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Chapter I

INTRODUCTION

Artificial neural networks (ANNs) is a subject that has

captivated the interest of thousands of technologists,

scientists, and mathematicians. The idea of training,

instead of programming, a system to learn information

processing functions has intrinsic appeal [Nie190].

Since the development of digital computers in mid

1940's, the basic approach of solving a problem using

programs involved devising an algorithm and/or a set of

rules for solving the problem [Nie190]. In order to

accomplish such tasks, the problem must be described in

terms of known algorithms or rules. If such rules or

algorithms are not known, then they must be developed. In

some cases the problem is so complicated that its solution

requires a considerable amount of time. On the other hand,

artificial neural networks don't require a set of rules or

algorithms to be able to solve a problem; they can learn to

solve a problem on their own. This approach can

significantly reduce the quantity of software that must be

developed in order to solve problems [Nie190].

One of the problem areas in which artificial neural

networks have shown significant success is that of character

recognition. The basic idea is to teach a neural network to

recognize and classify written characters. The artificial
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neural network can learn to recognize one or more sets of

characters such as typed, or hand-written characters.

Chapter II discuss the Optical Character Recognition

(OCR) applications, and the standard methods used in the

recognition stage. Chapter III introduces the theory of

Artificial Neural Networks: its definition, learning laws

used, and architecture. Chapters IV, and V describe the

steps taken to evaluate the performance of several neural

network architectures and the methods used in such

evaluations. Chapter VI, gives a conclusion and

recommendations for future research.
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Chapter II

OPTICAL CHARACTER RECOGNITION

The topic of character recognition is not a new

research field. Relevant literature can be traced back as

early as 1870 [Govi90]. The first successful application

was developed by the Russian scientist Tyurin in 1900. In

recent years, the developments of optical character

recognition (OCR) applications expanded from English or

Latin to Chinese, Japanese, Arabic, and the characters of

many other languages [Govi90][Chou91][Upda92]. The next few

sections discuss the topic of OCR in more detail, explaining

its benefits and the methods it uses in recognizing

characters.

2.1 OCR Application

OCR technology has many practical uses in the real

world. For example, it can be used in reading tools

especially for blind people, in telecommunication

applications for the deaf, in postal departments for postal

address reading, and as reader for handwritten and printed

zip codes. It can be also used in the publishing industry

and as a reader for data communication terminals. Moreover,

it can be used in large-scale processing of document and in

financial business applications such as cheque sorting,

digital bar code reading, and health insurance data

acquisition.
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2.2 Standard OCR Techniques

Early attempts to develop OCR applications were

encouraging for a limited set of characters. The principle

incentive for the development of OCR systems is the need to

cope with the enormous flood of paper such as bank checks,

commercial forms, government records, credit card imprints,

and mail generated by the expanding technologies in society

[Govi90]. The two methods used to recognize characters were

template matching and feature analysis and match

[Govi90][Impe91].

2.2.1 Template Matching and Correlation Technique

Template matching and correlation method of OCR

directly compares an input character to a standard set of

prototypes stored in the system. Figure 1 shows a template

of the number 5.

00000000
01111110
01000000
01000000
01111110
00000010
00000010
00000010
01111110
00000000

Figure 1. Simple template for number 5

The prototype that matches most closely with the input

character will provide the corresponding character[Impe91].

4



However, the disadvantages of this technique are its

sensitivity to noise and its failure to adapt to differences

in writing style. Current OCR applications that use

template matching rely on advanced template matching

techniques such as the variant template matching [Impe91].

In this method, matching can be performed using logical

rules. Figure 2 shows a varied template for the number

zero. In this case a character will be recognized as zero

if it satisfies the following rules:

(at least 5 'a's are '1 ' or at least 4 Ie's are '1 ' ) and

(at least 5 'b's are 'I' or at least 4 'f's are ' I' ) and

(at least 5 'CIS are ' I' or at least 4 'gig are '1 ' ) and

(at least 5 'd's are 'I' or at least 4 'his are 'I' ) and

(at least 3 Ii's are '0' ) and

(at least 3 'j's are '0').

Where '1' represent the dark pixels that form the character,

and '0' represent the blank pixels.

0000000000
OOOaabbOOO
OOaeeffbOO
OaeOOOOfbO
OaeOiiOfbO
OaeoiiofbO
OaeOOOOfbO
OcgOOOOhdO
OcgOjjOhdO
OcgOjjOhdO
OcgOOOOhdO
OOcgghhdOO
OOOccOdOOO
0000000000

Figure 2. Varied Template Matching for Number Zero
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2.2.2 Feature Analysis and Match

In the Feature Analysis and Match method, a specific number

of features are extracted from the input character and then

compared to the feature description of ideal characters.

The description that matches most closely provides

recognition. A few of the problems such methods fail to

adequately address are [Impe91]:

A. Shape discrimination: A single character has a wide

variety of fonts, e.g. Gothic, Elite and Orator.

Moreover, handwritten characters have an infinite number

of free styles.

B. Deformation of the image: This problem can be classified

into three parts. First, noise, such as holes or breaks

in a line or isolated dots. Second, translation, e.g.

the movement of an entire character or its components.

Finally, Rotation, e.g. a change in the orientation of a

character.

C. Variation in sizes and pitch of the characters: The

pitch of 10, 12, or 17 specifies that there are 10, 12,

or 17 characters per inch (cpi), :0 pitch characters are

usually larger in both width and height than those in 12

pitch.

One algorithm used in feature extraction is called the

Crossing technique [Impe91]. In this technique, features

are measured from the numbers of times the character shape

is crossed by vectors along certain directions , e.g.,
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OO,450 ,900,or 190°. Figure 3 illustrates a 45° crossing

method for the number two [Impe91]. The advantage of such a

technique is its tolerance to distortions and small

stylistic variations.

Figure 3. Crossing Technique [Impe91]

Several other techniques can be found in the literature and

some are used widely in the OCR software industry [Impe91]

[Govi90] [Guyo91] [Down91].
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Chapter III

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are essentially

simple structures. However, it is helpful to have a general

idea about the fundamental structures of a neural network

and a brief description of its components.

3.1 Definition of a Neural Network

A directed graph consists of a set of points (called

nodes or vertices) along with a set of directed line (called

links or edges) between them. An artificial neural network

is a parallel distributed information processing structure

in the form of a directed graph, with the following sub­

definitions and restrictions [Nie190]. The nodes of the

graph are called processing elements and the links of the

graph are called connections. Each connection functions as

an instantaneous unidirectional signal-conduction path which

is assigned a value called weight. A processing element can

receive any number of incoming connections (also called

input connections) and can have any number of outgoing

connections. The signals in all of the outgoing connections

of a processing element must be the same. Processing

elements can have local memory and a transfer function that

uses (and alters) the local memory along with input signals

to produce the processing element's output signal. In other

words, the only inputs allowed to the transfer function are

the values stored in the processing element's local memory
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and the current values of the input signals in the

connections received by the processing element. The only

outputs allowed from the transfer function are values to be

stored in the processing elements local memory and the

processing element's output signal. Transfer functions can

operate continuously or episodically. If they operate

episodically, there must be an input called "activate" that

causes the processing element's transfer function to operate

on the current input signals and local memory values to

produce an updated output signal (and possibly to modify

local memory values). Continuous processing elements always

operate. The "activate" input arrives via a connection from

a scheduling processing element that is part of the network.

