
NUMERICAL ANALYSIS OF THE STELLAR

DYNAMICS OF A HYPOTHETICAL

STRANGE QUARK STAR

By

STEVEN RICHARD NARF

Bachelor of Science
Mankato State University

Mankato, Minnesota
1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1995



NUMERICAL ANALYSIS OF THE STELLAR

DYNAMICS OF A HYPOTHETICAL

STRANGE QUARK STAR

Thesis Approved:

DeaIlOftheGraduate College

11



ACKNOWLEDGMENTS

First of all I would like to express my deepest thanks to my wonderful wife

Tracy for putting up with me during this project. I could not have finished without

her support and encouragement. For this I would like to say that I love you and

thank you from the bottom of my heart for everything that you have done.

I wish to express my thanks and appreciation to both Dr. N.V.V.J. Swamy and

Dr. S. Nandi for advising and working with me for the past few years on this project.

I would also like to express my thanks and appreciations to my commitee members,

Dr. P.A. Westhaus and Dr. P.O. Shull, whom I have had the privilege of working

with.

My thanks and best wishes go out to my office-mates: Dave Muller for helping

with the editing, Steve Gibbons for the never ending debates that made me think in

a different way, Tesfaye Abraha for our lunch time talks and Bhaskar Dutta for just

being himself when I asked him questions. Thanks.

III



TABLE OF CONTENTS

Chapter

I. The History

Introduction . .
White Dwarf Stars To Quark Stars
Quark Stars Models. . . . . . . . .

Introduction . . . . . . . . .
The Non-Interacting Fermi Gas Model
The Asymptotic MIT Bag Model
The Perturbational Q.e.D. Model

Results From History ..

II. Mathematical Approach

Introduction . . . . . . . . .
Mathematical Background

The Metric .
The Energy Momentum Tensor
The Einstein Field Equations
Conservation Laws .
Summary .

Equations Of State For Quark Matter.
The Strange Quark Star Model

III. The Program . . . . .

Introduction ..
Testing The Program . .

The Free-Fall Test . .
The Non-Free-Fall Test .

Page

1

1
3
5
5
6
7
8
9

13

13
13
14
15
15
16
19
20
24

28

28
29
29
32

IV. Results ...

Introduction.. . .
A Non-Free-Fall Look Inside A Strange Quark Star
Closing Remarks

35

35
35
54

BIBLIOGRAPHY .

IV

56



Chapter Page
APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58

APPENDIX A - THE EQUATIONS FOR QUARK MATTER
IN A PROGRAMMABLE FORM AND THE
CORRECTED MAY AND WHITE EQUATIONS.. 59

APPENDIX B - NON-FREE-FALL PROGRAM:
FOR OUR STRANGE QUARK STAR MODEL. .. 65

APPENDIX C - NON-FREE-FALL PROGRAM:
FOR MAY AND WHITE'S EQUATIONS OF STATE 93

v



LIST OF TABLES

Table

I. Results from using the non-interacting Fermi gas model.

II. Results from using the asymptotic MIT bag model. . .

III. Results from using the perturbational Q.e.D. model.

IV. Results for a typical "normal" neutron star. . .....

V. Results for a strange quark star with a strange quark mass of
m s == 150MeVI c2 , strong coupling constant of Q e == 0.45,
and bag constant of B == 60MeVI fm 3 ..•....•..•

VI. Results for a strange quark star with a strange quark mass of
m s == 200MeVI c2

, strong coupling constant of eYe == 0.45,
and bag constant of B == 60MeVI fm 3

•••.•••••.•

VII. Results for a strange quark star with a strange quark mass of
m s == 250MeVI c2 , strong coupling constant of eYe == 0.45,
and bag constant of B == 60MeVI fm 3

••.••••••••

VI

Page

10

11

12

12

36

37

38



LIST OF FIGURES

Figure

1. A free-fall plot of the radius ratio, (, v.s. a dimensionless scaled
time, 7r12 - t (81rGpo/3)1/2 , for a 21Me non-quark star where
~tO+l == 0 for the adjustments on t. The relative error of the
numerical data is shown above. . . . . . . . . . . . . . . . . .

2. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless
scaled time, 1r12 - t (81rGpo/3)1/2 , for a 21Me non-quark star
where ~tO+l == 0 for the adjustments on t. . .

3. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless
scaled time, 1r12 - t (81rGpo/3)1/2 , for a 1.7Me strange quark
star with a strange quark mass, m s == 150MeVI c2

, and mini
mum internal energy, Emin == O.9c2 . . . . . . . . . . . . . . . •

4. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless
scaled time, 1r12 - t (81rGpo/3)1/2 , for a 1.8Me strange quark
star with a strange quark mass, m s == 150MeVI c2

, and mini-
mum internal energy, Emin == o.75c2

• ••••••••••••

5. A non-free-fall plot of the density ratio piPN v.s. time for a
1.8Me strange quark star with a strange quark mass, m s ==
150MeVlc2

, and minimum internal energy, Emin == O.75c2 •

6. A non-free-fall plot of the density ratio piPN for specific times as
a function of the zones for a 1.8Me strange quark star with a
strange quark mass, m s == 150MeVI c2

, and minimum internal
energy, Emin == o.75c2 . . •.......•....•.••....

7. A non-free-fall plot of the density ratio piPN for specific times as
a function of the zones for a 1.8Me strange quark star with a
strange quark mass, m s == 150MeVI c2 , and minimum internal
energy, Emin == 0.75c2 . ......•..........•....

8. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless
scaled time, 1r12 - t (81rGpo/3)1/2 , for a 1.9Me strange quark
star with a strange quark mass, m s == 150MeVI c2 , and mini-
mum internal energy, Emin == 0.65c2 . .

VB

Page

32

34

40

41

42

43

44

45



Figure Page
9. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless

scaled time, 1r12 - t (81rGpoI3)1/2 , for a 2.0M0 strange quark
star with a strange quark mass, m s == 150MeVI c2, and mini-
mum internal energy, Cmin == 0.5c2. . . . . . . . . . . . 46

10. A non-free-fall plot of the density ratio piPN v.s. time for a
2.0M0 strange quark star with a strange quark mass, m s ==
150MeVI c2, and minimum internal energy, Cmin == O.5c2.

11. A non-free-fall plot of radius v.s. time for a 2.0M0 strange quark
star with a strange quark mass, m s == 150MeVlc2, and mini
mum internal energy, Cmin == 0.5c2. . . . . . . . . . . . . . . .

12. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless
scaled time, 1r12 - t (81rGpoI3)1/2 , for a 2.1M0 strange quark
star with a strange quark mass, m s == 150MeVI c2, and mini-
mum internal energy, Cmin == O.4c2 • • • • • • • • • • • • • •

13. A non-free-fall plot of the density ratio piPN v.s. time for a
2.1M0 strange quark star with a strange quark mass, m s

150MeVI c2, and minimum internal energy, Cmin == 0.4c2.

14. A non-free-fall plot of the density ratio piPN for specific times as
a function of the zones for a 2.1M0 strange quark star with a
strange quark mass, m s == 150MeVI c2, and minimum internal
energy, Cmin == 0.4c2

• ••••••••••••••••••••••

15. A non-free-fall plot of the density ratio piPN for specific times as
a function of the zones for a 2.1M0 strange quark star with a
strange quark mass, m s == 150MeVI c2, and minimum internal
energy, Cmin == 0.4c2 • ••••••••••••••••••••••

16. A non-free-fall plot of the radius ratio, (, v.s. a dimensionless
scaled time, 1r12 - t (81rGpoI3)1/2 , for a 2.2M0 strange quark
star with a strange quark mass, m s == 150MeVI c2, and mini-
mum internal energy, Cmin == 0.25c2. .

VIII

47

48

49

50

51

52

53



CHAPTER I

The History

Introduction

Throughout the history of astrophysics, it has been a major challenge to de

termine the final fate of stellar objects like our sun. When a star exhausts all of its

usable fuel in the core, then depending solely on its initial mass, the star can take

one of several paths to form a white dwarf star, a neutron star, or even a black hole.

White dwarf stars are considered to be a very stable stellar configuration that is

made up of a cold degenerate electron gas, where the star's internal outward pressure

from the degenerate electrons prevents the star from collapsing further (by the Pauli

principle). If the degenerate electron gas pressure is not enough to maintain stellar

equilibrium against the star's gravitational field, the star will pass the point of being

a stable white dwarf and approach a new phase of matter. This new state of matter is

formed when the gravitational pressures becomes so great that the protons can grab

electrons by means of inverse jJ-decay and convert into neutrons, which makes this

matter more stable under these pressures. This matter is usually formed when the

initial mass is large enough to initiate a catastrophic explosion called a supernova

which leaves behind stellar dust and perhaps the innermost core. It is this innermost

core that collapses under the core's gravitational field to form this degenerate neutron

gas and it is called a neutron star. This neutron star, unlike its counterpart the white

dwarf star, is now considered to be made up of a cold degenerate neutron gas. In this

case, it is the degenerate neutron gas pressure which prevents this star from collapsing

further.

Allowing for the possibility that some stars can collapse further than a neutron

star, some questions come to mind about the final fate of such a stellar object. If the

1
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degenerate neutron gas pressure is not enough to maintain stellar equilibrium against

the star's gravitational field, then what would be the outcome of such a star? It is

believed that a star which is massive enough to collapse past neutronic degeneracy

will ultimately become a black hole and this answer seems to be universally accepted

at present. However, if we assume that a massive star can collapses past neutronic

degeneracy, but does not form a black hole, then there must be a stable point between

that of a neutron star and a black hole. If this is so, what would be the new form of

this matter that would be formed at such high stellar densities and is it truly stable?

At present, the answers to these questions are open to debate. This new stellar object,

stable or not, has been presumed to be a strange quark star [1-3]. This thesis will

explore the possibility of a stellar object that fits the above description and we will

try to answer the above question.

In the next section we will bring forth a brief historical background on white

dwarf and neutron stars and then discuss the possibility of having a quark star. The

following section gives the history of a quark star by exploring three main models and

the equations of state that were used for each of these models. The last section in

Chapter I presents a brief historical summary of results concerning the possibility of

the existence of strange quark stars. Chapter II has three parts: part one shows the

mathematical approach to be used in this thesis, part two explains the equations of

state that describe the quark matter, and part three explains the strange quark star

model with the equations of state that describe this model. Part one of Chapter III

contains the development of a free-fall and a non-free-fall tests that were performed

on the Fortran computer code with a brief discussion of the results of the tests. Part

two of Chapter III contains a discussion of the initial conditions used in our strange

quark star non-free-fall program. At the end of this thesis there are three appendices.

Appendix A shows the Fortran expressions for the equations of state of the quark

matter that are used in the program along with the May and White equations that

we had to correct. Appendix B contains the non-free-fall computer code for our

strange quark star model. Appendix C contains the non-free-fall computer code that

uses May and White's equations of state. We added this appendix because there is
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substantially more code incorporated into the program of Appendix B. In this way, the

program in Appendix C forms the root of the program in Appendix B with the strange

quark equations of state in place of May and White's. Our major contributions to

this problem can be found in the last sections of Chapters II and III, all of Chapter

IV, and the three appendices.

White Dwarf Stars To Quark Stars

In 1930 Chandrasekhar was working on a white dwarf star model* using a

degenerate electron gas equation of state with special relativistic effects of the de

generate electrons included. He found that white dwarf stars have a maximum mass

limit of 1.4M0 . This result was his major discovery and 1.4M0 is now known as the

Chandrasekhar limit for white dwarfs. Independently, Landau presented his explana

tion of the same model in 1932 and after the discovery of the neutron by Chadwick in

the same year, Landau thought of the possibility of having a neutron star. Two years

later in 1934 Baade and Zwicky also proposed this same idea [4]. During this time,

the meaning of the Chandrasekhar limit was that if a star has an initial mass less

then the 1.4A10 limit, a white dwarf star will be formed. However, if the initial mass

is greater then the 1.4M0 limit and the star does not experience any kind of mass

loss, then it was expected to catastrophically collapse under its own gravitational field

indefinitely. We know now that this isn't completely true. We do accept the fact that

a star with an initial mass less then the Chandrasekhar limit will form a white dwarf

star, but we now believe that when the initial mass is greater then this limit, it will

collapse further forming either a neutron star or a black hole.

In 1939, Oppenheimer and Volkoffpresented a model for a new phase transition

within stellar matter. When the pressures become high enough inside stellar bodies,

a phase transition will takes place converting the star, which was mainly ionized

atoms, into a degenerate gas of neutrons by the means of inverse jJ-Decay. The

treatment of this model was to assume that the matter in the star was composed

*A uniform distribution of matter comprised of ionized atoms with a gas cloud of
degenerate electrons.
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of an ideal gas made up of pure neutrons and accounting for the general relativistic

effects of these degenerate neutrons led to the Oppenheimer and Volkoff hydrostatic

equilibrium equation,

dP == _ Gp(r)m(r) (1 + P(r) ) (1 + 47rp(r)r
3

) (1- 2Gm(r))-1, (1)
dr r2 p (r) c2 m (r) c2 rc2

where P, p, and m are all functions of the radius r and are defined as the pressure,

density, and mass, respectively [4]. Since, the mass is a function of the radius, M is

just the total mass enclosed by a radius R, as shown below:

(2)

They concluded that with such high mass densities that are possible inside stars,

general relativistic effects must be considered and a more precise equation of state

should be used to describe the state of the matter (i.e. one that doesn't neglect the

gravitational effects of neutrons) [5]. From this, the idea of a star collapsing under its

own gravitational field to form a stable neutron star now seemed to be a possibility.

Oppenheimer and Volkoff argued that neutron stars should also have an upper

mass limit not unlike that of the white dwarf stars, which have the Chandrasekhar

limit. With this idea and Landau's model dealing with a cold degenerate Fermi gas of

neutrons, one obtains a critical mass of 1.5Mev for a neutron star which is essentially

the same limit as Chandrasekhar's limit for the white dwarfs. Oppenheimer and

Volkoff, with their equations of state, came up with a neutron star critical mass of

0.7Mev. One can also come up with a Chandrasekhar limit for a neutron star which

is 5.73Mev [4]. The main reason for the difference between the 5.73Mev limit and the

0.7Mev limit is because of the relativity considerations that Oppenheimer and Volkoff

employed.

Unfortunately, when the understanding of thermonuclear fusion came in, the

idea of a neutron star receded into the background for the next thirty years, since it

was thought that the main source of energy inside neutron stars was not degenerate

neutron pressure (which wasn't a thought until the mid 1960's), but rather the neutron

cores inside massive normal stars. We would like to point out at this time that for
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those thirty years, the idea of neutron stars did not actually fade away even though

there was a drop in interest. However, during those thirty years, some work on topics

related to neutron stars was continued by Wheeler in 1959, Misner and Sharp in 1964,

McVittie in 1965, and May and White in 1965 and 1966. We borrowed heavily from

May and White's work on gravitational collapse with general relativistic effects [6]

for the mathematical approach that is used in Chapter II.

In recent times the idea of a neutron star is widely accepted because it allows

us to understand the stellar objects known as Pulsars. However, the upper mass limit

is still uncertain because of the uncertainty in the composition of the neutron stars

which puts the accuracy of the equation of state in question. The upper mass limit

is more of a range, ranging from 1.4 to 3.0M0 [4]. In closing this part of history, we

ask a question. As a star collapses the internal mass density increases and depending

on the star's initial mass it will become a white dwarf star up to 1.4M0 or a neutron

star up to rv 3.0M0 or a black hole. What if there is another mass limit after the

neutron star phase but before the black hole phase? A strange quark star?

Quark Stars Models

Introduction

Here we will look at three different models dealing with the astrophysics of

quark matter. The first of these models is the non-interacting Fermi gas model which

was used by Itoh in 1970 [7]. The second model is the asymptotic MIT bag model

of hadrons using the effective quark-gluon coupling constant fixed to first order. The

third model is the Chapline and Nauenberg's perturbational quantum chromody

namics (Q.C.D.) model to first order in the density dependent effective quark-gluon

coupling constant [8,9]. These three models essentially differ in the definition of the

equation of state that is being invoked.
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The Non-Interacting Fermi Gas Model

In Itoh's letter, he investigates the hydrostatic equilibrium of a quark star using

the Oppenheimer and Volkoff method, equations (1) and (2) [7,5]. He also assumes the

conventional quark model at this time, but in the early 1970's the interaction between

quarks was not well understood. So he neglected this interaction between the quarks,

even though this is not permissible at densities near that of the characteristic nuclear

density, PN == 2.8 X 1014~, since the quarks are considered to be strongly interacting

with each other at these densities. Model I is known as the non-interacting Fermi gas

model and assumes that a quark star exists with equal amounts of each flavor (u, d,

and s quarks). The model also makes the assumption that all quark masses are equal

to each other, m q , which was assumed to be 10GeV/c2 • The equations of state that

make up Itoh's model, Model I, are

,
, (. 15 n 15 4

P == 2" == 5.34 x 10 - + 8.81 x 10 mq9(Xq),
C m q

9
cm3 '

(3)

(4)

and

1

f(x) = (2X 2
- 3) (X 2 +1) 2 +3arcsinh(x),

g(X) = 8X3 [(x2 + 1) t - 1] - f(x),

(5)

(6)

(7)_ PF,q
Xq - --,

mqc

where P is the pressure, (.' is the total energy density, m q is the quark mass in units

of GeV/c2
, n is the baryon number density in units of fm- 3 where n is related to

Xq by n == 13.2 m~ X~, and PF,q is the quark Fermi momentum. Itoh found that the

maximum mass for a quark star was several orders of magnitude lower then that of

a neutron star, so he concluded that all stars more massive then the maximum mass

for a neutron star will collapse since hydrostatic equilibrium is not a possibility by

model I.
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The Asymptotic MIT Bag Model

The asymptotic MIT bag model, model II, introduced in 1974 was successful in

describing hadron spectroscopy* and recently has had a renewal with the birth of the

hypothetical strange quark matter or quark stars. A similar model was used in 1976

on a study of a spherically symmetric, non-rotating, general relativistic neutron star

looking for hydrostatic equilibrium solutions to a polytropic equation of state [10].

The equations of state for model II that were used by 0veraard and 0staard in 1991

are

and

p = ~(tl - 4B),

3

t' == Ani" +B,

A = ~ (31T
2

) t (1 + ~ (eYe)) nc
4!{ 3 1T '

(8)

(9)

(10)

where P, E', n have the same definitions as in model I and B is the "bag pressure"

constant otherwise known as the MIT bag model constant. These equations of state

carry A to second order in the quark-gluon coupling constant 9 where eYe is defined

to be g2/41T to first order, where !{ is equal to three since there are three flavors of

quark that this model is considering (u, d, and s quarks).

Haensel el al., Alcock el al., and Farhi and Jaffe all considered the following

equations of state for model II which are believed to be more accurate in describing

the quark matter state [1-3]:

and

P (/l) == - L f2 i (/l) - B
't

E' == L (f2 i (/li) + /lini (/li)) +B ·
't

(11 )

(12)

Here ni (/li) are the thermodynamic potentials and ni (/li) are the number densities

for each constituent i == u, d, s, e and are both a function of the chemical potentials

*The topic of hadron spectroscopy will not be discussed in this thesis. See ref
erences: 0veraard and 0staard, Chodos et al. 1974a, 1974b, and DeGrand et al.
1975.
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!li. B is still the MIT bag model constant. In Chapter II, we will discuss in more

detail the variables ni,!li, ni, B, and the J1 from equation (11). For the purpose of

this thesis we will adopt model II with a variation of the above equations of state,

eqs. (11) and (12).

The Perturbational Q.C.D. Model

Chapline and Nauenberg's perturbational Q.C.D. model [8], model III, makes

up the third model that will be looked at. The big difference between model III and

the MIT bag model is that model III includes the energy dependence of the strong

coupling constant, a c :

(13)

here f{ = 3 for total number of quark flavors being used (u, d, and s) and X ~ is

the ratio of the Fermi momentum, kF , to a constant cut-off factor, AF . The energy

density and number density for this model are defined to be

and

, 4
t == An3"

A3 X3
n == _F_

7r 2

(14)

(15)

with A given by equation (10) from model II. With the above two equations, the total

energy density and internal pressure can be rewritten as

and

dt' , 31ic [ 4 ( 1)] 4 4P == n- - t == - 1 - 1 - - AFx
dn 47r 2 27ln X In X '

which are the equations of state this model.

(16)

(17)
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With this, the pressure equation from model II, eq. (8), can by rewritten as

and

p = ! [t' - 4B(X)]
3

(18)

B( ) nc A4 4 ( 9)
X = 121l"2 1n2(X) FX, 1

where B(X) is the density dependent bag pressure which is analogous to the MIT bag

constant B in model II. Equations (8) and (18) both take the masses of the quarks

to be equal to zero; however, equation (11) in model II takes m s to be non-zero, but

allows m u == md == me == o.

Results From History

The Results here are organized into four tables by model type. Tables 1, 2, and

3 show some results that were obtained by using models I, II, and III, respectively.

Table 4 contains typical neutron star data. These tables are just a summary of

some of the major results throughout the history of stellar dynamics involving the

stability of stars (mainly strange quark stars) and include values for the maximum

mass and radius limits. All the tables are in standard units for this subject which are:

the mass, M, in solar masses (Mev), the radius, R, in kilometers (km), and time in

seconds (s), unless otherwise stated. The tables are constructed with three columns

entitled Results, Initial Conditions (IC's) and Comments, and References. Other

variables that are in the tables are the maximum moment of inertia, Imax (in 9 cm2 ),

the mass density, p (in g/cm3
), and the m q which is the quark mass (in MeV/c2

) that

is being used for that model.
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d It· F

TABLE I.

. tthR It fesu s rom uSIng e non-In erac Ing ermI gas rna e.

Results IC's and Comments Reference

Mmax == 1.3Mev m q == 400MeV/ c2 [11 ]

Rmax == 17km

Imax == 1.59 X 10459 cm2

M max == 2 X 10-3 Mev m q == 10GeV/c2 and [11 ]

R max == 25m reproduced Itoh's 1970 [7]



TABLE II.

Results from uSIng the asymptotic MIT bag model.

Results IC's and Comments Reference

11

1

M max == 2.033 (Bo / B) 2 M 0
1

R max == 11.09(Bo /B)2 km
3

I max == 1.59 X 1045 (Bo / B)2 9 cm2

Pmax == 1.92 X 1015 (Bo/B)g/cm3

Mmax == 1.98M0

Rmax == 10.79km

I max == 2.20 X 1045g cm2

Mmax == 1.964M0

Rmax == 10.71km

Pmax == 2.057 x 1015g/cm3

I max == 2.159 X 1045g cm2

Mmax == 1.75M0

Rmax == 9.81km

Pmax == 2.45 x 1015g/cm3

I max == 4.58 X 1045g cm2

Mmax == 2.185M0

Rmax == 12.06km

Imax == 3.01 X 1045g cm2

Mmax == 2.00M0

R max == 11.1km

Pmax == 1.91 x 1015g/cm3

m q == 279~~v , !{ == 3,

m u == md == 0,

with B o = 567:X ,
and a c == 0.549

same as above and

for comparison he used

OVeqs. (1) and (2)

M == 1.4M0 and

B = 607:X

non-zero m s

1st order in

quark-quark interactions

his SQ2 model using

M == 1.4M0 and scaling B

his model used

mi == 0 and

B = 567::X
he ignored quark masses

[11 ]

[11 ]

[1]

[1]

[1]

[12]



TABLE III.

