
 1

 

 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

CHARACTERISTICS OF TROPICAL CYCLONES IN THE  

NORTH ATLANTIC AND EAST PACIFIC 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

By 
 

BRADFORD SCOTT BARRETT 
Norman, Oklahoma 

2007 



UMI Number: 3291242

3291242
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

 by ProQuest Information and Learning Company. 



 2

 
 
 
 
 
 

CHARACTERISTICS OF TROPICAL CYCLONES IN THE  
NORTH ATLANTIC AND EAST PACIFIC 

 
 

A DISSERTATION APPROVED FOR THE 
SCHOOL OF METEOROLOGY 

 
 
 
 
 
 
 
 
 
 
 
 

BY 
 
 
            
       Lance M. Leslie 
 
            
       Evgeni Fedorovich 
 
            
       J. Scott Greene 
 
            
       Susan Postawko 
 
            
       David Stensrud 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by BRADFORD SCOTT BARRETT 2007 
All rights reserved. 



 iv

Acknowledgements 
 
 
 This work was funded through multiple sources that I would like to 

acknowledge: the U.S. Office of Naval Research, the U.S. Department of State, the 

University of Oklahoma Lowry Endowed Chair, the University of Oklahoma Graduate 

College, the University of Graz Wegener Center for Climate Change, and the University 

of Oklahoma School of Meteorology.  Each source of funding allowed me the flexibility 

to choose a research topic of my interest, and I am thankful for their generosity in 

providing me the many opportunities I have had as a graduate student.  My path to a 

ph.d. was perhaps atypical for this department: I spent eighteen of my seventy-four 

months as a graduate student overseas.  I was awarded the J. William Fulbright 

Fellowship to study at the Caribbean Institute for Meteorology and Hydrology in 

Barbados from August 2005 to June 2006, and I was also awarded a visiting lectureship 

at the University of Graz from September 2006 to March 2007.    

I first thank my advisor and committee chair, Dr. Lance Leslie, for all of his 

support and encouragement of my studies.  Without his blessing (and many letters of 

recommendation), I would not have been awarded those two prizes, nor would I have 

had the amazing experiences that came with each opportunity.  Lance, thank you!  I also 

thank my officemates, Andy Taylor and Kevin Goebbert, for their friendship, 

encouragements, jokes, and camaraderie.  I consider myself blessed to share our office 

space after our move to the National Weather Center building.  I thank them also for 

each editing a chapter of this dissertation.  I thank the ever friendly and cheerful office 

staff of the School of Meteorology: Marcia, Celia, Nancy, Kristyn (and Laura, and 

Lauren).  Thanks for brightening our days and handling our never-ending stream of 



 v

administrative requests!  My fellow graduate students (and frequent chase partners), 

including Dan, Robin, Mike, Jen, Kodi, Hamish, Jose, John, Alex, Ashton, Elaine, 

Chris, Gabe, and others, thanks for a great six years!  To my “Frisbee Friday” guys, 

thanks for reminding me to get out, run around, and toss a disc.  To the occupants of the 

offices below me in SEC and the NWC, thanks for enduring the sound of my stress-

relief “bouncy ball” pounding into your ceiling.  I thank my mentor from the 

Department of Economics, Bob Reed, for his personal encouragements and wise advice.   

I thank my family, and particularly my parents, for truly letting go of the 

parental strings and allowing me to explore the world, beginning with Greenville and 

Chapel Hill, continuing to Oklahoma, Barbados and Austria, and now onward to Chile.  

Life outside of Greenville was new and scary, but it has been well worth the adventure.  

I love you guys and am ever grateful to you! 

As my graduate studies have come to a close, I have concluded that life is far 

more than sitting in front of a machine from 8-5, worrying about my next paycheck or 

fretting about deadlines.  Life is a gift, every minute to be soaked up and enjoyed.  Pour 

into relationships; I have found that they are sources of great joy.  Join a bible study, for 

in the scriptures lie eternal truths of faith.  One of my absolute favorite passages comes 

from the prophet Isaiah:  in a vision, Isaiah sees God seated on a throne in power, and 

realizes his sin and cries out.  An angel comes to him and beautifully forgives, and 

Isaiah, hearing God ask aloud for ambassadors, proudly responds, “Here I am. Send 

me.”  I love the imagery, the emotional swings of Isaiah from utter desolation to 

triumphant purpose, and I long to have the same courage to continue that response!  It is 

my hope that all people, regardless of background or intellect or spirit, will experience 



 vi

and center their lives around the true Living God, who from Abraham and Isaac, Isaiah 

and David, to Peter and Matthew and Paul, has sought the world, even giving Jesus, his 

son, to reconcile all men.  So I conclude with a doxology, a hymn of praise, which 

conveys the attitude of my heart and the hope upon which my life is based.  After I, and 

this research, have long ago passed into dust, He will remain, eternal and everlasting. 

 

33Oh, the depth of the riches of the wisdom and knowledge of God! 

How unsearchable his judgments,  

and his paths beyond tracing out!  

34"Who has known the mind of the Lord?  

Or who has been his counselor?" 

35"Who has ever given to God,  

that God should repay him?" 

36For from him and through him and to him are all things.  

To him be the glory forever! Amen. 

 

-Paul, Romans 11:33-36



 vii

Table of Contents 
 
Acknowledgements iv
 
Table of Contents vii
 
Chapter 1. Introduction 1
1.1. Definition and historical observations.  5
1.2. TC genesis and development 6
1.3.  TC structure and governing equations 11
1.4. TC boundary layer 17
1.5. Summary of current TC track forecasting methods  27
1.6. TC circulation interaction with island terrain 

 

36

Chapter 2. Climatological forecasting tool 45
2.1. TC motion climatology 46
2.2 Best track dataset 47
2.3. The TC motion climatology prediction scheme 48
2.4. Motion climatology interpretation 49
2.5. NWP forecasts of Ivan 51
2.6. Steering flow for IVAN 52
2.7. Climatological tool conclusions 

 

54

Chapter 3. TC activity and geophysical variability 57
3.1. Best track datasets:  uses and limitations 59
3.2. Metrics of TC activity 67
3.3. Early studies of periodic variability in North Atlantic TC activity 74
3.4. Vertical wind shear and TCs 80
3.5. The climate indices 84
3.6 Quantifying relationship between TC activity and climate indices 103
3.7 Relationships and associations between TC activity and climate indices 107
3.8 Conclusions and future work 

 

122

Chapter 4:  Modulation of TC activity by the Madden-Julian Oscillation 123
4.1. The Madden-Julian Oscillation 125
4.2. MJO connection to TC activity 134
4.3. MJO modulation of North Atlantic, East Pacific, and sub-basin TC activity 138
4.4.  Construction of Madden-Julian Oscillation indices 141



 viii

4.5.  Significance testing TC activity     145
4.6. Interpreting the Z-statistics 150
4.7.  Graphical display of modulated TC activity 154
4.8.  Quantifying TC modulation by MJO at genesis 155
4.9.  Quantifying TC modulation by MJO at landfall 156
4.10.  Advantages to these methods of quantifying TC activity 157
4.11. Conclusions and connections to future work 

 

158

Chapter 5. Conclusions and future work 

 

161

Bibliography 

 

165

Appendix: Tables and figures 

 

194

  
  
  
  
  
  
  
 

 



 1

Chapter 1. Introduction 

 

Tropical cyclones (TCs), known variously as hurricanes, typhoons, or cyclones, 

are among the most extreme geophysical phenomena on the surface of the planet: wind 

speeds can surpass 90 m s-1; rainfall rates approach or exceed 100 mm hr-1; and ocean 

waves are churned up to 35 m.  At landfall, death and destruction are spread across wide 

areas without respect for geopolitical boundaries.  Coastal buildings are flooded by the 

ocean surge; inland waterways overflow their banks and claim homes and businesses; 

tornadoes chart narrow but unpredictable paths in the outer bands and eyewall; and both 

coastal and inland structures are damaged and destroyed after prolonged battering by 

wind and wind-driven projectiles.  Although the recent U.S. impacts of Hurricanes 

Katrina, Rita, and Wilma, 2005; and Hurricanes Charley, Frances, Ivan, and Jeanne, 

2004 (which combined for over $150 billion in damage and 2,000 fatalities) are fresh in 

our minds, it is important to remember that the toll can be much greater.  A single, 

poorly-forecasted cyclone made landfall in Bangladesh in 1970 and killed upwards of 

half a million people, almost double the widely publicized and catastrophic toll of the 

December 2005 Indian Ocean tsunami disaster.   

While often the focus of news media and emergency management, landfalling 

TC impacts are not restricted to the dramatic or cataclysmic.  They provide beneficial 

rainfall over many tropical and middle-latitude land areas, and their recurring floods 

rinse toxins from hydrologic ecosystems.  Greatly contrasting with the general 

quiescence of the tropical atmosphere, they have been the subject of intense inquiry for 

centuries, but only in the recent sixty years has substantive scientific progress been 
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achieved in understanding their genesis, structure, motion, and connection to the earth-

atmosphere system around them.   

Because TCs are such significant geophysical hazards, it is essential that this 

substantive work be extended.  Very recent advances in technological capacities, 

including high-resolution NWP models, advanced computing capabilities, improved 

instrumentation used to gather in situ observational data, and enhanced satellite and 

radar remote-sensing techniques, have enabled the expansion of our observational and 

theoretical understanding of TC structure and motion.  New and more accurate 

historical datasets are now available that span thirty or more years, providing for the 

first time the ability to define climatological norms and anomalies.  Combining these 

technological advances with the continued annual extension of climatic datasets, TC 

research is now more feasible than ever before.  However, we need only look to the 

very recent cases of Hurricane Felix and Hurricane Humberto (2007) to demonstrate 

that additional studies are needed to expand our understanding and ability to predict TC 

genesis, structure, and organization.  Felix, whose genesis east of Barbados was not 

predicted by either man or machine, underwent very rapid, and very poorly forecasted, 

intensification; the 1500 UTC 01 September 36 hr intensity error was 75 kt!  Humberto 

formed and strengthened into hurricane, with sustained winds of 75 kt, in only 18 hr, 

and similar to Felix, was not forecasted to do so.  Thus, it is necessary to improve our 

understanding of TC genesis, intensification, track, and frequency on timescales ranging 

from weeks to decades.  The goal of this research is to provide greater understanding of 

the complex interaction between the TC and its surrounding larger-scale environment.   
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In this dissertation, I present a series of investigations intended to expand our 

understanding of TCs in the East Pacific and North Atlantic basins.  First, I developed 

and applied a climatological tool that quickly and succinctly displays the spread of 

historical TC tracks for any point in the North Atlantic basin.  This tool is useful in all 

parts of a basin because it is derived from prior storm motion trajectories and summarily 

captures the historical synoptic and mesoscale steering patterns.  It displays the strength 

of the climatological signal and allow for rapid qualitative comparison between 

historical TC tracks and NWP models.  Second, I have used a robust statistical 

technique to quantify the relationships between fifteen different metrics of TC activity 

in nine ocean basins (see Figs. 1.1-1.2 and Table 1.1) and twelve climate indices of the 

leading modes of atmospheric and oceanic variability.  In a thorough, encyclopedic 

manner, over 12,000 Spearman rank correlation coefficients were calculated and 

examined to identify relationships between TCs and their environment.  This 

investigation was not limited to the East Pacific or North Atlantic, and new climatic 

associations were found between seasonal levels of TC activity and the major climate 

indices across the nine basins.  This information is critical to forecasters, economists, 

actuaries, energy traders, and societal planners who apply knowledge of levels of TC 

activity on intraseasonal to interdecadal timescales.  The statistics are also valuable to 

climatologists seeking to understand how regional TC frequency will change as the 

global climate warms.  Third, I have examined the leading intraseasonal mode of 

atmospheric and oceanic variability, the Madden-Julian Oscillation (MJO), and 

discovered statistically significant relationships with the frequency of TC genesis, 

intensification, and landfall over the nine basins.  Like the significance of the longer-
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period oscillations to the frequency of TC activity on intraseasonal and longer 

timescales, these results are highly relevant to the problem of short-term (one- to two-

week) predictability of TC activity.  These three investigations demonstrate the utility 

of historical datasets across a wide range of applications, from short-term forecasting to 

climate studies.  In this way, the results highlighted in this dissertation represent a 

significant and positive contribution to meteorology.  Collectively, they reveal multiple 

characteristics of TCs in the East Pacific and North Atlantic and provide greater 

understanding of the complex interactions between TCs and their surrounding larger-

scale environment.   

This dissertation is organized into five parts.  This introductory chapter has 

presented the problem investigated by the dissertation research.  It continues with a 

definition of the TC as a geophysical phenomenon and an examination of the conditions 

for development; an evaluation of the behavior, structure, and substructure of TCs; an 

analysis of the physical processes fundamental to the TC, especially focusing on the 

boundary layer parameterization of the drag coefficient in mesoscale meteorological 

models; and a description of the theories and methods used in forecasting forecast TC 

track and intensity, with a specific emphasis on the role of terrain in influencing TC 

evolution.  Questions regarding the drag coefficient and terrain were previously posed 

in the dissertation prospectus, and although they are not investigated in this dissertation, 

they remain significant questions and thus are still reported in Chapter 1.  Chapter 2 

focuses on the climatological track forecasting tool, highlighting the work presented in 

Barrett et al. (2006).  Chapter 3 presents the relationships between TCs and the leading 

modes of atmospheric and oceanic variability and presents results quantifying the 
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important associations.  Chapter 4 details the modulation of TC activity by the leading 

mode of intraseasonal atmospheric variability, the MJO (Barrett 2007).  Chapter 5 

summarizes the important findings of the dissertation research and provides several 

suggestions for future studies which stem from this research.  The dissertation 

concludes with a bibliography and the tables and figures referenced in the text. 

 

1.1. Definition and historical observations 

The term “tropical cyclone” (TC) is a general term for a cyclone originating 

over the tropical oceans (Glickman 2000) that is “driven principally by heat transfer 

with the ocean” (Emanuel 2003b).  TCs with wind speeds of at least 39 mph but not 

more than 73 mph are known as tropical storms.  TCs with wind speeds at or over 74 

mph (64 kts, or 33 m s-1) are known as hurricanes in the North Atlantic and eastern 

North Pacific Oceans, typhoons in the Northwest Pacific Ocean, severe tropical 

cyclones in the Southwest Pacific and Southeast Indian oceans, and severe cyclonic 

storms in the North Indian Ocean (Neumann 1993).  The term “hurricane” was derived 

from the various West Indian words for “monstrous gods” (Dunn and Miller 1960).  

Many early American records include references to hurricanes, and in 1847 the first 

known warning system was established by the Lt. Col. William Reed of England while 

stationed in Barbados (Sheets 1990).  By 1860, the typical surface wind and sea level 

pressure patterns were well-known: a surface observer, during a TC passage, would 

record gradually lowering pressures and increasing cyclonic winds, and then a sudden 

drop in pressure and change to near-calm winds in the eye, followed by an equally 

dramatic increase in winds and pressure as the eye passed.  The U.S. civilian service, 
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through the Weather Bureau and now the National Weather Service and National 

Hurricane Center, was tasked with monitoring, forecasting, and warning for hurricanes 

since the public outcry following the 16 September 1875 hurricane that completely 

destroyed Indianola, Texas with no advance warning (Dunn 1971).  From the late 1800s 

through the early 1900s, meteorological observing stations were established at coastal 

sites in the U.S. and at ports in the Caribbean (Sheets 1990).  Until satellite coverage 

began in the 1960s, these coastal observing stations provided the only accurate 

confirmation of TC landfall.  Funding for improvements in TC forecasts was spurred by 

public outcry from several tragic forecast “misses” (e.g., Galveston 1900 and Miami 

1926).  Forecast responsibility for the North Atlantic basin was consolidated in Miami 

in 1943 (Burpee 1988).  Since 1944, that office has maintained the “best track” 

historical record of all TCs in the Atlantic basin and has extended the dataset back to 

1851 (Jarvenien et al. 1984).   

 

1.2. TC genesis and development 

1.2.1. Conditions for development 

Coincident with the placement of coastal observing stations and the establishment of 

a consolidated forecasting center in Miami was the development of several TC research 

programs.  These programs and their early scientific staff subsequently began to 

document the conditions that led to the genesis and development of TCs.  Dunn (1940) 

and Riehl (1948) noted that TCs tend to form from a westward-progressing wave 

embedded in the easterly trade winds moving beneath a region of upper-tropospheric 

divergence.  Yanai (1964) and Fett (1966) advanced the theory to include broad-scale 
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deep vorticity convergence along the wave axis.  Sadler (1976) and Tanabe (1963) 

looked for development from an existing vortex along the surface equatorial trough.  

Ramage (1959) noticed that development tended to occur downstream of a mid-oceanic 

upper trough that provided the necessary “energy dispersion” mechanism.  Gray (1968) 

hypothesized that even though initial mechanisms for genesis varied from basin to 

basin, the process by which TCs developed and intensified should be similar globally.  

His necessary, but not sufficient, conditions for TC development are now regarded as 

classical:   

(1) strong moisture convergence into the vortex caused by frictionally-forced low 

level convergence (i.e., Ekman turning),  

(2) accompanying upper tropospheric divergence that leads to deep cumulus 

convection, 

(3) slightly more net divergence than convergence in the vortex column, 

(4) horizontal wind shear present in the lower troposphere but minimal vertical 

shear, 

(5) sea-surface and deeper ocean temperatures at or exceeding 26.5 °C, 

(6) poleward latitude of at least 5 degrees to invoke Coriolis turning, and 

(7) a pre-existing low-level vorticity disturbance. 

 

1.2.2.  TC genesis  

A great deal of complexity, associated with interactions on a variety of time and 

space scales, surrounds the accurate identification of tropical cyclone genesis.  The 

AMS defines a TC as a disturbance of low pressure that originates over the tropical 
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oceans, encompassing depressions, tropical storms, typhoons, and hurricanes (Glickman 

2000).  Gray (1968) further defines a tropical storm as a “warm-core cyclonically 

rotating wind system in which the maximum sustained winds are 17 m s-1 (35 kt, 40 

mph) or greater.”  Between seventy-five and ninety such systems are classified globally 

each year, although there is a high degree of intraannual, interannual, and basin-to-basin 

variability (Webster et al. 2005).  The definition of what constitutes a TC remains 

vague, and while forecasters are able to easily identify a mature TC, they are routinely 

faced with the ambiguities of specifying the point when a tropical disturbance should be 

classified as a TC.  The latest advances in observing technologies have only served to 

complicate the problem, as evidenced by the heated debate over whether the low that 

came ashore in southeastern Brazil in January 2003 was a TC or not.   

In the 1980s, due to the differential evolution of TC classification schemes by 

various national weather bureau units, it was realized that consensus definitions were 

necessary to standardize the classification across basins (McBride 1981).  A “cloud 

cluster”, the typical tropical weather system, was defined as “a loosely organized 

collection of deep convective clouds covered in the upper levels by a thick cirrus 

shield” (McBride 1981).  The cloud cluster has a residence time of 1-3 days and a 

horizontal scale of 500-800 km.  The “tropical depression” was defined as the least-

organized type of TC.  It required an unambiguous closed surface circulation, defined as 

one or more closed surface isobars, and its highest sustained surface wind speeds (over 

1 min or longer) could not exceed 33 kts (17.5 m s-1).  The “tropical storm” was defined 

as the next-organized type of TC, with the same definition as a tropical depression but 

with highest sustained surface wind speeds between 34 and 63 kt, inclusive.  The 
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“hurricane” (or “typhoon” west of 180°) was defined as a TC with highest sustained 

surface winds greater than 63 kt (McBride 1981). 

 

1.2.3.  Climatological observations of TC genesis 

Gray (1968) identified eight global ocean basins where TCs tended to develop:  

NE Pacific, NW Pacific, Bay of Bengal, Arabian Sea, Southwest Indian Ocean, 

Southeast Indian Ocean (off NW Australian coast), South Pacific (off NE Australian 

coast), and NW Atlantic (including Caribbean Sea and Gulf of Mexico).  Identification 

and classification of TCs has evolved based on differing regional considerations and 

forecaster biases, which include various formative mechanisms and observing 

capabilities.  The majority of the world’s TCs form equatorward of 20° on the poleward 

side of an equatorial doldrums trough (Gray 1968).  For example, Dunn (1940) and 

Riehl (1948) observed that North Atlantic TCs tended to form from westward-moving 

isallobaric waves in the easterly trades.  Consistent with this theory, it is estimated that, 

on average, 63% of the tropical cyclones in the Atlantic basin form from tropical waves 

(Avila et al. 2000).   

Yanai (1964) focused on broad-scale deep vorticity convergence as a primary 

formative mechanism in the northwest Pacific.  Many early studies such as these 

concentrated on the pre-existing disturbance as a prelude to TC genesis.  Palmén (1948) 

isolated the location of the 26.5°C sea surface temperature (SST) isotherm as critical for 

development.  To physically explain the preferred geographical areas of TC genesis, 

Gray (1968) observed that the geographical variation of potential buoyancy, defined as 

the difference between equivalent potential temperature at the surface and 500 hPa, was 
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not of primary importance.  He did, however, find a strong association between the 

regions of August and January storm formation and climatological minima in zonal 

tropospheric vertical wind shear (defined as the difference between zonal 200 hPa and 

850 hPa winds).  Gray (1968) thus proposed that the high degree of inter-annual and 

seasonal variability in TC occurrence can be partially explained by “departures of these 

circulation features from their climatological values”.   

 

1.2.4. Theoretical genesis and energetics 

Charney and Eliassen (1964) noted that hurricanes develop from pre-existing 

tropical depressions that exhibit a warm core and circular symmetry.  They also noted 

that these disturbances are rare with respect to the seemingly favored small scale 

cumulus convection.  They suggested viewing the cumulus cell as not competing for the 

same energy as the pre-hurricane depression, but rather supplying it by producing low-

level convergence of moisture.  They demonstrated that surface friction was an energy 

creating mechanism, and also noted that the individual cumulus cells cooperatively 

interacted with the large-scale motion to lead to upscale amplification of the 

disturbance.   They treated the hurricane as a forced circulation, driven by heat released 

through organized cumulus convection, rather than a free circulation driven by an 

imbalance in buoyancy.  The term “conditional instability of the second kind” (CISK) 

was given to describe this energy cycle.  Emanuel (1986) proposed that tropical 

cyclones begin as finite-amplitude instabilities that involve feedback between the wind-

induced evaporation and the cyclone.  He noted that TCs do not develop spontaneously 
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but invariably arise out of “preexisting disturbances of presumably independent 

dynamic origin” (see section 1.4 for a more thorough discussion of TC energetics).   

 

1.3.  TC structure and governing equations 

TCs have been observed with many different platforms that have changed as the 

technology has advanced.  Early mariners and coastal settlers relied on basic 

instruments, such as barometers and cup anemometers, which they combined with post-

storm damage assessments to gauge storm intensity.  In 1944, routine aircraft 

reconnaissance began in the Atlantic basin, and for the first time, accurate wind and 

barometric pressure measurements could be taken in storms before they approached 

land. The advent of weather radar in the early 1950s provided even more insight into 

storm structure.  With the launch of polar-orbiting and geostationary satellites in the 

1960s, a detailed conceptual model of the mature TC emerged that remains largely 

unchanged today.   

 

1.3.1. Structural observations 

Much of what we know of the dynamical and thermodynamical structure of a 

mature TC has come through increasingly advanced observing technologies and has 

been refined primarily over the past sixty years.  The first airborne attempt to obtain a 

position fix of a TC that was approaching land occurred on 27 July 1943, as Major Joe 

Duckworth flew into the core of a tropical storm (Markus et al. 1987).  Routine aircraft 

reconnaissance, begun in the Atlantic in 1944, gave the first composite view of radial 

and azimuthal variations of temperature, moisture, and wind.  Ground-based 
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radiosondes, aircraft-deployed dropwindsondes, and ground-based and airborne 

Doppler radar added additional detail and led to the widely accepted three-dimensional 

picture of the approximately axisymmetric and steady TC vortex.  More recently, high-

resolution microwave satellite sensors have provided a composite understanding of 

upper-level and near-surface airflow in and surrounding the TC (Hawkins et al. 2001).  

Today most of the world’s open-ocean TC intensity measurements are made from 

analysis of satellite imagery (Kossin and Velden 2004).   

 

1.3.2. Life cycle and parts of a mature TC  

TCs have three classical stages in their life cycle.  In the genesis stage, 

disorganized arrays of squalls and clouds are associated with a perturbation in tropical 

easterly flow.  In the mature stage, a strongly rotational circulation and cloud pattern is 

well-organized around an axisymmetric low pressure center.  Finally, in the dissipation 

stage, the circulation weakens and elongates asymmetrically from the center.   

To a first approximation, the mature TC is a symmetric vortex circulation 

(Ooyama 1982; Moller and Montgomery 1999).  The wind stress over the open ocean 

generates surface waves and drives upper-ocean circulations.  Maynard (1945) and 

Wexler (1947) documented the spiral nature of the outer rain bands and noticed distinct 

cellular convective elements.  These outer bands have been approximated as breaking 

Rossby waves (Montgomery 1997; Moller and Montgomery 1999).  Bergeron (1954), 

using a series of measurements taken by Deppermann (1947) as a typhoon crossed the 

Philippines, was the first to document the inner core structure.  He noticed a distinct 

outward slope (with height) of the radii of maximum winds and rainfall.  A mature TC 
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has an rain-free “eye” at its center and an eyewall, defined historically as a “ring” 

(Willoughby et al. 1982) of intense convective activity, surrounding the rain-free eye 

(Palmén and Newton 1969).   

TCs are typically considered to straddle the border between meso- and synoptic-

scales (Bluestein 1992; Holton 2004).  However, the TC substructure is considered to 

be composed of mesoscale or convective-scale entities.  The eye, eyewall, and spiral 

rain bands are all considered mesoscale features (Jorgensen 1984) with a typical 

horizontal scale less than 100km.  The eyewall and spiral rain bands, however, have 

been found through extensive radar observations to contain cellular convective elements 

with typical horizontal scales of 10 to 20 km.   

 

1.3.3. TC as a modified-Rankine vortex 

Winds through most of the depth of the TC core flow cyclonically (in the same 

sense as the local vertical component of earth’s rotation), increasing toward the center.   

Although “no two hurricanes are exactly alike” (Anthes 1982), the inner-core flow of 

the vortex is in approximately solid-body rotation, with calm winds in the center 

increasing (sometimes quite dramatically in intense eyewall convection) outward 

radially to a “radius of maximum winds” (RMW).  The remainder of the vortex flow is 

effectively irrotational, with winds gradually decreasing radially outward from the 

RMW, eventually becoming indistinguishable from the ambient environmental flow.  