Finally, input -s·ignal-s from outside the network arrive via

connections that originate in the outside world. Outputs

from the network to the outside world are connections that

leave the network [Niel90].

3.2 Neural Network Connections

The data type of the signals carried by the connections

of the various layers of a network can vary from one

application to another. The signal type can be of an

unlimited variety of mathematical data types (real numbers,

complex numbers or integers, etc.).

9



3.3 Neural Networks Learning Laws

There are several classical neural network learning

laws [Nie190]. These laws are written as equations that can

be used in the training of a network. The two basic

categories of learning for ANNs: supervised and unsupervised

learning laws. There are several types of learning laws

under each category.

The supervised learning implies that the network

receives an input vector X and emits a vector Y. The

network is trained by supplying it with a sequence of

input/output pairs (X,Y'). X is the input vector and Y' is

the desired or correct output vector. During training, the

network compares its actual output Y with the output given

to it by Y'. The network then computes the difference

between y' and y and makes the adjustment in the weight

vector(s) W of the processing connections. Unsupervised

learning does not require the user to provide output vector

Y'. Instead, the network modifies itself in response to the

input vector X only. The process is called Competitive

Learning, where a competition process involving some or all

of the processing elements of the neural network takes place

to determine which node will be able to change its weight

vector to represent the input vector, before each episode of

learning [Nie190].

The learning in ANNs is accomplished through the

modification of the processing elements weight vectors using
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the learning law of the processing element. In an ANN with

N processing elements (assumed to be indexed from 1 to N)

with its weight modified by the learning law, a network

weight vector, is the vector formed by concatenating all of

the weights of all of the individual processing elements of

the network. The network weight vector can be written as:

W = (wII' w12' · · · · , wIn' w2I ' w22' · · · · , w2n' wNl ' wn2' · · · · , wNn )

= ( wI ' w2 ' • • • , wN )

Where wxy is the weight associated with the connection

between node x in layer 1 and node y in layer 2, and the

vectors wl,w2, ••• ,wN are the processing element weight

vectors of the processing elements 1,2, ....N, respectively.

3.3.1 Neural Networks Training and Test Sets

The input vectors used to train and test ANNs is

divided into two sets. The first used contains input

vectors and/or output vectors to train the network. This

set is called the training set. In order to evaluate the

networks performance after many epochs (training cycles) of

training the network is supplied with another set of input

vectors. This set is called the test set. The network then

performs the computation required and produces its output.

The network's output is compared with the actual output and

the percentage of successful classifications by the network

shows the level of the network's performance.

Some learning laws include a variable called the

learning rate (usually denoted by a) with a recommended

11



value 0 < a s 1. The learning rate is used to control the

change in weight vectors values during training. The

learning law usually start with a high number (a > 0.70) and

then reduced to zero by time (in some networks such as BPNN

the learning rate remains constant). The reason behind such

values is that at the beginning the values of the weights

are far from the optimal weights needed to train the

network, therefore a giant changes are required (i.e.,

"coarse" adjustment). However, during many training cycles

the weight vectors are close to the optimal value

(Performance error is minimal) and therefore, a smaller

changes in the weight vectors is required (i.e., "fine"

adjustment).

3.4 Backpropagation Neural Network

The backpropagation neural network (BPNN) is one of the

most widely used neural networks. The BPNN used in this

research consists of an input layer, an output layer and one

or more hidden layers (Figure 4). A hidden layer plays a

particular role in the learning process. However, the user

is not aware of its output signals. The only visible

vectors are the input vectors and the output vectors of the

output layer. Any other computation are "hidden" from the

user. Therefore, they are hidden units. The dimensions of

the input layer is equivalent in size to the input vector

for the network plus the threshold node. The threshold unit

is a unit with input signal set to 1, and a weight vector w.

12



The purpose of the threshold unit is to move the weight

vector to achieve the desired classification. The output

layer size is equal to the number of outputs the network

must generate. The learning algorithm is called

backpropagation and typically starts with a random set of

OUTPUT
LAVER

HIDDEN
LAVER

INPUT
LAVER

Figure 4. Backpropagation Neural Network [Rich91]

weights Wlij(input to hidden layer weight vectors) and

W2ij (Hidden to output layer weight vectors). The weights

are set to random values, the recommended values of the

weights are between -0.1 and 0.1. If the network consist of

N (N > 1) hidden layers then the network consist of N+2

layers (input layer (layer 1) , output layer (layer N + 2)

and N hidden layers. The weight vector Wn is the vector

weight from layer n to layer n+1, for n = 1 to N+1. Each

training cycle requires two stages: a forward pass and a

backward pass. In the forward pass, an input-output (x,y)

13



pair is presented to the network, and the network propagates

the input vector to the output layer. Each node computes

its potential y (output signal) using the activation

function: y = 1 / (1+ e- sum ), where sum is the weighted sum

of the inputs to the unit (Ex.w). In the backward stage,

the network computes the error between the actual network

output and the desired output. Then, the network adjusts

the weights of the processing elements vectors to minimize

the error.

The major disadvantage of BPNN architecture is

overtraining the Backpropagation network (see figure 5)

[Nie190][Zeid91].

'aill

, (test s8t)

(---) : Approximate performance level of network in

operational environment if training is stopped.

Figure 5. Training Set Error vs. Test Set Error as a

Function of the Number of Training Cycles
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Figure 5 shows that as training of BPNN progresses, the

network performance error decreases over both the training

and test sets until it reaches a specific value then they

level out. However, if the same set of training examples

are presented repeatedly to the network, the performance

error of the training set remains unchanged. However, the

test set performance error starts to increase until it level

out again. This phenomenon is called "memorization". To

avoid such phenomenon, the training of the network should

stop at the point that the performance error of the test set

starts to increase and the train set performance error

starts to increase. However, this strategy does not work

all the time. In some cases the performance error of the

test set starts to increase then, after more training cycles

it starts to decrease again.

The supervised learning algorithm used in training the

BPNN is as follows [Rich91]:

1. Let A be the number of units in the input layer; B

the number of units in the hidden layer; and C the

number units in the output layer (Figure 5). Note

that one unit is added to both the input layer and

the hidden layer to act as a threshold. Set the

thresholds for the input layer Xo and the threshold

for the hidden layer hO to 1.

15



2. Initialize the weights

W1 ij (i = 0 •••• A , j = 1 •••• B) and

W2ij (i = O.... B, j = 1 ... e), with random numbers

between -0.1 and 0.1.

