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CHAPTER I

INTRODUCTION

In the past few decades much intense research interest in amorphous solids has

been driven by the technological importance ofthese materials[l]. Examples ofthe

application of amorphous solids include optical fibers in telecommunications, solar cells,

sensors, nuclear radiation containment, microelectronics, and as structural materials[I,2].

Furthermore, in certain applications where amorphous solids can be used in place of

crystalline materials, it is better to do so, since these crystalline materials can be

prohibitively expensive to fabricate[ 1]. The fact that one can control the viscosity ofthe

melt ofamorphous materials provides a valuable processing advantage in the preparation

ofproducts formed from glasses[1].

In this thesis, a study ofthe thermal diffusivity ofa set ofaluminosilicate glasses is

presented. Specifically, the thermal diffusivity as a function oftemperature for a set ofsix

glasses with europium concentration ranging from 0 to 5 molar percent, was studied.

The compositional formula ofthe set ofglasses studied was (O.70(Si02)O.03(Al20 3)

O.12(MgO)O.15(Na20»1-x(Eu203)x. The data obtained in this experiment will be analyzed

and shown to adhere to the two-carrier model for thermal transport in glasses introduced

by Dixon and coworkers[3,4].

Before getting into the details of this experiment a briefdescription ofthe physics

ofamorphous solids, taken from the literature, is presented so that a general idea as to

what materials fall under amorphous solids; what are some oftheir properties, and how do

these properties contribute to both, the difficulty and ease ofstudying amorphous

materials is obtained. In particular, the formation, structure, models, and modes of
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vibration ofamorphous solids are briefly covered.

Amorphous Solids

Amorphous materials can be defined as those materials which are topologically

disordered and which do not exhibit periodicity characteristic ofcrystals, or the long-range

orientational order characteristic ofquasicrystals. Short ofpossessing the dynamic

disorder characteristic offluids, amorphous materials are among the most disordered of

materials[S]. As figure 1 shows, a liquid may either solidify discontinuously into a

crystalline solid or continuously into an amorphous solid. Almost all materials can be

prepared as amorphous solids. One key to which path a liquid will follow in solidifying is

speed; how fast the melt is cooled[l]. Crystallization takes time since crystalline centers

must first form and then grow, at the expense ofthe liquid which may have different local

order, by outward propagation ofthe crystal/liquid interface. Furthermore, the liquid

crystal transition is marked by a discontinuity at Tr (freezing point) in the volume vs.

temperature curve which is due to the abrupt contraction ofthe volume ofthe crystalline

solid. On the other hand, it is found that ifthe cooling rate ofthe melt is high enough, Tr

is bypassed, and the liquid phase persists until a lower temperature T., called the glass

transition temperature, is reached. When this occurs, there is no volume discontinuity.

Instead, V(T) bends over in a narrow temperature range to acquire the small slope

characteristic ofthe low thermal expansion ofa solid[1]. In this temperature range the

viscosity ofthe melt increases rapidly, approaching that ofa crystalline solid. During the

time the liquid is cooled from Tr to Tg, it is prone to nucleation and growth ofcrystallites.

It is therefore essential in the preparation ofamorphous solids that the cooling must
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Figure 1. The two general cooling paths by which a liquid can condense into the solid
state. Route 1 is the path to the crystalline state; route 2 is the path to the amorphous
state (from ref 1).
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proceed "fast enough and far enough"; "far enough" in the sense that the quench must be

taken to below the glass transition temperature (T<TJ, and "fast enough" in the sense that

Tg<T<Trmust be crossed in a time too short for crystallization to occur[I]. Typical

cooling rates for glasses in the category ofSi02, As2S3, and polystyrene are in the range

from 10-4 to 10·10K/sec[I].

As seen in figure 2, the glass transition temperature Tg depends on the cooling

rate. The slower the cooling rate is the lower the temperature T8 at which the liquid

solidifies to an amorphous solid. This is due to the temperature dependence ofthe

molecular relaxation time ~[l]. The quantity lIt characterizes the rate at which the

atomic-scale structure ofthe system adapts itselfto a change in temperature. The

molecular relaxation time may increase from the order of 10.12 seconds at Tf to 1010 years

in the interval between Tg and 50 K[l]. As T transverses the region near Ta, t(T) becomes

comparable to the time scale ofthe experiment. As T is lowered below T., t becomes

very large causing the material to lose its ability to rearrange its atomic configuration. The

atoms essentially get frozen and remain in their positions indefinitely in a metastable state,

where the only motion present is that ofoscillation about their frozen equilibrium

positions[1,5].