This type of modified-Rankine vortex was first applied to the hurricane vortex by 

Deppermann (1947), who noted that outside the RMW,  

1Vr C− =  (1.1) 
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where V is gradient wind, r is the distance from storm center, and C is a constant.  

Inside the RMW,  

Vr C=  

describes the flow, which is in effective solid-body rotation (and C is a different 

constant).  Due to frictional dissipation of cyclonic angular momentum (see [1.14] 

below) as air converges inward in the boundary layer, (1.2) was modified to 

xVr C=  

by Gray and Shea (1973).  They determined x empirically from wind observations to lie 

between 0.4 and 0.6.  Using an empirical, parametric fit and the gradient wind 

relationship, Holland (1980) developed relationships for RMW (Rw) and maximum 

wind (Vm),  

1
B

wR A= , and 

( )
1

12
2

m n c
BV p p

eρ
⎛ ⎞

= −⎜ ⎟×⎝ ⎠
, 

where A and B are climatological scaling parameters based on maximum wind, pn is an 

ambient pressure value (in practice taken as the value of the first anticyclonically 

curved isobar), pc is the central pressure of the vortex, ρ is the air density (assumed to 

be 1.15 kg m-3), and e is the base of natural logarithms.  The formulation for Rw is 

advantageous because it does not depend on ambient or central pressure values.  

Holland (1980) fit these equations to data observed in severe cyclone Tracy (1974) and 

noted that, while sensitive to the choice of A and B (Holland chose A = 23 and B = 1.5), 

radial values of both pressure and wind could be accurately estimated.  This study was 

the first of many subsequent attempts to empirically calculate radially-varying 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
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parameters in the TC vortex (e.g., Large and Pond 1982; Emanuel 1986; Emanuel 1995; 

Andreas and Emanuel 2001; Emanuel 2003a; Makin 2005).   

 

1.3.4. TC primitive equations 

It is useful to define a set of equations, in cylindrical coordinates (r, λ, z) whose 

origin is the center of a stationary TC, that govern the flow and energetics of a mature 

TC.  We start first with the r and λ components of the equations of motion, 

1 1 z
H

v v v v uv pu v w fu F
t r z r r z

λ
λ

τ
λ ρ λ ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + + + + = − + +

∂ ∂ ∂ ∂ ∂ ∂
 

2 1 1 zr
Hr

u u u u v pu v w fv F
t r z r r z

τ
λ ρ λ ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + + − − = − + +

∂ ∂ ∂ ∂ ∂ ∂
, 

Here u is the radial velocity component dr / dt , v is the tangential velocity component r 

dλ / dt , w is the vertical velocity component, f is the Coriolis parameter, ρ is the air 

density, τzλ and τzr are the tangential and radial stresses due to small-scale vertical 

momentum mixing, and FHλ and FHr are the tangential and radial components of 

horizontal mixing.  The vertical component (w) of the equation of motion can be 

expressed as 

1
z

dw p g F
dt zρ

∂
= − − +

∂
 

Where p is the air pressure, g the acceleration due to gravity, and Fz is a summary term 

representing forces associated with precipitation particle drag and turbulent mixing and 

terms involving the vertical Coriolis component have been omitted.  Because dw / dt, 

Fz, and the Coriolis terms (not shown) are typically three to four orders of magnitude 

(1.7) 

(1.6) 

(1.8) 
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less than the vertical pressure gradient force, it is possible to approximate (1.8) 

hydrostatically, as  

p g
z

ρ∂
= −

∂
, 

while noting that vertical motions in hurricanes are produced by imbalances between 

the right-hand terms in (1.8).  To complete the system, we add the full continuity 

equation, 

0ru v w
t r r r z
ρ ρ ρ ρ

λ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

, 

where the changes of density of dry air are related to horizontal and vertical advection; 

the first law of thermodynamics expressed in terms of temperature (T), 

1 s
HT

p p p

HT T v T T Qu w F
t r r z c c c z

ω
λ ρ ρ

∂∂ ∂ ∂ ∂
= − − − − + − +

∂ ∂ ∂ ∂ ∂
 , 

where ω = dp / dt, Q is the diabatic heating rate, Hs the vertical heat flux due to 

turbulent eddies, cp is the specific heat capacity at constant pressure, and FHT represents 

horizontal mixing due to turbulence; and the continuity equation for water vapor, 

1 q
Hq

Hq q v q qu w C F
t r r z zλ ρ

∂∂ ∂ ∂ ∂
= − − − − − +

∂ ∂ ∂ ∂ ∂
, 

where q is the specific humidity, C the condensation (evaporation) rate, Hq the vertical 

flux of water vapor, and FHq the effect of horizontal mixing of water vapor.  These 

equations, along with the equation of state for dry air (where R is the universal gas 

constant), 

p RTρ=  , 

complete a system of primitive equations that adequately describes the essential 

dynamical and moist thermodynamical processes of the TC (Anthes 1982).  It is also 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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helpful to define two conserved quantities: absolute angular momentum, M, and specific 

entropy, s.  Angular momentum is conserved following axisymmetric displacement of 

air parcels and is defined as 

21
2

M rV fr= +  

where r is radial distance from center, V tangential velocity, and f the Coriolis 

parameter.  In strong TCs, M decreases inward and upward and has very strong eyewall 

gradients.  Entropy, which reaches its maximum value at the radius of maximum wind 

in the eyewall, is defined as 

ln( ) ln( ) ln( )v
p d v

L qs c T R p qR H
T

≈ − + − , 

where Rd and Rv are the gas constants for dry air and water vapor, H is the relative 

humidity, Lv is the latent heat of vaporization, and q the concentration of water vapor.   

 

1.4. TC boundary layer 

Only since 1997, after the installation of global positioning systems (GPS) 

technology on dropsondes released from Atlantic hurricane reconnaissance, has a 

complete and accurate picture of the TC boundary layer been possible (Powell et al. 

2003).  Earlier studies, such as the one reported by Large and Pond (1981), were 

performed in low-wind environments, and earlier non-GPS-equipped dropsonde 

measurements from Atlantic hurricane reconnaissance were unreliable in the lowest 500 

m.   

The momentum transfer coefficient, CD, has been theorized to depend on sea-

surface roughness length, surface wind speed, and wave spectral properties such as age, 

(1.14) 

(1.15) 
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steepness, and directional component (Charnock 1955).  From 1997-1999, in the 

CBLAST ocean-atmosphere experiment, 331 wind profiles were measured in hurricane 

eyewalls in the North Atlantic and central and eastern North Pacific basins.  Typical 

dropsonde fall speeds ranged from 10-15 m s-1, and measurements were taken every 0.5 

s (for vertical resolution between 20 and 30 m).  Wind speed accuracies are typically 

within 0.5-2.0 m s-1, with a height accuracy of 2 m.  The drag coefficients CD and CK 

were computed from (1.24) and (1.25) after roughness height, z0, and friction velocity, 

u*, were determined by fitting a least-squares line to determine the logarithmic slope 

and intercept.  The data revealed that u* increases with U10 up to 40 m s-1, then levels 

off, while z0 and CD increases as U10 approaches hurricane force (33 m s-1).  For U10 less 

than 40 m s-1, the surface parameters behave very similar to that described by Large and 

Pond (1981).  The most remarkable result was a large decrease in both z0 and CD when 

U10 greater than 40 m s-1.  None of the previous investigations had indicated that type of 

response in the high wind environment (Powell et al. 2003).   

 

1.4.1. Boundary layer energetics 

Early theoretical and numerical studies of TC energetics (e.g., Charney and 

Eliassen 1964; Ooyama 1969; Carrier et al. 1971; Anthes 1972) relied heavily on pre-

existing environmental instability (with respect to saturated vertical perturbations of 

surface parcels) to provide buoyancy and energy for the developing tropical 

disturbance.  Charney and Eliassen (1964) term this energy source “conditional 

instability of the second kind” (CISK), given to denote the perceived synergistic 

cooperation between the cumulus convective processes and the larger-scale tropical 
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circulation.  Unsatisfied with this theory of TC energy production (and coincident with 

Rosenthal’s [1978] successful numerical simulation of a mature, intense TC while 

accidentally forgetting to turn on the cumulus parameterization), Emanuel (1986) and 

Rotunno and Emanuel (1987) re-examined the energetics of tropical cyclones.  They 

questioned whether the ascending boundary layer air in a numerical model is able to 

sufficiently penetrate to altitudes observed in TCs in presence of dry entrainment.  

Following the hypothesis of Riehl (1954), Emanuel (1986) and Rotunno and Emanuel 

(1987) proposed that the flux of latent heat from the sea surface, not the presence of 

ambient environmental instability, was essential to TC intensification.  They also noted 

that the CISK mechanism of Charney and Eliassen (1964) is a linear instability: 

moisture convergence in the boundary layer of a balanced vortex supports cumulus 

convection.  They questioned the existence of this type of linear instability in nature, 

noting that while some convective available potential energy (CAPE) certainly exists 

for saturated tropical parcel ascent, the ability to realize this potential energy is 

uncertain.  They theorized that if CISK was truly the favored energetic mechanism in 

the tropics, then weak cyclones should be “ubiquitous” and “not confined to maritime 

environment” (Emanuel 1986).  Emanuel (1986) proposes a new type of “air-sea 

instability”, whereby TCs are “developed and maintained against dissipation entirely 

[his emphasis] by self-induced anomalous fluxes of moist enthalpy from the sea surface 

with virtually no contribution from preexisting CAPE.”  This requires a pre-existing 

finite amplitude disturbance, which is in agreement with the observational findings of 

Gray (1968) and Riehl (1954).  This newly described instability requires on three 

gradients: the temperature gradients that drive the circulation, the radial gradients of 
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sea-air transfer of heat, and the gradients of surface wind speed.  Heat acquired from the 

sea surface is redistributed vertically by cumulus convection in a manner that maintains 

the neutrally stable environment (with respect to slantwise moist convection) and is 

consistent with the hypothesis of quasi-equilibrium of Arakawa and Schubert (1974).  

Thus, the ambient tropical environment can be taken to be convectively neutral, and 

therefore, kinetic energy is generated from in situ CAPE generation rather than from 

ambient CAPE.   

 

1.4.2. TC as a Carnot engine 

Heat transfer from the ocean is the basic source of energy for the tropical 

cyclone (Riehl 1950; Kleinschmidt 1951).  The mature, steady TC can be considered as 

a simple Carnot heat engine, where axisymmetric inflow air in the boundary layer 

acquires moist entropy from the sea surface, rises, and releases latent heat at the much 

lower temperature of the upper troposphere (Emanuel 1986; Lighthill 1998).  This net 

heating is used to do work against frictional dissipation, and also to change the angular 

momentum back to its ambient value at large outflow radii.  As air spirals inward 

toward the low pressure center, its pressure drops and its entropy, s, increases due to 

both frictional dissipation of kinetic energy and evaporative enthalpy transfer from the 

ocean surface.  This frictional kinetic energy destruction is the most important sink of 

momentum in the TC (Emanuel 2003a).  The inward, convergent leg is approximately 

isothermal.  Once parcels reach the eyewall, they rise adiabatically, following surfaces 

of constant angular momentum and entropy.  The upper-level outflow then releases 

entropy by radiating to space during the isothermal compression leg of the cycle.  The 
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Carnot engine is closed as air on the perimeter of the TC descends and warms 

adiabatically (Bister and Emanuel 1998).  This cycle explains why the TC is a tropical 

phenomenon: energy production is dependent on the concentration of water vapor under 

saturated conditions, which increases exponentially with temperature, but there is no 

temperature dependence in the energy dissipation rate (Lighthill 1998). 

 

1.4.3. Boundary layer structure 

Emanuel (1986) divides the tropical cyclone boundary into three regions:  the 

innermost region that extends from the storm center out to the inner side of the eye wall; 

the middle region that extends from the inner eye wall out to the radius of maximum 

winds; and an outer region that extends from the radius of maximum winds out to an 

outer radius (typically the outermost closed isobar).  In the innermost region, the air is 

unsaturated and mechanically maintained by inflow outside the eye.  The middle region 

is saturated and is the only region with significant cyclone-scale vertical velocity, and 

saturation is maintained by lack of entrainment of low equivalent potential temperature 

(θe) air from aloft.  The outer region has little Ekman (frictional) turning, and thus its 

mean vertical velocity is small.  This is the region that is characterized by vigorous 

turbulent exchange of θe through the top of the boundary layer by entrainment and 

unsaturated downdrafts.  The total energy flux through the sea surface (sensible and 

latent) is offset mostly by these turbulent θe exchanges rather than by horizontal 

advection.  Thus, the TC boundary-layer energetics can be effectively summarized in a 

three-part process (Lighthill 1998): 



 22

(a) transfer of water vapor from ocean to atmosphere, allowing for saturated deep 

convection in the eyewall and energy transport to the upper troposphere, 

(b) sensible heat transfer from ocean to atmosphere that keeps their temperatures 

remarkably equivalent, and 

(c) transfer of mechanical momentum from air to ocean (associated with frictional 

resistance to surface winds). 

 

1.4.4. Boundary layer equations 

The cycle of heat energy input and kinetic energy dissipation in the TC is known 

as air-sea transfer (Emanuel 1986; Andreas and Emanuel 2001; Emanuel 2003a).  A 

droplet of seawater lofted into sea spray by surface wind stress need only lose 1% of its 

mass to evaporation to drop its temperature back to the wet bulb temperature.  When it 

returns to the sea surface (cooler than when it left), it has effectively transferred 

enthalpy from the sea to the atmosphere.  As surface wind speeds increase, the quantity 

of re-entrant sea spray also increases, thus giving rise to a positive feedback whereby 

stronger surface winds increase enthalpy transfer.  It is convenient to define bulk 

transfer formulae for momentum (Fm) and enthalpy (Fk), 

m DF C V Vρ= −  

( )*
0k KF C V k kρ= − , 

where V is the near-surface wind, ρ is the air density, k is the specific enthalpy of air 

just above the surface, k0
* is the enthalpy of air in contact with the ocean (which is 

assumed to take the same temperature as the ocean and be saturated with water vapor), 

(1.16) 

(1.17) 
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and CD and CK are the dimensionless transfer coefficients of momentum and enthalpy 

discussed earlier.   

Using these basic definitions, a fundamental and highly important relationship 

between the transfer coefficients and maximum surface wind can now be developed 

(see Bister and Emanuel 1998).  By taking the vertically-integrated net dissipative 

heating, D, of the boundary layer,  

32
b

Ka
D C rdrπ ρ= ∫ V , 

where V is the velocity vector, a and b represent the bottom and top of the boundary 

layer, respectively, and equating it to the net production of mechanical energy, P, from 

the ascending Carnot leg, 

( ) 3*0
02

bS
K Da

S

T TP C k k C rdr
T

π ρ ρ− ⎡ ⎤= − +⎣ ⎦∫ V V , 

where Ts is the SST and T0 is the mean temperature of the upper-level outflow, we can 

arrive at an approximate expression for maximum surface wind speed, Vmax (Bister and 

Emanuel 1998), 

( )2 *0
max 0

0

SK

D

T TCV k k
C T

−
≈ − . 

The first term is the ratio of transfer coefficients, which Bister and Emanuel 

(1998) and Emanuel (2003a) assumed to be unity “for lack of better information.”  The 

middle thermodynamic efficiency term has outflow temperature as the denominator 

(instead of inflow temperature), which reflects the additional contribution from 

dissipative heating.  The final term represents a measure of thermodynamic 

disequilibrium between the ocean and atmosphere, which allows for convective heat 

transfer to occur.  If |V| is approximated as V, (1.20) represents a system where enthalpy 

(1.20) 

(1.19) 

(1.18) 
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is added to the system at the high temperature of the ocean surface and removed at the 

low temperature of the outflow at the tropopause (Emanuel 2004).   

Powell et al. (2003) reported, for the first time, accurate measurements of the 

lowest 10 -200 m of the hurricane boundary layer (see Fig. 1.3).  They found that the 

wind speed u increases logarithmically with height z, and concluded the “log-wind 

profile” was appropriate in the lowest levels, where u at height z is given by 

*

0

lnz
u zu

zκ
= , 

where u* is the friction velocity (defined as the square root of the horizontal stress τ 

divided by the air density ρ), κ is the von Karman constant (typically of value 0.4), and 

z0 is the roughness parameter, defined by Charnock (1955) as 

2
*

0 *
uz z
g

= , 

where z* is the Charnock constant (approximately 0.07 over the open ocean; Smith 

1980) and g is the acceleration due to gravity.  In the near-surface region of the 

atmospheric boundary layer, the distribution of stress, τ, does not vary with height and 

is equivalent to the friction velocity squared, 

2
*' 'a u w uτ ρ≡ − = , 

where ' 'u w−  is the turbulent flux of momentum.  The 10 m drag coefficient can then be 

represented, under neutral stability conditions, as 

10

2

*
2

10 10

S
D

a

uC
U U
τ

ρ
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

, 

where u* is the friction velocity and U10 is the 10 m wind speed that would be observed 

with neutral stratification.   

(1.23) 

(1.22) 

(1.21) 

(1.24) 
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1.4.5. Drag coefficient parameterization 

 Many different parameterizations for the drag coefficient, CD, have been 

developed over the past fifty years. Fig. 1.4 shows the variation of CD with 10 m wind 

speed for seven previous studies: Palmen and Riehl (1954), Miller (1965), Hawkins and 

Rubsam (1968), Amorocho and Devries (1980), Large and Pond (1981), Shay (1999), 

and Makin (2005).  While each study, except Amorocho and Devries (1980), shows at 

least some monotonic increase in CD with increasing velocity, only one study, Makin 

(2005), which is based upon the Powell et al. (2003) observational data, has an 

inflection point and subsequent decrease of CD with increasing velocity (see Fig. 1.4).  

The most commonly-used parameterization of CD was developed by Large and Pond 

(1981): 

10

-1
3 10

-1
10 10

1.2 for 4 11 m s
10    

0.49 0.065 for 11m sD
U

C
U U

⎧ ≤ ≤
= ⎨ + ≤⎩

 

Several hundred over-land and over-water observations, taken from the Bedford Tower 

experiment and the CCGS Quadra and reported by Pond and Large (1978) and Large 

(1979), were used to arrive at this formulation.  It is valid for neutral stability 

conditions, which are typical of the high-wind environment of the hurricane boundary 

layer (Andreas 1998).   

 

1.4.6. Resistance law for the sea surface 

A possible explanation for the somewhat surprising reduction of z0 and CD for 

U10 greater than 40 m s-1 (Fig. 1.5) is the generation of large patches of sea foam 

generated as steep wind-waves break and are sheared off in the high-wind environment 

of the TC eyewall (Emanuel 2004; Powell et al. 2003).  This foam acts as an emulsion 

(1.25) 
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layer, creating a slip surface at the air-sea interface.  Using the observational evidence 

reported in Powell et al. (2003), the wind profile in the suspension layer (Makin 2005) 

can be represented as (1.21), where the roughness length, z0, is given by 

0

2
(1 1/ ) 1/ *

0 l z
uz c c
g

ω ω−= ,  

where cl is a constant (of whose value, 10, z0 is not overly sensitive to), 
0zc is the 

Charnock constant (0.01), g is the gravitational acceleration 10 m s-1, and ω is a positive 

relation defined as  

cr

*

min 1, a
u

ω
κ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 , 

where acr is the critical terminal droplet fall speed, calculated to be 0.64 m s-1.  This 

speed corresponds to a droplet radius of about 80 μm (Makin 2005).  Using (1.24), 

(1.26), and (1.27), the resistance law at hurricane wind speeds for the sea surface at 

saturation can be written as 

22
2*

2
0
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u zC
u z

κ
−
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⎣ ⎦
 . 

This resistance law provides a reasonable fit to the observational data analyzed by 

Powell et al. (2003) (see Fig. 1.5). 

 

1.4.7. Numerical simulations with varying drag coefficients  

  While Atlantic basin track forecasts have shown steady annual improvements 

since the 1950s, hurricane intensity forecasts have been much more problematic, 

showing little significant improvement over the past 15 years (Krishnamurti et al. 2005) 

even as numerical models and observational techniques and spatial coverage have 

(1.26) 

(1.27) 

(1.28) 



 27

continued to rapidly advance (Aberson 2001).  Several numerical simulations (e.g., Bao 

et al. 2000; Wang et al. 2000; Andreas and Emanuel 2001) found that hurricane 

simulations are very sensitive to the parameterization of air-sea fluxes at high wind 

speeds.  They also found that simulated TCs depended on the ratio of the transfer 

coefficients, and that a ratio higher than unity yielded a more intense TC.  However, the 

formulation and treatment of transfer coefficients for heat and momentum at high wind 

speeds remains highly uncertain (Chen and Surgi 2002).  Thus, the question remains to 

investigate numerical model sensitivity to the observationally-representative drag 

coefficient formulation of Makin (2005).  

 

1.5. Summary of current TC track forecasting methods  

1.5.1. Trends in TC track forecasting in the Atlantic 

Tropical cyclone (TC) track forecasts in the Atlantic basin have steadily 

improved over the last 30 years.  Franklin et al. (2003), updating the work of McAdie 

and Lawrence (2000), found that position errors in the National Hurricane Center’s 

(NHC) official track forecasts for the Atlantic basin decreased at an average annual rate 

of 1.3%, 1.9%, and 2.0% at 24, 48, and 72 h, respectively, from 1970 to 2001.  

However, in contrast to the basin-wide track forecast improvements, forecasts of 

landfall location for TCs approaching the U.S. coastline have not improved significantly 

since 1976 (Powell and Aberson 2001).  Powell and Aberson (2001) attribute this lack 

of significant improvement in part to a “conservative, least-regret” forecast philosophy. 

Over this same period, global and regional numerical weather prediction (NWP) 

models have become much more skillful (Shuman 1989; Kalnay et al. 1990; Caplan et 
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al. 1997; Bender and Ginis 2000; Aberson 2001), and several NWP models designed 

specifically for TC prediction have been introduced, including the NOAA GFDL model 

(Kurihara et al. 1993, 1995, 1998; Bender et al. 1993) and the Florida State University 

“multimodel superensemble” (Krishnamurti et al. 1999; 2000a,b; 2001).  Recently 

developed statistical techniques, such as the Self-Adapting Analog Ensemble prediction 

method (Sievers et al. 2000; Fraedrich et al. 2003) and the simple consensus forecasts 

and ensemble averages determined from multiple NWP models (Goerss 2000; Goerss et 

al. 2004) also have produced TC track forecasts superior to the individual model 

components.  Because track forecasts from global and regional NWP models have 

improved so much in the last decade (Weber 2003), they now are used operationally by 

forecasters at the Tropical Prediction Center (TPC) in Miami and the Joint Typhoon 

Warning Center (JTWC) in Pearl Harbor (Goerss 2000).  Much of the steady reduction 

in TC official track errors therefore appears to have resulted from an increased reliance 

upon improved NWP model forecasts (Sheets 1990; McAdie and Lawrence 2000).   

 

1.5.2. Continued role of climatology in TC track forecasting 

One of the consequences of the rapid advance of dynamical models has been a 

relative decline in the improvement, development, and operational use of statistical-

climatological prediction schemes (Bessafi et al. 2002).  However, it will be argued here 

that these climatology-based models still have and should continue to have a role to 

play in TC track prediction.  For example, they can be used to:  (1) provide a convenient 

reference from which to assess the performance of NWP model predictions (Neumann 

and Pelissier 1981a; Aberson 2001); (2) evaluate forecast difficulty of particular storms 
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and TC basins (Franklin et al. 2003; Goerss et al. 2004); (3) conveniently generate 

bogus TC tracks (Bessafi et al. 2002); (4) provide very early TC track, speed, and 

heading forecasts in all localities of a basin (Neumann and Pelissier 1981b); and (5) 

provide an accurate forecast when departures from climatology and persistence are 

minor (Neumann and Hope 1972).  Such statistical methods remain capable of 

providing rapid and valuable guidance with wide-ranging functionality.  Therefore, one 

of the three major components of this dissertation research is to demonstrate the utility 

of a qualitative, climatology-based forecasting tool in predicting Hurricane Ivan’s 

(2004) track through the southern Windward Islands.   

 

1.5.3. Hurricane analog technique  

The HURRAN (HURRicane ANlog) technique was developed by Charles J. 

Neumann and John R. Hope (1970) at the National Hurricane Center in 1969 in an 

attempt to take maximum advantage of past tracks of Atlantic hurricanes and tropical 

storms since 1886.  It searched the climatology database, which contained tracks of all 

Atlantic tropical storms and hurricanes, to find storms with similar location, speed, and 

direction that occurred in a similar time of the year.  The criteria used to select analog 

storms, specifically listed in Table 1.2, include geographical (2½-degree latitude circle 

around current storm), temporal (current storm within 15 days), and storm-motion-

specific factors (direction within 15° and speed within 5 kt).   

Once the analog storms were chosen, their tracks were re-centered to pass 

through the location of the current storm, and then probability ellipses were calculated 

based on the tracks of these analog storms.  HURRAN often yielded accurate 
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predictions for storms tracking south of 25°N (i.e., when the storm was located in a 

region of persistent synoptic steering), but because it included no information about the 

surrounding synoptic environment, HURRAN did not perform well in predicting the 

tracks of storms when recurvature was either imminent or occurring.  If fewer than five 

storms existed in the historical record for a specific region in the basin, HURRAN 

would be unable to produce an analog forecast in real-time.  To improve the technique, 

the authors proposed adding current synoptic information, either summarily through a 

previous motion vector or through raw observational data.  HURRAN is not presently 

operational at the National Hurricane Center. 

 

1.5.4. Climatology and persistence 

CLIPER (CLImatology and PERsistence, Neumann 1972, Neumann and 

Leftwich 1977) is a substantial improvement over HURRAN because it combines 

current synoptic information with historical climatology data.  It is composed of a set of 

regression equations that predict future east-west (zonal) and north-south (meridional) 

movements of a tropical cyclone at intervals out to 120 hours.  The predictors include 

current and 12-h previous storm motion, current and 12-h previous storm position, 

surface wind speed, and day of the year.  The most important predictor in CLIPER is 

persistence, which is contained in the initial motion of the storm.  The equations were 

developed from a training data set of historical storm track data for all storms in the 

Atlantic basin from 1931 – 1970 that persisted for at least five days.   

