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ABSTRACT 

Listeria monocytogenes is a Gram-positive bacterial pathogen that can cause 

severe opportunistic infection in humans and animals, and iron is a virulence 

determinant in this pathogen. By sequence homologies, the genome of Listeria 

monocytogenes shows at least 4 potential cell envelope iron uptake systems: at 2.031 

Mb (the fur region), 2.184 Mb (the feo region), 2.27 Mb (the srtB region) and 2.499 

MB (which we later designated as the hupDGC region).  Herein we biochemically 

determined the relationship of those systems to the mechanisms of listerial iron 

acquisition. We created systematic chromosomal deletions of genes in each of those 

loci. Mutations in the fur and hupDGC regions showed defects in the uptake of ferric 

hydroxamates and hemin/hemoglobin, respectively.  The other locus srtB, which 

showed greatest homology to the isd locus in S. aureus, didn’t show any phenotype in 

terms of iron uptake.  In the fur locus, deletion of fhuD(lmo1959) or fhuC(lmo1960), 

which encodes a putative iron-binding lipoprotein and a membrane ATPase of an 

ABC transporter, severely impaired the uptake of ferrichrome, ferrichrome A and 

ferrioxamine B, but they didn’t show any attenuation of virulence in mouse model. On 

the other hand, elimination of hupC (lmo2429) created defects in hemin/hemoglobin 

uptake and reduced infectious virulence in the mouse model system.  I further 

characterized the function of fhuD by cloning the gene in an expression vector and 

purifying the expressed protein.  The fhuD gene encoded a lipoprotein that was 

important for the utilization of iron (III)-hydroxamates by Listeria monocytogenes.     



 xiii 

 Full length FhuD (no signal peptide cleavage) showed low expression in E. 

coli but when the signal peptide was deleted by genetic engineering, the resultant 

mature FhuD was overexpressed in the cytoplasm. I purified the protein and studied 

the function of the FhuD protein in greater detail, demonstrating that it binds several 

different hydroxamates siderophores (with or without iron chelated) with different 

specificity and affinities, but it did not bind to non-hydroxamate siderophores. Those 

intrinsic fluorescence measurements reveals the KDs for iron(III)-ferrichrome, 

iron(III)- desferrioxamine B, iron(III)-ferrichrome A and iron(III)-aerobactin as 

306nM, 123 nM, 451 nM and 231 nM, respectively. My data demonstrated that 

listerial FhuD is specific for ferrioxamine B, but it can recognize and bind other 

hydroxamate siderophores with less affinity. It absorbed apo-ferrichrome but not to 

apo-ferrichrome A. To our further surprise, FhuD absorbed to apo-ferrioxamine B 

with greater affinity than for any other compound tested. The possibility of 

redundancy in S. aureus and b. subtilis regarding hydroxamate siderophore transport 

systems but in L. monocytogenes the FhuGBCD permease (lmo1957/1958/1959/1960) 

that FhuD (lmo1959) is the primary transporter of hydroxamate siderophores. Another, 

secondary hydroxamate siderophore transport system may exist in L. monocytogenes 

or another binding lipoprotein may share the same traffic ABC transporter, creating 

slightly different selectivity, specificity, affinity and transport velocity.  
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1. 1 Cell Envelopes of Bacteria  

Bacteria can be categorized into two classes: Gram-positive bacteria and 

Gram-negative bacteria. This is because they differ in cell envelopes and therefore 

show different colors in Gram staining. Most Gram-negative bacteria have a trilaminar 

cell envelope, composed of an inner membrane (IM), an outer membrane (OM) and in 

between an aqueous space called periplasm (PP). In the periplasmic space, a cell wall, 

which is an assembly of a few layers of peptidoglycan (PG), is closely attached to the 

outer membrane. Gram-positive bacteria, on the other hand, only have a cytoplasmic 

membrane (CM), surrounded by a much thicker cell wall, up to 50-100 angstroms, 

which is also composed of PG (Dmitriev, Ehlers et al. 1999).  (Fig. 1.1) 

In Gram-negative bacteria, the outer membrane usually functions as a 

permeability barrier to toxic molecules but meanwhile it may also block the entrance 

of nutrients and the exit of wastes. To solve those problems, bacteria develop 

sophisticated transport systems that are associated on the cell envelopes to help import 

what they need or export virulence factors during their invasion of infection if a 

bacterium is a pathogen.  In Gram-positive bacteria, the extremely thick cell wall 

protects the cytoplasmic membrane and is the first contact point between the microbes 

and their host environment. So the cell envelope proteins, either peptidoglycan-

associated, membrane-associated or trans-membrane, play a critical role in 

transporting necessary substances from host or aqueous environment to inside of the 
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cells, as well as in the infectious process between the pathogenic organism and the 

host (Navarre and Schneewind 1999). 

 

Gram-positive   

 

Gram-negative   

 

 

Fig. 1.1 Cell envelopes of Gram-positive and Gram-negative bacteria 

Taken from http://www.cat.cc.md.us/courses/bio141/lecguide/unit1/prostruct/gncw.html 
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1.2 Pathogenicity of Listeria monocytogenes 

1.2.1 Listeria monocytogenes, a ubiquitous pathogen.  

 Listeria monocytogenes is a ubiquitous, rapidly growing, Gram-positive 

bacterium of very low G+C content (39%), closely related to Bacillus, Staphyloccus, 

and Streptoccocus species. Because Listeria has a very broad ecological niche and 

host range, it is widely distributed throughout the environment, inhabiting soil, 

decaying vegetable matter, sewage, water, animal feed, fresh and frozen poultry, 

processed meats, raw milk, cheese, and humans. But primary habitats are considered 

to be soil and decaying vegetable matter where it lives saprophytically (Watkins and 

Sleath 1981). Listeria also can survive in many extreme conditions such as high salt 

concentrations, high pH, and high temperature. Different from most human pathogens, 

it can multiply at refrigeration temperatures (Lammerding and Doyle 1989). Since its 

discovery in the early 20’s, Listeria was not thought to be an important human 

pathogen until in the mid 80’s when there was a sharp increase in human outbreak in 

both Europe and North America, which made L. monocytogenes one of most 

important food-borne human pathogens (Seeliger 1988). The general mild infection of 

L. monocytogenes causes symptoms which are more like flu-type illness and digestive 

infections such as nausea, vomiting and diarrhea.  The severe infection of L. 

monocytogenes, named listeriosis, is one of the most deadly bacterial infections, with a 

mean mortality rate of 20% to 39% in humans despite antibiotic treatment. This may 

be due to the fact that the organism is able to survive in macrophages, to invade and 
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replicate in non phagocytic cells and to breach the intestinal- , the blood-brain- and the 

placental barriers (Lecuit, Vandormael-Pournin et al. 2001). The groups at high risk of 

Listeriosis are immunocomprised individuals, pregnant women, newborns, and elders 

(McLauchlin 1990; McLauchlin 1990). But even with all of the problems caused by L. 

monocytogenes to humans, it is now being researched as a cancer vaccine because of 

its ability to induce potent innate and adaptive immunity (Brockstedt, Giedlin et al. 

2004). 

1.2.2 Life cycle of listerial intra-cellular parasitism.  

 Many bacterial pathogens have a striking characteristic ability to attach to 

many types of mammalian cells, including non-professional phagocytes during 

infection. The life cycle of pathogenic Listeria, consists of three stages: adherence and 

entrance into the cell, escape from a vacuole, and cell to cell spread (Vazquez-Boland, 

Kuhn et al. 2001). (See Fig. 1.2) After the bacterium is taken in either by phagocytosis 

or by active invasion with the aid InlA and InlB, two of major surface virulence 

factors produced by L. monocytogenes (Gaillard, Jaubert et al. 1996), there are two 

fates awaiting internalized bacterium: it is either killed or escapes from a host vacuole 

into the cytosol and begins to grow rapidly. The stage of listerial escape from the 

vacuole largely depends on the virulence factors listeriolysin O (LLO) and 

phospholipases C (PLCs)(Cossart and Lecuit 1998). LLO inserted into the 

phagosomal membrane forms a pore, which acts as a channel for the passage of   
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Fig. 1.2 Infectious Life Cycle of L. monocytogenes. The cartoon was adapted from 

(Tilney and Portnoy 1989) 

 (i) L. monocytogenes induces its entry into a non-professional phagocyte. A bacterium 

is internalized into a vacuole (also known as a phagosome) by InlA and InlB. (ii) The 

membrane of the vacuole is disrupted by the secretion phospholipase, PlcA and the pore-

forming toxin listeriolysin O.  (iii) Bacterium is released into the cytoplasm, where it 

replicates rapidly and starts to polymerize actin with the help by ActA, as observed by the 

presence of the characteristic actin tails. (iv) Actin polymerization allows bacteria to pass into 

a neighbouring cell by forming protrusions in the plasma membrane. (v) On entry into the 

neighbouring cell, bacteria are present in a double-membraned vacuole, from which a new 

cycle of infection can proceed. 
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proteins from the vacuole. Then the bacterial PLCs pass through this channel and act 

on the vacuole, leading to its dissolution. Shortly after entry into the mammalian 

cytosol, L. monocytogenes induces the polymerization of host actin filaments with the 

aid  of another important surface virulence factor, ActA, and uses the force generated 

by actin polymerization to move to the surface of the cell, where a bacterium 

containing protrusion forms and is taken up by a secondary cell. The bacterium then 

escapes from the double membrane vacuole in the secondary cell and enters the 

cytosol again (Cameron, Giardini et al. 2000; Portnoy, Auerbuch et al. 2002).  

1.2.3 Surface virulence factors and sorting system of Listeria  

The cell wall of Listeria monocytogenes is formed by a multilaminar 

peptidoglycan that confers rigidity and acts as the first point of contact between the 

microorganism and the environment (Navarre and Schneewind 1999). Therefore, 

surface proteins of many Gram-positive pathogens play various key roles in 

pathogenicity and they are of great interest in terms of understanding the infection 

process and have potential as targets for therapy (Fig. 1.4). During the life cycle of L. 

monocytogenes, the first stage involves invasion and internalization of L. 

monocytogenes into the host cell. This is often mediated by one or more bacterial 

surface proteins, collectively named internalins, among which internalin A, B and C 

are best characterized (Braun and Cossart 2000).  Internalin A promotes binding and 

internalization by E-cadherin (Mengaud, Ohayon et al. 1996) whereas Internalin B 

binds to the Met receptor tyrosine kinase (Cossart 2001)and mediates synergistically 
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with Internalin A to internalize L. monocytogenes into the host cells (Dramsi, Dehoux 

et al. 1997). Internalin A is covalently anchored to the cell wall by a sorting system 

that is widely found in Gram-positive bacteria (Bierne, Mazmanian et al. 2002).  The 

mechanism of the sorting system (Fig. 1.3) lies in that the transaminase Sortase A can 

recognize a specific motif (LPxTG) on the C-terminal region of InlA and form an 

amide bond between C-terminal threonine and the side chain amino group of m-

diaminopmelic acid within cell wall peptides. This mechanism, first found in 

Staphylococcus aureus (Schneewind, Fowler et al. 1995), is widespread in Gram-

positive bacteria (Navarre and Schneewind 1999). The relevance of the sorting 

mechanism to bacterial virulence is evident from the attenuation of virulence as found 

among many srtA mutants in S. aureus and Streptococcus pyogenes (Mazmanian, Liu 

et al. 2000; Lee and Boran 2003).  In L. monocytogenes, virulence of srtA mutant was 

also attenuated, confirming the importance of surface proteins in the ability to cause 

disease (Bierne, Mazmanian et al. 2002).  Internalin B, however, does not have a 

hydrophobic C-terminal region but has a third region of repeats. It associates with the 

cell wall non-covalently by a different mechanism involving tandem repeats of 80 

amino acids. A large amount of InlB still can be found in the supernatant of Listeria 

cell cultures. InlC, which also has an LPxTG sorting motif, is believed to be anchored 

to the cell wall by sortaseA, but it may play a role in a late stage of infection rather 

than in the initial uptake of L. monocytogenes by the mammalian cells (Dramsi, 

Dehoux et al. 1997).  
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A second sorting mechanism exists in S. aureus, S. pyogenes and L. 

monocytogenes that requires sortase B (Barnett and Scott 2002; Mazmanian, Ton-That 

et al. 2002; Bierne, Garandeau et al. 2004).  In S. aureus, Sortase B anchors a surface 

protein involved in iron uptake, IsdC, through an anchoring motif NPQTN. In L. 

monocytogenes, gene srtB is found in svpA-srtB locus, in which SvpA was initially 

named by its function as a surface virulence protein A. In this locus, genes svpA 

(lmo2185) and lmo2186 share a conserved motif NxxTN that might be recognized by 

SrtB and cleaved from its C-terminal threonine and anchored to the cell wall. Only 

about 10% of the total SvpA is attached to PG, whereas 90% is released to the 

supernatant (Newton, Klebba et al. 2005). The svpA-srtB locus will be discussed in 

detail in a later chapter.  

ActA is another important surface virulence factor during the pathogenic life 

cycle of L. monocytogenes. It is a transmembrane protein whose C-terminus is 

anchored to the membrane (Cossart and Jonquieres 2000). ActA functions in actin 

polymerization and propels one end of a listerial cell to move inside the host cell to the 

other. Its hydrophobic stretch of about 20 amino acids followed by positively charged 

amino acids at C terminus acts as a stop-transfer signal and helps to anchor on the 

cytoplasmic membrane (Kocks, Gouin et al. 1992).  

Furthermore, membrane proteins can be lipoproteins and they hang around the 

cell envelop surface by the lipid moiety. Cleavage of a characteristic signal peptide 

generates an N-terminal cysteinyl residue that becomes lipidated. The lipid moiety 
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helps the protein tether to the bacterial membrane (Navarre, Daefler et al. 1996). FhuD 

(lmo1959) and HupD (lmo2430) are good examples of those lipoproteins whose 

preproteins have a conserved “LTAC” motif in the signal peptide region that can be 

recognized by signal peptidase II and this cysteine becomes glyceride and serves as 

the attachment site for two ester-linked fatty acids and one amide-linked fatty acid 

(von Heijne 1989). Those two surface lipoproteins also may serve as binding proteins 

to bind their specific iron sources and transport them through their specific ABC-type 

transport systems. Their iron acquisition system may also be involved in listerial 

virulence pathways because in Hup locus, the deletion of gene hupC in this locus 

attenuated the virulence of listerial EGD-e wild type by an increase of 50 fold in LD50 

(Jin, Newton et al. 2006).  

 

Fig. 1.3 Sorting Mechanisms of L. monocytogenes. Adapted from (Mazmanian, Ton-

That et al. 2001). Surface proteins harboring a C-terminal sorting signal with an LPxTG motif 

are covalently linked to the cell wall peptidoglycan by a transamidase named sortase. Two 

genes encoding putative sortases, termed srtA and srtB, were identified in the listerial genome. 
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Fig. 1.4 Major Surface Virulence Proteins in L. monocytogenes. Adapted from 

(Cossart and Jonquieres 2000). 

L. monocytogenes expresses surface proteins that have critical roles in host-bacterium 

interactions. Surface virulence proteins InlA, InlC are anchored to cell wall covalently through 

LPxTG motif by Sortase A (Braun and Cossart 2000); InlB associates to cell wall non-

covalently via LTA (Bierne and Cossart 2002); ActA is transmembrane protein whose C-

terminus is anchored to the membrane (Cossart and Jonquieres 2000); SvpA, which was 

initially named by its function as a surface virulence protein A (Borezee, Pellegrini et 

al. 2001), is anchored to the cell wall through NAKTN motif by Sortase B and later found not 

involved in virulence (Bierne, Garandeau et al. 2004; Newton, Klebba et al. 2005); FhuD and 

HupD are lipoproteins whose N-termini are anchored to the membrane after cleavage of signal 

peptide and HupD is found involved in virulence by attenuation of LD50 in  mouse model (Jin, 

Newton et al. 2006). 
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1.3 The Role of Iron in Bacterial Infection---a nutrient barrier for most bacteria 

and a virulence determinant for most bacterial pathogens 

The redox potential of Fe3+/Fe2+ spans from +300 mV to -500 mV in nature. 

This renders iron an exceptional ability to participate in a relatively wide range of 

electron-transfer reactions in a biological environment composed of ligands and 

proteins (Guerinot 1994). For example, many proteins including cytochromes, 

respiratory proteins and tricarboxylic acid metalloenzymes, use iron as a cofactor. 

Therefore, iron plays a central role in many redox enzymes that function in electron-

transport chains of intermediary metabolism. Also most microorganisms that have 

been studied are known to utilize iron, only with a few exceptions such as that 

lactobacilli utilizes manganese and cobalt as biocatalysts in place of iron and 

pathogenic Borrelia burgdorferi avoids the need for the iron by eliminating genes 

encoding most iron-dependent proteins from the genome and by using cations other 

than iron as cofactors for the remaining metalloproteins, (Imbert and Blondeau 1998; 

Brown and Holden 2002). In summary, iron is an essential element for the growth of 

most bacteria. It is estimated that 105 free irons are required per bacterial cell and it is 

tested that at least a Fe3+ concentration of 0.4 ~ 4 uM is needed to support bacterial 

growth (Braun 2001).  Although iron is abundant in nature, in most environments, iron 

uptake is limited not by its presence but by the fact that it is insoluble and inaccessible.  

In aerobic environments, iron exists primarily in the oxidized ferric form Fe(III) and 

its concentration at pH7 is extremely low (10-18 M), due to the fact that free ferric 
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irons in aqueous environments rapidly precipitate as hydroxide polymers (Braun and 

Killmann 1999; Clarke, Tari et al. 2001). Even though in anaerobic conditions, ferrous 

Fe(II) is soluble and can be diffused through the membranes and used directly by 

bacteria, its concentration also has to be up to micromolar level and the Fe(II) often 

activates the Fenton reaction [Fe(II) + H2O2 → Fe(III) + OH− + OH], leading to the 

partial reduction of oxygen into hydroxyl radicals that are harmful for most 

macromolecules (Klebba, McIntosh et al. 1982; Wandersman and Delepelaire 2004). 

Also in physiological conditions, in order to combat against microbial infection or 

fight against generation of harmful free radicals caused by iron, animals strictly limit 

the availability of free iron in their blood or tissue by carrying high-affinity iron-

binding proteins, such as transferrin in the blood, lactoferrin in secretory fluids and 

ferritin within host cells, to sequester the free iron from above (Braun and Killmann 

1999). The iron homeostasis is so strictly regulated that there is barely any  free iron in 

living organisms (Weinberg 2000). Therefore, on one hand, such limited availability 

of iron in the hosts provides one form of non-specific immune defense that bacterial 

pathogens need to overcome before they can grow and cause further infection 

(Rouault 2004).  On the other hand, the ability to acquire iron is key determinant in 

establishing bacterial virulence in vivo (Raymond, Dertz et al. 2003) 
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1.4 General Mechanisms of Bacterial Iron Uptake 

Faced with iron shortage no matter whether in environment or in the infected 

host, most bacteria have developed different mechanisms to acquire iron from the 

various sources they may encounter in their diverse habitats. Basically there are three 

distinctive mechanisms found among all the bacteria that have been studied; 

Receptor-mediated mechanism: In this mechanism, bacteria usually have surface 

receptors to bind ferrated siderophophilins, which are those iron-containing eukaryotic 

proteins such as transferrin(Tf), lactoferrin(Lf), Ferritin(Tn) and hemoglobin(Hb), and  

extract heme or iron at the cell surface and transport into the cell through a 

sophisticated but not yet well characterized multi-component ABC transporters 

(Wandersman and Delepelaire 2004).  

Siderophore-mediated mechanism: This mechanism is dependent on the use of 

either exogenous or endogenous siderophores. The siderophores are less than 1000 Da 

molecular weight, iron-chelating compounds with extremely high affinities to iron so 

that they can either scavenge free iron at very low concentrations or directly capture 

iron from siderophilins.  Bacteria and fungi are induced to secret siderophores into 

extracellular media to scavenge iron from a variety of iron sources when suffering 

from stress of low iron concentration.  More than 100 siderophores have been reported 

so far (Neilands 1984; Neilands 1991). In general, most of them can be classified into 

two major types: Catecholate and Hydroxamate, in which Ferric enterobactin porin 

system (FepA) and Ferric hydroxamate uptake System (FhuA) represent good 
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examples of those two types of siderophore iron-uptake. We will discuss Fhu uptake 

system in detail in the later section of this chapter.   

Feo uptake mechanism: The Feo system, which has a surface ferric reductase in 

Listeria monocytogenes and Salmonella enterica, is essential for iron acquisition of 

ferrous iron (Boyer, Bergevin et al. 2002). It involves bacterial utilization of insoluble 

ferric iron (Fe3+) by reducing it to ferrous iron (Fe2+) on the cell envelope surface and 

diffusing ferrous iron into the cell (Deneer, Healey et al. 1995).  

Among those three mechanisms, the first one is a quite common attribute among 

pathogenic bacteria. But microbial strains that use siderophilin binding often have a 

very narrow host range (Weinberg 1999).However, not every pathogen that uses 

siderophilin binding has a narrow host range. Staphylococcus aureus is a good 

example that can use different source of transferrin and be virulent for a variety of 

mammalian species. This might be explained by the fact that S. aureus were found to 

be able to produce 3 kinds of siderophores, Staphyloferrin A, Staphyloferrin B and 

aureochelin (Courcol, Trivier et al. 1997).  Each of these small molecules helps 

bacteria withdraw iron from transferrins synthesized by a variety of host species. 

Besides above, erythrocyte lysis, digestion of hemoglobin, and heme assimilation are 

also available to strains of S. aureus and  Schneewind’s group from University of 

Chicago has already found an operon called Iron surface determinants (Isd) involved 

in binding hemoglobin and then transport heme across cell wall and membrane 

(Mazmanian, Skaar et al. 2003). We will discuss Isd locus in detail in the later part. 
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 The general mechanism of active transport of free irons or iron-containing complexes 

through cell envelopes of both gram-positive and gram-negative bacteria is a system 

of multi-components. Those transport systems rely on proteins at the cell surface that 

bind iron or iron-containing molecules. In gram-positive bacteria, those iron sources 

are recognized by specific binding proteins either anchored to the inner-membrane or 

to the cell wall by a covalently linked lipid, and then are transported by ABC 

permeases. In gram-negative bacteria, when free iron or iron-containing complexes 

traverse against their own concentrations, they first bind to the specific outer 

membrane receptors with much higher affinity and specificity.  Once in the periplasm, 

those irons or iron containing molecules are much more concentrated and they bind to 

the binding lipoproteins of ABC transporter similar to those of Gram-positive bacteria, 

but with less affinity compared to the OM receptors.  Finally, they are delivered to the 

IM ABC type permeases. Those ABC transporters usually consist of a transmembrane 

permease and an ATP-binding lipoprotein. Even though these proteins share 

consensus sequences which identify them as belonging to a particular family, they 

cannot replace each other in different iron-uptake systems.  