In addition to the different paths that amorphous and crystalline materials take in

solidifying into a solid, one can further distinguish the solidification which occurs at T8

from that which occurs via crystallization at Tf by examining the response ofeither C,(T),

the specific heat at constant pressure, or a(T), the thermal expansion coefficient, to a

temperature-induced change ofphase[I]. As illustrated in figures 2 and 3, the behavior of

Cp(T) and a(T) near Tgare qualitatively the same; Both the specific heat and the thennal
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Figure 2. Volume-versus-temperature cooling curves for an organic material in the
neighborhood of the glass transition. V(T) is shown for two greatly different cooling
rates. In addition, the coefficient of thermal expansion a(T) for the fast-cooling curve
(O.02hr) is also shown. The break in V(T), and the corresponding step in a(T), signal the
occurrence of the liquid-glass transition (from ref 1).
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expansion coefficient step up, in a narrow temperature interval, from a low value

characteristic ofthe glass to a high value characteristic ofthe liquid[l]. While it has been

argued that this behavior resembles a second-order transition[1], this may not be the case

since the amorphous state is not a thermodynamic equilibrium state. Furthermore, true

second-order transitions are characterized by a sharp change occurring at a single sharply

definable temperature. While the step in Cp(T) and a(T) are steep, they are not vertical

discontinuities. The purpose ofmentioning this is not to argue whether the behavior of

Cp(T) and a(T) are or are not second-order transitions, it is merely to emphasize the fact

that, in terms ofthermodynamic measurements, the glass transition is well defined[l]. To

sum up, we can therefore say that the glass transition is marked( as a. function of

temperature) either by a change in slope ofextensive thermodynamic quantities such as

volume and entropy or, equivalently, as a "discontinuity" in derivative quantities such as

specific heat or thermal expansivity[5].

Structure of Glasses

As was already mentioned in the previous section, the structure ofglasses is

characterized by topological disorder, so there is no long-range order( periodicity) in their

structure. This makes studying the structure ofglasses much more complicated than in

their crystalline counterparts where an underlying periodic lattice exists from which one

can describe the whole crystalline solid on the basis ofa few atoms. However, this does

not mean that glasses are structurally completely random at all length scales. In fact,

covalent materials, in particular, exhibit a high degree ofstructural order at length scales

corresponding to several atomic separations[5]. In other words, there is a high degree of
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short-range order similar to that found in crystals. This is a consequence ofthe chemical

bonding responsible for holding the solid together[I,5]. The importance ofshort-range

order in glasses can be seen in those applications where a crystalline solid can be replaced

by its glass counterpart. This is due to the fact that glassy materials often share the same

coordination numbers and nearest-neighbor separation as their crystalline counterparts[S].

We can describe the atomic structure ofglasses in terms ofincreasing length

scales, distinguishing between short-range order( SRO) and medium-range order( MRO).

Short-range order encompasses a length scale from 2 to 3:A. and is associated with the

nearest-neighbor environment ofatoms. For the case ofcovalently-bonded glasses, the

simplest description of SRO is in terms of local coordination polyhedra and their

interconnectivity[5]. Thus, SRO can be characterized in terms ofintra-polyhedral factors,

such as the 2-body correlation quantities: r, the nearest-neighbor bond length, and z, the

coordination number, which gives for a particular atom, the number ofnearest neighbor

atoms which surround that atom in the solid. In addition, the 3-body correlation quantities

8jij, the intra-polyhedral bond angle between two atoms oftype j connected through an

atom oftype i, Nu, the number ofpolyhedral units connected through each apex, and the

inter-polyhedral angle 8iji can be specified. These five quantities which are shown in

figure 4, are sufficient to describe completely the SRO, both in terms ofthe type of

coordination polyhedra present and the connectivity[5]. The coordination number z is the

most valuable piece of structural information which provides evidence for a dominant role

ofcovalent bonding( z<=4) in the coupling ofnearest-neighbor atoms[1]. By generalizing

the idea ofa single coordination number to a sequence ofnumbers embracing "shells" of

neighbors at distances beyond the nearest ones, one is led to a more substantial structural
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Figure 4. Schematic representation of short-range order in covalent glass systems defined
in terms of intra-polyhedral and inter-polyhedral quantities (from ref 5).
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characterization called the radial distribution function( RDF)[I]. Direct evidence ofthe

existence of SRO in glasses, in the form ofwell-defined nearest neighbor and next-nearest

neighbor coordination shells, is provided by the presence ofthe clearly seen first and

second peaks in the RDF in figure 5. However, the absence oflong-range order manifests

itself in the fact that, for glasses, discernible peaks in the RDF rarely occurs beyond third

nearest neighbors[l].