Results from using the perturbational Q.C.D. model.

Results IC's and Comments Reference

Mmax == 1.32Me AF == 250 [11 ]

Rmax == 7.20km

Imax == 0.67 X 1045g cm2

TABLE IV.

Results for a typical "normal" neutron star.

Results IC's and Comments Reference

M max == 1.4Me M == 1.4Me [11 ]

R max == 11.91km

Imax == 1.361 X 1045g cm2

Nb == 1.841 X 1057 N b == Baryon Number

12



CHAPTER II

Mathematical Approach

Introduction

This chapter has three main parts. Part one contains the mathematical ap

proach for the hydrodynamics of the fluid flow that is used in the Fortran program

under the subroutine called Dynami. The second part contains the mathematical

approach for the equations of state used to describe the quark matter. Part three

describes the strange quark model with the appropriate equations of state for strange

quark confinement and can be found throughout the Fortran program under the sub

routines called Initial, Thermo_Potentials, and others. We have borrowed heavily

from May and White for our discussion on the hydrodynamics of the fluid flow and

froIn Haensel et ale for the quark matter properties (for more details see references

[5,13,6,14], and [15]). To insure a bit of consistency in the notation, we will not be

using standard units (ie. c == n == 1). The main units that will be encountered are

kilometers (km), solar masses (M0 ), seconds (s), and mega-electronvolts (MeV which

converts to Me!) (k:r).
Mathematical Background

For the rest of this section we will be employing the Einstein summation con

vention where we sum over two repeated Greek indices unless otherwise stated. We

will also be using the standard interpretation regarding tensor indices, where raised

indices are contravariant and the lowered indices are covariant. In the following sub

sections the reader will find that the notation changes where Greek character K is

concerned. The character K will take on two roles, one as a tensor index and the

other as a radial coordinate which carries the mass as a conserved quantity.

13
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The Metric

The initial conditions for the setup of our quark star are very important and is

discussed in the last section. We will assume that the star is perfectly spherical and

of uniform density. The most general line elemellt or metric with spherical symmetry

that satisfies the above conditions is

(20)

where

(21 )

and the metric coefficients a, b, R, and TJ are all functions of the time coordinate,

XO == ct, and the radial coordinate, xl == K. We will set TJ = °for simplicity. Since

we want to view the dynamics in proper time, we need to view the 4-velocity of the

fluid, u V
, in a comoving frame*. Therefore the fluid 4-velocity must take the form

and must satisfy

for 1/ = 0,

for 1/ =1= 0,
(22)

v ,\ v 2
U U v = 9v'\ U U = C , (23)

the condition for any 4-velocity in a comoving spherically symmetric frame. When

combining equations (20, 21) and (22), the metric takes the form of

(24)

where a and b are now only functions of Rand t. With equations (22) and (24), the

4-velocity of the fluid, u V
, in a comoving frame takes the form of

for 1/ = 0,

for 1/ =1= 0.
(25)

*A comoving frame is best described as an observer in a locally inertial frame
which is moving with the fluid at the instant the observer makes his measurements.
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The Energy Momentum Tensor

From the above description of the metric, eq. (24), and of the fluid 4-velocity,

eq. (25), in a comoving spherically symmetric frame, an energy momentum tensor

for a perfect fluid or gas can be constructed (see ref: [13,16,17] and [18]). Thus, the

general form for the energy momentum tensor for a perfect fluid is

When taking the components of equation (26) one finds the following:

pc
2 (1 + :2) ,

Ti == T] == - p ,

and

T/: == 0 for Jl =I v ,

(26)

(27)

where P is the proper pressure, w is the relativistic enthalpy or heat function, p is

the proper rest mass density which is not the same as the p' earlier, and € is defined

as the proper specific internal energy per unit mass and should not be confused with

£' from before. These four variables p, €, w, and P will be defined in more detail later

on.

The Einstein Field Equations

Order to keep the following equations in a short form, we make the following no

tational change. The notation for the traditional partial derivative will been replaced

by a subscript notation. Thus

and

ax
at == Xt

ax
aK, == X ti ,

(28)

(29)

where the time, t, and radial coordinate, K" will be the only two subscripts that denote

partial derivatives.
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The Einstein field equations are also known as the gravitational field equations

and with the use of equations (24) and (27) the compact form of these field equations

are given by the tensor relation,

_ 81rGT J.L = RJ.L _! J.LR)..
C4 v v 29v A·

By introducing a mass function, m("" t), to equation (30), [4,6] and [18], each field

equation takes the form:

(Tg) 41rpG (1 + :2) R2RK
c
2[ RR; RR~]"2 R+ a2c2 - ~

K

GmK , (31 )

(TIl) 41rG PR2 R
t

_ c
2

[R + RR; _ RR~]
c2 2 a2c2 b2

t
-Gmt, (32)

(Ti = Tn 47rGpwR3 2[R RR; _ RR~]
c + 2 2 b2a c

+ R
3

c [ (ca K
) _ ( ~ ) ] , (33)

ab b K ac t

and

(T~ = T~) 0
aK bt (34)== -;;Rt + -,;RK - RKt •

We now define m("" t) as the total mass enclosed in a sphere of radius "':

m(K"t) = 41r l K

P (1 + :2) R2RK dK, . (35)

We now complete the above set of equations, (31 - 35), with the addition of the state

equation for pressure, P, in general form

P == P( (') == P(p, c) ,

where the pressure is a function of the total internal energy density, Tg.

Conservation Laws

(36)

The constituents in the ensemble must always be conserved and we will be

assuming that neither a constituent nor its mass can be created or destroyed. For

this, we must introduce the conservation of baryon number, which requires

(37)
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where p, the baryonic mass density, is

N

P == L nimi
i=l

(38)

with mi as the mass and ni as the number density of each baryonic species or con

stituent. The total number density for each species is given by

N

n == Lni ·
i=l

(39)

With the above assumption and equations (38) and (39) the mass density, p, becomes

p == nm , (40)

where m is a constant. Since we are working in a comoving frame, the conservation

of baryon number transforms to

(41)

By carrying out the partial derivatives in both equation (41) and in the Einstein field

equations, eqs. (31) - (34), one can find a new function, f(~), which one then uses to

fix the scale of the radial coordinate K by letting

(42)

(43)

Thus,

b = 1
41rpR2 '

which is the square root of the second coefficient in the metric equation (20) and we

now can describe m as

(44)

which states that m is the total rest mass enclosed in a sphere of "radius" K much

like equations (2) and (35). In equation (44), p is still the proper rest mass density

and the rest of the integrand is the proper volume between a radius of K and K +~K.

This guarantees mass conservation by carrying the mass as a coordinate which is

frequently used in classical Lagrangian hydrodynamics.
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To make sure that energy and momentum are also conserved for the comoving

frame, the following relations must be satisfied:

and

a,. + P,. = 0 .
a pwc2

By substituting equations (34) and (41) into equation (45) one gets

(45)

(46)

(47)

from the first law of thermodynamics with no heat transfer (i. e. we ignore entropy

generation) .

With everything we have just done in mind, there is still one thing left untouched

and that is the relativistic enthalpy or the heat function that is inside equation (26).

The relativistic enthalpy is defined as

c P
w==I+-+-.

c2 pc2
(48)

We also need a relation analogous to the relativistic enthalpy, but in the comoving

frame. One can do this by making the following definitions

and
Rt

u:=- .
a

(49)

(50)

When used in combination with equations (31, 35, 43, 44, 49) and (50), one obtains

an expression for f2 as

(51 )

We now can obtain an equation of motion from equations (34,46,50) and (51)

which makes equation (25) become

[
2f mG 47rG ]

Ut = -a 41rR w P,. + R2 +~PR · (52)
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This is the equation of motion for the system that was described at the beginning of

this section and with the use of equations (34, 43) and (52), the mass conservation

equation now becomes

Summary

(pR2)t _ aUK
pR2 - RK · (53)

From the above outline of the mathematics used, a complete set of equations for

spherically symmetric general relativistic hydrodynamics can be constructed which

are relisted below:

[ 2r mG 41rG ] (54)Ut -a 47rR -PK+ - + -PR
W R2 c2

Rt au , (55)
(pR2)t aUK

(56)-- ,
pR2 RK

Ct -p (~) t
(57)

(aw)K [Cit +P (~)J
(58)

aw wc2

m 41r lit p ( 1 + :2) R2 R It dK , (59)

r 47rpR2RK , (60)

P P (t, p) , (61 )

and
C P

(62)w == 1+2"+-2·
C pc

Now the task is to obtain solutions for the above list of equations. But we first

need to obtain an expression for the state equation, eq. (61), that represents the

matter that will be dealt with.
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Equations Of State For Quark Matter

In Chapter I, we took a brief look at three types of models on astrophysical

quark matter confinement: the non-interacting Fermi gas model, the asymptotic MIT

bag model of hadron, and perturbational Q.e.D. model. This thesis will be looking

at the stellar dynamics using a variation of model II. Before we use the numerical

integration scheme, summarized in the last section, on model II, we must first recall

that the T3 element from energy momentum tensor, eq. (26) or (27), is defined as

the total internal energy density:

(63)

May and White break up this total internal energy density, Tg, into two terms,

(64)

where p is the proper rest mass density and c is the proper specific internal energy

per unit mass as in equation (27). From here on we will redefine X to be the total

internal energy density given by either equation (63) or by (64) and by definition the

two are equivalent:

(65)

Now all we need is to find the proper expressions for P, p, and c from the total internal

energy density given by equation (12) from Haensel et al., which is

(66)

where the chemical potential for each constituent i == u, d, s, and e is given by /li.

The MIT bag model constant, B, is defined as the amount of pressure that is required

to inflate a bag of three quarks in open vacuum. Where the fluid is considered to be

made of an ideal Fermi fluid, or gas, comprised of the three main quark flavors and

electrons (ie. the constituent u, d, s, and e).

In addition to the above equation, eq. (66), we will need the thermodynamic

potential, !1i (!1i), as outlined by Haensel, Zdunlk, and Schaeffer [1]. The thermody

namic potentials for each quark flavor and for the electrons are given below to first
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order in the strong coupling constant a c == 92 / 47r ~ 0.45:

and
4

n ( ) - _ J1e
e jle - 1211"2 (1i,C)3 ,

(68)

(69)

where p is the renormalization point for massive quarks defined as p = M N c2 /3 ==

313MeV, with M Nc2 defined as the nucleon rest energy. We can now find the total

number density for anyone of these constituent by

(70)

thus number densities for each constituent i == u, d, s, and e are as follows:

(71)

(72)

and

(73)

From the discussion on the mathematical background we know that baryon

number must be conserved, thus the total number of the quarks must also be conserved
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throughout the baryon-quark phases transition. The presumed way that the baryonic

matter converts to this more stable quark matter at stellar densities near the nucleon

density, PN' is by the following weak interactions:

d ----7 U + e + ve , (74)

u+e ----7 d + V e , (75)

s ----7 u + e + ve , (76)

u+e ----7 S + V e , (77)

and

s+u f-7 d+u. (78)

From these weak interaction processes the matter maintains equilibrium between the

quarks and the electrons*. When the weak interaction processes are combined with

the condition of overall charge neutrality, we have

(79)

This makes the following constraints on the chemical potentials giving us a single

independent chemical potential for quark matter that we called p:

thus,

Pd == Ps == P

Pd == pu + pe =P

L Pi == Pu + Pd + ps +Pe == 3p ·
z

(80)

(81 )

(83)

The pressure equation is then derived from equation (66) by the differential

equation
ax

P == nB- - X , (82)
onB

where nB == ! (nu (Pu) + nd (Pd) +ns (Ps)) is the baryon number density and oax is
nB

called the Gibbs potential which is defined as

G - aX -" .ani (f-li) - 3 - 3
- onB - ~Pz onB - P Pe ·

z

*Note that the first four of these processes contribute to some energy loss due
to neutrino emission. So we accept the possibility that the star's dynamics in the
computer program may lose some mass.
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But in order to derive the pressure equation from equation (82), one must first rewrite

the total internal energy density, eq. (66), in terms of Ji, the single independent

chemical potential. Therefore the terms ni (fli) and ni (fli) , as defined by equations

(67 - 73), must be rewritten as functions of the single independent chemical potential

Ji. We can do this by defining two new functons I and eas functions of both Ji and

Jii, therefore ni (Jii) and ni (/-li) can be rewritten in the following way:

(84)

and

By substituting these into equation (66) we get

x == L [ni (Ji) + /-lini (/-li) + Ii (/-l, Jii)] + B ,
~

where

(85)

(86)

Typically Jie and ~u (/-l, Jiu) will be very small in comparison to the contributions from

the down and strange quarks and in some cases one can let Ile tend to zero. Now we

can derive two equivalent expressions for the pressure by using equation (82). The

first expression is of the form

P (Ji) == - L ni (p) - B ,
~

while the second expression takes the form P (p, c, Jii, Ji) , which is

P (p, c, Jii, Ji) == L /-lini +L Ii (/-l, Jii) - pc2
- pc ·

. .
~ ~

(88)

(89)

In order to complete this set of equations for the pressure we need an expression

for this single independent chemical potential Ji. The following expression for Ji is a

recursion relation meaning that you take the old value of Ji and plug it in to get a

new value of Ji then iterate until you converge on the final value of Ji:

Jinew == {X - ~ni (flold) - ~ Ii (fl old , fli ld ) - B - fl~ld [nu (flold)
~ ~

-ne (flold) + eu (fl old , fl~ld) - ee (fl old , fl~ld) ]} /3n~d , (90)
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where X is equal to equation (64) and is held constant, along with B, during a single

iteration process.

Since we will be considering only a strange quark star we will use the above

equations for the limiting case of i == s as will be shown in the next section. Otherwise

the above derivation gives the description for quark confinement of the quark matter

and Appendix A contains these expressions in a form that can be integrated into the

Fortran program of Appendix B.

The Strange Quark Star Model

The last section gave us a prescription for calcuating the internal pressures

In quark matter. We will simplify this iterative process by considering only the

possibility of having a stable Strange Quark Star. Witten [12] pointed out that

the most stable matter at these high stellar densities, where po > PN , is strange

quark matter. Therefore we now assume that an isolated strange quark star can

exist, such that the star* is charge neutral meaning that it obeys equations (74 - 81).

This assumtion tells us that the phase transitions from baryon to quark matter has

occurred and, furthermore, the quarks in the star have converted into strange quarks

by the weak interactions, eqs. (74 - 78). Which, in turn, lowers the internal Fermi

energy of the system because the strange quark is the most massive constituent in

quark matter and with this the strange quark degeneracy of the star will increase [2].

We then take the initial internal structure of our strange quark star to be a

spherical distribution of a homogeneous and isotropic configuration of pure strange

quarks in bags of three. Where the bags are not allowed to interact with each other,

but the quarks in each bag can interact with the other two. The amount of pressure

that is required to inflate such a bag of three quarks in open vacuum is called the

MIT bag model constant B. With this description for quark confinement, we now

can visualize the star as a star of pure strange quarks out to some radius Rand

surrounded by a soup of up quarks, down quarks, and electrons to maintain overall

*We refere to the words the star as a Strange Quark Star that is surrounded by a
soup of up and down quarks and electrons that make the whole system charge neutral.
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charge neutrality. The Fortran program that will be discussed in Chapter III will

look at the stellar dynamics of this pure strange quark star. We constructed our

star with 200 consecutive subsystems called zones. Each zone has a thickness ~r for

which we must keep track of all the thermodynamic properties. By using equations

(86) and (89 - 90) with i == s for each subsystem or zone, along with the May and

White numerical integration scheme equations (54 - 62), we can numerically obtain

solutions for this set of equations where the expression for the state equation (61) is

replaced by equation (89).

We now show the expressions for the i == s case that we will use in the numer

ical program that calculates the thermodynamic properties. In this case the single

independent chemical potential for strange quark matter, eq. (80), is just

I.l = I.ls ·

The total internal energy density, eq. (86), for the system is given by

which give us the internal pressure from equation (89) for the system as

where is (1.l,J1s) from equation (93) is equal to zero. ns (J1) and n s (J1) are

(91 )

(92)

(93)

(94)

and
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(95)

where pis still the renormalization point for massive quarks defined as p == M NC2 /3 ==

313MeV with M NC2 defined as the nucleon rest energy. Finally the recursion relation

for /l, eq. (90), reduces to

pc2 (1 + ~) - Os (/lOld) - B
( Old) c2

Jlnew Jl == ( old) •n s Jl
(96)

Thus /lnew is a function of Jl old in an iterative process using equation (94) and (95)

for a given p and c for each subsystem. p is the proper rest mass density which is

initally homogeneous and isotropic and c is the proper specific internal energy per

unit mass. Appendix A also shows these expressions in a form that was integrated in

the Fortran program of Appendix B.

We already stated that initially the star is completely uniform, meaning that

p, c, and Jl are the same for every zone in the system initially. If we did not make

this initial assumption we would need to know p, c, and Jl for all 200 zones and this

would be very difficult to do.

So by setting the initial value for the mass, we know what the Schwarzschild

radius, Rs , is for this mass and is defined as

Rs = 2G~T .
C

(97)

Therefore we can select an initial radius for this quark star to be some multiple of Rs

(like 2Rs ) and then find the initial mass density of the star for this volume. We choose

this initial set up method for two reasons: it gives us an initial radius not unlike that

of a neutro11 star and it also gives us an initial density such that p 1'..1 PN. When setting

the initial value for c, the numerical integration scheme and the equations of state

seem to impose restrictions for this value. For the case c =f 0 we found that /l may go

negative or at the very least it may drive Jl to be less than m sc2, the rest mass energy

of the strange quark. So we choose the smallest initial c , c == Cmin, which avoids
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this problem. Now that we have the initial values set for p and c, we make a guess

as to what the initial value for the chemical potential, 11, is and, by using the above

recursion relation equation (96) along with equations (94 and 95), the true initial

value of 11 can be found. We use this 11 to recalculate the initial radius because, for

large c, c has a tendency to reduce the volume since equation (96) is trying to make

n s (11) m s equal to the mass density p. With this we can use the numerical integration

scheme, eqs. (54 - 62), but replacing equation (61) with equation (93), where 11 is

given by equation (96) to calculate the numerical results seen in Chapter IV.



CHAPTER III

The Program

Introduction

As we have stated many times before, the stellar dynamics used in the computer

program comes from the numerical integration scheme of May and White [6]. The

program is in Fortran using the Microsoft Fortran 90 DOS version 5.1 compiler on a

486DX2-66 personal computer with 16 MBy of ROM. This thesis contains two Fortran

programs. The strange quark star program is in Appendix B and a Fortran program

using May and White's equations of state can be found in Appendix C.

Since Fortran can not use half integers for array assignments as seen in May

and White's equations [6], we will adopt the following assignment configuration.

All the shells have even j indices and all the zones have odd j indices where

j == -1, 0, 1, ... , J J + 1 with j == 0 defined as the origin of the star's coordinate

system and j == J J defined as the outer most shell of the star at a radius of r == R.

The regions between any two consecutive shells j to j + 2 are called the zones and

have an initial thickness of ~r. Therefore we divide the star into 200 consecutive

zone-shell sets and initially all the zones are of equal thickness ~r. Thus the whole

star can be visualized like this

-1 .0 1 ) 3 ) 5 ) 7 ) J J - 1 ) J J + 1
2 4 4 8 JJ

where the central numbers -1,1,3,5,···JJ - 1,JJ + 1 are the zones, the lower

numbers 2, 4, 6, 8, · · · J J are the shells and J J = 400, which implies that there are

200 zones and 200 shells.

In order for us to use the May and White numerical integration scheme in our

program, we first have to make an array assignment conversion since May and White

28
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use half integer indices in there equations. Thus the array assignments that we have

set for the time stepping are all centered on t3 which we defined to be the most

current time. Therefore we set tl =t3 - ~t and t5 =t3 + ~t where ~t is the time

step, either t2 or t4. The array assignments that we impose on both the shells and

the zones are always shell centered. This means that j _ j3 is the current shell that

is being looked at by the computer, where j == 2,4,6,· . · J J by steps of 2. We now

describe the array assignments for the zone and shell that lies above and below this

central shell j = j3 in the following manner. The shell below the central shell j3 is

defined as jl == j3 - 2. The zone which lies between these two shells is defined as

j2 _ j3 - 1. Likewise for the zone and shell above the centeral shell j3. The shell

which lies above the centeral shell j3 is defined as j5 = j3 + 2. The zone which lies

between these two shells is defined as j4 = j3 + 1. So when looking at the programs

in Appendies Band C, the variable arrays will look something like

variable(t3,j2), variable(t2,j3), and so on.

where j3 _ j 2,4,6, · · · J J by steps of 2. At the beginning of each program

is a complete list of the nomenclature that is used throughout that program with

the dimensions of each array used and the units of each variable. For the reader's

convience, we have put the May and White equation numbers on the line above the

respective Fortran equation line in each program.

Testing The Program

The Free-Fall Test

Our first test on the computer code is a gravitational free-fall collapse using

May and White's equations of state and comparing our numerical results with their

results. We perform the free-fall test using May and White's equations of state with

the initial conditions of c == 0 and w == a == 1 everywhere inside the star, implying

that P == Q == 0 for all times (Q represents an artificial viscosity as described by May

and White and is initially set to zero). Therefore the numerical integration scheme

drastically simplifies in the free-fall limiting case with the pressure defined as
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P = P (p, c) = "3pc ·

The equations (54 - 62) reduce to

mG
Ut -- ,R2

Rt U,

(pR2
)t U""-- ,

pR2 R""
ft o,

(W)"" o,
w

m 47r 1'" pR2 R", dK ,

r 41rpR2R"" ,

p o,
and

w == 1,
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(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

which are the Newtonian equations for gravitational free-fall. From this a theoretical

solution can be formulated, which is

7r j87rGpo 7r [r; r;---; · r;--;]2" - t 3 = 2" - V( V1 - ( + arCSIn V1 - ( ,

where we define ( as

(= R(K,t)
- R(K,O)

and the initial mass density is

3(m(K,t) - m(K,O))
po= 47rR3(K,O) ·

For a gravitational free-falling star, the characteristic collapse time, T c , is

1ifi:1r
T -

c - 32Gpo'

(108)

(109)

(110)

(111)

which is the total time it would take for a body like a star to collapse to a single point

under its gravitational field if it lacked all internal energy and pressure.
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In figure 1, we have plotted the theoretical solution to equations (108) against

equation (109) along with our numerical results using May and White's Free-Fall

equations and achieved outstanding accuracy in Olir numerical results, as can be seen

from the relative %Error located at the top of figure 1. We found that the theoretical

solution and the computer code are both very sensitive to the accuracy of 7f, as one

can see from both the figure and in equation (108). We can also see that if the

value of 7f used is not accurate enough, the theoretical solution will curve above the

true position of this theoretical solution. Therefore we adopted a value of 7f equal to

3.14159265358979323846 which gave us the theoretical curve that is shown in figures

1, 2, and throughout the figures located in Chapter IV. May and White found it

necessary to invoke an adjustment on all the times of the amount of t = t +0.48~tO+l

to move their numerical results up to the theoretical solution, where ~tO+l is equal

to the initial ~t = t2 = t4 in our program. We believe that the main reason why we

need not adjust our times is because we were using a more accurate value of 7f.