 

1.5 Fhu vs. Hn/Hb uptake system 

1.5.1 Overall description 

Fhu system, which stands for ferric hydroxamate uptake, is a typical and also 

well characterized siderophore-mediated iron uptake system found in both Gram-
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positive and Gram-negative bacteria.   Hn/Hb uptake system, on the other hand, 

represents a good example for the receptor-mediated mechanism as described in the 

earlier section. Both heme utilization and hydroxamate biosynthesis appear to 

contribute to S. aureus’s infectivity (Dale, Doherty-Kirby et al. 2004);(Skaar, 

Humayun et al. 2004). As for most human bacterial pathogens, heme or hemoglobin 

can be a good iron source.  Heme itself is a Fe(III) protoporphyrin IX molecule. 

Heme-iron is penta-coordinated to four nitrogens in the porphyrin ring and to the 

imidazole of one histidine residue. The sixth coordination is either free (in 

methemoglobin) or bound to oxygen in oxyhemoglobin. Heme is also a hydrophobic 

molecule and can be complexed with many proteins, such as cytochromes, 

hemoglobin and haptoglobin. Hemoglobin and haptoglobin exist in the blood. The 

former is found within the blood cell whereas the latter is found in the serum. Heme 

can be released from hemoglobin after hemoglobin released from red blood cells by 

hemolysis. Haptoglobin also can be a iron source in a sort of similar way as 

hemoglobin because its function in serum is to bind hemoglobin and prevent it from 

releasing heme. Since many bacterial pathogens are able to cause hemolysis in blood 

or tissues, abundance of heme or hemoglobin would provide those hemolytic 

pathogens good opportunities to overcome the iron-deficient barrier and survive in the 

tissue or body fluid and cause further severe infections. Those hemolytic pathogens 

can achieve those above goals via Hn/Hb transport system which has a surface 

receptor to bind hemoglobin or haptoglobin on the bacterial cell envelope, pirates the 
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heme from hemoglobin, and internalizes heme through membrane. Those Hn/Hb 

transport systems have been found in many bacteria. Hn/Hb transport system was first 

reported in a Gram-negative bacterium, Vibrio cholerae (Stoebner and Payne 1988; 

Henderson and Payne 1993). Then more Gram-negative bacterial pathogens were 

found to contain this transport system, such as Escherichia coli O157 (Torres and 

Payne 1997), Plesiomonas shigelloides (Daskaleros, Stoebner et al. 1991), Neisseria 

meningitidis (Khun, Kirby et al. 1998), and Yersinia pestis (Thompson, Jones et al. 

1999). While a detailed elucidation of mechamism of Hn/Hb transport system in 

Gram-negative bacteria has not been completed yet, discovery of such transport 

system in Gram-positive bacterial is booming and many progresses have been made in 

the last few years. A cell surface hemin receptor was first found in S. pneumoniae 

(Tai, Wang et al. 1997). But whether this receptor was able to bind hemoproteins, such 

as hemoglobin or haptoglobin was not elucidated and genes related to the membrane-

based ABC transporter were not identified. Later, HmoTUV, which encodes Hn/Hb 

ABC transporter, and HmuO that encodes heme oxygenase were found in C. 

diphtheriae. This is the first report in Gram-positive bacteria that described not only 

how heme is internalized through this ABC type transporter but also how heme is 

degraded after being transported. Similar transport system was also found in S. aureus. 

This iron-regulated surface determinants (isd) system has many cell-wall-based 

components that facilitate iron acquisition besides a membrane-base ABC transporter.   

Components homologous to IsdG and IsdH were also later found in another Gram-
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positive pathogen, B. anthraci (Skaar, Gaspar et al. 2004).  But no abc type 

transporters have been reported in that species.  

Unlike Hn/Hb uptake system, Fhu system can be set as one of prototypes to 

elucidate the mechanism of ferric-siderophore iron acquisition. The system was first 

found in E. coli and it consists of several components on the cell envelope.  

Hydroxamate siderophores are internalized across the cell envelope of E. coli with the 

aid of an outer membrane receptor (FhuA), periplasmic binding lipoprotein (FhuD), 

and associated ABC type transporter (FhuBC). FhuA has a single specificity to 

ferrichrome. However, the periplasmic binding protein FhuD is less specific. FhuD 

can bind several hydroxamate siderophores internalized from the other OM receptors, 

eg. rhodoturulate and coprogen from FhuE, ferrioxamine B from FhuF and aerobactin 

from LutA. Then it transports all the hydroxamate siderophores that it is able to bind 

through the same FhuBC membrane complex (Guerinot 1994). Therefore, FhuD 

catalyzes the uptake of the different hydroxamate siderophores from periplasm, 

through the cytoplasmic membrane, and to the cytosol. Similar mechanism and 

cellular organization were also found in Gram-positive bacteria. However, Gram-

positive bacteria do not have outer membrane. So instead of having outer membrane 

receptor, FhuD, which is hydroxamate binding lipoprotein, can act as surface receptor. 

So instead of calling it FhuA system in Gram-negative bacteria, we called it FhuD 

uptake system in Gram-positive bacteria. The first FhuD hydroxamate uptake system 

was characterized in B. subtilis (Schneider and Hantke 1993).  Two hydroxamate 
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uptake systems, FhuD and FoxD, exist in this non-pathogenic bacterial species. FhuD 

is a hydroxamate-binding lipoprotein that can recognize a broad range of hydroxamate 

substrates, including ferrichrome, ferrichrysin, ferricrocin, and coprogen while FoxD 

is another surface binding protein only can bind ferrioxamine B and E. But both FhuD 

and FoxD share the same traffic FhuCB transmembrane components to internalize all 

the hydroxamates into cytosol. Similar Fhu systems were also found in Group B 

streptococcus and S. aureus (Sebulsky and Heinrichs 2001; Clancy, Loar et al. 2006). 

The Fhu system in S. aureus is composed of five proteins: FhuD1, Fhu2, and 

FhuBCG. FhuB and FhuG are two integral membrane proteins and FhuC is an 

ATPase. Unlike fhu system in E. coli, genes of FhuD1, FhuD2 and FhuBCG are not 

from the same operon. FhuD1 and FhuD2 both encode hydroxamate binding 

lipoproteins and they can bind the same substrates tested. However, the affinity of 

FhuD2 for hydroxamate siderophores is much higher than that of FhuD1 and even 

greater than E. coli FhuD.  

A summary of Fhu and Hn/Hb uptake systems in Gram-positive bacteria is 

made through Table 1.1. FhuD system and Isd Hn/Hb uptake system in S. aureus, as 

representative models for Gram-positive bacteria, will be discussed in detail in the 

next two sections.  
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Table1.1 Fhu and Hn/Hb uptake systems in Gram-positive bacteria 

organism transporter substrate Note Reference 
B. subtilis FhuD hydroxamate Binding lipoprotein specific for 

hydroxamate other than 
ferrioxamines; iron is 
internalized via a common 
traffic fhuBCG membrane 
components 

(Schneider and 
Hantke 1993) 

 FoxD ferrioxamine Binding lipoprotein only specific 
for ferrioxamines; iron is 
internalized via the same traffic 
fhuBCG membrane components 
 

(Schneider and 
Hantke 1993) 

S. aureus FhuD1 hydroxamate A secondary binding lipoprotein 
for hydroxamates with less 
specificity 

(Sebulsky, Speziali 
et al. 2004) 

 FhuD2 hydroxamate Primary hydroxamate transport (Sebulsky, Shilton 
et al. 2003) 

 Isd Hn/Hb Well characterized Hn/Hb 
transport system 

(Mazmanian, Skaar 
et al. 2003) 

 Hst  Hn Putative hemin transport system 
by homology alignment 
preliminary characterization 
 

(Skaar, Humayun et 
al. 2004) 

Group B 
streptococcus 

FhuD hydroxamate Hydroxamate transport system 
similar to FhuD2 of S. aureus 
 

(Clancy, Loar et al. 
2006) 

B. anthracis Isd Hn/Hb  Hn/Hb transport system similar 
to isd found in S. aureus  
 

(Skaar, Gaspar et al. 
2004) 

S. pyogenes ShuA-C Hn A hemoprotein-binding iron 
transport system 
 

(Bates, Montanez et 
al. 2003) 

S. pneumoniae Haemin receptor Hn A cell surface hemin binding 
protein, not sure if other 
hemoproteins can be bound and 
no other components have been 
found 
 

(Tai, Wang et al. 
1997) 

C. diphtheriae HmuOTUV Hn/Hb Hn/Hb transport system 
 

(Drazek, Hammack 
et al. 2000) 

L. monocytogenes hydroxamate-like  
furfhuBGCD 
ABC transporter 

? Later was identified as 
hydroxamate transport system in 
our study 

In this study 

 svpA-srtB ABC 
transporter 

? Iron-regulated but its function is 
still unknown 

In this study 

 hydroxamate-like 
ABC transporter 

? Later was identified to be 
involved in Hn/Hb transport in 
our study  

In this study 
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1.5.2 FhuD system 

FhuD refers to a hydroxamate-binding lipoprotein to bind hydroxamate 

siderophores. It was first found in E. coli Gram positive bacteria. For Gram-positive 

bacteria, it was first found in B. subtilis (Schneider and Hantke 1993). Later, more 

FhuD systems were characterized in many other gram-positive bacteria such as S. 

aureus, Group B streptococcus (GBS) (Schneider and Hantke 1993; Sebulsky and 

Heinrichs 2001; Clancy, Loar et al. 2006). One fundamental difference between the 

iron uptake systems in Gram-negative bacteria versus Gram-positive bacteria is the 

lack of an outer membrane in the latter. In general, the OM is the home of high affinity 

ferric siderophores receptors whereas the periplasmic binding proteins do not 

necessarily posses high affinity as most OM receptors do for the substrates because 

substrates are relatively “concentrated” in the periplasm. However, the FhuD in Gram-

positive bacteria can serve as a surface receptor. Thus, the affinity of FhuD as a cell 

surface receptor may be higher than the FhuD in gram-negative bacteria, close to or 

slightly less than the affinity of FhuA in E. coli.    In S. aureus, two FhuDs were 

found, in which FhuD2 plays a major role in binding and transporting hydroxamate 

siderophores (Sebulsky and Heinrichs 2001). So far there are no good explanations for 

the redundancy of two hydroxamate siderophores uptake systems existing in the same 

strain. However, FhuD2 is not observed to undergo any significant conformational 

changes upon binding hydroxamate siderophores in vitro, which indirectly suggests 

that FhuD2 might have closer structural homology to E. coli FhuD (Sebulsky, Shilton 
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et al. 2003).  Because the shallow binding pocket of crystal structure of E. coli FhuD is 

predominantly hydrophobic, suggesting binding and release of neutral charge 

siderophores does not need large scale opening and closing of the binding site (Clarke, 

Ku et al. 2000). However, there is one clear difference between FhuD2 and E. coli 

FhuD in that FhuD2 does not have an arginine residue that can be found present within 

the predicted binding pocket whereas Arg-84 of E. coli FhuD plays a key role in the 

interactions with hydroxamate siderophores. Furthermore, in Gram-positive bacteria, 

the following ABC type cytoplasmic membrane components are slightly different 

from those in gram-negative bacteria. Instead of having transmembrane homodimer of 

FhuB as permease, the cytoplasm membrane permease of FhuD in Gram-positive 

bacteria is composed of hetrodimer, FhuB and FhuG. (Fig. 1.5) 

1.5.3 Isd Iron Uptake System  

Isd is an iron regulated “Iron surface determinants” genomic locus found in S. 

aureus (Mazmanian, Skaar et al. 2003). It is also relatively enlightened model for 

receptor-mediated iron uptake system in Gram-positive bacterial since little is well-

known about iron transport systems in Gram-positive bacteria. (Fig. 1.6) This whole 

operon is composed of 10 genes and their gene products are directly into different 

locations in the cell: IsdD, IsdE, IsdF and SrtB (membrane), IsdA, IsdB, IsdC, IsdH 

(cell wall), IsdG and IsdI (cytoplasm).All the cell wall proteins are anchored by SrtA 

except that IsdC is anchored by SrtB from the same locus(Maresso and Schneewind 

2006). S. aureus is a major virulent pathogen causing infection within red blood cells. 
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Once entry into the blood circulation system, S. aureus starts to secrete virulence 

factor called “hemolysin” to disrupt the red blood cells. On one hand, bacteria suffer 

iron-deplete stress in the host’s body fluid; on the other hand, bacteria are also faced 

with abundant iron source from hemoglobins (Hb) and heptoglobin (Hpt) disrupted 

from red blood cells.  Therefore under iron-deficient stress, Fur, the global iron 

regulator of S. aureus, is removed from binding site in the promoter region of isd 

locus.  The genes of isd locus start to express. isd locus is a very elegant system in 

utilizing Heme from Hb/Hpt. At first, cell wall anchored proteins IsdB/H act as 

receptor to bind either Hb or Hpt and pirate heme from those heme-containing 

proteins. Then heme passes through the thick cell wall by the aid of two other cell wall 

proteins, IsdA and IsdC. Finally Heme is internalized into the cytoplasm by a 

Ferrichrome-like ABC transporter IsdDEF. Once entry into the cytosol, heme is 

degraded and Fe(II) is released by two heme monooxygenases, IsdG/I. However, even 

in this model, how the heme is extracted from Hb or Hpt by IsdB/H is not understood 

and the binding affinity and transport parameters are still lacking.  
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Fig..1.6 Model for Heme/hemoglobin acquisition in S. aureus. EC=extracellular, CW=cell 

wall, PM=plasma membrane, CY=cytoplasm.  Adapted from (Maresso and Schneewind 2006) 

 

Fig. 1.5 Model for FhuD transport system in S. aureus and other gram-positive bacteria.  

Adapted from (Sebulsky, Shilton et al. 2003) 
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1.6 Bacterial Lipoprotein and Importance of Binding Lipoprotein 

1.6.1 Lipid Modification of Protein 

Many intercellular and cell-surface proteins are covalently or non-covalently 

linked to one or more lipidic groups. For many such proteins these lipid modifications 

are important and sometimes critical to the protein's cellular functions. One of the 

more common biological roles of protein lipidation is to influence the subcellular 

distributions of proteins, for example, by associating and targeting a protein to a 

particular membrane compartment or submembrane domain (Epand 1997). Proteins 

with lipid modifications can be divided into two classes:  

Proteolipids are a specific set of polypeptides that bind nonconvalently to arrays of 

lipid and form water-soluble complexes.  

Lipoproteins are a functionally diverse class of proteins that covalently bind to lipid 

moiety at their N-termini. 

1.6.2 Structure, Formation and Localization of Bacterial Lipoprotein 

Covalently modification of proteins with lipids appears to ubiquitous in all 

living cells. It was first identified in 1969 in the outer membrane protein of E. coli 

(Braun and Rehn 1969). Then the structure (N-acyl-S-diacylglyceryl Cysteine at the 

N-terminal) of the lipid was elucidated by Braun in 1973 and therefore it is called 

Braun's lipoprotein (Hantke and Braun 1973). Subsequently more than 700 proteins 

with the same modification have been reported in all known bacteria (Madan Babu 

and Sankaran 2002). However, some bacterial toxins from species such as Bordetella 
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pertussis and pathogenic Esherichia coli have been shown to be N-acylated on lysine 

residues (Stanley, Packman et al. 1994), not on the usual cysteine. For all the 

lipoproteins identified so far, N-Acyl Diacyl Glyceryl lipid moiety (derived from 

phospholipids) serves to anchor these proteins to the membrane-aqueous cell surface. 

Lipoproteins are synthesized as pre-prolipoproteins and mature by post-translational 

modifications (Chattopadhyay and Wu 1977). The post-translational modifications are 

directed by a consensus sequence of lipoprotein modification/processing located 

within the C-region of signal peptide of prolipoprotein. L-X-X-C at -3 to +1 position 

represents the conserved cleavage region in three fourths of all lipoprotein signal 

peptides in bacteria (Madan Babu and Sankaran 2002). The common pathway for the 

biosynthesis of bacterial lipoproteins (See Fig.1.7) involves the following three steps: 

diacylglyceryl modification, cleavage of signal peptide only by signal peptidase II, and 

N-acylation. Each step needs a unique enzyme (Sankaran and Wu 1994) 
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Fig. 1.7 Biosynthesis pathway of lipoprotein, adapted from (Sankaran and Wu 1994). 

  The lipid adaptor on the N-terminal of lipoprotein anchors the protein to the 

outer membrane in Gram-negative bacteria (Braun’s lipoprotein) or to the cytoplasmic 

membrane of both Gram-positive and Gram-negative bacteria. However, its C-

terminus also can serve to anchor the protein to the cell wall of bacteria and this kind 

of lipoproteins is called murein lipoprotein (Hayashi and Wu 1990). To verify if it is a 

lipoprotein, a test of inhibition by globomycin can be applied, and the results can be 

obtained from the fluorograph of [35S]-methoinine-labelled protein of interest. This is 

because globomycin inhibits signal peptidase II during its processing of prolipoprotein 

(Inukai, Takeuchi et al. 1978) and stops maturation of lipoprotein. Bands of both 
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prolipoprotein (higher MW) and lipoprotein (bit lower MW) can be observed from 

sample with no treatment of globomycin and only band of prolipoprotein (higher MW) 

can be observed from the sample treated with globomycin (Wu, Hou et al. 1977; 

Schneider and Hantke 1993). This phenomenon is found to be characteristic among all 

the bacterial lipoproteins. Other methods such as membrane localization, 

electrophoretic mobility shift and MS analysis have been used to identify the 

lipoprotein converted from a non-lipoprotein from a non-lipoprotein (with or without 

signal sequences) by in vitro lipid modification with a hydrophobic anchor at the N-

terminus (Gan, Gupta et al. 1993; Kamalakkannan, Murugan et al. 2004).  

1.6.3 Binding lipoprotein 

Since Braun’s lipoprotein was found in 1969 in the outer membrane of E. coli, 

more than 700 lipoproteins have been found and more than 400 of them have been 

identified with their functions (Madan Babu and Sankaran 2002). These lipoproteins 

are structural proteins, antigens, toxins, enzymes, binding proteins or transporters that 

perform essential functions at the membrane-aqueous interface. Also all the 

lipoproteins that bind ferric siderophores, {categorized by a database of bacterial 

lipoprotein (DOLOP) (Babu, Priya et al. 2006)}, are about 315 to 322 amino acid 

long, located either in the periplasmic space of Gram-negative bacteria or in the cell 

envelope of Gram positive bacteria. Among those, FhuD was identified as the binding 

lipoproteins for ferrichrome. It has not been reported that any of those lipoproteins are 

anchored to the peptidoglycan (PG). However, one heme-binding lipoprotein reported 
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from DOLOP shows that the protein is 547 AA long. The siderophore or heme-

binding lipoprotein may have to follow two rules: 1) In the signal peptide region of the 

prolipoprotein, a signature motif of “LXXC” exists that defines the cleavage of signal 

peptide.  Lipid modification occurs at the cysteine. 2) In the coding sequence of the 

mature protein, some conserved regions characteristic for heme or siderophore binding 

also exists. With the rapid expansion of the bacterial genomic database and reports on 

the roles of lipoproteins in bacterial homeostasis and pathogenesis, we will be able to 

update and highlight the various features, especially the functional assignments to 

predicted lipoproteins.  

 

1.7 Siderophores 

As previously stated in the earlier chapter, most bacteria employ a prominent 

strategy of expressing iron chelators called siderophores, from the Greek: “iron 

carriers”.  Siderophores are generally less than 1000 Da, iron chelating molecules 

secreted by bacteria and fungi under iron-deficient conditions (Neilands 1984). More 

than 100 different siderophores have been found since its first discovery in the early 

50’s. In general, most siderophores possess either phenolate or carboxylate oxygen that 

can tightly bind to Fe(III), not Fe(II). Due to the extremely low environmental 

concentration of soluble Fe(III) (less than 10-18 M), microbes have to synthesize and 

export potent and specific chelators to selectively solubilize Fe(III) from a large pool of 

cations. Therefore, siderophores have very high affinity to Fe(III), greater than 1030M-1. 

Structurally most siderophores have a peptide backbone with several non-protein amino 

acid analogs including both modified and D-amino acids. The microbial bioavailability 
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of iron is largely determined by the coordination chemistry of siderophores (Neilands 

1995). Based on their chemistry, siderophores are classified into three major types: 

catecholates, hydroxamates and the mixed of those first two.  We will mainly discuss the 

first two types of siderophores used in my study (see table 1.2). 

Catecholates: 

FeEnt  

Ferric enterobactin (FeEnt), enterobactin binding with Ferric iron, is a 

prototypical catechol-type siderophores. Enterobactin (Ent) itself is the native 

siderophores of E. coli. It is synthesized by 7 genes, entA-G (Crosa and Walsh 2002). It 

consists of three dihydroxybenzoyl serine groups (DHBS) that are esterified to form a 

trilactone backbone. However, in FeEnt, Fe(III) ion is wrapped by the three catechol 

rings. The three catechol rings render a hexa-coordination, which with Fe(III) around 

gives a net charge of -3 (Raymond, Isied et al. 1976).  This hexa-coordination is 

essentially important because it renders the ability to bind iron with greatest affinity, 

about 10 52M -1 among all kinds (Cooper, McArdle et al. 1978). FeEnt has a chirality of 

Δ and also has very high structure specificity because its mirror image, ferric 

enantioenterobactin, does not stimulate the bacterial growth (Neilands 1981).  

 
 
FeCrn 
 

Corynebactin (also called bacillibactin) is a catecholate siderophore produced 

by the gram-positive bacilli, Corynebacterium and Bacillus (May, Wendrich et al. 

2001; Bluhm, Hay et al. 2002). Similar to enterobactin, corynebactin also incorporates 

a trilactone ring and three catecholate binding groups. However, Corynebactin has 

three features different from enterobactin: i) corynebactin arms contain a glycine 
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spacer between the catecholamide and the trilactone backbone. ii) The ring is 

methylated. iii) The substitution of threonyl glycines for the smaller serines renders 

the conformation of ferric corynebactin to be opposite of FeEnt, that is, the chirality of 

ferric corynebactin is Λ, not like Δ for ferric enterobactin (Bluhm, Kim et al. 2002). 

 

 
 
Fig. 1.8 Structure Diagram of Enterobactin (left) and Fe-Enterobactin (right) 

. 

