
DESIGN AND IMPLEMENTATION OF AN EFFICIENT

INDEX STRUCTURE AND A GUI FOR

SPATIAL DATABASES USING

VISUAL C++

By

SUJATHA SAMADARSINI NEELAM

Bachelor of Technology

S. V. University

Tirupathi, India

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfIllment of
the requirements for

the Degree of
MASTER OF SCIENCE

May,1995

DESIGN AND IMPLEMENTATION OF AN EFFICIENT

INDEX STRUCTURE AND A GUI FOR

SPATIAL DATABASES USING

VISUAL C++

Thesis Approved:

Thesis Adviser

ii

ACKNOWLEDGMENTS

I wish to express my sincere and special thanks to my major advisor, Dr. Huizhu

Lu, for her expert guidance, constructive supervision and friendship. I would also like to

thank my committee members Dr. George and Dr. Benjamin for their encouragement,

guidance and advice. My sincere thanks to Dr. Mark Gregory of the Department of

Agriculture, OSU, for providing the data for this project.

I would also like to take this opportunity to show my appreciation to my brother

Mr. VCS Reddy Kummetha for his encouragement, guidance and friendship and heartfelt

thanks to our friend Mr. Siva Rama Krishna Kavuturu, for his guidance and help, all

through my study at Stillwater, when I am away from my family.

My special appreciation goes to my husband Mr. Chinnappa Reddy Neelam, and

my daughter Ms. Pranu Neelam, for all their encouragement, love and understanding.

My in depth gratitude goes to my parents Mr. and Mrs. K. Rama Krishna Reddy, for their

love, support and encouragement without which I wouldn't have been what lam today

and also for taking care of my daughter, so I can complete my studies successfully.

Honorable thanks are due to my parents-in-law, Mr. and Mrs. Neelam Prabhakara Reddy,

for their support and appreciation for what I am doing.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. LITERATURE REVIEW 4

GIS Data Types 5
Raster data model 6
Vector data model 6

Spatial Data Structures 8
Cell (or fixed grid) methods 8
Q-trees 9
PMR quadtree 9
K-d tree 10

. K-d-B tree 11
Rtree 11
R+ tree 13
R* tree 15
Comparative study of Data Structures 18
Level linked R* tree 20

Graphical User Interface 20

Object Oriented Programming 23

III. DRAWBACK OF LEVEL LINKED R*TREE AND SOLUTION 26

A Solution 27
Leaf level multi-linked R* trees 27

IV. DEVELOPMENT OF GUI USING VISUAL C++ 31

Data Description 32

iv

Chapter Page

Data Analysis 32

A look into Visual C++ ~ 32
Visual Workbench 33
App Studio 34
AppWizard 34
ClassWizard 38
Documents and Views 40

Graphical User Interface using Visual C++ 42

V. SUMMARY AND CONCLUSIONS 52

REFERENCES 54

APPENDIX - A 57

v

Figures

LIST OF FIGURES AND TABLES

Page

1. The Hierarchical Classification of Geographical Data 6

2a. Rectancles organ.ised in R tree 12

2b. Corresponding R tree 12

3a. Rectangles organised in R+ tree 14

3b. Corresponding R+ tree 14

4. Level linked R* tree 26

5. The App Studio Resource Browser 35

6a. AppWizard Dialog Box 36

6b. AppWizard Options Dialog Box 37

7. The Main ClassWizard Dialog Box 39

8. Document and View 41

9. The main window of the Application for Querying soils 44

10. Popup message, when trying to load data for other Counties 45

11. Message when trying to reload the data of Grady County 46

12. Query soils window showing the names in scrolled list 47

13. On clicking 'Show all', the display of all soils in Grady County 48

14. On clicking 'Details', displays the color codes of all soils 49

vi

Figures Page

15. Display of soil with attribute 14 in color 50

16. Selecting an area in the County, displays the names of soils in scrolled list 51

Tables Page

1. One of the implementations of vector data model 7

vii

CHAPTER I

INTRODUCTION

In addition to the research being conducted in traditional databases, research is

also progressing into non-traditional applications of databases that are often driven by

demand. One of such new emerging applications is in Geographic Information Systems

(GIS). A Geographic Information System (GIS) is designed to collect, store, retrieve,

manipulate and display spatial data or information [FE, 92]. It also represents the new

generation of practical applications of hypertext/hypermedia -- which means -- some

information may be hidden and a touch of button will reveal all the relevant information

of the hidden objects [Fran, 92].

As A.V. Frank says "Space is constructed from objects that fill space" [Fran, 92].

The properties of these objects are defined by a vector of attributes. Collection of these

objects is called spatial data. Spatial data consists ofpoints, lines, rectangles, regions,

surfaces, and volumes. Since spatial data is very large, data structures that can efficiently

handle the huge data have been developed [Good, 92]. There are different data structures

like the Quad trees, Octrees, k-d trees, R-trees, k-structure, range trees, Priority search

trees, and different types of Quad trees which are used to represent the spatial data. A

data structure for a particular application is chosen depending on the operation that is

performed on that data structure. A data structure which stores data in core using trees, is

different from the one that stores data only in leaf nodes, or for data that resides in non

leaf nodes [Same, 92].

Here we consider two-dimensional spatial data related to land. Each point on the

land can be referenced with respect to North, South, East and West directions from a

fixed point. Each point also has different attributes such as types of soil, mineral

contents, land use (e.g. residential, agricultural, industrial), land value, etc. Data

structures such as R trees, R+ trees, R* trees are efficient for storing and managing this

type of spatial data. R tree family can hold spatial coordinates as well as their attribute

values unlike B-tree which stores an alphabetic key or numeric value in its node, from

which they are derived. So a data structure belonging to the R tree family has been

chosen as the basic data structure as this proves to be very efficient in storing and

accessing huge data when compared to other data structures.

In addition to storing this data a visual representation of data will offer a high

level of interaction between the user and the database [Mand, 93]. WYSIWYG (what

you see is what you get) representations are good interactive tools since it is easy to

locate what is at x, y and to find all objects that are inside a window.

Microsoft Windows provides a good user interface with its powerful graphical

tools. A microcomputer is widely used and since the cost of microcomputer is low, a

pictorial view of the spatial data based on spatial data structures is a powerful Graphical

User Interface (GUI) on MS-DOS machines.

Windows and objects are natural companions. Windows by definition are

complex data structures manipulated through a variety of standard operations. In other

words windows are objects. Hence Object Oriented Programming is very appropriate for

developing Windows [Greg, 91].

In this thesis, the author designs and implements an efficient index structure for

spatial data. Furthermore, the author builds a Graphical User Interface (GUI) such as

Windows on MS-DOS machines.

In Chapter II the author discusses about two GIS datatypes -- raster data model

and vector data model. The author further explores about the merits and demerits of

various spatial data structures such as cell methods, Q-trees, k-d trees, k-d-B trees, R

trees, R* trees, level linked R* trees which store multi-dimensional data. A general

2

3

discussion on Graphical User Interface and Object Oriented Programming infers that

OOP is suitable for building a Graphical User Interface.

In Chapter III, the emphasis is mainly on the drawback of the level linked R* tree

and a possible solution to improve the level linked R* tree. A spatial index structure for

improved access time is also designed.

ChapterIV focuses on analysis of the spatial data, design and implementation of

the Windows GUT using Visual C++ for point and range query of the spatial data. This

helps the user to query all objects in a window or what is at location x, y.

ChapterV has the summary and the conclusions of the thesis.

CHAPTER II

LITERATURE REVIEW

Most of the information held by government and businesses is geographically

referenced. Examples include land use information, mailing addresses, census data,

telephone numbers and networks such as cable, water, electric, telephone systems. Infact,

geographically referenced information is all around us. So a new field emerged called

Geographic Information Systems (GISs). GIS is a widely used tool for collecting,

storing, manipulating, displaying or visualization of data that describe space.

Organizations use GIS to store data related to space, spatial objects, human activities with
(

reference to space. Spatial data can have information from boundaries and ownership of

land parcels to climate data on global scale [FE, 92]. GIS store multimedia data such as

images, maps, graphical objects, graphical data and text. In particular, we consider the

storage media of spatial data.

Geographic applications present a new set of requirements since objects in GIS

are complex. For example, spatial objects such as regions are composed of simpler line

objects which are formed by a set ofpoints. With a relational approach these objects can

be flattened and can be stored as tables using the traditional data structures, but retrieval

is tough and efficiency is reduced. The conventional databases that were developed for

commercial systems are not suitable for geographically referenced data. Differences are

more prominent especially in areas such as data modeling, query optimization, indexing

strategies [LODL, 92].

4

5

In this chapter, different GIS data types, spatial data structures, Graphical User

Interface and Object Oriented programming are discussed. The following section

analyses the GIS data types.