The Non-Free-Fall Test

The second test that we performed on the computer code was the gravitational

non-free-fall collapse test using May and White's equations of state and comparing our

numerical results with those of May and White. Here we take the initial conditions

c i- 0 and w =I a =f 1 which imply that P =f Q =f 0, so we must use the pressure

defined by equation (98). Therefore we must use the full expressions for equations

(54 - 62).

May and White used a ,-law relationship for their non-free-fall computations

with, = ~ which gives the pressure as P = ~pc = ~X. They initially set the

internal energy per unit mass to be Co = 1.92 X 10-5c2 and the initial radius as

R o = 6.22::;O~3C2 ~ l004Rs for an initial mass of MT = 21M0 where R s is the

S h h·ld d· Th d··· I 3MT U· h·c warzsc 1 ra IUS. e mass enslty IS SImp y p = -R3. SIng t IS setup, we
47f 0

have plotted our computational results for several mass regions in the star. This

means that we have kept track of several volumes that contains 100%, 85.7%, 42.2%,
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Figure 1. A free-fall plot of the radius ratio, (, v.s. a dimensionless scaled time,
1r /2 - t (81rGpo/3)1/2 , for a 21Me non-quark star where LltO+1 == 0 for
the adjustments on t. The relative error of the numerical data is shown
above.
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25.0%, and 10-4 % of the total mass of the star. These results can be seen in

figure 2 along with the theoretical solution for Free-Fall, eq. (108). We found that

our numerical results in figure 2 are very close to May and White's results [6].
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CHAPTER IV

Results

Introduction

This chapter gives the results that were obtained with the Fortran program in

Appendix B using the initial conditions for the strange quark star model (for the

non-free-fall case) that was discussed in Chapter III. When looking at the strange

quark star in free-fall, we find that its behavior is the same as in figure 1, since there

are no equations of state that are being used in either case. This implies that there

is no internal pressures or energies throughout either star. The only thing that is

different between the two free-fall cases is that the initial density is much larger in

the stange quark star which makes the free-fall collapes time much faster. We now

take a look at the non-free-fall case for a stange quark star and at the end one will

find our closing remarks.

A Non-Free-Fall Look Inside A Strange Quark Star

We looked for stability for the case where B == 60MeVI1m3 and eYe == 0.45 for

m s == 150MeVI c2 • We also took a brief look at a strange quark star with the same B

and eYe but with m s == 200MeVI c2 and m s == 250MeVI c2
• These results and results

from m s == 150MeVI c2 are found in tables V - VII. When looking for stability we

found that in most cases the star would oscillate as it either collapsed or expanded.

These oscillations have amplitudes from a few tenths of a meter to several meters. We

associate these oscillations with density shock waves that are propagating throughout

the star.

A word of caution is needed when looking at the collapse or expansion of this

type of star. Since the stars are so small and the internal densities are so great
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one finds that the time scales are very small, around a microsecond or less for each

consecutive time step, because the dynamics force the time step to be this small. This

is to be expected, for when we look at the characteristic collapse time, Tc = J32~Po '

we find that the total collapse time gets shorter as the density increases. If one uses

po == PN 1.4 x 10-4 M cv /km3 , one finds Tc == 1.25895 X 10-4 8. This is the total time

it would take a star to collapse to a point under free-fall conditions (recall that for a

quark star we have po > PN ).

Tables V - VII show our results that were received from the strange quark star

Fortran program of Appendix B for different strange quark masses and for different

initial stellar masses. The initial setup values are on the left-hand side of these tables

and the ending values after an elapsed time given by ETIME are shown on the right

hand side, where P20/ PN is the density ratio in the 20th zone of the star. In most

cases our program can't go pass this "ETIME" for these initial star masses because

the star evolves beyond the capability of this program with the equations of state

that are being used.
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TABLE V.

MTOT Cmin Ri Pi/ PN ~ ETIME P20/ PN R f

(Mev) (c2) (km) (MeV) (10-5 s) (km)

1.70 0.90 10.042 1.507 493.1 10.39 5.83 11.857

1.80 0.75 10.633 1.460 477.6 10.999 25.73 11.985

1.90 0.65 11.220 1.388 463.2 10.278 22.17 12.103

2.00 0.50 11.814 1.379 449.7 9.661 25.38 12.18

2.10 0.40 12.405 1.340 437.0 9.299 28.66 12.266

2.20 0.25 12.995 1.367 425.0 8.625 27.13 12.34

Results for a strange quark star with a strange quark mass of m s == 150MeVI c2
,

strong coupling constant of Q c == 0.45, and bag constant of B == 60MeVI fm 3
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When working with this program we found that c was indeed bounded for

workable solutions to our equations of state, eq. (92) and (93), in the Fortran program

of Appendix B. We also found that c is directly dependent on the choice of the initial

mass for the star; as the initial mass increases, c seems to decrease as can be seen in

these tables. In general, c seems to have the following range (O.05c2
:::; c :::; rv 1.0c2

).

For c < O.05c2 the program would crash due to the fact that c would turn negative in

the outer most region of the star for most initial masses from (I.OMG :::; M :::; 2.5M0 ).

We believe the reason for this is that the star is collapsing faster than the program

can handle and this produces non-physical results, thus the star seems to implode

when c < O.05c2
• For c > 1.0c2 the opposite seems to happen. The star has just too

much internal energy and can not stay together so the star explodes. To avoid the

c problem we choose an c which is the minimum value that could be assigned to it

to make the star either expand or collapse steadily. This in turn makes the initial

internal mass density, p, as large as we can get it (i.e., po > PN ), because the density

will decrease as Cmin increases eventually making po < PN which makes the quark

matter equations of state invalid. With the density decreasing as the C is increased,

we find that initial radius of the star decreases. This seems to imply that there is a

maximum value for c in the initial setup of a strange quark star.

We plotted several sets of data concerning a strange quark star with a strange

quark mass of I50MeV/c2 for initial stellar masses from 1.7M0 to 2.2M0 (table V).

The results are shown in figures 3 - 16. When comparing a 1.8 M 8 strange quark star

(figures 4 - 7) to a 2.1M8 strange quark star (figures 12 - 15), we see two different

types of dynamics. One can see that the 2.1M0 strange quark star has a collapsed

core and the rest of the star appears to be collapsing as well, but slowly with respect

to the time scale. The 1.8M8 strange quark star does not have a collapsed core; in

fact, the core seems to be slowly expanding and the star may find a point of stability

which is unknown.

We found that a 1.7M8 strange quark star (figure 3) evolves in a similar manner

to the 1.8M0 strange quark star (figure 4). Likewise a 1.9M8 strange quark star

(figure 8) seems to evolve in a similar manner to the other two stars at 1.7M8 and
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TABLE VI.

Results for a strange quark star with a strange quark mass of m s == 200MeV/ c2
,

strong coupling constant of lYe == 0.45, and bag constant of B == 60MeV/ fm 3

MTOT Cmin Ri Pi/ PN It ETIME P20/ PN R f

(Mev) (c2
) (km) (MeV) (10- 5 s) (km)

1.70 0.85 10.040 1.550 496.1 11.12 22.47 11.62

1.80 0.80 10.633 1.419 480.9 9.770 3.597 11.78

1.90 0.63 11.224 1.406 466.8 10.02 26.33 11.823

2.00 0.45 11.814 1.426 453.6 9.015 23.90 11.911

2.10 0.35 12.405 1.390 441.2 8.755 30.05 11.98

2.20 0.20 12.996 1.420 429.6 8.167 29.14 12.06

TABLE VII.

Results for a strange quark star with a strange quark mass of m s == 250MeV/ c2
,

strong coupling constant of lYe == 0.45, and bag constant of B == 60MeV/ fm 3

MTOT Cmin Ri Pi/ PN It ETIME P20/ PN R f

(M0 ) (c2) (km) (MeV) (10- 5 s) (km)

1.70 0.80 10.04 1.59 499.1 10.067 36.15 11.05

1.80 0.65 10.63 1.55 484.4 9.114 26.46 11.16

1.90 0.50 11.22 1.53 470.7 8.590 30.89 11.24

2.00 0.35 11.81 1.53 458.6 8.062 29.64 11.34

2.10 0.20 12.40 1.56 446.2 7.684 32.80 11.40

2.20 0.10 13.00 1.55 435.1 7.425 30.82 11.44
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1.8M0 . However, when we look at a 2.0Me strange quark star (figures 9 - 11) and

a 2.2M0 strange quark star (figure 16), we see that they both evolve in a similar

manner to the 2.1M0 strange quark star: they all have a collapsed core.

Therefore from these plots for a strange quark star with a strange quark mass

of 150MeVI c2
, bag constant of B == 60MeVI1m3

, and strong coupling constant of

lYe == 0.45, we find that there may be such a thing as a strange quark star and from

these results we suspect that a maximum mass limit for a stable strange quark star

could lie between these two masses, 1.8Me < Mmax < 2.0M0 . However, we say this

with a bit of caution because the strange quark star is still hypothetical and this

method for finding stability may be questionable.

Closing Remarks

We have seen that our Fortran program has been a very well means for doing

numerical work on stellar dynamics. When we tested the root program that is in

Appendix C, we found that we matched May and White's results with excellent

accuracy as we showed in Chapter III.

One may wonder how well our strange quark star model compares to the prede

cessors in table II. We found from the table that the average M max == 1.98M0 and if

we take the center point of our Mmax range we have Mmax == 1.9M0 . If we also average

the radii from table V, we obtain Rmax == 10.93km; whereas we got Rmax == 11.22km

for M max == 1.9M0 as seen in table V. These results are only as good as are our

program and we should be able to get better results by having more precise equations

of state for quark confinement and a better understanding of the coupling between

quarks and between quarks and gluons. We should also pay more attention to the

strong density shock waves that are possible throughout such stars, as discussed by

May and White [13,6]. Despite these problems, we still believe and agree with Witten

[12] that the most stable matter at these high den'Sities is strange quark matter. We

suspect that a star composed of such matter can not exist for an initial stellar mass

greater than 2.1M0 and from our study we seem to find a maximum mass range for

a strange quark lying some where between 1.8M0 and 2.0M0 . We should also point



out that these strange quark stars are possibly just the core of a slightly larger star

like a neutron star. Since we have assumed in our initial setup of this problem that

"the star" must satisfy charge neutrality, then there must be some form of a crust

or an envelope of charge neutralizing matter around the strange quark star. It may

also be possible to have a massive neutron star which gains mass by some means of

accretion from a companion star to form, momentarily, a stable strange quark star

before proceeding to a black hole. The bad news is that this strange quark mass range

of 1.8Mev to 2.0Mev lies within the mass range of neutron stars, which extends from

1.4M0 to 3.0M0 . So one may conclude that neutron stars and strange quark stars

are essentially the same type of star. Maybe strange quark stars are just neutron star

with a big percentage of strange quarks inside. If this is so, then we may need to

redefine the term "strange quark star" to be a neutron star with a certain percentage

of the star being composed of strange quarks. Thus we need a dual model, one that

takes into account both the neutron and the quark matter equations of state, and al

lows the baryon-quark phase transition to take place when needed. Our model could

be improved by looking at other C > Cmin so that the initial internal mass density

is closer to PN , which may lessen the initial shock wave. The most important thing

that should be considered is changing the initial conditions of the strange quark star

to include general quark matter and the appropriate baryon-quark and quark-strange

quark phase transitions.



BIBLIOGRAPHY

1. P. Haensel, et al., "Strange Quark Stars", Astron. Astrophys. 160 (1986) 121.

2. C. Alcock, et al., "Strange Stars", Ap. J. 310 (1986) 261.

3. E. Farhi and R.L. Jaffe, "Strange Matter", Phys. Rev. D Vol.3D #11 (1984)
2379.

4. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron
Stars, John Wiley and Sons, (1983).

5. J. R. Oppenheimer and G. M. Volkoff, "On Massive Neutron Cores", Phys.
Rev. 55 (1939) 374.

6. M. M. May and R. H. White, "Stellar Dynamics and Gravitational Collapse",
Methods in Compo Phys. Vol. 7 (1967) 219.

7. N. Itoh, "Hydrostatic Equilibrium of Hypothetical Quark Stars", Prog. Theor.
Phys. Vol. 44 #1 (1970) 291.

8. G. Chapline and M. Nauenberg, "Asymptotic Freedom and the Baryon-Quark
Phase Transition", Phys. Rev. D Vol.16 # 2 (1977) 450.

9. G. Chapline and M. Nauenberg, "Phase Transition From Baryon to Quark
Matter", Nature Vol. 264 #18 (1976) 235.

10. K. Brecher and G. Caporaso, "Obese 'Neutron' Stars", Nature Vol. 259 (1976)
377.

11. T. 0veraard and E. 0staard , "Mass, Radius, and Moment of Inertia for Hy
pothetical Quark Stars", Astron. Astrophys. 243 (1991) 412.

12. E. Witten, "Cosmic Separation of Phases", Phys. Rev. D 141 #2 (1984) 272.

13. M. M. May and R. H. White, "Hydrodynamic Calculations of General
Relativistic Collapse", Phys. Rev. 141 #4 (1966) 1232.

14. G. C. McVittie, "An Example of Gravitational Collapse in General Relativity",
Ap. J. 143 (1966) 682.

15. C. W. Misner and D. H. Sharp, "Relativistic Equations for Adiabatic, Spher
ically Symmetric Gravitational Collapse", Phys. Rev. 136 #2B (1964)
B571.

56



57

16. S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, (1972).

17. R. C. Tolman, Relativity, Thermodynamics, and Cosmology, Oxford, (1934).

18. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon,
(1994).

19. A. Goyal and S. Dutta, "Flipped Neutrino Emissivity From Strange Matter",
Phys. Rev. D Vol.49 #8 (1994) 3910.

20. B. V. Martemyanov, "How Large Can The Crust of a Strange Star Be?", Phys.
Rev. D Vol.49 #8 (1994) 4293.

21. M. L. Olesen and J. Madsen, "Nucleation of Quark Matter Bubbles in Neutron
Stars", Phys. Rev. D Vol.49 #6 (1994) 2698.

22. Z. Dai, T. Lu, and Q. Peng, "The Birth of Strange Matter From Two-Flavor
Quark Matter in a Neutron Star", Phys. Lett. B 319 (1993) 199.

23. J. Madsen, "Bulk Viscosity of Strange Quark Matter, Damping of Quark Star
Vibration, and the Maximum Rotation Rate of Pulsars", Phys. Rev. D
Vol.46 #8 (1992) 3290.

24. S. Chakrabarty, "Equation of State of Strange Quark Matter and Strange Star" ,
Phys. Rev. D Vol.43 #2 (1991) 627.

25. W. B. Fechner and P. C. Joss, "Quark Star With 'Realistic' Equations of State",
Nature Vol. 274 (1978) 347.

26. B. Freedman and L. McLerran, "Quark Star Phenomenology", Phys. Rev. D
Vol.17 #4 (1978) 1109.

27. B. Freedman and L. McLerran, "... III. The Ground-State Energy of a Rela
tivistic Quark Gas", Phys. Rev. D Vol.16 #4 (1977) 1169.

28. K. Brecher, "Quark Bags or Interacting Neutrons: A "Neutron" Star Test",
Ap. J. 215 (1977) L17.

29. J. R. Oppenheimer and H. Snyder, "On Continued Gravitational Contraction",
Phys. Rev. 56 (1939) 455.

30. J. J. Carroll, A Theoretical Study of Gravitational Collapse for a Quark Star,
Oklahoma State University Master Thesis, (Dec. 1984)

31. S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover,
(1967).

32. D. Flamm and F. Schoberl, Introduction to the Quark Model of Elementary
Particles, Vol.1, Gordon and Breach Sci., (1982).



APPENDICES

58



APPENDIX A

THE EQUATIONS FOR QUARK MATTER

IN A PROGRAMMABLE FORM AND THE

CORRECTED MAY AND WHITE EQUATIONS

Program Setup.

We have used the following procedure to calculate the thermodynamic proper

ties for our strange quark stars. But first, we set the following initial conditions for

the whole star:

MT the mass of the star,

m s the strange quark mass,

Dc the strong coupling constant,

B the bag pressure constant, and

Cmin the initial energy per unit mass.

With these initial conditions, we can calculate an initial radius, Ro , for the star by

setting

This gives us an initial mass density

which is comparable to nuclear density.

Now we need to know the total strange quark number density for the above

volume (ie. n s == poms ), but first we need the masses of the other two quarks which

are given by the following relations:
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m sm ---
u - 35.0 '

3.6ms

md = 70.0 '

and the mass of an electron, which is given by me = 0.511MeVI c2
• We must now

establish the conditions for the star to be totally electrically neutral. This is done

by using equations (68, 72, 79, 80) and (96) in the following way. We first make a

guess for the initial chemical potential for the whole system to use in equation (80),

we choose 11 Ils = 500MeV We choose this value because Ils must always be larger

than m s c2 in equations (68) and (72) to return real values. In order to establish the

electrically neutral condition, we must iterate these equations to converge on the true

chemical potential for the whole system. Therefore, we calculate Os (11) and ns (11)

with the guessed value for 11, where Os (11) and ns (11) are given by equations (68) and

(72) restated below:

(112)

and

Then we take these values and use them in the recursion relation for 11, eq.

(113)

(90),

where p and E for are initially constant for the whole system. The recursion relation
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for J-l is restated below

(114)

Thus /1new is then plugged back in to equations (68) and (72) and the process repeats

until /1new and /1old converge. Once this is done, the star is now charge neutral and

we can now section the star into 200 zones of equal thickness, ~r, and of constant

/1, Po' E, OS (/1) and n s (J-l)* where we have to recalculate Po for each zone by solving

equation (114) for p. This ensures that /1, Po' and E are correct because for large E'S

the radius decreases since the recursion relation for /1 is trying to make n s (/1 ) m s

equal to the rest mass density p. Therefore, the new initial radius is

[
3MT ] t

Ro = 471" (pc2 + pc;) , (115)

where p is the proper rest mass density which is initally homogeneous and isotropic,

and E is the proper specific internal energy per unit mass and is initally constant for

each zone.

At the end of Chapter II, we had made the assumption that our star is just a

strange quark star (ie. where i == s). Therefore IJ-1 and e;-l from equations (84)

and (85) are zero and reduce to

(116)

and

(117)

where j == 2, 4, 6, · · . J J are the shells outside the zones j - 1. From this the energy

density per unit mass, eq. (92), takes the form of

(118)

*Recall that in Chapter III we constructed the Fortran program with 200 con
secutive sets of shells and zones, each zones have a thickness of ~r. Therefore the
quark star is subdivided into 200 subsystems for which we must keep track of all the
thermodynamical properties.
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for any time. The recursion relation for the next chemical potential, eq. (114), for

each zone now becomes

n c2 + n En ns,n ( n ) - B
n+l ( n ) _ Pj-l Pj-l j-I - j-I Jlj-I

Jlj-I Jlj-I - s n () ,n' /l.nj-I rj-I

(119)

where n is the most current time and P and E are constant for the iteration and Jlj~f

is calculated zone by zone throughout the star. The pressure is a function of Pj-I,

Ej-l and Jlj-l for each subsystem at any time n

(120)

where Pj-I is expressed by equation (119) for any time n and takes the following form

(121 )
ns (s ) + s n S + Bj-I Jlj-I Jlj-I j-I

pj-I == 2·
Ej-I + C

We now can iterate through the May and White numerical integration scheme [6]

outlined in Chapter II to find the next pressures, internal energy densities for each

new volume. We now can recalculate the next chemical potential, Jlj-l, for each of

the subsystems. Then we start the whole procedure allover for the next iteration of

the May and White numerical integration scheme.

Quark Matter.

If we were to use a model with a homogeneous and isotropic distribution of up,

down, and strange quarks along with electrons to form a quark star. Then we should

use the explicit form of the setup as described in the section entitled "Equations Of

State For Quark Matter" from Chapter II. We have listed here the equations in a

programmable form as seen in equations (118-121), where the j indices define the

shell or zone, the i indices indicate the constituent, (i == u, d, s, e), and the n indices

indicate the time or time step (See Chapter III for more detail about the indices j

and n).

The energy density per unit mass, eq. (66), for any time n, will transform into

- 2 +Xj-I == Pj-IC pj-ICj-I' (122)
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which is the same as

Xj-l = ~ (n~-l (Il~-l) + Il~-l n~_l (/l~-l)) + B ·
t

(123)

From equation (123), Li Il~-ln~_l (Il~-l) for any time n can now be expressed as

2;: Il~-l n~_l (Il~-l)
t

3Ilj-lnf-l + Ilj-l [nj_l (Ilj-d - nj-l (Ilj-d

+eY-1 (Ilj-I, Ilj-1) - ej-1 (llj-1, /lj-1)] , (124)

where n?_l are the baryonic number densities for each zone. We want P(X, Il i , 11) not

just P(Il), so equations (84) and (85) for any time n becomes

(125)

and

(126)

The pressure equation, eq. (89), which is a function of x, Il i , and 11 for each subsystem

for any central time, n, can be expressed by

pjn_1(xj-1,1l~'~1lIlj-1) = 2;:1l~'~ln~'~l (1l~'~1) + 2;:fJ~l (llj-1,1l~'~1) - Xj-1' (127)
t t

where 113-1 is the chemical potential for the next time step and is calculated by the

recursion relation, eq. (90), which can be written in the following manner:

Ilj-l = {Xj-l - ~n~'~l (Il~'~\) - B -llj~l [nj~l (llj-1)

-nj~l (llj-1) + ey~ (llj-1' Ilj~n1) - ej~l (llj-1' Ilj~l)]} /3nf~~· (128)

Once the (IlJ-1)'S have been calculated for each zone, j - 1, the (1l~'~l)'S can be

calculated from equation (80) which is re-expressed as

n _ s,n _ d,n
Ilj-1 == Ilj-1 - Ilj-1

n _ u,n + e,n
Ilj-1 == Ilj-1 Ilj-1

(129)

Now we can iterate through the May and White numerical integration scheme

[6] outlined in Chapter II to find the next pressures and internal energy densities
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for each new volume. We now can recalculate for the next chemical potentials J-lj-1

for each of the subsystems. Then we start the whole procedure allover for the next

iteration of the May and White numerical integration scheme.

Corrections.

When working with May and White's numerical integration scheme, we found

a few typographical errors. The corrected form of these equations are shown with our

definition of the indices j and n.

May and White's equation 107 should read

(130)

May and White's equation 133 should read

( )
n+1

~ j-I =

May and White's equation 143 should read

C~+2 _ c~+2 + (P + Q)~+l [(p~+2) -1 _ (p~+2) -1]
)+1 )-1 ) )+1 )-1

f= W,,!,+ 2c2
)

May and White's equation 149 should read

(
n+2)n+2 n+2 Cj-1

~mj_1 = rj _ 1 1 + 7 ~J-lj-I'

(131)

(132)

(133)
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NON-FREE-FALL PROGRAM:

FOR OUR STRANGE QUARK STAR MODEL
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C THIS 'LOGIN. FOR' FILE DECLARES THE ARRAYS, VARIABLES,
C COMMON BLOCKS, AND THE PARAMETERS USED THOUGHOUT THE
C THE PROGRAM 'QS__NFF.FOR' AND IS CALLED UP IN EACH
C SUBROUTINE.