Fig. 1.9 Structure Diagram of Corynebactin 

Hydroxamate: 

Ferrichrome 
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Ferrichrome (Fc) is a hydroxamate type siderophore synthesized by smut 

fungus, Ustilago sphaerogena (Neilands 1983). Actually most fungal siderophores are 

of the hydroxamate group. Although ferrichrome is a fungal siderophore, it is also 

rapidly taken up by enteric bacteria, such as, E. coli and Samonella.  Apoferrichrome 

(apo-Fc), without Fe(III) chelated, is a cyclic hexapeptide backbone of triglycyl-tri (N5 

acetyl- N5-hydroxy- L- ornithine). Apoferrichrome binds Fe3+
 forming neutral 

ferrichrome (Fc). In Fc, the central iron is coordinated octahedrally by 3 deprotonated 

hydroxyl groups and 3 carbonyl oxygens of the hydroxamic acid moieties. Ferrichrome 

itself is crystallized in the geometry of Λ–cis coordination (Neilands 1995).  But much 

different from FeEnt, the mirror image of Ferrichrome, enantio-ferrichrome, can also be 

recognized by the ferrichrome uptake system (Winkelmann and Braun 1981).  

Ferrichrome A 

Ferrichrome A (FcA) was also extracted from fungus, Ustilago sphaerogena 

(Warren and Neilands 1965). It also shares basic structural unit N5-acetyl- N5-

hydroxyornithine. But Ferrichrome A’s hexapeptide ring is made of one glycine, two 

serine, and three N5-hydroxyornithine amino acid residues, the latter acylated by trans-

(α-methyl)-glutaconic acid residues. The membrane receptors of fungi can recognize 

both Fc and Fc A but transport FcA with less efficiency.  Most bacteria cannot utilize 

FcA at all, except L. monocytogenes, even though ferrichrome and ferrichrome A are 

quite similar in conformation.  There are only some minor differences existing in the 

hexapeptide ring and acyl substitution of the ornithine residues might be responsible for 

the observed differences in transport activity of Fc and FcA.  

Ferrioxamine B 
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The ferrioxamines is a group of trihydroxamate siderophores produced by 

actinomycetes (Dhungana, White et al. 2001).  Desferrioxamine B, a simple linear 

ferrichrome-mimicking compound, has been developed clinically to treat toxicity in 

iron-overload patients. It is also a hexadentate ligand with three asymmetrical 

bidentate functional unites that can theoretically result in 16 geometrical and optical 

isomers. That’s why the crystal structure of ferrioxamine B contains a racemic mixture 

of Λ and Δ isomers. In ferrioxamine B, the Fe(III) is coordinated with the six 

hydroxamate oxygen atoms to form a distorted octahedral geometry around metal 

center. The structure features at the octahedrally coordinated Fe(III) center in 

ferrioxamine B are similar to iron complexes of other ferrioxamines and ferrichrome 

and ferrichrome A. However the iron transport activity of Ferrioxamine B is 

comparable to ferrichrome system, not those other ferrioxamines whose structures are 

more closely related. This is because Ferrioxamine B has a unique carbonyl face like 

those ferrichrome-type which helps recognition during iron uptake process.  

Aerobactin 

Aerobactin was first isolated from cultures of Aerobacterium aerogenes 

(Gibson and Magrath 1969). It is a conjugate of 6-(N-acetyl-N-hydroxyamino)-2-

aminohexanoic acid with a central citric acid moiety. This central citrate moiety also 

renders aerobactin the ability to be photonreative. The structure of Fe(III)-aerobactin 

indicates retention of the  chirality around the iron (Kupper, Carrano et al. 2006). 

Aerobactin production is one of several virulence factors of invasive strains of E. coli, 
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enabling bacterial proliferation in the iron-deficient intercellular environment of 

mammalian tissues (Valvano, Silver et al. 1986). This is because E. coli cells can use 

the siderophore enterobactin to steal iron from human proteins such as transferrin. 

However, the immune system protein, siderocalin, can seize enterobactin upon human 

immune response to interrupting bacterial infection but it can't recognize "stealth 

siderophores" such as aerobactin and salmochelin. Therefore, study of structural 

nuance of siderophores will help us understand the specificity during binding of 

siderophore to the target proteins or receptors.    
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Fig. 1.10 Structures of Hydroxamate Siderophores. Top left: Linear structures of 
apo-ferrichrom, apo-ferrichrome A and desferrioxamine B. Bottom left: 3-D structures 
of ferrichrome, ferrichrome A and ferrioxamine B. Bottom Right: structures of 
aerobactin and coordinated with ferric iron.  

Aerobactin 

Ferric- aerobactin 
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Siderophore Type Native 
 source Structure Iron 

complex Chirality 

Net 
charge of 

iron 
complex 

Enterobactin Catecholate Escherichi
a. coli 

Tricatecholate; 
dihydroxybenzoyl 

serine groups 
(DHBS) moiety; 
Backbone:cyclic 
triserine lactone 

hexa-
coordinati

on; 
Ka=1052 

Δ -3 

Corynebactin Catecholate 

Corynebac
terium 

diphtheria
e & 

Bacillus 
subtilis 

Triscatecholate;Gl
ycine 

spacer;backbone:
Trithreonine 

lactone; 
methylated ring 

hexa-
coordinati

on 
Λ -3 

Ferrichrome Hydroxama
te 

Ustilago 
sphaeroge

na 

Tri-hydroxamate 
moiety; 

backbone:cyclic 
hexapeptide of 

triglycyl-tri (N5 
acetyl- N5-
hydroxy- L- 
ornithine). 

Octahedra
l 

coordinati
on; 

Ka=1029 

Λ 0 

Ferrichrome A Hydroxama
te 

Ustilago 
sphaeroge

na 

Tri-hydroxamate 
moiety; 

backbone:cyclic 
hexapeptide of one 

glycine, two 
serine, and three 
N5-acetyl- N5-

hydroxyornithine 

Octahedra
l 

coordinati
on; 

Ka=1029 

Λ -3 

Ferrioxamine 
B 

Hydroxama
te 

actinomyce
tes 

Tri-hydroxamate 
moiety; 

Distorted 
Octahedra

l 
coordinati

on; 
Ka=1031 

a racemic 
mixture of 
Λ and Δ 

0 

aerobactin Hydroxama
te 

Aerobacter
ium 

aerogenes 

Dihydroxamate 
moiety with 

additional central 
citric acid moiety; 

Ka=1026 Λ 0 

 
Table 1.2 Property of siderophores. (Raymond, Isied et al. 1976) (Neilands 1981) 
(Bluhm, Kim et al. 2002) (Cooper, McArdle et al. 1978) (Winkelmann and Braun 1981) 
(Warren and Neilands 1965) (Dhungana, White et al. 2001) (Kupper, Carrano et al. 
2006). 
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1.8 Fur ─ Iron-mediated Regulation  

 
Although iron is indispensable to the bacterial growth, its excess in the 

cytoplasm can be toxic for the cell, as it catalyzes the Fenton reaction, leading to 

formation of hydroxyl radicals (OH)ּ, which is the most active radicals in the oxidative 

destruction of DNA, lipids, and proteins. Thus, the iron homeostasis is strictly 

controlled and iron-uptake genes are tightly negatively regulated, primarily at 

transcriptional level through metalloproteins using Fe(II) as corepressor.  

The most common global iron regulator of this kind, called “Fur” (Ferric 

uptake regulator), was found in E. coli and Salmonella typhimurium 30 years ago 

(Ernst, Bennett et al. 1978; Hantke 1981). It is a 17-kDa polypeptide with high 

histidine content. Under iron-rich growth condition, Fur, which regulates the iron 

uptake genes and biosynthesis of siderophores, is complexed with ferrous iron, bind to 

a classic consensus binding sequence, GATAATGATTATCATTATC, known as the 

“Fur-box”, and shut down the transcription of genes involved in iron transport systems 

or biosynthesis of siderophores (Bagg and Neilands 1987). (Fig. 1.11) Similar highly 

conserved “Fur-boxes” are also found in the promoter of many iron-regulated genes in 

other bacteria (Lavrrar and McIntosh 2003). However systematic studies on deviation 

from the E. coli Fur box are relatively lacking. It is only reported in B. subtilis that a 7-

1-7 inverted repeat (TGAtAATnATTaTCA, lower case stands for the less highly 

conserved) is more accurate to stand for the consensus sequence of Fur box than the 

classic 19 bp site. And the classical 19-bp sequence can be thought as two overlapping 
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7-1-7 repeats (Baichoo and Helmann 2002). In vitro, Fur can not only bind to Fe(II), it 

also can bind to some other divalent cations such as CoII, ZnII and MnII, probably 

because Fur in some strain, like B. subtilis, is regulated by PerR, which is a MnII-

binding Fur homolog (Fuangthong, Herbig et al. 2002). 

 

Fig. 1.11 Mechanism of iron-uptake genes regulated by Fur 

 Under low iron conditions, not enough irons can bind to the protein Fur, and 

Fur thus cannot bind to the Fur-box in the promoter region and block the RNA polymerase 

from transcribing iron-regulated genes. Therefore, under iron starving stress, or in the fur 

mutant, the iron-mediated genes regulated by Fur are overexpressed. Fur has an iron binding 

domain as well as a DNA binding domain. Under high Fe(II) concentration inside the cell, Fur 

first binds to Fe(II) and then binds to Fur-box in the promoter and represses the iron –

regulated genes from transcription. The 19 bp sequence of GATAATGATAATCATTATCT is 

a canonical Fur box that has been found highly conserved in many bacteria. 

 

 A second global iron regulator, called DtxR (Diphtheria toxin Regulator), was 

the first gram-positive iron-dependent repressor found in Corynebacterium 

diphtheriae as controlling iron-uptake genes and also virulence genes (Schiering, Tao 

et al. 1995). DxtR is now believed to be a major iron regulator in gram-positive 

bacteria with high G+C content and regulates a set of genes similar to those regulated 

by Fur in many gram-negative bacteria. 

E.coli  
Fur box 
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1.9 Genomic Analysis of Listeria – 4 putative iron-regulated loci 

 The genomes of both Listeria monocytogenes EGD-e and Listeria innocua 

have been sequenced by a European collaboration (Glaser, Frangeul et al. 2001). L. 

monocytogenes has a single circular chromosome. The genome of Listeria 

monocytogenes EGD-e is 2,944,528 bp long with 2853 open reading frames and a 

G+C content of 39%. Surprisingly, many encoded proteins are very similar to those of 

non-pathogenic bacterium Bacillus subtilis as well as to those of pathogenic 

Staphylococcus aureus. The ability of Listeria to inhabit a wide range of environments 

coincides with the presence of 331 genes encoding different transport proteins, 

consisting of 11.6% of the total genome in L. monocytogenes. The availability of those 

data allowed us to find open reading frames in the L. monocytogenes genome that are 

homologous to the known iron transport genes of other bacteria. By comparing L. 

monocytogenes genomic sequence to current nucleic acid and protein database, we 

found four putative loci for iron utilization. All of them have Fur-box.  

1. The furfhuBGDCOR locus (2.031 Mb;orfs 1956-1961)  

The presence of Fur, a global iron regulator, together with Fur-box adjacent to a 

typical ferrichrome-like ABC transporter makes this locus very likely to be involved 

in iron transport, particularly in hydroxamate siderophores iron uptake. 

2. The svpA-srtB locus (2.274 Mb; orfs 2180-2186) 

SvpA is a 64 kd Surface virulence-associated protein required for intercellular 

survival of L. monocytogenes. As a newly-found surface virulence factor, it is both 
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secreted in culture supernatant and anchored to the cell wall by the SrtB in the same 

locus (Newton, Klebba et al. 2005).Even though physiological function of SvpA in 

Listeria is not yet known, its structural gene is part of a 7-gene operon (the svpA 

locus) that contains another putative ferrichrome-like ABC transporter. Furthermore, 

its promoter region contains a well-conserved “Fur-box” (18/19 conserved bases 

homology to B. subtilis Fur-box), a DNA sequence to which the ferric uptake regulator 

binds when iron concentrations are high. This suggests that this virulence factor might 

be iron-regulated during bacterial pathogenesis.  

3. The fhuDGC locus (2.499 Mb; orfs 2429-2431) 

This region contains a third ferrichrome-like ABC type transporter, with an 

esterase homology on one of the ends. Even though it does not contain a canonical 

Fur-box, before lmo2431, a homology of Fur-box was also found.  

4. The feoAB locus (2.184 Mb; orfs 2104-2105) 

feoAB encodes a ferrous uptake system that is also found in E. coli and many 

other species. Again a typical Fur-box precedes the two structural genes. Also there 

was a report experimentally showing the existence of ferrous uptake system in L. 

monocytogenes before its genomic sequence was found. Therefore, the feoAB locus is 

not the focus of my PHD research here.  
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Fig. 1.12 Four putative iron-regulated membrane transport operons in the genome of L. 
monocytogenes, adapted from http://cheminfo.chem.ou.edu/faculty/pek.html
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1.10 Goals and significance of our research on iron acquisition in Listeria 

monocytogenes 

A variety of specialized iron uptake systems encoded by their genomic operons 

had been well-characterized experimentally in Gram-negative bacteria whereas iron 

transport systems in Gram-positive bacteria were comparatively obscure when my 

PHD research project started. Barely any papers describing the molecular basis of iron 

uptake by Gram-positive bacteria were published during that time. However, 

completion of genome sequences for important Gram-positive pathogens during that 

period allowed us to identify genes encoding potential iron transporters by genomic 

sequence alignment with sequences of known iron transporters from Gram-positive 

bacteria and also has stimulated studies on the mechanisms of iron uptake in Gram-

positive pathogens. When this searches project started, little was known about listerial 

iron-uptake mechanism or which genes encode for its iron transporters. What we did 

know during that time was that the bacterium is not known to synthesize any 

siderophores but it can utilize many of the siderophores made by other bacteria 

(Simon, Coulanges et al. 1995; Coulanges, Andre et al. 1997). Only four different 

mechanisms from preliminary studies were described for listerial iron acquisition: (i) 

inducible ferric citrate uptake (Adams, Vartivarian et al. 1990); (ii) a surface-

associated reductase described by Deneer et al (Deneer, Healey et al. 1995) and/or an 

excellular reductase described by Barchini et al. (Barchini and Cowart 1996); (iii) a 

cell-surface-associated transferrin binding protein (Hartford, O'Brien et al. 1993); and 
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(iv) utilization of exogenous siderophores (Simon, Coulanges et al. 1995; Coulanges, 

Andre et al. 1997).  However, none of them elucidated corresponding genes of their 

functions and kinetic parameters of binding affinity and specificity of each transporter 

are lacking. Furthermore, even though we had some genomic predictions from 

preliminary computer-generated data showing the existence of iron transporters in L. 

monocytogenes, we cannot elucidate mechanism of iron uptake in L monocytogenes or 

Gram-positive bacteria until we verify it by the traditional biochemical methods.  

 So the first goal of my PHD study was set to make biochemical identification 

of Fur. It encodes a global regulator to control the expression of those iron-regulated 

transport systems and it is located within one of genomic regions of putative ABC 

type iron transporters ─ the furfhuBGDCOR locus. My second goal was to determine 

the function of svpA-srtB locus. We wanted to find the answers for the questions: Is 

SvpA iron-regulated? Is it a cell surface iron-binding protein? What source of iron it 

can utilize if it is involved in iron acquisition? Is SvpA involved in virulence? Thirdly, 

I wanted to characterize the specificity of FhuD, which we later found is involved in 

uptake of hydroxamate siderophores. Finally, we wanted to find out which operon or 

protein within those loci is actually involved in the listerial virulence by the study of 

bacterial infection in mouse. This is because a study showed L. monocytogenes could 

increase virulence in mice loaded with iron and the effect was reversed by removing 

excess iron using iron-chelators (Cowart and Foster 1985). This suggested that iron 

acquisition may contribute to the pathogen’s virulence.  
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 Due to the essential role of iron in cellular metabolism, toxicity and 

pathogenesis, our research on iron acquisition systems in L. monocytogenes will help 

to design novel therapeutic agents.  It is reported that conjugation of antibiotics to 

siderophores, a very common iron-chelator used by the most bacteria to sequester iron 

from their environment, has shown promise for therapeutic control of bacterial 

infections (Roosenberg, Lin et al. 2000). Also even though the mechanisms of iron-

uptake systems in Gram-negative bacteria have been dramatically enlightened in the 

last 20 years, knowledge of Gram-positive iron-uptake systems, particularly in 

pathogenic L. monocytogenes, still remain relatively obscure. Furthermore, as in the 

post-genomic era, a combination of genomic and proteomic, biochemical approaches 

will help us to identify more and more iron uptake systems and thus gain deeper 

insights into the molecular mechanisms of pathogenic iron uptake.  



 46 

Chapter 2 
MATERIALS AND METHODS 

2.1 Bacterial strains and plasmids 

2.2 Growth media and condition 

2.3 Preparation of siderophores  
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2.12 Complementation of Fc uptake deficiency in ΔfhuD 

2.13 Virulence study in the mouse model system 
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2.1 Bacterial strains and plasmids 

All E. coli strain used in these studies are derivatives of E. coli K-12, listed in 

Table 2.1 with their characteristics and reference. B. subtilis 168 was used for 

purification of corynebactin.  
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Table 2.1 Bacterial strains and plasmids used in this study 

Stain,plamids Usage Reference 
E. coli   
DH5α E. coli lab strain for in vivo or in vitro 

cloning 
(Hanahan 1983) 

BN1071 E. coli with FepA function (Klebba, McIntosh et al. 
1982) 

KDF541 E. coli strain fepA, fhuA (Rutz, Liu et al. 1992) 
AN102 E. coli strain for purification of 

enterobactin 
(Yeowell and White 1982) 

BL21 E. coli strain for overexpression  
protein of T7 promoter constructs 

(Studier, Rosenberg et al. 
1990) 

XL-1-Blue E. coli strain for midi prep of pPL2 (Bullock et al. 1987) 
DP-E-4189 E. coli host strain carrying 

pPL2 
(Lauer, Chow et al. 2002) 

SM10 E. coli donor strain for 
conjugation 

(Lauer, Chow et al. 2002) 

B. subtilis   
168 Wild type Dr. JD Ballard at OU 
L. monocytogenes   
EGD-e wild type (Trost, Wehmhoner et al. 

2005) 
lmofur Listerial EGD strain of fur 

deletion 
(Newton, Klebba et al. 
2005) 

lmofhuD Listerial EGD strain of fhuD 
deletion 

(Jin, Newton et al. 2006) 

lmofhuC Listerial EGD strain of fhuC 
deletion 

(Jin, Newton et al. 2006) 

lmohupC Listerial EGD strain of hupC 
deletion 

(Jin, Newton et al. 2006) 

lmohupC/fhuC Listerial EGD strain of 
hupC/fhuC double deletion 

In this lab 

Plasmid   
pUC18 Cloning of a target gene and its 

expression using lac promoter 
(Yanisch-Perron, Vieira et 
al. 1985) 

pET28a Histag fusion expression vector Novagen 
pKSV7 E. coli-gram positive shuttle 

vector 
(Smith and Youngman 
1992) 

pMAD E. coli-L. monocytogenes 
shuttle vector 

(Arnaud, Chastanet et al. 
2004) 

pPL2 E. coli-L. monocytogenes 
shuttle vector 

(Lauer, Chow et al. 2002) 
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2.2 Growth media and Condition 

Luria-Bertani (LB) broth (Difco) and Brain Heart Infusion (BHI) broth (Difco) 

were used as rich media to routinely grow E. coli and L. monocytogenes respectively. 

T media (Klebba, McIntosh et al. 1982) and TE/SMM media (May, Wendrich et al. 

2001) were used as iron-deficient media for purification of enterobactin and 

corynebactin. Solid media were obtained by the addition of 0.7% (w/v) Bacto-agar 

(Difco).  

α,α-bipyridyl (BP) was added to BHI if iron deprivation was needed.  For 

bacterial growth in KRM medium, which is an iron-deficient synthetic medium based 

RPMI 1640, we subcultured (1%) EGD-e strains first from BHI broth, and grew the 

culture until cells reached stationary phase (OD600 1.2), and then subcultured again 

into KRM (1%) and let them grow to mid-log phase. Ferrichrome (50 µM) was added 

to KRM if required. Growth of bacterial cultures was performed at 37 °C. Iron-free 

water was used for all experiments and was obtained by double distillation of di-

ionized water (reverse osmosis). 

 

 

 



 50 

 

 

Table 2.2 Media used in this study 

Media References 

Luria-Bertani  Miller et al., 1972 

T-media  Klebba et al., 1982 

MOPs media Neidhart et al, 1974 

RPMI1640 Sigma 

KRM Newton et al, 2005 

KRMT Bo Jin et al, 2006 

SMM JJ May et al, 2001 

TE/SMM JJ May et al, 2001 

Brain Heart Infusion  Difco 
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2.3 Preparation of Siderophores  

Apo-ferrichrome and apo-ferrichrome A were purified from cultures of 

Ustilago sphaerogena. Enterobactin and corynebactin, the siderophores of Gram-

negative and Gram-positive bacteria respectively, were purified from E. coli and 

B. subtilis. The ferric iron complexes of those siderophores were purified by passage 

over Sephadex LH20. Ferrioxamine B (FxB) was a gift from J. B. Neilands. We 

purchased purified hemin (Hn), bovine hemoglobin (Hb), bovine holotransferrin (Htf), 

equine ferritin (Ftn), ferric citrate (Fe-Cit) and ferrous sulfate (FeSO4) from Sigma-

Aldrich (St. Louis, Mo) 

2.3.1 Preparation of ferric-enterobactin 

Enterobactin was purified from the supernatant of AN102 cultures grown to 

late exponential phase in 15 L of T-Media. After centrifugation (4,000 rpm for 40 

min), the cultured broth was extracted three times with 0.1 L ethyl acetate per liter of 

supernatant. Subsequently, the volume of the pooled organic extracts was reduced to 

100 ml in a rotary evaporator at no higher than 30 °C, and the concentrated ethyl 

acetate extract was washed 1X with 0.1 M sodium citrate buffer (pH 5.5) and water, 

respectively. The organic layers were dried overnight in anhydrous MgSO4, the 

MgSO4 was removed by filtration, and the filtrate was concentrated in a roto vapor to 

a total volume of 10 mL.  Hexanes were slowly added until crystals formed and then 

the solution was centrifuged for 5 minutes to pellet the enterobactin.  
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Ferric enterobactin was prepared by dissolving 1mg of enterobactin in 0.5 ml 

of methanol, and 0.5 ml of 4 mM FeSO4 in dilute HCl was added, and incubated at 

room temperature for 1 hour to allow for complex formation. Then NaH2PO4, pH 6.9, 

was added to make the final buffer concentration of 2.5 mM. The mixture was loaded 

onto a Sephadex LH20 column equilibrated with 2.5 mM NaH2PO4, pH 6.9 and eluted 

with the same buffer. The concentration of ferric enterobactin was determined by 

measuring the absorbance at 495 nm on a DU Beckman 640 spectrophotometer. The 

purity of ferric enterobactin was determined by ratio of absorbance between 393 nm 

and 495 nm (optimum; 0.666). Ferric enterobactin was stored on ice and when 

necessary repurified by chromatography the Sephadex LH20 column.  