GIS Data Types

Here the GIS data model that needs to be manipulated is briefly analyzed. The

classification of geographic data is given in Fig 1. The geographic data can be classified

into thematic and spatial data. Spatial data has -- geometric and topological data.

Geometric data is description of spatial objects, which can be either in the form of vector

or raster format and topological data are spatial relationships between these geometric

data. The geometric data represented in vector format is of three types -- points, lines and

regions. A line consists of one or more components. A line component can also be

represented by connecting set of points. A region is a connected set of lines. Because of

the large cardinality spatial relationships are not often stored in topological data.

Thematic da~a is alphanumeric data along with geographic entities such as text and

images. Spatial data can be represented both in raster and vector format.

Geographic

~
Thematic Spatial

~

6

Geometric Topological

Vector Raster

Fig 1. The Hierarchical Classification of Geographical data

Raster data model

This divides space into regular sized and shaped pieces. Attribute values are then

assigned to each of these pieces either as averages or as the values at some specific

points. The operation on this data model combine data from one raster cell (using the

values for different properties) to compute a new data value for the same cell. This is a

form of spatial overlay [Fran, 92].

Vector data model

Here space is subdivided into irregularly shaped regions called cells with their

boundaries surrounded by lines called arcs or segments that links points called nodes.

Most GIS implement operations which map two partitions and determine the intersection

area, or to calculate the points of intersection between boundaries. Another

implementation uses records for nodes (expressed as coordinate pairs), records for areas

7

with their attribute values, and records for arcs which contains links to start and end

nodes to each arc and links to areas that are to the left and right of arcs (Table 1).

Nodes (node_id, x,y)

Areas (area_id, property_value,...)

Arcs (arc_id, id of start_node, id of end_node, id of left_area, id of right_area)

Table 1. One of the Implementations of Vector Data Model

From the discussion above, although both raster and vector models can store

spatial data, vector data model is more suitable for retrieving data having spatial

characteristics where as raster data is more image based and hence difficult to instantiate

spatial relationships. Hence, the vector formatted data is generally used for manipulation

while raster based data is used for visualization. So, generally geometric data in vector

format is referred as spatial data.

Spatial concepts consists of ideas, notions and relations between spatial objects

which are organized and structured to picture the reality. Spatial concepts differ

depending on the task to be performed and the circumstances. A data model is a set of

objects with operations applied on them. A data model is similar to Abstract Data Types

(ADT) defined in Computer Science. A spatial data model is a set of conceptual tools

used to structure spatial data, including the description of data and appropriate operations.

A data model is implemented by selecting a data structure, which provides the operations

defined for data model, and mapping them onto the code specific for data structure.

Spatial data structures are low-level descriptors of storage structures and the pertinent

operations, with details of achieving the desired results [Fran, 92]. They are also fixed in

terms ofperformance and storage utilization. Many data structures have been proposed

8

to handle spatial data in GIS [Same, 89b]. The operations commonly performed on these

data structures are point query, range query [Knut, 73b]. A query is a request for all data

that satisfy a predicate or have specific values or ranges of values for specified keys.

Knuth [Knut, 73b] lists queries as follows:

1. A point query, which determines if a given data point is in the database and, if so,

yields the address corresponding to the record in which it is stored.

2. A range query (i.e., region search), which asks for a set of data points whose specified

keys have specific values or values within given ranges (includes the partially specified

queries, also known as partial match and partial range, where unspecified keys take on the

range of the key as their domain).

Spatial Data Structures

The traditional database indexing structures like hash tables, B-trees, ISAM

indexes are not suitable for multi-dimensional spatial search. Hash tables are structures

based on exact matching ofvalues. Range or nearest neighbor queries cannot be

performed since hash tables are designed to destroy order and neighborhood. Since

B-trees hold a single key in its node, partial or range queries are impossible as queries

involve multiple attributes. Examples of data structures that handle multi-dimensional

data are cell methods, Quad trees, k-d trees, k-d-B trees, F~ trees, R* trees etc. [Same,

90a].

Cell (or fixed ~rid) methods

Cell (or fixed-grid) methods [Knut, 73b, Bent, 79b] divides space into equal sized

cells e.g., squares or cubes for two-dimensional and three-dimensional data respectively,

having width equal to the search radius of a range query. The data structure is a directory

ofk-dimensional array with an entry per cell. A linked list can be implemented to

9

represent the points in it. A disadvantage of this method is that the structure is not

dynamic and cell boundaries have to be decided in advance.

Q-trees

Q-trees [Klin, 76] are used for point data, areas, curves, surfaces and volumes.

These data structures are based on the principle of recursive decomposition of space. The

resolution of decomposition may be fixed before hand or can depend on the properties of

input data. Q-tree is represented in a two-dimensional binary array. The bounded image

array is successively subdivided into equal sized quadrants or sub quadrants until each

block consist of a 1 or 0; that is, each block is entirely contained in the region or entirely

disjoint from it. For large raster images, a second approach is applied. Elements of

image are processed one row at a time and the tree is built by adding pixel-sized nodes

one by one in a order by which they are in the file. This process is very time consuming

due to the many merging and node insertion operations that take place. Besides these

trees donot take into consideration ofpaging of secondary memory. Also, each leaf node

occupies large amount of space and node size gets rather large for a k-dimensional tree
• k

SInce k+2 +1 words are needed for each node

PMR quadtree

The PMR quadtree [NS, 86] adaptively maps line segments into buckets of

varying size. In two dimensional space, there is a one-to-one correspondence between

buckets and blocks. "Spatial occupancy methods decompose space from which data is

drawn into regions called buckets" [HS, 92]. A block can have a variable number of line

segments. The tree is constructed by inserting a line segment one each into the empty

10

tree consisting of only one block. Each line segment is inserted into the blocks that it

intersects or occupies. During insertion, each block is checked if the insertion exceeds

the splitting threshold. If it exceeds, the block is split into four equal blocks.

Deletion from a PMR quadtree is done by removing the line segment from all the

blocks it intersects and resides. During deletion, the blocks and siblings are checked to

see if the deletion causes the blocks to have the number of line segments below the

minimum splitting threshold, then the blocks are recursively merged including its

siblings. But, one of the problems is that as the splitting threshold increases, the storage

requirements decrease, but the time complexity will increase. The k-d tree is an

improvement over PMR quadtree and overcomes the deficiencies.

K-d tree

In the term k-d tree, [Bent, 75b] k denotes the dimensionality of the space being

represented. Basically, it is a binary search tree and at each depth a different attribute (or

key) value is tested to determine the direction of branching. In two-dimensions (i.e., a 2

d tree), we compare X coordinates at the root and at even depths (assuming root is at

depth 0) and Y coordinates at odd depths. Each data point is represented as a node

containing six fields. The first two fields are pointers to the left and right children of the

node. IfP is a pointer and D is the direction, then the field is referred as child (P, D) or

LCHILD(P) and RCHILD(P). XCOORD and YCOORD contains X and Y coordinates of

data point. NAME field contains information about name (e.g., soil name). The DISC

field has name of coordinate that the node discriminates. By convention if node A is an

x-discriminator, then all nodes having a x-coordinate value less than A are to its left and

value higher than A are to its right, hence DISC field can be avoided. However, a k-d

tree node occupies more space and are not inherently parallel data structures since a key

11

comparison can be performed parallel for the k key values. Like Quad trees, these trees

also donot consider paging of secondary memory.

K-d-B tree

The k-d-B tree [Robi, 81] is basically a k-d tree which dictates the contents of

B-tree node. The problem with this technique is that B-tree performance guarantees are

no longer valid. For example, pages are not guaranteed to be 50% full without

complicated insertion and deletion algorithms. The nodes ofk-d-B tree correspond to

disjoint regions. These trees are useful for point data. The R tree of Guttman [Gutt 84] is

another adaptation of B tree that doesnot require the regions covered by nodes to be

disjoint.

The R tree [Gutt, 84] is based on a B+ tree structure and store multi dimensional

objects (rectangles). A non leafnode contains minimum bounding rectangles and

pointers to its child nodes. A minimum bounding rectangle of a node is one that has

minimum area and includes all rectangles that are the entries in its child node. Leaf

nodes contains rectangles and data objects related to that rectangle. Fig. 2a represents the

rectangles in R tree, and Fig. 2b., represents the corresponding R tree.

A G

B

12

C J

[jJ

K I

Fig 2a. Rectangles organised in R tree

Fig 2b. Corresponding R tree

If'M' is the maximum number of rectangles that fit in a node and 'm' is the

minimum number of rectangles (2 <= m <= M) then R tree has the following properties

1. The root has atleast two children unless it is leaf.

2. Every non-leaf node has between m and M children unless it is root.

3. Every leaf node has between m and M index records unless it is root.

4. All leaves appear on same level.

The R tree is a dynamic structure which handles data objects in several

dimensions. The bounding boxes are formed from arbitrary set of rectangles in a way

that arbitrary retrieval operations with query rectangles of arbitrary size are handled

efficiently. The known parameters of retrieval performance affect each other in a very

13

complex manner which makes optimization impossible without influencing the other.