*

*
C
C
C
C
C

*

DOUBLE PRECISION R(S,-1:401), deIR(S,-1:401),
!RSQ(5,-1:401),rho(5,-1:401),epsil(5,-1:401),U(5,-1:401),
!UR(5,-1:401),PQ(5,-1:401),M(5,-1:401),delM(5,-1:401),
IdelMU(-1:401),P(5,-1:401),Q(5,-1:401),W(5,-1:401),
!gamma(S,-1:401),A(S,-1:401),delT(6)

DOUBLE PRECISION Irho(S),IRad(S),X1(S,O:200),
!Y1(5,O:200),X2(5,O:200),Y2(5,O:200),X3(5,O:200),
!Y3(S,0:200),deltTr(O:200),deltTe(O:200),deltTc(O:200),
!deltTMU(O:200)

DOUBLE PRECISION ND(3),OMEGA(4,-1:401),
!NUMDEN(4,-1:401),Vol(-1:401), Numb(3,-1:401),
!massE(4), MU(5,-1:401,5), B, alphac, BARNUM

DOUBLE PRECISION ETIME, ADJ, Mtot, radius, dr, SRAD,
!PI, G, C, CSQ, fourPI, hb, HBC, Msun, toJ, CONST, rhoo

INTEGER T, t1, t2, t3, t4, t5, t6
INTEGER N, DO, NUM(0:200), JJ
COMMON /MASSES/ delM, delMU
COMMON /TIMES/ delT, ETIME, ADJ
COMMON /MandR/ M, R
COMMON /WandA/ W, A
COMMON /PandQ/ P, Q
COMMON /URPQ/ UR, PQ
COMMON /VandN/ Vol, Numb
COMMON /GAMMAU/ gamma, U
COMMON /RRSQ/ delR, RSQ
COMMON /THERMO/ rho, epsil
COMMON /NUMBER/ N, JJ, DO, NUM
COMMON /OTHERS/ Mtot, radius, dr, Irho, Irad, SRAD
COMMON /TIMERS/ deltTr, deltTe, deltTc, deltTMU
COMMON /PLOTDAT/ Xl, Y1, X2, Y2, X3, Y3
COMMON /SQPa/ OMEGA, NUMOEN, ND
COMMON /SQPb/ alphac, MU, maSSE, B
COMMON /BAYRON/ BARNUM
PARAMETER(T = 3,t1=T-2,t2=T-l,t3=T,t4=T+1,t5=T+2,

!t6=T+3)
PARAMETER(PI=3.14159265358979323846DO, G=1.32733D11)
PARAMETER(fourPI = 4.DO * PI, C = 2.998D5, CSQ = C**2)
PARAMETER(Msun = 1.99030, toJ = 1.60219D-19)
PARAMETER(hb = 6.582D-22, HBC = (hb * C)**3,

!rhoo = 313.00)
PARAMETER(CONST = - 1.00 / (fourPI * PI * HBC»

rhee IS 1/3 OF THE NUCLEON REST ENERGY IN MeV
UNITS ARE; {hb -> h bar -> MeV * s}

{Msun ->-Solar Mass -> kg}
{toJ -> Mev to Joule -> kg/km A3 * (km/s)A2}

{C -> speed of light -> km/s}
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*

PROGRAM'S NOMENCLATURE/ARRAY LIST WITH UNITS:

R(5,-1:401) ..... R is the radial coordinate for each shell
j3 in units of (km).

deIR(5,-1:401) .. del-R is the change in radius from shell
jl to j3 in units of (km).

RSQ(5,-1:401) ... RSQ is the radial coordinate squared for

Non-Free-Fall Fortran Program
strange Quark star equations of state:
P = MU(I) * NUMDEN(I) - Xi !Msun/km/sA2

xi = OMEGA(I) + MU(I) * NUMDEN(I) + B !Msun/km/sA2
I = u, d, s, e ---> only using I = s here and

xi = rho * CSQ + epsil * rho

There is no preferred caricature, all variables are
defined as either Real or Integer, and the defaults aren't
used in this progam. Also there is no difference in using
upper or lower case caricatures. The only reason why both
upper and lower case are used is that it make reading the
code a bit easier.

C
C
C
C
C
C
C
C Program QS__NFF.FOR VERSION: I-Working-Unadjusted
C Also uses program , QS__LOG. FOR'
C===========================================================
C Time Array : Shell Array
C (1 to 6 centered on t3=3) : (0 to 401 centered on j3=j)
C :
C tAn-l Last current time :j-l Shell below central shell
C dtAn-.5 step from tAn to :j-.5 Fictitious zone, j-l to j
C tAn-l
C tAn Current Time :j Central Shell
C dtAn+.5 step from tAn to Ij+.5 Fictitious zone, j to j+1
C tAn+l
C tAn+l Next current time Ij+l Shell above central shell
C
C *** (time,shell)==(t3, j4)=(n, j+.5) and so on. ***
C===========================================================
C Array Assignment
C M. & W. : Code : M. & W. : Code
C : :~ :~__~__
c tl = n - 1 -> tl = t-2 jl = j - 1 -> jl = j-2
C t2 = n - .5 -> t2 = t-1 j2 = j - .5 -> j2 = j-l
C t3 = n -> t3 = t j3 = j -> j3 = j
C t4 = n + .5 -> t4 t+1 j4 j + .5 -> j4 = j+1
C t5 = n + 1 -> t5 = t+2 j5 j + 1 -> j5 = j+2
C
C===========================================================
C
C MAIN UNITS ARE; {Mass in Msun, Radius in km,
C Time in seconds}
C WE DEFINE {a Joule to be a kg*kmA2/s A2}
C {a Newton to be a kg*km/s A2}
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C each shell j3 in units of (kmA2).
C M(5,-1:401) .....M is the total mass enclosed by the Jth
C shell in units of (Msun).
C deIM(S,-1:401) .. delM is the mass enclosed between shells
C jl and j3 or for the j2 zone in{Msun).
C deIMU(-1:401) ... del-MU is the total rest mass in the j2
C zone corresponding to a radius j3 in
c units of (Msun).
C rho{5,-1:401) ... rho is the proper rest mass density for
C each zone at every time step in units
C of (Msun/kmA3).
C epsil(S,-1:401).epsilon is the total internal energy per
C unit mass for each zone at each time in
C unit of {km/s)A2.
C P{S,-1:401) ..... P is the internal pressure of the star
C through zone j2 at a time t1, t3, or
C of in units of (Msun/kmA3*{km/s)A2).
C Q{5,-1:401) ..... Q is the artificial bulk viscosity term
C added to P. It has the same units as P.
C PQ(S,-1:401) .... P+Q is pressure plus artificial viscosity
C for shell j3 at t3 in (Msun/s A2 km).
C W(5,-1:401) .....W relativistic enthalpy or heat function,
C dimensionless.
C gamma{5,-1:401).gamma is a dimensionless quantity related
C to mass and the square root of the 2nd
C metric coefficient (b).
C U(5,-1:401) ..... U is the 1st component of the fluid
C 4-velocity in units of (km/s).
C UR(5,-1:401) .... dU/dR is the rate of change in the 1st
C component of the fluid 4-velocity (U)
C w.r.t. the radius (R) in {vel/km)=l/s.
C A(5,-1:401) .....A is the square root of the first metric
C coefficient (a) and is dimensionless
C (a=Ac in units of km/s).
C deIT(6) del-T is the time array in units of sec
C deltTe{0:200) del-T{epsilon) is the time step with a 2%
C change in epsilon in units of s.
C deltTr{0:200) ... del-T{rho) is the time step with a 2%
C change in rho in units of s.
C CS c(s) is the speed of sound, velocity of
C sound in the fluid, in units of km/s.
C deltTc(0:200) ... del-T{c) is the time step with a 20%
C change in the inverse of CS in units of
C seconds
C F F is the functional part of the recursion
C relations in A and P.
C X#(S,0:200) ..... these arrays store data to be sent to
C output files.
C Y#(S,0:200) ..... these arrays store data to be sent to
C output files.
C IRad(5) store the initial radii at certain %mass
C levels.
C Irho{S) store the initial densities at certain
C %mass levels.
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OMEGA(4,-1:401).are the thermodynamic potentials per
volume in units of MeV/kmA3.

MU(5,-1:401,5) ... are the chemical potentials in MeV.
NUMOEN(4,-1:401).are the number densities in 1/kmA3.
radius ....•..•... the calculated initial radius in km.
dr the initial sizes of each zone in km.
rhoavg the mean density of all zones in units of

density.
epsavg .•......... the mean internal energy per unit mass in

units of (km/s)A2.

* pi)

masses

= Joule

COUNTERS:

C = 2.998E5 km, speed of light, where CSQ = C*C
PI = 3.1415926535897932384600, where fourPI = (4
The universal gravitational constant,

G = 1.32733011 km/(Msun*s A2)
1.99030 kg, the conversion from kg to solar
1.602190-19, the conversion from MeV to

kg*(km/s)A2

JJ = 400 the total number of shells and zones.
Mtot -> the intitial mass used in Msun.
massE(3) -> the intitial rest mass energy of the strange

quark in units of MeV/c A2.
the intitial chemical potential of the strange

quark in units of MeV.
0.45, is the strong coupling constant in the

quark-gluon interaction to first order in
(gA2/4PI), dimensionless.

57 Mev/fmA3, the bag pressure constant.
1.0D-7 s, the intitial time step.
?? * dt s, adjustments to time for errors in the

integrated time.

C
C
C
C
C
C
C
C
C
C
C
C
C J counts the number of shells and zones by twos,
C J = O,2,4, •.• ,JJ
C N counts the number of iterations, N = O,1,2, ..• ,N
C 00 is an output counter, DO = 1,2 .. 00, then starts over.
C
C===========================================================
C CONSTANTS AND CONVERSIONS:
C
C
C
C
C
C Msun =
C toJ =
C
C hb = 6.5820-22 MeV*s
C HBC = (hb * C)**3
C
C===========================================================
C BC's AND IC's
C
C
C
C
C
C MU(3) ->
C
C alphac =
C
C
C B =
C dt =
C ADJ
C
C
C===========================================================
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C
C THE BODY OF THE PROGRAM
C

INCLUDE 'QS__LOG.FOR'
DOUBLE PRECISION FF
OPEN (UNIT = 1, FILE= 'QS DAT1.DAT', STATUS 'OLD')
OPEN (UNIT = 2, FILE= 'QS--OAT2.DAT', STATUS = 'OLD')
OPEN (UNIT = 3, FILE= 'QS==DAT3.DAT', STATUS = 'OLD')
OPEN (UNIT = 4, FILE= 'QS DAT4.DAT', STATUS = 'OLD')
OPEN (UNIT = 5, FILE= 'QS--DAT5.DAT', STATUS = 'OLD')
OPEN (UNIT = 6, FILE= 'QS--DAT6.DAT', STATUS = 'OLD')
PRINT*, '*****---> I'M WORKING <---*****'
N=O !SET ITERATION COUNTER.
DD=l !SET OUTPUT COUNTER.
ff=99.DO !SET ff GREATER THEN ZERO,

C IF ff < 0 THEN PROGRAM
CALL INITIAL
CALL PLOTS(ff)
N=N+1 !INCREMENT OUTPUT COUNTER.

119 CONTINUE
*(119)

delT(t3) = (delT(t4) + delT(t2»/2.DO
ETIME = ETIME + delT(t3)
CALL DYNAMI
CALL NEXT MU
CALL NSTEP
CALL UPDATE
CALL OUTONE(ff)
IF (N .EQ. 2500) THEN

PRINT*, '**** 1/4 the DONE ****'
ELSE IF (N .EQ. 5000) THEN

PRINT*, '**** 1/2 DONE ****'
ELSE IF (N .EQ. 7500) THEN

PRINT*, '**** 3/4 th DONE ****'
ENDIF
IF (R(3,JJ) .LE. SRAD) THEN

PRINT*, 'YES! WE HAVE A BLACK HOLE.'
GOTO 33

ENDIF
IF (N .LE. 10000) THEN

N = N + 1 !INCREMENT ITERATION COUNTER.
DD = DO + 1 !INCREMENT OUTPUT COUNTER.
GOTO 119

ENDIF
33 CONTINUE
22 CALL OUTTWO

CALL OUTPUT
STOP
END

*
*===========================================================
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*
SUBROUTINE INITIAL
INCLUDE 'QS LOG. FOR'
DOUBLE PRECISION diff, percdiff, del, number, dt, tau,

!rhoavg2,rhoavg, epsavg, newMU, oldMU, radtwo,
!newOMEGA,ES,avgpress

INTEGER J, j 1 , j 2, j 3, j 4, j 5
INTEGER K, I

** INITIALIZING ALL ARRAYS.
*

JJ = 400 !TOTAL NUMBER OF SHELLS AND ZONES
DO 10 I = 1,5

DO 20 J = -1,JJ+1,1
R(I,J) = 0.00
delR(I,J) = 0.00
rho(I,J) = 0.00
U(I,J) = 0.00
RSQ(I,J) = 0.00
M(I,J) = 0.00
delM(I,J) = 0.00

IF (I .EQ. 1) delMU(J) = 0.00
gamma(I,J) = 1.00
UR(I,J) = 0.00
PQ(I,J) = 0.00
epsil(I,J) = 0.00
P(I,J) = 0.00
Q(I,J) = 0.00
W(I,J) = 1.00
A(I,J) = 1.00

DO k=1,5
MU(I,J,k) = 0.00

END DO
IF (I .LE. 4) THEN

NUMDEN(I,J) = 0.00
OMEGA(I,J) = 0.00

END IF
20 CONTINUE

deIT(I) = 0.00
Irho(I) = 0.00
IRad(I) = 0.00
DO 25 K = 0,200

X1(I,K) = 0.00
Yl(I,K) = 0.00
X2(I,K) = 0.00
Y2(I,K) = 0.00
X3(I,K) = 0.00
Y3(I,K) = 0.00
IF (I .EQ. 1) THEN

NUM(K) = 0
deltTe(K) = 0.00
deItTr(K) = 0.00
deltTc(K) = 0.00
deItTMU(K) = 0.00
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ENDIF
25 CONTINUE
10 CONTINUE

delT(6) = O.DO
*C ALL ARRAY ELEMENTS THAT ARE NOT RESTATED
C ARE AT THE ABOVE DEFAULT VALUES.
************************************************************
C INITIAL AND BOUNDARY CONDITIONS.
C The values set here are up to the programmer.

*
Mtot = 2.0DO !INITIAL MASS, in Msun
massE(3) = 150.0DO !STRANGE QUARK REST MASS IN MeV/CSQ

!THE REST OF THE QUARK MASSES ARE
C DETERMINED BY THERE MASS RATIOS.

SRAD = 2.DO * Mtot * G / CSQ
RADIUS = SRAD * 2.DO!INITIAL radius uncalibrated in MU.

alphac = 0.45DO !THE STRONG COUPLING
B = 60.DO*(1.D+18)**3 !THE BAG PRESSURE CONSTANT IN

C !MeV'S PER km A 3
P(3,JJ+1) = O.DO !Outside pressure
rhoavg2 = O.dO

C
epsavg .5DO*CSQ !initial guess which will change.
rhoavg = 3.DO * Mtot / (4.DO * PI * RADIUS**3)

lin Msum/km A 3
oldMU = 500.DO !initial guess which will change.

************************************************************
*
C

*
CALCULATING THE OTHER QUARK MASS

massE(l)
massE(2)
massE(4)

massE(3)/35.00
= massE(3)*3.6DO/70.DO
= 0.511DO

*
************************************************************
C
C

*

MU VARIABLE FOR THE STRANGE QUARK STAR.

k=O
diff = 1.DO
ES = massE(3)
del = O.dO

90 CONTINUE
oldMU = oldMU + del

*STRANGE
newOMEGA = CaNST * (oldMU * DSQRT(oldMU**2

- ES**2) * (oldMU**2 - 5.DO * ES**2 / 2.00) + 3.00 /
2.00 * ES**4 * DLOG«oldMU + DSQRT(oldMU**2 -
ES**2») / ES) - 2.DO * alphac / PI * (3.00 * (oldMU *
DSQRT(oldMU**2 - ES**2) - ES**2 * DLOG«oldMU +
DSQRT(oldMU**2 - ES**2» / ES»**2 - 2.DO *
(oldMU**2 - ES**2)**2 - 3.00 * ES**4 * (DLOG(ES /
oldMU»**2 + 6.DO * DLOG(rhoo / oldMU) *



2 IUP AND ELECTRONS ARE COUPLED BY
! MU(5)=MU(1)+MU(4) AND MUST BE

newMU ! MU calibrated.
MU(t3,j2,3)
MU(t3,j2,3)/2.DO
MU(t3,j2,3)/2.DO
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! (oldMU * ES**2 * DSQRT(oldMU**2 - ES**2) - ES**4
!* DLOG«oldMU + DSQRT(oldMU**2 - ES**2» / ES»»

*
NUMBER = (oldMU**2 - ES**2) / (PI**2 * HBC) *

!(DSQRT(oldMU**2 - ES**2) - 2.00 * alphac / PI *
!(oldMU - 3.00 * ES**2 / DSQRT(oldMU**2 - ES**2) *
!DLOG«oldMU + OSQRT(oldMU**2 - ES**2» / rhoo»)

*
newMU = «rhoavg * (CSQ+epsavg) * Msun / toJ) - B -

!NEWOMEGA) / NUMBER
diff = (newMU - oldMU)
percdiff = DABS(diff / «newMU + oldMU) / 2.00»
IF «diff.EQ.O.DO).OR.(percdiff .LT. 1.0-12» GOTO 99
del = diff/4.dO
k = k+1
GOTO 90

99 CONTINUE

*
************************************************************
C SETTING THE INITIAL CHEMICAL POTENTIALS FOR UP, DOWN,
C AND ELECTRON IN MeV'S

* DO 11 J = 2, JJ,
j2 = J-1
MU(t3,j2,3) =
MU(t3,j2,2) =
MU(t3,j2,1)
MU(t3,j2,4) =

11 CONTINUE
CALL THERMO POTENTIALS !AT THIS POINT "THE STAR" IS
CALL MU calIbrate !TOTALLY ELECTRICALLY NEUTRAL

C AND THE MU'S, NUMDEN'S, AND
C OMEGA'S ARE CALCULATED.
************************************************************
C BOUNDARY CONDITIONS FOR THE "STRANGE" QUARK STAR

*
DO 55 I = 1,4

DO 56 J = 2, JJ, 2
j2=J-1
j4=j+1
IF (I .EQ. 3) GOTO 56
MU(t3,j2,I) = 0.00
NUMDEN(I,j2) = 0.00
OMEGA(I,j2) = 0.00

56 CONTINUE
55 CONTINUE

************************************************************
DO 15 J = 2, JJ, 2

j2 = J - 1
*(102)

epsil(t3, j2) = epsavg
call density(rho(t3,j2), epsil(t3,j2), J)
CALL PRESSURE(P(t3,j2),epsil(t3,j2), rho(t3,j2), J)
avgpress = avgpress + P(t3,j2)



*(103)
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rhoavg2 = rhoavg2 + rho(t3, j2)
15 CONTINUE

avgpress = 2.DO * avgpress / DREAL(JJ)
rhoavg2 = 2.DO * rhoavg2 / DREAL(JJ)
RADtwo = (3.DO Mtot/(fourPI * rhoavg2 * (1.DO + epsavg

!/ CSQ»)**(1.DO / 3.DO)
dr = 2.DO * RADtwo / DREAL(JJ)
DO 16 J = 2, JJ, 2

j1 = J - 2
j2 = J - 1
j3 = J
delR(t3,j2) = dr

R(t3,j3) = R(t3,j1) + delR(t3,j2)
Vol(j2) = fourPI*(R(t3,j1)**3 - R(t3,j3)**3) / 3.DO
Numb(3,j2) = Vol(j2) * NUMDEN(3,j2)

*
C THE NUMBER OF PARTICLES ARE CONSTANT IN TIME FOR
C EACH ZONE.

* 16 CONTINUE
*(102)

dt = 1.0-7 !SET INITIAL TIME STEP HERE.
ADJ = O.DO * dt !SET THE TIME STEP ADJUSTMENT.
delT(1) = dt
delT(2) = dt
delT(4) = dt
ETIME = O.DO

************************************************************
C
C
C

*

NEED TO SET ASIDE SOME INITIAL CONDITIONS FOR THE
NON-FREE FALL PLOTS.

