24707

MR
73
13844
2398
34914
21978
18134
42803
28581
7901
11707
9185
16999
24 186
37085
14 502
3407
8373
4396
5298
23684
324
24018
28924
44968
5018
4514
240683
30.87%
5.448
6841
38961

(MRLMR)2

131.8972
24 43968
268 5879
260 1559
10 19748
0423348
576 8811
95 96347
118 4538
5009313
92 15320
3188546
29 17458
333.0057

5700323

000 COCO00CDCO00000C0OC0000000000000=-00000000000000000000000R00BO00000D00000

0000000000000 C000NCORO0000RCOC000~wd000R000P00000000000PO00000000000000A0000
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Sum X

X Average

MR Average

Normal constant d2 ( n=2 )
Normal constant D4 ( n=2 )
Upper contro limit for X { UCtx
Lower control limit for X ( LCLx
Upper control limk MR (UCLm1
MR Standard deviation
Process standard deviation
Gamma d2

Gamma d3

Proportion MR > UCLmr
Percentage
ARL for MR

071458
056205
162221
129478
290834
1687492
134955
256729
238204
13123
178229
113752
128171
155817
025367

0021802
2 180218
45 86697

167617 0533323
0 15233 0629404
106016 001308
032743 0382481
161406 O 446464
103392 0007751
052537 0176829
121774 0073908
018525 0578558
105081 001101
045106 0 244847
0 64477 0 090667
0 14419 0 642707
027646 0 448123

13045 0 128608
035692 0 346874
063407 0097226
004101 081878
033498 0373198
132888 0 146674
130047 0 125521
063475 0096802
009564 0 722908
022687 0516976
084202 0010787

011978 0.682441
1.88224
166689 0516858
060386 0 116978
095187
000756 0.800445

010854 0701138

.,eeocooooooqgeogagooa°°,====°°,°°°oceoaaeaaoooooaoocooco
g

3

42
Sum X

X Average

MR A

Nomal constant d2 (n=2)
Normal constant D4 ( n=2 ) 3.268
Uppet contro limit for X { UCtx 8.017¢
Lower control lmit for X (LCLx -1.96106
Upper control limk MR (UCLms 8 130397

MR Standard deviation 1593547
Process standard deviation 1732054
Gamma d2 1083044
Gamma d3 0920035
Gamma 04 3548471
3 Aiphaz3
1 Beta=1
Proportion MR > UCLm¢ o
Percentage 2.20022
ARL for MR 4545

4763
19417
0 4609
05307
35395

0380708

011716
2213509

091908
2754553
0497711
0910854

0 57065
0192119
2461719
0457769
27 61832
3 583045
0335025
0 373549
0057019
1246008
4853116
8977295
0748818
2076232
23 20427
1706123
1045173
0 353652
0.860602
0000492
0283571
2579822
1.368834
1.281681
3115883
4.924021
0100164
0008577

2.002187
1.809527
276761

6124 122

20000000 C000000000NOOD0OOO000000000~00000CA00-00000000DOa

5

Sum X

X Average

MR Ay

Normat constant d2 (n=2)
Normai constant D4 { n=2 )
Upper contro timit for X ( UCLx
Lower control Hmit for X { LCLx
Uppet control limit MR (UCLmr
MR Standard deviation
Process standard deviation
Gamma d2

Gamma d3

Gamma D4

Proportion MR > UCLmr
Percentage
ARL for MR

237388

121403 4
15 11721
9421005
1128
3268

40 17331
-0 9389
30.78814
7820973
8660254

1087854
0903088
3 490468

0019402
1840194
5154124

9 4676 0002163
105483 1272846
74387 392989
98982 0227628
42757 26 47509
13 1487 13 39504
160499 4394105
232324 190 7521
22.8356 180 0563
123218 3414089
31762 3899371
57923 13 16815
60624 1128083
9 1304 0084504
0621 77 44167
14.002 20 98469
38 177 826 9021
38 7477 360 0498
20 1064 t14 1757
26 8147 3025375
50 2659 1668 298
8.4448 0952957
257618 267 0186
19 8356 108 4519
7 3197 4 415861
50835 1881473
240103 212 8449
30 7384 454 4275
70003 5860248
5.3965 16 19737
57972 13 13262
38044 3154726
51832 17 95975
24.2554 220 0566
18 8547
12 1836 7688783
200513 113.0013
60584 1130772
245178 227 9108
182041 9570719
126219 10.24515
74258 3981202