While the SRO ofglasses is well known, the same cannot be said about medium

range order (also called intermediate range order). As it stands now, there is much

controversy about what comprises the MRO ofglasses since the terms used to describe

MRO are not well defined[6]. This is due to the fact that while diffraction experiments tell

us a wealth of information about SRO, they give us almost no information about MRO

because ofthe absence of long-range order. As an example ofthe level ofdisagreement

that exist in characterizing MRO, in ref 6 the length scale of3-sA is considered as part of

SRO for most materials, while in ref 5 this range is considered as part ofthe local-scale

MRO. Nevertheless, we can say a few things about what is generally accepted as

representing MRO. In particular, the next successive length scale called in ret: 6 MRO,

while in ret: 5, intermediate-scale MRO, extends from 5-10A and specifies the dihedral

angles S and A; the distribution ofrings ofcompleted bonds; and network connectivity[6].

The dihedral angles 0 and A specify the relative orientation ofadjacent tetrahedra as

shown in figure 6. This type ofMRO results in the formation of"superstructural

units"[5]. While much more can be said about the classification and description of

different length scales for the description ofglass structure, we will stop here since this

whole area in itself comprises a field of its own. The main objective ofthis section is to
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merely become familiar with the most important names and quantities used to describe

glass structures.

Continuous Random Network

The Continuous Random Network (eRN) model was first proposed be

Zachariasen[7] in 1932 to account for the structure ofcovalently bonded oxide glasses.

Although this model represents an over idealization ofthe structure ofthe main classes of

amorphous solids, it is nevertheless, the best available picture ofthe atomic-scale

structure[1]. The CRN model is characterized by a large spread in bond angles e(in

figure 6). It is this spread in ethat is mainly responsible for the noncrystalline nature of

the material[6]. The rules used in the building ofSi02 networks are, that there only be Si

o bonds; Si be tetrahedrally bonded to four oxygens (z=4); each oxygen atom be bonded

to two silicon atoms (z=2); constant bond lengths and O-Si-O bond angles (109°); a

significant spread in Si-O-Si bond angles be permitted; the network be continuous (no

dangling bonds); and tetrahedra share comers only (no edge or face-sharing)[1,6]. The

first three rules assure that there be chemical ordering in the network, while the next two

rules are based on the fact, that since Si is bonded to four oxygens, while oxygen is

bonded to only two silicons, the bonds at the oxygens are much less constrained than

those at the silicons and therefore are less costly in energy to deform[1,6]. Four years

after Zachariasen came out with his model it was refined by Warren and coworkers[8] to

allow the radius to be distributed over a narrow range centered about 1.61A and to include

the assumption that the dihedral angle 0 be randomly distributed, having no preferred

value[6]. Zachariasen made no mention about dihedral angles and as a result lacked
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specifications of:MRO aside from the requirement that the tetrahedra share comers

only[6]. In addition to these two modifications, the inter-polyhedral angle ewas

interpreted from the RDF ofx-ray diffiaction experiments and was found to lie in the

range of 120° to 180° with a mean value of 144°[6]. Figure 7 shows a schematic two

dimensional representation ofthe structure ofa hypothetical crystalline compound with

molecular formula A20 3 and the Zachariasen CRN model for the glassy form ofthe same

compound.

Modified Random Network

Though glasses present certain complexities not found in crystals, there are certain

advantages in studying them that would otherwise pose problems in crystals. For one, the

compositional flexibility ofglasses allows for the study ofdifferent types ofadditives over

a wide range ofconcentrations without running into solubility limits. Furthermore, the

structural changes created in the glasses by the additives enable one to study transport

structure correlations more readily then in crystalline solids[S]. This has sparked the

development ofa model based on the same principals as Zachariasen's eRN model called

the Modified Random Network Model (MRN). In addition to glass forming cations and

bridging oxygens which are characteristics ofthe CRN model, the MRN model also

includes modifying cations and non-bridging oxygens with specific coordination

spheres[S]. Modifying oxides like Na20 and K20 are seen as depolymerizing the glass

former with the cations occupying holes and voids in the otherwise continuously

connected random network[5]. In the MRN model, glass modifying oxides are believed to

microsegregate from glass forming oxides at the atomic level as shown in figure 8. The
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Figure 7. Left: Hypothetical representation of a crystalline compound A20 3. Right: The
Zachariasen model for the glassy fann of the same A20 3 compound (from re(7).
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Figure 8. The Modified Random Network (MRN) model for the structure ofglass. The
dashed bonds represent ionic interaction. The regions that are not shaded represent the
modifier channels (from ref 5).
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effect ofmodifiers are to simultaneously change the network structure and bonding which

affects its rigidity, net charge, and distribution ofinterconnected interstices. These

changes are reflected in the physical properties ofthe glass[S]. Network modifiers induce

charges in the network by introducing ionic bonds between the positively-charged

interstitial modifier cations and the now negatively-charged covalent chains. In silica glass

for example, the alkali ions are incorporated into the network interstices, while excess

oxygens are accommodated by the network by rupturing bridging oxygen bonds between

adjacent Si-O tetrahedra and replacing them with non-bridging oxygen bonds[S].