This may cause deterioration in overall performance. Since the data rectangles may have

different size and shape and directory rectangles may grow or shrink dynamically, the

success of methods that optimize one parameter is very uncertain.

R+ tree

R+ trees [SHS, 86] can be considered as the extensions ofK-D-B trees to cover

not only points but rectangles also. R+ tree is a variation ofR tree and avoids overlap of

rectangles, but occupies more space, thus increasing the height of the tree. The main

difference between the two data structures is that, rectangles are split into smaller

rectangles in order to avoid overlap among minimal bounding rectangles. For example, if

there is a rectangle covering a spatial object at the leaf level overlaps with another

rectangle, the rectangle is decomposed into non-overlapping sub-rectangles. All the

pointers from the sub-rectangles point to the same object. The same method is applied to

the non-leaf nodes also, thus overlap is forced to zero. Detailed description is given in

the figures 3a, and 3b.

A G

B

14

C J

[i]

K I

Fig 3a. Rectangles organised in R+ tree

Fig 3b. Corresponding R+ tree

Fig 3a represents all the rectangles that constitute a R+ tree, and Fig 3b is the R+

tree itself. To access rectangle F one can take the path from A or from B from Fig 3b.

This is not the case in R tree, as one needs to traverse the whole tree in order to access a

particular rectangle. Although accessing a particular rectangle is relatively fast, the

height of the tree is increased in the case ofR+ tree. For non-pathological split cases, if

the number of sub-rectangles at a node increases, this causes a split to that node, thus

increasing the height of the tree.

15

Christos Faloutsos, Timos Sellis and Nick Roussopoulos, analyzed R trees and R+

trees in their paper. On comparing both the data structures, they concluded that "R trees

suffer in the case of few, long segments, which force a lot of 'forking' during the search.

The R+ trees handle these cases easily, because they split these long segments into

smaller ones" [CTN, 87].

R* tree

A heuristic approach is applied taking various parameters into consideration.

The parameters that are taken into consideration by the R* tree are [NHRB, 90]:

1. Minimize the area covered by a directory rectangle. The dead space in the directory

rectangle not covered by any of its child rectangles is minimized.

2. Minimize the overlap between directory rectangles that decreases the number of paths

to be traversed.

3. Minimize the margin of the directory rectangle. Margin is the sum of the lengths of the

edges of a rectangle. For an fixed area square has the maximum margin. Thus

minimizing the margin yields more quadratically shaped directory rectangles. This

results in more packed directory rectangles. Queries with large query rectangles profit

this.

4. Optimize storage utilization. The higher the storage utilization, the lower the tree

height and the better the querying.

Unlike R tree that take only area parameter into consideration R* tree takes area,

margin and overlap. The overlap of an entry is defined as [NHRB 90]:

Let E1,...,Ep be the entries in the current node. Then

Overlap(Ek) = area(Ek.Rectangle (l ELRectangle), 1~ k ~ p.

To insert a new rectangle choose subtree function is invoked to find an

appropriate node.

16

AI~orithm Choose Subtree

Step1: Set N to be the root

Step2: IfN is a leaf, Return N

Else If the child pointers in N point to leaves [determine the minimum

overlap cost], choose the entry in N whose rectangle needs least

overlap enlargement to include the new data rectangle. Resolve ties

by choosing the entry whose rectangle needs least area enlargement

then the rectangle with smallest area.

End

Step3: Set N to be the child node pointed to by the child pointer of the chosen

entry and repeat from Step2.

From the above algorithm, the subtree is chosen and the node is selected in which

the new entry is to be inserted. If the node has less than M entries, the new entry

is inserted in that node. If it has M entries algorithm split is invoked.

Algorithm split in turn calls two more algorithms:

1. Choose split axis

This chooses the axes along which the split has to be performed by computing various

goodness values.

2. Choose split index

This selects the distribution of entries into two groups.

Along each axes the entries are first sorted by the lower value, then by the upper

value of the rectangles. For each sort M - 2m + 2 distributions of the M + 1 entries into

two groups are determined where the k-th distribution [k = 1,... ,(M-2m+2)] has first

[m-l=k] entries in the first group and the remaining in the second group. For each

distribution the following goodness values are determined:

(1) area-value: area[bb(first group)] + area[bb(second group)]

(2) margin-value: margin[bb(first group)] + margin[bb(second group)]

17

(3) overlap-value: area[bb(first group)] (l area[bb(second group)]

where bb represents the bounding rectangle.

AI~orithm Split

Step1 Invoke choose split axis to determine the axis, perpendicular to which the split is

performed.

Step2 Invoke choose split index to determine the best distribution into two groups along

that axis.

Step3 Distribute the entries into two groups.

AI~orithm Choose Split Axis

Step1 For each axis sort the entries by the lower and by the upper values of their

rectangles and determine all distributions as described above. Compute S, the sum

of all margin values of the different distributions.

End

Step2 Choose the axis with the minimum S as split axis.

AI~orithm Choose Split Index

Step1 Along the chosen split axis choose the distribution with the minimum overlap

value. Resolve ties by choosing the distribution with minimum area value.

Once the split is performed the tree structure has to be updated along the insertion

path. All the covering rectangles have to be adjusted such that they are the minimum

bounding boxes enclosing their children. Though the insertion is costly, it provides an

order in the structure which contributes for fast accessing.

Experiments conducted found that R* tree out performs the R tree variants in all

experiments [NHRB, 90]. The conclusions of the experiments are:

18

1. The R* tree is the most robust method, underlined by the fact that for every query less

accesses are required than by any other variants.

2. The gain in efficiency of the R* tree for small query rectangles is higher than for large

rectangles because storage utilization becomes more important for large query rectangles.

This emphasizes the goodness of the order preservation of the R* tree.

3. The maximum performance gain of the R* tree taken over all query and data files is in

comparison to the linear R tree taken over all query and data files is in comparison to the

linear R tree about 400% and quadratic R tree is 180%.

4. R* tree has the best storage utilization.

Comparative study of Data Structures

A comparative study was performed by Hanan Samet and Erik G. Hoel on the

performance of three spatial indexing structures -- the R* tree, the R+ tree and the PMR

quadtree. The data from the TIGER/Line files used by the Bureau of the Census to deal

with the road networks in the US, is used as test data. The authors state that their goal is

not to find the best among them which is generally impossible, but they are comparable

and that an indication can be given as to why and when their performance differs.

Researchers deal with spatial data by mapping the spatial object into a point

termed as representative point. Using a representative point, each line can be represented

by its end points, which means each line segment is represented by a tuple of four items

i.e., a pair ofx coordinates and a pair ofy coordinates. But this mapping is good for

storing data, not ideal for spatial operations involving search. Hence the authors believe

that using data structures that are based on spatial occupancy is the best way to overcome

19

the problems. Spatial occupancy methods decompose the space from which the data is

drawn into regions called buckets. Grid files, which use the bucketing methods, deal

with the transformed data i.e., representative points. But the authors were interested in

bucketing methods that are applied to the space from which the data is drawn. And hence

the authors conducted a study on the performance of three popular spatial indexing

techniques -- the R* tree, the R+ tree, the PMR quadtree.

Using the R* tree, the R+ tree and the PMR quadtree, 1000 tests were performed

for each query type and map. Tests were performed on 6 maps of counties in Maryland

where each map contained approximately 50,000 line segments. The disk accesses for all

three structures were comparable and the authors found that the PMR quadtree required

the least number of disk accesses. And the authors also feel that the number of disk

accesses donot give the whole building process of the trees. This is because there is

considerable amount of activity such as optimization of the splits in R* tree which is not

present in R+ tree or in PMR quadtree. Also, because of the disjoint decomposition of

space induced by R+ tree, it is usually better than R* tree. On a query by query

comparison, R+ tree was superior, but for the repeated application of the point queries,

the R* tree was slightly better. The authors feel that this is not surprising since the R*

tree occupies less space than R+ tree.

The authors concludes that although the performance of R* tree is not as good as

the R+ tree, R* tree is more compact that R+ tree. They also state" Not surprisingly, our

studies did not result in claims of overwhelming superiority for any of the data structures.

Qualitatively speaking, they are similar. In terms of choosing a representation for a

20

specific application, the choice can only be made once the repertoire of operations that is

to be executed is known."[HS, 1992]

Level linked R* tree

Some work has been done on R* tree by making it leaf level linked. This level

linked R* tree has all the properties of R* tree data structure. A special property is that

the leaf nodes are all linked together sequentially. Point or range query is done in the

same way as in R* tree, while sequential access to the data is done at the level linked leaf

nodes. In R* tree new nodes are created in two cases:

1. When a node is already filled with maximum elements, a new element insertion will

lead to a 'split'. When a split occurs a new node is created, linked to its parent and

becomes the sibling to the old node. This newly created node can be at the leaf level or at

the non-leaf level.