One of the most important present-day uses for CLIPER is to assess the skill of 

both operational forecasts and forecasts produced by more complex numerical models.  
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Forecasts whose errors are lower than CLIPER are said to show skill relative to 

CLIPER.  Additionally, comparing CLIPER errors from year to year is a way to 

diagnose the difficulty of a particular season.  A season with high CLIPER errors is 

considered a difficult forecast season.   

McAdie and Lawrence (2000) used CLIPER in their inter-annual comparison of 

operational forecast errors from 1970 to 1998.  Because the data from that 29-year 

period is inhomogeneous (i.e., it contains both “easy” and “difficult” forecast seasons), 

it needs to be standardized; otherwise, possible improvement trends may either be 

exaggerated or dampened.  A group of relatively “easy” forecasts with many storms 

occurring in regions of the ocean with lower average errors (equatorward of 20°N) near 

the end of a period might incorrectly imply that forecast skill has increased.  Thus, 

errors should be adjusted for yearly bias by subtracting the actual official forecast errors 

from forecast errors predicted from a linear regression using CLIPER as the sole 

predictor.  The resulting adjusted errors can then be plotted with respect to time to 

determine any trends in forecast skill.       

Because CLIPER is still used as a historical benchmark, its training data set has 

not been updated operationally beyond the original years used by Neumann (1931 – 

1970).  Aberson (1998) updated the CLIPER prognostic equations using a more recent 

40-year data set (1956-1995).  He found that the absolute errors of the updated version 

were less than 2% smaller than the old version and that the difference was not 

statistically different at a 90% confidence interval.  The updated version of CLIPER did 

remove much of the bias found in the previous version: the 84-h bias of the updated 

version was comparable to the 24-h bias in the previous version.  Regardless of which 
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time period is used, however, conclusions based on this dataset are problematic because 

the historical record does not appear to be stationary (Barrett and Leslie 2005).  

Aberson (2001) noted this problem, but nonetheless concluded that the need for datasets 

large enough to develop a sufficient historical record necessitates using the available 

data. 

 

1.5.5. Statistical-synoptic models 

An inherent weakness with CLIPER and other purely statistical forecasting 

methods is the inability to forecast anomalous motion characteristics.  Therefore, 

beginning with NHC73 and continuing into the present, the National Hurricane Center 

has used statistical-synoptic models to predict tropical cyclone tracks.  Neumann and 

Lawrence (1975) found that most of a statistical tropical cyclone prediction model’s 

variance reduction comes from three sources:  (1) climatology and persistence, (2) 

steering of some type, and (3) intensity and position of the surrounding synoptic-scale 

features.  Appropriately, these models combine climatology and persistence with 

weighted current and 24-h-old synoptic data, including 1000, 700, and 500-hPa height 

and wind analyses.  The most recent statistical-synoptic model, NHC90, takes 24-, 36-, 

48-, 72-, and 120-h forecast deep-layer-mean height analyses from the current NCEP 

global model and uses them as predictors to modify the CLIPER forecast. 

 

1.5.6. Barotropic models  

The science of forecasting tropical cyclone tracks changed dramatically in 1970 

with the introduction of the Sanders barotropic (SANBAR, Sanders and Burpee 1968) 
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model, the first operational primitive equation NWP track prediction model used by 

forecasters at the National Hurricane Center.  The model used a very deep (1000–100 

hPa flow) steering layer, and the motion of a synthetic vortex was forecast using the 

barotropic vorticity equation.  The Moveable Fine Mesh model (MFM) further 

advanced the science of forecasting, using 10 vertical layers and employing a grid with 

60-km horizontal spacing that moved with the storm.  The Quasi-Lagrangian Model 

(QLM) was the first multi-nested high-resolution hurricane model with a semi-

Lagrangian scheme.  It employed more vertical levels (18), used a tighter horizontal 

grid resolution (40 km), and merged an idealized synthetic vortex in gradient balance 

with the large-scale analysis.  The Beta and Advection (BAM) models (Holland 1983) 

incorporated the Global Spectral Model (GSM)’s wind forecast for a specific layer at 

the storm’s location and constantly corrected the 1-h advection periods to account for 

Beta drift.  The VICBAR (DeMaria et al. 1992) model forecasted the 850-200-hPa 

deep-layer-mean flow with the boundary conditions from the NCEP GSM.  This model 

merged a synthetic vortex that included the current motion vector with the 

environmental flow, unlike previous models that used synthetic voriticies without 

current motion vector information.  The LBAR (Limited-area BARotropic, Horsfall et 

al. 1997) model is very similar to the VICBAR model, except that it is a spectral (sine 

transform) barotropic model whereas VICBAR is a cubic b-spline spectral nested 

barotropic model.   
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1.5.7. Optimal linear combination technique 

Leslie and Fraedrich (1990), building on the work of Thompson (1977) and 

Fraedrich and Leslie (1987), predicted the horizontal (meridional and zonal) 

displacement components of a tropical cyclone center by linearly combining two 

forecast displacements:  the Australian NWP Model and CLIPER scheme.  The 

coefficients of the predictor equations were obtained by applying standard multiple 

linear regression techniques to over 50 tropical cyclone “best” tracks observed from the 

1979/80 to the 1983/84 seasons.  The authors found that the combination method had 

lower mean errors at each forecast lead-time (12, 24, 36, and 48 hours) than any other 

available stand-alone method. 

 

1.5.8. Self-adapting analog ensemble predictions 

Sievers et al. (2000) created an analog forecast scheme that is self-adapting.  

They extended the approach of Fraedrich and Ruckert (1998), who “developed a 

method that iteratively reduces a user-defined forecast error by suitably fitting metric 

weights for the components of the reconstructed states entering the analog scheme”.  

This analog scheme adapts itself to minimize error (i.e., it achieves an optimal 

prediction) in the dependent dataset.  First, they reconstructed the state space and 

defined the error measure to use.  Second, they evaluated the analog forecast scheme by 

defining a metric of observed minus analog which, together with the first step, forms the 

basis for the analog forecast.  Third, they improved the scheme by using a learning rule 

that optimizes the weights for each component of the metric.  Finally, they iterated the 

learning rule 400 times and chose the weights which optimized the metric.  After the 
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model-building process, independent ensemble mean forecasts (of N members) were 

made and compared with the best adapted analog (N =1) and the CLIPER reference 

model.  The optimal ensemble size, reached “when the corresponding self-adapting 

scheme achieves the best performance within the verification dataset” (Sievers et al. 

2000), was N = 18 for the Atlantic and N = 22 for the east Pacific.  They used twenty 

phase-space components for the analog model:  latitude and longitude at 0 hours and the 

previous four 6-h forecasts (time = -6,     -12, -18, and -24 hours), 6-h change in latitude 

and longitude between each dimension (time = -6 to 0 hours, -12 to -6 hours, etc.), 

Julian date, and maximum sustained surface wind speed. 

 

1.5.9. Global and mesoscale general circulation models 

The NOAA/National Centers for Environmental Prediction (NCEP) Global 

Forecast System (GFS) model (Lord 1993), the Geophysical Fluid Dynamics 

Laboratory (GFDL) model (Bender et al. 1993) which replaced the QLM as the 

operational baroclinic dynamic hurricane model, the United Kingdom Meteorological 

Office (UKMet) model (Radford 1994), the Navy Operational Global Atmospheric 

Prediction System (NOGAPS) model (Hogan and Rosmond 1991), and the European 

Centre for Medium-Range Weather Forecasts (ECMWF) model are widely used by 

forecasters to examine the evolving mass fields to produce long-range forecasts.  These 

purely dynamical models range from mesoscale to global in coverage and are run 

operationally at various national centers.  Their handling of the synthetic vortex varies.  

The European Centre for Medium-Range Weather Forecasts (ECMWF) model does not 

presently use synthetic data to represent the tropical cyclone vortex, while other 
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national centers initialize the vortex with synthetic observations.  These models have 

provided great advances in the science of tropical cyclone track forecasting.  Besides 

the ability to combine the individual forecasts into an ensemble as shown by Goerss 

(2000), forecasters are able to observe the evolution of the height and mass fields with 

time.   

 

1.5.10. Dynamical ensemble techniques 

 Building upon the work of Leslie and Fraedrich (1990), Goerss (2000) 

demonstrated that a joint ensemble of independent tropical cyclone track forecasts were 

more accurate, on average, than the individual model forecasts.  The ensemble 

technique was tested on tropical cyclones in the Atlantic basin in 1995-1996; 

improvements were, with respect to the best individual model, 16% at 24 hours, 20% at 

48 hours, and 23% at 72 hours.  Furthermore, the standard deviation of the forecast 

error was reduced by the joint ensemble.  Finally, Goerss noted that the spread of the 

ensemble forecast was useful to forecasters as a benchmark to improve confidence in 

the forecast.   

 

1.6. TC circulation interaction with island terrain 

TC behavior – structural change, intensification, and direction of motion – is 

directly affected by the surrounding environment.  One of the most important 

interactions between the TC and its environment occurs at the interface between the TC 

vortex and any landmasses.  As the TC approaches land, the underlying topography 

transforms from a mostly homogeneous water surface to a complex, varying, and 
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sometimes quite mountainous land surface.  The interaction between the TC vortex and 

the terrain is important because it impacts the future TC track, intensity, and rainfall 

distribution.  The interaction also contributes to structural changes (Bender et al. 1987), 

including introducing asymmetries in the pattern of convection.  In the case where the 

landmass is large or the TC is slow-moving, rapid weakening and transition from a 

tropical to an extratropical cyclone occurs.   

The earth’s topography, whether a small hill or large mountain, influences 

atmospheric motion.  The case where the TC circulation interacts with mountainous 

island topography is particularly interesting.  Such TCs have been observed to increase 

forward translation speed (Kintanar et al. 1974), deflect northward upon approach 

(Brand and Blelloch 1973 and Herbert 1980), rapidly decay (Hawkins 1983), and 

generate copious rainfall along windward slopes (Brunt 1968; Hope 1975).  The TC 

vortex has even been observed to “jump” across an island, as lee-cyclogenesis 

associated with cross-mountain flow deepens a hydrostatic, secondary surface low 

center which then connects with the mid- and upper-level circulation to become the 

primary circulation (Chang 1982).  Despite the observational records, “the interaction of 

a landfalling tropical cyclone (TC) with mesoscale topographic features is not well 

understood. Significant variations in wind, pressure, and precipitation distribution in 

TC’s have been observed over mountainous regions” (Cangialosi and Chen 2005).  This 

lack of understanding is highly problematic for small island nations, such as those in the 

southern Windward Islands in the eastern Caribbean Sea, as a track deflection of only 

tens of kilometers can mean the difference between tremendous destruction and only 

slight damage. 
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Previous numerical studies of the interaction between TCs and island orography 

have tended to cluster in several key areas:  the Greater Antilles (Cuba, Hispaniola, 

Puerto Rico, and Jamaica), the Philippines, Taiwan, and Japan.  TC genesis studies have 

examined the role of Papua New Guinea in the Gulf of Carpentaria and the East Coral 

Sea, and TC decay studies have examined the Sierra Madre and coastal Mexican 

mountain ranges.  However, no recent studies using a high-resolution mesoscale model 

to simulate the orographic effects of the southern Windward Islands in the eastern 

Caribbean Sea on the TC circulation have been undertaken.   

 

1.6.1. Early idealized simulations 

One of the earliest idealized numerical studies of the interaction between a TC 

vortex and a hypothetical tropical mountain range was performed by Bender et al. 

(1985).  They constructed a large (2000-km long) north-south coastal range with peak 

elevation of 1000 m and embedded a TC vortex in uniform 10 m s-1 easterly flow.  The 

numerical simulations were multiply-nested, with a highest horizontal resolution of 20 

km, and each model domain used a terrain-following σ-coordinate with 11 half-σ levels.  

As the TC approached the coast from the east, it deflected 50 km south (to the left) in its 

track and intensified 10 mb more than the control (no mountain) simulation.  The 

coastal range was found to have induced a slight northerly flow component at mid- and 

upper-levels east of the mountain range, and this anomalous flow component is 

suspected to have caused the southward track deflection.  The coastal range was also 

shown to reduce the low-level zonal easterly flow starting several hundred kilometers 

upstream.  This reduction led to moisture convergence and increased environmental 
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mixing ratios as the TC vortex approached, thus causing the 10 mb intensification prior 

to landfall.   

 

1.6.2. Case study simulations 

To try to relate their work to more realistic scenarios, Bender et al. (1987) built 

on their earlier (1985) theoretical simulations to instead include terrain forms that were 

semi-representative of three major tropical island groups: Taiwan, Luzon (in the 

Philippines), and the islands of Hispaniola, Puerto Rico, and Cuba.  Those three island 

groups were chosen for several reasons:  1) they are annually threatened by landfalling 

TCs; 2) they are relatively large (and thus their mountain ranges were able to be 

relatively well-represented in the 20 km horizontal grid); and 3) they are mountainous.  

The Central Mountain Range (CMR) of Taiwan is aligned north-northeast to south-

southwest, spans the length of the island, and is almost 4000 m at several locations in 

the north-central part of the island.  Hispaniola and Puerto Rico each have peaks that 

exceed 1000 m, and Luzon’s central mountains are over 1500 m at their highest point.  

Instead of developing an idealized TC vortex and embedding it in uniform zonal flow 

(as in the 1985 experiments), Bender et al. (1987) initialized historical cases of TCs that 

traversed the various island groups.  In all cases, they found that the TCs’ forward 

translational speeds increased as the TCs approached the mountainous islands 

(accelerated when compared to the no-terrain control simulations).  For the case of 

Taiwan, whose orography resembles the earlier (1985) idealized simulations, the 

authors found a northward deflection in TC track, which agrees well with the earlier 

observational studies (Brand and Blelloch 1974 and Herbert 1980).  They also found a 



 40

southward deflection as TCs approached Luzon and Hispaniola, which matches well 

with the Bender et al. (1985) theoretical simulations.   

 

1.6.3. TC interaction with Taiwan 

Yeh and Elsberry (1993a,b) continued to examine the interaction between the 

TC vortex circulation and the orography of Taiwan.  They examined 53 tracks of 

historical westward-moving TC approaches to Taiwan, and found that – in all cases – 

the TCs experienced an upstream acceleration prior to landfall on Taiwan, with along-

track translational speed increases averaging 4.5 m s-1 (Yeh and Elsberry 1993a).  

However, they also conclude that this translational speed increase is more likely related 

to synoptic steering currents than to mesoscale effects from flow blockage due to the 

CMR.  This became evident when they stratified the 53 TCs by intensity.  The weaker 

storms (maximum rotational velocities less than 33 m s-1) slowed upon approach, but 

the stronger storms continued to accelerate.  They attributed this 

acceleration/deceleration pattern to the ability of stronger vorticies’ ability to “resist 

development of asymmetric (secondary) circulations more so than the weak vortex” 

(Yeh and Elsberry 1993b).   

Super Typhoon Herb’s (1996) landfall in northern Taiwan and subsequent direct 

passage over the newly-installed WSR-88D (Weather Surveillance Radar 88-Doppler) 

radar in Ryukyu provided the most comprehensive assessment of the terrain-TC vortex 

interaction.  Wang (1997) found Herb was “greatly modified” by the central mountain 

range (CMR) of Taiwan.  As Herb approached the NE coast of Taiwan, a classical 

“trough-ridge-trough” pressure pattern developed across the island.  Northwesterly flow 
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passing through the Taiwan straight and impinging on the western coastline was 

gradually orographically lifted, resulting in a hydrostatically-induced trough on the 

windward slope.  As flow encountered the steep CMR, a dynamically-induced ridge 

developed along the center mountains.  Finally, as the flow quickly descended the 

leeward (eastward) side of the CMR, it turned almost at a right angle to the mountain 

and converged into Herb’s center (with a very pronounced cross-isobaric component).  

This flow pattern resulted in both a hydrostatically-induced and a dynamically-induced 

lee-side trough (lower pressure as the descending air compressed and warmed and 

increased vorticity as the column deepened and stretched).  As expected for this pattern, 

potential temperatures were observed to increase from 301 K in northwestern Taiwan to 

318 K at the peak of the CMR to 304 K on the eastern side, indicative of moist ascent 

west of the CMR and dry descent to the east. 

This classical “trough-ridge-trough” pattern (see Fig. 1.6) was well-simulated by 

Peng and Chang (2002) using a three-domain mesoscale model with 81, 27, and 9 km 

horizontal resolution, 30 vertical levels, and 1 km model terrain resolution.  The 

complex sea level pressure and wind patterns they observed at 9 km reveals the high 

degree of spatial variability of a landfalling TC.  Several observing station in the 

northern part of the island received very strong (greater than 50 m s-1) winds, while 

other close by stations experienced much weaker flow.  The rainfall pattern was equally 

complex, both in observations (Wang 1997) and simulations (Peng and Chang 2002).  

The windward slope – in this case the west- and northwest-facing CMR slopes, due to 

Herb’s approach to the northern end of the island – received over 1000 mm of rainfall.  

Peng and Chang (2002) note that only the highest-resolution (9 km) simulated TC made 
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landfall in northern Taiwan.  This high degree of spatial complexity in the sea-level 

pressure, surface wind, and rainfall distribution patterns demonstrates the necessity of 

capturing the mesoscale effects to produce an accurate TC forecast.   

 

1.6.4. Identifying patterns of TC interaction with island terrain 

To summarize, mountainous island terrain was found to have the following 

mesoscale impacts on an approaching TC vortex:  the generation of heavy orographic 

rainfall, an along-track acceleration and deflection of the TC vortex, and a modification 

of the TC intensity (stronger before landfall, weaker after landfall due to the stronger 

cross-isobaric [energy dissipating] flow).  As demonstrated in several studies over the 

last 25 years, not all TCs experience all of these impacts.  Shallow (scale height less 

than 6 km) and weak (maximum tangential wind less than 50 m s-1) typhoons tend to 

follow “discontinuous tracks,” where the vortex “jumps” across the island in response 

to secondary low formation on the lee (typically western) side.  However, strong 

(maximum tangential wind greater than 50 m s-1) and deep (scale height greater than 10 

km) TCs tend to cross over the island and maintain a more continuous track becausethe 

main surface circulation is not blocked by the mountain.   

 

1.6.5. Orographic parameters 

Lin et al. (2002) developed and applied ten systematic “orographic parameters” 

to attempt to identify which TCs would experience track deflections and intensification.  

They found three such control parameters to be positively correlated with TC vortex 

continuity and along-track, pre-landfall deflection:  (1) the vortex Froude number, VFn, 
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max
Fn

VV
Nh

= , 

where Vmax is the maximum tangential wind velocity, N is the Brunt-Väisälä frequency, 

and h is the mountain height; (2) the ratio of vortex Froude number to the basic-flow 

Froude number (U / Nh), /Fn FnV UR , 

max
/Fn FnV U

VR
U

= , 

where U is the background zonal flow (assumed to be perpendicular to the island 

terrain, and can be approximated by the westward vortex translational speed); and (3) 

the measure of inertial stability, Istab,  

max
stab

VI
Rf

= , 

where R is the radius of maximum tangential wind velocity and f is the Coriolis 

parameter.  The inertial stability parameter can be considered as a pseudo-Rossby 

number (Ro = U / fL), where the horizontal length scale L of the disturbance is 

approximated by the radius of maximum winds R of the TC.  Lin et al. (2002) found 

that when all three parameters were large (greater than 1.6, 7.0, and 4.0, respectively), 

the TC vortex tended to maintain continuity, i.e., pass over the mountain range without 

experiencing any “jumps” from primary to secondary low centers.  Physically, this 

means that when control parameters are large in value, air flow is able to go over the 

obstacle instead of being blocked and forced to go around.  Also, when the vortex 

Froude number is larger than 1.6, the kinetic (rotational) energy associated with the 

impinging vortex is sufficient to lift the stratified flow up and over the orographic 

(potential energy) barrier.  For pre-landfall, along-track TC track deflection, a large 

(1.29) 

(1.30) 

(1.31) 
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vortex Froude number implies that air parcels in the northwestern outer circulation (for 

a TC moving westward toward an island mountain) are able to pass more easily over the 

obstacle, which results in a northward deflection as the TC crosses the topography.  

When the vortex Froude number is small, more air parcels are blocked by the terrain 

(sometimes resulting in the development of a coastal barrier jet), which results in a 

southward track deflection (Lin et al. 2002). 

 

1.6.6.  Importance of investigating terrain-TC interactions 

The peaks of southern Windward Islands are the first land obstacles to low-

latitude, westward-moving Atlantic TCs.  Averaging between 350 m and 1500 m high, 

these islands are prone to periodic TC passages (about every 5 yrs).  According to the 

Liu et al. (2002) orographic parameters, TCs crossing these islands should maintain a 

continuous track (not experience any low pressure center “jumps”) and should 

experience a slight northward track deflection upon approach.  Using values for Vmax, N, 

h, U, R, and f characteristic of Hurricane Ivan (50 m s-1, .01 s -1, 1000 m, 7 m s-1, 150 

km, and 5.5 x 10-5 s-1, respectively), the vortex Froude number is 5.0, the ratio of vortex 

Froude number to the basic-flow Froude number is 7.1, and the inertial stability number 

is 6.0.  However,  the interaction between a passing TC circulation and the island 

topography has yet to be studied using a high-resolution numerical model, and the Lin 

et al. (2002) hypothesis needs to be tested for this region of the southern Caribbean.  

This dissertation does not continue researching the question posed above; it is left as an 

interesting exercise for the future.   
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Chapter 2. Climatological forecasting tool 

 

For part one of this dissertation research, I have developed and employed a 

climatological tool that quickly and succinctly displays the spread of historical TC 

tracks for any point in the Atlantic Ocean basin.  This investigation has two main 

objectives.  First is to illustrate the continued operational usefulness, and therefore 

necessity, of statistical methods that rely largely or entirely upon the archived TC 

climate record.  I show that large along-track trajectory (speed and direction) errors can 

be reduced when there is a strong climatological signal that has a small spread and is 

based on a large number of archived cases.  Hurricane Ivan, which occurred during the 

2004 Atlantic season, is an excellent recent example.  Ivan was a classical long-lived, 

long-track major hurricane that was responsible for twenty-five deaths and over $14 

billion in U.S. losses (Stewart 2005).  It afforded the NWP models many opportunities 

to predict its track.  However, trajectory forecasts from statistical methods based upon 

the climate record were significantly more accurate, over an eight-day period, than the 

tracks predicted by the NWP models.  Ivan is an example that demonstrates powerfully 

that the NWP and official forecasts can have large trajectory errors when their 

predictions are significantly different from the tracks suggested by the climatological 

scheme used in this study 

Second, this investigation reminds TC forecasters and other users of climate data 

of the continued utility of climatological data, especially when it provides an early 

means of alerting TC forecasters to NWP predictions that have potentially large track 

errors.  This study and its conclusions are based on a wide range of input data. Over 500 
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forecasts from fourteen different operational NWP models and statistical prediction 

methods were examined, and over 400 historical Atlantic TC records were used to 

compute the climatological signal most relevant to Ivan.  This climatological tool is 

useful in all parts of the basin because it is derived from prior storm motion trajectories 

and summarily captures information about the historical synoptic and mesoscale 

steering patterns.  It will also display the strength of the climatological signal and allow 

for rapid qualitative comparison between the historical tracks and the more robust NWP 

models, thus demonstrating the continued utility of climatology in predicting TC tracks.   

 

2.1. TC motion climatology 

Associated with every geographical location in the North Atlantic basin is a TC 

“motion climatology” derived from the historical movement characteristics of all TCs 

that passed near it.  A technique was developed for this study to calculate and display 

graphically the TC motion climatology.  In brief, the Atlantic TC data set is used to 

compute motion tendencies (speeds and directions) of past TCs at or near a specified 

geographical point (Barrett et al. 2006).  The focus here is on the 24-h motion 

climatology because this time period is critical for operational warning decisions 

(Sheets 1990).  Other historical analog techniques, such as the hurricane analog 

(HURRAN) method of Hope and Neumann (1970) and the self-adapting ensembles of 

Sievers et al. (2000) and Fraedrich et al. (2003), generate forecasts by adapting entire 

tracks of any storm in the historical database.  In contrast, my climatological technique 

focuses on individual motion characteristics of storms located within a specified 

geographical radius of influence (as defined below).  Furthermore, unlike the widely 
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used operational climatology and persistence model, known as CLIPER (Neumann 

1972; Neumann et al. 1981b; Leslie et al. 1990), my system generates and displays 

probabilistic estimates of future 24-h TC trajectories rather than the single point 

forecasts produced by CLIPER.  A short description of the dataset used to calculate the 

motion climatology is given in Section 2.2.  The computational aspects of the motion 

climatology are discussed in Section 2.3.   

 

2.2 Best track dataset 

The so-called “best track” Atlantic hurricane dataset, described by Jarvinen et al. 

(1984) and updated annually by the NOAA Tropical Prediction Center, was used to 

compute the motion climatology statistics used in this study.  The dataset uses all 

available surface, satellite, and aircraft reconnaissance observations – including those 

not accessible in real-time – to revise and refine the official post-storm estimates of TC 

position and intensity (Neumann and Pelissier 1981b).  This dataset is a record of all TC 

activity in the Atlantic basin dating back to 1851.  For this study, only the most recent 

(1970–2003) records are used in an attempt to maximize the stationarity of the dataset 

and minimize any discontinuities due to secular improvements in observing technology 

or changes in operational classification schemes (Landsea 1993; Landsea et al. 1996; 

Buckley et al. 2003; Barrett and Leslie 2005).  The 1970-2003 period of the dataset 

provide three pieces of information critical to any TC climatology study:  geographical 

location (latitude and longitude); temporal location (month, day, and year); and 

intensity (maximum sustained 1-min surface winds and minimum sea level pressure).  

These data are available four times daily (0000, 0600, 1200, and 1800 UTC) over the 
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life of each TC.  For a much more thorough discussion of the uses and limitations of 

best track datasets, refer to section 3.1.   

 

2.3. The TC motion climatology prediction scheme 

The motion climatology for a specified geographical point is calculated by first 

searching the best track dataset to find all TC records located within a prescribed 

distance, or “radius of influence” of that point (Barrett et al. 2004).  The speed and 

direction vector components are computed directly from the great-circle distance (GCD) 

traveled by the TC in the 24-h period, that is,  

-1
1 2 1 2 2 1GCD = 111cos [sin( )sin( )+cos( )cos( )cos(  - )]ϕ ϕ ϕ ϕ λ λ  

where (φ1, λ1) and (φ2, λ2) are the initial and final latitudes and longitudes of the center of 

the TC. 