3. Choose an input-output pair (Xi' Yj).

4. Propagate the activation from the units in the input

layer to the units of hidden layer using the

activation function

1h·=------
~ -"'" W1 xl+e ~1·0 1j i

where j = l, ... ,B.

5. Propagate activation from the units in the hidden

layer to the output layer using the activation

function

_ 1°i----~--P12-h­
1 +e -Ll1-0 1j i

where i = l, ... ,C.

6. Compute the error vector 62 ~n the output layer

units using the function

where j = l, ... ,C.

7. Compute the error vector 61 in the hidden layer

units using the function

16



where j = l, ... ,B.

8. Adjust the weights between the hidden layer and the

output layer using the function

AW2ij='1- 62 j _hi

where ~ is the learning rate, i = O, .... ,B, and

j = 1, ... ,C.

9. Adjust the weights between the hidden layer and the

output layer using the function

AWlij='l- alj_Xi

where ~ is the learning rate, i = O, .... ,A, and j =

1, ... , B.

11. go to step 3 and repeat. When all the input-output

pair have been presented to the network, one epoch

has been completed. Repeat as many times as

desired.

3.5 Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is an artificial neural

network architecture proposed by Teuvo Kohonen during the

period 1979-1982 [NieI90][Koho89]. The Kohonen model of

Self-Organization is based on the notion that the brain

17



tends to compress and organize sensory data spontaneously

[Zeid91].

The architecture of the SOM used in this research is

defined to be a two-dimensional map that, from a random

starting point, can find the natural relations among

patterns without any outside guidance [Hiot93]. The SOM

consists of two layers, the input layer, and a the two-

dimensional map (some SOM networks use one-dimension or

more) also called Kohonen layer (see Figure 6). The SOM

network is trained using an unsupervised learning algorithm.

Winning Hode

Figure 6. SOM Architecture [Caud93]

The two layers are fully connected [Caud93], [Hiot93]. The

number of input nodes in a network determines the dimensions

that the SOM has to work with. The two-dimensional Kohonen

layer processing elements can be arranged in two ways, the

18



Ilectan~'llar

Figure 7. Hexagonal and Rectangular Topologies

Hexagonal or the Rectangular representations (see Figure 7).

The hexagonal topology is more effective for visual display

[Koho89]. This is true since the edges of the array of

nodes ought to be rectangular rather than square.

Kohonen built his architecture from his observation that

neural networks in the brain tend to consist of layers of

neurons. The learning process of the layers comply with the

Mexican Hat function (Figure 8). According to this function

an excited unit tend to excite units of a certain

distance from it, and inhibits those units that are not

near. Implementing the "Mexican Hat" function as part of

the learning algorithm for the SOM network is an expensive

process in terms of computer time. Consequently, the SOM

architecture takes a short cut to achieve the effect of the

Mexican Hat function.
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Figure 8. "Mexican Hat" function [Zeid91]

Figure 9 shows a commonly encountered architectural

arrangement called an on-center/off-surround or lateral-

inhibition structure. Each processing element (represented

On-Center

Off-surround

Figure 9. On-Center/Off-Surround Structure
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by a dot) in this case, receives two different classes of

input, "excitatory" class 1 inputs from nearby processing

elements, and "inhibitory" class 2 inputs from more distance

processing elements. The effects of a single processing

element's output on surrounding processing (Neighborhood)

elements comply or resemble the effect of the "Mexican Hat"

function [Nie190][Zeid91]. In SOM architecture there is no

lateral connections between the processing elements of the

Kohonen layer. That is, there is no links between nodes and

there is no propagation of signals between nodes of the

Kohonen layer. Nevertheless, the weight update is modified

to include neighborhood nodes as described in the on­

center/off-surround structure [Hert91].

The advantage of using this type of architecture is

that when a node is allowed to change its weight vector to

close the Euclidean distance with the input vector, the

nodes with the certain neighborhood distance will also

change their weights. In this case more variation of the

input vector are represented in the Kohonen layer.

During training, the nodes that are topologically close

in the array up to a certain distance (radius) will activate

each other to learn from the same input [Koho89]. This

distance is called the neighborhood Kernel. The two popular

functions used to determine this neighborhood are the

"bubble" function and the Gaussian function. The bubble

function refers to a neighborhood set of array nodes in the
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Kohonen layer [Koho89]. Let Nc denote this set of nodes;

then the neighborhood Kernel hci is defined as hci = aCt) if

i € Nc and hei = 0, if i ENe' where aCt) is some

monotonically decreasing function of time (0 < a < 1), i is

a node in the Kohonen layer, c is a defined radius. The

second function is the Gaussian function

( - lire - ri 11 2

h· = aCt) * exp
Cl 2 cf (t)

where aCt) is the learning rate, and aCt) defines the width

of the Kernel; ri and r c are the radius vectors of nodes c

and i in the Kohonen layer, and I Ire - ril I is the

Euclidean distance. The final result of training the SOM

network is that similar input vectors are presented by one

or more nodes in the Kohonen layer. Each node that

represent a class of input vectors will be labeled by that

class.

Studying the SOM architecture, several advantages can

be found. First, the SOM has fewer parameters to adjust

during the learning process than most other networks.

Second, the SOM can use an unsupervised learning algorithm

or a supervised learning algorithm called Learning Vector

Quantization (LVQ). Third, learning time is several times

faster than that of backpropagation since the learning laws

of the SOM require the adjustment of fewer processing

elements during training compares to backpropagation. The
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backpropagation requires the adjustment of all weights of

the processing elements in every layer. Fourth, when the

SOM reaches its optimal performance within specified number

of nodes, increasing the number of nodes will not decrease

the performance of the network. This is also true for the

Counterpropagation network but not for the Backpropagation

network. Finally, the network learning laws tend to

decrease the weight adjustment of its nodes to a very

insignificant number when it reaches its equilibrium. As a

result, the problem of overtraining the network will be

eliminated.

Several learning algorithms have been proposed for

training the SOM network [Caud93] [Hiot93] [Teno90]. The two

basic learning algorithms are the unsupervised algorithm

(Kohonen law) and the supervised learning algorithm known as

Learning Vector Quantization (LVQ). The process of mapping

input vectors to the Kohonen layer is usually done with the

unsupervised learning algorithm. The process of learning in

the SOM involves several steps. The following are brief

points of the steps used in the unsupervised learning

[Caud93] [Zeid91]:

O. Define Xi to be an input vector, and Wij to be the weight

vectors from the input layer to the Kohonen layer.

The weight vectors are normalized vectors with

initial values set to random numbers. The recommended

value is between 0.0 and 1.0.
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1. The node with the smallest Euclidean distance from

the input vector Xi is considered the best matching

node. The equation used to compute the

Euclidean distance Ii of neurode i is:

I.=~ W.jX.
~ ~i=l ~ ~

2. The reference vectors of the winning node and those

of neighboring nodes within a determined

neighborhood will be modified. The equation to

modify the weights of the nodes is:

where ~ is the learning rate.