43475 25 74137
17 6767 68 15501
18.2894 47 17361
260043 2780124
23 5885 200 6587

02571 83 97881

16803 59 91991

89821 0192717

729681 4507108

48279 2109744

21232 5325927
143792 245828

2976868

200000000000000000VOOOOOC000C0000000+00~~0000000000000000
Q
@
2
3

Sum X
X Average
MR Average
Normal constant 62 ( n=2 )
Normal constant D4 ( n=2 ) 3268
Upper contro limit for X ( UCLx 80 08158
Lower control limit for X ( LCLx -19.8368
Upper controt limil MR (UCLmt 81 38824
MR Standard devietion 15 74864
Process standard deviation 17 32051
Gamma d2 1084532
Gamma d3 0909243
Gamma D4 3515134
3 Alpha=3

10 Beta=10
Proportion MR > UCLm¢
Percentage
ARL for MR

0020402
2040204
49 01471

27672

3603181
136 1574
7020178

61337 99
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4 Alpha=4

05 Beta=0 3
108946
113115
147313
082683
1 16452
294196
23558
233648
359373
121683
115922
146999
2 49841
070547
177908
100674
148418
119302
280826
253636
332891
268104

MR

004169
034198

06463
033779
177734
229362
289912
128727

213769
005761
031077
102842
179204
1073681
077234
047742
029114
161524

02718
080255
085787
160719
100944

0.01883
038528
065985
0 32565
027128
0 34898
064123
071859
105709

0.2673
1.04137

(MRILMR)*2
1

1033483
0548514
0190353
0554735

0 48267
1 466581
3209763
0030511
1675225
1050594
0595714

MR (MREMR)"2
066319 0 175901
021304 0756178

11125 0000894
171528 0400252
209008 1014585

22105 1272169
187129 0862204

0 1872 0801732
055043 02832
089096 0036724
041889 0 440504
046731 0378576
156479 0232512
012793 0911385
027127 0658248
086172 0048788
070968 0 139066
9 40487 0 103861
112156 0001518
141993 0 113795
231363 1515447
078318 0088674
026309 08671589
070497 0 142601
017323 0826945
082418 © 086778
156706 0234706
056131 0271738
090288 0032298
338719 5311158
289091 3270003
024792 D 696683
089078 0036789
2 14675 1132428
082418 0066789
113113 0002356
033167 0563889
230762 1500688
148701 0 163551
003618 109485
071425 0135678
129348 0 044464
016813 0836246
214079 1119776
012683 0913487
171492 0.399835
087992 0041077
075389 0 108047
0 19644 0785271
209331 1021545
004939 1067513
023557 0717452
009803 0969368
112645 0001923
013786 0 892524
029692 0.617285
012543 0916165
002723 1113796
021897 0 745848
031779 0584927
013477 0898372

11877 0013249

1.759 0 457524
0.59813 0 234706
171829 0400303

0.2045 0771051
220268 1.26459
109163 8 2€-05
013093 0868
108168 8 4E-07
073576 0120295
124293 0.025707
118318 0010117
008263 0.99993

00O 0000000000000 00R00000C00000000000000000RE000B0000000OCA00D0B000000000

0000000 EO00000000000000000000000000A000000000000000000O000000RORCORAC00R00

MR

2641
51974
13714
19791
10013
20549
ISy
36532
14056
14046
00138

1106
50371
78252
24242
11973
20843
19733
18701
27094
20609
05693
01788
00473
57141
50094