   Because each motion vector contains both a speed and a directional component, 

it is possible to divide the vectors into convenient radial “bins” of direction (in degrees) 

and speed (in knots).  For this study, we divided the vector space into 180 bins: thirty-

six radial categories, each ten degrees in azimuth, and five translational speed 

categories, each five knots in range.  Each historical TC record can then be sorted into 

its corresponding radial sector and speed bins.  These bin totals are converted into 

relative frequencies and displayed graphically in a format analogous to a probabilistic 

“wind rose”.  These relative frequencies, which range from 0.00 to 1.00, represent the 

historical mean 24-h trajectories for that specific geographical point.  The calculations 

and graphics are computationally negligible, requiring about 2 seconds on a desktop PC.  

With just one program command, the climatological mean TC speed and heading 

(2.1) 
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information is available for any point in the Atlantic basin.  Furthermore, because the 

technique is initialized using just the TC initial position, the prediction is available at 

the beginning of the forecast period, as there is no need to wait several hours for a 

numerical analysis.   

 

2.4. Motion climatology interpretation 

Hurricane Ivan was chosen from the 2004 TC season as a case study that clearly 

illustrated the potential errors in NWP model track forecasts when they differ repeatedly 

from the strong climatological signal calculated using the climatological scheme 

developed for this study.  Ivan formed in the eastern tropical North Atlantic basin on 

September 3 and traveled west-northwest through the southern Windward Islands into 

the Caribbean Sea and Gulf of Mexico, eventually making landfall near Gulf Shores, 

Alabama on 16 September (Fig. 2.1) (Stewart 2005).  From 0000 UTC on 5 September 

through 1200 UTC on 13 September, Ivan moved from the south-central Tropical North 

Atlantic Ocean, through the southern Windward Islands, to the western tip of Jamaica, 

reaching Category 5 (Simpson 1974) at its peak intensity.  This eight-day period is of 

most interest to us for four reasons:  (1) Ivan remained a well-organized, long-track 

hurricane (intense hurricane) for thirty (twenty-five) of the thirty-five forecast periods; 

(2) over 500 forecasts were generated by fourteen different operational prediction 

methods; (3) Ivan’s westward motion was repeatedly, and consistently, under-forecast 

by almost every operational NWP model; and (4) the climatological signal in this part 

of the tropical Atlantic basin clearly indicated a preference for a continuing westward 

motion. In Fig. 2.2, the length of each radial sector corresponds to the probabilistic 24-h 
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trajectory preferences of all TCs located within a radius of influence of the chosen 

location.  The longer radial sectors denote preferred TC trajectories.  In Fig. 2.2a-b, it is 

easily seen that approximately 80 percent of TCs comprising the climatology (the 

numbers of cases are 102 and 114, respectively) have directional headings in a small 

range between 270° and 295°.   For comparison, the observed motion vector for 

Hurricane Ivan is superimposed onto the historical motion climatology.  Note the 

remarkable agreement between Ivan and climatology in Fig. 2.2b, where the 

climatological signal is strong and has a narrow spread. 

This type of climatological product has several key features.  First, as discussed 

already, it quickly and simply displays the climate information relevant to each TC 

track.  Second, it gives an indication of the variability of the synoptic steering flow.  A 

strong, unimodal preference for westerly directional headings with average speeds of 11 

to 20 kts is apparent in Figs. 2.2a-b.  However, a more evenly distributed synoptic 

signal with westerly through northeasterly directional headings is present in Fig. 2.2c.  

Third, unlike many statistical methods such as CLP5 and A98E (see Table 2.1 for a 

complete description of each prediction method), this product does not specify a point 

forecast, but instead displays the spread of past TC trajectories.   

As a consequence, the climatological scheme adds considerable value to a real-

time forecasting setting.  Because “tropical cyclone tracks tend to be repetitive and are 

associated with likewise repetitive synoptic patterns” (Bessafi et al. 2002), these 

climatological relative frequencies convey highly valuable probabilistic information to 

forecasters, especially so in the deep tropics where synoptic steering patterns tend to be 
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more repetitive than in the subtropics and in basins where TC tracks are not as erratic 

(Pike and Neumann 1987). 

 

2.5. NWP forecasts of Ivan 

To assess Ivan’s predictability, the performances of fourteen operational 

prediction methods initialized between 0000 UTC 4 September through 1200 UTC 12 

September were evaluated:  two statistical-climatological schemes, six NWP models, 

four limited-area barotropic models, and three ensembles of NWP models (see Table 

2.1 for a summary of each prediction method).  In addition, the TPC official (“OFCL”) 

forecast was included.  All the TC track forecasts were provided by the Hurricane 

Research Division (HRD) in Miami, FL and the Naval Research Laboratory (NRL) in 

Monterey, CA. 

The 24-h forecast positions for each of the twelve non-statistical prediction 

methods were found to be consistently to the right (poleward) of Ivan’s actual track (as 

indicated by positive trajectory errors in Table 2.2).  The largest trajectory errors were 

associated with the dynamical models, namely the GFDL, UKMET, AVNO, and 

NOGAPS, and their ensemble forms (CONU, GUNS, and GUNA).  During the eight-

day period in early September, thirty-five forecasts were generated by each of the 

GFDL, AVNO and NOGAPS models, while sixteen forecasts were made by the 

UKMET model (see Fig. 2.3 for a representative sample of NWP track forecasts).  The 

24-hour mean trajectory errors from these models ranged from +4.0 to +6.3 degrees 

(positive values indicate poleward track biases).  Each trajectory error was tested for 

statistical significance using a two-tailed student’s t-test. Three null hypotheses, 
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comparing the NWP forecasts to zero (no error), CLP5, and OFCL, were considered.  A 

summary of the statistical p values is presented in Table 2.3.  The null hypothesis 

required p values to be less than 0.005 to be rejected at the 99% confidence level.  It 

was found that all of the dynamical model forecasts (GFDL, UKMET, AVNO, and 

NOGAPS) and their ensembles (CONU, GUNS, and GUNA) had a statistically 

significant right-of-track-bias (at the 99% confidence level).  Furthermore, the OFCL 

forecast was also found to have a statistically significant right-of-track bias (also at the 

99% confidence level).  

In marked contrast, the two statistical-climatological methods examined in this 

study, A98E and CLP5, had much smaller mean trajectory errors than the dynamical 

models (Table 2.3), and the errors were not significant at the 99% confidence level.  

The error verifications revealed that these methods captured Ivan’s preference for 

continued westward motion far better than the global and regional models.  Moreover, 

the OFCL forecasts were found to be statistically different from both A98E and CLP5 

(at a 99% confidence level), but not from AVNO, GFDL, NOGAPS, or UKMET 

models, or the three consensus models CONU, GUNA, and GUNS.  This finding agrees 

well with Stewart (2005), who suggested that the OFCL forecasts relied heavily on the 

dynamical model forecasts rather than the climatological models. 

 

2.6. Steering flow for IVAN 

Stewart (2005) concluded that the right-of-track bias in the NWP models can be 

attributed largely to the models’ premature erosion of the strong subtropical ridge in the 

mid-Atlantic.  To examine the synoptic currents in the vicinity of Ivan, we calculated a 



 53

deep-layer mean steering flow from the NCEP Reanalysis 2 dataset using a 7x7 box 

averaged over 850mb-200mb. The deep layer mean was used as it has been suggested 

that the deep layer mean is the most appropriate choice for the strongest storms (see, for 

example, Velden and Leslie 1991).  This computation applied the trapezoidal rule to the 

6-hourly values at 200, 250, 300, 400, 500, 600, 700, and 850 hPa.  The resulting track 

forecast, which we refer to hereafter as “FLOW”, is indicated in Fig. 2.3 by an open 

diamond. When Ivan was south of Hispaniola, the steering flow-based trajectory was 

more accurate than most NWP and consensus models.  Unlike these models, FLOW did 

not exhibit a statistically significant right-of-track bias.  However, its mean square 

trajectory errors were comparable to the NWP models, and it can be seen in Fig. 2.3 that 

the FLOW trajectory forecast was often left-of-track.  This equatorward pattern of 

errors in the FLOW trajectory forecast reveals the strength of the synoptic scale ridge 

centered north of Ivan.  Thus, the official forecast for Ivan, which relied heavily upon 

the NWP models instead of the statistical and climatological models, had significant 

right-of-track errors. 

In addition to the above treatment of Ivan, we examined the steering flow for TC 

Lili, from the 2002 Atlantic season, in the same manner.  Lili formed and tracked over a 

similar path to Ivan and also reached hurricane intensity.  However, the NWP models 

did not exhibit the same right-of-track bias as for Ivan.  With Lili, the GUNA dynamical 

ensemble and the official forecast both had smaller 24-h position errors (49 and 54 km, 

respectively) than the climatology model CLP5 (87 km; Lawrence 2002; Pasch et al. 

2004).  These findings, which are in contrast with those for Ivan, provide further 

support our advocating a return to weighting more heavily the predictions available 
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from statistical and climatological methods, particularly when the climatological 

scheme consistently has a strong track prediction signal that differs from the NWP 

models and the number of cases making up the climatology is large.   

 

2.7. Climatological tool conclusions 

A consequence of the rapid advance of dynamical models has been a move away 

from the operational use of TC prediction schemes based on climatology and statistical 

methods.  In this study, I showed that neglecting these methods is a strategy that is 

easily remedied.  I devised a simple climatological scheme that provides graphical 

displays of climatological TC motion data in a quick and timely manner.  When the 

climatological signal from the scheme is strong and has a small spread, deviations from 

the climatologically derived synoptic direction predictions, while still possible, are 

expected to be minimal.  Conversely, when the signal is weak and has a large spread, 

the climatological scheme is not expected to be of much value, other than to suggest 

that additional care should be taken to examine the various components that comprise 

the resultant steering of the TC. 

This case study examined here was TC Ivan, which reached hurricane intensity 

during the 2004 Atlantic season and caused significant loss of life and property in the 

southeast U.S.  My focus here is on an earlier period when, as a consequence of the 

sustained poleward track errors from the NWP models and the official forecast, 

evacuation orders were issued for the Florida Keys at 1200 UTC on September 9.  

However, Ivan passed more than 450 km to the west of Key West, in the open Gulf of 

Mexico waters.  The evacuation was initiated because twelve different NWP models 
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consistently, and incorrectly, predicted a poleward motion component which was not 

observed as the TC traversed the tropical North Atlantic as far as western Cuba.  This 

poleward bias was shown to be statistically significant for all of the dynamical models 

and for the official forecast at the 99% confidence level. These forecast errors contrast 

with the contradictory strong climatological signal that correctly indicated a more 

westward motion.  The forecast errors in the NWP models have since been attributed to 

the premature erosion of the mid-Atlantic subtropical ridge by the NWP models.  The 

official forecast exhibited the same right-of-track bias due to its very heavy reliance on 

the (inaccurate in this case) NWP model predictions.  Not all the operational forecast 

systems had poleward biases, however.  The climatology and persistence model, the 

statistical–dynamical model, and the deep-layer mean steering flow forecast did not 

exhibit significant poleward biases, and were found to have no directional bias at the 

99% confidence level.     

Hurricane Ivan is an example that shows how NWP and official forecasts can 

have large position errors when they are significantly different from the tracks produced 

by the climatological scheme used in this study.  The best track historical record 

contains many other recent TCs in which the statistical-climatological methods 

outperform the NWP models for at least some part of the forecast period.  Table 2.4 

summarizes the error statistics for these TCs from the 2004 Atlantic season.   Hurricane 

Emily of the 2005 Atlantic season was also examined, and she was found to be 

remarkably similar to Ivan in several aspects.  In mid-July, Emily tracked across the 

eastern North Atlantic and into the southeastern Caribbean Sea.  While Emily was east 

of the Windward Islands, from 10 July to 13 July, the suite of operational NWP track 
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guidance models consistently predicted a northward motion component that did not 

develop.  As with Ivan, the climatological signal for Emily indicated a strong preference 

for westward motion component, and it is noteworthy that again the TC followed the 

strong climatological signal and did not develop the northward motion component 

forecasted by the NWP guidance models.   

In summary, TC Ivan has demonstrated that a greater role should be accorded to 

the statistical-climatological methods when a strong climatological signal conflicts with 

the NWP or other deterministic predictions.  The simple tool used here provides a 

means of identifying TCs that are potentially difficult to forecast by the NWP models.  

If the computed climatological signal is persistent, has a small spread, and is supported 

by a large number of archived cases, then our study demonstrates that the operational 

statistical-climatological schemes are potentially at least as accurate as the dynamical 

methods.   
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Chapter 3. TC activity and geophysical variability 

For the second part of this dissertation, I investigated the relationships between 

TC activity and several leading modes of atmospheric and oceanic variability.  The 

primary objective of this section is to demonstrate understanding of the role of TCs in 

the earth-atmosphere system on multiple spatial and temporal scales.  To accomplish 

this goal, I examined the relationships between the number, periodicity, and frequency 

of seasonal TC activity and monthly, seasonal, annual, interannual, and decadal climatic 

indices.  TCs are fundamentally connected to both the atmospheric and oceanic general 

circulation (Chan 2005), and thus it is reasonable to expect the dominant modes of 

tropical and extratropical atmospheric and oceanic variability to have detectable effects 

on TC activity.  Therefore, one of the major goals of this dissertation is to research and 

systematically quantify the relationships between TC activity and the dominant modes 

of climatic variability.   

TCs affect the livelihoods of billions of people and trillions of dollars in 

economic activity.  Because they are essentially unpredictable on timescales beyond a 

few days, there is great interest in developing knowledge of the climate factors which 

control interseasonal, interannual, and interdecadal fluctuations in TC activity (Bell and 

Chelliah 2006).  The “dominant modes of atmospheric and oceanic variability,” which 

will be defined extensively in section 3.5, are determined through several methods.  

Some modes represent the first principal components of analyses of SST, geopotential 

height, or sea level pressure.  Others are identified as peaks in the power spectra of 

wavelet analyses of the same variables.  Regardless of how the modes are determined, 

however, it is well known that their impacts are not limited regionally and span 



 58

timescales from several months to several decades (Li et al. 2007).  Through 

teleconnections with Rossby, Kelvin, and gravity waves, these modes reach into every 

hemisphere, continent, and ocean, and they impact temperature, precipitation, pressure, 

and circulation (Johansson 2007; Alford and Zhao 2007).   

Atmospheric datasets, including the NCEP/NCAR global reanalysis (Kalnay et 

al. 1996) and TC best track records, although not without flaw, have recently reached 

sufficient length (30+ years) in the satellite era (from 1970 to present) to aid in 

developing a comprehensive picture of the global interconnectivity between ocean and 

atmosphere.  The tropical cyclone is a critical component of this interface, and these 

datasets, although not without unanswered questions regarding their quality, enable 

quantitative analysis of the links between TCs and their larger-scale environment.  As 

meteorology advances its understanding of the geophysical planet, we are able to not 

only pose questions such as “What are the connections between equatorial SSTs, 

stratospheric winds, midlatitude geopotential height, or polar sea level pressure, and 

different measures of TC activity?  Do these connections depend on time?  Space?  Are 

they restricted to the in situ or are they teleconnected?  And have they been stationary in 

time and space?”, but we are able to use our new knowledge, applied to newly available 

datasets, and actually answer the questions.  Furthermore, the answers to these 

questions are immediately applicable to the presently highly-charged debate over the 

role of anthropogenic climate change (e.g., Landsea 2007; Holland and Webster 2007; 

Trenberth and Shea 2006; Mann and Emanuel 2006; Shriver and Huber 2006).   

The annual mean number of TCs is 90 globally, with a standard deviation of 10, 

and although these numbers are disputed (Frank and Young 2007), to date, no evidence 
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exists of a long-term trend in either the global frequency or variability (Kossin et al. 

2007; Webster et al. 2005; Emanuel 2005).  There is evidence, however, of regional 

control of TC activity, with variability in tropical SSTs and deep tropospheric wind 

shear correlated with trends in TC intensity and duration (Emanuel 2006; Frank and 

Young 2007).  It is this regional control of TC activity that is the focus of the research 

in this chapter, regional not in the sense of the climate system (which, as mentioned 

above, is on the hemispheric to planetary scale), but regional in the sense of the impacts 

on specific TC basins and subbasins.  This research uses statistical techniques that 

leverage multiple metrics of TC activity, which are new in definition or dataset length 

(or both) and provide thorough and encyclopedic answers to the questions posed in the 

introduction. 

 

3.1. Best track datasets:  uses and limitations 

All of the measures of TC activity used in this study are based on data contained 

in the North Atlantic and East Pacific best track datasets.  The best track datasets are a 

postseason construction of a TC’s actual position and intensity (Jarvinen et al. 1984).  

The analyses are performed after the TC’s dissipation, giving sufficient time to receive 

and archive data that were not available in the real-time forecast setting.  The best track 

intensity estimations are based most heavily on satellite intensity estimates from the 

Dvorak (1975, 1984) technique (Kossin and Velden 2004).  When TCs threaten land, 

aircraft reconnaissance flight-level, dropsonde, and onboard Doppler and microwave 

data, and ocean- and ground-based in situ instrumentation are also available.  The utility 

of the best track process is to combine the often-differing estimates of intensity and 
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location into a consensus.  However, each of the measurement tools has limitations, and 

thus the best track datasets are essentially best estimates of position and intensity 

derived from the most current theory using all available observations.   

The best track datasets used in this study estimate maximum sustained 1 min 

surface (10 m) wind speed to the nearest 5 kt, minimum sea level pressure to the nearest 

mb, and latitude and longitude positions which are precise to the nearest 0.1°, or to 

within about 10 km horizontal accuracy.  These data are reported every six hours for the 

life of the TC, and in some cases, data points are recorded even when the system is 

classified as a non-TC (an extratropical cyclone, subtropical cyclone, or tropical wave) 

to provide continuity over the life cycle of the disturbance.  Those non-TCs are 

excluded from this study, as are any TCs with maximum sustained 1 min surface winds 

below 35 kt (the threshold of a tropical storm; McBride [1981]).   

As mentioned above, the best track datasets do not contain perfect information, 

nor are they without flaw.  Considerable care must be taken with their use.  One author 

declared these archives “places where even angels fear to tread” (Frank and Young 

2007).  Before the launch of geostationary satellites in the late 1960s and 1970s, TCs 

that did not encounter land, plane, or ship were simply not included in the historical 

record.  Once satellites were launched, the Dvorak (1975, 1984) technique of estimating 

intensity from cloud features (cloud banding, coverage, and brightness temperature) was 

introduced to standardize the determination of TC intensity.  While limited by its 

reliance on a regression curve fit to a cloud of wind-pressure relationships, the Dvorak 

technique does provide a measure of intensity for TCs far from land and in the absence 

of aircraft reconnaissance.  In the East Pacific, satellite intensity estimates from the 
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Dvorak technique are used by forecasters to estimate the intensity of nearly every TC, 

and in the North Atlantic, they are used exclusively for roughly half of the TCs that 

form (primarily those TCs east of 50°W; DeMaria and Kaplan 1999).   

Despite providing a great benefit to forecasters – namely, the ability to achieve 

an estimate of TC intensity in locations unsampled by aircraft, ship, or buoy – reliance 

on satellite estimates introduces further uncertainty in the intensity estimates recorded 

in the historical databases.  For example, for the East Pacific and North Atlantic basins, 

Dvorak intensity estimations are available four times daily from three satellite-

interpretation groups: the U.S. Air Force Global Weather Center (AFGWC), the NOAA 

Satellite Applications Branch (SAB), and the NOAA/NCEP Tropical Analysis and 

Forecasting Branch (TAFB).  However, the three agency intensity estimates are not 

only frequently dissimilar by 5 to 10 kt (Kossin and Velden 2004), they are also 

systematically biased to over (under) estimate minimum sea level pressure in high (low) 

latitude TCs (Kossin and Velden 2004).  This bias presents a substantial limitation when 

using the best track datasets to investigate climatological relationships (Kossin et al. 

2007; Olander and Velden 2007).  Furthermore, ground-based anemometer, Doppler 

radar, and aircraft reconnaissance dropsonde measurements are often different from the 

Dvorak satellite estimates.  Comparisons between aircraft reconnaissance and satellite 

intensity estimates have found an average error in the mimimum central pressure of 10 

mb (Olander and Velden 1997), corresponding to a wind error of 10-15 kt (DeMaria 

and Kaplan 1999).  It is possible, although not likely, that through an entire season these 

“noisy” differences will cancel each other out; but regardless, the error potential 

remains.   
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Routine aircraft reconnaissance began in the North Atlantic basin in 1944 

(Sheets 1990).  For the first ten years of aircraft reconnaissance, surface winds were 

estimated by visual inspection of the sea.  Radar altimeters were installed onboard in the 

early 1950s, which provided an accurate determination of the aircraft altitude.  

Combining altitude with pressure measurements at flight-level, estimates of the flight-

level geopotential height were made, and the surface pressure was estimated from 

empirical relationships using the flight-level geopotential height.  This technique was 

used without material modification from the 1950s until accurate dropsonde technology 

came online in the late 1980s (Emanuel 2005).  The aircraft reconnaissance minimum 

pressure estimates were converted to maximum sustained surface winds using “semi-

empirical wind-pressure relations that did evolve with time” (Emanuel 2005).   

Only since 1997, after the installation of global positioning systems (GPS) 

technology on dropsondes released during North Atlantic Air Force reconnaissance 

flights, has a complete and accurate picture of the TC boundary layer been possible 

(Powell et al. 2003).  Before 1997, the operational practice was to estimate maximum 

sustained 10 m 1-min surface winds at 80% of the mean flight-level (700 hPa) wind.  

From 1997-1999, in the CBLAST ocean-atmosphere experiment, 331 wind profiles 

were measured in hurricane eyewalls in the Atlantic, Central, and Eastern Pacific 

basins.  Typical dropsonde fall speeds ranged from 10-15 m s-1, and measurements were 

taken every 0.5 s (for vertical resolution between 20 and 30 m).  Wind speed accuracies 

were typically within 0.5-2.0 m s-1, with a height accuracy of 2 m; however, the 

dropsonde was only a point measurement and it is difficult to ascertain whether the 

sonde penetrated the region of maximum winds during its descent.  For example, one 
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dropsonde released in the southwest quadrant of Hurricane Felix (2007) during its rapid 

intensification actually splashed down in the northeast quadrant, over 100 km away 

from its release point.    

Although it has been argued that “tropical cyclone detection rates have been 

close to 100% globally since 1970, when global satellite coverage became nearly 

complete” (Holland 1981; Emanuel 2005), recent technology improvements have been 

shown to aid in detection and classification of multiple TCs across several basins 

(Buckley et al. 2003), including the North Atlantic.  For example, current passive-

microwave satellite technology from NASA, the Quick Scatterometer called 

“QuikSCAT”, available since June 1999 (Hoffman and Leidner 2005), has facilitated 

detection of closed wind circulations at the surface (and a closed circulation is the 

requirement of McBride [1981] for a tropical cloud cluster to be classified as a tropical 

depression).  The QuikSCAT system was designed to allow ocean surface wind 

retrieval in multiple surface conditions except moderate to heavy rain, and it is useful 

qualitatively even in the observations of the extreme winds of a hurricane (Hoffman and 

Leidner 2005).  Using an algorithm that combines positive vorticity with a measure of 

the extent of horizontal winds, the QuikSCAT platform has been shown to correctly 

identify and classify TCs an average of 20 h before operational classification (Sharp et 

al. 2002).   

One of the most difficult problems for operational TC forecasters – and by 

association, the best track datasets – is the estimation of the TC’s maximum sustained 

surface wind.  When aircraft reconnaissance data are provided, they are typically 

obtained from 10,000 ft (700 hPa) flight-level, and forecasters are forced to both 
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determine the surface wind speeds that correspond to those flight-level winds and also 

reconcile that determination with any other available data, including satellite intensity 

estimates, ship reports, and buoy observations.  Powell and Black (1990) determined 

that a ratio of 63% to 73% was an acceptable range of flight-level-to-surface reduction 

(thus providing that a flight-level wind measurement of 100 kt corresponds to 63 to 73 

kt 1-min maximum sustained 10 m winds).  However, operational practice at the NHC, 

while varying over time, typically used an 80% to 90% reduction factor from the 1960s 

through the 1990s for East Pacific and North Atlantic TCs.  Furthermore, based upon 

dropsonde data collected during the 1997-1999 CBLAST field project in the North 

Atlantic, Franklin et al. (2003) reached two conclusions that have dramatically altered 

the practice of flight-level-to-surface wind reductions in the North Atlantic.  First, they 

found a broad wind maximum centered 500 m above the surface, with wind speeds 

decreasing with altitude above this level due to the warm core of the cyclone.  The 500 

m winds were found to be approximately 20% greater than the 700 hPa wind speeds.  

Below 500 m, winds were found to decrease due to the frictional boundary layer, 

decaying nearly linearly with the logarithm of the altitude.  The 10 m wind was found to 

be approximately 75% of the peak 500 m wind.  Thus, the surface winds were found to 

be approximately 90% of the 700 hPa winds.  This conclusion has the potential to 

profoundly impact the maximum winds recorded in the best-track historical dataset, as 

many of these data points are based almost exclusively on reports from aircraft 

reconnaissance that used a reduction factor other than 90%.   

To illustrate the potential errors contained in the historical record, we turn to the 

highly-publicized alteration of the best-track dataset for the case of Hurricane Andrew 
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(1992).  At the time, it was reported that Andrew made landfall at Homestead Air Force 

Base, Florida, at 0905 UTC on 24 August 1992 with a minimum pressure of 922 mb 

and maximum sustained winds of 125 kt (Rappaport 1993).  This information was 

recorded in the best track data in early 1993.  It remained there until 2004, when a 

review panel at the NHC determined that the maximum sustained winds were not 125 kt 

at landfall, but instead 145 kt.  This 20 kt upward adjustment was based primarily on a 

new dropsonde-derived flight-level-to-surface wind reduction factor (Landsea et al. 

2004), and illustrates that the best track data are essentially only best estimates from the 

observations and theory available at the time.  While a reanalysis project is being 

discussed at the NHC, no other adjustments have been made to TCs from the same time 

period as Andrew whose intensities were derived using the same potentially flawed 

methods.   