2. When the root node splits, two nodes are created and one of them becomes the root, the

other becom~s a sibling to the old root.

In case of leaf level split in level linked R* tree, an algorithm was developed by

Reddy[93]. Whenever a leaf node splits, the new node's sibling pointer points to the

sibling of the old node, and the old node's sibling pointer points to the new node. This

modified split algorithm decreases the time complexity though it takes an additional

memory requirement of the size ofpointer per node [Reddy, 93].

Graphical User Interface

To begin, it is important to examine the role of the interface as a medium of

human communication. Computer software differentiates from other media forms such

as television, radio etc., by being more interactive and favors participation over

21

observation. Additionally, software favors order from randomness, reaching the goal of

managing complexity.

But, in the computer culture, software also favors cryptic symbolism in order to

achieve conservation of expression and C programming language is the example. The

burden ofmaintaining the models and abstractions is forced on the users while, the GUI

software opts for visual expression to conservation of expression on the same familiar

grounds. The software culture embodies structure and organization rather than

randomness, while GUI places more emphasis on organization.

The familiar style ofpull-down menus placed in a horizontal manner on the top of

the screen is part of this culture. Recognizable, consistent graphical elements such as

scroll bars, list boxes and buttons are expressions of this culture. But then, having these

elements in the software does not make it a GUI. A software is called a GUI depending

on how these elements are significantly organized and visually represented.

In the environment where people have to learn and use software products, the GUI

culture saves the effort and the frustration by having recognizable visual elements and

sharing an organizational similarity, irrespective of whether the applications are

developed in Windows, OS/2 Presentation Manger, Motif, Open Look and the Macintosh

[OR, 91].

Application packages provide ways of manipulating things (called objects) and

these things are presented in the client area of main window of any GUI. For example,

beneath the main menu bar of any word processor is the text. Text ordered as words,

sentences, paragraphs can be manipulated by the user and are called 'objects'. All menu

choices specifically represent an operation that can be performed on the text that is in the

main window. Since the menu system provides a convenient way to explore all the

functions it provides, it breaks the initial barrier even for a beginner. The first and

22

foremost principle of designing menus is to make the user understand that the role of

menu is of a complexity browser. A well designed and fully functional menu will

encourage the user to examine the available options to gain an insight into the capabilities

of the software.

GUI, along with being a good medium of communication, also has another

dimension of presentation, which the character":based text does not have -- graphics.

Good visual design helps in organizing and prioritizing information, guiding users from

general information to specific windows or buttons, with the minimum effort. Good

design reduces the randomness of visual information. The more efficient the data

gathering process, the more control users have on the data and knowledge of how best to

use it. To achieve this result, the visual design of all GUI application must include

hierarchies as well as alignment, shape, color and fonts.

Consistency has to be maintained in order to properly receive the visual hierarchy.

All information of equal value has to be maintained in the same hierarchy. For example,

greyed text implies that the current information is not available to manipulate. Shape has

a very high effect and when used along with proper alignment and size, can create an

effective visual ordering system. Icons and tools in a tool bar should have related groups

of tools shaped in the same manner and placed together. Color adds supplementary

information and is a good tool to differentiate between similar objects, although it is not a

universal ordering system. Thus the GUI culture makes demands for consistency,

efficiency, and the presentation of information in its application software.

With the above general discussion on GUI, to graphically represent the spatial

data, we need a sound graphical interface and user friendly environment. User interface

forms an essential component when dealing with graphical data, because of the nature of

manipulated data [Vois, 91]. Generally, the design of a friendly user interface is a way to

23

offer the end user a high level of interaction with the database. The graphical language

MS Windows can provide a WYSIWYG (what you see is what you get) user interface

since it does not restrict the window to any pre-defined size or structure. The user can

have the choice of designing the size of window containing a map, as well as the size of

map displayed inside the window. A good interface will assume little about the manner

in which users will attempt to employ the capabilities of software, especially in regard to

sequencing of operations and MS Windows belong to this category [NK, 92].

Considering the fact that MS-DOS machines are extensively used, MS Windows provides

a powerful user interface. They donot enforce a particular policy i.e., doesnot provide

scroll bars, button boxes, menu etc., by default. Applications can create their own

decorations like title bar, scroll bar, menus etc., depending on the need of the user.

Windows also have resources like fonts, colors, size of windows etc. There are different

styles used in Standard Windows environment such as

1) Overlapped Windows

2) Owned Windows

3) Pop up Windows

4) Child Windows.

Object Oriented Programrling

Object Oriented Programming (OOP) is probably the best way to build and

maintain a GUI application. Object oriented tools provide powerful libraries of reusable

code and the glue that makes them all work together. The code can be used as is or

customized to handle the constructs. The power of the code is that it describes not only

the object structure but also its behavior and its interface to other objects [OR, 91].

Object tools come with WYSIWYG editors. A class encapsulates (or brings together)

data structures and the methods that manipulate them. So, once an object of a particular

24

class is created, it inherits all its methods and attributes. Hence a composite subclass can

be created from multiple parent classes and inherit their combined behavior.

Object Oriented Programming (OOP) is not only playing a major role in

developing Windows programming, but is also causing a revolution in the way

algorithms and data structures are constructed. OOP is finding a way into applications

that involve spatial data [KA, 90]. OOP is the new programming methodology and

demands a radical change in designing programs. Instead of maintaining a set of

different procedures, where some procedures act on some data structures and some act on

others, OOP bundles a set of data structures with the procedures that act upon them. A

procedure designed for a structure cannot be applied to a different procedure for which it

is not designed for, even though the structures are very similar that their respective

procedures have identical parameter call and lists. Also, if a programmer has carefully

designed procedures for complicated data structure, it is not possible for anyone to ignore

the procedures and manipulate the data structure directly [Vert, 92].

If a new structure is designed along the old structure, the programmer is not

demanded to impose the old structure features on to the new, the implementation can be

entirely different. The new structure can be defined in terms of the old, with only

'newness' added in. If, the new structure has routines that has the same name as the old

routine has, the structure should be able to distinguish them, based on the context of how

they.are invoked.

The major contributors of OOP are encapsulation, inheritance, and polymorphism

Encapsulation provides information hiding, inheritance provides code reusability and

extensibility, and polymorphism provides overloading of similar operation onto

procedure names.

Encapsulation provides some data type abstraction. A group of related

procedures is bundled into 'module'. Only those, who have explicit access to affect the

contents of the module or to obtain information, can do so. OOP allows procedures to be

25

bundled with data structures and are called 'methods'. These methods work only with the

data structures that are bundled with, and hence called 'objects'. Encapsulation provides

security in writing programs, and the data structures are not accidentally deleted.

Inheritance allows code reusability. For example, an object was already defined,

and later on, if it was found that the object works fine for the present problem, but needs

some modification for another. The programmer would then defme another object, with

all the necessary properties, but with the old object forming the base class, which means,

that the new object will 'inherit' all the properties of the old object and as well as have its

own exclusive properties. Many levels of objects can be created, each deriving properties

from a level above.

Polymorphism allows methods in derived objects to have identical names as the

base object has, and the execution of the correct procedure is determined from the context

of the object at run-time. This is an example of name loading. The example of operator

overloading -- "+" operator, which means, either addition of integers, or addition of reals,

or concatenation of strings can be done, but which depends on the context.

CHAPTER III

DRAWBACK OF LEVEL LINKED R*TREE AND SOLUTION

The R* tree is based on B tree where the data is stored in the leaf nodes. To

sequentially access data, the whole tree has to be traversed. In order to overcome this

difficulty, level linked R* tree data structure was designed and implemented. The level

linked R* tree was derived from R* tree. The tree structure is shown below.

B

Fig 4. Level linked R* tree

All leaves are linked together as shown in the figure 4. This makes the sequential

access to the actual data, faster, than the sequential access in R* tree. But, if an

application has a very huge data occupying megabytes of memory, accessing data using

this type of level linked data structure could also be time consuming. In this particular

application the data is very huge consisting of about 20,000 rectangles. For example, the

data could be present in the first few nodes and then in the last few nodes, or the data

could be residing only in the first few nodes or the last few nodes or could be spread

evenly in all the leaf nodes. With the above data structure leaf linking has to be done by

26

27

traversing through all the nodes which donot have relevant information. This could be

very time consuming.

A Solution

To overcome the problem encountered in the leaf level linked R* tree data

structure, the author has used a leaf level multi-linked R* tree data structure. The exact

implementation of the data structure is discussed below.