Phonons in Glasses

The study ofthe thermal transport properties ofamorphous solids has for the past

two decades been focused around the behavior ofthe thermal conductivity and specific

heat as a function oftemperature, and the understanding and description ofthe

processes which mayor may not contribute to their behavior. While it has been well

established[9-13] that phonons are responsible for the thermal diffusion in glasses, there is

much disagreement as to how these phonons interact with each other and with other

intrinsic properties ofthe material to give the observed behavior in the thermal

conductivity[13]. While numerous models have been put forth ever since Zeller and

PohI[14] first presented experimental evidence that the thermal properties ofamorphous

solids differ remarkably from their crystalline counterparts at low temperature, only those

models which are generally accepted as representing the behavior ofthe thermal

conductivity in their respective temperature range will be briefly mentioned.

To begin, figure 9 displays the thermal conductivity as a function oftemperature of
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crystalline quartz(I) and fused quartz(II). It is easily seen that the behavior ofthese two

materials are vastly different. In particular, the thermal conductivity ofthe amorphous

solid is several orders ofmagnitude smaller than its crystalline counterpart[14].

Furthermore, it has been found that for a large variety ofamorphous solids the thermal

conductivities are very similar in form to that shown in figure 9 and differ in magnitude

within a factor of 10[13,15]. In contrast, the thermal conductivity in crystalline solids can

vary by as much as five orders ofmagnitude, with correspondingly different temperature

dependencies[15]. The thermal conductivity curve for amorphous materials can be broken

up into three distinct regions, A, B, and C, which are easily discernible in figure 9. While

the scope ofour experiment extends well into region A, the processes believed to be

responsible for the behavior ofthe thermal conductivity in regions B and C will be briefly

mentioned.

For temperatures less than 5 K, corresponding to region C, it has been shown by

Zeller and Pohl[14] that the thermal conductivity varies as T2 which is interpreted as a

mean free path for phonons going as CO-I. This T2 behavior was first explained successfully

through a model put forth by Anderson and coworkers[11] where low frequency extended

phonons, similar to Debye phonons ofcrystalline solids, are scattered offlocalized two

level systems[9,13].

Preceding on to higher temperatures, we encounter region B (the plateau where

~5K<T<~20K, depending on the material) where the thermal conductivity is independent

oftemperature. This plateau region is believed to signal the onset ofphonon

localization[9-12]. In particular, it is believed that a mobility edge[9] or crossover

frequency, Ole, [11,12] exists where phonons with m<mc are extended states and those with
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m>mc are localized. In the vicinity ofthe plateau the localized phonon population is

spatially distributed throughout the material and therefore does not contribute to the

thermal conductivity. On the other hand, the already excited extended phonons are in the

Dulong-Petit region and so their contribution to the thermal conductivity is constant. This

coupled with a constant sound velocity and mean free path for the phonons with

frequencies less than Olc results in the plateau[9,12]. Evidence ofphonon localization is

seen by the behavior ofthe phonon mean free path as a function ofphonon frequency in

figure 10, where it is shown that the mean free path ofthe phonons (assuming all are

extended states) decreases dramatically in the vicinity ofthe plateau to a few atomic

spacing. To date, it is still unclear as to why the phonon mean free path becomes so

strongly frequency dependent (from a dependence ofCO-I at the lowest temperature region

to an m-x dependence in the vicinity ofthe plateau, where x~4). Jagannathan and

coworkers[12] have attributed it to Rayleigh-like scattering and anharmonic coupling

between the extended state phonons and localized states. Further support ofthe

localization of phonons is mentioned in references [10] and [12], where the mobility edge

or crossover frequency is seen to occur approximately where the loffe-Regel condition is

satisfied, which is generally accepted as signaling vibrationallocalization[10,12].

Moving on to region A, we see that, as the temperature increases above the

plateau, the thermal conductivity increases approximately linearly. This behavior is

attributed to phonon assisted hopping ofthe localized vibrational modes[9,lO] or phonon-

induced fracton-hopping[11,12]. In particular, as the temperature for frequencies m>mc

increases, a significant number ofthe localized modes will be thermally excited and their
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hopping will contribute to an increase in the thermal conductivity above the plateau

value[12]. The scattering mechanism believed to be responsible is the three phonon

anharmonic process where an extended phonon interacts with a localized phonon to

produce another localized phonon. Alexander and coworkers[16] derived an expression

for the contribution ofthis anharmonic process to the thermal conductivity. In their

derivation, they assumed glasses are fractal, and through a fracton-hopping formulation

introduced an additional heat-carrying channel above the plateau, which generated

a linear increase in thermal conductivity with increasing temperature. Though they

assumed a fractal nature for glasses, Graebner and coworkers[lO] point out, that in

addition to the lack ofevidence ofthe fractal nature ofbulk glass, the assumption is not

needed to explain the phonon assisted hopping ofthe localized modes above the plateau.