The shell which contains % of total initial mass

IRad(l) = radius 100%
IRad(2) R(3,380) 85.7%
IRad(3) = R(3,300) 42.2%
IRad(4) R(3,252) 25.0%
IRad(5) = R(3,4) 1.OE-4%
Irho(l) = rho(3,JJ-l) zone corresponding to 100%
Irho(2) = rho(3,379) zone corresponding to 85.7%
Irho(3) = rho(3,299) zone corresponding to 42.2%
Irho(4) rho(3,251) zone corresponding to 25.0%
Irho(5) = rho(3,3) zone corresponding to 1.OE-4%

************************************************************
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C HEADER FOR QS__DAT1.DAT

*
tau = DSQRT(3.DO * PI / (32.00 * G * rho(T3, JJ-1»)

C tau -> Is the total time it would take for this star to
C collapse under the Free-Fall conditions.
*

',dt,' tau = ',tau
',RADIUS,' SRAD = ',SRAD
',Mtot,' SQmass = ',massE(3)
',alphac,' B = ',B
',rhoavg,' epsavg = ',epsavg
',rhoavg2,' avgpress = ',avgpress
',number/numden(3,1),' RAOb =

, ,ADJTIME IS ADJUSTED BY
WRITE(l,*)
WRITE(l, *) ,
WRITE(l,*)
WRITE(l,*)' dt
WRITE(l,*)' RAO =
WRITE(l,*) , Mtot
WRITE(l,*) 'alphac
WRITE(l,*) 'rhoavg =
WRITE(l,*) 'rhoav2 =
WRITE(l,*) ,

, ,RADtwo
WRITE(l,*)

************************************************************

*(104)

C

*
NOW THE SETUP FOR T = 0

DO 60 J = 2, JJ, 2
j1=J-2
j2=J-1
j3=J
j4=j+1
j5=j+2

IF (J .EQ. 2) THEN
RSQ(t3,j2) = R(t3,j3)**2 / 3.00

ELSE IF (j .EQ. JJ) THEN
RSQ(t3,j4) = R(t3,j3)**2 / 3.DO
RSQ(t3,j2) = (R(t3,j1)**2 + R(t3,j1) * R(t3,j3)

1+ R(t3,j3)**2) / 3.00
ELSE

RSQ(t3,j2) = (R(t3,j1)**2 + R(t3,j1) * R(t3,j3)
1+ R(t3,j3)**2) / 3.00

ENDIF
*(105 & 106)

delM(t3,j2) = fourPI * rho(t3,j2) * (1.00 +
1epsil(t3,j2) / CSQ) * RSQ(t3,j2) * deIR(t3,j2)

M(t3,j3) = M(t3,j1) + delM(t3,j2)
*(107)

IF (J .EQ. 2) THEN
gamma(t3,j2)=DSQRT(1.00-G/CSQ*M(t3,j3) j R(t3,j3»

ELSE IF (J .EQ. JJ) THEN
gamma(t3,j4)=OSQRT(1.DO-G/CSQ*M(t3,j3) j R(t3,j3»
gamma(t3,j2)=DSQRT(1.DO-GjCSQ*(M(t3,j3) j R(t3,j3)

1+ M(t3,j1) / R(t3,jl»)
ELSE

gamma(t3,j2)=DSQRT(1.DO-G/CSQ*(M(t3,j3) / R(t3,j3)
1+ M(t3,j1) / R(t3,jl»)

ENDIF
*(108)
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delMU(j2) = fourPI * rho(t3,j2) * RSQ(t3,j2) *
!delR(t3,j2) / gamma(t3,j2)

*(110 & 112)
W(t3,j2)=(epsil(t3,j2) + P(t3,j2)/rho(t3,j2» / CSQ

!+ 1.00
60 CONTINUE

DO 70 J = 2, JJ, 2
j1=j-2
j2=J-1
j3=J
j4=J+1

*(109)
IF (J .EQ. 2) delMU(j1) = delMU(j2) / 2.00
delMU(j3) = (delMU(j2) + delMU(j4» / 2.DO

*(113)
IF (J .EQ. 2) W(t3,j1) = (W(t3,j2) * delMU(j2» /

!(2.00 * delMU(j1»
W(t3,j3) = (W(t3,j2) * delMU(j2) + W(t3,j4) *

!delMU(j4» / (2.DO * delMU(j3»
*(114)

P(t3,j3) = (P(t3,j4) * delMU(j2) + P(t3,j2) *
!delMU(j4» / (2.00 * delMU(j3»

70 CONTINUE
A(t3,JJ) = 1.dO/W(t3,JJ-1)
A(t3,JJ-1) = 1.dO/W(t3,JJ-1)
DO 80 J JJ-2, 2, -2

j2 = J - 1
j3 = J
j4 = J + 1
IF (J .EQ. 0) THEN
F = (epsil(t3,j4)-epsil(t3,j2) + P(t3,j3) * (l.DO /

!rho(t3,j4») / (W(t3,j3) * CSQ)
ELSEIF (J .EQ. JJ) THEN
F = (epsil(t3,j4)-epsil(t3,j2) + P(t3,j3) * (-1.00/

!rho(t3,j2») / (W(t3,j3) * CSQ)
ELSE
F = (epsil(t3,j4)-epsil(t3,j2) + Q(t3,j3) * (l.DO /

!rho(t3,j4) - 1.00 / rho(t3,j2») / (W(t3,j3) * CSQ)
ENDIF

*(142 & 144)
A(t3,j2) = A(t3,j4)*(W(t3,j4)/ W(t3,j2» * OEXP(-F)
A(t3,j3) = (A(t3,j2)*W(t3,j2)+A(t3,j4)* W(t3,j4» /

!(2.00 * W(t3,j3»
80 CONTINUE

CALL OUTPUT
RETURN
END

*
*===========================================================
*



77

SUBROUTINE OYNAMI
INCLUDE , QS__LOG. FOR'
DOUBLE PRECISION F
INTEGER J, j1, j2, j3, j4, j5
CHARACTER ITERAT*l
ITERAT = 'Y'

*
100 DO 10 J = 2, JJ, 2

j1=J-2
j2=J-1
j3=J
j4=J+1
j5=J+2
IF (ITERAT .EQ. 'N') GOTO 127

*(120)
PQ(t3,j3) = «P(t3,j4) + Q(t2,j4» * delMU(j2) +

!(P(t3,j2)+Q(t2,j2» * delMU(j4» / (2.00 * delMU(j3»
*(121)

IF (J.EQ.2) W(t3,j1) = (W(t3,j2) * delMU(j2» / (2.00
!delMU(j1»
W(t3,j3)=(W(t3,j2) * delMU(j2) + W(t3,j4) * delMU(j4»

!/ (2.00 * delMU(j3»
*(122)

IF (J .EQ. 2) THEN
gamrna(t3,j1)=(gamma(t3,j2)*delMU(j2»/(2.00*

!delMU(j1»
else If (J .EQ. JJ) then
gamma(t3,j3)=(gamma(t3,j2)*delMU(j2»/(2.00 *

!delMU(j3»
ELSE
gamma(t3,j3)=(gamma(t3,j2) * delMU(j2) + gamma(t3,j4)

!* delMU(j4» / (2.00 * delMU(j3»
END IF

*(123)
U(t4,j3) = U(t2,j3) - delT(t3) * A(t3,j3) * (fourPI *

!R(t3,j3)**2*gamma(t3,j3)/W(t3,j3)*(P(t3,j4) + Q(t2,j4)
!- P(t3,j2) - Q(t2,j2» / delMU(j3) + G * M(t3,j3) /
!R(t3,j3)**2 + fourPI * G * PQ(t3,j3) * R(t3,j3) / CSQ)

*(124 & 125)
IF (J .EQ. 2) THEN
A(t4,j1)=A(t3,j1) + delT(t4) * (A(t3,j1) - A(tl,jl»

!/ (2.00 * delT(t2»
A(t4,-1)=A(t3,-1) + delT(t4) * (A(t3,-1) - A(t1,-1»

!/ (2.00 * delT(t2»
ELSE IF (J .EQ. JJ) THEN
A(t4,JJ+1) = A(t3,JJ+l) + delT(t4) * (A(t3,JJ+1) 

!A(t1,JJ+1» / (2.00 * delT(t2»
END IF
A(t4,j2)=A(t3,j2) + delT(t4) * (A(t3,j2) - A(tl,j2» /

!(2.00 * delT(t2»
A(t4,j3)=A(t3,j3) + delT(t4) * (A(t3,j3) - A(t1,j3» /

!(2.00 * delT(t2»
*(126)

epsil(t4,j2) = epsil(t3,j2) + delT(t4) * (epsil(t3,j2)
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1- epsil(t1,j2» / (2.00 * delT(t2»
127 CONTINUE

*(127)
delR(tS,j2) = delR(t3,j2) + delT(t4) * (A(t4,j3) *

! U(t4 , j 3 ) - A(t4 , j 1) * U(t4 , j 1) )
*(128, 129, & 130)

R(tS,j3) = R(tS,j1) + delR(tS,j2)
delR(t4,j2) = (delR(tS,j2) + delR(t3,j2» / 2.00
R(t4,j3) = (R(tS,j3) + R(t3,j3» / 2.00

*(131)
IF (J .EQ. 2) THEN

RSQ(tS,j2) = R(t5,j3)**2 / 3.00
ELSE IF (J .EQ. JJ) THEN

RSQ(tS,j4) = R(tS,j3)**2 / 3.00
RSQ(tS,j2) = (R(tS,jl)**2 + R(tS,jl) * R(tS,j3) +

!R(tS,j3)**2) / 3.00
ELSE

RSQ(tS,j2) = (R(tS,j1)**2 + R(tS,j1) * R(tS,j3) +
!R(t5,j3)**2) / 3.00

ENOIF
*(133)

IF «OABS(gamma(t3,j2» .LT. 1.0-3) .OR. (delR(t4,j2)
!.EQ. 0.00» THEN

IF (J .EQ. 2) THEN
UR(t4,j2) = (fourPI * CSQ * rho(t3,j2) * RSQ(t3,j2) *

!(gamma(t3,j3)-gamma(t3,jl» / delMU(j2) + fourPI * G *
!rho(t3,j2)*(1.00+ epsil(t3,j2)/CSQ)* OSQRT(RSQ(t3,j2»
1- G * M(t3,j3) / R(t3,j3)**2 / 2.00) * 2.00 / U(t4,j3)
ELSE

UR(t4,j2) = (fourPI * CSQ * rho(t3,j2) * RSQ(t3,j2) *
!(gamma(t3,j3)-gamma(t3,j1» / delMU(j2) + fourPI * G *
!rho(t3,j2)*(1.00+epsil(t3,j2)/CSQ) * OSQRT(RSQ(t3,j2»
!- G * (M(t3,j3)/R(t3,j3)**2 + M(t3,j1) / R(t3,j1)**2)
!/ 2.00) * 2.00 / (U(t4,j3) + U(t4,j1»
END IF

*(132)
ELSE IF «OABS(gamma(t3,j2» .GE. 1.0-3) .AND.

! (delR(t4,j2).NE. 0.00» THEN
UR(t4,j2) = (U(t4,j3) - U(t4,jl» / delR(t4,j2)

ENO IF
*(135)

F = A(t4,j2) * UR(t4,j2) * delT(t4)
*(135 & 136)

rho(tS,j2)=rho(t3,j2)*(RSQ(t3,j2)/RSQ(tS,j2»*
!OEXP(-F)
rho(t4,j2) = (rho(tS,j2) + rho(t3,j2» / 2.00

*(136 & 137)
IF (rho(tS,j2) .LT. rho(t3,j2» THEN

Q(t4,j2) = 0.00
ELSE IF (rho(tS,j2) .GT. rho(t3,j2» THEN

Q(t4,j2) = 2.00*rho(t4,j2)* (R(t4,j3)**2*U(t4,j3) 
!R(t4,jl)**2*U(t4,j1»**2/(gamma(t3,j2)*RSQ(t3,j2)**2)

ENO IF
*(138)
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CALL PRESSURE(P(t4,j2), epsil(t4,j2), rho(t4,j2), J)
*(139)

epsil(tS,j2)=epsil(t3,j2)-(P(t4,j2)+Q(t4,j2»*(1.00 /
!rho(tS,j2) - 1.00 / rho(t3,j2»

*(138)
CALL PRESSURE(P(tS,j2), epsil(tS,j2), rho(tS,j2), J)

*(140)
W(tS,j2)=1.00 + (epsil(t5,j2) + (P(t5,j2) + Q(t4,j2»

1/ rho(tS,j2» / CSQ
10 CONTINUE

DO 25 J = 2, JJ, 2
j1=j-2
j2=J-1
j3=J
j4=J+1

*(120)
PQ(tS,j3) = «P(tS,j4)+Q(t4,j4»*delMU(j2)+(P(tS,j2) +

lQ(t4,j2» * delMU(j4» / (2.00 * delMU(j3»
*(121)

IF (J .EQ. 2) W(tS,j1) = W(tS,j2) * delMU(j2) /
!(2.00 * delMU(j1»
W(t5,j3) = (W(tS,j2) * delMU(j2)+W(tS,j4) * delMU(j4»

1/ (2.00 * delMU(j3»
25 CONTINUE

A(tS,jj) = 1.dO/W(t5,jj-1)
A(t5,jj-1) = A(t5,jj)
DO 30 J = JJ-2, 2, -2

j2 J - 1
j3 = J
j4 = J + 1

*(143)
IF (J .EQ. 0) THEN
F = (epsil(t5,j4)-epsil(tS,j2) + PQ(tS,j3) * (1.00

1/ rho(t5,j4») / (W(tS,j3) * CSQ)
ELSEIF (J .EQ. JJ) THEN
F = (epsil(tS,j4)-epsil(t5,j2) + PQ(tS,j3) * (-1.00

1/ rho(tS,j2») / (W(tS,j3) * CSQ)
ELSE
F = (epsil(tS,j4)-epsil(tS,j2) + PQ(tS,j3) * (1.00

1/ rho(tS,j4) - 1.00 / rho(tS,j2») / (W(tS,j3) * CSQ)
ENOIF

*(142 & 144)
A(tS,j2) = A(tS,j4)*(W(tS,j4)/ W(tS,j2» * OEXP(-F)
A(tS,j3) = (A(tS,j2) * W(tS,j2) + A(tS,j4) *

lW(tS,j4» / (2.00 * W(tS,j3»
30 CONTINUE

IF (ITERAT .EQ. 'Y') THEN
*(14S, 146, & 147)

DO SO J = 2, JJ, 2
j2 = J-1
j3 = J
epsil(t4,j2)=(epsil(tS,j2)+ epsil(t3,j2» / 2.00
A(t4,j2) (A(tS,j2) + A(t3,j2» / 2.00
A(t4,j3) = (A(tS,j3) + A(t3,j3» / 2.00



Cs = DSQRT(epsil(tS,j2)/ (1.00 + epsil(tS,j2) / CSQ»
deltTc(k)=2.0-1*delMU(j2)/(rho(tS,j2) * RSQ(t5,j2) *
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IF (J .EQ. 2) THEN
A(t4,j1) = (A(tS,j1) + A(t3,j1» / 2.DO
A(t4,-1) = (A(t5,-1) + A(t3,-1» / 2.00

ELSEIF (J .EQ. JJ) THEN
A(t4,JJ+1) (A(tS,JJ+1) + A(t3,JJ+1» / 2.00

ENDIF
SO CONTINUE

ITERAT = 'N' !AT THIS POINT WE RETURN TO
GOTO 100 ! EQ. 127 FOR ONE MORE CYCLE.

END IF
DO 60 J = 2, JJ, 2
j1=J-2
j2=J-1
j3=J

*(148)
gamma(tS,j2) = fourPI * rho(t5,j2) * RSQ(t5,j2) *

!delR(tS,j2) / delMU(j2)
*(149)

delM(t5,j2)=gamma(tS,j2)*(1.00+ epsil(tS,j2) / CSQ)
!* delMU(j2)

*(150)
M(t5,j3) = M(t5,j1) + delM(t5,j2)

60 CONTINUE
RETURN
END

*
*===========================================================
*

SUBROUTINE NSTEP
DOUBLE PRECISION HOLD1, HOLD2, HOLD4, HOLDS, HOLD6
INCLUDE , QS__LOG. FOR'
INTEGER J, j2, K

*
00 10 J = 2, JJ, 2

j2 = J-1
k = OINT(OREAL(J)/2.00)
deltTe(K) = 0.00
deltTr(K) = 0.00

* deltTc(K) = 0.00
deltTMU(K) = 0.00

*(152)
deltTe(k) = 1.0-1 * epsil(tS,j2) * delT(t4) /

!DABS(epsil(t5,j2) - epsil(t3,j2»
*(153)

deltTr(k) = 2.0-2 * rho(t5,j2) * delT(t4) /
!OABS(rho(t5,j2)- rho(t3,j2»

*
C WE HAVE TAKEN OUT EQUATION 154 AND REPLACEO IT WITH THE
C CHANGE IN MU(t5,j2,3). WE DO THIS BECAUSE deltTc(k) FORCES
C THE NEXT TIME STEP TO BE TO SMALL.
C
*(154)
*
*
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* !A(t5,j2) * Cs)
* (MU)

deltTMU(k) = 2.0-2 * MU(t5,j2,3) * delT(t4) /
!DABS(MU(t5,j2,3) - MU(t3,j2,3»

10 CONTINUE

*C delT(t6) IS ,INPUT, = MAX{delT AS SPECIFIED BY INPUT}
C sorts to find the minimum

*
HOLD1 = deltTe(l)
HOLD2 = deltTr(l)

* HOLD3 = deltTc(l)
HOLD4 = deltTMU(l)
DO 20 k = 2, DREAL(JJ)/2.DO

HOLD1 = DMIN1(HOLD1, deltTe(k»
HOLD2 = DMIN1(HOLD2, deltTr(k»

* HOLD3 = DMIN1(HOLD3, deltTc(k»
HOLD4 = DMIN1(HOLD4, deltTMU(k»

20 CONTINUE
HOLD5 delT(t1)
HOLD6 1.200 * delT(t4)

*(151)
delT(t6) =
delT(t2) =
delT(t4)
RETURN
END

DMIN1(HOLD1, HOLD2, HOLD4, HOLD5, HOLD6)
delT(t4)
delT(t6)

*UP

*
*===========================================================

*
SUBROUTINE THERMO POTENTIALS
DOUBLE PRECISION ES
INCLUDE 'QS LOG. FOR'
INTEGER J, j2

*
C THIS SUBROUTINE CALCULATES THE THERMODYNAMIC POTENTIALS
C PER UNIT VOLUME AS A FUNCTION OF THE CHEMICAL POTENTIAL
C WHICH HAVE UNITS OF MeV'S. WE ALSO CALCULATE THE
C CORRESPONDING NUMBER DENSITIES FOR QUARK MATTER.

*
C THE UNITS FOR THERMODYNAMIC POTENTIALS PER UNIT VOLUME
CARE {MeV/kmA 3}, AND THE UNITS FOR THE NUMBER DENSITIES
CARE {1/kmA 3}.

* ES = massE(3)
DO 12 J = 2, JJ, 2

j2=J-1

OMEGA(1,j2) = MU(t3,j2,1)**4*(1.DO-2.DO*alphac / PI)
!* CONST

NUMDEN(1,j2) = MU(t3,j2,1)**3 * ( - 4.DO * CONST) *
!(1.00 - 2.DO * alphac / PI)

*OOWN
OMEGA(2,j2) = MU(t3,j2,2)**4*(1.DO-2.00*alphac / PI)



*
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!* CONST
NUMOEN(2,j2) = MU(t3,j2,2)**3 * ( - 4.00 * CONST) *

! (l.DO - 2.DO * alphac / PI)
*STRANGE

OMEGA(3,j2)=CONST*(MU(t3,j2,3)* DSQRT(MU(t3,j2,3)**2
- ES**2)*(MU(t3,j2,3)**2 - 5.DO * ES**2 / 2.DO)+3.00 /
2.DO*ES**4 * DLOG«MU(t3,j2,3)+DSQRT(MU(t3,j2,3)**2 
ES**2»/ES)-2.DO* alphac / PI * (3.DO * (MU(t3,j2,3) *
DSQRT(MU(t3,j2,3)**2-ES**2)-ES**2*OLOG«MU(t3,j2,3) +
DSQRT(MU(t3,j2,3)**2 - ES**2» / ES»**2 - 2.00 *
(MU(t3,j2,3)**2-ES**2)**2 - 3.DO * ES**4 * (OLOG(ES /
MU(t3,j2,3»)**2 + 6.DO * DLOG(rhoo / MU(t3,j2,3» *
(MU(t3,j2,3)*ES**2*DSQRT(MU(t3,j2,3)**2-ES**2)- ES**4
*DLOG«MU(t3,j2,3)+DSQRT(MU(t3,j2,3)**2-ES**2»/ES»»

NUMDEN(3,j2) = (MU(t3,j2,3)**2-ES**2)/(PI**2*HBC) *
! (DSQRT(MU(t3,j2,3)**2 - ES**2) - 2.DO * alphac / PI *
!(MU(t3,j2,3)-3.DO*ES**2/0SQRT(MU(t3,j2,3)**2-ES**2) *
!DLOG«MU(t3,j2,3)+OSQRT(MU(t3,j2,3)**2-ES**2»/rhoo»)

*ELECTRON
OMEGA(4,j2) = CaNST * MU(t3,j2,4)**4 / 3.00
NUMDEN(4,j2) = MU(t3,j2,4)**3 / (3.00 * PI**2 * HBC)

12 CONTINUE
RETURN
END

*
*===========================================================
*

SUBROUTINE MU calibrate

*
C

*

*
C

*

*

DOUBLE PRECISION diff, percdiff, del, newND1, newMU1,
!tofm

INCLUDE 'QS LOG. FOR'
INTEGER J, j2
PARAMETER (tofm=1.dl8)
k=O

10 CONTINUE

CONDITION FOR CHARGE NEUTRALITY

ND(l) = NUMDEN(4,l)+(NUMDEN(2,l) + NUMDEN(3,1» / 3.00
ND(2) = 2.DO * NUMDEN(l,l) / 3.DO

THE BARYON NUMBER DENSITY IS

NO(3) = (NUMOEN(1,1)+NUMOEN(2,l) + NUMDEN(3,1» / 3.00
diff = (ND(l) - ND(2»
percdiff = OABS(diff / «ND(l) + ND(2» / 2.DO»
IF «diff.EQ.O.DO) .OR. (percdiff.LE.l.D-12» GOTO 99
newNDl = DABS«ND(2) + diff/2.dO) * 3.00/2.00)
newMUl = «newNDl * PI**2 * HBC) / (l.DO - 2.00 *

!alphac / PI»**(1.00/3.DO)
del = OABS(newMUl - MU(t3,l,1»

C This is only good for an initial setup where the Quark
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C star is homogeneous.