2.3.2 Preparation of ferric bacillibactin 

2.3.2.1 Growth Conditions for Siderophore Extraction 

To test various B. subtilis strains under iron deprivation, cells were grown in 

Spitzien’s minimal medium supplemented with 0.2 (w/v) casamino acids and 0.5% 

(w/v) glucose. Iron was added at various concentrations (0.1–1000 mM) from a 

freshly prepared solution of FeCl3, and 10 ml of cells were incubated at 250 rpm for 

48 h at 37 °C in 50-ml polyethylene tubes. To avoid cross contamination with iron, all 

glassware was rinsed with concentrated HCl, and solutions were stored in bottles made 

of polycarbonate or polyethylene. 
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2.3.2.2 Siderophore Extraction from 

For siderophore extraction, 1 liter of cells from B. subtilis strains 168 was 

cultured for 48 h at 37 °C in Spitzien’s minimal medium supplemented with 50 mM 

FeCl3. After centrifugation (10,000 rpm for 20 min), the cultured broth was extracted 

three times with equal volumes of ethyl acetate. Subsequently, the volume of the 

pooled organic extracts was reduced to 100 ml in a rotary evaporator at 37 °C, and the 

remainder was washed two times with 0.1 M sodium citrate buffer (pH 5.5) and water, 

respectively. The organic layer was evaporated to dryness, and the residue was 

resuspended in a small volume (200 ml) of methanol. The resulting suspension was 

cleared by centrifugation (13,000 rpm for 5 min), and the supernatant was stored at     

-20 °C, or evaporated to dryness. 

2.3.2.3 Detection and Analysis of the Siderophore by Ferric 

Hexadecyltrimethylammonium Bromide-Chrom-Azurol-S (CAS) Assay  

For the detection of siderophore-producing B. subtilis strains, organic extracts 

of their cultured broth were applied to a CAS assay as described by Schwyn and 

Neilands (Schwyn and Neilands 1987). Additionally, the B. subtilis strains were 

streaked out on CAS plates and tested for growth and the ability to breakdown the 

CAS complex.  

 

 



 54 

2.4 Preparation of Competent Cells 

2.4.1 E. coli 

A 5 mL LB culture of an E. coli strain was grown for overnight before it was 

subcultured (1:100) into a 500 mL of LB broth with the appropriate antibiotics. When 

the OD600 reached 0.5, the culture was chilled on ice for 15 minutes. Bacteria were 

spun at 8000g for 15 minutes. The bacterial pellet was washed once with 500 ml, and 

twice with 250ml of ice cold distilled water, and then with 50ml of ice cold distilled 

water contains 10% glycerol respectively. Finally, the pellets were resuspended in 1 

ml of distilled water with 10% glycerol, aliquoted into microtubes (40µl) and stored at 

-80 °C.  

2.4.2 Listeria monocytogenes 

EGD-e was grown in 25ml of BHI overnight and subcultured into 500 ml BHI 

(1:50 dilution).  Penicillin G was added to 0.12 µg/mL when the OD600 reached to 0.3. 

The cell culture was harvested at 8000 rpm for 20 minutes immediately after the 

OD600 reached to 0.8~0.9. The pellet was washed with 100ml, 50ml and 3X25 ml of 

1mM Hepes/500mMsucrose. Finally, the pellet was resuspended in 500 µl 

Hepes/Sucrose with 15% glycerol and aliquoted into 40µl/microtube and stored at -80 

°C.  
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2.5 Preparation of chromosomal DNA from Listeria monocytogenes EGD 

25 mL of L. monocytogenes strain EGD-e was grown in BHI broth overnight. 

The cells were harvested at 8000 rpm for 15 minutes and then kept on ice. The pellets 

were resuspended in 1 ml ice cold distilled water and the cells were broken by the Fast 

Prep Bead-beater at an intensity of 6.5 for 30 seconds with 3 cycles. In each cycle, the 

cell suspension was immediately chilled on ice for 30 seconds before the next cycle. 

The bead-beater tubes were centrifuged for 2 minutes and the supernatants were 

transferred to an eppendorf tube. NaCl was added to a final concentration of 100 mM, 

and the supernatant was extracted with buffered-phenol twice, at a portion of 1:1. The 

supernatant was removed each time to a fresh tube. Next, the supernatant was 

extracted twice with chloroform/isoamyl-alchol. Ultimately the chromosomal DNA 

was precipitated with 2 volumes of EtOH and pelleted in a refrigerated 

microcentrifuge by centrifugation for 30 minutes. The pellet was washed with 70% 

ethanol. DNA was resuspended in 100 µl TE+ 2 µl 0.5mg/ml RNAse.  

2.6 Quantification of secreted proteins in Listeria cells 

An overnight culture of EGD-e cells was subcultured to 25 ml BHI (1:100). 

After the OD600 reached between 0.1 and 0.2, culture was divided into 2 flasks, and 

one was added with bypiridyl to1mM and the other was added with 1mM bypiridyl 

and 10 µM FeSO4. The flasks were put back to 37 °C shaker and the OD was 

monitored every two hours until the culture reached the stationary stage. The cells 
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were harvested and centrifuged at 8000 rpm for 15 minutes, and the supernatant was 

transferred to a Corex tube and TCA was added to 1N.  The tubes were covered with 

parafilm and left on the ice in the cold room overnight. The next day, the tubes were 

centrifuged at 8000 rpm for 30 minutes, and the supernatant was immediately 

discarded. The pellet was resuspended in 0.5 ml 80% acetone and centrifuged again in 

a refrigerated micro-centrifuge tube for 20 minutes. The supernatant was discarded 

and the pellet was resuspended in appropriate volume of distilled water to normalize 

the amount of cells by cell density at the end of the growth (for Listeria; 1 OD600= 

2X108 cells/ml and all samples were adjusted to 107 cells/ µl). Aliquots (20 µl, 10 µl, 5 

µl) were subjected to SDS-PAGE or western blot.  

2.7 Site-directed chromosomal deletion in L. monocytogenes 

 Site-directed chromosomal deletion in wild-type Listeria monocytogenes EGD-

e or in the mutant derivatives was done by in vivo recombination. Two chromosomal 

sequences, upstream and downstream of the target gene of deletion interest, were 

amplified by PCR with appropriate restriction digestion sites designed to flank on both 

ends of each PCR segment. After digestion with restriction enzymes, the segments 

were joined together by ligase.  The ligated fragment that eliminated the target gene 

was cloned into a thermosensitive shuttle vector, pKSV7 (Smith and Youngman 

1992). pKSV7 carrying the deletion construct was first electroporated into DH5α.  

White colonies were picked and analyzed to confirm with the right size of the plasmid 

by PCR.  The purified vector was then transformed by electroporation again into wild 
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type EGD-e, or the EGD-e competent mutant derivative strain. The transformants 

(CmR) were picked at permissive temperature of 30 °C with 5µg/mL of 

chloramphenicol, and then subcultured and grown at 37 °C with 5µg/mL of 

chloramphenicol. At 37 °C, the new construct integrants into the chromosome by 

homologous recombination with DNA flanking the target gene. The integrant was 

subcultured again at 37 °C, but without chloramphenicol, and passaged at least 6 

generations at 37 °C without chloramphenicol. After several passages, integrated 

plasmid excises from the chromosome by a second homologous recombination event, 

with the result of deletion of target gene on the chromosome. Such mutants were 

screened by chloramphenicol sensitivity test, and were verified by colony PCR with 

appropriate primers designed to show the size of the deletion.   

2.8 FhuD overexpression and purification  

The fhuD gene and fhuD without the predicted signal sequence (21 amino acid 

long), were PCR-amplified as an 1.0-kb DNA fragment, digested with HindIII and 

EcoRI (Sites were incorporated into the oligonucleotides and all the restriction 

endonucleases were purchased from New England Biolabs;) and then cloned in-frame 

into HindIII- and EcoRI-digested pET28A(+). Those constructs were named as 

pET28FhuD and pET28FhuDΔ21. They have 6 histidine tags in N termini. The 

recombinant pET28A (+) vectors were introduced into E. coli BL21 for protein 

overexpression. Cells of BL21 with pET28FhuD or with pET28FhuDΔ21 were grown 

to a mid-log phase before isopropyl-1-thio- -D-galactopyranoside (1.0 mM) was added 
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and growth continued for another 4.5 h before the cells were harvested. For 

purification, cells were suspended in lysis buffer (50 mM NaH2PO4, pH 7.5, 300 mM 

NaCl, 10 mM imidazole, 1mM PMSF), with 10 ug/ml RNase and DNase on ice for 

15’ and then lysed by French Press at 14,000 psi. The lysate was centrifuged at 8,000 x 

g for 20 min; the resulting supernatant was spun in the ultracentrifuge at 35,000 rpm 

for 45 minutes to pellet membrane fraction, which were resuspended in PBS for 30 

min at 25 °C and extracted with 0.2% Triton 100. The sample was centrifuged again at 

35,000 rpm for 45 min, and the solubilized membranes were saved. Both cytoplasmic 

and membrane fractions (up to 40ml= extract from 1 L of cell culture) were passed 

through a 7-ml pQE-9TM histag nickel column (Qiagen) equilibrated with lysis buffer. 

Columns with adsorbed His6-FhuD or His6-FhuDΔ21 were washed with 10 column 

volumes of Lysis buffer and another 10 column volumes of wash buffer (lysis buffer 

plus 20 mM imidazole) at a flow rate of 1ml/min, and eluted with a linear gradient of 

imidazole (80–250 mM) at a low flow rate of 1.5 ml/hr.  Protein purity was assessed 

by SDS-PAGE. All purification procedures were performed at 4°C. FhuD or 

FhuDΔ21-containing fractions were pooled and dialyzed against TBS buffer, and 

protein concentrations were determined by the MicroBCA assay (Pierce, Rockford, 

Ill.), using bovine serum albumin as a standard. The mature FhuD protein has a 

calculated molecular mass of 37.8 kDa with the His tag in the N-termini. The mature 

FhuD Δ21 protein has a calculated molecular mass of 35.9 kDa with the His-tag also 

in the N-termini. The collected fractions were concentrated with a PES membrane 
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centrifuge filter unit (Millipore Co Ltd: Mf cut–off is 10kDa).  For purification from 

membrane fractions, the samples were pretreated with lysis buffer (PBS, pH8.0, 

0.02% TritionX100, 0.05% Tween20) and washed twice with the same lysis buffer. 

Alternatively, buffer exchange was performed by dialysis. Impure fractions were 

further subjected to gel filtration (Sephadex G75). After removal of imidazole and 

high salts by dialysis, the concentrated or collected pure fractions were mixed with 

glycerol, aliquoted into 1 ml /microtubes, and stored at -20 °C.  

2.9 Intrinsic fluorescence.  

All fluorescence spectra and titrations were measured in an SLM Instruments 

ratio recording spectrofluorimeter. Buffers were filtered to eliminate precipitates. 

Using an SLM 8000C fluorimeter, upgraded to 8100 capability with automated 

shutters and polarizers (SLM Instruments, Rochester, N.Y.), the excitation and 

emission slits were set at 1 and 10 nm, respectively. The excitation band pass was 8 

nm, and the sample cell was maintained at 20 °C with a circulating water bath. The 

excitation and emission maxima for FhuD were 283 and 327 nm, respectively. These 

settings, which are optimized for excitation/emission of tryptophan, were used for 

fluorescence measurements of siderophore binding by FhuD. At 20 °C, using purified 

FhuD, different siderophore-binding reaction mixtures reached equilibrium from a few 

seconds to a few minutes (data not shown). With an integration time of 5 min, we 

recorded fluorescence intensities after the addition of various amounts of siderophores 

to FhuD (62.5 nM) in TBS (pH 7.4). After subtraction of the emission spectrum of the 
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siderophore itself (in TBS [pH 7.4]), the data were corrected for dilution effects and 

contaminating fluorescence from impurities in the sodium phosphate buffer. Finally, as 

a negative control of Ferrichrome binding, the fluorescence of bovine serum albumin 

in TBS (pH 7.4), was recorded in the presence and absence of Fc. No changes in 

bovine serum albumin fluorescence occurred, demonstrating the specificity of the 

binding of hydroxamate siderophores to FhuD.  

The KD was then calculated using the 'Bound-versus-Total' equation from 

Grafit 5.09 (Erithacus, Middlesex, UK), the non-linear fit of equation performed by 

the computer.  

         (Cap-Bound)*(Total-Bound) 
KD =                                                            
                         Bound  
Where B=KD+Total+Cap; total is the amount of ligand added to the assay, and KD and 

Cap(capacity) are the two parameters determined by the least squared fitting using the 

bound-vs-total equation program from Grafit 5.09.  

2.10 Antibody generation  

Purified FhuDΔ21, denatured by boiling in 1% SDS for 10 min, was added to 

the purified native FhuDΔ21 in a 1:1 molar ratio. For polyclonal antisera, the mixture 

was emulsified with complete Freund's adjuvant and 100 µg of protein was injected 

into mice. The animals were boosted with the same amount, emulsified in incomplete 

Freund's adjuvant, weekly for a month, and serum was collected.  



 61 

2.11 Western immunoblots  

Whole-cell lysates (5 × 108 cells/lane ) were solubilized in SDS-PAGE sample 

buffer by boiling for 5 min, resolved on 12% polyacrylamide gels, electro-transferred 

to nitrocellulose paper, and suspended  in 25 ml  of blocking buffer (TBSBA: 10 mM 

Tris-Cl, pH 7.4, 0.9% NaCl, 1% BSA, 0.2% NaN3) for overnight in the cold room. 

The nitrocellulose paper was incubated with primary antibody (1:2000 in TBS+1% 

gelatin) in a shaker for 1 hour and washed with TBST (TBS with 0.05% Tween-20) 5 

times. The paper was next incubated with anti-mouse alkaline phosphatase (1:1000 

TBS+1% gelatin) with gentle shaking for another hour, and washed again with TBST 

5 times.  The substrate was prepared during the last wash. 17 mg of 

bromochloroindoyl phosphate (BCIP) was dissolved in 0.5 ml distilled water and 33 

mg nitroblue tetrazolium (NBT) was dissolved in 0.5 ml 70% dimethyl formamide. 

Those solutions were added to 50 ml of substrate buffer (per liter, 98 g of 

diethanolamine and 1 g of MgCl2-6H2O, pH9.8). The nitrocellulose paper was 

incubated in substrate for 5 minutes or until color developed appropriately. For 

quantification of FhuD expression, the nitrocellulose was incubated overnight with 

mouse polyclonal anti-FhuD sera, incubated with 125I-protein A, and subjected to 

autoradiography.  

2.12 Complementation of Fc uptake deficiency in lmofhuD 
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Plasmid pPL2, which is a shuttle vector between E. coli and L. monocytogenes 

and also a thermo-sensitive integration vector in L. monocytogenes, was purified from 

DP-E-4189 (Lauer, Chow et al. 2002). The fhuD gene, together with it is promoter 

sequence was PCR-amplified as a about 1.2-kb DNA fragment, (Comp-fhuD-BamHI 

5’ CCCCCCGGATCCCGCTCCAATTTAAAGTTAAG3’ and Comp-fhuD-Pst1 

5’CCCCCCCTGCAGTTAGTTGGACGCAAG3’) were cloned into BamHI- and 

PstI-digested pPL2 and the plasmid was transformed into E. coli XL-blue for 

enormous replication. pPL2 carrying fhuD and its promoter was then transformed into 

competent E. coli SM10 conjugative donor strain and was grown in LB broth 

containing 20ug/ml chloramphenicol at 30 °C. The lmofhuD streptomycin-resistant 

recipient was grown in BHI at the same temperature. A Millipore 0.45 um filter was 

washed with 5 ml of LB or BHI. 2.5 ml of donor culture were mixed with 1.5 ml of 

conjugative recipient culture. The mixture was filtered, and the filter was washed with 

10 ml BHI. The filter was placed on a fresh BHI plate at 30 C for two hours. The cells 

were gently resuspended for five minutes in 2.5 ml BHI, and portions (25 ul, 5l ul and 

100 ul) were plated in LB soft agar on BHI plates containing 100ug/ml streptomycin 

and 7.5 ug/ml chloramphenicol. The plates were incubated at 30 °C overnight and then 

shifted to 37 °C for pPL2fhuD integration to the listerial chromosomal DNA. The 

integration of fhuD onto chromosomal DNA is site-specific but different from its 

original fhuD locus. Chloramphenicol-resistant, streptomycin-resistant colonies 

appeared at frequency of about 10 -4 per donor. 
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2.13 Virulence study in the mouse model system 

Animal virulence studies were performed in the mouse model to evaluate the 

effects of the site-directed chromosomal mutations on bacterial virulence by 

measuring lethal dose 50 (LD50) values. Four groups of Balb/c mice were inoculated 

by intravenous injection with different doses, in ten-fold dilutions (105 106, 107, 108 

cells/ ml).  Mortality was scored for the following 7 to 10 days and LD50 was 

determined by the Probit statistical method.  

2.14 Nutrition tests  

Bacteria were grown in BHI and exposed to BP at 0.1 mM between 

OD600=0.1~0.2, and then grown until the OD reached to mid log.  2 × 107 cells were 

plated in BHI agar containing 0.1 mM BP. Paper discs were applied to the agar, 10 µl 

aliquots of sterile ferric siderophores with appropriate concentration were applied to 

the discs, and the plates were incubated overnight at 37°C. The diameters of the 

growth halos were measured and pictures were taken.  

2.15 Molecular analyses of genes and proteins  

We obtained listerial genes from listerial genome sever 

(http://genolist.pasteur.fr/ListiList/) and subjected the translated sequences to blastP 

analysis (http://www.ncbi.nlm.nih.gov/blast/). For homology alignment of genes or 

proteins of interest to those in the other strains, we subjected them to ClustalW 

(http://www.ebi.ac.uk/clustalw/). The signal peptide sequence was predicted by 

signalP (http://www.cbs.dtu.dk/services/SignalP/). 
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Chapter 3 

Systematic mutagenesis to create site-directed 

chromosomal deletions 

3.1 Candidate genes 

Because four potential Fur-regulated iron transport systems were found based 

on their homology (Fig. 1.13), creation of systematic mutant strains devoid of certain 

secreted or cell envelope proteins involved in iron uptake pathways will allow us to 

evaluate the phenotypic properties from the resulting mutant bacteria. The most 

important phenotypic tests were the effects on the iron acquisition process and the 

effects on the virulence of the bacteria in the mouse model system.  

Among all the structural genes in the four loci, I was involved in 

chloramphenicol sensitivity screening of Δlmo2105 (ΔfeoB), and I generated de novo 

chromosomal deletion mutants of Δlmo1956 (Δfur), Δlmo2429 (ΔhupC), 

Δlmo1957/1958 (Δ fhuBG), and one double mutants of Δlmo2429/1960 (ΔhupC/fhuC). 

Other mutants were also made in our lab, including Δlmo1959 (ΔfhuD), Δlmo1960 

(ΔfhuC), Δlmo1961 (Δor), Δlmo943 (Δfri), Δlmo929 (ΔsrtA), Δlmo2181 (ΔsrtB), 

lmoΔ2185 (ΔsvpA), Δlmo2183, Δlmo2186, ΔsrtAB, ΔInlAB, Δlmo2431 (ΔhupD), 

Δlmo2430 (ΔhupG), and ΔprfA. The single deletion mutations of the remaining genes 
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in those four operons or multi-deletion mutations within one operon or between 

operons constitute future research in our laboratory. 

3.2 Computer-based Comparative Analysis 

Understanding nature of genes or proteins of interests from their sequence 

encryptions helped narrow down the scope of the candidate genes that I could start 

with and also helped for later experimental trouble shooting. I made four major 

homology alignments throughout the projects I have been working on.  

3.2.1 Searching for the candidate Fur-box 

Since Fur is a global regulator controlling metal ion homeostasis in different 

microorganisms, eg. iron-uptake in particular, the search for both conserved target 

genes and for conserved Fur-binding sites were useful for the identification of genes 

belonging to the Fur regulon. From the conserved 19-bp sequence of classical E. coli 

Fur-box, GATAATGATTATCATTATC, I first used the 6-nucleotide array, 

“GATTAAT”, to search for the Fur-box in listerial genome by sequence alignment. 

However, I found more than 700 candidates that were strictly homologous to this six-

nucleotide sequence upstream the ORFs.  Considering the fact that Fur in B. subtilis 

can regulate about 50 operons, this 6-nucleotide array certainly was too small to target 

the genes of interest that might function as iron transporters.  If I used at least 18 out 

of 19 conserved nucleotides from the classical 10-bp Fur-box as probe to align the 

whole genome, it only gave one or two candidates genes that seemed to be iron-



 66 

regulated, in which svpA (lmo2185) was identified to be one of the 

candidates(Newton, Klebba et al. 2005). It seemed that selecting a good length of 

sequence from the classic Fur-box for the alignment was the first step to narrow down 

the scope and target good candidates of putative iron-regulated transporters. This is 

because too long a sequence with high fidelity would end up with no candidate genes 

after alignment but too short would end up with too many. Therefore,  I introduced te 

following rules to  further reduce the redundancy of false positives in the initial pool 

of candidate Fur boxes: (1) candidates had to be located <200 nt from the proposed 

initiation of translation of the potential target gene; (2) increase the length of array 

sequence by incorporating exhibited conservation of key nucleotides known to be 

protected by Fur binding in E. coli; (3) change those less conserved nucleotides in the 

array sequence to  “n”, which stands for any of four nucleotides. I found it much easier 

and also more accurate and effective to use “TGAtAATnATTaTCA”, a 7-1-7 inverted 

repeat conserved among all the Fur-boxes in B. subtilis (Baichoo and Helmann 2002),  

as sequence query to search for the Fur boxes in L. monocytogenes.  Also by checking 

data from DNA sequence logos of B. subtilis Fur-box (Panina, Mironov et al. 2001) 

(Fig. 3.1), I chose to use “TGAnAATnATTnTCA” for alignment and identified about 

20 genes to have this canonical Fur-box in the promoter region upstream their genes 

(less than 200 nucleotides)( Table 3.1).  All the Fur-boxes within the four putative 

iron-regulated loci we previously predicted were included by this array of alignment, 

and in addition, I found two more candidates.  lmo0541 is homologous to a binding 
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lipoprotein in an ABC transporter, and lmo1131 encodes for a putative ABC permease 

with ATPase domain.. Furthermore, lmo2431 and lmo2432 shared the same Fur-box 

but they are transcribed in the opposite direction. It is of interest that downstream 

lmo2432, lmo2433 has homology to an esterase, because uptake of ferric enterobactin 

by E. coli requires the function of inner membrane esterase. Considering the fact that 

the Fur-box exists in the promoter region of lmo2432-2433, this operon might be 

involved in the degradation of enterobactin since L. monocytogenes also can utilize 

this exogenous enterobactin for its own growth.  Also by this alignment, lmo0484, a 

homology to isdG that was a heme-degrading monooxygenase in S. aureus and B. 

anthracis was found (Skaar, Gaspar et al. 2004; Skaar, Gaspar et al. 2006). 