Statement of Purpose

The purpose ofthis experiment was to track the effect ofeuropium doping on the

baseline composition ofa set of aluminosilicate glasses as it is inserted into the network in

greater quantities. Specifically, as the molar fraction ofeuropium increased from one

sample to another, the thermal diffusivity as a function oftemperature was examined in the

temperature range of lOO-500oC. The data was analyzed using a two-carrier model for

thermal transport by extended phonons, and thermally activated hopping oflocalized

phonons. Within the two-carrier model, a Debye approximation is used to calculate the

heat capacity ofthe extended modes, while a multi-term Einstein approximation using

vibrational modes obtained from Raman data is used to calculate the total heat capacity of

the samples.
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CHAPTERll

EXPERIMENTAL PROCEDURE

Samples

The five samples studied were europium doped aluminosilicate glass samples

prepared by L. Pierre de Rochemont of~Technologies. The compositional variation of

the europium varies as (Base Composition)1-x(Eu203)x, with the base composition being

O.70-Si02--0.03-Al203--0.12-MgO--0.15-Na20~ The europium molar fractions for these

glasses ranged from 0.1% to 5.0% and are listed in table 1. The molar fraction of

europium was added into the base composition in amounts that varied linearly with sample

density. Since the volume ofthe samples were approximately equal, figure II displays the

molar mass instead ofthe density, ofthe samples as a function ofeuropium concentration.

The dimensions ofthe samples were approximately 14mmx4mmx4mm. Three grooves

approximately 30 J-lm in width were cut into the samples 4mm apart for the placement of

the thermocouples.

Experimental Setup

The experiment was conducted under microcomputer control with instruments

communicating over an IEEE-488 interface bus. The instrumentation consisted ofthree

Hewlett-Packard model 3478A digital multimeters having a sensitivity ofO.IJ.I,V, a

Hewlett-Packard model 3421A data acquisition/control unit, and a Hewlett-Packard

6284A dc power supply. The thermocouples which were anchored to the sample with a

small amount ofthermally conducting paste (an alumina-filled silicone grease), were

0.003in diameter chromel-alumel thermocouples referenced to electronic ice points

manufactured by Omega Engineering. For measurements above room temperature, the



Composition
1.0.

Bragg-5
Bragg-6
Bragg-7
Bragg-8
Bragg-9
Bragg-l0

EU203
(mol%)

o
0.1
0.5
1.0
2.5
5.0

Table 1. Sample Composition

Base Composition
(mol%)

100
99.99
99.95
99.00
97.50
95.00
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samples were mounted using the same thermal compound mentioned above, in a small

tube furnace that controlled the mean temperature ofthe sample. For low temperature

measurements the sample was mounted on the cold finger ofa liquid nitrogen cryostat.

The base onto which the sample was mounted was attached to a resistance heater used to

obtain a transient temperature distribution in the sample. Figure 12 illustrates a block

diagram ofthe experimental setup. The section ofthe cryostat containing the sample is

shown enlarged for clarity.

Procedure

Rather than measuring the thermal conductivity as a function oftemperature,

which is what has traditionally been measured in studies concerning thermal transport

properties in solids, the thermal diffusivity was measured as a function temperature.

Measuring the thermal diffusivity has the advantage that it is insensitive to radiative heat

losses when dealing with poor thermal conductors[3]. Thermal diffusivities were

measured using a similar set up ofthe transient method developed by Kennedy and

coworkers[3]. During each experimental run, simultaneous readings ofthe three

thermocouples were obtained by sending a group trigger command to the digital

multimeters. With the sample in steady-state conditions temperature readings were taken

to establish a "baseline" for the measurement. On command from the computer, the

digital relay was closed, supplying current to the resistance heater. A constant current

was maintained and a lOs delay was allowed to give the thermocouple farthest away from

the resistance heater time to respond. After the delay, simultaneous temperature

measurements were taken by the three thermocouples at intervals of0.5 s for a total time
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of 50 s. During each experimental run a temperature change ofapproximately 3 to 8 K

occurred at the thermocouple closest to the heater. At the end ofeach experimental run

the relay was opened to tum offthe heater and allow steady-state conditions to become

re-established before the next run which occurred 30min later. The purpose for the 30min

interval between experimental run was to ensure that the transients were given enough

time to dissipate. Figure 13 displays a typical data set oftemperature versus time for one

ofthe samples.

The thermal diffusivity, a, was obtained from the data using the diffusion equation,

Of/Ot--aV2t (1)

This equation was solved for the diffusivity by the computer using a simple algorithm.