Another important example of the potential errors contained in the historical 

record, this one highlighting the inability to determine TC intensity to within even two 

Saffir-Simpson hurricane categories (±15 kt), comes from Super Typhoon Saomai, 

which formed in the western North Pacific on 04 August 2006 and made landfall in 

mainland China on 10 August 2006.  Before making landfall in China, Saomai was not 

investigated by aircraft reconnaissance, and it did not pass directly overhead of any 

surface observation instruments (such as drifting or fixed buoys).  The World 

Meteorological Organization (WMO) Regional Specialized Meteorological 

Center (RSMC) in Tokyo, Japan, is tasked with keeping the best track historical records 

for the western North Pacific basin.  RSMC Tokyo determined that Saomai’s standard 

(10 m) 10 min sustained wind intensities were 95, 100, 105, and 100 kt for the period 
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from 0000 UTC to 1800 UTC on 09 August 2006, respectively, and it assigned 

minimum sea level pressures of 935, 930, 925, and 930 mb at the corresponding 

synoptic times.  According to Powell et al. (1996), a rough conversion factor from 10 

min to 1 min sustained winds is 112:100, meaning the 1 min sustained winds will be 

12% faster than the 10 min sustained winds.  Applying this conversion factor, Saomai’s 

1 min sustained winds were approximately 106.4, 112, 117.6, and 112 kt, respectively, 

from 0000 UTC to 1800 UTC on 09 August 2006.  Because of its military interests in 

the region, the U.S. Navy, through the Joint Typhoon Warning Center (JTWC), has 

maintained separate best track datasets for the western North Pacific since 1945.  Using 

the same satellite data, JTWC determined that the 1 min sustained winds of Super 

Typhoon Saomai were 105, 125, 140, and 140 kt, respectively, from 0000 UTC to 1800 

UTC on 09 August 2006, and that the minimum sea level pressures were 938, 916, 898, 

and 898 mb.  The large differences in intensity, ranging from 10 to 25 kt, are primarily 

due to differential applications of the Dvorak technique and varying interpretations of 

the climatological wind-pressure relationships in the western North Pacific.  Thus, even 

with all of the technology available to forecasters in 2006, it was still not possible to 

conclude the current intensity of a typhoon to within 25 kt.     

Limitations in the best-track datasets, such as those highlighted by Hurricane 

Andrew (1992) and Typhoon Saomai (2006), make accurate determinations of seasonal 

levels of TC activity and trends in TC activity very difficult.    Reanalysis can overcome 

some of these limitations (e.g. Landsea et al. 2004; Kossin et al. 2007); however, the 

brevity of the records (with the satellite era only beginning in 1970), as well as shifts in 

technology (satellite horizontal and vertical resolutions have improved since 1970), 
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remain problematic.  One method used to extend the meteorological record back in time 

is paleotempestology, which relies on geological and biological proxies of TC activity 

to sample very rare, catastrophic events that have long recurrence intervals (hundreds to 

thousands of years; Frappier et al. 2007).  The paleotempestology study of Liu (2007) 

documented a period of “hyperactive” landfalls along the U.S. Gulf Coast about 3800 to 

1000 years ago, in which strong hurricanes made landfall at a rate 3 to 5 times greater 

than the most recent millennium.  While paleotempestology data attempt to provide a 

connection between climate and TC activity, it alone is unlikely to provide an accurate 

estimate of the future return period of extreme events.  This dissertation, completed in 

2007, uses the satellite-era best track data from 1970-2006, acknowledging its flaws but 

recognizing that it is the best that is presently available.  Satellite coverage of the North 

Atlantic and East Pacific basins had begun by 1970 (Barrett and Leslie 2005; Webster et 

al. 2005); thus this study focuses on TC activity from 1970-2006.   

 

3.2. Metrics of TC activity 

Because of the limitations and uncertainty contained in the historical record, this 

study uses fifteen different methods to quantify “TC activity.”  When more than one 

metric exhibits similar correlations with the climate indices, it is possible to give greater 

confidence to the relationship.  Just as in the previous sections, a “TC” is defined in this 

chapter as any warm core circulation classified by the NHC and determined to have 

maximum sustained surface winds of at least tropical storm force (35 kt).  One obvious 

method to measure TC activity is to count the number of TCs, hurricanes, and intense 

hurricanes, respectively, which occur each season in each basin.  This method has the 
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advantage of simplicity because it is not sensitive to knowledge of the actual intensity 

of a TC.  With the cases of Andrew and Saomai, both would have been included in 

counts of TCs, hurricanes, and intense hurricanes.  While simple, however, this method 

is remains sensitive to errors that compound during the long time series of TC activity.  

First, observational technology and operational practice do not remain stationary over 

any period of record longer than several years (Buckley et al. 2003).  Geostationary and 

polar-orbiting satellites, ground and aircraft-based radar, dropsonde technology, and 

aircraft reconnaissance have been introduced (beginning in 1944 with routine aircraft 

reconnaissance in the North Atlantic) in the past several decades.  These different 

observing platforms are not available across all basins, and in the case of polar-orbiting 

satellites, which were first launched in the late 1950s, their coverage does not always 

extend to each TC.  Second, the best-track historical datasets round TC intensity 

estimates to the nearest 5 kt.  Thus, any TC, hurricane, or intense hurricane whose 

intensity hovers near a break-point (35, 65, or 100 kt, respectively) will potentially skew 

the counts, depending on which observational platform(s) were used to sample it and 

how the the data were interpreted for the best track analysis.  Third, the Dvorak and 

flight level-to-surface wind reduction techniques have not been applied equally since 

1970.  It is these collective discrepancies that I hope to mitigate by using fifteen 

different metrics of TC activity.   

To try to account for the difficulties posed by binning TCs around firm 

breakpoints in the intensity data, a metric was developed to quantify TC activity using 

continuous data.  The accumulated cyclone energy (ACE; Bell et al. 2000) is a quantity 

that accounts for frequency, intensity, and longevity of TCs in a basin.  Seasonal ACE is 
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defined as the sum of the squares of the 6-hourly-maximum sustained surface wind 

speed (either knots2 or m2 s-2) for all TCs in a basin or subbasin having at least a 

minimum-specified intensity (usually taken to be tropical storm intensity, although 

because the wind speeds are squared, the 25- and 30-kt depressions are not weighted 

heavily and become almost irrelevant against a long-lived 130 kt Category 5 hurricane).  

The ACE has several advantages as an index of TC activity.  First, it is useful for 

correlating and regressing against other climate variables of interest because it is a 

continuous variable.  Thus, it does not suffer from the limits of counts of TCs, 

hurricanes, or intense hurricanes, which are quantized into discrete integer bins.  

Furthermore, because it is an integrated quantity, it incorporates information about 

storm intensity and longevity that TC counts do not.  For instance, despite reaching 

similar maximum intensities (160 kt for Wilma; 150 kt for Katrina), Hurricane Wilma 

(2005) achieved an ACE of 404,750 kt2, while Hurricane Katrina (2005) had an ACE of 

only 206,075 kt2.  The substantial difference between ACE values can be explained by 

combining both the intensity and longevity differences between the two storms:  Wilma 

maintained at least major (100 kt) intensity for 19 synoptic 6-hr periods and hurricane 

(64 kt) intensity for 30 6-hr periods; however, Katrina was at major hurricane intensity 

for only 9 6-hr periods and hurricane intensity for 16 6-hr periods.  This example 

illustrates the strength of the ACE activity index, namely that it is an effective 

combination of both intensity and longevity and facilitates easy comparison between 

seasons.  The example also, however, illustrates the primary weakness in the ACE 

activity index, namely that one or two long-lived major hurricanes dominate the 

seasonally integrated quantity and can mask other levels of activity.  For example, the 
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2004 and 2005 North Atlantic hurricane seasons had ACE values of 2247 x 103 kt2 and 

2480 x 103 kt2, respectively.  Using ACE as a metric, the two seasons had relatively 

similar levels of activity (the 2004 season had 90% of the activity of the 2005 season).  

However, the 2005 season was incredibly active with 27 TCs, 15 hurricanes, and 7 

intense hurricanes; the 2004 season had only 14 TCs, 9 hurricanes, and 6 intense 

hurricanes.  The similarity in ACE value (due to the similarity in the number and 

longevity of the intense hurricanes in each season) obscures the fact that the 2005 North 

Atlantic season was the most active, as measured by TC counts, on record.   

Another measure of TC activity is a simplified power dissipation index, PDI 

(Emanuel 2005).  The PDI is derived from the equation for power dissipation, PD, 

which is given by 

0 3
D0 0

PD 2π V d d
r

C r r t
τ

ρ= ∫ ∫  

where CD is the surface drag coefficient, ρ is the surface air density, |V| is the magnitude 

of the 10 m surface wind, and the equation is integrated from an outer radius, r0, to the 

center, and over the storm lifetime τ.  The power dissipation has units of energy and 

provides the total power dissipated by a storm during its life.  The area integral in (3.1) 

is difficult to evaluate from historical datasets (which seldom include information on 

storm size), however, radial profiles of wind speed are generally similar geometrically 

and the maximum wind speed shows no correlation with measures of storm size.  Thus 

the random errors introduced in equation (3.1) would tend to cancel out, and because 

surface air density varies over 15% and the drag coefficient varies roughly as a factor of 

two (Emanuel 2005), the integral will be dominated by high wind speeds.  By assuming 

that the product CDρ is a constant, the PDI can be defined as 

(3.1) 
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3
max0

PDI dV t
τ

≡ ∫  

where Vmax is the maximum sustained 1-min wind speed at the conventional altitude of 

10 m.  Because of these assumptions, particularly the assumption that CDρ is a constant 

(CD is known to vary inversely with wind speed; Makin 2005), the PDI is not a perfect 

mathematical measure of power dissipation.  However, “this index is a better indicator 

of tropical cyclone threat than storm frequency or intensity alone” (Emanuel 2005).  

Because it is similar to ACE, the PDI has similar advantages and disadvantages.  Even 

more than ACE, PDI is highly sensitive to very high wind speeds.  Thus one long-lived 

Category 4 or 5 hurricane will mask variability in weaker TC activity.   

To attempt to minimize problems with the quality of the best track datasets and 

to broadly define TC activity, fifteen different metrics are used in this study to quantify 

seasonal TC activity.  Each metric is computed for each season from 1970-2006 for 

each basin, except for the landfall metrics (10)-(15), which are computed only for the 

EPAC and NATL and only from 1976-2006.   

 (1) TCC  number of TCs  

 (2)   HC  number of hurricanes  

 (3)   IHC  number of intense hurricanes  

 (4)   ACE  total ACE  

 (5)   PDI  total PDI  

 (6)   STCD  scaled TC days  

 (7)   SSD  season start day 

 (8)   SMD  season mean day 

 (9)   SED  season end day 

(3.2) 
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 (10)  TCLC  number of TC landfalls  

 (11)  USLC  number of TC landfalls in the U.S.  

(12) USLHC number of H landfalls in the U.S.  

(13) TCLP  proportion of TCs which make landfall  

(14) USLP  proportion of TCs which make landfall in the U.S.  

(15) USLHP proportion of Hs which make landfall in the U.S. 

The definition, strengths, and weaknesses of metrics (1)-(5) are discussed above.  

The “scaled TC day” metric (6) is simply a weighted count of numbers and longevity of 

TCs, hurricanes, and intense hurricanes.  It attempts to take into account the monthly 

impact of a TC on the low-frequency tropical general circulation (Fiorino 2007, 

personal communication).  An intense hurricane of 130 kt, for instance, is theorized to 

have only twice the impact of a hurricane of 65 kt, verses four times the impact in ACE 

or eight times the impact in PDI.  For each best track data point, the scaled TC day 

count is calculated as follows: 

max

max

max

0.5 / 4 34kt 63kt
1.0 / 4  ,  64kt 95kt
2.0 / 4 96kt            

V
sTCd V

V

≤ ≤⎧
⎪= ≤ ≤⎨
⎪ ≤⎩

    

where sTCd is the fractional-day contribution to scaled TC day and Vmax is the 

maximum sustained wind speed.  Thus a short-lived TC that has sustained winds of 40 

kt at 00 UTC, 70 kt at 06 UTC, and 20 kt at 12 UTC has a sTCd of 0.375.  The sTCd 

quantity behaves similarly to ACE and PDI in its accounting for both intensity and 

longevity of TCs, but unlike ACE and especially PDI, it is not as sensitive to long-lived 

intense hurricanes.   

(3.3) 
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The season start day (7) is given as the Julian date that each season reaches 10% 

of its total ACE value for that season.  The season end day (9) is given as the Julian date 

that each season reaches 90% of its total ACE value for that season.  Seasonal ACE 

values are chosen because they are a continuous distribution and represent an 

integrative measure of total TC activity.  In addition to quantifying early-starting and 

late-ending TC activity, these two metrics are able to account for late-starting but still 

active seasons and early-starting but relatively inactive seasons.  In the case of late-

starting seasons with large (small) ACE values, the 10% day is shifted earlier (later) 

relative to that season’s mean day.  In the case of early-ending seasons with small 

(large) ACE values, the 90% day is shifted later (earlier) relative to that season’s mean 

day.  The metrics are limited by seasons whose actual ACE is low but evenly distributed 

throughout the season, and also by seasons where ACE is dominated by one or two very 

intense or long-lived TCs.   

The season mean day (8) is calculated as the expected value of a Gaussian 

distribution and is given by 

365

1

jday
jday

jday
jday

ACE
Mean jday

TotalACE

=

=

= ×∑  

where the mean Julian day of each season is a summation over the entire year of the 

contributions of the daily value ACE (ACEjday) divided by the total ACE that season 

(metric (4), TotalACE) multiplied by that Julian date.   

The number of TC landfalls (10) is a simple count of the number of TCs that 

make landfall anywhere in the basin.  The number of U.S. TC (11) and H (12) landfalls 

are similarly computed, except restricted to the mainland U.S. (excluding Puerto Rico 

and the U.S. Virgin Islands).  The landfall metrics include TCs whose center passed 

(3.4) 



 74

within 60 nm of land and those TCs that caused greater than $1 million USD in damage 

as reported in the post-season tropical cyclone reports produced by the Tropical 

Prediction Center.  The proportion of TC (13), U.S. TC (14), and U.S. H landfalls (15) 

per season are simple ratios of the number of TC landfalls (10), number of U.S. TC 

landfalls (11), and number of U.S. hurricane landfalls (12) to the TC count (1), the TC 

count (1), and the H count (2), respectively.  As mentioned above, the six landfalling 

metrics are calculated for only the East Pacific and North Atlantic basins. 

 

3.3. Early studies of periodic variability in North Atlantic TC activity 

The first known study which attempted to connect interannual variability of 

North Atlantic TC activity with regularly-measured atmospheric variables was 

undertaken by Brennan (1935), who examined rainfall, wind speed at 1 km above 

ground level, and barometric pressure data at Kingston, Jamaica, from May to July 

(MJJ), 1903-1934.  Brennan (1935) found that above (below) normal MJJ rainfall, 

below (above) normal wind speed, and below (above) normal barometric pressure were 

all associated with above (below) normal August-September hurricane activity in the 

Caribbean.  Five decades later, seasonal prediction of TC activity was pioneered by Dr. 

William Gray of the Tropical Meteorology Project at Colorado State University (CSU).  

The theoretical hypothesis used by Gray (1984) was that Atlantic hurricane activity did 

not occur in isolation and thus it should be related to other atmospheric variables.  Gray 

(1984) began his work by noticing that during periods of warm (cool) SSTs, Atlantic 

hurricane activity was suppressed (enhanced) compared to the seasonal mean.  A 

similar relationship held for the east (west) phase of the equatorial stratospheric quasi-
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biennial oscillation (QBO), that Atlantic hurricane activity was suppressed (enhanced) 

compared to the seasonal mean.  At the time, it was surprising that the atmosphere-

ocean system had a long-period “memory” which enabled skillful prediction of events 

such as TCs several months in advance (Klotzback 2007).   

There is also evidence of the influence of TC activity on the larger-scale 

environment in the West Pacific (e.g., Sobel and Camargo 2005).  In time series of 

outgoing longwave radiation, relative vorticity, SSTs, and column water vapor, TC 

impacts were found at multiple timescales.  The TCs themselves were found to 

modulate each variable over one- to two-week time periods (e.g., cooler SSTs for 

several days following the passage of a TC), and at several months, a slowly evolving 

signal indicative of the El Niño-Southern Oscillation (ENSO; Trenberth 1997) 

phenomenon was seen in each of the variables (Sobel and Camargo 2005).   Regionally 

varying impacts on the large-scale environment by TCs is examined briefly in this 

dissertation and is left for an interesting future study.   

 

3.3.1. Relationships between large-scale climate and TC activity  

Since the work of Gray (1984), there have been many observational and 

theoretical studies which examined the relationships between interannual TC activity 

and various atmospheric variables, beginning with the North Atlantic and continuing 

into other global basins.  Professor Johnny Chan and the City University of Hong Kong 

began issuing seasonal forecasts of TC activity over the western North Pacific basin and 

also the South China Sea in 1998 (Chan et al. (1998).  They used two monthly indices 

as predictors representing (a) the ENSO phenomenon and (b) East Asian and western 
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North Pacific environmental conditions from April of the previous year to March of the 

current year.  Carmago and Sobel (2005) re-examined the relationship between western 

North Pacific typhoon activity and ENSO, and they found that during El Niño years, 

there is a tendency for both more intense and longer-lived TCs in the western North 

Pacific.  Kim et al. (2005) quantified the relationship between anomalous 

midtropospheric flows between Japan and Korea and East Asian TC activity and found 

that enhanced cyclonic (anticyclonic) circulation around Japan was correlated with low 

(high) typhoon frequency south of Korea.  Chu and Wang (1997) and Clark and Chu 

(2002) examined the relationship between central North Pacific TC activity and ENSO, 

and both studies found that the mean number of TCs that approach Hawaii during El 

Niño years is significantly higher than during non-El Niño years.  Ho et al. (2006) also 

examined the relationship between ENSO and TC activity, this time in the South Indian 

Ocean.  They found that during warm ENSO years, TC activity was enhanced west of 

75°E and reduced east of 75°E, and that this shift was due in part to a westward shift in 

tropical convection.   

The early North Atlantic studies of Gray (1984), hypothesizing that TCs were 

connected to the larger earth-atmosphere system, investigated the connections between 

North Atlantic hurricane activity and ENSO and the equatorial stratospheric (QBO).  

Hurricane activity in the western Atlantic was found to reduce (increase) during the 

season following the onset of the warm-phase (cold-phase) ENSO (El Niño; La Niña) 

event.  Specifically, the mean number of Atlantic hurricanes per season from 1900-1982 

during El Niño years was 3.0, and during non-El Niño years the mean was 5.4.  The 

mean numbers of Atlantic TCs per season from 1900-1982 during El Niño years was 
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5.3, and during non-El Niño years the mean was 9.0.  For the period 1950-2001, Larson 

et al. (2005) found a mean of 6.9 (9.3) Atlantic TCs in August, September, and October 

(ASO) during El Niño (La Nina) years.  Gray (1984) calculated that the ratio of 

Category 4 and 5 (Simpson 1974) hurricanes striking the U.S. to those remaining at sea 

was 0.25 during El Niño years but 0.75 during non-El Niño years, a ratio of three-to-

one.  Larson et al. (2005) calculated that the rate of landfalling Atlantic hurricanes in 

ASO was 0.6 (1.92) during El Niño (La Nina) years, also a ratio of three-to-one. 

The CSU Tropical Meteorology Project’s statistical predictions of levels of TC 

activity have generally proven skillful against climatology (see Table 3.1), but only 

when considering the June and August forecasts for same-season activity.   The 

December and April forecasts, issued for the coming season, are not statistically 

superior to climatology.  The recent 2006 North Atlantic predictions illustrate the 

difficulty of seasonal prediction of levels of TC activity.  The team from CSU, in their 

June forecast (issued 31 May 2006), predicted 17 TCs, 9 hurricanes, and 5 intense 

hurricanes.  However, only 9 TCs, 5 hurricanes, and 2 intense hurricanes formed, 

resulting in skill (measured by mean absolute error) much below the climatological of 

10.3, 6.2, and 2.7 TCs, hurricanes, and intense hurricanes, respectively, per season in 

the North Atlantic.   

As of 2007, seasonal levels of TC activity have been predicted using both 

statistical and dynamical models, although the dynamical models have yet to document 

skill at levels comparable to statistical ones (Vitart and Stockdale 2001; Klotzbach 

2007).  The statistical techniques most often use multiple linear regression, and they 

have been developed and honed over the past two decades to examine multiple 
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atmospheric variables, including SST, tropospheric and stratospheric wind, sea level 

pressure, and precipitation, as well as their composites (e.g., Gray et al. 1992, 1993, 

1994; Elsner and Schmertmann 1993, 1994; Klotzbach and Gray 2003; Owens and 

Landsea 2003; Blake and Gray 2004; Klotzbach 2007).  Most recently, several studies 

have used statistical techniques to begin forecasting landfall activity (e.g., Gray et al. 

1998, Klotzbach and Gray 2004; Saunders and Lea 2005; Lea and Saunders 2006; 

Jagger and Elsner 2006), although the level of peer-reviewed literature on verification 

and methods is not comparable to the extensive literature describing algorithms to 

forecast basin-wide activity (Elsner and Jagger 2006).   

In addition to the Tropical Meteorology Project forecasts of Atlantic basin 

seasonal TC activity, NOAA (begun in 1998), Tropical Storm Risk (TSR, begun in 

1999), and the Cuban Institute of Meteorology (begun in 1999) also issue annual 

forecasts of TC activity levels.  NOAA bases its forecasts primarily on two primary and 

two secondary predictors.  The primary predictors are the observed state of the Atlantic 

multidecadal oscillation (AMO) and the forecast state of ENSO from the Climate 

Prediction Center (CPC), and the secondary predictors are the forecast August-October 

Atlantic basin SST anomalies and the forecast August-October Atlantic basin vertical 

wind shear (Klotzbach 2007).  TSR, a private consortium based in the United Kingdom, 

relies on predicted August-September trade wind speeds in the Caribbean and tropical 

North Atlantic, as well as predicted August-September SSTs in the tropical North 

Atlantic (Lea and Saunders 2006).  The Cuban Institute of Meteorology uses multiple 

linear regression with sea level pressure, tropical North Atlantic SSTs, and the observed 

and predicted ENSO state as predictors.  The Cuban Institute of Meteorology is the only 
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known office that issues subbasin forecasts of activity (they issue for the Caribbean; 

Klotzbach 2007).   

 

3.3.2. Relationships between East Pacific TCs and climate 

For multiple reasons, climate-TC relationships in the East Pacific basin have not 

received the same extensive attention in the peer-reviewed literature as have the 

relationships in the North Atlantic and the western North Pacific basins.  This lack of 

attention is perhaps due to the fact that relatively few East Pacific TCs make landfall, as 

most East Pacific TCs form equatorward of 20°N where the climatological steering flow 

is predominately westward away from land.  Since 1976, only 15% of East Pacific TCs 

have made landfall, compared with 45% of North Atlantic TCs (two-thirds of the North 

Atlantic landfalls occur in the U.S., or 30% of all TCs in the basin).   Another reason 

that the East Pacific may have received relatively less attention is that its “coefficient of 

variation,” a measure of the ratio of the seasonal mean to the seasonal standard 

deviation of TC activity (see Table 3.2), is lower (0.28) than the North Atlantic (0.42), 

and thus it is considered more stable.  However, when examining the East Pacific 

subbasins, the coefficients of variation are much higher, ranging from 0.63 in the east 

and west East Pacific to 0.34 in the central East Pacific.  These coefficients of variation 

are much higher than the entire North Atlantic basin and on par with the Gulf of Mexico 

and Atlantic main development region.  Whatever the reason for the lack of peer-

reviewed studies, a substantial portion of this dissertation research is devoted to the East 

Pacific basin and its subbasins (defined earlier as the eastern East Pacific, central East 

Pacific, western East Pacific, and the Central Pacific), as they are fundamentally 
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important to understanding the relationships between climate-scale oscillations and TC 

activity.   

 

3.4. Vertical wind shear and TCs 

The connection between environmental winds and TC intensity change has been 

investigated for almost 90 years (e.g., Weightman 1919).  Numerous studies have noted 

the negative effects of vertical shear on genesis and intensification (e.g., Ramage 1959; 

Gray 1968; Merrill 1988; Herbert 1978; Dvorak 1984; DeMaria and Kaplan 1994; 

DeMaria 1996; Zehr 2003; Patterson et al. 2005; Heymsfield et al. 2006).  For this 

study, the term “vertical shear” refers to the change in wind (both speed and direction) 

with height of the environmental wind, typically taken as a vector difference between 

850 hPa and 200 hPa (e.g., DeMaria 1996).  This definition is given to differentiate 

from a point value of vertical wind shear, which will be sensitive to the circulation of 

the TC.  The approximately axisymmetric TC circulation will tend to average out over 

the environment, leaving the environmental wind profile.  The deep-layer (850 hPa to 

200 hPa) mean of this wind has also been referred to the “steering flow” (Chan 2005), 

and it is well correlated to TC motion.  

Vertical wind shear over the TC vortex is produced by many different 

atmospheric features, and these features are manifested on multiple spatial scales, from 

the mesoscale to the planetary scale.  A weak and shallow TC vortex (one extending up 

into the troposphere less than 5 km) that is embedded in easterly trades of 10 m s-1 or 

greater will commonly experience net vertical shear because the upper-tropospheric 

flow is usually weaker than 10 m s-1.  As TCs emerge from the deep tropics into the 
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midlatitudes, they interact with traveling Rossby waves and their associated trough 

systems.  Strong - and increasing with height – westward and poleward midtropospheric 

wind components ahead of these traveling waves produce vertical wind shear over the 

TC vortex.  It is important to note, however, that not every interaction between a TC 

and a midlatitude trough is detrimental to the TC.  Occasionally the TC-trough 

interaction will produce favorable upper-tropospheric “ventilation”, aiding the outflow 

and thus the thermodynamic efficiency of the inner-core air-sea interaction (Emanuel 

1996).  Typically, vertical wind shear of 10 m s-1 is the break-point between 

intensification and dissipation (Paterson et al. 2005).  When vertical wind shear is 

between 2 m s-1 and 4 m s-1, rapid intensification is favored, and vertical wind shear 

above 12 m s-1 favors rapid dissipation.  Paterson et al. (2005) found a time lag of 12 to 

36 h between the onset of increased vertical shear and the onset of weakening.   