3. The learning rate and the neighborhood width are

reduced proportionally with the length of the training

elapsed thus far.

4. If the learning rate ~ reaches zero or a specified value

then stop the learning process; otherwise, Go to step 1.

The LVQ algorithm is the same as the unsupervised

algorithms except that the winning nodes are predetermined.

As a result, the second step which determines the winning

node will be eliminated. The LVQ learning algorithm is used

when the classes of the input vectors are known in advance

and a specific picture of which nodes will represent a

specific class is desired. This algorithm is not used in
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this paper, therefore, we will not go into detail in this

subject.

At the end of training some nodes in the Kohonen Layer

are labeled by one of the characters. A graphical

visualization of the Kohonen layer can be displayed on the

screen. A grid of the size used in the training is shown,

and each node displays its label (the assigned character).

Figure 10 shows an example of how the Kohonen layer will be

graphically represented with the label of the nodes

attached.

Figure 10. Graphical Representation of Kohonen Layer

Nodes and the Labels

3.6 Counterpropagation Network (CPR)

The idea of CPN is to combine the Kohonen layer with

another layer employing Grossberg learning into one

network (Figure 11) [Nie18?].
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The Grossberg's learning law equation is:

where 0 < a < 1 , and

u(s) = { 1 if 8>0
o otherwise

Xi is the input vector, Yj is the desired output vector and

wi is the weight vector of processing element i.

KOHONEN
LEARNING

OUTPUT LAVER

KOHONEN LAVER

INPUT LAVER

Figure 11. Counterpropagation Network [NieI87]

The network consists of three layers. An input layer

(layer 1) containing n units that multiplex the input vector

x (x = xI,x2' .•. ,xn) and m units that supply the "desired"

output vector y (y = YI' Y2 ' · · · , Ym) • The second layer (layer

2) is a Kohonen layer that consists of N processing elements
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that have the output signals vector z (z = zl,z2, ... ,zN).

The last layer (layer 3) has m processing elements that

employ the Grossberg learning law. The network is trained

by introducing it to a sequence of input-output pairs

(Xn'Ym). During training, the transfer function equation

for layer 2 is:

1 if i1dis the sma~lest integer for which
D(wiO ,x) ~ D(WjO ,x) for all j

o Otherwise,

where D is a distance metric. The winning node of layer 2

will adjust its weight using Kohonen learning laws (see

section 5.2.2). After the completion of layer 2

computation, layer 3 receives the z signals from layer 2.

Grossberg Laws are used to adjust the weights of all the

processing elements of layer 3. To compute the actual

output vector of the network the following equation is used:

y!=~ w··z.
~ Lij=l ~J J

The algorithm used to train the CPN works in two

stages. The first stage will equilibrate the Kohonen layer

with equiprobable weights. In the second stage, layer 3

learn to compute the average of the correct Y vectors

associated with each processing element weight vector Wi of

layer 2. The algorithm used to train the CPN is as follows

[Niel87]:
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Step 1: Compute the Euclidean Distance for all the nodes in

Kohonen layer using the equation:

I.='r"l W..x.
~ £..Ii=l ~J ~

Where Wi the weight vector of node i in Kohonen

layer, x is the input vector.

Step 2: The winning processing node has its output signal

set z to 1, and the rest to O.

step 3: The node with the smallest Euclidean distance I is

allowed to change its weight using the equation:

where wi is the weight vector of the winning node i,

x is the input vector, and ~ is the learning rate.

Step 4: Adjust the weight vectors of layer 3 nodes using the

following equation (which include Grossberg learning

law) :

U!1~W=u?~d+a[-u?~d+y.] z.
J~ J~ J~ ~ ~

where ui is the weight vector of the j th processing

element of layer 3, and a is the learning rate

(0 < a < 1) of the Grossberg learning law.

Step 5: If more learning cycles are needed go to step 1;

otherwise stop.
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Several variations of the counterpropagation algorithm

exist. Most of the proposed variants deal with the learning

algorithm rather than the basic artificial neural

architecture [Bord93]. The main difference between the

traditional counterpropagation and the one proposed by Bord

[Bord93] involves the strategy of assigning initial weights

for the units. The alternative placement method for the

weights is accomplished by setting the initial weight vector

to each Kohonen neuron equal to the normalized average of

the input vectors from each class [Bord93]. The performance

of the network can exceed the performance of the traditional

CPN. Improvement from a 77% successful classification rate

for the random weights to around 97% for the variant method

was achieved in Bord's research [Bord93].

3.7 Neural Networks as Character Recognizer

Hand-printed character recognition using neural

networks is an area of great interest to researchers and

businesses worldwide. In recent years, artificial neural

networks have become increasingly popular for applications

in character recognition and many papers have been published

about this field. A multilayer neural network with a

backpropagation learning algorithm is one of the most widely

used and studied networks for character recognition. A few

other neural network architectures have been suggested in

recent years. Such as Self-Organizing Maps (SOM) and
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counterpropagation neural networks [Bord93] [Guyo91]

[Kner92].

Most of the neural network architectures used in

character recognition can perform significantly well even

with incomplete input data. As a result, neural networks

can solve some problems encountered in character recognition

applications. Shape discrimination is still a problem

because a single handwritten character has infinite shapes

and sizes depending on people's styles of writing (Refer to

Figure 12). Another problem is the structure of the

characters. Some characters may be broken, touching, or

overlapping.

COUJ:J..ex­
.P.BCD2FGHIJKra~oPOR&TUVLfX~J

L ... Y.rL
ADCDGJ."'GHIJKLMNOPQRSTUV,rxn

Ck,c •• o
IBlltrD1141llftepOIS11UIW'Z

Glnw.
N3COEF'GHIJKl.MNOPQRSTUVWXVZ

TJDms
ABCDE.FGHJJKLMNOPQRS111VWXYZ

41ah
A~1Ii.rJ\l.l~- .

Figure 12. Fonts Sample [Bord93]

These problems in character recognition slow-down the

research in developing OCR application using ANNs. Most

research has concentrated on multilayer neural networks with
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the backpropagation learning algorithm. It has been

demonstrated that the backpropagation algorithm has an

excellent capability for capturing generalization [Bord93].

Although results have been encouraging, the backpropagation

algorithm has many disadvantages, including long training

time, numerous parameters to adjust, and the lack of a

graphical representation of the training results. Another

problem is the choice of the number of nodes of the

network's hidden layer. For example, if 10 hidden nodes can

solve the problem, there is no guarantee that a network

containing 20, 50, or 100 node will also solve it; chances

are they will not, and the results will be worse [Hiot93].

Several neural networks have been proposed to create a

character recognition application. New neural network

architectures have been proposed by several researchers in

the past few years [Bord93][Hert91][Koho89][Nie187].