2942
0.2438
00722
18154
13798
27518
02026
13548
07633

2618
0.2899
41793
28735
0 8445
04289
273717
22387
05238
36833

0412
3.5461

10459
27359
13078
15634
28727
50864
20895
51432

32843

{MRLMRY*2

01978
9 006835
0650382
0047158
1427812
0019981
1897361
2 122695
0625132
0826714

47631

1188651
8070413
31 68505

005196
0 987907
0010394
0049708
0106376

026332

001832
2646975
4070118
4617998
1237625
7913797
0556138
3812853

45118
0 145049
0666595
0308411
3974651
© 708043
2053354
0177871
3634181

28703
23969
27078
20471
18831
35382
18335

MR (MRLMRY2
43493 7579269
04734 2968222
03107 3555309
06605 2358537
0164 4 130051
18551 0292848
17047 0241624
75813 28 78373
70482 2354139
27401 029577
16467 0 302008
18612 011226
26976 0251349
05493 2712453
06335 2442196
52393 9260136
09463 1562382
5996 14 43808
73212 26 26508
41639 3871836
32388 1086905
03094 3560213
86443 4957731
0.3024 3586678
$6472 11.22885
33807 1402915
0.9142 1643659
01341 4252474
23083 001278
0.742 2 114851
07048 2224431
19927 0041434
49144 7372028
47897 6726969
2092 0010869
27399 0295552
01218 4303254
03217 1889395
49265 745428
17116 0234288
1741 0207285
11387 1118418
07002 2238174
0.3758 3314048
26851 0181202
1.8606 0 112663
44559 5 106008
1.787 0 167488
29912 0.631941
15385 0435274
10422 1331838
17365 0211373
06935 22582668
23541 0024916
0.3104 3556441
21705 0000281
24677 0073684
1.854 0117137
12431 0.9085
17969 0157096
12113 0970132

3.7607 2447495
35188 1749131
21896 4 4E-05

1.782 0171805
20137 0033326
4 1418 3765154
36105 2000095
19106 0081598
18286 0 135169

OO0 0000000000040000000000000000000000000RN000000OO0CN0NODOwDNICVODOVORO.

00000000 DO000A000OC00NO00C0000000000000000000C00D000-000+-0000000000~0NO0000

10705
134398
285784
129112
95377
13.5388
28644
112785
0 1456
70952
44935
18 6102
27 4086
98251
62783
1.0196
9 0802
13 4197
9 8489
112153
13 1628
29 3747
20 6693
19 1744
5714
02188
59976
16 9224

(MREMR)*2
13

5351281
12.94096
1.546429
76 87352
0 140966
708788
233783
8125121
8.684825
88 03591
0011309
8378128
2984136
58773
1216908
1587878
3562723
57 15594
36 06188
T2 04707
0 142095
2027675
231 1143
8248774
1441082
83 76508
47 42864
183 0354
0373632
20 10226
7277361
2196746
37 81458

117 9104
25 77445
34 10848

14 1052
213419
107817
220743
14.8268
112578
10 7434
28 8249
234835
14 4285

9 8749

8 5591
15 3366
17 3304
118621

MR
17718
16 4953
90994
08426
3 4048
00607

3563

1527
29381
66513
82595
04228
2 1591
37513
83789
17004
217133
189985
77533
88236
7 3549
18 0566
16681
107574
150238
199751
88527
61856
99258
22756
71295

45536
28 0307
32 3465

97775

19938

5 4683

(MR-MR)*2
36 53933
29 38556
3900341
104 6309
58 8236
1213028
56 42195
91 15389
86 20027
19 5643
7923971
113 4577
79 48355
53 6286
2874906
87 70425
113 188
62 79049
1103007
18 06977
13 83509
248177
88 47951
0 100524

3101092
4354508
31.86879
0832374

31 42897

CO0OC00O000000000C0000000V0000NOD0000P00P00000000000P000000000000000000000

4 Alphas4
10 Beta=10
36 562
74921
49915
35859
62044
27123
21043
20963
4277
48178
41266
21864
3492
23788
22381
64375
55498

27 493
1753

29879
32723
22443
13798

34 389
41642
95 851

29033
3243
1159
21028
24 138
53558

728
12057
21164

49.64
82993
512363
45588
43454
36 42
49 666
2837

00 00RO OOODC0000O0ORNO0E0O000B00000000000000000ON0000000000000NC00AV0000000
N
<
b4

36 359
25 006
14056
26 185
2931
11674
0086
13314
13 901
6912
19 402
13056
1113
1408
41994
8877
40737

29417
19245
60 743
8107
48918
18 44
33353
163
5778
2134
7033
13245
20029

(MR-MR)*2

204 9983
8789857
63 76331
17 17082
82 99504
107 4795
482.0322
76 16456
66 26338
226 8936
8 965539
80 73437
1180331
425 7302

398 113

173.297
3493318
3.316881

4049072

MR
24927

4571

28174

45399

63003
5 496
28 792

10732
13824
11147
26 092
40 848
19 104
4033
27 264
21841
8747
10752
87712
15 442

(MRFMR)*2
8327664
358 3158

878.2198

95 89833

305.208
44 30341
339 8407
2133128
207 2227
50 8764
160 2951
270 4962
545 5854
348 2415
1677 867
273 7447
60 07442
796 5247
127 8987
67 67219
118 8843
16 40873
353.6193
8627324
324 2964
27121132
0 040092
176 7368
127 4467
27199186
43 54988