Since the application is dealing with agricultural data (detailed description and

analysis of data is done in next Chapter), each soil is given an attribute. Insertion of an

element into the appropriate node is done according to the R* tree insertion algorithm. In

addition to that, the element (the attribute value here) is checked against the

attribute_array. If this is a new insertion, a link is placed from the appropriate index of

attribute_array to this element in the node and the forward link is pointed to NULL. If a

link exists already, from this particular index of attribute_array, this link is traversed and

the last element that is connected to this link is reached. A link is then placed from this

'last element' to the newly inserted. With this improvement in the data structure,

sequential accessing can be done by traversing through the nodes which have only the

relevant information. Thus the time consumption is reduced, although it occupies a few

bytes of memory for the links and the attribute_array. Considering the amount of time

consumed, one can definitely afford a few bytes of memory.

Leaf level multi-linked R* trees:

For applications that need a Graphical User Interface built for spatial data, it is

necessary to make this improvement to the basic data structure. Along with the range

28

query, this improvement of data structure makes the sequential access very efficient.

Insertion is done according to the basic R* tree algorithm.

AI~orithm Choose Subtree:

S1 Set N to be the root

S2 IfN is a leaf, Return N

Else if the child pointers in N point to leaves [determine the minimum

overlap cost], choose the entry in N whose rectangle needs least overlap

enlargement to include the new data rectangle. Resolve ties by choosing

the entry whose rectangle needs least area enlargement than the rectangle

with smallest area.

End

83 Set N to be the child node pointed to by the child pointer of the chosen

entry and repeat from 82.

From the above algorithm, the appropriate subtree and the node is chosen in

which the new element is inserted. Now another function called 'attribute link'is

invoked to find the link to this element.

AI~orithm Attribute link:

Sl Pick the index in the attribute array, with the element as the index.

S2 Pick the link from the array index, until NULL is reached. Now place the

appropriate link to the newly inserted element.

From the above two algorithms, the element is inserted in its place and the

appropriate links are attached, only if there are less than M entries in the node. If it has M

entries, then algorithm 'split' is invoked.

29

Algorithm Split:

81 Invoke choose split axis to determine the axis, perpendicular to which the

split is performed.

82 Invoke choose split index to determine the best distribution into two

groups along that axis.

S3 Distribute the entries into two groups.

84 If the split node is a leaf node, update the links. Set new node's NEXT

pointer to the old node's NEXT pointer, and the old node's NEXT pointer

to the new node.

The implementation of the algorithm is:

As soon as the first node (root as well as leaf) is created, the attribute array is

checked and the appropriate position of the attribute in the array is picked. A link is then

placed to the element in the node from this array.

If there happens to be another element with the same attribute value, a link is set

from the old element to this new element. As the tree grows, links from the attribute

array are placed to the leaf nodes appropriately and from there the linked list can be

traversed. For example, if the soil with attribute value of 36 is to be accessed, the

algorithm checks if there exists any link from this position in the attribute_array and

traverses the linked list related to attribute value of 36, thus omitting traversing all the

elements in all the nodes and saving the time consumed.

Time complexity ofleaflevel multi-linked R* tree:

In R* trees, to access actual data residing in the leaf nodes, the whole tree has to

be traversed. This takes enormous amount of time if the tree is very large. If there are N

nodes (assuming there are more than 1 nodes) in the tree, and if it takes one unit of time

to access each node in the tree, the time to access the actual data would take more than N

time units, since one has to access the leaf nodes and traverse the whole tree.

30

In leaf level linked trees, where all the leafnodes are linked together, the time to

access the data is greatly reduced, since only the leaf nodes are to be traversed. Now

suppose there are 'n' leaf nodes in the tree, and to access the data ,only 'n' units of time is

required, assuming that accessing each node takes one unit of time. But, in leaf level

multi-linked tree, links are maintained to only those nodes, that maintain information

related to on particular attribute -- in this application, soils. So, in order to access the data

related to one particular soil, one need not access all the nodes, which donot have

information related to that particular soil, thus reducing the number of nodes to be

accessed for that particular soil. So, the actual time consumption will be less than 'n'

time units. This is a tremendous improvement over R* tree and level linked R* tree. The

attribute-array occupies only size of int * number of attributes (in this case, 99

attributes), and one additional pointer is needed for the links between the nodes. A split

in the tree will need two pointer assignments, and so the insertion routine have a very

negligent increase in time complexity when compared to R* tree. But, the overall

performance of the tree in terms of time complexity will override the memory

requirements. Range query is done using the basic R* tree structure only. Hence, both

the range query and the point query can be handled efficiently in terms of time

complexity.

Developing a Graphical User Interface for this particular application dealing with

the soils of the Grady county in Oklahoma is further discussed in Chapter IV.

CHAPTER IV

DEVELOPMENT OF GUI USING VISUAL C++

Visual representation of the data stored in these structures forms a good

interaction between the users and the data base. The modified index structure provides an

efficient query of the data. The present application deals with the visual representation of

the querying of soils in Grady County of Oklahoma.

The data is stored in the leafnodes of the modified R* tree structure and the visual

representation of this data needs accessing the leafnodes. Leaf level multi-linked R* tree

is used because of the ease with which the data can be graphically shown as well as the

basic R* tree for spatial querying.

The application consists of

1. Modifying the existing index structure.

2. Building a GUI for ease of use of querying.

In Chapter III, the modifications made to the existing structure were discussed

which lead to good access time and no duplication of data. To graphically represent the

data, MS Windows are used as an interface, since they are flexible, easy to use and has

user friendly tools such as menus, push buttons, list boxes, etc. The data stored in leaf

level multi-linked R* tree is visualized through this interface. When querying for a single

soil is done through the interface, the actual query is done through the sequential search

of leaf nodes. When querying for soils within a particular area, is done through the

interface, the spatial searching capabilities of R* tree is utilized.

31

32

Data Description

The data for this particular application is obtained from Dr. Mark Gregory,

Department of Agriculture, OSU, Stillwater, OK. The data is pertained to the Grady

County of Oklahoma state, which covers an area of 4 hectares. The area is divided into

small rectangles of 200 X 200 meters. The data file itself occupies 250 kb of memory.

Data Analysis

The obtained data is analyzed and is placed in two separate files. The first file has

the co-ordinates of the rectangle which holds the attribute of the soil. For example., Xl,

YI, X2, Y2, ATT -- is the format in which the data is placed, where Xl, YI represent the

left top coordinates of the rectangle and X2, Y2 represent the right bottom coordinates of

the rectangle and ATT is the attribute that represents the soil that is present in that

rectangle. For each of these attributes, there is a detail description of the soil and the

number of rectangles the soil occupies. This is shown in Appendix A. The first column

represents th~ attribute value, the next column gives the detailed description of the soil

and the third column gives the number of rectangles of size 200 X 200 meters, in which

the soil is spread across. The attribute codes are stored in the leaf nodes of the R* tree

and the attribute linked-list is traversed based on the connecting links thus making the

sequential access quick.

A look into Visual C++

With MS Windows being the interface for this particular application, Visual C++

package is used for building the interface. The product has good credibility because it

comes from Microsoft" the author of Windows itself, and also the package contains the

most powerful Windows based application framework. Microsoft Foundation Class

Library version 2.0 is the core of the application framework consisting of a library of C++

33

classes and global functions along with source code. Visual C++ also has other tools such

as Visual Workbench, App Studio, the compiler, the linker, and AppWizard,

ClassWizard, to construct the applications.

Microsoft Visual C++ is one of the tools for building and debugging applications

that are developed in Windows environment. It incorporates high-level C++ application

framework classes and integrated Windows-hosted development tools thus making the

complex job of developing applications for Windows, easy.

Microsoft Visual C++ has the ability to create OLE custom controls as well as

portability to different platforms. Visual C++ 2.0's 32 bit MFC library is source code

portable on to different platforms such as Intel, MIPS RISC 4000, Mac, DEC Alpha, etc.

The OLE Custom Control Development Kit generates extensive code for the

programmers and the programmers has to add only the code specific to the application

requirements [Nanc, 94].

While developing a new application, AppWizard is first used to create the C++

Microsoft Foundation Class Library source files for the project. AppStudio is used to

create and edit resources such as menus, toolbars, dialog boxes, etc. ClassWizard is used

to add C++ framework code for classes and message maps for Document and View

classes or resource classes [Krug, 93].

Visual Workbench:

Visual Workbench generates a make file called 'project file' with an extension of

MAK. A project is a collection of interrelated source files that are compiled, linked and

made into a working Windows program. Project source files are generally stored in a

separate subdirectory. A project also includes the 'include files' and 'library files'. After

a project is created, source code files can be edited in individual windows. All the

compiler and linker switch settings can be saved through dialog boxes and to generate an

executable, the Build command from the Visual Workbench Project menu is chosen.

34

Visual Workbench has a useful text editor that follows Windows interface standards and

highlights c++ syntax with color.

App Studio:

App Studio is used to edit resources such as dialog boxes, bitmaps, and fonts.

App Studio includes both a WYSIWYG menu editor and a powerful dialog box editor.