Furthermore, it was surprising to find three Fur boxes within the locus of 

furfhuBGDCOR. Two distinctive Fur boxes were located between fhuD (lmo1959) 

and fhuC (lmo1960); these genes are transcribed in opposite directions. Within the 

poly-cistronic fhuBGD region, there was another Fur-box existing in the intergenic of 

region fhuD and fhuB. I noticed that fur itself was not included if using canonical 

sequence “TGAnAATnATTnTCA” for the sequence alignment. After I rechecked the 

conserved sequences of all the Fur-boxes in Gram-positive bacteria, I found this 15-bp 

sequence was less conserved in 11th and 14th nucleotides. After changing those less 

conserved nucleotides into “n” and using “TGAnAATnATnnTnA” again for 

alignment in search for putative structural genes with Fur-box, I found almost all the 

genes that were previously predicted to be iron-regulated, were included by this 
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alignment,  including fur and fri, which encodes bactoferritin (Dussurget, Dumas et al. 

2005). Therefore, even though systematic studies on deviations from the E. coli Fur 

box are relatively lacking, “TGAnAATnATnnTnA” that I found can be used as an 

effective sequence of query or even as Fur-box with good length and deviations to 

probe the putative iron-regulated genes during genomic alignment.  

 

 

Fig 3.1 A Sequence-Logo representation of the most highly conserved bases in the 

aligned Fur box elements of B. subtilis. Adapted from (Panina, Mironov et al. 2001). 

This also reiterates the sequence of TGAtAATnATTaTCA, a 7-1-7 inverted repeat conserved 

among all the Fur-boxes in B. subtilis. 
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bp from start 
codon of gene 

Gene translated pattern 
sequence Fur-box 

 -  -44 lmo0362: similar to conserved 
hypothetical protein ggtttcgatttagaattaactgataatgattatcattttcatttaaagaatggag 

 +  -39 lmo0365: similar to conserved 
hypothetical protein gaacttggagaatatgataatgataatcattttcaattagaaaggaggatgaatg 

 +  -76 lmo0484: putative isdG ccattccctaaaattgacattgagaatcattatcaatataatggaaggaactagc 

 -  -34 lmo0541: similar to ABC 
transporter (binding protein) aattacttttgtaacgataatgaaaatcattttcaattagggaggaaatacacaa 

 +  -55 lmo1007:  ctataagatggttttaataatgataatcattttcagttagaaatgattacttcaa 

 -  -179 
lmo1006: similar to 
aminotransferases (to B. subtilis 
PatA protein) 

ttgaagtaatcatttctaactgaaaatgattatcattattaaaaccatcttatag 

 +  -172 
lmo1131: similar to ABC 
transporters, ATP-binding 
proteins 

aaataaaaaataaatgacaatgagaatcattatcaaatgatgatttttgtgatat 

 -  -91 lmo1130: similar to transcription 
regulators atatcacaaaaatcatcatttgataatgattctcattgtcatttattttttattt 

 -  -57 fhuB: similar to ferrichrome 
ABC transporter (permease) gatataattttctttgcgattgataattattatcacttaaaacgagcggataatt 

 +  -146 
fhuC: similar to ferrichrome 
ABC transporter (ATP-binding 
protein) 

aattgaacccctcctgtaactgataataattctcagttagtatagcaactttatt 

 -  -33 lmo1959: fhuD similar to 
ferrichrome binding protein aataaagttgctatactaactgagaattattatcagttacaggaggggttcaatt 

 +  -42 
fhuC: similar to ferrichrome 
ABC transporter (ATP-binding 
protein) 

aaaactctatacttaaccattgagaatgattatcaccttaactttaaattggagc 

 -  -137 lmo1959: fhuD similar to 
ferrichrome binding protein gctccaatttaaagttaaggtgataatcattctcaatggttaagtatagagtttt 

 +  -52 lmo2104: feoA cgtgataaaatgaacatagttgataatgattatcatgttcattacataacataaa 

 -  -121 lmo2186: svpA aaataatctgttgttgacaatgataatcattatcaattaaaatgataattaacgt 

 -  -64 lmo2261: similar to unknown 
proteins tttttgagaaattcttataatgaaaatcattctcatatatgatacaataaatgta 

 +  -81 lmo2432: unknown protein caaaaagacgaacccctaattgagaattattttcatctatgtttaaatagtcgat 

 -  -89 

lmo2431: hupD similar to B. 
subtilis ferrichrome ABC 
transporter fhuD precursor 
(ferrichrome-binding protein)  

atcgactatttaaacatagatgaaaataattctcaattaggggttcgtctttttg 

 -  -108 
lmo2801: similar to a putative 
N-acetylmannosamine-6-
phosphate epimerase 

caactatccacgctaaaacatgaaaatcattttcatttaattgatattgataaaa 

 Table 3.1 Fur boxes found by Sequence Alignment using an array of 
“TGAnAATnATTnTCA”. Underlines in green are newly found iron regulated ABC 
transporters; highlight in red are putative iron-regulated iron transporters in this study. 
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3.2.2 Homologous Alignment of lmo1956 (fur) 

The first systematic mutant that I made was Δlmo1956 (Δfur). Fur encodes a 

global iron regulator that regulates the genes of iron acquisition or siderophore 

synthesis. Deletion of this iron regulator was expected to have a great effect on the 

iron-regulated transport genes because their operons were preceded by Fur boxes. 

Also we wanted to observe any changes of expression for the genes of interest 

between iron-rich and iron-deficient conditions. After studying the listerial genome, 

we found lmo1956 seemed a good candidate to function as Fur because of its high 

homology to the known Fur of other species.  

From Table 3.2 and Fig. 3.2, lmo1956 has the highest similarity scores of 71% 

74% to the FURs in those low G+C content Gram-positive bacteria, S. aureus and B. 

subtilis, respectively.  In Gram-negative bacteria, Fur of E. coli and S. typhi seemed to 

be identical (similarity >=99%), but both of them showed only about 31% identity and 

70% similarity to lmo1956. Also from detailed amino acid sequence alignment, four 

highly-conserved regions were found in Fur among all the strains. The C terminus 

indicates the presence of a conserved metal binding domain (HTHHHH) and two 

motifs (CXXCG and CXXXXC) involved in coordination with the binding metal ions 

and formation of the dimer. The N terminus contains a Helix-Turn-Helix (HTH) 

domain conserved among most of the metalloregulators, such as Fur and DxtR (Cook, 

Kar et al. 1998; Pohl, Holmes et al. 1999; Pohl, Holmes et al. 1999; Xiong, Singh et 
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al. 2000). From those alignment data, we believed that lmo1956 encodes listerial Fur, 

the global iron regulator in L. monocytogenes. Therefore, we deleted the gene.  

 
SeqA Name              Len(aa)  SeqB  Name                 Len(aa) Score 
======================================================================= 
1    B. subtilis         149      2    L. innocua           152      74    
1    B. subtilis         149      3    L. monocytogenes     150      74    
1    B. subtilis         149      4    S. aureus            149      74    
1    B. subtilis         149      5    E. coli              148      31    
1    B. subtilis         149      6    S. typhi             150      30    
2    L. innocua          152      3    L. monocytogenes     150      98    
2    L. innocua          152      4    S. aureus            149      71    
2    L. innocua          152      5    E. coli              148      31    
2    L. innocua          152      6    S. typhi             150      31    
3    L. monocytogenes    150      4    S. aureus            149      71    
3    L. monocytogenes    150      5    E. coli              148      31    
3    L. monocytogenes    150      6    S. typhi             150      31    
4    S. aureus           149      5    E. coli              148      29    
4    S. aureus           149      6    S. typhi             150      29    
5    E. coli             148      6    S. typhi             150      97    
 
 
 

 Table 3.2 Homology scores of Fur by sequence alignment.  

The score of the alignment is obtained and the expect value E for that score is 

calculated using statistical parameters previously found for gapped alignment using 

scoring matrix and gap penalty combination used in the similarity search. In ClustalW 

program, when generating the multiple sequence alignment, an identity matrix which 

gives a score of 10 to two identical amino acids and a score of zero otherwise, are 

supplied. The higher the score, the more similarity it is. But the score itself cannot be 

used as percentage of identity or similarity.  
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B. subtilis       MENRIDRIKKQLHSSSYKLTPQREATVRVLLENEEDHLSAEDVYLLVKEK 50 
L. innocua        MEERLNRVKQQLQQSSYKLTPQREATVRVLIENEKDHLSAEDVYLKVKDK 50 
L. monocytogenes  MEGRIGRIKAQLHDASYKLTPQREATVRVLLENEKDHLSAEEVFLRVKDI 50 
S. aureus         MEGRIGRIKAQLHDASYKLTPQREATVRVLLENEKDHLSAEEVFLRVKDI 50 
E. coli           M----TDNNTALKKAGLKVTLPRLKILEVLQEPDNHHVSAEDLYKRLIDM 46 
S. typhi          M----TDNNTALKKAGLKVTLPRLKILEVLQEPDNHHVSAEDLYKRLIDM 46 
                  *     : :  *:.:. *:*  *   :.** * ::.*:***:::  : :  
                                                        »»»»»»»»»»»» 
                                                            Helix 
 
B. subtilis       SPEIGLATVYRTLELLTELKVVDKINFGDGVSRYDLRKEGAAHFHHHLVC 100 
L. innocua        APEIGLATVYRTLELLAELKVVDKINFGDGVARFDLRKEGAKHFHHHLVC 100 
L. monocytogenes  APDTGLATVYRTLELLTELRVVDKINFGDGVSRYDLRQEGAKHFHHHLVC 100 
S. aureus         APDTGLATVYRTLELLTELRVVDKINFGDGVSRYDLRQEGAKHFHHHLVC 100 
E. coli           GEEIGLATVYRVLNQFDDAGIVTRHNFEGGKSVFELTQQ---HHHDHLIC 93 
S. typhi          GEEIGLATVYRVLNQFDDAGIVTRHNFEGGKSVFELTQQ---HHHDHLIC 93 
                  . : *******.*: : :  :* : ** .* : ::* ::   *.*.**:* 
                  »»»====««««««««                         Fe-binding C 
                     Turn  Helix             
                       
B. subtilis       MEFGAVDEIEGDLLEDVEEIIERDWKFKIKDHRLTFHGICHR--CNGKET 148 
L. innocua        MECGRVDEIDEDLLPEVENRVENEFNFKILDHRLTFHGVCET--CQAKGK 148 
L. monocytogenes  LECGSVEEIQEDLLEDVEKIVESKWNFLVKDHRLTFQGICAD--CRQKSK 148 
S. aureus         LECGSVEEIQEDLLEDVEKIVESKWNFLVKDHRLTFQGICAN--CRQKSK 148 
E. coli           LDCGKVIEFSDDSIEARQREIAAKHGIRLTNHSLYLYGHCAEGDCREDEH 143 
S. typhi          LDCGKVIEFSDDSIEARQREIAAKHGIRLTNHSLYLYGHCAEGDCREDEH 143 
                  :: * * *:. * :   :. :  .  : : :* * : * *    *. .   
                  XXCG                                   CXXXXC 
 
B. subtilis       E------ 149 
L. innocua        G------ 149 
L. monocytogenes  KNNS--- 152 
S. aureus         KE----- 150 
E. coli           AHEGK-- 148 
S. typhi          AHDDATK 150 
 
 

Fig. 3.2  Alignment of amino acid sequence of Fur (lmo1956) of L. monocytogenes 

with that of B. subtilis, L. innocua, S. aureus, E. coli, and S. typhi by the ClustalW 

program described by Thompson et al (1994). Highlights in blue and green are those 

consensus sequences of HTH (Helix-Turn-Helix); highlight in grey is conserved metal-

binding motif (HXHHH); highlights in yellow are two (CXXC) motifs that coordinate metal 

binding and dimerization of the protein. 
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3.2.3 Homologous Alignment of svpA-srtB locus 

The reason why we had special interests in svpA locus is that besides the 

facts that it has “Fur-box” and SvpA itself is a surface-associated virulence protein, 

svpA locus of Listeria is very similar to the isdC locus of Staphylococcus aureus, 

which has already been identified to participate in the uptake of heme. Therefore, we 

were eager to find out if this locus showed any phenotypes related with its ability to 

acquire heme or any other iron sources.   Here is the comparison between svpA locus 

of L. monocytogenes and isd locus of S. aureus. (Fig.  3.3) 

Similarities: 

1)  IsdC and lmo2186 (unknown function) share 33% identity. They are encoded at 

similar position of it own operon and have similar molecular weights. 

2) Both loci contain a Fur-box in their promoter region.  

3) Immediately downstream svpA and IsdC, there are three genes which resemble 

ABC-transporters in the CM possibly involved in iron uptake 

4) In both loci, there are two genes encoding SrtA-dependent cell wall proteins with 

typical LPxTG motifs. 

5) Both loci have genes encoding SrtB downstream the whole locus and they share 

35% identity. Both SvpA and IsdC are anchored to the cell wall by downstream SrtB 

from the same locus.   
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Differences: 

1) In front of svpA, there is a gene (lmo2186) encoding for unknown function, 

regulated by “Fur-box”.  

2) Cell wall proteins which seem to be SrtA-dependent in S. aureus have their own 

“Fur-box” and orient in the opposite direction of the isd operon. 

3) The putative ABC-transporter clusters of lmo2184, lmo2183 and lmo2182 are 

more homologous to a typical ferrichrome transporter in IM of Gram-negative 

bacteria. (see blast Listeria genome at http://genolist.pasteur.fr/ListiList/). 

 
 
 
 

 

 

Fig. 3.3 Comparison of L. monocytogenes svpA region with S. aureus isd region 
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3.2.4 Homologous alignment of lmo1959  

 
 By homology alignment with the FhuD in the other Gram positive bacteria, 

lmo1959 seemed to encode FhuD in L. monocytogenes.  First it had a typical signature 

motif of LXXC in the signal peptide region, with possible signal peptidase II cleavage. 

Also using the SignalP prediction program, it was further verified that the cleavage 

site of signal peptide should be between positions 19 and 20: VLT-AC, leaving the 

uncleaved cysteine on the N terminus to be lipidated and anchored to the membrane. 

(Fig.3.4) Even the overall sequence of lmo1959 shared only about 18% identity to the 

FhuDs in S. aureus and B. subtilis, it had up to 68% similarities to FhuDs in the above 

strains. The detailed alignment, (Fig 3.5) showed three conserved motifs, I, II, and III, 

which are present in a variety of Fe(III)-siderophore binding proteins.  

 

Fig. 3.4 Predictions of signal peptide sequence and cleavage site using SignalP 

Likely cleavage site is between pos. 19 and 20: VLT-AC, with a cut-off probability of 0.48.  
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Fig. 3.5 Sequence alignment of FhuD (lmo1959) in L. monocytogenes with two 

FhuDs in S. aureus. The amino acid sequences were aligned using the ClustalW Program.  

Asterisk and light dots below the residues represent identical and similar amino acid residues 

respectively. Box I stands for the conserved signature motif (LxxC) within the signal peptide. 

Boxes II, III and IV stand for three conserved regions in heme or siderophore binding proteins 

(Braun, Kantke, et al. 1998). Five black dots above the residues are shown to contribute to the 

specificity of siderophore binding and transport by the FhuD2 in S. aureus. E97 and E231 are 

conserved residues that might be involved in interaction between FhuD2 and its cognate 

membrane counterpart. Y191, W197 and E202 are conserved residues involved in 

hydroxamate siderophore binding by FhuD (Sebulsky, Shilton et al. 2003). 
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3.3 Experimental Strategies 

3.3.1 Transposon insertion of antibiotic-cassette VS. In-frame, full and clean 

deletion 

To make chromosomal deletion mutant of bacterial strain, there are basically 

two different strategies that can be applied: one is called transposon mutagenesis and 

the other is called allelic replacement mutagenesis.  

A transposon is a piece of DNA which can hop around within a genome (Fig. 

3.6). If a transposon hops into the middle of a gene it will disrupt the gene. Many 

bacterial transposons themselves carry drug resistant genes. This offers an alternative, 

simpler strategy to screen the transformed bacterial cells for the acquisition of drug 

resistance by including the relevant antibiotic in the media. The advantages of this 

strategy is easy to handle and less time-consuming. Thus, transposon mutagenesis is 

quite efficient in making bacterial chromosomal deletion. However, sometimes it does 

cause some problems. The genes sometimes are not fully disrupted by insertion of 

transposons. Dr. Newton and her colleagues detected a small truncated form of SvpA 

that still could be recognized by the polyclonal SvpA antibody in the svpA mutated by 

insertion of transposon carrying kanamycin Tn7 cassette (EGDΔsvpA K7). (See Fig. 

3.7). The molecular weight of this truncated peptide was about 1/3 of the size of 

SvpA. The expression of truncated or misfolded OM proteins was already shown to 

cause toxicity in many gram-negative bacteria and show different physiology from the 

changes in the growth rate or virulence. Both changes of growth rate and attenuation 
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in virulence were observed from the EGDΔsvpAK7. However, the other chromosomal 

deletion mutant made by allelic replacement, EGDΔsvpA, was not shown to have such 

changes. In order to avoid such problems caused by transposon antibiotic cassette 

insertion, we chose to make a full and clean chromosomal deletion for L. 

monocytogenes mutants by applying allelic replacement in vivo.  

 

Fig. 3.6 Diagram of Transposon mutagenesis with insertion of antibiotic cassette  

A typical engineered transposon: Two Insertion Sequences (in Yellow) + 

antibiotic resistance gene(s) (in Light Green).  Transposon can hop around 

chromosome. Once it hops into the genes of interest on the chromosome by 

random, the gene is disrupted and its function might be completed lost.  
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Fig. 3.7 A Western blot of BHI culture supernatant proteins from L. 

monocytogenes strains ΔSvpA.k7, EGD-e, ΔPROX5, ΔSvpA, Δ2186 and ΔFX3 

(lanes 1–6 respectively) with anti-SvpA antibodies, showing the 20 kD  truncated SvpA 

fragment in the  ΔSvpA.k7. However, by allelic exchange mutagenesis of ΔSvpA, the SvpA is 

fully not detectable (Newton, Klebba et al. 2005) 
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3.3.2 Site-directed, in-frame, full and clean chromosomal deletion  

fur (lmo1956) 

To construct fur mutant, I first amplified two fragments with proper restriction 

digestion sites incorporated upstream and downstream of the gene lmo1956. After I 

digested the two PCR fragments with proper restriction enzymes, I ligated those two 

PCR fragments together and recovered from the agarose gel. (See Fig. 3.8 A and B) 

Then I tried to follow the general procedure as shown in Fig 3.7, to ligate this joint 

PCR fragment onto pKSV7 also digested with the same “extremity” restriction 

enzymes but no success. However, hardly any colonies were grown on the plates after 

electroporating ligation product into DH5α. So I religated the joint PCR fragment to 

another vector pUC18, which has the similar characteristics as pKSV7 but with much 

smaller size. After success in ligating joint PCR fragment onto pUC18, the vector with 

new construct was purified by midi-prep and digested with BamHI and PstI. The 

PCR1-PCR2 ligated fragment was cut and recovered from agarose gel and ligated onto 

pKSV7 again, with greater amount. The clone was transformed into E. coli strain 

DH5α and verified by PCR. Then this pKSV7 with new construct was purified and 

transformed in competent cells of L. monocytogenes. Bacteria were incubated first at 

30 C and the transformants were verified by PCR colony test. Then the transformants 

were grown at 37 C with 5µgl/ml of chloramphenicol in BHI.  pKSV7 only replicates 

as plasmid at 30C because its thermosensitive replication origin can only stand 

temperature no higher than 30C. At 37 C or above, the plasmid integrates into the 
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chromosome of L. monocytogenes. That is when the first recombination event 

happens. Then I kept passaging the integrants for at least 6 generations at the same 

temperature but without any chloramphanicol. Finally, I plated out the culture on BHI 

plates with a dilution of 106 or 107. Then I picked at least 200 colonies for 

chloramphenicol sensitive test. The mutants were checked by two extremity primers 

with appropriate size. (See Fig. 3.8 C~E) 

 

 

Fig. 3.8 Diagram of fur whole procedure. The figure depicts the method of allelic 

exchange that we used for construction of site-directed deletions (Newton, Klebba et al. 2005). 