However, few of these architectures were used in handwritten

character recognition. The research presented here tests

several neural network architectures using printed

handwritten characters and compares their performances to

the previously tested neural networks.
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Chapter IV

NETWORK IMPLEMENTATION AND TECHNIQUES

The investigation process for handwritten character

recognition is divided into three steps. The following is a

brief introduction to each step.

4.1 Neural Network Architectures and Learning Algorithms

The main architectures that are investigated in this

paper are the Self-Organizing Map in the form of Kohonen

network (SOM), the Counterpropagation network (CPN), and the

Backpropagation neural network (BPNN). The learning

algorithms for the networks are the Kohonen Learning

algorithm, the Supervised (Kohonen law) and the unsupervised

learning algorithm (Grossberg), and the Backpropagation

algorithm respectively.

4.2 Data representation

The handwritten characters used for the training and

test sets are collected by an X-window function named

bitmap. This function provide a grid of any size (for this

research a lOxIO grid), the user then can draw the letter

using a mouse (see Figure 13). The function stores the

character as a Hexadecimal numbers. The dark pixels that

form the letter are represented by ones and blank pixels by

zeros. The artificial neural networks use the binary

representation of the characters as the input data.
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Figure 13. Handwritten Character Grid for the Letter C

The data is transformed in three ways:

1. As row data:- In this step the data is given to

the neural networks without changing them in any form.

In the case of the SOM network however, the data is

normalized.

2. Shifting Data:- In this step each character is shifted

so that the left most column and the top row contain at

least one dark pixel. Figure 13 shows the letter C

without shifting, then Figure 14 shows the letter after

the shifting is performed.
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Figure 14. Character C after Data Shifting is Performed

3. Feature extraction is performed on each letter. Two

feature extraction algorithms are used.

A. A BPNN is trained to extract 14 different features

from the character (See Appendix D). The result

of this network is used as input data only for the

SOM network.

B. The crossing technique:- For an input vector of

size lOxl0, the crossing technique (described in

section 2.2) will produce 19 input numbers. These

numbers are used as the input for the three

networks proposed in 4.1.

The training set consist of 120 data vectors. Test set

1 and test set 2 contain 64 and 120 input vectors

respectively. The size of the input vectors vary depending

on the data representation used. The normal and shifting

data representation input vectors are of size 10xlO. The

crossing technique and the feature extraction
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representations input vectors are of size 19 and 14

respectively. The number of training vectors is selected

from the notion that most researches used such numbers in

their papers.

4.3 Research Scope

All of the network architectures proposed (in section

4.1) are tested using the row data representations. The

results obtained from each test are used as the basis of a

performance comparison of the different architectures and

data representations.

4.4 Hardware and Software Support

Data preprocessing and the training of the neural

network architectures consume a large amount of CPU time.

Training neural networks involves large amounts of floating

point number manipulation. Therefore, a fast CPU with a

math-coprocessor is recommended to perform the task in

reasonable amount of time. The SOM network requires a

graphic monitor to visualize the output of the training (see

section 3.5).

The programs were implemented in Borland ANSI C

language, which support graphics for the SOM network

graphics. The programs run on an Intel 486DX-33MHZ computer

with 5 MB of RAM.

4.5 Description of the Programs

To accomplish the proposed research, several programs

were implemented for each artificial neural network
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architecture. Each neural network program consists of three

major parts. In addition, a few other minor programs had to

be written. The three major files (programs) for each

network are the header file, which contains all the

functions and data structures required to train and test the

neural network. The training program which contains the

main functions of a program to train the network. The third

program is the testing program which contains the main

functions of a program to test the neural network.

The programs need various parameters; see Appendix B

for the parameters of the programs. All the parameters that

are required by any program are given as a command line

options. The name of the option -- for example, the input

layer dimension, specified as -xdim -- is followed by the

value of that option. If one or more options are missing

the program will terminate.

4.6 Other Programs

In addition to the standard three files, other programs

were written to help with the evaluation of the networks.

4.6.1 Get_label

Some networks do not produce labels or letters as their

output, such as Backpropagation and CPN. As a result, this

program was written to read the n float numbers produced by

the network and create a new file containing the matching

label or letter. The two networks mentioned produce 26

floating numbers representing the 26 Alphabetical letters.
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The highest value of the 26 numbers is considered the winner

and its match label is printed. There are two reasons why

this function was written separately. The first reason is

modularity, the programs are written so each one perform

only one task. The second reason is usage, some network's

output is used as input for other networks. For example,

the BPNN is trained to extract features from the input

characters and produce output vectors of size 14 (See

section 4.2).

4.6.2 Match Program

This program reads and matches labels of the input

vectors and the labels of the network's output or the output

of get_label. The program then matches the labels and

computes the number of matches and the number of mismatches.

It then displays the results on the monitor. The parameters

required by this program are shown in Appendix B.

4.6.3 Randinit

This program is used by the SOM neural network program

to create the weight file for the network. The program will

produce numbers ranges between 0.0 and 1.0. The weight

vector of each node in the Kohonen layers is equal to the a

randomly selected normalized input vector. The parameters

required by this program are listed in Appendix B.

4.6.4 Maninput

This program offers two options designated by the

option -tech. The parameters -tech can have a value of 1 or
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2. A value of 1 instructs the program to perform the

shifting function on the input data vectors. A value of 2

instructs the program to perform a crossing technique on the

input data vectors. The result is stored in another file.

The name of the output file is set by the parameter -out

(see Appendix B).

4.7 File Formats

All data files (input vectors, weight vectors, target

vectors and output) are stored as ASCII files for their easy

editing and checking. All the files, except output files,

consist of specific size of floating-point numbers per line.

Each line represents an entry. For example, the first line

in the input files contains the 100 floating numbers that

describe a written character. The only deviation from this

format is required for the SOM network. In this case, each

data line may have an optional qualifier that determine the

usage of the data during training. The optional qualifier

is the fixed point qualifiers (-fixed) which is used by the

LVQ learning algorithm. The fixed point can be used to

force the network to pick the specified node (Fixed=2,5

represents x = 2 and y = 5) as the winning node instead of

the best matching node.

4.8 Stages Required in Evaluation of A Network

Each neural network architecture goes through at least

three stages during its testing. Some networks will add one
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or more stages in order to accommodate the requirements of

its input vector representation.

4.8.1 First Stage - Weight Initialization

The weight vectors of the network are first initialized

to random values. The SOM network uses the Randinit

program. The random number generator used by the SOM can

generate random numbers for one layer only (Kohonen Layer).

Therefore, the CPN and Backpropagation networks contain

their own random number generators in the header file.

4.8.2 Second Stage - Network Training

In this stage, the network is trained on the training

set data. No evaluation of the network's performance in

recognizing the input data is performed at this stage.

4.8.3 Third Stage - Network Testing

At this stage the network is tested using both the

training data set and a new set called the test data set.