In addition to handling dialog boxes, icons, cursors and bitmaps, it also edits string tables

and accelerator tables. For example, to modify a dialog box -- the size of the window can

be decreased or enlarged by dragging the right and the bottom borders or the OK button

can be moved around or the text can be changed, etc [Krug, 93].

AppWizard:

AppWizard is accessed from the Visual Workbench Project Menu. AppWizard

generates all the source files and the resource files required for the application. Every

Visual C++ application starts from here. After specifying the project name, AppWizard

creates a subdirectory for the project and also for the related source files and header files.

By selecting options in AppWizard, all skeleton source files with differing levels of

functionality are created. An AppWizard generated application with all the options has:

• A single/multiple document interface (SDI/MDI).

• Menus and dialog boxes for opening and saving files, print preview, and printing.

• Support for object linking and embedding (OLE).

• Support for Microsoft Visual Basic™ custom controls (custom VBX controls).

• Support for Help.

• A functional toolbar and status bar.

I () !~(m I I i) '~i~~lt: I I "('m'lI (111\". I

Type:

{J Accelerator

litIl8itm~p

~Dialog

[~ Icon
~

I !!ew... I

Re~dy

Resources:

~t JDR_tyt.o.INFRAtvtE
~ IDR_SCRIBT'(PE

(2 total)

, • • Resource
browser
with Menu
selected in
the Type
list box

Iiigurc 5 rl'IIC 1\1)1) Studi() I{CS()llrCC IJr()\\'scr

(Source: [MSVC, 93])

w
V\

I UK I
I C.lnce! I
I Ue!l) I
I Qplions... I
I ~!aue$... I

nI '2jJ :J I , t 1 [1. , II

B- e:\
lC:- msvc
l27 tole
lC:- 1 cllnl)lcs

Proicct Path

c: \.nsve\ ..,'c\san'I)les\sc.ibble
\1.lysc.ib\sc,ilJble.lnc1k

D.i,eclo,v:

Proiect Harne: Iscribble I

il~, Microsoft Visual eft

! file Edit ~ie\'l Eroject Hrows~ Q.ebug 10015 Qptions Window tlelp I

I 0 l-::-::-l~ [Q C7"' ~ ~ =: ;:;;:=0 '==>;=);1-:7"1 ,II LtJ.:..:.J I iiLi,lZ!"k; .11 \,U I

I
I

tlcw ~ubdifcclorv:

l·nvscrih I
Dliye:

':

Ifa c:mytJlive I~

-1~·J'JtvlII

~igur.e 6a ApI) "ViZ~lr(1 Di~llog B()x (Source: [MSVC, 93])

w
0\

~ M_FC_A..:....p:._pW_iz_a_rd _

37

Ploiect t!anlo: l~s_cr_ib_b_le -...I

:. Options'·'

OK

o ;'M'~n~!pJ~:ji~:~ij:~~:~~~:~~~:~:~~~~:~~:;
~ Initialloolbar

CJ f.rinting and Print Preview

D Custo.n y:'OX Controls

o Context Sensitive H~fp

o Q.LE Client

o E~tcrn(}1 Makefile

o !ienerato Source Co.nnlenls

Driye:

l_la__C_:m_Y_d_'i_v_e 0

OK

Cancel

!!elp

Figure 6b Alll)Wizar(l ()llti()11S Di,llog 13()X

(Source: [MSVC, 93])

38

ClassWizard:

ClassWizard creates the necessary source files, declaration code and

implementation code to derive a new class.

ClassWizard is a tool that helps in

• Creating new classes.

• Mapping messages to class-member functions.

• Mapping controls to class-member variables.

ClassWizard is used to "bind" interface objects to code. After using AppStudio to

create user-interface objects, ClassWizard is used to create member functions and

message maps to handle messages from these objects.

For example, if a new item called 'Test" is added to the Edit menu in App Studio

and then Class Wizard, is opened, one can select the class to which the message-handler

function for that object added, select the resource identifier for the Test menu item

(ID_EDIT_TEST in the Object ID list), and specify that it is a COMMAND in the

Messages list, and choose the Add Function button. The Class Wizard presents a

message box to alter the function name, then inserts the message-map entry, function

prototype, and skeleton function code.

The C/C++ compiler compiles both C source code and C++ source code. It

recognizes the language from the source code filename extension. A C source code will

have an extension of C, while C++ source code has an extension of CPP or CXX.

AppWizard creates a working skeleton of a Windows application with class names and

source code file names that are specified through dialog boxes. ClassWizard operates

inside the Visual Workbench and the App Studio. Class Wizard writes the prototypes,

function bodies, and code to connect the messages to the application framework.

ClassWizard adds message handlers to the classes, which means, if a Windows message

ClassWizard

Class H.ame: ~K-mWJ[·i: [lJ
:cflbvw.h, :cribvw.cpp

CScrlbVIf~"" ~10 ~.PP ABOUT LJ10-.6.PP-EXI T .-
10-EDIT COPY
IO-EDIT-CUT
ID:EDIT:PASTE
10 EDIT UNDO --.,

IO-FllE 1~RU FILEl .J

!!biect IDs:

Member functions:

Description:

Messages:

I OK I
I Cancel I
I Add ~18u... I
I Class Info... I
I Help I
I[: dit Vdlldbj·.~.\ I

J\dd r 'Jnt~ttofl...

P(~h~ttJ r t.lnl:~J(,n

Figure 7 ~I~lle Mail) Class'Vizard Dial()g nox

(Source: [MSVC, 93])
v">
\0

40

ID is selected from a list box, the Wizard generates the code with the correct function

parameters and return values [Krug,93].

Documents and Views:

The 'document-view architecture' originated in 1980s in the academic area and

was later used by Apple Computer in 1985 for the MacApp Application framework

product. This architecture separates data from the user's view of the data, so there can be

multiple views of the same data [Krug, 93]. A document is a unit of data that the user

works. The document maintains, loads and stores its data. The user interacts with a

documents through a "view' on the document. A view is defined as a window present in

the client area ofa frame window. It displays the data from it's document and takes

keyboard and mouse input, which it translates them into selection and editing actions.

Objects in the interface such as buttons, menus send commands to the documents, views,

and other objects in the application, which carry out the commands. When the data is

modified thr<?ugh the view, the view notifies the document. The document then sends a

message to all the views (if it has multiple views) to display the new information. In the

Microsoft Foundation Class Library, the base class for documents is CDocument and

CView is the base class for views. In a single document interface (SDI), the view fills

the main frame window, while in multiple document interface (MDI), the document

frame window is displayed in the main frame window.

The main task of the framework is defining the application data in its document

class(es). In this particular application, the 'document' holds the data from the leaf level

multi-linked R* tree. The framework also defines how the user views and interacts the

data inside the window. The framework also connects menus, buttons and other llser

interface objects to commands and then defines handler function to carry the commands.

41

Document: Stores
data in an internally
useful form.

Portion of document
currently visible

ions.

ata inView: Renders the d
avisual form and

-......... responds to user act
""""" """"" -.........

..............

--- -.........-
~

~

r---. 10-

'""""'-
..............

..............
.............. ~

-.........
I I I

Documellt and Vie\v

(Source: [MSVC, 93])

42

Graphical User Interface using Visual C++

The GUI developed for this particular application picks up data from the R* tree.

pull down menu. The three items are File, Query, and Help. This is shown in fig. 5.
-<>2.. -,•.--"•..- ••'-------,,-.-........._____".."""'.~ .'......'_, ""'_ ... ~'- ,.. ~.".·,'''''.,.."....,.,,,.. ,....'c....~~ ...-,~ \....~.,., •._,"' .. ~''''J\,.•''., .•. _.'..h.~'._

Onc~-"~_he ..!!.~.~~.~.J~~~~ __2.!!-fjle, ,i!,"pri~~pull down menu with the options of

Counties and Exit. Clicking on Counties will open another window. ~itled 'Counti~~:,,__~~

with a scrolled list of all the Counties of Oklahoma. Since only the data related to Grady

County is available, selecting any other County and clicking on 'Load' button will yield

an error message" Data is not available for this County for the present time". This is

shown in fig. 6.

~~l~£!i.!!£.~~!~~~:_.~,O~!y~~~~l!~~!!,g-.Q!:1:~.LQacr~.huttQn ..will-Qpen...anQth~r_ ...

window displayin~a ~~~sag~ "L9~~ding_~he data...". The R* tree is being built by the

insertion routine then" ~icking the d~ta from t~e Grady Co.unty dat~_.fiJ~,. Since the data is

.~e~._~~g.~J_.!?_~i!Q!gg_..!~~>.!!~~-~~!~,!~~,,-~-Q,~.~~ ..~.~.~_e. After the data is loaded, if the user tries

to attempt to load the data, a message is displayed regarding the status of the data being

loaded as " Data already loaded for this County'. This is shown in fig. 7.