Under the assumption ofone dimensional heat flow, v2t was estimated by the finite

difference relation

(2)

for each measurement time in the data set[3]. The subscripts L,M,and U refer to the

lower, middle, and upper thermocouples, respectively, while Ax is the spacing between

adjacent thermocouples. At each time tj, Of(tj)/Ot was estimated by fitting a regression

line to a short segment consisting ofapproximately eight points ofTM(t) on either side oftj

and using the slope ofthis line as the estimate ofthe time derivative. The estimates of

v2tM were refined by averaging over the same time interval used to evaluate the time

derivative[3]. Based on equation (1), OfM!Ot should be a linear function ofV2tM with

slope a. Figure 14 shows the result ofthis procedure applied to the data set shown in

figure 13. As can be seen the curve is approximately linear. The thermal diffusivity, a,

was then assigned to the mean temperature ofthe middle thermocouple during each
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experimental run. The experimental setup and procedure used in this experiment was

exactly that used by Dixon and coworkers[3]. According to ref: 3 two kinds ofchecks

were performed to determine the reliability ofthe algorithm used to measure thermal

diffusivity. Based on these checks the method was deemed reliable.
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CHAPTER ill

RESULTS and DISCUSSION

The thermal diffusivities ofthe six samples studied are shown as a function of

temperature in figures 15-20. Figure 21 displays the diffusivity ofthe samples on a single

graph. As can be expected the curves are all very similar in form with the uppermost

curve representing the sample with no europium and the lowermost curve representing the

sample with the highest europium concentration. Within experimental error we see that as

the concentration ofeuropium in the samples increases the thermal diffusivity decreases in

this temperature range. In particular, the effect ofthe europium is seen to be most

prominent at the higher temperature limit. It will be demonstrated below that not only

does the model ofthermal transport by thermally activated hopping oflocalized phonons

fit the data well, but in addition, this model will also account for the stronger effect that

the europium concentration has on the thermal diffusivity at higher temperatures.

The model used to describe the data is the model proposed by Dixon and

coworkers[3,4] where thermal transport is represented by a two-carrier model of

conventional phonon-gas transport by extended phonons and thermally activated hopping

oflocalized phonons. In this model, the extended phonons produce a transport that is a

decreasing function oftemperature between 100 and 250K, while the localized phonons

produce a transport that is a linearly increasing function oftemperature above 250K[4].

While this model employs many ofthe ideas inherent in the fracton model proposed by

Orbach and coworkers[9,11,12], it differs in that a fractal nature ofglasses is not assumed.

Instead, empirical properties ofthe glasses are used to support the analysis.
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Table 2 lists the relevant physical properties ofthe glasses used in this analysis. In

particular, the concept ofa "formula unit" was employed. The formula unit was first

introduced by Dixon and coworkers[3] and is defined as the smallest number ofatoms in

which each element is represented in the same proportion as in the sample as a whole.

Since the glasses studied here are mixtures rather than compounds, the formula units are

not whole numbers. The molar volume is the ratio ofthe mass ofthe formula unit to the

density of the sample. Table 2 also includes the velocity ofsound in the samples studied.

Due to the lack ofsound velocity measurements for these glasses, a value of3.88xlO'cmls

was used for all six samples. This value was taken from a sample in ref: 4 which was very

similar in composition to the Bragg10 sample in this experiment.

The existence oflow frequency extended phonons and localized phonons was

inferred from Raman scattering experiments previously conducted on the samples studied

in this experiment. The Raman spectra for the samples is shown in figures 22 to 27. The

onset ofRaman activity is taken as representing phonon localization with the cutoff

frequency, me, separating the extended phonons from the localized ones[3]. While Dixon

and coworkers[3,4] interpret the boson peak in the Raman data as representing the

mobility edge (cutofffrequency), in this experiment the minimum preceding the boson

peak is taken as representing the mobility edge. T~e mobility edge for the BraggS sample

which has no europium occurs at a frequency of 15cm-1
, while for the other five samples,

it occurs at a frequency of 12cm-1
. This shift in the mobility edge from a larger frequency

(or smaller wavelength) to a smaller frequency (or larger wavelength) may be attributed to

the fact that the europium increases the length scale ofthe disorder in the glasses causing

the extended phonon wavelength to approach the length scale ofthe disorder in the glass
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BRAGGS BRAGG6 BRAGG7 BRAGG8 BRAGG9 BRAGG10

Formular Number 294 294.2 295.9 296.1 299.2 304.3

Formula Mass (u) 5580 5959 6076 6222 6661 7392

Density (g/em3
) 2.21 2.24 2.29 2.27 2.4 2.5S

Molar Volume (nm~ 4.19 4.42 4.41 4.54 4.63 4.82

Sound Velocity (105 emls) 3.88 3.88 3.88 3.88 3.88 3.88

Ole (em-l
) 15 12 12 12 12 12

Raman Frequencies (em-l
)