A. Two chromosomal sequences, upstream and down stream of the gene of deletion interest, 

were amplified by PCR with appropriate restriction digestion sites designed to flank on both 
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ends of each PCR segment. B. After digested with restriction enzymes, they were joined 

together by ligase. C.The ligated fragment, with the elimination of my target gene, was cloned 

to a thermosensitive shuttle vector pKSV7. The pKSV7 carrying the deletion construct was 

transformed into L. monocytogenes and the new constructed vector was integrated into the 

chromosome by homologous recombination with DNA flanking the target gene at non-

permissive temperature of 37°C with 5µg/mL of chloramphenicol. D. The integrant was 

passaged for at least 6 generations at 37°C without chloramphenicol and the second homology 

recombination occurred with the result of deletion of target gene on the chromosome. E. The 

mutant was screened by chloramphenicol sensitivity test. Mutants were verified by colony 

PCR with appropriate primers designed to show the size of the deletion.   

hupC(lmo2429) 

To make deletion mutant of lmo2429, I employed strategy slightly different 

from fur mutagenesis in the step of ligation. Instead of ligating those two PCR 

fragments first, I ligated those two PCR fragments, each digested with restriction 

enzymes designed, directly with pKSV7 that was digested and recovered from agarose 

gel. This strategy was called “Triple Ligation”. (Fig 3.9~10) Unexpectedly, I 

immediately got the transformants containing the pKSV7 with two PCR fragments 

ligated together. The next steps followed the same procedure described above for fur 

mutagenesis. 

fhuBG(lmo1957/1958) 

  To make deletion of lmo1957, which spans a large DNA length, I employed 

the same strategy used for creation of hupC(lmo2429). There is only one difference in 

that I ligated the digested pKSV7 directly to the two digested PCR fragments with no 

recovery from the agarose gel. The general purpose of vector recovery from agarose 
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gel after digestion with restriction enzymes was to get rid of undigested supercoiled 

vector which might overpopulate the transformants of interest after electroporation 

and thus made it harder to screen for the transformants. However, the vector recovered 

from agarose after digestion sometimes did cause problems. It made following ligation 

hard to work. If with the gel recovery, there were only one or two white colonies per 

plate able to grow after transformation. However, if without gel recovery, there could 

be more than 200 white colonies per plate growing. 9 out of 20 colonies I tested by the 

latter method were verified to be the transformants with right size. However, the genes 

I wanted to delete seemed quite large and it caused much more difficult to get 

integrants and the final mutant might occur in a very low rate after the second 

homology recombination event. I am working on the screening of final mutant 

following the same procedure of in vivo allelic exchange in L. monocytogenes.  We 

might still need to make deletion mutants of lmo1957 (fhuG) and lmo1958 (fhuB) 

individually if the deletion of fhuBG (lmo1957/1958) is too big to make.  

fhuC/hupC(lmo1960/2429) 

fhuC/hupC (lmo1960/2429) was the first double chromosomal deletion mutant 

that I made. The two genes were on the different loci. Both of them encode an ATPase 

of a typical ABC transporter respectively. I first transformed the vector pKSV7 

containing PCR fragment generated from the previous hupC(lmo2429) cloning into 

competent fhuC(lmo1960) mutant. The next steps followed the same in vivo 
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integration and recombination procedures. The final double mutant was confirmed by 

fhuC and hupC check primer with the right sizes.  

feoB( Δlmo2105) 

I started to make feoB mutant after the plasmid pKSV7 containing feoB 

deletion PCR fragment was transformed into L. monocytogenes by Dr. Klebba in 

France. I followed the same procedures for the creation of other deletion mutants 

described above. I screened more than 300 colonies and eventually identified 2 out of 

7 Cm sensitive colonies to be the feoB deletion mutant.  
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A                                                          B                                            

           

C                                       D                                                  E 
Fig. 3.9   1% agarose gel pictures showing the complete cloning process of Δ2429 using 

triple-ligation strategy (numbers in each DNA marker are in the units of kb) 

A.  Double digestion of PCR1 (EcoRI/XbaI), PCR2 (XbaI/PstI), upstream and downstream 
gene 2429 respectively, and pKSV7 (EcoRI/PstI). Lane 0, 1kb ladder from invitrogen; lane 1, 
PCR1 ≈ 1.1 kb; lane 2, PCR2≈ 0.8 kb; lane 3 pKSV7≈7 kb. 
B.  Confirmation by M13 primers of transformants in E. coli DH5α after triple ligation. Lane 
1: Ladder, Lane 1~20 Clones 1~20. Clone #3 showed a band of 1.9 kb, which correlated with 
the size of two PCR products after they are ligated. Thus Clone #3 was the transformant. 
C. Double digestion of new constructed vector (EcoRI/PstI) again to confirm the two 
fragments ligated onto pKSV7.  Lower band: Ligation product of PCR1+PCR2 ≈ 1.9 Kb; 
Upper band: pKSV7 ≈ 7 Kb. 
D.  Confirmation of listerial transformants by M13 primers. Lane 1~6, 6 listerial clones 
picked; Lane 7, as negative control EGD-e wild type clone amplified by LLO check primers; 
Lane 8 Ladder.  
E. Confirmation of the final chromosomal deletion mutant with newly designed check 
primers. Lane 0, Ladder; Lane 1~14, Cm sensitive clones in which clones 10 and 11 showed 
to be the mutant with right deletion size; Lane 15, negative control EGD-e amplified by LLO 
primers.  
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Fig. 3.10 Diagram of Double-fragment ligation and triple-fragment ligation. 

Left: double-fragment ligation strategy.  Two PCR fragments, PCR1 and PCR2, each digested 

with two restriction enzymes engineered on two ends, were first ligated together. Then the 

joint PCR fragment was ligated onto the vector pKSV7, which was digested with the same 

two extremity enzymes.  

Right: triple-fragment ligation strategy. Three fragments, PCR1, PCR2 and pKSV7, each 

digested with two restriction enzymes, were ligated all together with proper ratio.  
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3.3.3 Confirmation of chromosomal deletion mutants 

 To check all the important mutants of EGD-e we constructed in our lab, I 

designed the two primers (called “check” primers for certain deletion), each of them 

was complimentary to the sequence within 0.5 kb upstream and downstream deleted 

gene, to show the size of the deletion. The control was always the EGD-e wt strain. 

The difference in sizes of PCR colony test between mutant and wild type showed the 

size of gene of interest we deleted. Mutants were also sequenced.  

 

 

Fig. 3.11 Agarose Gel Analysis of Deletion mutants.  

Mutants were confirmed by check primers designed.   Every two lanes showed PCR products 

with the same check primers designed to show the size of the deletion.   “ ++ ” stands for the 

EGD-e  wild type. Numbers shows the size of ladder in Kb.  
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3.4 Discussion 

Since no specific genes encoding iron-regulator transporter were identified L. 

monocytogenes before this project started, a genomic approach by combining 

denotation of open reading frames flanked by Fur regulatory sites with sequence 

analysis and structural predictions seemed to be an effective way to identify a fraction 

of candidate genes that encode cell envelope proteins negatively iron-regulated by Fur.  

Even though the overall length and the complete sequence of Fur-box still remains in 

debate, using “tganaatnatnntna” for a quick survey of listerial genome empirically 

revealed more than 30 open reading frames adjacent to Fur-box. However, from P.E. 

Klebba’s personal data showed that some proteins whose synthesis was enhanced by 

iron repletion but obviously Fur-independent. Furthermore, enough evidence also 

showed that not all the Fur-dependent genes were as iron-regulated. They can be 

involved in some other metabolic stress pathways.  Therefore, DNA Sequence 

alignment or protein homology comparative analysis can be quite useful but not 

adequate tools to determine a gene’s function until we eliminated it.  

Given the large number of genes we were interested to delete, the insert ional 

mutagenesis was first thought to be able to disrupt genes quickly and allow a rapid 

analysis of the roles of those genes. However, this approach can be problematic in 

three ways: (1) a truncated protein still can be expressed and hard to be detected if the 

gene to be disrupted is quite large and thus this non-specifically expressed protein 

might interfere with the normal growth of the strain and affect the virulence of the 
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strain in mouse model; (2) gene disruption by insertion of a transposon cassette can be 

unstable and phenotype of mutant can be reversible to its wild type.  (3) Even a 

creation of mutants with a stable gene disruption sometimes appears to have polar 

effect, which is, to affect the expression of downstream genes.  However, even though 

creation of in-frame chromosomal deletion by in vivo allelic exchange seemed to be 

laborious and time-consuming, it was full and clean deletion and could avoid the 

above problems caused by insertional mutagenesis. While learning the methodologies 

with Drs. Klebba and Newton, we improved the whole methodology by incorporating 

strategy of triple-fragment ligation. (See Fig. 3.10) Among all the steps, ligation 

seemed to be the most critical step to the success of creating in-frame chromosomal 

deletion by in vivo allelic exchange. Ligating the two PCR fragments first could 

significantly reduce the amount of joint PCR fragment for the further successful 

ligation with the vector, especially after recovery of the fragment from the agarose gel. 

Therefore, ligation is the rate limiting step of the whole process. In addition, gel 

recovery is also another important step to determine the success of mutagenesis. 

Normally the agarose gel recovery for vectors after restriction enzyme digestion was 

to get rid of undigested supercoiled vector in case they might overpopulate the 

transformants of interest after electroporation and thus made it harder to screen for the 

transformants. However, this step also could cause problems.  Usually few colonies 

were observed to grow after gel recovery step.  It could be possible that gel recovery 

somehow caused to lose some of the sticky ends of DNA product after restriction 
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enzyme digestion or some unremoved agarose gel was still left in the vector ligation 

product and could be toxic to the transformed cells. Furthermore, since all shuttle 

vectors (pKSV7, pAUL-A and pMAD) we used for listerial in vivo allelic exchange 

were very large (about 7 to 10 kb), it was extremely difficult to make a good estimate 

of relative ratio between vector and segment that were to be ligated. To minimize the 

loss of product we wanted to ligate and decrease chance of introducing anything toxic 

to the final product, triple-fragment ligation without any agarose gel recovery seemed 

to be very effective and reduced the whole amount of input time for chrosomal 

deletion mutagenesis from 3-6 months to less than 1 month.  
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Chapter 4 

Phenotypic characterization of mutants 

4.1 Quantitative analysis of  SvpA  

4.1.1 Deletion of srtB on over-expression of secreted SvpA 

SvpA (lmo2186) was the first gene in the svpA-srtB locus whose promoter 

region contains a highly conserved Fur box.  Even though whether SvpA functioned as 

a surface virulence factor in L. monocytogenes (Borezee, Pellegrini et al. 2001; 

Newton, Klebba et al. 2005) was still in debate, its promoter region was found tightly 

controlled by iron concentration and the regulator Fur (Newton, Klebba et al. 2005). 

The expression of SvpA was strictly regulated by the concentration of iron that at iron-

deficient condition, (iron was chelated by BP), a second, lower molecular weight band 

appeared when using Anti-SvpA antibody to immunoblot against SvpA. Also SvpA 

was verified to be anchored to the cell wall through its NAKTN motif. However, only 

less than 10% of SvpA is anchored to the cell wall while 90% of it is secreted.  As we 

precisely eliminated the complete srtB gene and the resulting strain was analyzed for 

expression of secreted SvpA in BHI, BHI + BP, and BHI +BP+Fe. In the iron-

depleted condition (BHI+BP), The SvpA was observed to be overexpressed with a 

second and lower MW band showing up. However, even though the culture was first 

grown in iron-depleted condition, when rendered with Fe (BHI+BP+Fe), the 

expression of SvpA returned to its original level, the same as iron-rich condition 
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(BHI). (Fig. 4.1) However, the ΔsrtB increased production of secreted SvpA in both 

iron-rich and iron-deficient media, compared with that in EGD-e wild type, and a 

second lower MW band showed up again.  But the addition of BP did not increase it 

more. (Fig. 4.1 and 4.2). It is possibly because in ΔsrtB mutant, no more SrtB exists 

to help SvpA anchor to the cell wall and thus all the SvpA expressed is secreted, as in 

ΔsrtA mutant, more SvpA was expressed in iron depleted condition.  And deletion of 

promoter region (Fur-box included) of svpA-srtB operon prevent SvpA from 

expression. And there was not any SvpA found in ΔPROX5 deletion.   
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Fig. 4.1 Immunoblot of secreted SvpA developed by 125I-Protein A using Fe-

citrate as iron source.  

Expression of SvpA in different media. Culture supernatants from EGD-e and its mutant 

derivatives were concentrated by TCA precipitation and subjected to SDS-PAGE and 

Western immunoblot with rabbit anti-SvpA 

Lane 1~9 sample loaded in 15 µl, lane 10~18 the same sample loaded in 5 µl. 

1. EGD + BHI                                              

2. EGD + BHI + BP 

3. EGD + BHI + BP + Fe-Citrate  

4. ΔProX5 + BHI 

5. ΔProX5 + BHI + BP 

6. ΔProX5 + BHI + BP + Fe-Citrate 

7. ΔSrtB + BHI 

8. ΔSrtB + BHI + BP 

9. ΔSrtB + BHI + BP + Fe-Citrate 

 

 

 

 

      18     17   16   15   14   13    12     11    10       9     8     7    6    5    4    3     2    1  
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Fig. 4.2 Immunoblot of secreted SvpA developed by 125I-Protein A using 

FeSO4 as iron source.  
Expression of SvpA in different media. Culture supernatants from EGD-e and its mutant 

derivatives were concentrated by TCA precipitation and subjected to SDS-PAGE and 

Western immunoblot with rabbit anti-SvpA. 

      Lane #: 

1. EGD + BHI                                              

2. EGD + BHI + BP 

3. EGD + BHI + FeSO4 

4. ΔProX5 + BHI + BP 

5. ΔProX5 + BHI + FeSO4 

6. ΔSrtA + BHI + BP 

7. ΔSrtA + BHI + BP + FeSO4 

8. ΔSrtB + BHI + BP 

9. ΔSrtB + BHI + BP + FeSO4 

 

  1          2          3            4          5          6           7           8         9         
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4.1.2 Deletion of fur on over-expression of SvpA 

We deleted the putative fur gene of L. monocytogenes, lmo1956 (ΔFur). Fur 

negatively regulates the transcription of bacterial proteins involved in iron acquisition 

(De Lorenzo, Herrero et al. 1988). However, the identity of fur in L. monocytogenes 

was unknown when the sequential chromosomal deletion experiments began.  But 

from our computer-based genomic analyses in chapter 3 (Fig.3.2 and table 3.2), we 

identified that lmo1956 had a very high homology (around 75% of similarity) to fur of 

B. subtilis and S. aureus.  We precisely eliminated the complete fur gene and analyzed 

the resulting strain for SvpA expression in BHI and BHI + BP. The Δfur increased 

production of SvpA in both iron-rich and iron-deficient media, compared with that in 

EGD-e wild type, but the addition of BP did not increase it more. And deletion of 

promoter region (Fur-box included) of svpA-srtB operon prevent SvpA from 

expression. SvpA reached maximum levels in culture supernatants when iron was 

sequestered by BP, or when Fur was deleted. This was again when a second, lower 

molecular weight form of the protein (SvpA2), appeared in the immunoblots. SvpA2 

seemed to be associated with overexpression in response to either iron-depleted or the 

absence of Fur (see Fig. 4.3). 



 96 

 

 

Fig. 4.3 An immunoblot of supernatant SvpA developed by 125I-ProteinA  

Expression of SvpA in different media. Culture supernatants from EGD-e and its mutant 

derivatives were concentrated by TCA precipitation and subjected to SDS-PAGE and 

Western immunoblot with rabbit anti-SvpA. 
In EGD-e wild type (Lanes 1 and 2),  ΔPROX5 (Lanes 3 and 4), and Δfur (Lanes 5 and 6). 

Samples in BHI were in odd lanes and samples in BHI with 1mM BP were in even lanes.  

 

4.2 Siderophore nutrition test of mutants 

Siderophore nutrition test is a qualitative assay to determine the ability of L. 

monocytogenes wild type strain and its derivative mutants to utilize different iron 

sources for their growth. We used BP as iron chelator in both liquid and solid media. 

The bacteria was first grown overnight and subcultured in 1:100 in BHI media until 

OD600 reached between 0.1~0.2. Then BP was added to the culture to a final 

concentration of 1 mM. The culture was grown for a few hours until it reached to mid 

   1       2        3       4        5      6  
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log. Then 200 ul of each strain was put into 8 ml of softened BHI top agar +1mM BP, 

mixed well and poured out into a plate. After agar became solid, a paper disc with 

certain amount of iron source was put into the plate. After overnight incubation at 37 

C, halos should be found for those strains of bacteria that are able to utilize certain 

iron sources.  

Results of nutrition tests (Fig. 4.4 and Table 4.1) showed EGD-e wild type 

could utilize all the iron-sources we tested here. Even though we could not show halos 

of bacterial growing by utilization of FeEnt and FeCrn by nutrition test, we knew 

EGD-e wild type was able to use those two iron source from the later 59Fe-siderophore 

uptake assay testified by Bo Jin. All the constructed Listerial mutants could utilize all 

the compounds of iron sources more or less except that ΔfhuD (Δ1959) and ΔfhuC 

(Δ1960) could not utilize ferrichrome, ferrichrome A and ferrioxamine B (the three 

hydroxamate siderophores we tested here) and ΔhupC (Δ2429) could not utilize 

Hemin and hemoglobin. Furthermore, relatively smaller but brighter halos were found 

all in Hn and Hb groups. This was probably because Hn or Hb was very poorly 

diffused around paper disc, which made the local concentration of Hn or Hb relatively 

higher and colonies growing on it appeared to be denser.  However, the deletion of 

genes in svpA-srtB locus didn’t show any defects in utilization any iron-sources.  

Furthermore, the double deletion mutant that I made, ΔhupC/fhuC 

(Δ2429/1960), was also observed unable to utilize both Hn/Hb and Ferrichrome. (Fig. 

4.5) 
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Fig. 4.4 Chromosomal loci of interest and nutrition tests with ferric 

hydroxamates, Hn and Hb.  (Jin, Newton et al. 2006) 

Chromosomal loci of interest (above) and nutrition tests (below) with ferric hydroxamates, Hn 

and Hb. Four loci that contain Fur binding sites and encode potential transport systems were 

studied for their participation in iron uptake. Siderophore nutrition tests revealed that ΔfhuD 

and ΔfhuC strains lost the ability to transport Fc; the hupDGC locus (2.499 Mb) encodes a 

third ferrichrome-like ABC transporter from listerial genome database; deletion of the gene 

hupC, which encodes a putative membrane ATP binding protein, prevented L. monocytogenes 

from acquiring iron from Hb and Hn. The nutrition tests shown below were performed in BHI 

top agar containing 0.1 mm BP. 

 

 



 99 

Table 4.1 Siderophore nutrition tests and mouse infection experiments with 
EGD-e and its mutant derivatives. 

Growth 

Fc/A FxB 
Strain Region 50 0.5 50 0.5 

Hb  
15 

Hn  
200 

HTf  
13 

Ftn  
8.5 

FeCit  
20 

FeSO4 
20 LD5o 

EGD-e NA 25 16 23 14 15 10 20 14 15 14 104.5 

Δfri (lmo943) fri 28 17 28 18 15 10 20 12 14 14 ND 

Δfur (lmo1956) fur-fhu 31 22 28 18 16 10 14 11 12 12 107.5 

ΔfhuD (lmo1959) fur-fhu  0  0  0  0 15 10 19 14 15 15 104.5 

ΔfhuC (lmo1960) fur-fhu  0  0  0  0 16 10 18 14 14 14 ND 

Δlmo1961 fur-fhu 23 15 22 10 15  9 18 14 14 14 104.5 

ΔfeoB (lmo2105) feo 25 15 25 13 14  9 19 15 15 15 104.5 

Δlmo2183 srtB 24 15 24 14 14 10 20 12 14 14 ND 

ΔsrtB (lmo2181) srtB 25 15 25 13 14  9 20 15 14 13 104.5 

ΔhupC (lmo2429) hupDGC 25 14 22 12  0  0 18 15 15 15 106.2 

ΔsrtA (lmo929) srtA 23 14 22 12 14  9 18 11 15 15 106.4 

ΔsrtAB NA 25 15 25 13 14  9 17 11 14 14 ND 

 

For nutrition tests, the tabulated values represent the diameter (in mm) of the halo of growth 

surrounding a paper disc embedded with 10 µl aliquots of the test compound. Fc and FcA, 

FxB, Hb and Hn were tested on BHI agar containing 0.1 mM BP; Htf, Ftn, FeCit and FeSO4 

were tested on KRMT agar plates. The concentration of each siderophore in the unit is of 

micromolar. The results of experiments with each compound were averaged and tabulated. 

The concentrations of all other iron compounds are also micromolar; each tabulated value 

represents the mean of triplicate tests, which had minimal variation. NA, not applicable; ND, 

no data. (Jin, Newton et al. 2006) 
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  EGD-e W.T                                                                ΔfhuC(Δlmo1960) 

 

  ΔhupC(Δlmo2429)                                         ΔfhuC/hupC(Δlmo1960/2429) 

 

 

Fig. 4.5 Nutrition test of double mutant ΔfhuC/hupC(Δlmo1960/2429) 

In the paper discs in each plate, the top left was rendered with 15 uM Hemoglobin; top right 

was rendered with 200uM Hemin; bottom was rendered with 50 uM Ferrichrome. EGD-e 

showed to utilize Hn, Hb and Fc; ΔfhuC displayed to be unable to use Fc; ΔhupC showed 

defects in using Hn/Hb; ΔfhuC/hupC showed to be unable to use all of them.  
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4.3 Growth curves of mutants 

After all the derivative mutants were constructed, their growth was studied in 

either BHI or KRM media. Only fur, fhuC(lmo1960), fri,  fhuC/hupC were found to 

have serious defects in growth (Fig 4.6).  feoB showed slightly retard in growth. All 

the other mutants showed to grow normal, compared with EGD-e wild type.  Even 

though Δlmo1959 (ΔfhuD), Δlmo1960 (ΔfhuC), Δlmo1961 (Δor) were from the same 

locus, only Δlmo1960 (ΔfhuC) showed retard in growth, suggesting that this locus that 

was predicted to be involved in hydroxamate siderophore uptake, might have the same 

traffic ABC membrane transporter but may have different hydroxamate-binding 

lipoproteins. The deletion of one of lipoproteins may not impair the function of the 

other lipoprotein if they share the same membrane ABC transporter. However, 

deletion of traffic membrane components severely may disrupt the function of the 

whole transport system.  

On the other hand, Fur is defined by its function to regulate iron uptake as well 

as control some other oxidative stresses upon gene expression. For this reason, a fur 

mutant may have a higher influx of iron or higher gene expression of many genes than 

a wild type strain and thus grow more slowly than a w.t. strain. This phenotype has 

been reported in many other strains (Rea, Gahan et al. 2004).  

fri encodes for bactoferritin, the iron storage protein. It was reported the 

elimination of bactoferritin retarded the bacterial growth in L. monocytogenes. 
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Fig. 4.6 The study of derivative mutants’ growth curves in KRM.  

Only lmo1960 (hupC), fur, fri showed retard in growth while all the other 

mutants was not observed to have any impair in growth.  