* DO 13 J=2,JJ,2
j2=J-1
IF « NO ( 2 ) . GT. NO (1) » THEN

MU(t3,j2,4) = MU(t3,j2,4) + del
MU(t3,j2,1) = MU(t3,j2,1) - del

ELSE IF (NO(2) .LT. NO(l» THEN
MU(t3,j2,4) MU(t3,j2,4) - del
MU(t3,j2,1) = MU(t3,j2,1) + del

ENOIF
13 CONTINUE

CALL THERMO POTENTIALS
k=k+l
GOTO 10

99 CONTINUE

*C PRINTS OUT THE MAIN HEAOER FOR OUTPUT FILE QS__OAT1.0AT

*
WRITE(l,*) 'It took ',k,' iterations to balance the

!following relations'
WRITE(l,*)
WRITE(1,140)
WRITE(1,145) massE(l), massE(2), massE(3), massE(4)
WRITE(l,*)
WRITE(1,100)
WRITE(1,105) MU(t3,1,1), MU(t3,1,2), MU(t3,1,3),

!MU(t3,1,4)
WRITE(l,*)
WRITE(1,110)
WRITE(1,115) NUMOEN(l,l), NUMOEN(2,1),

!NUMOEN(3,1), NUMOEN(4,1), NUMOEN(4,1)
WRITE(l,*)
WRITE(1,120)
WRITE(1,125) OMEGA(l,l), OMEGA(2,1), OMEGA(3,1),

!OMEGA(4,1)
WRITE(l,*)
WRITE(1,130)

100 FORMAT('The balanced chemical potentials for charge
!neutrality in units of MeV')

105 FORMAT('MU u =',1024.16,lX,' MU_d =', 1024.16, lX,
!' MU s ~', 1024.16, lX,' MU e =', 1D24.16)

110 FORMAT('The balanced number densitIes for charge
!neutrality in units of 1/fmA 3')

115 FORMAT('NUMOEN u =',1024.16,lX, 'NUMOEN d =',1024.16,
!lX,'NUMOEN s =', 1024.16,lX, 'NUMOEN e ~',1024.16, lX,
!'B NUMOEN ~', 1024.16) -

120 FORMAT('The balanced thermodynamic potentials for
!charge neutrality in units of MeV/km A 3')

125 FORMAT('OMEGA u =',1024.16,lX, , OMEGA d =', 1024.16,0
!lX,' OMEGA s ~', 1024.16, lX, , OMEGA e =', 1D24.16)

140 FORMAT('The balanced masses for each quark in units of
!MeV' )

145 FORMAT(' massE u =', 1024.16, lX, , massE d ='
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!1024.16, lX,
!' massE s =', 1D24.16, lX, , massE e =' 1024.16)

130 FORMAT(120('='»
RETURN
END

*
*===========================================================

*

*
C

*

*

SUBROUTINE density (rho, epsil, J)
OOUBLE PRECISION rho, epsil, OMEGA(4,-1:401), Xi,

!NUMOEN(4,-1:401), NO(3), massE(4), B, alphac,
!MU(5,-1:401,5),toJ, Msun, C,CSQ

INTEGER J, T, t3
COMMON /SQPa/ OMEGA, NUMOEN, NO
COMMON /SQPb/ alphac, MU, massE, B
PARAMETER (T = 3, t3=T)
PARAMETER (Msun = 1.99030, toJ = 1.602190-19)
PARAMETER (C = 2.99805, CSQ = C**2)

SPECIFIC INTERNAL ENERGY PER UNIT MASS

xi = OMEGA(3,J-1) + MU(t3,J-1,3) * NUMDEN(3,J-1)

C The total initial energy density is
xi = xi + B lin MeV/kmA3
xi = Xi * toJ / Msun lin Msun/kmA3*(km/s)A2

C The total initial energy per unit mass is
rho = xi / (epsil + CSQ)
RETURN
ENO

*
*===========================================================

*
SUBROUTINE PRESSURE(P, epsil, rho, J)
DOUBLE PRECISION P, epsil, rho, SUM, OMEGA(4,-1:401),

!NUMOEN(4,-1:401), NO(3), massE(4), B, alphac,
!MU(5,-1:401,5), Msun, tOJ,c,csq

INTEGER J, T, t3
COMMON /SQPa/ OMEGA, NUMOEN, NO
COMMON /SQPb/ alphac, MU, massE, B
PARAMETER (T = 3, t3=T)
PARAMETER (Msun = 1.99030, toJ = 1.602190-19)
PARAMETER (C = 2.99805, CSQ = C**2)

*
SUM = MU(t3,J-l,3) * NUMOEN(3,J-1) * toJ / Msun
P = -(rho * CSQ + rho * epsil - SUM) !Msun/km/sA2

*
C ONE CAN ALSO USE lip = -OMEGA(3,J-1)-B" AS GIVEN BELOW.
C P = -(OMEGA(3,J-1)+B) * toJ/Msun !Msun/km/sA2

RETURN
ENO

*
=================~==========================================
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* SUBROUTINE NEXT MU
DOUBLE PRECISION oldMU,newMU,diff, percdiff, del, ES,

!NUMBER, newOMEGA
INCLUOE 'QS LOG. FOR'
INTEGER J, j2
INTEGER K

* ES = massE(3)
DO 11 j = 2, JJ, 2

j2=j-1
diff = 1.DO
del = O.dO
k=O
oldMU = MU(t3,j2,3)

90 CONTINUE
oldMU = oldMU + del

*STRANGE
newOMEGA = CONST * (oldMU * OSQRT(oldMU**2

- ES**2) * (oldMU**2 - 5.00 * ES**2 / 2.00) + 3.DO /
2.00 * ES**4 * OLOG«oldMU + OSQRT(oldMU**2 -
ES**2» / ES) - 2.00 * alphac / PI * (3.00 * (oldMU *
DSQRT(oldMU**2 - ES**2) - ES**2 * DLOG«oldMU +
DSQRT(oldMU**2 - ES**2» / ES»**2 - 2.00 *
(oldMU**2 - ES**2)**2 - 3.00 * ES**4 * (OLOG(ES /
oldMU»**2 + 6.00 * DLOG(rhoo / oldMU) *
(oldMU * ES**2 * DSQRT(oldMU**2 - ES**2) - ES**4
* DLOG«oldMU + OSQRT(oldMU**2 - ES**2» / ES»»

*

*

NUMBER = (oldMU**2 - ES**2) / (PI**2 * HBC) *
! (DSQRT(oldMU**2 - ES**2) - 2.00 * alphac / PI *
!(oldMU - 3.00 * ES**2 / OSQRT(oldMU**2 - ES**2) *
!DLOG«oldMU + DSQRT(oldMU**2 - ES**2» / rheo»)

newMU = «rho(t4,j2)*(CSQ+epsil(t4,j2» * Msun / toJ)
!- B - newOMEGA) / NUMBER
diff = (newMU - eldMU)
percdiff = DABS(diff / «newMU + oldMU) / 2.DO»
IF «diff.EQ.O.DO).OR.(percdiff .LT. 1.D-12» GOTO 99
del = diff/4.dO
k = k+1
if (k.GE.500) stop
GOTO 90

99 CONTINUE
MU(t5,j2,3) = newMU
OMEGA(3,j2) = newOMEGA
NUMDEN(3,j2) = number

11 CONTINUE
RETURN
END

*
*===========================================================

*



*

SUBROUTINE UPDATE
INCLUDE 'QS LOG. FOR'
INTEGER J, j2, j3, K

DO 10 J = 2, JJ, 2
j2=J-1
j3=J
delR{tl,j2) = delR{t3,j2)
delR{t3,j2) = delR{tS,j2)
delR{tS,j2) = 0.00
delR{t2,j2) = delR(t4,j2)
delR(t4,j2) 0.00
R(t1,j3) = R(t3,j3)
R(t3,j3) = R(tS,j3)
R(tS,j3) = 0.00
R(t2,j3) R(t4,j3)
R{t4,j3) = 0.00
rho{t1,j2) = rho(t3,j2)
rho(t3,j2) = rho(tS,j2)
rho{tS,j2) = 0.00
rho{t2,j2) = rho(t4,j2)
rho(t4,j2) 0.00
RSQ{t1,j2) RSQ(t3,j2)
RSQ(t3,j2) RSQ(tS,j2)
RSQ(tS,j2) = 0.00
epsil{t1,j2) epsil(t3,j2)
epsil(t3,j2) = epsil{tS,j2)
epsil(tS,j2) = 0.00
epsil{t2,j2) = epsil{t4,j2)
epsil{t4,j2) = 0.00
gamma(t1,j2) gamma(t3,j2)
gamma(t3,j2) = gamma(tS,j2)
gamma{tS,j2) 1.00
gamma{tl,j3) = gamma(t3,j3)
gamma(t3,j3) = gamma(tS,j3)
gamma(tS,j3) 1.DO
U(t2,j3) = U(t4,j3)
U(t4,j3) = 0.00
delM{tl,j2) = delM(t3,j2)
delM(t3,j2) = delM(tS,j2)
delM{tS,j2) = 0.00
M{tl,j3) = M{t3,j3)
M(t3,j3) M(tS,j3)
M(tS,j3) = 0.00
P{t1,j2) = P(t3,j2)
P(t3,j2) = P(tS,j2)
P(tS,j2) 0.00
P(t1,j3) P(t3,j3)
P{t3,j3) = P(tS,j3)
P(tS,j3) = 0.00
Q(t2,j2) = Q(t4,j2)
Q(t4,j2) = 0.00
UR(t2,j2) = 0.00
W(tl,j2) = W(t3,j2)
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W(t3,j2) W(tS,j2)
W(tS,j2) = 1.00
W(tl,j3) W(t3,j3)
W(t3,j3) W(tS,j3)
W(t5,j3) = 1.00
A(t1,j2) = A(t3,j2)
A(t3,j2) = A(tS,j2)
A(tS,j2) = 1.00
A(t1,j3) = A(t3,j3)
A(t3,j3) = A(tS,j3)
A(tS,j3) = 1.00

DO k=1,4
MU(t3,j2,k) = MU(tS,j2,k)
MU(tS,j2,k) = O.dO

END DO
10 CONTINUE

*
C RESET THE B.C.'S AND I.C.'S FOR ALL TIMES
*

MU(t3,0,3) = O.dO
MU(t3,JJ+1,3) = O.dO
delMU(JJ+1) = 0.00
delMU(-l) = 0.00
U(t2,0) = 0.00
U(t3,0) = 0.00
U(t4,0) 0.00
M(tl,O) = 0.00
M(t3,0) = O.DO
M(tS,O) = 0.00
R(t1,0) = 0.00
R(t2,0) 0.00
R(t3,0) = 0.00
R(t4,0) = 0.00
R(t5,0) 0.00
P(tS,JJ+1) = 0.00
P(t4,JJ+1) = 0.00
RETURN
END

*
*===========================================================
C THIS OUTPUT SUBROUTINE GOES TO DATAFILE 'QS__DAT1.DAT'

*
SUBROUTINE OUTPUT
INCLUDE , QS__LOG. FOR'
INTEGER J, j2, j3, j4, I

*
* if «N .NE. 0) .AND. (N .LT. 15000» GOTO 11

IF (N .LE. 2) I = 2
IF (N .GT. 2) I = 40
WRITE(1,100)
WRITE(1,200) N, ETIME + ADJ, delT(t4)
DO 50 J = 0, JJ, I

j2=J-1
j3=J
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j4=J+1
IF (N .EQ. 0) THEN
pres = P(t3,j3)
ELSE
pres = PQ(t3,j3)
ENOIF
dens = rho(t3,j2) / 1.40-4

!dens/nuclear dens(Oimensionless)
WRITE (1, 300) J
WRITE (1, 600) P(t3,j2),RSQ(t3,j2),delMU(j2),delMU(j3)
WRITE (1, 601) Pres
WRITE (1, 700) delM(t3,j2), delR(t3,j2), dens,

!gamma(t3,j2)
Write (1, 800) M(t3,j3),R(t3,j3),epsil(t3,j2),U(t2,j3)
write (1, 900) A(t3,j2),A(t3,j3),W(t3,j2),W(t3,j3)
write (1, 400) MU(t3,j2,1), MU(t3,j2,2), MU(t3,j2,3),

!MU(t3,j2,4)
write (1, 500) NUMDEN(1,j2), NUMOEN(2,j2),

INUMOEN(3,j2),NUMDEN(4,j2)
write (1, 550) OMEGA(1,j2), OMEGA(2,j2), OMEGA(3,j2),

!OMEGA(4,j2)
IF (J .EQ. JJ) THEN
Pres = P(t3,j4) !Msun/kmA3 (km/s)A2
dens = rho(t3,j4) /1.40-4 !(Dimensionless)
WRITE (1, *)
WRITE (1, 610) Pres, RSQ(t3,j4), delMU(j4)
WRITE (1, 710) delM(t3,j4), delR(t3,j4), dens,

!gamma(t3,j4)
write (1, 810) epsil(t3,j4)
write (1, 910) A(t3,j4), W(t3,j4)
write (1, 400) MU(t3,j4,1), MU(t3,j4,1), MU(t3,j4,3),

!MU(t3,j4,4)
write (1, 500) NUMDEN(1,j4), NUMOEN(2,j4),

!NUMDEN(3,j4),NUMDEN(4,j4)
write (1, 550) OMEGA(1,j4), OMEGA(2,j4), OMEGA(3,j4),

!OMEGA(4,j4)
ENOIF

50 CONTINUE
avg=O.dO

100 FORMAT(120('='»
200 FORMAT(' N =', 110, 7X, 'T33 =' 1024.16, 6X,

!'dT4 =', 1024.16)
300 FORMAT(' J =', 110)
601 FORMAT(' P33 =', 1024.16)
600 FORMAT(' P32 =', 1D24.16, 3X, 'RSQ32 =', 1024.16, 3X,

!' dtMU2 =', 1024.16, 3X, 'dtMU3 =', 1024.16)
610 FORMAT(' P34 =', 1024.16, 3X, 'RSQ34 =', 1024.16, 3X,

l' dtMU4 =', 1024.16, 3X, , " 24X)
700 FORMAT('dtM32 =', 1D24.16, 3X, 'dtR32 =', 1024.16, 3X,

!' rho32 =', 1D24.16, 3X, 'Gam32 =', 1024.16)
710 FORMAT('dtM34 =', 1024.16, 3X, 'dtR34 =', 1024.16, 3X,

!' rho34 =', 1024.16, 3X, 'Gam34 =', 1024.16)
800 FORMAT(' M33 =', 1D24.16, 3X, , R33 =', 1024.16, 3X,

!'epsi132 =', 1024.16, 3X, , U23 =', 1D24.16)



PLOTTING DATA FOR 100% OF

TIME ADJUSTED BY ", ADJ ," dt"

PLOTTING DATA FOR 85.7% OF

TIME ADJUSTED BY ",ADJ," dt"

PLOTTING DATA FOR 42.2% OF

TIME ADJUSTED BY ", ADJ ," dt"

PLOTTING DATA FOR 25.0% OF

TIME ADJUSTED BY ",ADJ," dt"

PLOTTING OATA FOR 1.0E-4% OF

TIME ADJUSTED BY ",AOJ," dt"
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810 FORMAT(' , 24X, 3X, , " 24X, 3X,
!'epsi134 =', 1D24.16, 3X, , " 24X)

900 FORMAT(' A32 =', 1024.16, 3X, , A33 =', 1024.16, 3X,
!' W32 =', 1024.16, 3X, , W33 =', 1024.16)

910 FORMAT(' A34 =', 1024.16, 3X, , " 24X, 3X,
! ' W34 =', 1D24 .16, 3X, , " 24X)

400 FORMAT('MU(u) =', 1024.16, 3X, 'MU(d) =', 1024.16, 3X,
!' MU(s) =', 1024.16, 3X, 'MU(e) =', 1024.16)

500 FORMAT('#O(u) =', 1D24.16, 3X, '#O(d) =', 1024.16, 3X,
!' #O(s) =', 1024.16, 3X, '#O(e) =', 1024.16)

550 FORMAT('TP(u) =', 1024.16, 3X, 'TP(d) =', 1024.16, 3X,
!' TP(s) =', 1D24.16, 3X, 'TP(e) =', 1D24.16)

11 RETURN
ENO

*
*===========================================================
C THIS OUTPUT SUBROUTINE GOES TO OATAFILES 'QS__OAT*.OAT'

*
SUBROUTINE OUTTWO
INCLUDE , QS__LOG. FOR'
INTEGER I

*
DO 20 I 0, 200, 1

IF (I .EQ. 0) THEN
WRITE(2,*) "R(mu,t),

!INITIAL MASS"
WRITE(2,*) "WITH THE
WRITE(2,*)
WRITE(3,*) "R(mu,t),

!INITIAL MASS"
WRITE(3,*) "WITH THE
WRITE(3,*)
WRITE(4,*) "R(mu,t),

!INITIAL MASS"
WRITE(4,*) "WITH THE
WRITE(4,*)
WRITE(5,*) "R(mu,t),

!INITIAL MASS"
WRITE(5,*) "WITH THE
WRITE(5,*)
WRITE(6,*) "R(mu,t),

!INITIAL MASS"
WRITE(6,*) "WITH THE
WRITE(6,*)

ENDIF
WRITE(2,100) NUM(I), I, X1(1,I), I, Y1(1,I)
WRITE(3,100) NUM(I), I, X1(2,I), I, Y1(2,I)
WRITE(4,100) NUM(I), I, X1(3,I), I, Y1(3,I)
WRITE(5,100) NUM(I), I, X1(4,I), I, Y1(4,I)
WRITE(6,100) NUM(I), I, Xl(5,I), I, Y1(5,I)

100 FORMAT (I5, 2X, 'Xl(',I3,') =',1024.16, 2X, 'Y1(',I3,')
!=',lD24.16)

20 CONTINUE
WRITE(2,*)



90

WRITE(3,*)
WRITE(4,*)
WRITE(5,*)
WRITE(6,*)
DO 30 I = 0, 200, 1

IF (I .EQ. 0) THEN
WRITE(2,*) " DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(2,*)
WRITE(3,*) " DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(3,*)
WRITE(4,*) " DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(4,*)
WRITE(S,*) " DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(S,*)
WRITE(6,*) " DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(6,*)

ENDIF
WRITE(2,200) NUM (I) , I, X2 (1, I) , I, Y2(1,I)
WRITE(3,200) NUM(I), I, X2 (2 , I) , I, Y2(2,I)
WRITE(4,200) NUM(I) , I, X2 (3 , I) , I, Y2(3,I)
WRITE(S,200) NUM(I) , I, X2 (4 , I) , I, Y2(4,I)
WRITE(6,200) NUM(I), I, X2 (S, I) , I, Y2(S,I)

200 FORMAT (IS, 2X, I X2 ( I , I3 , I ) =',1024.16, 2X, 'Y2(',I3,')
I-I ,1024.16).-

30 CONTINUE
WRITE(2,*)
WRITE(3,*)
WRITE(4,*)
WRITE(5,*)
WRITE(6,*)
DO 40 I = 0, 200, 1

IF (I .EQ. 0) THEN
WRITE(2,*) " pressure and rho data for plotting "
WRITE(2,*)
WRITE(3,*) " pressure and rho data for plotting "
WRITE(3,*)
WRITE(4,*) " pressure and rho data for plotting "
WRITE(4,*)
WRITE(S,*) " pressure and rho data for plotting "
WRITE(5,*)
WRITE(6,*) " pressure and rho data for plotting "
WRITE(6,*)

ENDIF
WRITE(2,300) NUM(I) , I, X3 (1, I) , I, Y3(1,I)
WRITE(3,300) NUM(I) , I, X3 (2 , I) , I, Y3(2,I)
WRITE(4,300) NUM(I) , I, X3 (3 , I) , I, Y3(3,I)
WRITE(5,300) NUM(I) , I, X3 ( 4 , I) , I, Y3(4,I)
WRITE(6,300) NUM(I) , I, X3 (S, I) , I, Y3(S,I)

300 FORMAT (IS, 2X, 'X3(',I3,') =',lD24.16, 2X, 'Y3(',I3,')
I-I ,lD24.16).-

40 CONTINUE
RETURN
END

*
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*===========================================================

*
SUBROUTINE PLOTS(ff)
DOUBLE PRECISION ff, RR(5), MM(5), Hrho(5), PRES(5),

!kmtocm, time
INCLUDE , QS__LOG. FOR'
INTEGER I, J
PARAMETER (kmtocm = 1.05)

*
C Plotting data for 100%, 85.7%, 42.2%, 25.0%, and 0.0001%
C of the total mass to correlate with that of May and
C White's figure 2.

*
Time = ETIME + ADJ

C ADJ is to adjust the time due to integration errors of
Corder delT(t1).

RR(1)=R(3,400)
RR(2)=R(3,380)
RR(3)=R(3,300)
RR(4)=R(3,252)
RR(5)=R(3,4)
MM(1)=M(3,400)
MM(2)=M(3,380)
MM ( 3 ) =M ( 3 , 300 )
MM(4)=M(3,252)
MM(5)=M(3,4)
Hrho(1)=rho(3,399)
Hrho(2)=rho(3,379)
Hrho(3)=rho(3,299)
Hrho(4)=rho(3,251)
Hrho(5)=rho(3,3)
PRES(1)=P(3,399)
PRES(2)=P(3,379)
PRES(3)=P(3,299)
PRES(4)=P(3,251)
PRES(5)=P(3,3)
IF (N .EQ. 0) I = 0

NUM(I) = N
DO 10 J = 1, 5, 1

* THIS PLOTS R(mu,t) FOR 100%, 85.7%, 42.2%, 25%, and
* 0.0001% OF MASS

Y1(J,I)=RR(J)/IRad(J)
X1(J,I)=PI/2.DO-(TIME*DSQRT(8.DO*PI*G

!*Irho(J)/3.DO))
* THIS PLOTS R(t) FOR 100%, 85.7%, 42.2%, 25%, and 0.0001%
* OF MASS

Y2(J,I) = RR(J)
X2(J,I) = TIME

* THIS PLOTS RHO & P FOR 100%, 85.7%, 42.2%, 25%, and
* 0.0001% OF MASS

Y3(J,I) = Hrho(J) * Msun / (kmtocm**3) * 1.d3 !g/cc
X3(J,I) = PRES(J) * Msun / kmtocm * 1.d3 !erg/cc

10 CONTINUE
ff=X1(1,I)!TO STOP THE PROGRAM WHEN X TURNS NEGATIVE.
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1=1+1
RETURN
END

*===========================================================
* THIS OUTPUT SUBROUTINE GOES TO THE SCREEN.

* SUBROUTINE OUTONE(ff)
DOUBLE PRECISION ff
INCLUDE 'QS__LOG.FOR'

*
IF (N .EQ. 1) rr = R(3,JJ)

*
C One can adjust the printed iterations by changing DD and
C N in the following IF-THEN statement.

*

*

IF « (DD . EQ . 100) . AND. (N . LE . 2000» . OR.
! «DD .EQ. 50) .AND. «N .GT. 2000) .AND. (N .LE. 3000)
1.0R. «DD .EQ. 10) .AND. (N .GT. 3000») THEN

IF (ff .GE. -1.D-4) CALL PLOTS(ff)
CALL OUTPUT

PRINT*, 'N =' ,N,' R(3,JJ) =' ,R(3,JJ)
IF (R(3,JJ) .LT. rr) THEN
PRINT*,'THE STAR'S RADIUS HAS COLLAPSED BY A TOTAL OF

1', rr-R(3,JJ),' km'
ELSE IF (R(3,JJ) .GT. rr) THEN

PRINT*,'THE STAR'S RADIUS HAS EXPANDED BY A TOTAL OF '
!R(3,JJ)-rr,' km'

ELSE
PRINT*,'NO CHANGE'
ENDIF

DO = 0 !RESET OUTPUT COUNTER.
ENDIF
RETURN
END

**===========================================================
C IF THE READER DESIRES AN UP TO DATE COPY OF THIS PROGRAM,
C FEEL FREE TO CONTACT THE AUTHOR.
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C THIS 'LOGIN. FOR' FILE DECLARES THE ARRAYS, VARIABLES,
C COMMON BLOCKS, AND THE PARAMETERS USED THOUGHOUT THE
C THE PROGRAM'MW NFF.FOR' AND IS CALLED IN EACH
C SUBROUTINE.

* DOUBLE PRECISION R(5,-1:401),delR(5,-1:401),
!RSQ(5,-1:401),rho(5,-1:401),epsil(5,-1:401),
!U(5,-1:401),UR(5,-1:401),PQ(5,-1:401),M(5,-1:401),
!deIM(5,-1:401),deIMU(-1:401),P(5,-1:401),Q(5,-1:401),
!W(5,-1:401),gamma(5,-1:401),A(5,-1:401),deIT(6)

DOUBLE PRECISION Irho(5), IRad(5), X1(5,0:200),
!Y1(5,O:200),X2(5,0:200),Y2(5,O:200),X3(5,0:200),
!Y3(5,0:200),deltTr(0:200) ,deltTe(0:200) ,deltTc(0:200)

DOUBLE PRECISION ETIME, ADJ, Mtot, radius, dr, SRAD,
!PI, G, C, CSQ, fourPI, hb, HBC, Msun, toJ

INTEGER T, t1, t2, t3, t4, t5, t6
INTEGER N, DD, NUM(0:200), JJ
COMMON /MASSES/ delM, delMU
COMMON /TIMES/ delT, ETIME, ADJ
COMMON /MandR/ M, R
COMMON /WandA/ W, A
COMMON /PandQ/ P, Q
COMMON /URPQ/ UR, PQ
COMMON /GAMMAU/ gamma, U
COMMON /RRSQ/ delR, RSQ
COMMON /THERMO/ rho, epsil
COMMON /NUMBER/ N, JJ, DO, NUM
COMMON /OTHERS/ Mtot, radius, dr, Irho, Irad, SRAD
COMMON /TIMERS/ deltTr, deltTe, deltTc
COMMON /PLOTDAT/ Xl, Y1, X2, Y2, X3, Y3
PARAMETER (T = 3,t1=T-2,t2=T-1, t3=T, t4=T+1, t5=T+2,

!t6=T+3)
PARAMETER (PI = 3.14159265358979323846DO,

!G = 1.32733D11)
PARAMETER(fourPI = 4.DO * PI, C = 2.998D5, CSQ C**2)
PARAMETER(Msun = 1.99030, toJ = 1.60219D-19)
PARAMETER(hb = 6.582D-22, HBC = (hb * C)**3)

*
C rhoo IS 1/3 OF THE NUCLEON REST ENERGY IN MeV
C UNITS ARE; {hb -> h bar -> MeV * s}
C {Msun ->-Solar Mass -> kg}
C {toJ -> Mev to Joule -> kg/kmA3 * (km/s)A2}
C {C -> speed of light -> km/s}

*
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*

PROGRAM'S NOMENCLATURE/ARRAY LIST WITH UNITS:

Non-Free-Fall Collapse model for a star of
the equations of state:
P = (gamma - 1) epsil rho

where gamma = S/3
thus, P = 2/3 epsil rho

There is no preferred caricature, all variables are
defined as either as Real or Integer, the defaults aren't
used in this program. Also there is no difference in using
upper or lower case caricatures. The only reason why both
upper and lower case are used is that it make reading the
code a bit easier.