During the warm ENSO event, anomalous deep cumulus convection in the 

eastern Pacific enhances anomalous westerly upper-tropospheric wind patterns over the 

equatorial Atlantic and Caribbean basin (Gray 1984).  The typical June to November 

lower-tropospheric flow in this region is northeasterly; thus, enhanced upper-

tropospheric westerly flow leads to anomalous and broad regions of enhanced vertical 

wind shear.  Gray (1984) examined composite rawinsonde data from seven stations 

across the Caribbean: Swan Island (17° 23’N, 83° 55’W); Grand Cayman Island (19° 

16’N, 81° 22’W ); Kingston (17° 55’N, 76° 47’W ); Curaçao (12° 12’N, 68° 58’W ); 

San Juan (18° 26’ N, 66° 01’W ); St. Maarten (18° 03’N, 63° 07’W ), and Barbados 

(13° 04’N, 59°29’W ).  The difference between Aug-Sept mean 200 hPa winds at these 

seven stations was between 1.3 and 5.8 m s-1, with the positive anomaly corresponding 
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to stronger westerly winds.  Gray (1984) also examined teleconnections between ENSO 

and six other global basins (North Indian, Northwest Pacific, Northeast Pacific, South 

Indian, Australia, and Southwest Pacific), but found no significant modulation of TC 

activity in any of those basins.   

When the upper-tropospheric wind differs from the lower-tropospheric wind, the 

potential vorticity associated with the vortex circulation is tilted in the vertical 

(DeMaria 1996).  To maintain a balanced mass field when the vortex is tilted, a 

positive, midlevel temperature perturbation must develop over the vortex center and, 

correspondingly, a negative temperature perturbation must develop in the downshear 

direction (DeMaria 1996).  These temperature perturbations act to stabilize the 

environment above the vortex and thus reduce the already-limited environmental 

instability available to air rising in the vortex center (Emanuel 2003).  The result is a 

marked asymmetry in the inner-core vertical motion with ascent to the downshear left 

of the shear vector and descent to the upshear right of the shear vector (Kepert 2006).  

The coupled pattern of midlevel warming and cooling also acts to disrupt the convective 

symmetry of the circulation, leading to a broadening of the latent heating that drives the 

surface cyclone.  In a vertically-sheared TC, deep convective clouds are located on the 

downshear side and shallow, low-level clouds will be exposed on the upshear side (Zehr 

2003).  This vortex-disrupting process is most pronounced at lower latitudes, where the 

relatively lower vorticity contribution from the Coriolis parameter – and the relatively 

larger Rossby radius of deformation – act to require relatively greater vertical coherence 

to maintain the cyclonic circulation (DeMaria 1996).   
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From a climate standpoint, vertical shear prediction is critical to interannual-to-

seasonal prediction of TC activity.  The inverse relationship that exists in the temporal 

scale of an individual TC also exists between large-scale values of vertical wind shear 

and tropical cyclogenesis on the seasonal and longer timescales.  The North Atlantic 

and East Pacific basins seem to be particularly affected by large-scale shifts in the 

magnitude and extent of favorable conditions for cyclogenesis (as evidenced by their 

coefficients of variation), and vertical wind shear is one such important factor.  As 

mentioned above, the coefficient of variation is one measure of the variance from basin 

to basin.  From 1986 to 2005, the coefficients of variation in the North Atlantic and East 

Pacific are much larger other basins including the West Pacific and North Indian Ocean.  

For example, in 1983, the North Atlantic had only 4 named storms, while in 2005, it had 

27.  The North Atlantic coefficient of variation is 0.42; the East Pacific coefficient of 

variation is 0.28; and the West Pacific coefficient of variation is only 0.15.  Table 3.2 

summarizes the coefficients of variation for each basin and subbasin in the East Pacific 

and North Atlantic.   

Variations in East Pacific and North Atlantic TC frequency significantly affect 

human activities and thus impact the global economy.  Landfalling TCs bring threats of 

storm surge, violent surface winds, and tremendous precipitation.  TCs at sea disrupt 

shipping and aviation patterns and their wave energy erodes coastlines and creates rip 

currents.  Understanding the interannual climatology and the teleconnections to the 

leading modes of interannual variability is thus critically important (Larson et al. 2005).  

As long-range climate predictions from dynamical models become more accurate, 
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understanding the relationships between the leading atmospheric modes of variability 

and TC activity will aid seasonal long-lead forecasts (Klotzbach 2007).   

 

3.5. The climate indices 

In this investigation, I examined the relationships between twelve leading 

climate indices and fifteen metrics of TC activity.  In section 3.5, each climate index is 

briefly defined, with relevant citations from earlier studies, and the physical 

implications of each index are discussed.  The climate indices are all reported as 

monthly values, from Jan 1970 to Feb 2007.  A three-month unweighted moving 

average was used to smooth the data into seasonal values (e.g., Anderson 2007), so the 

Jan-Mar data are simply an average of the Jan, Feb, and Mar indices.  This smoothing 

technique does remove some of the variability on monthly timescales; however, in this 

chapter, I am interested in examining the variability of seasonal TC activity with 

climate indices whose periodicities range from seasonal to interdecadal.  Furthermore, 

sensitivity tests between unsmoothed (monthly) and smoothed (three-month average) 

indices revealed that most of the correlation coefficients differed by less than 0.10.    

Finally, I use Spearman rank correlations which do not depend directly on the index 

values themselves, but rather on the relative ranks of the index values.  Thus, the 

climate indices are smoothed into three-month averages.   

In section 3.7, significant associations between the climate indices and TC 

activity are highlighted (with a complete display of all 12,816 correlations in Figs. 3.3-

3.37).  The following list identifies the twelve climate indices, and the next sections 

identify the acronyms and summarize how they are calculated.   
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(1)  NINO1.2 

(2)  NINO3 

(3)  NINO4 

(4)  NINO3.4 

(5)  NASST 

(6)  QBO 

(7)  PDO 

(8)  SOI 

(9)  NOI 

(10) NAO 

(11) PNA 

(12) AO 

 

3.5.1. The El Niño-Southern Oscillation (ENSO) 

Perhaps the most studied of all the modes of climatic variability is ENSO, the 

leading pattern of two- to eight-year global climatic variability (Nicholls 1988).  A 

quick non-scientific query of the publications of the American Meteorological Society 

reveals that 133 peer-reviewed articles containing “ENSO” in the abstract were 

published between Jan. 2006 and Aug. 2007, a rate of over 7 articles per month!  Thus 

this sectional summary concerning ENSO will be brief; refer to Trenberth (1997) for a 

thorough description of ENSO.   

Combining the seesaw pattern of sea level pressure between Darwin and Tahiti 

(the Southern Oscillation; see discussion below) and the occasional warming of the 
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equatorial eastern Pacific (the El Niño), ENSO accounts for a greater proportion of 

oceanic and atmospheric variability on timescales from one to ten years than any other 

single phenomenon, except the tilt of the earth (Wright 1985).  ENSO-related 

fluctuations impact the oceanography, meteorology, biology, ecology, economy, and 

sociology of huge regions of the earth.  Because of its interseasonal timescale and 

quasi-annual warm (or cold) phase duration, most of the studies examining the 

predictability of TC activity at the seasonal level have focused primarily on ENSO.  The 

long life cycle of ENSO (primarily from two to seven years; Rasmusson and Carpenter 

1982) and its dominance of that mode of atmospheric and oceanic variability, allow for 

its predictability.  Relying on lag relations with ENSO, civil planners, social scientists, 

and biologists can infer the likely near- and short-term impacts from the phenomenon 

and recommend action to take advantage of the knowledge (Nicholls 1988).  However, 

predictability studies of TC activity are limited by the low skill in forecasting ENSO 

before the March-April barrier (Lloyd-Huges et al. 2004).  The business cycle of 

insurance industry rate negotiations occurs in the winter prior to each hurricane season, 

and billions of dollars of cost (to home- and business owners) and revenue (for 

insurance companies) are at stake in each season’s rate negotiations.  The current 

seasonal forecasts of TC activity remain unreliable at the skill level needed for 

profitability in this industry (Lonfat et al. 2007), as evidenced in the seasonal forecasts 

for 2006 that predicted more than two major hurricane landfalls (nearly 300% above the 

thirty-year baseline) when zero landfalls occurred.   

The ENSO SST indices used in this study were calculated by the NOAA CPC 

for four ENSO regions, NINO1.2 (0-10°S, 80-90°W), NINO3 (5°N-5°S, 90-150°W), 
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NINO3.4  (5°N-5°S, 120-170°W), and NINO4 (5°N-5°S, 150°W-160°E), using the 

optimum interpolation technique of Reynolds et al. (2002).  SST data from the 

NCEP/NCAR Reanalysis (Kalnay et al. 1996) over the specified regions are used to 

compute the indices.  The four monthly ENSO indices may be accessed online at 

<http://www.cpc.noaa.gov/data/indices/sstoi.indices>.  Unlike other studies (e.g., 

Larson et al. 2005) which use rigid “yes/no” classifications of El Niño, this study 

correlates monthly SST anomalies in the four NINO regions with measures of TC 

activity.  Positive (negative) ENSO index values indicate warm (cool) SST anomalies in 

the respective NINO indices.   

It is interesting to note that the NINO3.4 region was added in April 1996 to 

allow a better understanding of SST changes in the critical space between the NINO3 

and NINO4 regions.  This change highlights one of the objectives of the research of this 

chapter, namely to illustrate the need to examine both basins and subbasins when 

determining physical associations between TC activity and the large-scale environment.   

 

3.5.2. North Atlantic SSTs (NASST) 

When SSTs in the tropical and North Atlantic are anomalously warm, TC 

activity is higher (Dunn 1940; Gray 1968; Shapiro and Goldenberg 1998; Goldenberg et 

al. 2001).  The November 2006 World Meteorological Organization (WMO) statement 

on tropical cyclones and climate change (WMO 2006), which resulted from the 

consensus discussions of over 100 scientists and forecasters, acknowledged that, for the 

North Atlantic, “it is well established that SST is one of the factors impacting the 

number and severity of (tropical) cyclones” (WMO 2006).  The WMO statement also 
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acknowledged that no other such in situ relationships have been established for other 

ocean basins. 

The SST index for the North Atlantic (NATL) uses the weekly 1° spatial 

resolution optimal interpolation (OI) analysis of Reynolds et al (2002).  Monthly 

averages are calculated from the weekly OI analyses, and anomalies are calculated 

using a 1971-2000 base period.  The NATL region is bounded by 5-20°N and 60-30°W, 

and the raw SST data are taken from the NCEP/NCAR Reanalysis (Kalnay et al. 1996).  

Positive (negative) NASST values represent anomalously warm (cool) SSTs over the 

domain.  The monthly NATL indices may be accessed online at 

<http://www.cpc.noaa.gov/data/ indices/sstoi.atl.indices>.   

 

3.5.3. QBO 

The QBO index used in this study is calculated by the NOAA CPC as the 

monthly average of the 30 hPa zonal wind at the equator.  The positive (negative) QBO 

index corresponds to easterly (westerly) zonal wind at 30 hPa.  Monthly QBO index 

values are taken from the NCEP/NCAR Reanalysis (Kalnay et al. 1996) and can be 

accessed at <http://www.cdc.noaa.gov/Correlation/qbo.data>.   

The QBO is an east-west oscillation in the stratospheric winds above the 

equator.  It is a “spectacular demonstration of the role of wave, mean-flow interactions 

in the fluid dynamics of a rotating atmosphere” (Baldwin et al. 2001).  The QBO is 

clearly evident in time series data of monthly-mean zonal wind component.  Gray et al. 

(2001) reexamined stratospheric wind direction from radiosonde data (up to 31 km 

above ground level) from Canton Island (2.8°N), Gan Island (0.7°S), and Singapore 
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(1.4°N), and rocketsonde data (from 31 to 60 km above ground level) from Kwajalein 

(8.7°N) and Ascension (8.0°S) islands, beginning in 1964 and continuing to 1990.  They 

verified that the QBO is continuous and that it has a period ranging between 22 and 32 

months (e.g., Reed 1961).   

The atmospheric forcing for the QBO remains uncertain, although it is believed 

to be driven by a combination of vertically-propagating Kelvin, Rossby-gravity, inertia-

gravity, and gravity waves excited by tropical convection (Baldwin et al. 2001).  The 

QBO phase is defined by the equatorial wind direction at 40 hPa, the east-west pattern 

of winds propagates downward from the upper stratosphere to near the tropopause, and 

the transition between east and west phases of the QBO tends to occur in boreal summer 

in the upper stratosphere and reach the tropopause near boreal autumn (Murnane 2004).  

Gray (1984) found that westerly QBO events were associated with 50-100% more 

hurricane activity than easterly QBO events, and he attributed this difference to 

reductions in vertical wind shear between the upper troposphere and lower stratosphere.  

Another possible connection exists between the QBO phase and the location of 

enhanced tropical convection.  During the west (east) phase of the QBO, convection is 

enhanced poleward (equatorward) of 5°, which is a favorable (unfavorable) 

environment for future development of African easterly waves into hurricanes (Gray et 

al. 1992; Knaff 1993).    However, the physical connection between Atlantic hurricane 

activity and the QBO is not obvious (Baldwin et al. 2001), and the connection between 

the QBO and TC activity in other basins has yet to be explored.  Using accurate QBO 

forecasts to predict TC activity in the near-future is extremely valuable to the 

reinsurance industry, whose business cycle is timed so that it also makes critical 
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hedging decisions on an annual basis (Murname 2004).  Thus, relationships between the 

QBO and nine basins will be examined in this chapter.   

In addition to its effects in the tropics, the QBO affects variability in the 

extratropics by modulating the effects of extratropical waves.  For example, during the 

easterly phase of the QBO, Rossby waves tend to be confined to higher latitudes.  This 

modification of the mean Northern Hemisphere wave train will potentially impact the 

AO and NAO.  Furthermore, because the QBO modulates the height of the equatorial 

tropopause, it could influence the MJO (Murname 2004), and because the primary 

tropical atmosphere modulation of the MJO is to shift the location of deep convection, 

the MJO is likely to impact the QBO.   

 

3.5.4. Pacific Decadal Oscillation (PDO) 

Walker and Bliss (1932) discovered evidence of a Pacific analog to the NAO, 

with a similar north-south seesaw in sea level pressure from the high latitudes 

(extending from eastern Siberia to western Canada) to the lower latitudes (poleward to 

about 40°N).  They termed it the PDO, although it is known by other names, including 

the North Pacific Oscillation (NPO) and the Interdecadal Pacific Oscillation (IPO).  

Regardless of its name, the PDO is a leading index used widely to characterize decadal 

variability of Northern Hemisphere climate (Mantua et al. 1997).  The oscillation varies 

on interannual to decadal timescales, and several pronounced pattern shifts have been 

observed (Schneider and Cornuelle 2005).  The 1976/77 shift has been studied 

extensively (Schneider and Cornuelle 2005).  It manifested itself through 2 mb lower 

November-March surface pressures throughout the North Pacific (averaged every five 
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degrees from 27.5°N to 72.5°N, 147.5°E to 122.5°W) from 1977-1988 when compared 

with the period 1946-1976 (Trenberth 1990).  After the shift in sea level pressures, 

western and central North Pacific SSTs became cooler and equatorial and eastern North 

Pacific SSTs became warmer (Dawe and Thompson 2007).  The PDO is significantly 

correlated with many other climate indices and proxies, including precipitation (e.g., 

Chan and Zhou 2005), fishery populations (Chavez et al. 2003), and tree ring 

climatologies (Biondi et al. 2001).   

The spatial pattern of PDO impacts resembles a horseshoe, with SST anomalies 

in the Alaska gyre, off California, and toward the tropics surrounded by anomalies of 

the opposite sign in the central North Pacific (Schneider and Cornuelle 2005).  Warm 

and cold phases of the PDO have been found to last up to thirty years.  The oscillation 

in SST anomalies impact in situ sea level pressure, surface temperature anomalies in 

northeastern Asia (Minobe 2000), the onset and intensity of the Asian monsoon 

(Krishnan and Sugi 2003), and precipitation, streamflow, and surface temperature 

anomalies across North America (Mantua and Hare 2002).  Positive (negative) PDO 

indices indicate warm (cool) SSTs along west coasts of the Americas, cool (warm) 

SSTs in the central North Pacific, low (high) sea level pressures over the North Pacific 

and high (low) sea level pressures over the subtropical Pacific and western North 

America.    

Because its variability is on the interannual to decadal timescales, the PDO 

modulates ENSO teleconnections.  This modulation is evident in precipitation and 

temperature anomalies over North America.  A deeper Aleutian low (a positive PDO 

index) sends the mean extratropical storm track southward, and during the warm ENSO 
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phase, enhanced tropical moisture is available for these storms to tap.  Alternatively, 

when a weaker Aleutian low (a negative PDO index) is paired with the cold ENSO 

phase, the mean extratropical storm track is farther north and thus precipitation is 

enhanced in the Northwest U.S. and British Columbia and suppressed in the Southwest 

U.S. (Gershunov and Barnett 1998; Goodrich 2007).  In addition to modulating ENSO, 

the PDO also is modulated by ENSO through the poleward propagation of oceanic 

Kelvin waves along the Pacific coasts of the Americas.   

The PDO warm-cold pattern is consistent with atmospheric forcing similar to 

the NAO pattern.  A deepened Aleutian low in the central North Pacific decreases SSTs 

by advecting cool, dry air from the north and increasing westerly winds and turbulent 

heat fluxes from the ocean to the atmosphere.  The opposite occurs in the eastern Pacific 

and Gulf of Alaska, as a deep Aleutian low enhances poleward transport of heat and 

moisture and results in anomalously warm SSTs.   

The PDO index used in this study is defined as the leading empirical orthogonal 

function of monthly SST anomalies in the Pacific Ocean poleward of 20°N (Mantua et 

al. 1997).  The monthly PDO index data may be accessed online at 

<http://jisao.washington. edu/pdo/PDO.latest> 

 

3.5.5 Northern Oscillation Index (NOI) 

The Northern Oscillation Index (NOI) was introduced by Schwing et al. (2002) 

to complement the SOI as a new index of climate variability based on sea level pressure 

anomalies in the North and South Pacific.  The Northern Oscillation Index (NOI) is 

computed from the NCEP/NCAR Reanalysis sea level pressure anomalies (the monthly 
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sea level pressure minus the climatological monthly sea level pressure from 1948-1997) 

of the North Pacific high (NPH; 35°N, 130°W) and Darwin (10°S, 130°E).  The index is 

given as 

NOI slpa slpaNPH Darwin= −  

where NPHslpa and Darwinslpa are the sea level pressure anomalies of the North Pacific 

high and Darwin, respectively.  Those two locations were chosen because of their 

connection to the North Pacific Hadley-Walker atmospheric circulation and their direct 

linkage with the atmospheric wave train between southeast Asia and northwest North 

America.  The NOI captures a wide range of both tropical and extratropical climate and 

varies on intraseasonal, interannual, and decadal timescales.  The primary oscillatory 

period of the NOI is on the interannual timescale, reflecting its strong association with 

the phase of ENSO, and it is no surprise that the NOI is highly correlated with the SOI 

(Schwing et al. 2002).  Decadal periods of oscillation are also found in the NOI time 

series, peaking at 14 years.  A positive (negative) NOI value corresponds to 

northeasterly (southwesterly) surface winds in response to the anomalous pressure 

gradient between Darwin and the North Pacific.  The NOI values in this study are 

positively correlated with SOI values (r of +0.60) and negatively correlated with ENSO 

(r of -0.56 to -0.70).   

The sea level pressure data were taken from the NCEP/NCAR Reanalysis 

(Kalnay et al. 1996) and may be accessed online at <http://www.pfeg.noaa.gov/ 

products/PFEL/modeled/indices/NOIx/noix.html>.   

 

 

(3.5) 



 94

3.5.6 Southern Oscillation Index (SOI) 

The Southern Oscillation Index (SOI) is classically defined as a standardization 

of Tahiti sea level pressure minus Darwin sea level pressure.  The index values are 

calculated as follows: 

( )SOI std stdTahiti Darwin
MSD
−

=  

where Tahitisdt is the standardized sea level pressure at Tahiti, Darwinstd is the 

standardized sea level pressure at Darwin, and MSD is the monthly standard deviation.  

Tahitistd, Darwinstd, and MSD are given by 

 

( )_ ( ) _ ( )
_std

Actual Tahiti slp Mean Tahiti slp
Tahiti

Tahiti stdev
−

= , 

( )_ ( ) _ ( )
_std

Actual Darwin slp Mean Darwin slp
Darwin

Darwin stdev
−

= , and 

( )2

1

n
std std

i

Tahiti Darwin
MSD

n=

−
= ∑ , 

where Actual_Tahiti(slp) and Actual_Darwin(slp) are the monthly mean sea level 

pressures at Tahiti and Darwin, respectively, Tahiti_stdev and Darwin_stdev are the 

monthly standard deviations of sea level pressure at Tahiti and Darwin (calculated 

separately for each month for the base period 1951-1980), and n is the total number of 

months.  A positive (negative) value of the SOI index corresponds to higher (lower) 

mean sea level pressures anomalies at Tahiti than Darwin.  The positive (negative) SOI 

phase results in easterly (westerly) surface stress anomalies and warm (cool) SST 

conditions in the west Pacific.  The SOI is strongly negatively correlated with the 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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ENSO indices (see 3.5.1.), with Pearson product-moment correlation coefficients 

ranging from -0.63 to -0.73 for the January SOI and ENSO indices used for this study.  

Monthly SOI data are archived by the NOAA CPC and may be accessed online at 

<ftp://ftp.cpc.ncep.noaa.gov/ wd52dg/data/indices/soi>.   

 

3.5.7 North Atlantic Oscillation (NAO) 

The North Atlantic Oscillation (NAO) has been identified as a major source of 

interannual variability in the northern hemispheric atmospheric circulation (Hurrell 

1995).  The oscillation has been defined differently by several authors (Ambaum et al. 

2001), but it has always been associated with a north-south dipole structure in mean sea 

level pressure over the Atlantic Ocean (e.g. Walker and Bliss 1932; Wallace and 

Gutzler 1981; Hurrell 1995; Ambaum et al. 2001).  As an index, the NAO is defined by 

only two points, unlike another major mode of northern hemispheric variability, the 

Arctic Oscillation (AO), which is derived from hundreds of data points across the entire 

northern hemisphere.  A common way to calculate the NAO is to subtract the 

standardized (by standard deviation) mean sea level pressure anomaly at Stykkisholmur, 

Iceland from the standardized mean sea level pressure anomaly at Lisbon, Portugal 

(Hurrell 1995).  This method is in line with the usual definitions of the NAO which 

examine the gradient in sea level pressure from the Azores high and the Icelandic low 

(Broccoli et al. 2001).  Positive (negative) NAO index values correspond to a stronger 

(weaker) than usual Azores high and deeper (lower) than usual Icelandic low.  In the 

positive (negative) NAO index, increased (decreased) pressure gradient results in more 
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(less) frequent and stronger (weaker) extratropical cyclones crossing the North Atlantic 

on a more meridional (zonal) storm track.   

When the Azores high pressure cell is stronger than average in March, April, 

and May, it feeds back in a self-enhancing loop that increases surface trade winds and 

thus surface evaporation in the eastern Atlantic.  The increased evaporative cooling 

leads to cooler SSTs and higher surface pressures.  The mean strength of this 

subtropical ridge in the Atlantic is negatively correlated with pressure anomalies in the 

Caribbean during the summer (Knaff 1998).  Caribbean sea level pressure during the 

peak of the Atlantic hurricane season was one of the earliest known predictors of TC 

activity (e.g., Gray 1984), explaining 31% of the interannual variance in hurricane 

activity and 29% of the interannual variance in intense hurricane activity during the 

1950-1995 period.   

The NAO overlaps with the AO in the North Atlantic, and thus time series of the 

two patterns are highly correlated (the AO and NAO monthly values used in this study 

have linear correlation coefficients as large as 0.81), although the AO covers more of 

the Arctic and thus has a more zonally symmetric appearance (Thompson and Wallace 

1998).  Because the two indices are so related, there is some debate as to whether they 

are actually different indices for the same phenomenon (Wallace 2000), or if the NAO 

and Pacific-North American (PNA; see section 3.5.8) pattern together comprise the AO.  

Regardless, all three oscillations’ phenotypical expressions are linked, and thus it is not 

surprising that the indices and spatial patterns are similar.  The NAO exhibits both 

interannual and interseasonal variability, and consecutive months where the index is in 
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one phase, followed immediately by consecutive months in the opposite phase, are 

common (Hurrell 1995).   

 

3.5.8. Pacific-North American (PNA) pattern 

The Pacific-North American (PNA) pattern is one of the two most important 

modes of variability (along with the NAO) in the northern hemisphere teleconnections 

patterns (Johansson 2007).  Synopticians have routinely noticed persistent 

configurations of midtropospheric geopotential height in boreal winter extending from 

the middle Pacific Ocean to eastern North America (Wallace and Gutzler 1981).  Above 

normal geopotential height over western North America tends to be accompanied by 

strongly negative height anomalies in the middle Pacific, near 45°N, and over the 

southeastern U.S.  Specifically, strong positive correlations were noticed between 700 

mb heights in the North Pacific (40°N, 150°W) and Cape Hatteras (35°N, 75°W; 

Namias 1951), and troughs over the eastern U.S. were often accompanied by ridges 

over the western U.S. on the mean monthly composite maps (Klein 1952).  Dickson and 

Namias (1976) were the first to document the Pacific/North American teleconnections 

pattern.  Wallace and Gutzler (1981) computed an index based on the linear 

combination of normalized (by standard deviation) 500 hPa geopotential height 

anomalies near Hawaii (20°N, 160°W), the North Pacific ocean (45°N, 165°W), Alberta 

(55°N, 115°W), and the U.S. Gulf coast region (30°N, 85°W).  Specifically, the 

Wallace and Gutzler (1981) PNA pattern is given by 

1PNA= [ *(20 N,160 W) *(45 N,165 W)
4

z z−  

*(55 N,115 W) *(30 N,85 W)]z z+ −  

(3.10) 
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where z* (X,Y) denotes the monthly mean 500 hPa geopotential height anomaly at 

latitude X and longitude Y obtained by subtracting the monthly value from the mean 

monthly value over the 1950-2000 base period.  The positive (negative) phase of the 

PNA index corresponds with above (below) average 500 hPa geopotential heights over 

Hawaii and southwestern North America and below (above) average 500 hPa 

geopotential heights south of the Aleutian Islands and in the southeastern U.S.  The 

positive phase brings an enhanced East Asian jet stream and an eastward shift in the 

climatological position of the East Asian jet exit region.  The negative PNA phase 

typically brings blocking (quasi-stationary regions of high geopotential heights) over 

the North Pacific and a strong split-flow jet stream configuration over the central North 

Pacific.   