The accuracy of the network in recognizing the input vectors

are evaluated using the match program (see section 4.4.2).
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Chapter V

NETWORKS PERFORMANCE ANALYSIS

In chapter III, the performance of three artificial

neural network architectures was examined. Each

architecture was tested using three data representations of

the same data sets (training set and test set). The next

sections will discuss the performance of each network

architecture for the three data representations. Note that

the tables presented in the next sections represent the

highest performance of a network with the least amount of

training cycles. Furthermore, the time required to perform

one training cycles is the same for the SOM network and the

BPNN. The CPN network required about twice the amount of

time.

5.1 Row (Normal Data Representation)

Normal (row) data, as explained in section 3.3, is the

100 float-point numbers (1.0 or 0.0) where 1.0 represents a

dark pixel (pixels forming the character) and 0.0 represents

white pixels. The grid used to write each letter is lOxIO

in size. The three architectures were trained and tested on

the same data sets; Table 1 represents the best performance

of the three proposed networks. It also includes the

configuration of the network, the number of epochs needed,

and several other variables needed by each network.

40



TABLE 1
NETWORKS PERFORMANCE ON NORMAL DATA REPRESENTATION

Train Test Test Ca Alpha Radius Epochs Config
Set Set 1 Set 2

SOM 100.0 67.5 77.8 N/A 0.85 3 4700 900
BPNN 100.0 72.5 79.7 N/A 0.90 N/A 16000 20
CPN 82.3 45.0 73.4 0.45 0.90 N/A 36000 90
BPNN
&SOM 100.0 59.2 75.0 N/A 0.90 3 6700 900

Table I, shows that all the networks with the exception

of CPN, performed significantly well on the training data

set. The ·SOM network required the least amount of training

cycles to achieve this level of performance (67.5% and 55.8%

for Test set 1 and Test set 2 respectively). On the other

hand, it required a large size (900 nodes) in the Kohonen

layer to accommodate for all the input vectors. The BPNN

achieved a higher performance over the test sets (72.5% and

79.7% for Test set 1 and Test set 2 respectively), but

required 16000 cycles to reach this performance. Moreover,

this performance was reached with only 100, 20, and 26 nodes

for the input, hidden, and output layer respectively,

compared to the 1000 nodes (100 for input layer and 900 for

Kohonen layer) for the SOM network. Figure 15 shows the

performance of all three networks as a function of training

epochs or cycles over test set 1.
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Figure 15. Performance ·vs. Epochs for Normal Data

5.2 Data Shifting

The data shifting is explained in section 4.3. The

results obtained with this type of data representation are

listed in Table 2. The BPNN architecture performance of

75.0% and 85.9% for test set 1 and test set 2 respectively,

was the best for this data representation. However, the

number of epochs required to train the network exceeded that

of the SOM architecture, the performance of which was almost

as good as that of BPNN.
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TABLE 2
NETWORKS PERFORMANCE ON SHIFTING DATA REPRESENTATION

Train Test Test Ca Alpha Radius Epochs Config
Set Set 1 Set 2

SOM 100.0 75.0 82.5 N/A 0.80 3 3700 900
BPNN 100.0 75.0 85.9 N/A 0.90 N/A 10000 20
CPN 80.1 54.7 66.7 0.45 0.90 N/A 36000 90
BPNN
&SOM 100.0 63.3 67.2 N/A 0.90 3 7000 900

The SOM network required 900 nodes for the Kohonen layer

compared to BPNN with only 20 nodes in the hidden layer.

The other two networks failed to reach the performance of

the SOM and BPNN networks. Figure 16 represent the

performance of the three networks on test set lover the

learning cycles or epochs.

eo
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o 5000 ooסס1 1eooo 20000 2J5OOO 30000 3!5OO0 40000

Epochs

----sou
--0-- BPNN

Figure 16. Performance VB. Epochs for Shifting Data
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5.3 Crossing Technique

Crossing technique is explained in section 4.3. The

results of such a representation are listed in Table 3.

TABLE 3
NETWORKS PERFORMANCE ON CROSSING TECHNIQUE DATA

REPRESENTATION

Train Test Test Ca Alpha Radius Epochs Config
Set Set 1 Set 2

SOM 100.0 54.2 52.4 N/A 0.80 3 4700 529
BPNN 100.0 53.3 52.4 N/A 0.65 N/A 54000 40
CPN 57.6 35.9 43.7 0.75 0.90 N/A 46000 90

Table 3 shows that the performance of the three

architectures over the test sets did not reach that of the

row data or data shifting representations. The reason

behind such a decline in performance is due to the fact that

no scaling of the input characters was performed. As a

result, the Crossing technique failed to represent all the

characters of the same class accurately. This problem did

not effect the research progress since the goal of this

research is to compare the performance of the networks over

the same data sets, not the minute differences between the

individual data sets.

5.4 SOM Architecture Analysis

Studying Tables 4, 5, and 6 (See Appendix C) a few

conclusions can be reached.

5.4.1 Radius Size

The network performed the best with the neighborhood
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radius set to 3 (see Figure 17). This is true for all three

data representations used. The reason behind such an

improvement in performance is that more than one node in the

100 - -!!

80~--
-

i 60-

J 40
20
0

0 2 3

Radi..

Figure 17. Radius of Neighborhood vs. Accuracy

Kohonen layer gets its weights adjusted (see Neighborhood

Kernel in section 3.2). Therefore, more variations of the

same letter can be represented in (or "remembered by") the

Kohonen layer.

5.4.2 Kohonen Layer Size

Trying different sizes for the Kohonen layer lead to

the conclusion that 30x30 or 900 nodes will lead to the best

results of the network. Increasing the size of the Kohonen

layer beyond this size does not improve the performance.

5.6.3 Alpha Variable

Changing the initial value of the learning rate (alpha

variable) did not change the performance of the network

significantly. However, most data representations (see
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Table 4 and 5 in Appendix C) required a value of 0.8 or

higher. On the other hand, shifting data representation

required a value of 0.85. Since a mathematical formula for

the value of alpha does not exist, there is no scientific

explanation for such a difference.

The SOM network performance over test set 1 for all data

representations is illustrated in Figure 18. It can be seen

that normal data performed best.
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Figure 18. SOM Performance VB. Epochs

5.5 Backpropagation Architecture Analysis

The analysis of the BPNN can be divided into three

parts.
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5.5.1 Hidden Layer Size

Experimenting with different sizes of the hidden layer

showed that a hidden layer with 20 nodes plus the threshold

node configuration yielded a better performance than any

other configuration (See Tables 7, 8 and 9 in Appendix C).

The performance of the network ranged from 52.4% for the

crossing technique (See Table 9) to 85.9% (See Table 8) for

the test data set.

5.5.2 Alpha Variable

The value of alpha (learning rate) required by the

network ranged from 0.65% for crossing technique data

representations (See Table 9) to 0.90 for the two other data

representation (See Tables 7 and 8). These values were

obtained by training the network with different values of

alpha.