011 83 76 76 76 76 76

0)2 470 493 463 433 433 435

C03 575 590 580 583 590 607

C04 791 787 783 783 783 787

COs 962 959 949 949 949 959

016 1096 1098 1095 1089 1086 1076

C (JIK-cm3
) 8.43 7.91 8.12 7.98 7.9 7.64

Cat ( 10-4 JIK-an3
) 2.71 1.39 1.39 1.39 1.39 1.39

Cat IC (10-5) 3.21 1.75 1.71 1.74 1.7S 1.81

B (10-6 em2/s-K) 9.66 7.73 8.66 9.36 8.84 7.46

A (104 cm2K1s) 2.76 5.26 4.73 4.54 4.44 4.54

Table 2. Physical properties ofthe glasses.
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Figure 22. Raman spectrum of the BraggS sample. The main figure shows the region of
the mobility edge. The inset shows the full Raman spectrum for this sample. The arrows
in the full spectrum point to the frequencies used in the multi-term Einstein approximation.
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Figure 23. Raman spectrum of the Bragg6 sample. The main figure shows the region of
the mobility edge. The inset shows the full Raman spectrum for this sample.
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Figure 24. Raman spectrum of the Bragg? sample. The main figure shows the region of
the mobility edge. The inset shows the full Raman spectrum for this sample.
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Figure 25. Raman spectrum of the Bragg8 sample. The main figure shows the region of
the mobility edge. The inset shows the full Raman spectrum for this sample.
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Figure 26. Raman spectrum of the Bragg9 sample. The main figure shows the region of
the mobility edge. The inset shows the full Raman spectrum for this sample.
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sooner in the Bragg6-10 samples than in the BraggS sample hence scattering the extended

phonons sooner. The fact that the mobility edge is the same for the samples with different

amounts ofeuropium concentration may be accounted for by assuming that beyond the

initial amount ofeuropium required to produce the additional scattering, further increases

in europium concentrations have no additional effects, at least in the concentrations

present in the samples studied here. The peaks beyond the mobility edge are taken to

represent the frequencies ofthe localized modes present in the samples. In figures 22-27,

these peaks are identified by the arrows in the full Raman spectrum captions in the figures.

These frequencies in addition to the mobility edge are listed in table 2.

Based on the two-carrier model, the thermal diffusivity due to the extended

phonons and the localized phonons can be written as

1 Ccxt 2 Cloc (R2
)

o,=--v l' +--3C sext C 1"
loc

(3)

where the first term represents the contribution due to extended phonons and the second

term the contribution due to the thermally activated hopping oflocalized phonons. em

and C10c are the heat capacity per unit volume ofthe extended and localized phonons,

respectively, and C=Cm+C1oc• ~m and tloc are the mean lifetimes ofthe ofthe extended

and localized phonons, respectively, and v. is the velocity ofsound in the samples. <R2>

represents the thermally averaged square hopping distance. Replacing Cloc with C-Ccxt,

equation (3) becomes

Ie (C )(R2
)a=-~v2f' + 1-~ --

3C· ext C 'fJoe

(4)

Ifphonon-phonon scattering is assumed to be the dominant resistive anharmonic process

for the extended phonons then tmcx:T1 can be used to fit the data[3,4]. On the other
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hand, the major contribution ofthe localized modes to the thermal transport is believed to

occur through a three phonon anharmonic process where an extended phonon is scattered

by a localized phonon to produce another localized phonon. This process may also occur

in reverse where a localized phonon scattered by another localized phonon produces an

extended phonon. In this process energy conservation dictates that ifa localized phonon

decays, it must reappear a distance R away in some other mode in the glass. This is the

process referred to as "hopping" by Dixon and coworkers[3,4]. Since the disorder of the

glasses leads to a distribution oflocalized phonon frequencies where neighboring modes

will most likely vary in frequency, a low frequency extended phonon will be emitted or

absorbed to make up the energy difference between the donor localized modes and the

acceptor localized modes[3]. This three phonon anharmonic process is illustrated

schematically in figure 28. Orbach and coworkers[9,11,12] have demonstrated through

their fractal model that this three phonon process contributes a localized thermal

diffusivity that is a linear function oftemperature to the total thermal diffusivity,

a=acxt+aloc• Keeping this in mind and the assumption that ~cxtcx:rl, the functional

equation used to fit the data is

(5)

where A and B are constants to be determined by the fit.