000 0000000000000 00000000000000000000000000000000000000000000C0000NRI0A0D

0000000 O0000000000N000000000«0000R0000000T0ROR0000000000000000000000O00D00
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Sum MR > UCLmr
Sum X
X Average
MR Averags
Normal constant 42 (n=2)
Noimai constant D4 ( n=2 )
Upper contro limit for X { UCLx
Lower control limit for X ( LCLx
Uppet control timit MR (UCLmr
MR Standard deviation
Process standsrd deviation
Gamma d2
Gamma d3
Gamma D4
4 Aipha=4

05 Beu=03
Proportion MR > UCLmI
Percentage
ARL for MR

287165
087728

15905
19969
1082585
1128
3268
4876142
-0 88234
3537921
0883838

1
1082595
0883636
3 443661

0017602
1760176
56 8125

237457
104736
1.48405

35969
286618
118056
091827
035136
066218
031018
027453
100964
219439

2000000000-00000C00CCC00CC0O0CONCCOC0CCE0CO0C00000000000D00

Sum X
X Average
MR Avel
Normal constant @2 (n=2)
Normal constant D4 ( nx2 )
Upper contro iimit for X { UCLx
Lower control tmk for X { LCLx
Upper control mi MR (UCLmr
MR Standard deviation
Process standard ceviation
Gamma d2
Gamma d3
Gamma D4

4 Aipha=4

1 Betast
Proportion MR > UCLm¢

2
1008126
0.898167
3483728

0.017702
1770177
56 49153

05312
01476
16363
45878

03672
0 4497
16097
00357
37099
06578
41266
32863
02827
18101
02709

2.6851
47274

0072
03218

4 7866
5.2269
51167
0.34%
4.983%
62103
0 4159
49331
58909
281
178
33238
5.526
40325
02728

02738
12808
02582
2.5809
16882
18688
33403
28705
26687
40194
323339
0.4796
22058
1.3543

2.301
0 4889
022713
01269

2772401
4 196978
0313647
$ 718542
0 660079
3345434
3 050447

7044 71

80000000000000000000CO0OOO0OCV00OOC0B0C0000000000000ASOOE

n
Sum X

Normal constant d2 (n=2 )
Normal constant D4 { n=2 )
Upper contre. limit for X ( UCLx
Lower controt limit for X { LCLx
Upper control limit MR (UCLms
MR Standard deviation
Process standard deviation
Gamma d2

Gamma d3

Gamms D4

Propartion MR > UCLmr
Percentage
ARL for MR

115141

159671
19 94532
1107445

1128
3288

49 39925
-9 50742
36 18132
2.964818
10
1107445
0896462
3428458

0015102
1510151
66 21854

10 7284
15 4547
7 2963
10.2915
15.695

10 8666
98838
228023
10 508
I3t
29318
32042
27
18.2881
84122
59474

83366
04782

18 0855
26351
72554
17498

14.28428
8 498072
19 64748

43 14973
14 70841
8.589854
3.973065
69 08859

/47 151
920 8946
27 28344
64 89519
5110184
33 10339
17 24862
19 53248
39 51071
2129761
8.359299
0 35563%
46 15918
45 72403
48 09499
9901376
6174853
102.6705

39768 14

P OOD00PPOOE00000000C000000000000R0C00000C00000-000000000S

<]

i
Sum X

X Average

MR Ay

Normal constant d2 ( n=2 }
Normal constant D4 ( n=2 )
Upper contro it for X { UCLX
Lows: control imit for X { LCLx
Uppaer controt limit MR (UCLmr
MR Standard devistion

Proportion MR > UCLmit
Percertage
ARL for MR

13014
49 548
24 474
67 481
45 469

90 28
54 168

321468 8
4021518
2204123

1128

3268
98 83547
-18 4051
7203074
18 15019

20
1 102062
0907509
3 470396

0018702
1870187
53 47059

3452

14 464
3747
18978
3

345 5595
57 41443
334 6789
9 40177

065 1952071

16 497
31995
n
3818
9691
43763
11549

30 73849
99 07752

397 254
260 4599
152 5282
4718353
110 0869
108.2596
14 54836
148 9373
168 0194

3551 06
32315585
2226 836
28 40844
0 848825
264 3577
63 70864
2780313
328 5332
1218.343
124.3843
24 63901
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§ Alpha=5
08 Botas0 5
107974