R(S,-1:401) ..... R is the radial coordinate for each shell
j3 in units of (km).

deIR(S,-1:401) .. del-R is the change in radius from shell
jl to j3 in units of (km).

RSQ(S,-1:401) ... RSQ is the radial coordinate squared for
each shell j3 in units of (kmA2).

C
C
C
C
C
C
C Program MW__NFF.FOR VERSION: AA-Working-Unadjusted
C Also uses program'MW LOG. FOR'
C===========================================================
C Time Array : Shell Array
C (1 to 6 centered on t3=3) : (0 to 401 centered on j3=j)
C :
C t An-1 Last current time :j-1 Shell below central shell
C dtAn-.5 Step from tAn to :j-.5 Fictitious zone, j-1 to j
C t A n-1
C tAn Current Time :j Central Shell
C dtAn+.5 Step from tAn to ~j+.5 Fictitious zone, j to j+l
C t An+1
C t An+1 Next current time :j+1 Shell above central shell
C
C *** (time,shell)==(t3, j4)=(n, j+.5) and so on. ***
C===========================================================
C Array Assignment
C M. & W. : Code : M. & W. : Code
C : : ----:- : ~--____:_---
C tl n - 1 -> tl = t-2 jl = j - 1 -> jl j-2
C t2 n - .5 -> t2 t-1 j2 j - .5 -> j2 = j-l
C t3 n -> t3 = t j3 = j -> j3 = j
C t4 = n + .5 -> t4 = t+l j4 = j + .5 -> j4 = j+l
C t5 = n + 1 -> t5 t+2 jS j + 1 -> j5 j+2
C
C===========================================================
C
C MAIN UNITS ARE; {Mass in Msun, Radius in km,
C Time in seconds}
C WE DEFINE {a Joule to be a kg*kmA2/sA2}
C {a Newton to be a kg*km/s A2}
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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e M(5,-1:401) .....M is the total mass inclosed by the Jth
C shell in units of (Msun).
C delM(5,-1:401) .. delM is the mass enclosed between shells
e jl and j3 or for the j2 zone in(Msun).
C deIMU(-1:401) ... del-MU is the total rest mass in the j2
e zone corresponding to a radius j3 in
e units of (Msun).
e rho(5,-1:401) ... rho is the proper rest mass density for
C each zone at every time step in units
C of (Msun/kmA3).
e epsil(5,-1:401).epsilon is the total internal energy per
C unit mass for each zone at each time in
e unit of (km/s)A2.
C P(5,-1:401) ..... P is the internal pressure of the star
e through zone j2 at a time tl, t3, or
C t5, in units of (Msun/kmA3*(kmjs)A2).
e Q(5,-1:401) ..... Q is the artificial bulk viscosity term
C added to P in the same units as P.
C PQ(5,-1:401) .... P+Q is pressure plus Artificial Viscosity
e for shell j3 at t3 in (Msun/s A2 km).
C W(5,-1:401) ..... W relativistic enthalpy or heat function,
C dimensionless.
C gamma(5,-1:401).gamma is a dimensionless quantity related
C to mass and the square root of the 2nd
e metric coefficient (b).
e U(5,-1:401) ..... U is the 1st component of the fluid
C 4-velocity in units of (km/s).
e UR(5,-1:401) .... dU/dR is the rate of change in the 1st
e component of the fluid 4-velocity (U)
C w.r.t. the radius (R) in (vel/km)=l/s.
C A(5,-1:401) .....A is the square root of the first metric
e coefficient (a) and is dimensionless
C (a=Ac in units of km/s).
C delT(6) del-T is the time array in units of sec
C deltTe(O:200) del-T(epsilon), is the time step with a 2%
C change in epsilon, in units of s.
C deltTr(0:200) ... del-T(rho), is the time step with a 2%
e change in rho, in units of s.
C es ........•.....c(s), is the speed of sound, velocity of
e sound in the fluid, in units of kmjs.
C deltTc(O:200) ... del-T(c) is the time step with a 20%
C change in the inverse of CS in units of
C seconds
C F is the functional part of the recurrence
C relations in A and P.
C X#(5,0:200) ..... these arrays store data to be sent to
C output files.
C Y#(5,O:200) ..... these arrays store data to be sent to
C output files.
e IRad(5) store the initial radii at certain %mass
e levels.
e Irho(5) store the initial densities at certain
e %mass levels.
e radius the calculated initial radius in km.
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COUNTERS:

JJ = 400 the total number of shells and zones.
Mtot -> the initial mass used in Msun.
dt = 1.0D-7 s, the initial time step.

ADJ = ?? * dt s, adjustments to time for errors in the
integrated time.

dr ........•..... the initial sizes of each zone in km.
rhoavg the mean density of all zones in units of

density.
epsavg the mean internal energy per unit mass in

units of (km/s)A2.

C = 2.998E5 km, speed of light, where CSQ = C*C
PI = 3.14159265358979323846DO, where fourPI = (4 * pi)
The universal gravitational constant,

G = 1.32733D11 km/(Msun*sA2)
1.99D30 kg, the conversion from kg to solar masses
1.60219D-19, the conversion from MeV to

kg*(kmjs)A2 = Joule

C
C
C
C
C
C
C
C J counts the number of shells and zones by twos,
C J = O,2,4, ... ,JJ
C N counts the number of iterations, N = O,1,2, ... ,N
C DD is an output counter, DD = 1,2 .. DD, then starts over.
C
C===========================================================
C CONSTANTS AND CONVERSIONS:
C
C
C
C
C
C Msun
C toJ =
C
C hb = 6.582D-22 MeV*s
C HBC = (hb * C)**3
C
c===========================================================
C BC's AND IC's
C
C
C
C
C
C
C
C===========================================================
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C THE BODY OF THE PROGRAM
C

INCLUDE'MW LOG. FOR'
DOUBLE PRECISION FF
OPEN (UNIT 1, FILE='MW NFF1.DAT', STATUS = 'OLD')
OPEN (UNIT 2, FILE= 'MW--NFF2.DAT', STATUS = 'OLD')
OPEN (UNIT 3, FILE= 'MW--NFF3.DAT', STATUS 'OLD')
OPEN (UNIT 4, FILE= 'MW--NFF4.DAT', STATUS 'OLD')
OPEN (UNIT = 5, FILE= 'MW NFF5.DAT', STATUS = 'OLD')
OPEN (UNIT = 6, FILE='MW NFF6.DAT', STATUS 'OLD')
PRINT*, '*****---> I'M WORKING <---*****'
N=O !SET ITERATION COUNTER.
DD=l !SET OUTPUT COUNTER.
ff=99.DO !SET ff GREATER THEN ZERO,

C IF ff < 0 THEN PROGRAM STOPS.
CALL INITIAL
CALL PLOTS(ff)
N=N+1 !INCREMENT OUTPUT COUNTER.

119 CONTINUE
*(119)

delT(t3) = (delT(t4) + delT(t2»/2.DO
ETIME = ETIME + delT(t3)
CALL DYNAMI
CALL NSTEP
CALL UPDATE
CALL OUTONE(ff)
IF (N .EQ. 3375) THEN

PRINT*, ,**** 1/4 the DONE ****,
ELSE IF (N .EQ. 6750) THEN

PRINT*, ,**** 1/2 DONE ****,
ELSE IF (N .EQ. 10125) THEN

PRINT*, ,**** 3/4 th DONE ****,
ENDIF
IF (R(3,JJ) .LE. SRAD) THEN

PRINT*, 'YES! WE HAVE A BLACK HOLE.'
GOTO 33

ENDIF
IF (N .LE. 13500) THEN

N = N + 1 !INCREMENT ITERATION COUNTER.
DD = DD + 1 !INCREMENT OUTPUT COUNTER.
GOTO 119

ENDIF
33 CONTINUE
22 CALL OUTTWO

CALL OUTPUT
PRINT*,' HAAAAAAAA! N ',N, 'ITERATIONS I'M DONE.'
STOP
END

**===========================================================
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SUBROUTINE INITIAL
INCLUDE'MW LOG. FOR'
DOUBLE PRECISION dt, tau, rhoavg, epsavg, RADTWO
INTEGER J, j 1 , j 2, j 3, j 4, j 5
INTEGER K, I

*
* INITIALIZATION OF ALL ARRAYS.

* JJ = 400 !TOTAL NUMBER OF SHELLS AND ZONES
DO 10 I = 1,5

DO 20 J = -1,JJ+1,1
R(1,J) = 0.00
delR(I,J) = 0.00
rho(I,J) = 0.00
U(I,J) = 0.00
RSQ(I,J) = 0.00
M(I,J) = 0.00
delM(I,J) = 0.00

IF (I .EQ. 1) delMU(J) = 0.00
gamma(1,J) = 1.00
UR(I,J) = 0.00
PQ(I,J) = 0.00
epsil(1,J) = 0.00
P(I,J) = 0.00
Q(I,J) = 0.00
W(1,J) 1.00
A(1,J) 1.00

20 CONTINUE
delT (I) O. DO
Irho(I) = 0.00
IRad(I) = 0.00
DO 25 K = 0,200

Xl(I,K) = 0.00
Y1(1,K) 0.00
X2 (I,K) 0.00
Y2(1,K) = 0.00
X3(I,K) = 0.00
Y3(I,K) 0.00
IF (I .EQ. 1) THEN

NUM(K) = 0
deltTe(K) 0.00
deltTr(K) 0.00
deltTc(K) = 0.00
ENDIF

25 CONTINUE
10 CONTINUE

delT(6) = 0.00
rhoavg = 0.00
epsavg = 0.00

*
C ALL ARRAY ELEMENTS THAT ARE NOT RESTATED
C ARE AT THE ABOVE DEFAULT VALUES.
************************************************************
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INITIAL AND BOUNDARY CONDITIONS.
The values set here are up to the programmer.

Mtot = 21.000 !INITIAL MASS, in Msun
SRAD = 2.DO * Mtot * G / CSQ
RADIUS = SRAD / 6.20-3 lin km
dr = 2.00 * RADIUS / OREAL (JJ)
P(3,JJ+1) = 0.00

*(103)

*
************************************************************
*

DO 15 J = 2,JJ,2
jl = J - 2
j2 = J - 1
j3 = J
J5 = J + 2
delR(t3,j2) = dr

*(102)
CALL ENERGY(epsil(t3,j2»
CALL DENSITY(rho(t3,j2), Mtot, RADIUS)

R(t3,j3) = R(t3,j1) + deIR(t3,j2)
epsavg epsavg + epsil(t3,j2)
rhoavg rhoavg + rho(t3,j2)

15 CONTINUE
rhoavg = rhoavg/(DREAL(JJ)/2.DO)
epsavg epsavg/(DREAL(JJ)/2.00)

RADTWO = (3.00 * Mtot / (fourPI * rhoavg * (1.00 +
!epsavg / CSQ»)**(l.DO / 3.00)

*(102)
dt = 5.0-5 !SET INITIAL TIME STEP HERE.
AOJ = 0.00 * dt
delT(l) dt
deIT(2) = dt
deIT(4) = dt
ETIME = 0.00

************************************************************
*
C
C
C

*

NEED TO SET ASIDE SOME INITIAL CONDITIONS FOR THE
NON-FREE FALL PLOTS.

The shell which contains % of total initial mass

IRad(l) = radius 100%
IRad(2) = R(3,380) 85.7%
IRad(3) = R(3,300) 42.2%
IRad(4) = R(3,252) 25.0%
IRad(5) = R(3,4) 1.0E-4%
Irho(l) = rho(3,JJ-1) zone corresponding to 100%
Irho(2) = rho(3,379) zone corresponding to 85.7%
Irho(3) = rho(3,299) .zone corresponding to 42.2%
Irho(4) = rho(3,251) !zone corresponding to 25.0%
Irho(5) rho(3,3) !zone corresponding to 1.0E-4%

************************************************************
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*
*

HEADER FOR MW DAT1.DAT

tau = DSQRT(3.DO * PI / (32.DO * G * rho(T3, JJ-1»)
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C tau ->' Is the total time it would take for this star to
C collapse under the Free-Fall conditions.

*
WRITE(l,*)
WRITE(l,*) , TIME IS ADJUSTED BY ',AOJ
WRITE(l,*)
WRITE(l,*)' dt = ',dt,' tau = ',tau
WRITE(l,*)' RAO ',RADIUS,' SRAD = ',SRAD
WRITE(l,*) , Mtot = ',Mtot,' RADb = ',RADTWO
WRITE(l,*) 'rhoavg ',rhoavg,' epsavg = ',epsavg
WRITE(l,*)

************************************************************
*c
*

NOW THE SETUP FOR T = 0

*(104)

DO 60 J = 2, JJ, 2
j1=J-2
j2=J-1
j3=J
j4=j+1
j5=j+2

IF (j .EQ. 2) THEN
RSQ(t3,j2) = R(t3,j3)**2 j 3.00

ELSE IF (j .EQ. JJ) THEN
RSQ(t3,j4) = R(t3,j3)**2 j 3.00
RSQ(t3,j2) = (R(t3,j1)**2 + R(t3,j1) * R(t3,j3)

!+ R(t3,j3)**2) j 3.00
ELSE

RSQ(t3,j2) = (R(t3,j1)**2 + R(t3,j1) * R(t3,j3)
1+ R(t3,j3)**2) j 3.00

ENOIF
*(105 & 106)

deIM(t3,j2) = fourPI * rho(t3,j2) * (1.00 +
!epsil(t3,j2) j CSQ) * RSQ(t3,j2) * deIR(t3,j2)

M(t3,j3) = M(t3,j1) + deIM(t3,j2)
*(107)

IF (J .EQ. 2) THEN
gamma(t3,j2) = DSQRT(1.DO-GjCSQ*M(t3,j3)jR(t3,j3»

ELSE IF (J .EQ. JJ) THEN
gamma(t3,j4) = DSQRT(1.DO-GjCSQ*M(t3,j3)jR(t3,j3»
gamma(t3,j2) = DSQRT(1.DO-GjCSQ*(M(t3,j3)j

!R(t3,j3) + M(t3,j1) j R(t3,j1»)
ELSE
gamma(t3,j2) = DSQRT(l.DO - G j CSQ * (M(t3,j3) j

!R(t3,j3) + M(t3,j1) j R(t3,jl»)
ENDIF

*(108)
deIMU(j2) = fourPI * rho(t3,j2) * RSQ(t3,j2) *

!delR(t3,j2) j gamma(t3,j2)
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*(110 & 112)
CALL PRESSURE(P(t3,j2), epsil(t3,j2), rho(t3,j2»
W(t3,j2) = (epsil(t3,j2) + P(t3,j2) / rho(t3,j2» /

!CSQ + 1.00
60 CONTINUE

DO 70 J = 2, JJ, 2
j1=j-2
j2=J-1
j3=J
j4=J+1

*(109)
IF (J .EQ. 2) delMU(j1) = delMU(j2) / 2.00
delMU(j3) = (delMU(j2) + delMU(j4» / 2.00

*(113)
IF (J .EQ. 2) W(t3,j1) = (W(t3,j2) * delMU(j2» /

! (2.00 * delMU(j1»
W(t3,j3) = (W(t3,j2) * delMU(j2) + W(t3,j4) *

!delMU(j4» / (2.00 * delMU(j3»
*(114)

P(t3,j3) = (P(t3,j4) * delMU(j2) + P(t3,j2) *
!delMU(j4» / (2.00 * delMU(j3»

70 CONTINUE
A(t3,JJ) = 1.dO/W(t3,JJ-1)
A(t3,JJ-1) = 1.dO/W(t3,JJ-1)
DO 80 J = JJ-2, 2, -2

j2 = J - 1
j3 = J
j4 = J + 1
IF (J .EQ. 0) THEN

F = (epsil(t3,j4) - epsil(t3,j2) + P(t3,j3) *
! (1.00 / rho(t3,j4») / (W(t3,j3) * CSQ)

ELSEIF (J .EQ. JJ) THEN
F = (epsil(t3,j4) - epsil(t3,j2) + P(t3,j3) *

! (-1.00 / rho(t3,j2») / (W(t3,j3) * CSQ)
ELSE

F = (epsil(t3,j4) - epsil(t3,j2) + Q(t3,j3) *
1(1.00 / rho(t3,j4) - 1.00 / rho(t3,j2») / (W(t3,j3)
!* CSQ)

ENOIF
*(142 & 144)

A(t3,j2) = A(t3,j4) * (W(t3,j4) / W(t3,j2» *
10EXP(-F)

A(t3,j3) = (A(t3,j2) * W(t3,j2) + A(t3,j4) *
!W(t3,j4» / (2.00 * W(t3,j3»

80 CONTINUE
CALL OUTPUT
RETURN
END

*
*===========================================================
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*
SUBROUTINE DYNAMI
INCLUDE'MW LOG. FOR'
DOUBLE PRECISION F
INTEGER J, j1, j2, j3, j4, j5
CHARACTER ITERAT*l
ITERAT = 'Y'

*
100 DO 10 J = 2, JJ, 2

j1=J-2
j2=J-1
j3=J
j4=J+1
j5=J+2

IF (ITERAT .EQ. 'N') GOTa 127
*(120)

PQ(t3,j3) = «P(t3,j4) + Q(t2,j4» * delMU(j2) +
!(P(t3,j2)+ Q(t2,j2» * delMU(j4» / (2.00 * delMU(j3»

*(121)
IF (J.EQ.2) W(t3,j1) (W(t3,j2) * delMU(j2» / (2.00

!* delMU(j1»
W(t3,j3)=(W(t3,j2) * delMU(j2) + W(t3,j4) * delMU(j4»

!/ (2.00 * delMU(j3»
*(122)

IF (J .EQ. 2) THEN
gamma(t3,j1) = (gamma(t3,j2) * delMU(j2»/(2.DO *

!delMU(j1»
else If (J .EQ. JJ) then
gamma(t3,j3) = (gamma(t3,j2) * delMU(j2»/(2.DO *

!delMU(j3»
ELSE
gamma(t3,j3)=(gamma(t3,j2) * delMU(j2) + gamma(t3,j4)

!* delMU(j4» / (2.DO * delMU(j3»
END IF

*(123)
U(t4,j3) = U(t2,j3) - delT(t3) * A(t3,j3) * (fourPI *

!R(t3,j3)**2 * gamma(t3,j3) / W(t3,j3) * (P(t3,j4) +
!Q(t2,j4) - P(t3,j2) - Q(t2,j2» / delMU(j3) + G *
!M(t3,j3) / R(t3,j3)**2 + fourPI * G * PQ(t3,j3) *
!R(t3,j3) / CSQ)

*(124 & 125)
IF (J .EQ. 2) THEN
A(t4,j1)=A(t3,j1) + delT(t4) * (A(t3,j1) - A(t1,j1»

!/ (2.00 * delT(t2»
A(t4,-1)=A(t3,-1) + delT(t4) * (A(t3,-1) - A(t1,-1»

!/ (2.00 * delT(t2»
ELSE IF (J .EQ. JJ) THEN
A(t4,JJ+1) = A(t3,JJ+1) + delT(t4) * (A(t3,JJ+1) 

!A(t1,JJ+1» / (2.00 * delT(t2»
END IF
A(t4,j2)=A(t3,j2) + delT(t4) * (A(t3,j2) - A(t1,j2» /

!(2.DO * delT(t2»
A(t4,j3)=A(t3,j3) + delT(t4) * (A(t3,j3) - A(t1,j3» /

1(2.00 * delT(t2»
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*(126)
epsil(t4,j2) = epsil(t3,j2) + delT(t4) * (epsil(t3,j2)

1- epsil(t1,j2» / (2.00 * delT(t2»
127 CONTINUE

*(127)
delR(t5,j2) = delR(t3,j2) + delT(t4) * (A(t4,j3) *

!U(t4,j3) - A(t4,j1) * U(t4,j1»
*(128, 129, & 130)

R(t5,j3) = R(t5,j1) + delR(tS,j2)
delR(t4,j2) = (delR(t5,j2) + delR(t3,j2» / 2.00
R(t4,j3) = (R(t5,j3) + R(t3,j3» / 2.00

*(131)
IF (J .EQ. 2) THEN

RSQ(t5,j2) = R(t5,j3)**2 / 3.00
ELSE IF (J .EQ. JJ) THEN

RSQ(t5,j4) = R(t5,j3)**2 / 3.00
RSQ(t5,j2) = (R(tS,j1)**2 + R(t5,j1) * R(tS,j3) +

!R(tS,j3)**2) / 3.00
ELSE

RSQ(tS,j2) = (R(tS,j1)**2 + R(tS,j1) * R(tS,j3) +
!R(t5,j3)**2) / 3.00

ENOIF
*(133)

IF «OABS(gamma(t3,j2» .LT. 1.0-3) .OR. (delR(t4,j2)
!.EQ. 0.00» THEN

IF (J .EQ. 2) THEN
UR(t4,j2) = (fourPI * CSQ * rho(t3,j2) * RSQ(t3,j2) *

!(gamma(t3,j3)-gamma(t3,j1» / delMU(j2) + fourPI * G *
!rho(t3,j2)*(1.00 + epsil(t3,j2)/CSQ)*OSQRT(RSQ(t3,j2»
1- G * M(t3,j3) / R(t3,j3)**2 / 2.00) * 2.00 / U(t4,j3)
ELSE

UR(t4,j2) = (fourPI * CSQ * rho(t3,j2) * RSQ(t3,j2) *
! (gamma(t3,j3)-gamma(t3,jl» / delMU(j2) + fourPI * G *
!rho(t3,j2)*(1.00 + epsil(t3,j2)/CSQ)*DSQRT(RSQ(t3,j2»
!- G*(M(t3,j3) / R(t3,j3)**2 + M(t3,j1) / R(t3,jl)**2)
1/2.00) * 2.00 / (U(t4,j3) + U(t4,j1»
ENO IF

*(132)
ELSE IF «OABS(gamma(t3,j2» .GE. 1.0-3) .AND.