Selecting the option of 'Exit' will take tp~.u~er O\1t ofthe.appliqati9P ~~__!?ack
_,___'_,,_...__......_..-._.......__ •.__'........... _"._.....;__~ ••_.:.;;"'_ .• _.•~ .._~....._"-__ ,,..,_' _._ ~ ", _'w _-." ~_

i~!Q Vt~ual C++ main window.
,.""""....,.--.'-+~ .. -.,.. __"'-~__ .____.'" .--::s_-"=--

Now, if the user wants to Query the soils, S~l~~!!~~g~1!eII._~~_~"~~~~!1~.~~.~~111

unfold a pull-down menu, with th~"optionsof 'View S~~}~~."~d.'Query Area'. CI,!£~ing.
.............. ""....... _..__..._ ..- _ ...""'~'""_----.,",',< ..~"'"''"."...."','...,.,,.,._..'''....... "-'," - "'0'- _"~,.._"'_~ .. __,,,,,",,0'''' ,-,.' '."-",, _" .,.~...~_.' _~"",..__..,_~...~__........_. ",~...... ~.""". "'" ... ,",.,b" ,.."_~.,~>.""".....- .' .,--...'~"_, ...J.",~ ~_ ,'~...._~~.~ '''''. • ~ .' .,''''''

9!!.'YJ_~~Soils' will open another window titled 'Query Soils'. This is shown in fig. 8.
~'- "'-'.- ".u_..-.,""'" ,.. ~ ,~ ,"'~,~ "._.~,."'.-,_", _ ..,~,_ .,,,., ~,, _.-,,.,'~--~ .. ,.-__"~_ --...,>O<~---_h~t .."._.....~_,_~-."'__ ...---. > ', "~ _,...,"', ..-

window has a scrolled list, and three buttons. Since there are 99 soils spread in the

County and each soil has an attribute value and it is not possible to show all the soils, a

.scroll~gJi~1_yiew is provided. The window also h~.~..~_.Q!!n9nS -- 'Show one', 'Show all',
.- -' '--'---._-<'." -..- ..,-----,--~-,,-~ ..--..- ,.- ,_ "' _,.-- ..-."............... ' ", ~ ~~." ,.•

and 'Cancel'. Selecting a particular soil and clicking on 'Show one' will display the

window titled 'Soils' drawing the outline of Grady County and the distribution of the soil

43

in the color that is assigned to that particular soil (fig. 9). This window has two buttons,

one for the details of the color code used and the other to close the window. Clicking on

the 'Details' button will give the details of the color that is assigned to that particular soil.

The 'Show all' button will display the distribution of all the soils present in the

Grady County, in different colors in the window titled 'Soils' (fig. 10). Clicking on the

'Details' button will show all the color codes that are assigned to the soils.

Going back to the main window, and selecting 'Query' on the tool bar, and then

selecting 'Query Area', will open another window titled 'Query Area' and displays the

outline of Grady County and an empty scrolled list (fig. 11). Selecting a particular

rectangular area will show all the soils in that scrolled list along with the percentage, it

occupies. This is shown in fig. 12.

Displaying one soil or all the soils can be done as many times as the user wishes.

Querying a particular area in the Grady County, can also be done as many times as the

user desires. But the GUI doesnot allow the user to reload the data of the County, since

the R* tree, which actually stores the data, has been built already.

Displaying one soil or all soils is done by picking up the data from the leaf level

multi-linked list designed and developed in this thesis. Querying an area is done through

the basic search routine ofR tree. The 'document' actually accesses the data in the tree

and displays on the 'view', while the user interacts with the data from 'view' by selecting

the options.

.-o
r.n
en
c::.-
~
0)
~

~
!l...
o

'+-
c
o
~
u.--

44

File Query Help

Fig 10. Popup rnessage. when trying to load data for other Counties .j:>.
Vl

Fig 11. Message when trying to reload the data of Grady County
.j::.
0\

File Query Help

Fig 12. Query soils Window showing the nanles in scrolled/list
.J:>.
-..]

Fig 13. On clicking I Show aW, the display of all soils in Grady County .l:>
00

8:Eufaula fine sand: 5 to 12 pttli!
9:Eufaula-Stephenvllle compl '
1O:Gracemont fine sandy loa
11 :Gracemore soilsl
12:Grant silt loam, 1 to 3 perc"''''
13:Grant silt loam, 3 to 5 perc
1 ~:Gr1tnt ~i1t In1tm_ , tn ~ np.rr~

Fig 14. On clicking IDetails l

, displays the color codes of all soils
.j:>,
\0

h

Fig 15. Display of soil with attribute 14 in color v,
o

Fig 16. Selecting an area in the County, displays

the names of soils in scrolled list
v,

CHAPTER V

SUMMARY AND CONCLUSIONS

A spatial database was built for the data related to the soils of Grady County in

Oklahoma. The basic R* tree structure was modified at the leaf level, by placing links to

nodes that carried information related to the same soil. Different kinds of data structures

were discussed, and finally a modified R* tree index structure was found to be suitable to

store and retrieve the data. It was found that the leaf level multi-linked R* tree, which

was designed and developed, to store the data related to the Grady County of Oklahoma,

significantly reduces the time that is required to access the data sequentially. By making

it multi-linked at the leaf level, to accesses data sequentially, only the leaf nodes having a

particular required data can be accessed, thus reducing the time consumed, to access the

data. With, data occupying about 250 K bytes of memory, this design of the R* tree is a

good improvement. The cost of insertion routine for the R* tree structure that is designed

and developed is very negligibly low. The newly developed R* tree has the same

capabilities ofR* tree for the range query, and has an improved performance for

sequential search and graphical interpretation of the data.

In addition to storing this data, the visual representation of the data offered a high

level of interaction between the user and the data base. Microsoft Windows provided a

good interface with the powerful graphics tools that are provided by Visual C++. The

52

53

interface provides the user, the choice of selecting any county to load its data. But, in this

thesis, it is restricted to only Grady County, because the data is provided for this

particular County from the Agricultural department. It lets the user to query a particular

soil, and displays the soil distribution in the County, in a color that is assigned to it. The

user can also view all the soils that are present in the County, in different colors. It also

lets the user to select a particular area in the Grady County, and shows the soils present in

that area in a scrolled list.

The Graphical User Interface can be comfortably used to display the data that is

stored in any spatial index structure, or their modifications. This is because of the object

oriented nature of the GUI. The Document is the bridge between the user's view and the

database. It is the documents responsibility to retrieve the data from the database and

display it on the View. Hence the designed GUI can be used for spatial data stored in the

spatial index structures. Future improvement and research can include enlarging of

Query Area in the County, and displaying not only the names of soils, but also their

distribution in that particular area, which will be very useful for the Agricultural

department. The GUI developed in this thesis, is another aid to cut down the gap between

the user and the database and each operation is user friendly, even for a novice.

REFERENCES

[Bent,75b] Bentley, J.L. : " Multidimensional Binary Search Trees used for

Associative Searching", Communications of ACM, Vol. 18, No.9,

September 1975, pp. 509 - 517.

[BF,79b] Bentley, J.L., Friedman, J.H. : "Data Structures for Range Searching",

ACM Computing Surveys, Vol. 11, No.4, December 1992, pp. 397 - 409.

[Carl, 92] Carl, F. : " An Introduction to Geographic Information Systems: Linking

Maps to Databases", Database, April 1992, pp.12 - 21.

[Cart, 92] Carter, E. : "The Evolution of C++ Programmer", Computer Language,

August 1992, pp. 53 - 67.

[CTN,87] Christos, F., Timos, S., Nick, R. : "Analysis of Object Oriented Spatial

Access Methods", Proc. of the ACM SIGMOD Int. Conf., on Management

of Data, 1987, pp.426 - 439.

[FE, 92] Frank, A.U., Egenhofer, M.J. : "Computer Cartography for GIS: An

Object Oriented View on the Display Transformation", Computers and

Geosciences, Vol. 18, No.8, 1992, pp. 975 - 987.

[Fran, 92] Frank, A. U. : " Spatial concepts, geometric data models, and geometric

data structures", Computers and Geosciences Vol. 18, No.4, 1992,

pp. 409 - 417.

[Good, 92] Goodchild, M. F. : " Geographical Data Modelling", Computers and

Geosciences, Vol. 18, No.4, 1992, pp. 401 - 408.

[Greg,91] Greg Voss: " Object-Oriented Programming: An Introduction", Osborne

McGraw-Hill, Reading, 1991.

54

55

[Gutt., 84] Guttman, A. : "R -Trees: A Dynamic Index Structure for Spatial

Searching"., Proc. of the ACM SIGMOD Int. Conf., on Management of

Data, 1984, pp. 47 - 57.

[HS, 92] Hoel, G., Erik., Samet Hanen : ~~A Qualitative Study of Data Structures for

Large Line Segment Databases''', ACM Sigmod~ 1992, pp. 205 - 214.