114765

MR (MRLMRP2
3

0 48621 0560114
163806 0214779
211638 077747
218397 090127
005181 1399034
171995 0235548

01122 1259821
191095 0457426
145274 Q047577

36334 754157
072082 0 263885
221066 0 952659

1.8127 0 459796
050139 0537623
106317 0029394

03207 0835245
051023 0524737
080351 0165854
0 46905 0 586094
152293 0083124
058768 0 418528
053413 0490683
097951 0.08508
032535 0 826787
4 53468 10 89041
310296 3 490704
181833 034072
134829 0.012921
039454 070573

0.32481 0828114
21176 0 779658
1.57015 0 112682
049913 0540942
192443 0476841
063761

085567 033518
101899 0046493
088032 0 125627
303307 3.234431
138423 0.022384
164453 0 168028
200303 0.590458
128785 0.002812
082179 0.376558
122935 23E08
120215 0001054
218882 0.90669
0.83187 0 182208
112479 0012062
157929 0 118799
240688 1.374199
395757 T.41447
35919 6556781
055062 0467853
083849 0 156917
204348 0654226
012203 1.235848
042144 0661258
054029 0431952
062974 0 365877
077215 0.213878
101626 004768
119721 0001399
11639 0004319
191721 0465932
051376 0519638
1.61968 0 148273
03796 € 126037
386819 8935704
296519 2994881
1.30095 00044

14188
260027
141834
224829
225193
127574
066318

232513
213483
167574
173857
308138
139824
168489
383814
1 40689
177208
289921
4.01506
131052

107073
232842

335291

MR
20358
21283

251076

2.2545
196468
077623
386795
349148
164815
213502
075513
087402
236879
174757
0 85671

(MR- MR}*2
0641893
0738776

1628514
104018
0577665
0.210118
893444
$.093338
0171837
0810725
0.229908
0 130031

0 508537
0011911
0 104368
0007628
4.220364
0077907
0000413
0005381
1272288
1.340958
0.813242
1087712
1177089
0014714
0931413

3 48268
0.97692

0 48001
0092713
0238164
0393101
0.762037
0849296
0014318

18€E-05
0 134794
1515022

0O CEDOOODROCOO0ER000NV000000RN0R000000OC0ROVN000-00Bo0RON00N00000RODBOOA0

5 Aipha=5
1 Betas{

0B 00D 00O0BOC000000C0RN000000000000C0000C0000000D00000PI000000C00000O0000ODO00

29028
40098
48418
33451
3380t
#5113
47212
48319
61617
aon7
60751
4 5401
30363
2418
72348
5465
6 3508
sun

MR (MRIMR)*2
5

1107 1894332
0832 2726948
05033 3920588
1965 0 268684
61312 13 30683
47901 8321108
01107 5 629456
13298 1330672

313 04186
30434 (313659
1535 0899363
15038 0959513
06183 3 478402
4 8166 § 444068
17696 0 509435
08356 2352797
20685 0 173762
$7577 1072139
87505 18 20859
49277 597486
07605 2968203
11261 184212
11832 1677407
01928 3246607
01241 3 566048
63355 14 83908
72164 2240179
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Sum MR > UCLmr
Sum X
X Average
MR Average
Normat constant a2 (n=2)
Normai constant D4 ( n=2 )
Upper contro fimit for X { UCLx
Lower control iimit for X ( LCLx
Upper control timk MR (UCLmr
MR Standard deviation
Process standerd deviation
Gamma d2
Gamma d3
Gamma D4
5 Alpha=t

05 Beta=05
Proportion MR > UCLmr
Percentage
ARL for MR

158767
632837
0 7057%
126318
129391
392502
2 00296

24507
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§ 69265
2 86582
092797
4 47004
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324464
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346141
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Sum X

X Average

MR Average

Normal constant d2 ( n=2)
Normal constant D4 ( n=2)
Upper contra limi for X [ UCLx
‘Lower control lmit for X { LCLx
Upper control limit MR (UCLmr
MR Standard deviation
Process standard deviation
Gamma d2

Gamma d3
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Sum X

X Aversge

MR Averags

Normal constant d2 (n=2 )
Normal constant O4 ( n=2 )
Upper cortro imi for X ( UCLx
Lower control limR for X ( LCLx
Upper control limit MR (UCLmr
MR Standard deviation
Process standard deviation
Gamma d2

Gemma d3

Gamma D4

13 4849