In determining the heat capacity ofthe extended phonons, a Debye approximation

was used at the high temperature limit for these modes. This approximation gives the

extended phonon heat capacity as

(6)

Since the peaks in the Raman spectra extend to roughly 1100cm-1, a multi-term Einstein
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approximation was used for the determination ofthe total heat capacity, C, to correct for

the temperature variation ofthis total heat capacity. This was done by approximating the

phonon density ofstates by the center frequencies ofthe six Raman peaks and substituting

these frequencies in the equation

(7)

where n, the number ofmodes per unit volume was taken as the ratio ofthe formula unit

to the molar volume and T was set equal to 300K, the high temperature limit for the

extended phonons. The values for C, Cm, and the ratio CatlC together with the constants

A and B are listed in table 2. It is worth mentioning, that had the mobility edge been

approximated by the boson peak in the Raman spectra as was done in [3,4], the values for

the ratio CexJC calculated would have been similar to the values calculated for the families

ofglasses studied in [3,4]. Figure 15 displays the individual contributions ofthe extended

and localized phonons to the thermal diffusivity ofthe BraggS sample, with similar curves

applying to the other five samples.

In examining the thermal diffusivities in figure 21, it is seen that while at room

temperature and above the thermal diffusivities increase linearly with temperature, for

temperatures below room temperature the thermal diffusivities are a decreasing function of

the temperature. This behavior is similar to that found in [4] for the family ofglasses

studied there. This is to be expected since the samples studied in this experiment are very

similar to one ofthe samples studied in [4]. This is to be contrasted to the behavior ofthe

thermal diffusivities ofthe family ofglasses studied in [3], where the thermal diffusivities

are roughly linear in temperature throughout the whole temperature region studied here
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and in [3] and [4]. The fact that the extended phonons in the samples studied here and in

[4] is seen to make a larger contribution relative to the localized phonons to the thermal

diffusivity was suggested by Dixon and coworkers[3,4] to be due to weaker anharmonic

interactions in these samples compared to stronger anharmonic interactions in the samples

studied in[3]. The weaker anharmonic interactions in the glasses studied here and in [4] is

assumed to affect the behavior ofthe thermal diffusivity in two ways. First, since

anharmonic interactions are weaker, there is less phonon-phonon scattering taking place,

therefore allowing the extended phonons to make a larger contribution to the thermal

diffusivity. Second, the weaker anharmonic interactions means that the contribution to the

thermal diffusivity by the localized phonons is reduced since they are more weakly coupled

to the extended phonons which serve to facilitate thermally activated hopping ofthese

modes[4]. Why there is weaker anharmonic interactions in the glasses studied here and in

[4] than in the glasses studied in [3] is unclear. It may have something to do with the

structures ofthe glasses.

The two-carrier model can also help to explain why the increase concentrations of

europium have a stronger effect on the thermal diffusivities at temperatures above room

temperatures than at temperatures below. Ifthe two-carrier model is correct in asserting

that the density ofstates ofthe samples is such that it contains extended phonons, and

above a mobility edge, me, localized phonons, then at low temperatures, were the phonons

are mostly extended modes, we don't expect for the increases in the density fluctuations

introduced by the europium to affect these modes since the extended phonon wavelengths

are large enough that they are essentially insensitive to the increase in density fluctuations.

On the other hand, at higher temperatures where the extended phonon wavelengths
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approach a length scale comparable to the length scale ofthe disorder in the glasses, the

increases in the density fluctuations become more apparent thereby introducing scattering

centers which ultimately cause the thermal diffusivity to decrease. The fact that the

masses ofthe europium atoms are much more massive than any ofthe other elements

present in the samples studied here seems to support this.
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CHAPTER IV

CONCLUSION

In this experiment the thermal diffusivities ofa set ofsix glasses was studied as a

function oftemperature. These six glasses differed in the amount ofeuropium

concentrations they contained according the compositional formula,

(0.70(Si(h)O.03(Al20 3)O. 12(MgO)O.15(Na20»1-x(Eu203)x, where the europium

concentration ranged from 0 to 5 molar percent. It was shown that based on the two

carrier model proposed by Dixon and coworkers[3,4], the thermal diffusivity data can be

explained fairly well. In this mode~ the dominant thermal transport mechanism below a

mobility edge is through extended state phonons, while above this mobility edge, localized

phonons interacting with extended phonons through a three phonon anharmonic process is

the main contributor to the thermal diffusivity. The fact that above room temperature, the

thermal diffusivity is seen to be linearly dependent on temperature seems to support this.

On the other hand, for temperatures below room temperature, ifphonon-phonon

scattering is assumed to be the main resistive process to the thermal transport by extended

phonons, a thermal diffusivity that is a decreasing function oftemperature suffices to

describe the data well. Furthermore, the ract that as the concentration ofeuropium

increases, the thermal diffusivities decrease supports the existence ofa phonon spectrum

that contains both extended phonons and, above a mobility edge, me, localized phonons.

In this analysis the mobility edge and the frequencies ofthe localized phonon

modes were obtained from Raman data which together with a Debye and Einstein

approximation were used to calculate the total heat capacity and the heat capacity ofthe

extended phonons.
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