5.5.3 Network Overtraining

One disadvantage of the BPNN architecture is

overtraining which was explained in section 3.4. Studying

figure 19 we can see that this problem was encountered in

this research. Figure 19 shows that the network performance

on the test data set starts to decrease after we exceed

12000 epochs.
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5.5.4 Network Convergence Rate

Figure 20 shows the performance of the network on test

set 1 for all data representation over the number of

training cycles.
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5.6 Counterpropagation Architecture Analysis

The CPN network did not perform as expected. Table 4

shows that the network did not reach a 100.0% performance on

the training set. The highest performance was 82.5%.

Moreover, the CPN performance on the test data set ranged

from 57.6% to 73.4%. The reason why the network failed to

produce higher performance is that the network used a radius

of 0 for the weight update algorithm. As a result, fewer

variations of the letters were represented in the

network, and the network failed to identify all the letters

in the training data set. No attempt was made to include

the radius parameter in the learning algorithm since the

proposed CPN architecture with radius of zero is the most

widely used architecture.

TABLE 4
CPN PERFORMANCE

Train Test Test Ca Alpha Epochs Config Data
Set Set 1 Set 2 Type

82.3 45.0 73.4 0.45 0.90 36000 90 Norm
80.1 41.7 66.7 0.75 0.90 46000 90 Shift
67.6 35.9 43.7 0.75 0.90 50000 90 Cross

5.7 Feature Extraction Using BPNN

A BPNN with 100-40-14 configuration used to extract 14

features from each letter and the output of the network was

used as the input data set for the SOM network. The BPNN

required 20000 epochs to yield an acceptable performance.

The SOM network recognized 100.0% of the train data set.
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However, it recognized 63.3% and 67.2% of the test data set

1 and test data set 2 respectively (See table 5). The

performance difference can be traced to the problems of

TABLE 5
PERFORMANCE FOR FEATURE EXTRACTION

Train Test Test Alpha Radius Epochs Data
Set Set 1 Set 2 Type

100.0 59.2 75.0 0.9 3 6700 Normal
100.0 63.3 67.2 0.9 3 7000 Shift

character recognition (See Chapter 1). Since the input data

vectors varied in size and no scaling

algorithms were used. The extraction network failed. to

capture all 14 features needed to recognize each character.

50



Chapter VI

CONCLUSION AND FUTURE RESEARCH

Neural network architectures are an approach to

information processing that do not require specific

algorithms or rule development to solve different tasks.

Each architecture has its own unique mix of information

processing capabilities, domains of applicability,

techniques for use, required training data, training

regimen, and so on [Nie190]. The networks employ different

learning algorithms such as the Backpropagation algorithm,

and supervised and unsupervised learning algorithms. This

research focuses on a small subset of the networks and the

data representations available in the research field.

Modifications or additions to the proposed research could

increase the performance of the networks and/or reduce the

amount of time required to train such networks.

6.1 Research Findings

Let's define time complexity as the time required to

train an ANN, and space complexity as the amount of storage

required by an ANN (e.g., memory). In many situations it is

desirable to have an ANN architecture that learn efficiently

(time complexity) with minimum memory requirements (space

complexity).

Of the three architectures tested in this research,

none met both requirements at the same time. However, the
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three architectures surpassed each other in one of the

requirements.

The SOM architecture was the best architecture with

regard to time complexity. It required on average 4000

epochs to reach its peek performance compared to 10000 and

30000 for both BPNN and CPN architecture, respectively.

When dealing with space complexity, the BPNN

architecture surpassed the other two architectures with only

100-20-26 configuration. Compare that to 100-900 for the

SOM architecture and 100-90-26 for the CPN architecture.

This research demonstrated that the ANN architectures

(specifically SOM and BPNN) are suitable solutions to the

problem of OCR. Note that the ANN architectures identified

on average 80.0% of the normal and shifting data

representations without the benefit of preprocessing the

data (e.g., scaling, thinning, or noise elimination). It is

possible to increase the performance by preprocessing the

input data prior to training the network with the data.

6.2 Future Research

There are several modification that may be implemented

that might improve the performance of the ANN architectures

tested in this research. The next sections will explore

some of these modifications in detail. Such modifications

might involve the basic architecture of the network or the

algorithms used to train the architecture.
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~2~1 Backpropagation Research

The BPNN used in this research contains one hidden

layer only. The performance of the network might be

improved by adding one or more of the following. First, Two

or more hidden layers can be used instead of only one layer.

Second, an improved learning algorithms for the training of

the network can improve the network. Several learning

algorithms for the BPNN can be found in the literatures that

can lead to a better performance than previous algorithms.

6.2.2 Counterpropagation Network

The CPN used in this research employed one winner node

in the Kohonen layer. Some researches suggested using more

than one winner node in the Kohonen layer [Hech90]. Since

the SOM network performed significantly better when the

radius of the updated node increased from 0 to 3, taking

advantage of the neighborhood update algorithm (see section

2.2.1) could improve the bad performance of the CPN

architecture.

6.2.3 Self-Organizing Map

The neighborhood kernel used in this research is the

bubble function (see section 3.5). However, another

neighborhood kernel is the Gaussian function (see section

3.5). This function may improve the performance of the SOM

network.
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Appendix A

Sample Of Batch Files

This is an example of using the program parameters to

run various programs. The following code was used in a

batch file to run the test for the SOM network.

REM Normal Data

** Call Randinit Program

randinit -vdim 100 -xdim 30 -ydim 30 -code cmap.dat -input
train2.dat

** Call train program
train -vdim 100 -xdim 30 -ydim 30 -code cmap.dat -input
train2.dat -len 3700 -alpha 0.85 -map cmap.dat -fixed 0 -rd
3

** Call Test Program
test -vdim 100 -xdim 30 -ydim 30 -code cmap.dat -input
train2.dat -label clabel.dat
test -vdim 100 -xdim 30 -ydim 30 -code cmap.dat -input
test2.dat -map cmap.dat -label clabel2.dat

** Call Match Program (Evaluate Performance for Training
Set)
match -len 100 -in1 train2.dat -in2 clabel.dat

** Call Match Program (Evaluate Performance for Test Set)
match -len 100 -in1 test2.dat -in2 clabe12.dat

REM Test for shifting

** Call maninput (-tech1 Perform Data Shifting)

maninput -xdim 10 -ydim 10 -out cross.dat -input train2.dat
-tech 1

** Call maninput (-tech 2 to perform Crossing Technique on
Test Set)

maninput -xdim 10 -ydim 10 -out cross2.dat -input test2.dat
-tech 1
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randinit -vdim 100 -xdim 30 -ydim 30 -code cweight.dat
-input cross.dat
train -vdim 100 -xdim 30 -ydim 30 -code cweight.dat -input
cross.dat -len 23700 -alpha 0.8 -map cmap.dat -fixed 0 -rd 3
test -vdim 100 -xdim 30 -ydim 30 -code cmap.dat -input
cross.dat -label clabel.dat
test -vdim 100 -xdim 30 -ydim 30 -code cmap.dat -input
cross2.dat -map cmap.dat -label clabel2.dat
match -len 100 -in1 train2.dat -in2 clabel.dat
match -len 100 -inl test2.dat -in2 clabel2.dat