[KA,90] Khoshafian, S., Abnous, R. : Object Orientation.. Concepts, Languages.,

Databases, User Interfaces, John Wiley & Sons.. Reading, 1990.

[KD, 76] Klinger, A., Dyer, C.R. : "Experiments in Picture Representation Using

Regular Decomposition", Computer graphics and Image Processing, Vol.

5, No.1, March 1976, pp.68 - 105.

[Krug, 93] Kruglinski, D. J : "Inside Visual C++", Microsoft Press, Reading,

Washington, 1993.

[Knut,73b] Knuth, D. E. : "Sorting and Searching", The Art of Computer

Programming, Vol. 3, Addison - Wesley, Reading, MA, 1973, pp. 554.

[LODL, 92] Lu, H., Ooi, B. C., D'Souza, A., Low, C. C. : " Storage management in

Geographic Information Systems", Lecture notes in Computer Science,

Advances in spatial databases, 2nd Symposium.. SSD 1991, Zurich,

Switzerland, August 1991 Proceedings, pp. 451 - 470.

[Mand, 93] Mandelkem, D. : "Graphical User Interfaces: The Next Generation",

Communication of ACM, April 1993, pp. 36 - 40.

[MSVC,93] Microsoft Visual C++, Development System for Windows, Microsoft

Press, 1993.

[Nanc,94] Nancy, N. : "Borland's and Microsoft's Latest Reflect Different

Priorities", Byte, November 1994, pp. 38.

[NHRB,90] Nobert., B., Hans" P.K., Ralf, S., Bernhand, S. : "The R* Tree: An

Efficient and Robust Access method for Points and Rectangles", ACM

SIGMOD, New York, Vol. 19, No.2, 1990,.pp. 322 - 331.

56

[NK,92] Nixdorf, T., Kiyooka, G. : "Substance and Style: GUI design and culture",

Computer Language, February 1992, pp. 43 - 58.

[0H, 91] Orfali, R. , Harkey, D. : "Get GUI", Computer Language, July 1991 ,

pp. 36 - 66.

[Reddy, 93] V. C. S. Reddy Kummetha. : "A Level Linked R* Tree Structure With an

Application Using X-Window Graphical Interface", Master's thesis,

Department of Computer Science, Oklahoma State University,

December, 1993.

[Robi, 81] Robinson, J.L. : "The k-d-B tree: a Search Structure for Large

Multidimensional Dynamic Indexes", Proceedings of the SIGMOD

Conference, Ann Arbor, MI, April 1981, pp. 10 - 18.

[Same, 90] Samet, H. : The Design and Analysis of Spatial data structures, Addison

Wesley, Reading, MA, 1990.

[SHS, 86] Stonebraker, M., Hanson, E., Sellis, T. : "Rule Indexing Implementations

in Database Systems", Proceedings of the First International Conference

on Expert Database Systems, Charleston, SC, October, 1986.

[Stev,46] Stevens, S. : "On the Theory of Scales of Measurement", Science

Magazine, Vol. 103, No. 2684, pp. 677 - 680.

[Vert, 91] Verts, W.T. : "Object - oriented Spatial data Structures", Remote Sensing

Tech. Pap 91, ACSM ASPRS Annual convention Papers published by

ACSM, Bethesda, MD, USA, pp. 455 - 462.

[Vois, 91] Voisard, A. : "Towards a Toolbox for Geographic User Interfaces",

Advances in Spatial Databases, 2nd Symposium, SSD 1991 ~ Zurich,

Switzerland, August 1991 Proceedings, pp. 75 - 97.

APPENDIX - A

99 categories
Grady County OK, Soils Map - 4 Hectares (9.88 ac.)

Attribute Name of soil Rectangles occupied

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11 :
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

no data
Amber very fine sandy loam, 1 to 3 percent slopes
Bethany silt loam, 0 to 1 percent slopes
Cyril fine sandy loam
Dale silt loam
Darnell-Noble complex, 8 to 20 percent slopes
Dougherty fine sand, 0 to 3 percent slopes
Dougherty-Eufaula complex, 3 to 8 percent slopes
Eufaula fine sand, 5 to 12 percent slopes
Eufaula-Stephenville complex, 8 to 20 percent slopes
Gracemont fine sandy loam
Gracemore soils
Grant silt loam, 1 to 3 percent slopes
Grant silt loam, 3 to 5 percent slopes
Grant silt loam, 2 to 5 percent slopes, eroded
Grant-Port complex, 0 to 12 percent slopes
Keokuk very fine sandy loam
Kirkland silt loam, 0 to 1 percent slope3
Konawa loamy fine sand, 0 to 3 percent slopes
Konawa-Stephenville complex, 2 to 8% slopes, severely eroded
Lela silty clay
Lucien-Nash complex, 5 to 12 percent slopes
McLain silty clay loam
Minco very fine sandy loam, 5 to 8 percent slopes
Minco very fine sandy loam, 8 to 30 percent slopes
Minco silt loam, 0 to 1 percent slopes
Minco silt loam, 1 to 3 percent slopes
Minco silt loam, 3 to 5 percent slopes
Nash loam, 3 to 5 percent slopes
Nash loam, 5 to 8 percent slopes
Nash-Lucien complex, 1 to 5 percent slopes

57

10851
142
986
362
1468
299
109
1208
244
244
971
368
946
793
3643
1711
185
911
1171
953
205
7380
758
309
171
186
1283
2410
753
831
2367

Attribute Name of soil

58

Rectangles occupied

31 :
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
81 :
82:
83:
84:
85:
86:
87:

Noble fine sandy loam, 1 to 3 percent slopes
Noble-Darnell complex, 3 to 5 percent slopes
Norge silt loam, 0 to 1 percent slopes
Norge silt loam, 1 to 3 percent slopes
Norge silt loam, 2 to 5 percent slopes, eroded
Pocasset silty clay loam
Pond Creek silt loam, 0 to 1 percent slopes
Pond Creek silt loam, 1 to 3 percent slopes
Port fine sandy loam, overwash
Port silt loam
Pulaski fine sandy loam
Quinlan-Rock outcrop complex, 12 to 30 percent slopes
Reinach silt loam
Renfrow silt loam, 1 to 3 percent slopes
Renfrow silt loam, 2 to 5 percent slopes, eroded
Renfrow silt loam, 2 to 5 percent slopes, serverely eroded
Renfrow-Hinkle complex, 1 to 3 percent slopes
Stephenville fine sandy loam, 1 to 3 percent slopes
Stephenville fine sandy loam, 3 to 5 percent slopes
Stephenville fine sandy loam, 2 to 5 percent slopes, eroded
Stephenville fine sandy loam, 2 to 8% slopes,severely eroded
Stephenville-Darnell complex, 1 to 3 percent slopes
Stephenville-Eufaula complex, 3 to 8 percent slopes
Stephenville-Pulaski complex, 0 to 12 percent slopes
Teller loam, 1 to 3 percent slopes
Teller loam, 3 to 5 percent slopes
Teller loam, 2 to 5 percent slopes, eroded
Teller loam, 5 to 8 percent slopes
Tivoli loamy fine sand
Windthorst fine sandy loam, 1 to 3 percent slopes
Windthorst fine sandy loam, 2 to 5 percent slopes, eroded
Yahola fine sandy loam
Zaneis loam, 1 to 3 percent slopes
Zaneis loam, 3 to 5 percent slopes
Zaneis loam, 2 to 5 percent slopes, eroded
Zaneis loam, 2 to 8 percent slopes, severely eroded
Fill
Borrow Pits
Gravel Pits
Mine Pits and Dumps
Oil-Waste Land
Pits
Pits, Quarries

427
902
353
1287
486
253
256
440
1104
3584
464
694
860
1264
1490
501
183
689
2441
2358
1908
2086
2062
434
624
294
1338
197
39
465
194
2279
619
313
3022
2108
o
o
o
o
o
o
o

Attribute

88:
89:
90:
96:
97:
98:
99:

Name of soil

Quarries
Slickspot
Strip Mines
Water, Sand Channel
Urban
Water
Border

59

Rectangles occupied

o
o
o
126
o
200
1246

VITA

Sujatha S. Neelam

Candidate for the Degree of

Master of Science

Thesis: DESIGN AND IMPLEMENTATION OF AN EFFICIENT INDEX
STRUCUTURE AND A GUI FOR SPATIAL DATABASES USING
VISUAL C++

Major Field: Computer Science

Biographical:

Education: Graduated from Sri Satya Sai Institute of Higher Learning,
Anantapur, AP, India, in 1982. Received Bachelor of Technology degree
in Electrical and Electronics Engineering from Sri Venkateswara
University, Tirupati, AP, India, in May 1986. Completed the requirements
for the Master of Science degree with a major in Computer Science at
Oklahoma State University in May 1995.

Experience: Worked as HelpDesk Consultant at the HelpDesk, University
Computer Center, Oklahoma State University, 1992 to present.