To determine skill in predicting the PNA and the NAO, 6 h forecasts from the 

operational uncoupled NCEP and ECMWF global models were examined out to seven 

days (168 h) for the period 22 January 2000 to 24 March 2005 (Johansson 2007).  Skill 

was quantified by calculating a correlation coefficient between observed and forecast 

indices.  The predictability of both the PNA and the NAO indices was found to be 

higher than that for the climatological Northern Hemisphere midlatitude flow.  The 

PNA was found to have greater forecast skill than the NAO, although the physical 

reasoning remains unclear (Johansson 2007).  Perhaps the five-year study was too short 

to fully capture the variance of the oscillations, which vary on interannual to decadal 

timescales.   

The physical mechanisms that force the PNA and NAO are not very well 

understood (Johansson 2007).  However, the two oscillations are thought to be internal 
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to the atmosphere, primarily contained in the extratropical troposphere, and not directly 

coupled to the oceans (Hurrell et al. 2003; Straus and Shukla 2002).  The extratropical 

oceans do indirectly modulate feedbacks to the atmosphere, as SSTs modulate sea level 

pressure and precipitable water content (e.g., Mosedale et al. 2006), and the tropical 

oceans, particularly the ENSO phenomenon, “probably” influence the PNA (Johansson 

2007).  

 

3.5.9. Alternative method for calculating NAO and PNA 

Following the procedure outlined by the Climate Prediction Center (available 

online at <http://www.cpc.noaa.gov/data/teledoc/teleindcalc.shtml>), Northern 

Hemisphere teleconnections indices can be calculated using the Rotated Principal 

Component Analysis (RPCA) of Barnston and Livezey (1987).  The CPC applied the 

RPCA technique to monthly mean 500 hPa height anomalies, standardized by the 1950-

2000 base period, over the region 20°N-90°N.  The data were provided by the CPC 

climate data assimilation system, CDAS, which is also the system used in the 

NCEP/NCAR Reanalysis (Kalnay et al. 1996).  The CPC calculation proceeds as 

follows.  For each calendar month, the ten leading unrotated empirical orthogonal 

functions (EOFs) are determined from the standardized monthly height anomalies over 

the three-month period centered on that month (centered using a simple arithmetic 

mean).  A Varimax (Barnston and Livezey 1987) rotation is then applied to the ten 

leading un-rotated modes.  This rotation yields ten time series for that calendar month, 

and the ten leading rotated modes are therefore based on 153 (51 years x 3 months) 

monthly standardized anomalies.  During the Varimax rotation technique, the actual 
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monthly indices are calculated using a least squares solution.  The primary 

teleconnections patterns for all months are isolated and time series of each pattern are 

constructed.  Of the twelve sets of rotated modes, ten are found to be the dominant 

teleconnections patterns.  They are referred to as the North Atlantic Oscillation (NAO), 

the Pacific/North American (PNA) teleconnections pattern, the East Atlantic pattern, the 

West Pacific pattern, the East Pacific-North Pacific pattern, the East Atlantic/Western 

Russia pattern, the Tropical/Northern Hemisphere pattern, the Polar-Eurasian pattern, 

the Scandinavia pattern, and the Pacific Transition pattern.  The monthly standardized 

northern hemisphere teleconnections indices may be accessed online at 

<ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh>.   

 

3.5.10. The Arctic Oscillation (AO) 

The Arctic Oscillation (AO) is defined as the first EOF of Northern Hemisphere 

mean sea level pressure.  It is the dominant mode of variability of the extratropical 

Northern Hemisphere circulation (Zhou and Miller 2005), explaining 25% of the 

variance of the first EOF (Ambaum et al. 2001).  It appears in EOF analysis of mean sea 

level pressure on a very broad time spectrum ranging from weeks to decades, and it 

exists in any season.  The AO is maintained by midlatitude planetary Rossby waves, 

both stationary and transient, which interact with the mean zonal flow by their poleward 

transport of latent heat.  The most pronounced feature of the AO pattern is the two 

same-signed correlation centers over the North Pacific and North Atlantic Oceans.  

Thus positive (negative) sea level pressures in the North Pacific correspond with 

positive (negative) sea level pressures over the North Atlantic.   
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The AO has been primarily linked with atmospheric variability during the cold 

season, when the oscillation is most pronounced.  However the AO also contributes to a 

significant portion of the atmospheric circulation’s total variance during the warm 

season, and the AO is evident in the troposphere throughout the year (Murname 2004).  

Positive (negative) AO index values are associated with higher (lower) sea level 

pressures at low latitudes, and positive (negative) values are also associated with 

stronger (weaker) westerly winds at mid- and high-latitudes.    

The monthly AO index used in this study is constructed by the NOAA National 

Centers for Environmental Prediction (NCEP) Climate Prediction Center (CPC).  It is 

calculated by first projecting daily 1000 hPa geopotential height anomalies poleward of 

20°N onto the leading EOF of mean 1000 hPa geopotential heights and then averaging 

the daily values for each month.  The geopotential height data are archived in the 

NCAR/NCEP Reanalysis (Kalnay et al. 1996) data, and the first EOF was derived from 

the mean 1000 hPa geopotential height during the 1979-2000 period following the 

methodology of Thompson and Wallace (1998).  Monthly values of the index were then 

created from the mean of the daily values.  The monthly AO index used in this study 

may be accessed online at <http://www.cpc.ncep.noaa.gov/products/precip/ 

CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table>.   

 

3.5.11 Different datasets yield different correlation patterns 

The NAO and PNA patterns have been studied extensively by climate scientists 

since their identification by Wallace and Gutzer (1981).  A series of sensitivity tests 

conducted using two different datasets for both the NAO and the PNA show that the 
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correlations between the climate indices and different measures of TC activity are 

dependent on the dataset chosen.  The NAO and PNA indices first considered for this 

study were derived by the NOAA CPC using the method of rotated empirical 

orthogonal functions (Barnston and Livezey 1987) discussed above.  The NAO index is 

a least-squares regression of monthly data onto the first rotated EOF; the PNA is a least-

squares regression of monthly data onto the fifth rotated EOF.  The second NAO index 

considered for this study is calculated from the method of Jones et al. (1997), Osborn 

(2004), and Osborn (2006), using a simple subtraction of the normalized sea level 

pressure at Reykjavik from the normalized sea level pressure at Gibraltar.  The monthly 

NAO index is given by  

GIB, REY,NAO i i
i

i i

slp slp
σ σ

= −  

where i represents the month and σi is the standard deviation of sea level pressure for 

month i.  The normalization procedure divides the monthly pressure values by their 

standard deviations over the period 1951-1980 and removes the NAO bias toward 

Iceland (whose standard deviation is at least twice, and in some seasons four times, the 

standard deviations at Gibraltar).   

The second PNA index considered for this study is calculated by the NOAA 

CPC using the modified pointwise method of Wallace and Gutzer (1981),  

modified
1PNA = [ *(15-25 N,180-140 W) *(40-50 N,180-140 W)
4

z z−  

*(45-60 N,125-105 W) *(25-35 N,90-70 W)]z z+ −  

(3.11) 

(3.12) 
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where z* (X,Y) denotes the monthly mean 500 hPa geopotential height anomaly at 

latitude X and longitude Y obtained by subtracting the monthly value from the mean 

monthly value over the 1950-2000 base period.   

Absolute differences between correlation coefficients using the methods 

described in 3.5.9 and the methods described in 3.5.11 were often 0.3 or greater.  

Furthermore, the NAO and PNA indices described in 3.5.9 were rarely statistically 

significantly correlated with TC activity.  Therefore, because they provide stronger 

correlations with several metrics of TC activity, the Jones et al. (1997) monthly NAO 

indices and the modified Wallace and Gutzer (1981) PNA indices were used for this 

study.  The NAO indices may be accessed online at <http://www.cru.uea.ac.uk 

/~timo/projpages/nao_update.htm>, and the monthly PNA indices may be accessed 

online at <http://www.cpc.noaa.gov/products/precip/CWlink/pna/norm.mon.pna.wg. 

jan1950-current.ascii.table>.   

 

3.6 Quantifying relationship between TC activity and climate indices 

To explain patterns of atmospheric and oceanographic variability, 

meteorologists frequently examine the temporal and spatial relationships between 

atmospheric variables and climatic indices.  The most commonly employed statistical 

method to determine the relationship between two different variables is the test of linear 

correlation (e.g., Maloney and Esbensen 2007; Zheng and Frederiksen 2007; McGregor 

et al. 2007; Mandal et al. 2007; Chu and Zhao 2007; Grantz et al. 2007).  Linear 

correlation is a robust statistical measure that quantifies the degree of monotonic 

association between two variables (Wilks 1995; Pires and Perdigão 2007).  The Pearson 
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product-moment correlation coefficient is one such measure of linear relationship 

between two variables.  The correlation coefficient is given by 

xy

xx yy

S
r

S S
= , 

where Sxy is the covariance between variables x and y, Sxx is the variance of variable x, 

and Syy is the variance of variable y.  The covariance is given by   

( )( )
1

N
i i

xy
i

x x y y
S

N=

− −
=∑ , 

where x is the arithmetic mean of variable x, y is the arithmetic mean of variable y, and 

N is the number of observations.  The Pearson product-moment correlation coefficient 

is useful because it does not depend on the units of x or y.  It is also commutative, in 

that the correlation between variables x and y is the same as the correlation between 

variables y and x.  Coefficients r vary between -1.00 ≤ r ≤ 1.00, where positive r 

corresponds to a positive linear relationship and negative r a negative linear 

relationship.  Pearson’s correlation is limited by its inability to resolve nonlinear 

relationships, an underlying assumption that the population is normally distributed, and 

by its sensitivity to outliers (Wilks 1995).   

An alternative statistical test that does not require the population be normally 

distributed (only Gaussian) and is resistant to outliers is given by Spearman (Grantz et 

al. 2007).  The Spearman rank correlation coefficient does not compute the correlation 

on the actual data, but rather from the ranks of the actual data.  The smallest x (y) is 

assigned a rank of 1 (1) and the largest x (y) is assigned a rank of n.  Spearman’s rank 

correlation coefficient is given by 

(3.13) 

(3.14) 
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where di is the difference between the ranks of pair xi and yi and n is the number of 

paired values.  Like the Pearson correlation, the Spearman correlation is sensitive to the 

data at the start and end of the record (Grantz et al. 2007).  However, the correlation 

analysis uses ranks instead of actual data, thus decreasing its sensitivity to outliers, in 

this case very active or inactive TC seasons.   

Both the Pearson and Spearman correlation coefficients rely on the assumption 

that the samples being tested have a Gaussian shape.  Histogram plots of the datasets 

used in this study are have a Gaussian shape (e.g., see Fig. 3.1), but is this assumption 

valid for the correlation tests used in this section?  Fortunately the answer to this 

question is found in the central limit theorem, which states for datasets of noninfinite 

variance and sufficiently large sample size, their sum will have a Gaussian distribution 

(LaCasce 2005).  The datasets, both TC activity and climate indices, have noninfinite 

variance, and their sample sizes are larger than n=30.  Thus the datasets are assumed 

Gaussian.   

However, in addition to the Gaussian shape assumption, a Pearson correlation 

assumes that a sample is also normally distributed (Wilks 1995).  To determine whether 

the TC activity metrics and climate indices are normally-distributed, the Anderson-

Darling (Anderson and Darling 1952) empirical distribution function test of normality is 

used.  The Anderson-Darling test is useful for several reasons: first, it only requires 

knowledge of a sample’s mean and variance; second, it is robust and not sensitive to U-

shaped or peaked rank historgrams; and third, it converges rapidly and thus retains 

(3.15) 
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considerable power even for small sample sizes (Elmore 2005).  The relevant test 

statistic A2 is given by   

( ) ( ) ( )( )( )2
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where Φ(Yi) returns the standard normal cumulative distribution function of Yi, n is the 

number of observations (for this study, n is typically 37, from 1970-2006), and i is the 

summation index.  The function Yi returns the standardized value of each index xi and is 

given by  

i
i

x xY
s
−

= , 

where x is the mean and s the standard deviation of the index.  A null hypothesis H0 

stating that a sample is not significantly different from the standard normal distribution 

can be rejected, with 95% confidence, in favor of an alternative hypothesis HA stating 

that the sample is significantly different from the standard normal distribution, 

whenever critical A2 values do not exceed 0.721 (Stephens 1974).   

Anderson-Darling test statistics were computed for each of the fifteen metrics of 

TC activity for each relevant basin (the landfalling TC metrics are only generated for 

the EPAC and NATL basins).  Test statistics were also computed for each of the twelve 

climate indices for all twelve three-month periods.  Tables 3.3-3.4 report the values of 

A2 for each dataset.  One hundred and three (71%) of the 144 climate indices are 

normally-distributed, but only 28 (31%) of the 89 TC activity metrics are normally-

distributed.  Therefore, because the Pearson product-moment correlation assumes that a 

sample is normally-distributed, this study will use the Spearman rank correlation to test 

(3.16) 

(3.17) 
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the relationship between TC activity and climate indices.  The Spearman correlation 

also has the advantage of being resistant to outliers.   

To calculate Spearman correlation coefficients used in this study, each of the 

fifteen metrics of TC activity from each of the nine basins were ranked, with the year 

having the lowest level of activity ranked as “1” and the year having the highest level of 

activity ranked as “37”.  The corresponding climate indices were also ranked in the 

same manner.  Then the ranks were used in (3.15) to generate correlation coefficients r.  

Similar to the Pearson coefficient discussed above, the Spearman coefficients r vary 

between -1.00 ≤ r ≤ 1.00, where positive r corresponds to a positive linear relationship 

and negative r a negative linear relationship.  When r is unity, the relationship is 

perfectly one-to-one.  The significance of the correlation coefficient is given by  

( )( )21 2
crit

rt
r n

=
− −

, 

where r is the Spearman rank correlation coefficient and n is the sample size (Press 

1992).  For n-2 degrees of freedom, the critical t for 95% confidence is 2.032.  This t 

corresponds to a correlation coefficient of ± 0.329.  Thus, correlation coefficients that 

are greater than 0.329 or less than -0.329 are, with 95% confidence, statistically 

significantly different from 0.0.   

 

3.7 Relationships and associations between TC activity and climate indices 

The previous discussion detailed several reasons to examine the relationships 

between TC activity and various atmospheric variables.  Up to the present day, no 

encyclopedic quantification of the relationship between the nine basins and the twelve 

(3.18) 
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climate indices has been undertaken.  Now that the climatic records – both of TC 

activity and modes of atmospheric variability – are sufficiently long, such a record must 

be presented.  The twelve climatic indices are divided into twelve 3-month periods, and 

nine ocean basins with fifteen TC activity metrics are examined.  In total, 12,816 rank 

correlation coefficients were calculated and scrutinized to determine the relationships 

between the atmosphere, the oceans, and TC activity.    

Two themes are prevalent throughout the correlation data, and these themes are 

highlighted in the sections below.  The first major theme is the strength of the SST 

signal in each of the other modes of oscillation.  In a wavelet analysis of 1970-2006 

monthly NINO3 SSTs, following the method of Torrence and Compo (1998) that is 

available online at <http://atoc.colorado.edu/research/wavelets/software.html>, peaks in 

the power spectra occur at the timescales of the PNA and the MJO (intraseasonal 

oscillations), ENSO, NAO, QBO, SOI, and NOI (interannual oscillations), and AO and 

PDO (decadal to interdecadal oscillations) (Fig. 3.33).  The modes are also visible in 

wavelet analyses at peaks in the power spectra corresponding to the timescales of the 

leading modes (see Figs. 3.34-3.38).  The second major theme is the out-of-phase 

relationships between the East Pacific and North Atlantic (and subbasins).  TC activity 

between each basin is negatively correlated, and coefficients r are routinely statistically 

significant (Table 3.5).  The correlations reveal that active (inactive) EPAC seasons 

tend to be paired with inactive (active) NATL seasons.  These correlations are 

repeatedly substantiated by the out-of-phase correlations between EPAC and NATL TC 

activity and the climate indices.  When the out-of-phase relationships were first noticed, 

it was not clear why they appeared so frequently between multiple metrics of TC 
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activity.  However, they were suggestive of teleconnections with larger-scale 

atmospheric and oceanic modes of variability, and it was this out-of-phase relationship 

which spurred much of the investigation presented in Chapter 3.    Specifically, I 

wanted to test the hypothesis that large-scale patterns which favored TC activity in 

some basins would also limit TC activity in other basins.   

Fig. 3.2 shows the spatial distribution of the correlations between IHC and Jul-

Sep climate indices.  Notice that NINO1.2, NINO3, NINO3.4, NINO4, SOI, and NOI 

correlations switch signs from the NATL, CARIB, and GOM to the EPAC, EEPAC, 

WEPAC, and CPAC, corroborating the see-saw patterns of TC activity between the 

EPAC and NATL.  Notice also the relative importance of NINO4 to the WEPAC and 

CPAC, and NASST to the NATL, CARIB, and AMDR.  These two (NINO4 and 

NASST) are approximately in situ measures of SST in those basins.  Finally, notice the 

high correlations between the PNA and the WEPAC and CPAC; for those basins, the 

PNA is also an approximately in situ measure of midtropospheric geopotential height.   

These associations are a preview of the many relationships found within and 

across the nine basins.  In the next nine subsections, relationships between subbasin TC 

activity and the climate indices will be discussed in context of the dominant themes 

outlined above.  The utility of the fifteen metrics of TC activity will also be 

demonstrated with foci on the advantages and disadvantages of each metric and which 

method(s) are the best for quantifying TC activity.  Beginning with the EPAC and 

concluding with the AMDR, Figs. 3.3 – 3.32 display each of the correlation coefficients 

between each metric and climate index.   
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3.7.1 EPAC 

The EPAC, as with most of the subbasins, exhibits mostly statistically 

insignificant correlations (-0.329 ≤ r ≤ +0.329) in the months before the start of the 

season (on 15 May).  However, for every three-month period, at least two statistically 

significant correlations, one positive and one negative, exist.  The Jan-Mar AO and 

NAO are positively correlated with ACE and PDI, indicating that the AO and NAO are 

possible predictors of seasonal values of ACE and PDI.  However, the Jan-Mar AO and 

NAO are not significantly correlated with TCC, HC, or IHC.  The largest EPAC 

correlations are found in Jun-Aug, Jul-Sep, Aug-Oct, and Sept-Nov, and are between 

the four NINO indices and SMD.  This result is indicative of the prominence of the 

association between SSTs (the first theme discussed above) and TC activity.  Although 

correlation coefficients only reveal relation, not causation, in this case the causation is 

straightforward.  When the NINO indices are positive during the summer months, warm 

SSTs favor TCs forming later in the season, and thus SMD is later.  The same signal is 

also seen in the correlations between ENSO and SED: warm Jun-Nov SSTs favor for 

late-forming TCs.  The strongest negative correlations in the EPAC are found between 

ACE, PDI, SMD, and SED and the SOI and NOI.  These signals are not surprising 

considering the strong (|r| ≥ 0.7) correlations of SOI and NOI with ENSO.  Negative 

SOI and NOI values occur when the tropical Pacific easterlies are anomalously weak, 

and these weak trade winds are associated with warm SSTs in the ENSO regions.  

Warm SSTs are favorable for TC genesis.   Finally, illustrating both the first and second 

themes, the NASST index is significantly negatively correlated with EPAC TCC, HC, 

IHC, and ACE, beginning in Aug-Oct and continuing through Dec-Feb.  Warmer North 
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Atlantic SSTs are related to lower EPAC activity levels, although the causation remains 

unclear.  Thus to summarize:  the AO and NAO indices are significant during boreal 

winter, and the NINO1.2, NINO3, NINO3.4, NINO4 , NOI, SOI, and NASST indices 

are significant during boreal summer and early autumn months.   

 

3.7.2 NATL 

Like the EPAC, the most frequently significant correlations with TC activity in 

the NATL are the indices closely tied to SST:  NINO1.2, NINO3, NINO3.4, NINO4, 

NASST, NOI, and SOI.  From May-Jul to Dec-Feb, these SST-based indices indicate 

not only a statistically significant relationship with TCC, HC, IHC, ACE, SMD, SED, 

TCLC, and TCLP, but often a strong relationship with |r| exceeding 0.6.  The 

correlations reveal an inverse association between warmer (cooler) equatorial Pacific 

SSTs and fewer (more) NATL TCs, hurricanes, and intense hurricanes.  They also 

reveal that warm equatorial Pacific SSTs occur during NATL seasons with early SMD 

and SED.  Interestingly, the only SST-based index that maintains a strong correlation 

with PDI is the NASST, indicating that in situ SSTs are important for long-lived (but 

not necessarily intense; see below) TCs.  It is not surprising that the NINO-based 

indices are also related to TC landfall: fewer (more) NATL TCs make landfall when the 

NINO indices are positive (negative), and not only do fewer (more) TCs make landfall, 

but also a smaller (larger) proportion of TCs make landfall when the NINO indices are 

positive (negative).   

These relationships (except the NASST) are all part of the established 

teleconnection between ENSO, vertical shear, and NATL TC activity.  Earlier studies 
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found an inverse relationship between ENSO and NATL hurricane activity, but this 

dissertation is unique in its approach to separating the different ENSO regions and 

testing their relationships to TC activity across ocean basins and subbasins.  There have 

been many recent studies that examined the relationship between one combined ENSO 

index and NATL TC activity (e.g., Smith et al. 2007; Elsner et al. 2006; Jagger and 

Elsner 2006; Bell and Chelliah 2006; Xie et al. 2005; Larson et al. 2005; and Lyons 

2004); however, few studies separate the individual NINO regions (e.g., Klotzbach and 

Gray 2004), and to the author’s knowledge, no studies examine the relationship between 

individual NINO regions and the nine basins selected for this investigation.  The four 

NINO regions are strongly positively correlated with one another (r ≈ 0.70), however, 

they are not equal, and different ENSO events have had differing impacts on regional 

SSTs (e.g., Trenberth and Smith 2006).  Thus there is value in treating each NINO 

index separately.     

 The approximately in situ NASST is significantly positively correlated, 

beginning in May-Jul and continuing to Dec-Feb, with NATL TC, HC, ACE, and PDI.  

NASST shows weaker positive correlations with IHC, which is surprising given the 

ongoing (as of September 2007) heated discussion of the impacts of changing global 

temperature on intense hurricanes.  The lack of relationship between NASST and IHC is 

also surprising given its strong correlation with ACE and PDI.  Recall that ACE, and 

especially PDI, are very sensitive to extreme wind speeds, but that they are also 

integrated quantities that are also sensitive to longevity.  Thus warm North Atlantic 

SSTs (positive NASST index) indicate a preference for not only more frequent but also 

longer-lived TCs, and this result is verified by the strong positive correlations between 
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NASST and STCD (a measure of longevity of TCs).  The weaker, but still positive, 

correlation between NASST and IHC indicates that perhaps the most intense hurricanes 

are not limited by SST but instead by another atmospheric variable.   

It is also interesting that the Pacific SST correlation patterns align in an east-to-

west direction, whereby the region closest to the NATL, NINO1.2, has the highest 

correlations, and the region farthest from the NATL, NINO4, has the lowest 

correlations.  For IHC, the NINO1.2 correlations between Jul-Sep and Sep-Nov are 

almost twice as negative as the NINO4 correlations.  The strongest negative correlations 

for the four NINO regions (reflected by the strongest positive NOI and SOI 

correlations) are with the IHC metric.  Given that the warm ENSO phase is associated 

with anomalously high vertical wind shear over the NATL, it is interesting to see the 

ENSO phase most strongly associated with NATL IHC (instead of TCC or HC).  This 

relationship matches well with the discussion above regarding the insensitivity of 

NATL IHC to NASST.  Specifically, the two relationships provide evidence that intense 

hurricanes are perhaps not limited by the warmth of the sea surface beneath them but 

instead by the vertical wind shear of their environment.  This hypothesis deserves future 

investigation as it has significant implications in the debate over the impacts of global 

temperature change on regional TC activity.   

Interestingly – and significantly – absent from the NATL correlations is the 

QBO.  This is in direct contrast with the early studies of Gray (1984) and Gray et al. 

(1993), which reported an association between QBO phase and NATL hurricane 

activity.  The only statistically significant relationships (but only moderately strong, |r| 

≤ 0.4) are found between the Oct-Dec and Nov-Jan QBO and IHC and also between the 
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Jan-Mar QBO and TCLP.  The lack of association is perhaps linked to differences 

between measurement of QBO, although both Gray (1984) and the QBO index of this 

study use the zonal wind measured at 30 hPa to determine the phase.  This study has the 

advantage of 24 additional years of data, but Gray (1984) used actual rawinsonde data 

whereas this study uses Reanalysis data.  Instead of measurement differences, however, 

it is perhaps more likely that the QBO does not impact tropical cyclogenesis outside of 

the deep tropics (poleward of 20°).  The NATL index covers the entire North Atlantic 

basin, including deep tropics, subtropics (between 20° and 35°), and midlatitudes 

(poleward of 35°).  Thus it will be resistant to impacts from the QBO.  The true impacts 

of the QBO can be seen by its strong correlations (r approaching -0.70) with CARIB 

and AMDR, subbasins which are almost entirely within the deep tropics.  This 

relationship is in agreement with Gray (1984), where positive QBO (easterly zonal 

winds) results in fewer intense hurricanes in the deep tropics.  Thus, the importance in 

relating climate indices to basin activity is demonstrated: in the full NATL basin, TC 

activity has no significant relationship to QBO phase, but in the deep tropics, it has a 

moderate to strong relationship.  Without examining basins smaller than the NATL, this 

relationship would remain obscured.   

The PDO and PNA have some statistically significant correlation with TC 

activity.  The Jul-Sep to Nov-Jan PDO is significantly negatively correlated with IHC, 

and to a lesser extent, TCC and HC, but it is not significantly correlated with ACE, PDI, 

or STCD.  This relationship indicates that positive PDO phase (warm SST anomalies 

and positive sea level pressure anomalies in the northeast Pacific) is associated with 

reduced NATL TC activity, which is not surprising given the tendency for the PDO to 
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couple in-phase with ENSO (Goodrich 2007).  The most significant PNA correlations 

occur in the mid-season Jul-Sep, Aug-Oct, and Sep-Nov periods.  It is positively 

correlated with PDI and STCD (but not significantly related to TCC, HC, IHC, or 

ACE).  As discussed above, STCD and PDI are sensitive to longevity, and thus the 

positive PNA index, which brings positive 500 hPa height anomalies over the southeast 

U.S. and into the western North Atlantic, is associated with long-lived TCs.  The PNA-

to-TC-longevity relationship is physically reasonable, as a pronounced 500 hPa 

anticyclone over the western North Atlantic steers any TCs that form westward, 

preventing recurvature and the decay that comes with cooler SSTs and greater wind 

shear in the midlatitudes.  Thus, forecasts of TC activity on a weekly timescale should 

account for the current phase of the PNA.  The PNA index does not correlate with TC 

genesis, but it does correlate with longevity.   