REM For crossing technique

** Call maninput (-tech 2 to perform Crossing Technique on
Traning Set)

maninput -xdim 10 -ydim 10 -out cross.dat -input train2.dat
-tech 2

** Call maninput (-tech 2 to perform Crossing Technique on
Test Set)

maninput -xdim 10 -ydim 10 -out cross2.dat -input test2.dat
-tech 2
randinit -vdim 19 -xdim 30 -ydim 30 -code cmap.dat -input
cross.dat
train -vdim 19 -xdim 30 -ydim 30 -code cmap.dat -input
cross.dat -len 8000 -alpha 0.90 -map cmap.dat -fixed 0 -rd 3
test -vdim 19 -xdim 30 -ydim 30 -code cmap.dat -input
cross.dat -label clabel.dat
test -vdim 19 -xdim 30 -ydim 30 -code cmap.dat -input
cross2.dat -map cmap.dat -label clabel2.dat
match -len 100 -in! train2.dat -in2 clabel.dat
match -len 100 -inl test2.dat -in2 clabel2.dat
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Appendix B

Networks Parameters

Counterpropagation Network Parameters

The CPN training and the testing programs require the
following parameters:

-xdim
-ydim
-zdim
-len
-alp

-code
-inp
-out
-targ

-ca

Number of nodes in input layer.
Number of nodes in Kohonen layer.
Number of nodes in output layer.
Running length in training.
Initial learning rate parameter for the supervised
learning.
Name of weights (code) file.
Name of input file (input vectors).
Name of output file.
Name of the target file (Vector Y for output
layer).
Initial learning rate parameter for the
unsupervised learning.

Self-Organizing Map Parameters

The SOM training and the testing programs require
the following parameters:

-xdim
-ydim
-zdim
-len
-alp

-code
-inp
-out
-targ

Number of nodes in input layer.
Number of nodes in Kohonen layer.
Number of nodes in output layer.
Running length in training.
Initial learning rate parameter for the
supervised learning.
Name of weights (code) file.
Name of input file (input vectors).
Name of output file.
Name of the target file (Vector Y for output
layer).

Backpropagation Network Parameters

The Backpropagation training and the testing
programs require the following parameters:

-xdim
-ydim
-zdim
-len

Number of nodes in input layer.
Number of nodes in Kohonen layer.
Number of nodes in output layer.
Running length in training.
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-alp

-code
-inp
-out
-targ

Initial learning rate parameter for the
supervised learning.
Name of weights (code) file.
Name of input file (input vectors).
Name of output file.
Name of the target file (Vector Y for output
layer) .

The Match program require the following parameters:

-xdim
-in!
-in2

Size of the input vector.
Name of the input file (input vectors).
Name of the file produced by the network or
get_label.

The Randinit program require the following
parameters:

-xdim
-ydim
-din
-cout

Number of units in the x-direction.
Number of units in the y-direction.
Name of input vector file.
Name of the output file (weigh file).

The maninput program require the following
parameters:

-xdim
-ydim
-out
-input
-tech

Number of units in x-direction
Number of units in y-direction
Name of output file
Name of input file
technique reuired (l:shifting, 2:Crossing)
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Appendix C

Performance Progress Tables for the ANNs

TABLE 6
CROSSING TECHNIQUE PROGRESS FOR SOM NETWORK

Train Test Test Alpha Radius Epochs Kohonen
Sset Set 1 Set 2 Size

81.5 48.3 20.6 0.8 3 1000 529
91.9 50.8 32.7 0.8 3 2000 529
94.3 53.1 38.1 0.8 3 3000 529

100.0 54.2 52.4 0.8 3 4700 529
100.0 54.2 52.5 0.8 3 10000 529

TABLE 7
NORMAL DATA PROGRESS FOR SOM NETWORK

Train Test Test Alpha Radius Epochs Kohonen
Set Set 1 Set 2 Size

81.5 58.3 63.7 0.85 3 1000 900
86.5 63.7 74.6 0.85 3 1700 900

100.0 65.8 76.2 0.85 3 2700 900
100.0 67.5 77.8 0.85 3 4700 900
100.0 67.5 77.8 0.85 3 14700 900

TABLE 8
SHIFTING DATA PROGRESS FOR SOM NETWORK

Train Test Test Alpha Radius Epochs Kohonen
Set Set 1 Set 2 Size

82.9 70.3 50.8 0.85 3 1700 900
97.6 74.1 77.8 0.85 3 2700 900

100.0 75.0 82.5 0.85 3 3700 900
100.0 75.0 82.5 0.85 3 13700 900
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TABLE 9
NORMAL DATA PROGRESS FOR BPNN

Train Test Test Alpha Epochs Hidden
Set Set 1 Set 2 Size

96.7 53.3 64.1 0.90 4000 20
100.0 65.8 78.1 0.90 8000 20
100.0 72.5 78.1 0.90 15000 20
100.0 72.5 79.7 0.90 16500 20
100.0 71.7 78.1 0.90 18000 20

.100.0 70.3 76.6 0.90 19500 20

TABLE 10
SHIFTING DATA PROGRESS FOR BPNN

Train Test Test Alpha Epochs Kohonen
Set Set 1 Set 2 Size

96.8 66.7 75.5 0.90 4000 20
99.2 75.0 81.3 0.90 8000 20

100.0 74.2 81.3 0.90 9000 20
100.0 73.3 85.9 0.90 10000 20
100.0 73.3 85.9 0.90 11000 20
100.0 71.2 84 ..4 0.90 12000 20

TABLE 11
CROSSING TECHNIQUE PROGRESS FOR BPNN

Train Test Test Alpha Epochs Hidden
Set Set 1 Set 2 Size

61.3 33.3 36.5 0.65 4000 40
94.3 53.3 52.4 0.65 27000 40

100.0 52.5 50.0 0.65 30000 40
100.0 50.8 48.4 0.65 54000 40
100.0 49.7 46.9 0.65 60000 40
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Appendix D

Feature Extraction List

C Shape

Inverted C Shape

Upper Diagonal Line

Lower Diagonal Line

Top Circle

Upper v Shape

Left Vertical Line

Right Vertical Line

Diagonal Right Line

Diagonal Left Line

Middle Horizontal Line

Top Horizontal Line

Bottom Horizontal Line

Circle

,

I
I

/

\

v

o

c

o

The features extracted from the characters using a
BPNN.

1.

2.

3.

4.

5,

6.

7.

8.

9.

10.

11.

12.

13.

14.
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