 

4.4 Virulence study of mutants 

I made virulence studies of three different mutants (ΔfeoB, Δfur and Δ1959) in 

the mouse model (also see table 4.1).  Δfur showed a 3 log decrease in LD50.  ΔfeoB 

and Δ1959 showed no attenuation of virulence. However the mutant hupC that I 

constructed was tested t by Dr. Newton and showed a 2 log decrease in LD50.   
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4.5 Discussion  

Transport of iron from the environment milieu into the bacterial cytosol 

involves translocation of molecules across the 50-100 nm diameter of the cell wall 

envelope and cytoplasmic membrane of L. monocytogenes. At least three iron-

regulated ABC type transporter systems were described by listerial genome database 

in both pathogenic Listeria monocytogenes and non-pathogenic Listeria innocua 

(http://genolist.pasteur.fr/ListiList/) after the genomic sequencing was completed in 

2001 (Glaser, Frangeul et al. 2001). Those ABC transporters are hypothesized to 

utilize ferric hydroxamate siderophores via a sequential process of a surface receptor 

to bind siderophores, membrane permease to translocate siderophores that are still 

complexed with iron across hydrophobic membrane bilayer, and an ATPase to provide 

energy by hydrolysis of ATP.  Besides interests in determining the mechanism of iron 

transport system, we were also interested in finding new virulence factors involved in 

iron transport. This is because many virulence factors of bacterial pathogens are 

surface associated or secreted proteins. In Gram positive bacteria, sortaseA, the first 

sortase of this kind, anchors proteins to the cell wall at C- termini through the sorting 

motif of LPxTG consensus in many cell-wall-based proteins. Sortase A is believed to 

function as a major enzyme to anchor many cell-wall virulence factors because the 

deletion of the srtA attenuated the whole cell virulence. A second class of sortase, 

sortase B, was found in both S. aureus and L. monocytogenes. Contrary to sortase A, 

which recognizes wide range of proteins, sortase B only works on a few proteins, 
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among those SvpA was found SrtB dependent in L. monocytogenes. However, SvpA, 

even though was initially named as a surface virulence protein, was found to have 

nothing to do with virulence. But its expression was hypothesized to be iron-regulated 

because of the Fur-box upstream the gene. In order to test that hypothesis, we first 

made make a fur mutant. Fur encodes the global iron regulator protein that not only 

regulates the genes within its own operon but all the operons or genetic loci that may 

be iron-regulated. Using fur mutant, we first characterized the regulation of svpA-srtB 

in iron-sufficient and iron-deficient conditions and we also determined the effects of 

fur and srtB deletions on SvpA synthesis in the above conditions. Those experiments 

demonstrated that iron-availability regulated the svpA-srtB locus, mediated by Fur. 

However, we didn’t find any phenotypes of specific iron sources that this ABC 

transporter was able to utilize even after each gene of this locus was deleted. The 

function of svpA-srtB locus are still under study, Whether this locus is involved in 

iron is still in debate even though in vitro the SvpA was able to bind with hemin in 

solution and SvpA’s expression is in response to the iron concentration,. Among four 

loci that we expected to be putative iron-regulated membrane transporters by genomic 

analysis, only furfhuBGDCOR locus were shown to confirm with what we expected, a 

typical hydroxamate transporter; svpA-srtB locus showed no phenotype in terms of 

iron transport even though the locus itself displayed to be very homologous to isd 

locus in S. aureus; to our surprise, the other locus fhuDGC, which was predicted to be 

ferrichrome-like ABC transporter, was tested to be involved in hemin/hemoglobin 
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uptake. This result again showed that computer-based genomic comparative analysis is 

useful but not adequate an approach to determine the complete function of a gene or 

an operon. Even though no obvious phenotypes were found in svpA-srtB locus, we 

still could not conclude that it was not involved in iron transport because much 

evidence showed that this operon is strictly iron-regulated. It could be because of 

limited sorts of siderophores we tested here. Or maybe this locus is involved in 

transporting some metabolites that may level up oxidative stress which is also 

regulated by Fur and iron concentration. It was reported that Fur also regulates a 

variety of iron-dependent cellular processes, such as the acid-shock response and 

oxidative-stress response.  fur mutant was also found to grow slowly than the wild 

type, which showed the same result from Hill et al (Rea, Gahan et al. 2004). This is 

possibly because deletion of Fur, a global iron regulator, changes many genes’ 

expression. The attenuation of fur again supported the idea that iron acquisition is an 

important determinant for a bacterial pathogen to survive in a host.  

  L. monocytogenes, the intracellular pathogen, has shown to have increased 

virulence in mice loaded with iron, an effect which is reversed by removing iron in the 

host using iron-chelator. Iron availability may therefore be of great importance for this 

pathogen. L. monocytogenes is widely distributed in the environment and does not 

produce siderophores. So even though there are lots of similarities between those ABC 

type transporters and known siderophore-uptake transporters in both Gram-positive 

and Gram-negative bacteria, it does not aid the identification of their substrates.  As 
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shown in our data that three loci, only two showed impairs in iron uptake while the 

third one, which had homology to isd locus in S. aureus, didn’t show any impair of 

iron uptake.   

In aerobic and neutral pH conditions, iron exists predominantly as Fe(III). 

However, Fe(III) is insoluble and cannot be directly assimilated. Under anaerobic 

conditions, iron exists in the Fe(II) oxidation state. Fe(II) iron is highly soluble and 

can be diffused freely through the outer membrane porins of gram-negatively bacteria 

or the thick cell wall of gram-positive bacteria, and thus becomes bio-available to the 

anaerobes. Then this ferrous iron usually is transported through the cytoplasmic 

membrane by a feo transport system conserved in many species.  
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Chapter 5  

Characterization of the binding specificity of FhuD 

(lmo1959) in Listeria monocytogenes 

5.1 Purification of FhuD.   

I used pET28(a), which is a very common expression vector, to purify listerial 

FhuD. (Fig 5.1) 1.1 kb of fhuD gene was PCR-amplified and cloned into the 

HindIII/EcoRI sites of pET28(a). This construct encoded L. monocytogenes FhuD 

tagged at the N terminus with His6. The recombinant pET28A(+) vector was 

introduced into E. coli BL21(  DE3) for protein overexpression. Strains expressing 

fusion proteins were grown to an approximate A600 of 0.7. Following the addition of 

isopropyl-1-thio- -D-galactopyranoside (1mM), growth was allowed to continue 

another 3 h before the cells were lysed. The resulting supernatants were centrifuged at 

35,000 rpm to remove insolubles and then passed across a 7-ml pQE-9TM histag nickel 

column (Qiagen) for purification. Protein purity was assessed by SDS-PAGE.  

 After I successfully transformed pET28fhuD into E. coli BL21, This 6his-

tagged listerial FhuD in E. coli BL21 was not over-expressed as we expected (Fig. 

5.2). Without cutting its signal peptide sequence, only a small amount of FhuD was 

observed to express from BL21 after adding IPTG. (Fig 5.2 Lane 6) We observed 
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FhuD were expressed in both cytoplasmic and membrane fractions. Even from 15 

Liter of cell lysate, and the purification was not good enough and also we did not have 

enough amount of purified protein to prepare for further binding test or crystallization.  

(Fig. 5.3) 

However, from the genomic alignment of FhuD in L. monocytogenes, S. 

aureus and B. subtilis (See Fig. 3.5) it showed that they had similar signal peptide 

sequences. First, they all contain a LXXC motif in the first 18 to 21 that was 

characteristic of a lipoprotein secretion signal and could be recognized by signal 

peptidase II.  Also from signalP 3.0 sever http://www.cbs.dtu.dk/services/SignalP/, it 

was predicted to be about 90% of the most likely cleavage site between pos. 19 and 

20: VLT-AC. (see Fig. 3.4) In L. monocytogenes, an unpaired Cys residue (C21) from 

its motif maybe be lipidated to form a membrane anchor, which explained 6His-FhuD 

found in both cytoplasmic and membrane fraction. (Fig. 5.3) We were not sure if this 

signal peptide, which led the premature FhuD out of cytoplasmic membrane, could 

cause FhuD to be expressed in a low expression level in E. coli system. FhuD of S. 

aureus, also cleaved of its signal peptide, was found to be expressed in a high level in 

E. coli. It suggested that we could cleave the signal peptide to get high level 

expression of listerial FhuD of in E. coli.  

After I redesigned FhuD, with deletion of signal peptide onto pET28 

expression vector, the new construct is called pET28FhuDΔ21, devoid of 21 amino 
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acids for signal peptide sequence.  FhuDΔ21 showed great expression than FhuD in 

BL21. (See Fig. 5.4) Then 6HisFhuDΔ21 was purified from Ni-NTA column and 

purification of FhuDΔ21 was a lot better than that of FhuD. (See Fig. 5.5 and 5.6) The 

new FhuD started to elute when the imidazole concentration only reached to 40mM, 

suggesting interaction between 6 histidines of the protein and the nickel was not a 

strong binding. Since the FhuDΔ21 was so overexpressed that even added with 

phenylmethanesulphonylfluoride (PMSF), some degradation products of the protein 

appeared from SDS-PAGE gel of purification. This may be because the protein 

concentration from lysates was too high because of large overexpression or it may 

indicate that the protein itself is relatively unstable in E. coli.  
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Fig. 5.1 pET28(a) expression  vector.  

http://www.emdbiosciences.com/docs/docs/PROT/TB074.pdf 
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Fig. 5.2 SDS-PAGE of expression check of 6His FhuD. 

Lane 1~10 Cell lysate of different strains, each fully grown strain was normalizd to the same 
cell density before culture was lysed; Lane11-Ladder 

Lane 1, 2- BL21 w/o and w IPTG; Lane 3, 4- DH5α/pET6HisFhuD;  
Lane 5, 6- BL21/ pET6HisFhuD; Lane 7, 8- BL21/ pET6HisFhuC;  
Lane 9, 10- BL21/ pET28 
Molecular Mass Marker consisted of Phosphorylase b( 94kDa), Conal Bomin(78kDa), 

BSA(66kDa), Egg Albomin(44kDa), carbonic anhydrase (29 kDa), Trypsin (24kDa) and 

lysozyme (14 kDa); 6His FhuD is expected to be 37.8kDa. 

 

              FhuD                          FhuC 

  1          2           3           4            5            6            7           8           9        10      ladder 

78 kDa 
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Fig. 5.3 SDS-PAGE showed purification of FhuD by nickel column from 15 Liter 
LB broth.  

A. Cytoplasm fraction. Lanes 1, 2 Flow through; Lane 3, 4, 5,   5 x volume of wash by 10 to 

30 mM imidazole, respectively; Lanes 6, 7, 9, 10, 11, 12, 13, 14, 15, eluted at concentrations 

of  40mM to 250 mM imidazole; Lane 8, Ladder.  

B. Membrane fraction. All the buffers were added with 0.2% triton 100. Lanes 1, 2 Flow 

through;. Lane 3, 4. 5.    5 x volume of wash by 10 to 30 mM imidazole, respectively; Lanes 6, 

7, 8, 10, 11, 12, 13, 14, 15, eluted at concentrations of  40mM to 250 mM imidazole; Lane 9, 

Ladder. Molecular Weight Marker consisting of Phosphorylase ( 94kDa) Conal 

Bomin(78kDa), BSA(66kDa), Nadase (55kDa), Egg Albomin(44kDa), carbonic anhydrase 

(29 kDa), Trypsin (24kDa) and lysozyme (14 kDa);. 6His FhuD is expected to be 37.8kDa. 

 

 

 

44kDa 
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B 
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29kDa 
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Fig. 5.4 High Level Expression of FhuDΔ21 in L. monocytogenes. 

Lanes 1, 2– BL21 w/wo IPTG 

Lanes 3, 4 – BL21/pET28 w/wo IPTG 

Lanes 5, 6 – BL21/pET28 FhuD 

Lanes 7, 8 – BL21/pET28 FhuC 

Lanes 9, 10–BL21/pET28 FhuDΔ21 clone 1 

Lanes 11, 12– BL21/pET28 FhuDΔ21 clone 2 

Lanes 13, 14–BL21/pET28 FhuDΔ21 clone 3 

All the 3 new constructs of pET28FhuD Δ21 were sequenced and shown to be correct. 
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Fig. 5.5   Protein concentration was determined by Bradford Assay. 

A. OD reading at 495nm and converted concentration (Ug/ml) for 6His FhuDΔ21 

purification fractions. 

Fraction #:1~6 flow through; Fraction #: 7~16: wash; Fraction #:17~27 eluant. 

B. Standard of BSA 
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Fig. 5.6 SDS-PAGE of nickel column purification of 6His FhuDΔ21 from 1 Liter 

broth. (without signal peptide) 

Left- huge expression of 6His FhuDΔ21 before nickel column purification 

Lanes 1,2 – BL21/pET28 FhuD  w/wo IPTG 

Lanes 3, – BL21/pET28FhuDΔ21 w IPTG 

Right-Gradient imidazole elute of 6His FhuDΔ21 after nickel column purification 

Lane 0 Ladder 

Lanes 1, 2 flow through 

Lanes 3~5 10 to 30 mM imidazole wash 

Lanes 6~12 40 to 100 mM imidazole eluates 

Lane 13~14 250 mM imidazole eluates 
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5.2 Intrinsic fluorescence   

In the case of the FhuD family, the most similar regions of primary structure 

distribute throughout both lobes of the binding protein, in sites that give rise to ligand-

contact residues (Schneider and Hantke 1993). Listerial FhuD was assumed to be 

homology to E. coli FhuD. (See discussion part I). Four tryptophans were found in the 

binding pocket from the crystal structure of E. coli FhuD. And those four tryptophans 

can be used to track change of fluorescence intensity upon FhuD’s binding of 

siderophores. Four tryptophans also exist in mature listerial FhuD, which provided 

another measure of the affinity of the interaction with ferric siderophores. Binding of 

the ferric siderophore did not shift the excitation (290nm) or emission (327nm) 

maxima of purified FhuD (Fig. 5.4, pooled fractions 6 to 9; >90% 35.9-kDa band), 

suggesting that the tryptophans did not experience any significant change in 

environment. However, saturation with Ferrichrome, one of major hydroxamate 

siderophores greatly reduced the fluorescence intensity of FhuD by approximately 

45%. (Fig. 5.7). The concentration dependence of this decrease showed a midpoint 

(KD) at 306 nM, roughly three fold lower than FhuD in E. coli but four fold higher 

than FhuA in E. coli. 

Among all the hydroxamate siderophores, which all can be utilized by L. 

monocytogenes wild type by the nutrition tests and radioactive Fe transport assay, 

FhuD binds them with different affinities as well as specificities (See Table 5.1.). 
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Among four hydroxamate siderophores, FhuD displayed highest affinity for iron(III)-

desferroxamine, with a KD (nM) = 123, two fold less affinity as described for FhuD2 

from Staphylococcus aureus but 350 fold higher affinity of FhuD found in E. coli. 

Also since Listeria monocytogenes is the only strain which can utilize Ferrichrome A, 

a hydroxamate siderophore that hardly can be utilized by most bacteria, its binding 

affinity of KD is about 451 nM. FhuD shows less binding of Apo-ferrichrome as well 

as Apo-ferrichrome A, except for desferrioxamine B.  FhuD shows no binding to non-

hydroxamate siderophore, eg, Fe-Enterobactin. (See Fig. 5.7 b and Table 5.1.) 

 

Fig. 5.7 Comparison of Fc Binding by FhuD and BSA via Fluorescence 

spectroscopy 
FhuD fluorescence emissions were quenched when the protein bound the Fe(III)ferrichrome, 

and control of BSA shows no binding. For FhuD, F/F0 is Fc concentration dependent.  

(1  F/F0) was used to estimate the affinity (KD) of the interactions.  
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Fig. 5.8 Hydroxamates binding of FhuD(1959) by intrinsic fluorescence 
measurement. Top left: both Fc and apo-Fc showed quenching of fluorescence upon 
ligand binding with FhuD; Top right:FxB and apo-FxB showed quenching of 
fluorescence upon binding, however the Calculated Kd was higher in apo-FxB than in 
FxB; Bottom left: FcA showed quenching but FcA showed slightly any quenching; 
bottom right: Ferric-aerobactin showed quenching while Ferric but aerobactin didn’t. 
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Fig. 5.9 Catecholate siderophore binding of FhuD(1959) by intrinsic fluorescence 

measurement. All the siderophores tested here showed no quenching and the KDs are 

not calculable.  
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Hydroxamate Catecholate 

Siderophore Kd (nM) Siderophore  Kd 

FxB 121 Fe-Ent  N/C 

Apo-FxB 21 Ent  N/C 

Fc 306 Fe-Bac  N/C 

Apo-Fc 1640 Bac  N/C 

FcA 414 

Apo-FcA 1024 

  

Aerobactin N/C   

Fe-aerobactin 231   

Table 5.1 Kd of siderophore binding measure by intrinsic fluorescence 

spectroscopy.  N/C means the KD is not calculable because of the numbers has too 

large standard deviations.  
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5.4 Discussion 

5.4.1 Comparison of E. coli and L. monocytogenes FhuD 

The crystal structure of E. coli FhuD was first solved in complexed with 

gallichrome, a homolog of ferrichrome, in 2000 (Clarke, Ku et al. 2000). The 

siderophore-binding site is located in a shallow cleft between the two lobes. Because 

the interior of this shallow cleft is predominantly composed of aromatic residues, the 

binding site is hydrophobic. Siderophore binds to FhuD through both hydrophobic 

and hydrophilic interactions. The shallow cleft and the hydrophobicity of the 

siderophore-binding site suggest that large conformational change does not occur 

upon siderophore binding. From its crystal structure, I found 4 tryptophans (W43, 

W68, W217, W273) in proximity to the ligand in the binding pocket. (Fig. 5.10). 

Because of those tryptophans within the binding site, I used intrinsic fluorescence 

quenching experiments to characterize FhuD and determine its binding affinity and 

specificity for hydroxamate siderophores. The substrate specificity and affinity of E. 

coli FhuD for iron or siderophore uptake have been determined. The KD for 

hydroxamate binding to FhuD ranged from 300 to 400 nM for coprogen and 

aerobactin, to 1 µM for ferrichrome, and to around 40 µM for ferrioxamines 

(Rohrbach, Braun et al. 1995). In the previous chapter, I demonstrated that the 

listerial FhuD had high sequence homology to S. aureus FhuD. (Fig. 3.5) Since the 

crystal structure of any Gram-positive FhuD has not yet been solved, listerial FhuD 

was compared to the E. coli homolog in terms of both structure and function. 
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Although listerial FhuD has astonishingly low identity (13.7%) with E. coli FhuD, the 

mature proteins still have very significant similarity (53.4% by sequence alignment 

using ClustalW). However, the four E. coli tryptophans that were found to be 

involved in binding from its crystal structure were not fully conserved in listerial 

FhuD. Only L. monocytogenes W229 was found close to E. coli W217 in sequence 

alignment and this tryptophan of listerial FhuD may reside within the binding pocket. 

Tryptophan fluorescence was quenched upon ferric siderophore binding to FhuD, 

verifying this assumption. (Fig. 5.11) 
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Fig. 5.10 Crystal structure of E. coli FhuD in complex with desferal. 

The crystal structure showed 4 tryptophans were in the ligand binding domain. Those are 

W43, W68, W217, and W273.  
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Fig. 5.11 Amino acid sequence alignment between mature E. coli FhuD and 

listerial FhuD 

Even though listerial FhuD has percentage of identity (13.7%) that is even lower than the cut-

off of sequence homolog, the overall similarity is still very high (53.4%), suggesting the two 

proteins may have the similar structures.  7 tryptophans were found in mature E. Coli FhuD 

and 3 tryptophans were found in listerial FhuD. From this alignment, none of the 4 

tryptophans within the binding pocket are conserved in listerial FhuD, except W255 that is 

located far below the binding pocket. However, L. monocytogenes W229 (Purple) and E. coli 

W217 (Green) are close to each other in the sequence and W229 may be located in the 

binding pocket of L. monocytogenes. Even though it is not known which tryptophans account 

for the fluorescence quenching, it is still feasible to determine dissociation constant from 

changes in the intrinsic fluorescence of listerial FhuD as a result of substrate binding.  
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5.4.2 Affinity of FhuD 

Previous studies in our laboratory showed that the fhuD(lmo1959) was unable 

to utilize three hydroxamate siderophores, Fc, FcA and FxB (Jin, Newton et al. 2006). 

The gene was from locus furfhuBGCD and itself resembled a typical lipoprotein that 

was one of three components of a typical ABC type transporter which was predicted to 

be ferrichrome-like transporter by homology alignment with that in S. aureus (see Fig. 

3.5). Ferrichome-like iron transporter system belongs to siderophore-mediated iron 

transport systems in the two major bacterial iron uptake mechanisms.  

 
My fluorescence quenching experiments determined that purified listerial 

FhuD bound hydroxamate-type siderophores with different affinities. Using this 

technique, dissociation constants were determined from changes in intrinsic 

fluorescence of FhuD as a result of ligand binding. Similar experiments were also 

performed to characterize specificity and affinity of substrate binding for FhuD in 

Escherichia coli, Staphylococcus aureus, and group B streptococcus. The results are 

summarized in Table 5.2. 
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KD (uM)  
 
Fe(III)-siderophores  

Listerial 
FhuD 
(this study) 

S. aureus FhuD2 
(Sebulsky, Shilton 
et al. 2003) 

GBS FhuD  
(Clancy, Loar 
et al. 2006) 

E. coli FhuD 
(Rohrbach, Braun 
et al. 1995) 

FerrioxamineB 0.12 0.05 0.05 40 
Ferrichrome 0.3 0.02 0.1 1 
Aerobactin 0.23 0.3 3 0.4 
Rhodotorulic acid NA 3 3 NA 
Coprogen NA 1.7 9.3 0.3 
Ferrichrome A 0.41 NA NA NB 
Enterobactin NB NB 3 NB 

 

Table 5.2 Comparison of dissociation constants of iron(III)-siderophores bound 

to FhuD in L. monocytogenes, S. aureus, Group B streptococcus (GBS) and E. coli 

by fluorescence quenching experiments. NA-not available; NB-no binding.  

 

Listerial FhuD has the highest affinity for ferrioxamine B with a KD of 0.12 uM, twice 

as much as those in S. aureus and GBS and more than 300 fold less than E. coli FhuD. 