!(delR(t4,j2) .NE. 0.00» THEN
UR(t4,j2) = (U(t4,j3) - U(t4,j1» / delR(t4,j2)

END IF
*(135)

F = A(t4,j2) * UR(t4,j2) * delT(t4)
*(135 & 136)

rho(tS,j2) = rho(t3,j2) * (RSQ(t3,j2) / RSQ(t5,j2» *
!DEXP(-F)
rho(t4,j2) = (rho(t5,j2) + rho(t3,j2» / 2.00

*(136 & 137)
IF (rho(tS,j2) .LT. rho(t3,j2» THEN

Q(t4,j2) = 0.00
ELSE IF (rho(tS,j2) .GT. rho(t3,j2» THEN

Q(t4,j2) = 2.00 * rho(t4,j2) * (R(t4,j3)**2 *
!U(t4,j3) - R(t4,j1)**2 * U(t4,j1»**2 / (gamma(t3,j2)
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1* RSQ(t3,j2)**2)
END IF

*(138)
CALL PRESSURE(P(t4,j2), epsil(t4,j2), rho(t4,j2»

*(139)
epsil(tS,j2) = epsil(t3,j2) - (P(t4,j2) + Q(t4,j2»

1* (1.00 / rho(tS,j2) - 1.00 / rho(t3,j2»
*(138)

CALL PRESSURE(P(t5,j2), epsil(t5,j2), rho(t5,j2»
*(140)

W(tS,j2)=1.00 + (epsil(tS,j2) + (P(t5,j2) + Q(t4,j2»
1/ rho(tS,j2» / CSQ

10 CONTINUE
DO 25 J = 2, JJ, 2
j1=j-2
j2=J-1
j3=J
j4=J+1

* (120)
PQ(t5,j3) = «P(t5,j4) + Q(t4,j4» * delMU(j2) +

1 (P(tS,j2)+Q(t4,j2» * delMU(j4» / (2.00 * delMU(j3»
* (121)

IF (J .EQ. 2) W(tS,j1) = W(tS,j2) * delMU(j2) /
! (2.00 * delMU(j1»
W(tS,j3)=(W(tS,j2) * delMU(j2) + W(tS,j4) * delMU(j4»

1/ (2.DO * delMU(j3»
2S CONTINUE

A(tS,jj) = 1.dO/W(tS,jj-1)
A(tS,jj-1) = 1.dO/W(tS,jj-1)
00 30 J = JJ-2, 2, -2

j2 = J - 1
j3 = J
j4 = J + 1

*(143)
IF (J .EQ. 0) THEN

F = (epsil(tS,j4) - epsil(tS,j2) + PQ(tS,j3) *
1 (l.DO / rho(tS,j4») / (W(tS,j3) * CSQ)

ELSEIF (J .EQ. JJ) THEN
F = (epsil(tS,j4) - epsil(tS,j2) + PQ(tS,j3) *

! (-l.DO / rho(tS,j2») / (W(tS,j3) * CSQ)
ELSE

F = (epsil(tS,j4) - epsil(t5,j2) + PQ(tS,j3) *
1 (1.00/rho(tS,j4) - 1.00 / rho(ts,j2»)/(W(tS,j3)* CSQ)

ENOIF
*(142 & 144)

A(tS,j2) = A(t5,j4) * (W(tS,j4) / W(t5,j2» *
IDEXP(-F)

A(t5,j3) = (A(t5,j2) * W(t5,j2) + A(tS,j4) *
lW(t5,j4» / (2.DO * W(tS,j3»

30 CONTINUE
IF (ITERAT .EQ. 'Y') THEN

*(145, 146, & 147)
00 SO J = 2, JJ, 2

j2 = J-1
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j3 = J
epsil(t4,j2)=(epsil(t5,j2) + epsil(t3,j2»/2.00
A(t4,j2) = (A(t5,j2) + A(t3,j2» / 2.DO
A(t4,j3) = (A(t5,j3) + A(t3,j3» / 2.00
IF (J .EQ. 2) THEN

A(t4,j1) = (A(t5,j1) + A(t3,j1» / 2.00
A(t4,-1) = (A(tS,-l) + A(t3,-1» / 2.00

ELSEIF (J .EQ. JJ) THEN
A(t4,JJ+1) = (A(t5,JJ+1) + A(t3,JJ+1» / 2.00

ENDIF
50 CONTINUE

ITERAT = 'N' !AT THIS POINT WE RETURN TO
GOTO 100 ! EQ. 127 FOR ONE MORE CYCLE.

END IF
DO 60 J = 2, JJ, 2

j1=J-2
j2=J-1
j3=J

*(148)
gamma(tS,j2) = fourPI * rho(tS,j2) * RSQ(tS,j2) *

!delR(tS,j2) / delMU(j2)
*(149)

delM(ts,j2) = gamma(t5,j2) * (1.00 + epsil(t5,j2)
1/ CSQ) * delMU(j2)

*(150)
M(t5,j3) = M(t5,j1) + delM(t5,j2)

60 CONTINUE
RETURN
END

*
*===========================================================

*
SUBROUTINE NSTEP
DOUBLE PRECISION HOLD1, HOLD2, HOLD3, HOLD4, HOLDS, Cs
INCLUDE'MW LOG. FOR'
INTEGER J, j2, K

*
DO 10 J = 2, JJ, 2

j2 = J-1
k = DINT(DREAL(J)/2.DO)
deltTe(K) 0.00
deltTr(K) = 0.00
deltTc(K) = O.DO

*(152)
deltTe(k) = 2.0-2 * epsil(t5,j2) * delT(t4) /

!DABS(epsil(tS,j2) - epsil(t3,j2»
*(153)

deltTr(k) = 2.0-2 * rho(tS,j2) * delT(t4) /
!OABS(rho(t5,j2) - rho(t3,j2»

*(154)
Cs = OSQRT(epsil(t5,j2)/(1.00 + epsil(t5,j2)/CSQ»
deltTc(k) = 2.0-1 * delMU(j2) / (rho(tS,j2) *

!RSQ(t5,j2) * A(tS,j2) * Cs)
10 CONTINUE
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*
C delT(t6) IS ,INPUT, MAX{delT AS SPECIFIED BY INPUT}
C sorts to find the minimum

*
HOLD1 = deltTe(l)
HOLD2 = deltTr(l)
HOLD3 = deltTc(l)
DO 20 k = 2, DREAL(JJ)j2.00

HOLDl = DMIN1(HOLD1, deltTe(k»
HOLD2 DMINl(HOLD2, deltTr(k»
HOLD3 = DMIN1(HOLD3, deltTc(k»

20 CONTINUE
HOLD4 = delT(t1)
HOLD5 = 1.2DO * delT(t4)

*(151)
delT(t6) =
delT(t2) =
delT(t4)
RETURN
END

DMIN1(HOLD1, HOLD2, HOLD3, HOLD4, HOLD5)
delT(t4)
delT(t6)

*
*===========================================================
*

SUBROUTINE DENSITY(rho, M, R)
DOUBLE PRECISION rho, PI, M, R
PARAMETER (PI = 3.14159265358979323846DO)

*
*

rho = 3.DO * M / (4.00 * PI * R**3)

RETURN
END

lin Msum/kmA3

**===========================================================
*

SUBROUTINE ENERGY(epsil)
DOUBLE PRECISION epsil, C, CSQ
PARAMETER (PI = 3.1415926535897932384600,

!C = 2.99805, CSQ=C**2)
*

epsil = (1.92D-5) * CSQ lin kmA2/s A2
SPECIFIC INTERNAL ENERGY PER UNIT MASS

RETURN
END

**===========================================================
*

SUBROUTINE PRESSURE(P, epsil, rho)
DOUBLE PRECISION rho, epsil, P

*
*

*

P = 2.DO*rho*epsil/3.DO

RETURN
END

lin Msun/km/s A2
or in Msun/kmA3*(km/s)A2
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*===========================================================
*

SUBROUTINE UPDATE
INCLUDE'MW LOG. FOR'
INTEGER J, j2, j3
DO 10 J = 2, JJ, 2
j2=J-1
j3=J
delR(t1,j2) delR(t3,j2)
delR(t3,j2) delR(tS,j2)
delR(tS,j2) = 0.00
delR(t2,j2) = delR(t4,j2)
delR(t4,j2) = 0.00
R(t1,j3) = R(t3,j3)
R(t3,j3) = R(tS,j3)
R(tS,j3) = 0.00
R(t2,j3) = R(t4,j3)
R(t4,j3) 0.00
rho(t1,j2) = rho(t3,j2)
rho(t3,j2) = rho(tS,j2)
rho(ts,j2) = 0.00
rho(t2,j2) = rho(t4,j2)
rho(t4,j2) = 0.00
RSQ(t1,j2) RSQ(t3,j2)
RSQ(t3,j2) = RSQ(tS,j2)
RSQ(tS,j2) 0.00
epsil(t1,j2) = epsil(t3,j2)
epsil(t3,j2) = epsil(tS,j2)
epsil(tS,j2) = 0.00
epsil(t2,j2) epsil(t4,j2)
epsil(t4,j2) 0.00
gamma(t1,j2) gamma(t3,j2)
gamma(t3,j2) gamma(tS,j2)
gamma(tS,j2) = 1.00
gamma(t1,j3) = gamma(t3,j3)
gamma(t3,j3) = gamma(tS,j3)
gamma(tS,j3) 1.00
U(t2,j3) = U(t4,j3)
U(t4,j3) = 0.00
delM(t1,j2) = delM(t3,j2)
delM(t3,j2) = delM(tS,j2)
delM(tS,j2) = 0.00
M(t1,j3) M(t3,j3)
M(t3,j3) M(tS,j3)
M(tS,j3) = 0.00
P(t1,j2) P(t3,j2)
P(t3,j2) P(tS,j2)
P(tS,j2) = 0.00
P(t1,j3) P(t3,j3)
P(t3,j3) P(tS,j3)
P(tS,j3) 0.00
Q(t2,j2) Q(t4,j2)
Q(t4,j2) = 0.00
UR(t2,j2) = 0.00
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PQ(t3,j3) = 0.00
PQ(t5,j3) = 0.00
W(t1,j2) = W(t3,j2)
W(t3,j2) W(t5,j2)
W(t5,j2) 1.00
W(t1,j3) = W(t3,j3)
W(t3,j3) = W(t5,j3)
W(t5,j3) 1.00
A(t1,j2) A(t3,j2)
A(t3,j2) = A(t5,j2)
A(t5 , j 2 ) 1 . DO
A(tl,j3) = A(t3,j3)
A(t3,j3) = A(t5,j3)
A (t5 , j 3 ) 1 • DO

10 CONTINUE
C RESET THE B.C.'S AND I.C.'S FOR ALL TIMES

delMU(JJ+l) = 0.00
delMU(-l) = 0.00
U(t2,0) 0.00
U(t3,0) = 0.00
U(t4,0) 0.00
M(t1,0) = 0.00
M(t3,0) = 0.00
M(t5,0) 0.00
R(t1,0) = 0.00
R(t2,0) 0.00
R(t3,0) 0.00
R(t4,0) = 0.00
R(t5,0) = 0.00
P(t5,JJ+1) = 0.00
P(t4,JJ+l) = 0.00
RETURN
END

*
*===========================================================
C THIS OUTPUT SUBROUTINE GOES TO DATAFILE'MW DAT1.DAT'

*
SUBROUTINE OUTPUT
INCLUDE'MW LOG. FOR'
INTEGER J, j2, j3, j4, I

*
IF (N .LE. 2) I = 2
IF (N .GT. 2) I = 40
WRITE(l,lOO)
WRITE(1,200) N, ETIME + ADJ, delT(t4)
DO 50 J = 0, JJ, I

j2=J-l
j3=J
j4=J+1
IF (N .EQ. 0) THEN
pres = P(t3,j3)
ELSE
pres = PQ(t3,j3)
ENDIF
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dens = rho(t3,j2) !/ 1.40-4 dens/nuclear
WRITE (1, 300) J
WRITE (1, 600) P(t3,j2), RSQ(t3,j2), delMU(j2),

!delMU(j3)
WRITE (1, 601) Pres
WRITE (1, 700) delM(t3,j2), delR(t3,j2), dens,

!gamma(t3,j2)
write (1, 800) M(t3,j3), R(t3,j3), epsil(t3,j2),

!U(t2,j3)
write (1, 900) A(t3,j2), A(t3,j3), W(t3,j2), W(t3,j3)
IF (J .EQ. JJ) THEN

IF (N .EQ. 0) THEN
pres = P(t3,j3) !Msun/kmA3 (km/s)A2
ELSE
pres = PQ(t3,j3)
ENOIF
dens = rho(t3,j4) !/ 1.40-4 Msun/kmA3
WRITE (1, *)
WRITE (1, 610) P(t3,j4), RSQ(t3,j4), delMU(j4)
WRITE (1, 601) Pres
WRITE (1, 710) delM(t3,j4), delR(t3,j4), dens,

!gamma(t3,j4)
write (1, 810) epsil(t3,j4)
write (1, 910) A(t3,j4), W(t3,j4)

ENOIF
50 CONTINUE

100 FORMAT(120('='»
200 FORMAT(' N =', 110, 7X, 'T33 =' 1024.16, 6X,

!'dT4 =', 1D24.16)
300 FORMAT(' J =', 110)
601 FORMAT(' P33 =', 1024.16)
600 FORMAT(' P32 =', 1024.16, 3X, 'RSQ32 =', 1024.16, 3X,

!' dtMU2 =', 1D24.16, 3X, 'dtMU3 =', 1024.16)
610 FORMAT(' P34 =', 1024.16, 3X, 'RSQ34 =', 1024.16, 3X,

!' dtMU4 =', lD24.16, 3X, ' " 24X)
700 FORMAT('dtM32 =', 1D24.16, 3X, 'dtR32 =', 1024.16, 3X,

!' rho32 =', 1024.16, 3X, 'Gam32 =', 1D24.16)
710 FORMAT('dtM34 =', 1D24.16, 3X, 'dtR34 =', 1024.16, 3X,

!' rho34 =', 1D24.16, 3X, 'Gam34 =', 1024.16)
800 FORMAT(' M33 =', 1024.16, 3X, ' R33 =', 1024.16, 3X,

!'epsil32 =' 1024.16, 3X, , U23 =', 1024.16)
810 FORMAT ( , " 24X, 3X, ' " 24X, 3X,

! ' epsi134 =', 1024.16, 3X, ' " 24X)
900 FORMAT(' A32 =', 1024.16, 3X, , A33 =', 1D24.16, 3X,

!' W32 =', 1D24.16, 3X, , W33 =' 1024.16)
910 FORMAT (' A34 =', 1D24 .16, 3X, , " 24X, 3X,

!' W34 =', 1D24.16, 3X, , 24X)
11 RETURN

END

*
*===========================================================



PLOTTING DATA FOR 100% OF

TIME ADJUSTED BY ", ADJ ," dt"

PLOTTING DATA FOR 8S.7% OF

TIME ADJUSTED BY ",ADJ," dt"

PLOTTING DATA FOR 42.2% OF

TIME ADJUSTED BY ",ADJ," dt"

PLOTTING DATA FOR 2S.0% OF

TIME ADJUSTED BY ",ADJ," dt"

PLOTTING DATA FOR 1.0E-4% OF

TIME ADJUSTED BY ",ADJ," dt"

111

C THIS OUTPUT SUBROUTINE GOES TO DATAFILES'MW DAT*.DAT'

* SUBROUTINE OUTTWO
INCLUDE'MW LOG. FOR'
INTEGER I

*
DO 20 I 0, 200, 1

IF (I .EQ. 0) THEN
WRITE(2,*) "R(mu,t),

!INITIAL MASS"
WRITE(2,*) "WITH THE
WRITE(2,*)
WRITE(3,*) "R(mu,t),

!INITIAL MASS"
WRITE(3,*) "WITH THE
WRITE(3,*)
WRITE(4,*) "R(mu,t),

!INITIAL MASS"
WRITE(4,*) "WITH THE
WRITE(4,*)
WRITE(S,*) "R(mu,t),

!1NITIAL MASS"
WRITE(S,*) "WITH THE
WRITE(S,*)
WRITE(6,*) "R(mu,t),

!INITIAL MASS"
WRITE(6,*) "WITH THE
WRITE(6,*)

ENDIF
WRITE(2,100) NUM(I), I, X1(1,I), I, Y1(1,I)
WRITE(3,100) NUM(I), I, X1(2,I), I, Y1(2,1)
WRITE(4,100) NUM(I), I, X1(3,I), I, Y1(3,I)
WRITE(S,100) NUM(I), I, X1(4,I), I, Y1(4,I)
WRITE(6,lOO) NUM(I), I, Xl(S,I), I, Yl(S,I)

100 FORMAT (IS, 2X, 'X1(',I3,') =',1024.16, 2X, 'Yl(',I3,')
!=',lD24.16)

20 CONTINUE
WRITE(2,*)
WRITE(3,*)
WRITE(4,*)
WRITE(S,*)
WRITE(6,*)
DO 30 I = 0, 200, 1

IF (I .EQ. 0) THEN
WRITE(2,*)" DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(2,*)
WRITE(3,*)" DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(3,*)
WRITE(4,*)" DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(4,*)
WRITE(S,*)" DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(5,*)
WRITE(6,*)" DATA FOR R(t) WITH THE TIME ADJUSTED"
WRITE(6,*)



and rho data for plotting "

and rho data for plotting "

and rho data for plotting "

and rho data for plotting "

and rho data for plotting "
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ENOIF
WRITE(2,200) NUM(I), I, X2(1,I), I, Y2(1,I)
WRITE(3,200) NUM(I), I, X2(2,I), I, Y2(2,I)
WRITE(4,200) NUM(I), I, X2(3,I), I, Y2(3,I)
WRITE(5,200) NUM(I), I, X2(4,I), I, Y2(4,I)
WRITE(6,200) NUM(I), I, X2(5,I), I, Y2(5,I)

200 FORMAT (15, 2X, 'X2(',I3,') =',lD24.16, 2X, 'Y2(',I3,')
!=',1024.16)

30 CONTINUE
WRITE(2,*)
WRITE(3,*)
WRITE(4,*)
WRITE(5,*)
WRITE(6,*)
DO 40,1 = 0, 200, 1

IF (I .EQ. 0) THEN
WRITE(2,*)" pressure
WRITE(2,*)
WRITE(3,*)" pressure
WRITE(3,*)
WRITE(4,*)" pressure
WRITE(4,*)
WRITE(S,*)" pressure
WRITE(S,*)
WRITE(6,*)" pressure
WRITE(6,*)

ENOIF
WRITE(2,300) NUM(I), I, X3(1,I), I, Y3(1,I)
WRITE(3,300) NUM(I), I, X3(2,I), I, Y3(2,I)
WRITE(4,300) NUM(I), I, X3(3,I), I, Y3(3,I)
WRITE(5,300) NUM(I), I, X3(4,I), I, Y3(4,I)
WRITE(6,300) NUM(I), I, X3(5,I), I, Y3(S,I)

300 FORMAT (I5, 2X, 'X3(',I3,') =',1024.16, 2X, 'Y3(',I3,')
!=',1024.16)

40 CONTINUE
RETURN
END

*
*===========================================================

*
SUBROUTINE PLOTS(ff)
DOUBLE PRECISION ff, RR(5), MM(5), Hrho(5), PRES(5),

!kmtocm, time
INCLUOE'MW LOG. FOR'
INTEGER I, J
PARAMETER (kmtocm = 1.05)

*
C Plotting data for 100%, 85.7%, 42.2%, 25.0%, and 0.0001%
C of the total mass to correlate with that of May and
C White's figure 2.

*
Time = ETIME + AOJ

C ADJ is to adjust the time due to integration errors of
Corder delT(t1).
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RR(1)=R(3,400)
RR(2)=R(3,380)
RR(3)=R(3,300)
RR(4)=R(3,252)
RR(5)=R(3,4)
MM(1)=M(3,400)
MM (2 ) =M (3 , 380)
MM(3)=M(3,300)
MM(4)=M(3,252)
MM(5)=M(3,4)
Hrho(1)=rho(3,399)
Hrho(2)=rho(3,379)
Hrho(3)=rho(3,299)
Hrho(4)=rho(3,251)
Hrho(5)=rho(3,3)
PRES(1)=P(3,399)
PRES(2)=P(3,379)
PRES(3)=P(3,299)
PRES(4)=P(3,251)
PRES(5)=P(3,3)
IF (N .EQ. 0) I = 0

NUM(I) = N
DO 10 J = 1, 5, 1

* THIS PLOTS R(mu,t) FOR 100%, 85.7%, 42.2%, 25%, and
* 0.0001% OF MASS

Y1(J,I)=RR(J)/IRad(J)

X1(J,I)=PI/2.DO-(TIME*DSQRT(8.DO*PI*G*Irho(J)/3.DO»
* THIS PLOTS R(t) FOR 100%, 85.7%, 42.2%, 25%, and 0.0001%
* OF MASS

Y2(J,I) = RR(J)
X2(J,I) = TIME

* THIS PLOTS RHO & P FOR 100%, 85.7%, 42.2%, 25%, and
* 0.0001% OF MASS

Y3(J,I) = Hrho(J) * Msun / (kmtocm**3) * 1.d3 !g/cc
X3(J,I) = PRES(J) * Msun / kmtocm * 1.d3 !erg/cc

10 CONTINUE
ff = X1(1,I)

* !TO STOP THE PROGRAM WHEN X TURNS NEGATIVE.
1=1+1

RETURN
END

*===========================================================
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* THIS OUTPUT SUBROUTINE GOES TO THE SCREEN.

* SUBROUTINE OUTONE(ff)
DOUBLE PRECISION ff
INCLUDE'MW LOG. FOR'

* IF (N .EQ. 1) rr = R(3,JJ)

*C One can adjust the printed iterations by changing DD and
C N in the following IF-THEN statement.

*

*

IF « (DD .EQ. 500) .AND. (N .LE. 4000» .OR.
! «DD.EQ.200).AND.«N.GT. 4000) .AND. (N.LE.10000»)
!.OR.«DD.EQ.100).AND. «N.GT.10000) .AND. (N.LE.12900»)
!.OR.«DD.EQ.20).AND.«N .GT.12900).AND.(N.LE.13400»)
! .OR. «DD .EQ. 5) .AND. (N .GT. 13400») THEN

IF (ff .GE. -1.D-4) CALL PLOTS(ff)
CALL OUTPUT

PRINT*, 'N =' ,N,' R(3,JJ) =' ,R(3,JJ)
IF (R(3,JJ) .LT. rr) THEN
PRINT*,'THE STAR'S RADIUS HAS COLLAPSED BY A TOTAL OF

I', rr-R(3,JJ),' km'
ELSE IF (R(3,JJ) .GT. rr) THEN

PRINT*,'THE STAR'S RADIUS HAS EXPANDED BY A TOTAL OF '
!R(3,JJ)-rr,' km'

ELSE
PRINT*,'NO CHANGE'
ENDIF

DD = 0 !RESET OUTPUT COUNTER.
ENDIF
RETURN
END

**===========================================================
C IF THE READER DESIRES AN UP TO DATE COpy OF THIS PROGRAM,
C FEEL FREE TO CONTACT THE AUTHOR.
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