The affinities of listerial FhuD for ferrichrome and aerobactin are in the close range to 

each other. Affinity of aerobactin for listerial FhuD is close to that in S. aureus and E. 

coli but higher than in GBS. Ferrichrome A, which most bacteria can hardly utilize but 

L. monocytogenes can from our nutrition test, has about the same affinity compared to 

all the other ferric hydroxamate we tested. Ferrichrome A is unique because most of the 

bacteria are unable to utilize it, neither as hydroxamate siderophores nor catecholate 

siderophore. Ferrichrome A is structurally related to those hydroxamates, but it is -3-

charged while most hydroxamate siderophores are of neutral charge (see Table. 1.2) 

On the other hand, even though ferrichrome A is -3 charged, the same as found in many 

catecholate siderophores, they are not structurally related. (Table. 1.2)   



 127 

For ferrichrome, a fungal siderophore that can used in many bacteria, listerial 

FhuD has an affinity that is 10-15 fold lower than that in GBS  and  in S. aureus but 

still 3 fold higher than that of E. coli.  KD of ferrichrome for FhuD in all the three 

Gram-positive stains was lower than that of FhuD in E. coli. However, compared to 

the KD (=0.1 nM) of FhuA (Scott, Cao et al. 2001), which is the outer membrane 

receptor with a strict specificity for ferrichrome in E. coli, KDs of FhuD of those 

Gram-positively bacteria including Listeria we tested are considerably lower than the 

KD of FhuA. This is because many of the outer membrane binding receptors in Gram-

negative bacteria are usually ligand-gated porins to transport those molecules that are 

larger than 600 dalton and unable to passively diffuse through general porins across 

these membranes (Nikaido and Wu 1984). Ligand-gated porins are very specific to 

their substrates and have very high affinities, in which the KDs range from 0.1 

nM~100 uM (Stintzi, Barnes et al. 2000). For example, FepA has a very high affinity 

for ferric enterobactin (KD=0.1 nM). However, the binding constants of their binding 

lipoprotein in the periplasm are larger than those in the outer membrane.  The affinity 

of E. coli FepB for its substrate is estimated at approximately 30 nM by fluorescence 

quenching experiments and 145 nM by chromatographic measurement of 59FeEnt-

FepB binding (Sprencel, Cao et al. 2000). E. coli FhuD, which is also a binding 

lipoprotein, binds ferrichrome with less affinity, only with a KD=1 uM (Koster and 

Braun 1990).  In general, the outer membrane of Gram-negative bacteria is home to 

high affinity iron(III)-siderophore receptors, whereas periplasmic components, eg 
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FhuD in E. coli, need not possess as high an affinity for substrates because substrates 

transported across the outer membrane are "concentrated" in the periplasm, whereas 

the cognate outer membrane receptors of gram-negative bacteria are the first contact 

of iron source and have to pirate any iron from very low iron concentration in the 

surroundings.  

 

5.4.3 Specificity of FhuD 

Comparing the affinities of FhuD in the above species, as expected, listerial 

FhuD bound hydroxamate siderophores similar to those counterparts but showed 

highest affinity for ferrioxamine B like GBS.  If the substrate which shows the highest 

binding affinity defines the protein of interest, then listerial FhuD is specific for 

ferrioxamine B, not ferrichrome as we expected because its operon was originally mis-

named as ferrichrome-like ABC transporter by homolog alignment to E. coli FhuD 

transporter and B. subtilis FhuD system. Even for E. coli fhuD, the best substrate is not 

ferrichrome but coprogen that shows the highest affinity. The biological significance of 

different affinities for different hydroxamate siderophores is not clear for L. 

monocytogenes. When living saprophytically in woods, soil and decaying vegetables as 

primary habitats, Listeria monocytogenes may manage to use ferrioxamine B, 

ferrichrome, or ferrichrome A as major iron sources in those habitats because 

hydroxamates are produced by fungi and molds and are relatively abundant. It is also 

possible that Listeria monocytogenes causes intestinal infections via the raw milk 
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cheese, which contains hydroxamate siderophores from fungi used to produce the 

cheese. This may help the bacteria to survive in refrigeration temperature (Goulet, 

Jacquet et al. 1995).  

FhuD is a prototype for a large and growing subfamily of iron(III)-

siderophore-binding lipoproteins from Gram-positive bacteria. This subfamily of 

iron(III)-siderophore-binding proteins function as "high affinity" receptors at the 

external face of the cytoplasmic membrane in Gram-positive bacteria, as compared 

with the periplasmic location of FhuD homologs in Gram-negative bacteria. Our 

experiments and the measurements of FhuDs in the other Gram-positive bacteria by 

other groups showed that FhuD has broad specificity and but still can be regarded as 

high affinity receptors. Our experiments also confirmed that listerial FhuD does not 

bind catecholate siderophore such as ferric-bacillibactin or ferric enterobactin, which 

is contrary to the GBS FhuD that was found to be able to bind enterobactin still with a 

decent affinity (KD=3 uM). To our surprise, listerial FhuD binds to the apo-

ferrioxamine B with greater affinity than to ferrioxamine B. It is reported that the 

binding site of FhuA, the outer membrane receptor for ferrichrome, possesses a 

higher affinity for ferrichrome-iron than for apo ferrichrome (Boulanger, le Maire et 

al. 1996). In the ligand binding structure, Tyr244 of FhuA comes in close contact with 

the iron atom of the ferrichrome-iron molecule. This observation may explain the 

decreased affinity for apo ferrichrome. However, FhuD does not show any homology 

to FhuA in primary sequence and tertiary structure, because the former is a 
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transmembrane protein while the latter is a membrane-anchored peripheral 

lipoprotein. Therefore, difference in binding to the apo-siderophore may exist, which 

makes a unique feature of listerial FhuD.  Furthermore, broad specificity of FhuD in 

B. subtilis was also observed. Deletion of fhuD impairs the transport of hydroxamates 

of ferrichrome, coprogen Rhodotorulic acid but not ferrioxamines. Another 

lipoprotein in B. subtilis, FoxD, was identified to be involved in uptake of 

ferrioxamines (Schneider and Hantke 1993). Analogously two binding proteins with 

different specificities to hydroxamate siderophores may exist in Listeria 

monocytogenes as well.  

Although the affinities displayed by listerial FhuD for particular siderophores 

were very comparable to that in the other Gram-positive bacteria, differences exist as 

described above. To address such issue of relationship between structure and function 

in FhuD in terms of substrate binding, some amino acid sequence alignments were 

made between listerial FhuD and two other FhuDs in S. aureus. Despite three regions 

that were conserved among all siderophore-binding and heme-binding proteins of 

most bacteria were found in listerial FhuD, from amino acid homology alignment 

with S. aureus FhuD, four amino acids (E97, E231, W197 and E202) of listerial FhuD 

may appear to be critical for binding with ligand and interaction with cognate 

membrane permease. The importance of those conserved residues for siderophores 

binding by listerial FhuD are currently unknown in the absence of its crystal structure. 

Crystallization of listerial FhuD is still underway. 
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5.4.4 A secondary hydroxamate iron transporter exists? 

From our genomic analysis, the FhuD(lmo1959) has only about 25% identity 

and 54% similarity to FhuD in B. subtilis, which is the first FhuD found Gram-

positive bacteria,  and even lower identity and similarity to FhuD in E. coli. Another 

binding lipoprotein, lmo0541 was found to have a typical Fur-box in its promoter 

region (table 3.1). From homology alignment by ClustalW and BlastP, this binding 

lipoprotein shares 27% identify and 45% similarity with FhuD in B. subtilis. They 

also shared the same typical three regions of siderophore binding within all the FhuD 

reported so far. Such transport redundancy is known in many other iron regulated 

transport systems. In B. subtilis, both FoxD and FhuD are the hydroxamate-binding 

lipoproteins using the same traffic ABC type transporter, FhuCB to internalize the 

hydroxamate siderophores through cytoplasmic membrane. The only difference 

between those two lipoproteins is that FoxD appears to strictly specific to 

ferrioxamines while FhuD can use wider range of hydroxamate siderophores. But 

both of them cannot utilize aerobactin.  In our research, L. monocytogenes can use 

almost all kinds of siderophores we have tested. It is possible that a second 

hydroxamate uptake system or a second hydroxamate binding protein with different 

substrate specificity may exist in L. monocytogenes. It is notable from our previous 

growth test that the only the deletion of fhuC showed great retardation in growth 

while fhuD didn’t.  It is possible that this FhuC is a traffic ATPase within in a 

membrane transporter but they have different receptors on the cell surface.  
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Taken together, these results support the conclusion that FhuD(lmo1959) is an 

effective receptor for ferric hydroxamate transport in L. monocytogenes and the ability 

to acquire iron from the surrounding environment is critical to the growth of virtually 

all bacteria. L. monocytogenes imports ferric iron associated with hydroxamate-type 

siderophores through the Fhu (ferric hydroxamate uptake) system. The Fhu system in 

many L. monocytogenes strains is composed of five proteins: FhuD, and FhuCBG. The 

FhuCBG proteins represent components of a traffic ATPase (FhuB and FhuG are 

integral membrane proteins and FhuC has signature L. monocytogenes). In our 

research, we have expanded our understanding of the Fhu system in L. monocytogenes 

by characterizing the FhuD protein and establishing its role in the transport process. 

From our genetic alignment studies, FhuD showed homolog to lipoproteins and from 

our biochemical characterization FhuD acts as a receptor for ferric hydroxamate 

complexes with quite high affinity in L. monocytogenes. Although our data suggest 

that FhuD is the more functionally relevant binding protein, our evidence is based 

solely on data derived from experiments performed in the laboratory with a small 

subset of hydroxamate siderophores. However, because redundancy of multiple 

hydroxamate siderophore was found in S. aureus and other Gram-negative bacteria, 

more genomic analysis should be studied to find genes that may be homologous to 

FhuD. 
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Appendix 

1. Simple Theory of Fluorescence 

Absorbance spectrum is often used to study the properties of macromolecules 

or their interaction with other molecules. This is based on the principle that when light 

in the ultraviolet/visible part of the electromagnetic spectrum is passed through a 

sample in solution, some light energy may be absorbed.  Molecules that are capable of 

absorbing light are called chromophores. The wavelengths at which the light is 

absorbed are affected by both the structure and the environment of the chromophore 

and λmax is characteristic for a chromophore under standard conditions.  

However, for some chromophores, absorption of light is followed by the 

emission of light of a longer wavelength. This phenomenon is called fluorescence and 

such chromophores are called fluors or fluorophores. Not all chromophores are able to 

fluoresce and the rigidity of a chromophore determines whether such chromophore 

turns into a fluor. This can be explained by an energy-level diagram, shown in Fig. 

6.1.  When an electron of a molecule absorbs light energy, it moves from a lower 

(ground state) to a higher energy level (excited state), or we say the electron is excited. 

Upon excitation to higher electronic and vibrational levels, the excess energy is 

quickly dissipated and the electron returns its original ground state. If all the excess 

energy absorbed from light is dissipated as heat, the chromophore just has an 

experience of absorption, no emission of light and no fluorescence. However, if the 
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excess energy is not totally dissipated as heat but some of it is used to emit a photon, 

the chromophore experiences both absorption and emission. From an energy diagram 

of fluorescence, some of the excess energy is lost as heat when the electron passes 

through various vibrational energy of excited state, leaving the fluorophore in the 

lowest vibrational level of excited state. It is from this position that the photon will be 

emitted. Vibrational energy only can be lost as heat in collision with solvent 

molecules. If the vibrational energy levels of the excited state overlap with those of the 

ground state, the electron simply can return all the way down to ground state by 

passing through all the small vibrational energy levels (small arrows) in both the 

excited and ground states. All the excess energy is lost as heat.  If the vibrational 

energy levels of the excited state do not overlap with those of ground state, however, 

some excess energy turns into emission of light. Rigid molecules usually have a 

limited range of vibration energy levels and the vibrational energy levels of the excited 

state and the ground state often do not overlap with each other.  In such molecules, 

fluorescence may occur. Since at least some of the light energy initially absorbed is 

lost in transitions between vibrational energy levels, the fluorescent light emitted 

always has lower energy and longer wavelength (i.e. lower energy) than that absorbed. 

Such phenomenon is also called “the Stokes shift”. This is one of the important 

characteristics of fluorescence emission. Another important property of a fluor is that 

even though it has a characteristic fluorescence or emission spectrum as well as a 
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characteristic absorption spectrum, emission spectra are typically independent of the 

excitation wavelength (Sheehan, D., 2000). 

 
 

 

 

Fig. 6.1 Physical basis of fluorescence 

An Energy level diagram of fluorescence and absorption: Heavy lines stand for the 
ground and first excited states, respectively.  The vibrational levels are the thin lines.   
The chromophore in A is able to fluoresce because the vibrational energy levels of the 
ground and excited states do not overlap. Upon excitation to higher electronic and 
vibrational levels, the excess energy is quickly dissipated, leaving the fluorophore in 
the lowest vibrational level of excited state. It is from this position that the photon will 
be emitted. However, besides the radiative transition, there is also non-radiative 
transition from the vibrational losses (small wavy arrows) in both excited and ground 
states.    B. This chromophore can only experience absorption but fails to fluoresce 
because the vibrational energy levels of ground and excited states overlap. All the 
excess energy from absorption is lost as heat when the electron passes all the way 
down through non-radiative vibrational energy levels.  
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We can quantify fluorescence by the quantum yield, Q (D. M. Freifelder 

1982):  

Number of photons emitted  
Q =                                                                                [Eq.6.2] 
          Number of photons absorbed 

Under given conditions, Q usually has a fixed value for a fluor, with a 

maximum value of 1. However, it is experimentally difficult to determine Q. We often 

use relative intensities of fluorescence in two different situations (eg. in the presence 

and absence of an agent) in practice. More sensitive to environmental changes than 

absorption spectroscopy, fluorescence spectroscopy often can provide information 

about conformation, binding sites, solvent interactions, degree of flexibility, and 

intermolecular distances as well as the rotational diffusion coefficient of 

macromolecules of interest.  

 

 

2. Mechanism of Fluorescence Quenching (Eftink, M.R., 1991). 

Fluorescence quenching is a process which decreases the intensity of the 

fluorescence emission of a sample. A molecule in solution that causes the decrease 

fluorescence intensity of the flour is called quencher. There are a wide variety of 

quenching processes such as molecular rearrangements, excited state reactions, ground 

state complex formation, and energy transfer. Since fluorescence spectroscopy is more 

sensitive to environmental changes than absorbance spectroscopy, fluorescence 
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quenching experiments can be used to determine the accessibility of quencher to a 

fluorophore and monitor conformational changes or association reactions of the 

fluorescence of a protein as a result of substrate binding. 

Quenching by small molecules either in the solvent or bound to the protein in 

close proximity to the fluorophore can greatly decrease the quantum yield of a protein. 

Quenching may occur by several mechanisms: 

• Collisional or dynamic quenching: This occurs when the quencher collides 

with the excited fluor leading to the loss of some energy from the excited state 

as kinetic energy.  

• Static quenching: This happens when the quencher and the excited fluor form 

a stable complex and this complex is non-fluorescent. Some energy from the 

excited state is lost during the process.  

• Quenching by fluorescence resonance energy transfer (FRET): This 

happens only when two fluors (intrinsic or extrinsic) are very close to each 

other ( less than 80 Å) and emission λmax of one fluor(A) overlaps with the 

absorbance λmax of a second fluor (B). It is possible for some or all of the 

emission light energy from fluor A to be absorbed by fluor B and be emitted as 

part of B’s emission spectrum (Cheung, H.C., 1995).   

Both collisional quenching and static quenching need an interaction between 

the fluorophore and quencher whereas FRET does not.  When quenching occurs by a 
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collisional mechanism, the quencher must diffuse to the fluorophore during the 

lifetime of the excited state and upon collision, the fluorophore itself returns to the 

ground state without emission of a photon. Such quenching involves collision between 

the two molecules with the fluor losing kinetic energy. This quenching is an additional 

process besides radiative emission that deactivates the excited state. The decrease in 

fluorescence intensity equates to the decrease in fluorescence lifetime. The 

dependence of the emission intensity, F, on quencher concentration [Q] is given by 

the Stern-Volmer equation (Joseph R. R. Lakowicz, 2006): 

Fo/F = To/T = 1 + kqTo[Q]               [Eq.6.3] 

where T and To is the lifetime in the presence and absence of quencher, respectively; 

and kq is the bimolecular rate constant for the dynamic reaction of the quencher with 

the fluorophore. The product of kqTo is referred to as the dynamic Stern-Volmer 

quenching constant or KSV.  This constant indicates the sensitivity of the fluor to a 

quencher.    

However, when quenching only results from a collision process and a stable 

bimolecular complex is formed then: 

F+q → Fq                      [Eq.6.4] 

The ratio between Fo and F is also given by: 
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Fo/F=1+Ka[Q] [Eq.6.5] 

Where Ka is the association constant determining the complex formed. This is how   

KD (dissociation constant and the reciprocal of the association constant) is determined 

using fluorescence quenching measurements by addition of a quencher. Therefore, it is 

useful to note that 1/KSV or KD, is the quencher concentration at which F0 /F = 2, or 

50% of the intensity is quenched. Mathematical determination of KD will be discussed 

in part III.  

A major difference between dynamic and static quenching is that temperature 

affects the two processes in opposite ways. Dynamic quenching is a diffusion-

controlled process which increases with temperature. Static quenching, on the other 

hand, does not affect temperature, and efficiency is decreased at higher temperatures 

since the fluor-quencher complex is less stable under those conditions. Therefore, in 

practice, it is necessary to measure Fo/F under a controlled temperature.  

As described above, FRET is another way to cause fluorescence quenching. 

This process is strongly dependent on the distance, R, between two fluors. And it may 

be used to measure distances in proteins, membranes and macromolecules when the 

distances fall within the range of 10-80 Å.  One way to calculate R is by the following 

equation (Sheehan, D., 2000): 

R0
6  

E =                                          [Eq.6.6] 
          R0

6 + R6 
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Where R is the distance between the donor and acceptor fluors and R0 is a constant 

related to the donor-acceptor pair which can be calculated from their absorption and 

emission spectra. E can be determined either from the fluorescence intensity (F) in the 

presence (p) or absence (a) of the acceptor as follows: 

      Fp 
E = 1−                          [Eq.6.7] 
                Fa

 

After E is determined, R can be calculated if R0 is known.  

In overall speaking, even though fluorescence quenching can be used as a 

sensitive probe to monitor environmental changes and tell us the information about 

both the properties of macromolecules and their interactions with other molecules, lots 

of factors can contribute to fluorescence quenching and thus we should be cautious 

when interpreting quenching data. Many factors, such as properties of the fluorophore, 

spectrum shifts to shorter wavelengths or the change of polarity of the solvent, affect 

the intensity of fluorescence of a fluor (Freifelder, D. M., 1982). So whether 

quenching occurs is a combination of all effects. Also even if fluorescence quenching 

is observed from experiments determining protein binding affinity, it is hard to say 

whether it results from conformational changes or from substrate binding. It is unwise 

to always correlate ligand binding with a result from conformational changes. 

Therefore, alternative binding tests sometimes should be applied besides fluorescence 

quenching when we need to determine a protein’s binding affinity.  
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3. Use of Intrinsic Fluorescence Measurements for Determination of KD in 

Binding Proteins.  

Two types of fluors are used in fluorescence analysis of macromolecules of 

biochemistry − intrinsic fluors and extrinsic fluors. Tryptophan, tyrosine and 

phenylanine are the only three intrinsic fluors in proteins.  Among those three intrinsic 

fluors, tryptophan has the highest value of Q, which makes it more commonly used in 

fluorescence studies. This is because phenylalanine has a very low Q and tyrosine has 

a very weak fluorescence signal when quenched. The fluorescence of tyrosine is 

almost totally quenched when it is ionized or near a protonated acidic group, or even a 

tryptophan. The main reason to study intrinsic fluorescence of proteins is to obtain 

information about their conformation. Also, binding of ligands to proteins often causes 

conformational changes in their structure. If this structural change has an effect on the 

micro-environment of the intrinsic fluors (tryptophans in particular) within the binding 

pocket or domain of a protein, this will result in measurable changes in the 

fluorescence spectrum. Therefore, changes of intensity of fluorescence at a particular 

wavelength can be used to determine the dissociation constant (KD) of the protein for 

the ligand where KD is a measure of the binding affinity of the protein for the ligand.  

KD is derived as below: 

            kon 
        P + L                   PL              [Eq.6.8]                               

             koff 
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            [P][L]                    koff 
          KD =                    = 1/Ka =              [Eq.6.9] 

            [PL]                       kon 
 

Where P stands for the protein and L represents the ligand; kon is the association rate 

constant or on rate while koff is the dissociation rate constant or off rate. Ka and KD 

seem to be simply the ratio of the two rates. However, they have different meanings. 

Ka, known as the association or equilibrium constant, has a unit of the reciprocal of a 

concentration (M-1). However, KD, dissociation constant, has a physical unit of a 

concentration (M). In biochemistry, KD is usually determined in preference to Ka 

because determination of Ka requires the reaction to proceed to equilibrium whereas 

KD can be derived from reactions in which half of the concentration of ligand is 

complexed with the protein.  

If it is simple binding with no cooperativity, the simplest form of binding equation is 

used: 

       [L]*Cap 
y =                            [Eq.6.10]      
      Kd + [L]  
 
In this expression, y is either the amount bound or is some factor proportional to it 

(e.g. radioactivity, absorbance, fluorescence intensity etc.). The capacity for binding 

ligand, Cap, is either a saturated amount bound in terms of moles of ligand, or a 

stoichiometric quantity in terms of moles of ligand per mole protein depending upon 

the definition of y. KD is the concentration of free ligand added to the sample when the 
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bound reaches half of the Cap. The concentration of free ligand, [L], is the x data axis. 

Also see Fig. 6.2. 

As demonstrated before, if we plot fluorescence intensity or the factor Fo/F 

against concentration of a quencher, which Fo stands for starting fluorescence intensity 

of the sample and F is the fluorescence intensity after addition of a quencher, we will 

observe similar curve as described in Fig 6.2, but with a tendency of decrease in Fo/F 

as the concentration of the quencher increases. KD can be calculated using bound-

versus-total equation of Grafit 5.09 (Erithacus, Ltd., Meddlesex, United Kingdom), the 

non-linear fit of equation performed by the computer (Grafit 2002).  

         (Cap-Bound)*(Total-Bound) 
KD =                                                            [Eq.6.11]       
                         Bound  
 
Bound2-(Cap+Kd)*Bound+Cap*Total=0        [Eq.6.12]      

                b- √ b2- 4*Total*Cap 
Bound =                                                     [Eq.6.13]      
                                2 

Where B=Kd+Total+Cap; total is the amount of ligand added to the assay, and KD and 

Cap(capacity) are the two parameters determined by the least squared fitting using the 

bound-vs-total equation program from Grafit 5.09.  
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In summary, fluorescence spectroscopy is a sensitive tool to study the 

conformation, binding sites, and solvent interactions of proteins of interest. The 

intrinsic fluorescence especially can give us a quick and convenient survey of how the 

ligand binds to the protein. However, the use of measurements of intrinsic 

fluorescence in proteins is based on empirical principles from studies with model 

compounds whose structure and conformation are well known.  Therefore, some 

caution must be taken when data are interpreted. For example, if a ligand binds to a 

protein and tryptophan fluorescence is quenched, either there is a gross conformational 

change as a result of binding or some tryptophan is in or very near the binding site. 

Also if the λmax of the tryptophans fluorescence spectrum does not shift to shorter 

Fig. 6.2 Binding Graph 
 
From this typical binding 
graph, the capacity and Kd are 
shown.  The curved line is a 
non-linear fit of the equation 
performed by computer and 
the fit is good because it 
indicates that binding follows 
the simple 1:1 model. 
 Kd can be calculated from the  
non-linear fit equation. 
.  
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wavelength, quenching occurs as the polarity of the solvent increase or as tryptophans 

is exposed to some neighbouring charged groups.  
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