Finally, the AO and NAO show some significant, but moderate (|r| ≤ 0.6), 

negative correlations at the important lead times of Jan-Mar, Feb-Apr, and Mar-May for 

TCC, HC, and IHC.  (Winter months with statistically significant correlations are 

important because their indices allow for seasonal predictions of TC activity from 

observational, rather than model, data.)  These relationships indicate that weaker and 

more zonal middle and high latitude winds, characteristic of the weak Azores-Iceland 

gradient (the NAO signal) and negative sea level pressure anomalies in the low latitudes 

(the AO signal), are associated with more NATL TC activity.  Because the dominant the 

NASST index is most correlated with NATL TC activity, the question remains whether 

the NAO and AO are related to, or perhaps even force, North Atlantic SSTs.  However, 

the Feb NAO and AO are not correlated with Feb or Sep NASST (|r| ≤ 0.20), implying 
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that the NASST signal is independent of the NAO and AO signals.  Thus the pre-season 

values of AO and NAO have important relationships to NATL TC activity.   

 

3.7.3 CARIB and GOM 

Because the CARIB and GOM are adjacent subbasins of the NATL, the three 

have several similar correlation patterns.  Like the NATL, the CARIB May-Jul to Dec-

Feb NOI and SOI are significantly positively correlated with TCC, HC, ACE, and 

STCD, and NINO1.2, NINO3, NINO3.4, and NINO4 are negatively correlated with 

TCC, HC, ACE, and STCD.  Spatially, the correlations are strongest in the easternmost 

tropical Pacific (NINO1.2 region) and diminish westward (to the NINO4 region).  The 

corresponding GOM correlations are not as strong but have the same statistical pattern 

as the CARIB.  The physical implications remain the same for both subbasins: warm 

ENSO waters are associated with lower CARIB and GOM genesis (TCC), 

intensification (HC and ACE), and longevity (STCD) because the relevant ENSO 

teleconnection is to modulate vertical wind shear over the NATL, CARIB, and GOM.  

The ENSO-related indices are also significantly correlated with CARIB SED, and these 

correlations are significant from Jan-Mar through the season.  As with the NATL, the 

physical interpretation is that warm ENSO waters enhance vertical wind shear over the 

CARIB (and, to a lesser extent, the GOM), but the strongest vertical shear anomalies 

arrive at the end of the season.   

NASST is moderately, and occasionally strongly, positively correlated with 

CARIB ACE, PDI, and STCD, and its correlations are statistically significant at all time 

periods.  The preseason (Jan to Jun) NASST correlations are especially interesting 
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because their signal can be used as a preseason predictor.  Like its parent basin the 

NATL, the CARIB NASST index is not strongly correlated with the counted metrics of 

TC activity (TCC, HC, or IHC), indicating that warm water in the North Atlantic during 

winter and spring is associated not with more TCs, hurricanes, or intense hurricanes, but 

rather with longer-track TCs of varying intensities.  As discussed for the NATL, a 

statistically significant negative correlation exists between QBO and IHC.  However, 

this relationship is only found between the QBO and CARIB intense hurricanes, not 

GOM intense hurricanes, thus providing further evidence that the QBO is restricted to 

the tropics equatorward of 20°.   

The AO and NAO are both significantly negatively correlated with CARIB and 

GOM HC and IHC from Jan-Mar to Apr-Jun, and the AO is strongly correlated with 

CARIB and GOM IHC.  Physically, a negative AO index corresponds to low sea level 

pressures in the tropical North Atlantic and weaker westerly winds in the mid- and high-

latitude North Atlantic; a negative NAO index corresponds to a weak pressure gradient 

between the Azores high and the Icelandic low, leading to weaker midlatitude winds 

and more zonal extratropical storm track across the North Atlantic.  The connection to 

CARIB and GOM intense hurricanes is not very straightforward: when the AO and 

NAO are negative from Jan to Jun, zonal flow prevails across the central and northern 

North Atlantic, preventing midlatitude extratropical systems from reaching deep into 

the tropics.  The lack of extratropical systems extending into the deep tropics keeps 

SSTs warmer during the winter and spring and translates into favorable conditions for 

CARIB and GOM intense hurricanes.  The teleconnection between winter-spring AO 

and NAO and September NASST was examined in the last section and no correlation 
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was found.  However, this pattern is potentially useful as a predictor, and thus future 

study examining the physical relationship is suggested.   

Like the full NATL basin, CARIB and GOM TCC and HC are negatively 

correlated with late spring (Apr-Jun) PNA and early autumn (Sep-Nov and Oct-Dec) 

PDO.  Negative PNA corresponds physically with 500 hPa ridging over the southeast 

U.S. and western North Atlantic, and positive PDO corresponds to warm SSTs along 

the U.S. west coast and high sea level pressures in the subtropical north Pacific.  

Physically, the midtropospheric ridging associated with the negative PNA sets up 

favorable conditions for early-season TCs to develop (TCC) and intensify (HC).  The 

PDO is known to enhance ENSO when the two are in the same phase; thus, positive 

PDO will enhance the effects of the positive ENSO phase and reduce TCC, HC, and 

IHC over the CARIB and GOM.   

 

3.7.4 AMDR 

The AMDR is essentially an eastward extension of the CARIB subbasin, 

extending along roughly the same latitude zone from West Africa to Central America.  

It includes most of the CARIB basin; however, because it is farther east than the 

CARIB and occupies the southernmost portion of the NATL, it is a unique subbasin.  

For example, the ENSO signal, which is prominent for the NATL, CARIB, and GOM, 

is only weakly statistically significant in the AMDR, indicating that the teleconnection 

between warm equatorial Pacific waters and enhanced tropical Atlantic vertical wind 

shear is not as strong across the hemisphere.  NASST remains moderately to strongly 

positively correlated with TCC, HC, IHC, ACE, and PDI, but it is no longer the source 
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of the largest correlations.  AMDR IHC is strongly associated with QBO, AO, and 

NAO.  In particular, the Jan-Mar to Apr-Jun AO is very strongly negatively correlated 

with IHC, with r ≈ -0.9.  Following linear correlation theory, the AO thus explains over 

80% of the variance (r2) in AMDR intense hurricane activity.  However, by Aug-Oct, 

the AO is no longer statistically significant, complicating the question of its association 

to IHC.  In a similar fashion, the NAO is strongly negatively correlated with IHC in 

winter and spring, but by the peak of the season, it is not statistically different from zero 

correlation.  Thus, in addition to the spatial teleconnection between AO and NAO and 

the AMDR, the temporal teleconnection between Mar-May AO and NAO and Aug-Oct 

intense hurricane activity is very important.  The physical reasoning for these 

connections, however, remains unclear.     

Like the CARIB, GOM, and NATL, the PDO and PNA are mostly insignificant 

for the AMDR subbasin.  However, they are negatively correlated with TCC and HC, 

with the PNA signal appearing early in the season and the PDO signal appearing late in 

the season.  The physical reasoning behind these associations is similar to the reasoning 

for the CARIB and GOM subbasins.  

 

3.7.5 EEPAC and CEPAC 

The eastern subbasins of the EPAC are spatially adjacent and thus they have 

similar correlation patterns.  Surprisingly, though, neither subbasin has much 

association between the ENSO indices and TC activity.  Only NINO1.2 is statistically 

significantly correlated with EEPAC and CEPAC PDI, and the general pattern is for the 

rest of the correlations to be weak (|r| ≤ 0.3).  The only consistent pattern of correlation 
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with the ENSO indices is found with SMD, where the Jul-Sep to Dec-Feb ENSO 

indices are mostly statistically significant.  Physically, this association implies that 

warm ENSO waters do not cause more TC activity, but rather cause the season to peak 

at a later date.  This shift is found only in the mean day, not the start or end day, 

implying the season is not longer but more active later.  For populations along the west 

coast of Mexico, where almost every landfalling TC has its origins in either the EEPAC 

or CEPAC, and the North American monsoon region of northwest Mexico and the 

southwest U.S., this relationship implies that the sensible weather brought by EEPAC 

and CEPAC TCs will occur later in the year.   

The QBO is significantly negatively correlated with EEPAC, but not CEPAC, 

hurricane activity (HC), reinforcing the conclusion that the QBO’s effects are contained 

in low latitudes (the EEPAC is mostly equatorward of 20°N, while the CEPAC extends 

poleward of 20°N).  The PDO, PNA, NAO, and AO are all negatively correlated with 

EEPAC HC, indicating that low sea level pressures in the subtropical Pacific (negative 

PDO), low 500 hPa heights along the U.S. west coast (negative PNA), weak pressure 

gradient across the North Atlantic (negative NAO), and low sea level pressures across 

the tropical North Atlantic (negative AO) are all associated with more hurricanes in the 

EEPAC.  In the CEPAC, negative Aug-Oct PNA and positive Aug-Oct NAO are both 

statistically significantly correlated to TCC.  Finally, it is important to note that only 

one intense hurricane formed in the EEPAC from 1970-2006 (and therefore correlations 

between that activity metric and the climate indices are not available).   
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3.7.6 WEPAC and CPAC 

Like the EEPAC and CEPAC, the WEPAC and CPAC show less sensitivity to 

NINO1.2, NINO3, NINO3.4, and NINO4 than their Atlantic subbasin counterparts.  

Unlike the eastern EPAC subbasins, though, the most significant correlations are found 

between the PNA and SOI and IHC, with several three-month periods approaching r ≥ -

0.8.  Similar but weaker correlations are found between PNA and WEPAC TCC and 

HC, and similarly strong correlations are found between the SOI and CPAC TC and 

HC.  The physical relationship behind these strong associations is clear: both the PNA 

and the SOI are based in the central Pacific Ocean, and thus their teleconnections to the 

atmosphere and oceans are nearly in situ.  Negative PNA corresponds to low 500 hPa 

height anomalies over Hawaii, and negative SOI corresponds to warm SST in the 

central tropical Pacific.  Both physical responses are associated with favorable 

conditions for TC genesis (TCC) and intensification (HC and IHC).  They do not, 

however, favor TC longevity, as the correlations between PNA and SOI and ACE, PDI, 

and STCD are much lower.  The in-season (May-Jul to Oct-Dec) AO and NAO are 

moderately negatively correlated with CPAC IHC, indicating that the teleconnections 

between the North Atlantic extend halfway around the globe.  Finally, the QBO is 

strongly (r ≤ -0.6) negatively correlated with CPAC IHC, and because almost all CPAC 

intense hurricanes form equatorward of 20°N, this relationship provides yet another 

confirmation of the importance of the QBO in the intensification of TCs in the deep 

tropics.   
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3.8 Conclusions and future work 

The goals of this investigation were to (1) show that TC activity is related to the 

leading modes of atmospheric and oceanic variability; (2) quantify the association using 

robust statistical techniques; (3) demonstrate that the relationships are not static but vary 

across subbasins and TC activity metrics; and (4) infer physical relationships, where 

possible, that connect TC activity to the atmosphere and oceans.  I used TC best track 

data, along with time series of twelve climate indices, to document accomplish these 

goals.  I found that SSTs dominate the frequency, intensity, duration, and seasonality of 

TC activity.  These patterns of variation – particularly the detailed linkages between the 

four NINO regions, the Northern and Southern oscillations, and North Atlantic SSTs 

and the nine basins – are one of the major contributions of this investigation.  I add 

value to earlier studies of the relationships between TC activity and ENSO which did 

not examine the NINO regions separately or correlate them over different basins or 

metrics of TC activity.  I also found that the QBO is very relevant, particularly to 

intense hurricane activity, at low latitudes, equatorward of 20°N, but that its importance 

rapidly diminishes beyond the deep tropics.  Finally, I found significant relationships 

between TC frequency, intensity, and seasonality and the PNA, NAO, AO, and PDO, 

and that these associations are spread throughout the nine basins.  These relationships 

are vital to users across the disciplines of meteorology, economics, business, and 

sociology who wish to understand seasonal variability in TC activity.  The most natural 

next step for this research is to apply it to predict TC activity in the forecasting arena on 

intraseasonal to seasonal timescales and in the climate arena on interannual to 

interdecadal timescales.   
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Chapter 4:  Modulation of TC activity by the Madden-Julian 

Oscillation 

 

For the final section of this dissertation, I investigated the relationships between 

TC activity and the leading intraseasonal mode of atmospheric and oceanic variability, 

the Madden-Julian Oscillation.  Initialization errors and chaotic atmospheric variability 

lead to diminishing atmospheric predictability from dynamical numerical weather 

prediction beyond about seven days (Leslie et al. 1989).  However, accurate guidance of 

TC activity on one- to two-week timescales would be highly useful (Hall et al. 2001) to 

many users, including forecasters, energy traders, and emergency managers.  Thus, the 

primary objective of this section is to demonstrate modulation of TC activity in nine 

basins on one- to two-week timescales by the MJO.  To accomplish this goal, I 

examined the relationships between an operational MJO index and North Atlantic and 

East Pacific TC activity.  Like the previous investigation, I define TC activity in several 

ways, categorizing it by genesis, intensification, and landfall.  I quantify the MJO’s 

modulation by contrasting observed TC activity in each basin with expected TC activity 

during each MJO phase.  Statistically significant relationships were found for each 

basin and across the MJO indices, and these results are presented in this chapter.   

Understanding tropical cyclogenesis is fundamental to both short and long term 

planning decisions.  Immediate actions, in response to a possible tropical cyclone threat, 

need to be taken by multiple levels of societal organization.  Satellite rapid-scan 

operations can be ordered (and the appropriate satellites could be repositioned, if 

necessary), aircraft reconnaissance and other in situ observation platforms (both 
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operational and research) can gather instrumentation and personnel and pre-deploy, 

civilian, military, and commercial human forecasting shifts can be scheduled, processor 

time can be reserved on national supercomputing systems, and emergency management 

operations can be brought to a higher level of readiness, all with foreknowledge of 

likely tropical cyclogenesis activity in a specific basin or sub-basin.  Organized 

preparations for landfalling TC impacts lead to dramatic reductions in loss of life and 

property (Sheets 1990).  Thus, the ability to accurately predict these impacts is highly 

beneficial to society.   

Much of recent research has concentrated on two ends of a time spectrum:  the 

near-real-time timescale, forecasting track and intensity of an existing TC out to five 

days, and the climate timescale, forecasting seasonal and longer trends in TC activity.  

Advances in near-real-time forecasts have come primarily through improvements in 

numerical weather prediction, both dynamical and statistical-climatological (Barrett et 

al. 2006).  Beyond this timescale, in the 5- to 20-day window, initialization errors and 

chaotic atmospheric variability lead to diminishing atmospheric predictability from 

dynamical numerical weather prediction (Leslie et al. 1989).  It is in this window that 

accurate guidance, particularly in forecasting cyclogenesis, would prove highly useful 

(Hall et al. 2001).  For sub-basins where the life cycle from disturbance to landfall is 

often only a few days, such as the Gulf of Mexico, Caribbean Sea, and the eastern East 

Pacific adjacent to Mexico, short-term guidance for expected TC activity is especially 

needed.  Because currently-available dynamical guidance does not provide reliable 

predictions for TC activity beyond about five days, establishing controlling 

relationships between predictable long-period oscillations – such as the MJO – and TC 
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activity will provide great benefit in both the short- and long-term planning arenas.  It 

should be noted that for this chapter, the MJO will be presented as a cohesive, 

planetary-scale oscillation that exists in some form outside the eastern hemisphere 

tropics.  As will be discussed below, there is some debate whether the oscillation can be 

truly identified in the western hemisphere, as the coupled upper- and lower-tropospheric 

divergence-convergence couplet is not seen in time series analyses of rawinsonde data 

in several western hemisphere stations.  However, because the upper-tropospheric 

divergence component of the MJO is still observed in the western hemisphere, for the 

purposes of this dissertation, the phenomenon will be labeled the MJO.   

 

4.1. The Madden-Julian Oscillation 

In a spectral analysis of tropical rawinsonde data from 1959-1967 at Canton 

Island station (2.8 °S, 171.7 °W) in the South Pacific Ocean, Madden and Julian (1971) 

noticed distinct spectral peaks (maxima) in the 850 hPa and 150 hPa zonal (u) wind 

component in the 41-53 day range.  Specifically, when positive u-wind anomalies (weak 

easterlies, or westerlies) were observed at 850 hPa, negative u-wind anomalies (weak 

westerlies, or easterlies) were observed at 150 hPa.  The greatest coherence-squared 

values between 850 and 150 hPa were observed at a period of 44 days, and the u-wind 

was found to be out of phase by 177 ° (strong easterlies at 850 hPa were accompanied 

by strong westerlies at 150 hPa; Madden and Julian 1971).  No similar oscillations were 

found in the meridional (v) wind component.   

To further examine the uniqueness of their observation, Madden and Julian 

(1972), hereafter MJ72, performed the same spectral analysis on data from several other 
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tropical rawinsonde stations, including Balboa, Panama (9.0 °N, 79.6 °W); Dar es 

Salaam (0.8 °S, 39.3 °E); Gan Island (0.7 °S, 73.2 °E); Singapore (1.4 °N, 103.9 °E); 

and Chuuk (7.4 °N, 151.8 °E).  The 40- to 50-day kinematic oscillation observed at 

Canton Island station was also observed at these locations, thus confirming the 

existence and planetary scope of the oscillation.  However, by examining tropical 

stations in all four hemisphere quadrants, a discontinuity in the spectral data was 

revealed.  The low-tropospheric (850 hPa) disturbance was found confined to the 

Pacific region, while the upper-tropospheric disturbance was found to affect the entire 

circumference of the earth.  The disturbances were found to have eastward phase angles 

(and thus motion components).   MJ72 also examined station pressure data from 25 sites 

equally distributed around the tropics, and they carefully selected several of the sites to 

include very long time series, some originating before 1900.  The results of the long 

spectral analysis allowed MJ72 to conclude that the 40- to 50-day oscillation was not a 

temporary phenomenon in the equatorial Pacific that occurred only in the late 1950s and 

1960s.  Rather, it was found frequently throughout the 70-year time series, and as was 

corroborated by other shorter-period analyses from the stations listed above, the 

disturbance was not confined to the Pacific basin.   

Zonal wind and surface pressure anomalies were seen to progress steadily 

eastward on time-height figures.  Thus, MJ72 separated the disturbance temporally and 

spatially into eight 5-day categories, labeled A through H, and together the eight 

“phases” depict the disturbance circumnavigating the tropics in 40 days (Fig. 4.1).  The 

first phase, arbitrarily labeled “F” by MJ72, features a developing area of concentrated 

convection near the maritime continent (the region including Indonesia, northern 



 127

Australia, and surrounding islands), coupled with surface (upper-level) convergence 

(divergence) and high (low) sea level pressures to the east (west).  Halfway through the 

oscillation, or twenty days beyond phase “F”, in phase “B”, the region of enhanced 

convection, along with the surface convergence and upper divergence dipole, is shown 

to have propagated eastward into the central Pacific.  Sea level pressures had risen over 

the maritime continent and fallen in the central and eastern pacific.  The next frames, 

“C” to “E”, show the disturbance propagating back into the eastern hemisphere and 

completing the circuit to the maritime continent.  This eight-phase categorization has 

since become the classical manner to describe the phenomenon now named the 

“Madden-Julian Oscillation” (MJO).  The oscillation has come to be regarded as one of 

the primary low-frequency (when compared against the periodicity of other modes of 

variability, such as ENSO, NAO, AO, or PDO) modes of variability in the tropical 

atmosphere, and the primary mode of oscillation on intraseasonal timescales (Jones et 

al. 1998).   

 

4.1.1. Atmospheric physical response to the oscillation 

The MJO originates as synoptic-scale circulation cells oriented in the equatorial 

plane that propagate eastward from the Indian Ocean into the central Pacific Ocean.  

Although the complete circulation cells do not extend beyond the Pacific, zonal wind 

and velocity potential anomalies in the upper-troposphere are observed to 

circumnavigate the globe.  A primary phenotypical expression of the oscillation is in the 

enhancement (or suppression) of convective regions, which are also observed to 

propagate eastward.  It is therefore no surprise that one of the first-analyzed impacts of 
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the MJO was in the Indian-Australian monsoon region.  Using space-time spectral 

analysis of satellite-determined cloud brightness from May to October 1967, a relative 

maximum in the eastward propagation was found at 60 days (Gruber 1974).  This 

finding is consistent with the observation that during northern summer the maximum 

convective activity was between 5° and 10°N, and during northern winter it was 

between the equator and 5°S, thus implying that the maximum 40- to 50-day convective 

cloud activity was found in the intertropical convergence zone (ITCZ).  The MJO is 

also evident in space-time plots of outgoing longwave radiation (OLR).  Lau and Chan 

(1986) presented observations of a 40-50-day oscillation in May-October OLR over 

nearly the entire northern Indian Ocean and western Pacific, and the maximum 

amplitude was found to occur in the eastern hemisphere.   

Although the classical reference was to a “40-50-day oscillation” (Madden and 

Julian 1971), the oscillation is now regarded as a relatively broadband phenomenon, not 

a highly-tuned periodicity.  The 40- to 50-day constraints are only approximate, as other 

authors (e.g., Krishnamurti and Subrahmanyam 1982 and Weickmann et al. 1985) have 

preferred to label it as the 30-to 50- or the 30- to 60-day oscillation.  These labels are 

not contradictory to the original finding of MJ72, because while the original spectral 

analysis peaked from 41-53 days (MJ72), it had long tails.  Furthermore, Gray (1988) 

and Kuhnel (1989) found that during strong warm ENSO periods (especially the 

1982/83 event), the oscillation tends to have a higher frequency, although there is no 

obvious change in the mean period with season (Anderson et al. 1984; Madden and 

Julian 1994).  The oscillation was found to have slight seasonality with its locations of 
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maximum OLR variability, and this variability was found to be connected with annual 

fluctuations in SSTs (Knutson and Weickmann 1987).   

It has been shown that equatorially trapped waves (Kelvin and Rossby waves) 

are the primary modes of the MJO (Geerts and Wheeler 1998).  Specifically, in the 

eastern hemisphere, the MJO exhibits mixed Kelvin-Rossby wave structure, and it 

exhibits only a Kelvin wave structure in the western hemisphere.  Surface observations 

taken during the TOGA-COARE experiment reveal local changes in SST in excess of 

1°C associated with passage of the MJO (Gutzler et al. 1994; Weller and Anderson 

1996).  These SST fluctuations resulted primarily from variations in shortwave radiation 

and the latent heat flux (Hendon 2000) and were associated with the passage of the 

region of maximum convection.  The maximum surface moisture convergence, and 

hence latent heat flux at the surface, was found to slightly lag the decrease in shortwave 

radiation during the cloudy phase.  Based on the TOGA-COARE observations and with 

supporting model results, several recent studies have concluded that two-way air-sea 

interaction is very important to the dynamics of the MJO (e.g., Inness and Slingo 2003; 

Krishnamurti and Chakraborty 2005).  The MJO convection and SST anomalies are 

connected, as positive SST anomalies lead enhanced convection (positive SST 

anomalies are found to the east) because evaporation is lower and insolation greater in 

that phase of the oscillation (Lau and Sui 1997; Jones et al. 1998; Shinoda et al. 1998; 

see Fig. 4.2).  As the oscillation progresses eastward over the positive SST anomalies, 

convective activity is enhanced causing lower insolation and increased surface winds 

(Maloney and Kiehl 2002).  The MJO signal is visible at peaks in the power spectrum 
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of about 40 days in a wavelet analysis of NINO3 SST data following the method of 

Torrence and Compo (1998) discussed in chapter 3 (see Fig. 4.18). 

The MJO phase speed in the eastern hemisphere is eastward at approximately 5 

m s-1, but in the western hemisphere, it is observed to propagate eastward faster, at 10 m 

s-1.  The oscillation influences temperature, moisture, sea level pressure, the divergent 

and rotational wind components, and deep convection, and these influences can be 

found in both the tropics and the extratropics (Zhou and Miller 2005).  Because of its 

interaction with deep convection (which has cold cloud tops and thus radiates less in the 

infrared), the MJO is readily detectable in time series of OLR anomalies.  In the 

Australian and west Pacific basins, the MJO interacts strongly with deep convective 

thunderstorms, enhancing convection in one phase and suppressing convection in the 

opposite phase (Hendon and Liebmann 1994).  During the active, convection-promoting 

MJO phase, “superclusters” (SCCs, Nakazawa 1988) of convective clouds, with 

diameters on the order of 3000 km, have been observed, forming a region of enhanced 

mesoscale organization.  Khalsa and Steiner (1988) reported that high precipitable water 

contents accompanied the SCCs and noted that almost every occurrence of precipitable 

water anomalies above 38 mm was accompanied by an anomalous eastward-moving 

region of upper-tropospheric divergence (as measured by the 200 hPa velocity potential 

φ ).  This connection between the upper-tropospheric MJO and these tropical SCCs 

prompted research into multiple areas.  One such phenomenon that was probably the 

first direct connection between the MJO and the earth-atmosphere system is the 

relationship between the MJO and the timing of the onset of the Asian-Australian 

summer monsoons (Yasunari 1980; Lau and Chan 1986; Hendon and Liebmann 1990).   
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It is from regions such as these SCCs that TCs initially form; thus, the MJO’s 

modulation, whether to enhance or suppress tropical convection, depending on the 

phase, was hypothesized to be an important contributor to tropical cyclogenesis 

(Nakazawa 1988).  Furthermore, as Madden and Julian (1971) observed, the disturbance 

affects upper-tropospheric flow in all tropical oceans, and the role of these upper-

tropospheric teleconnections in modulating TC activity, especially in the western 

hemisphere, should be tested. 

 

4.1.2. Oceanic physical response to the oscillation 

Because the atmospheric component of the MJO extends to the near-surface 

flow, it affects wind stress variations over the global oceans.  Positive wind stress 

occurs when surface winds are easterly (negative u) and yields transfer of eastward 

momentum from the earth to the atmosphere.  Thus, the oscillation is also manifest in 

the underlying seas (Lau and Chan 1985, 1986), and a 30- to 60-day oscillation has 

been detected in time series of SSTs and near-surface ocean currents (see Fig. 4.18).  

The most prominent of these ocean-atmosphere linkages is the possibility of the MJO 

causing the onset of the warm ENSO phase (Krishnamurti et al. 1988).  Oceanic Kelvin 

waves are excited west of the date line and propagate eastward, and then poleward 

along the west coasts of the Americas.  The periodicity and phase delay of 43 days 

corresponds with a propagation velocity of 2.9 m s-1, which suggests that the MJO is a 

possible factor in encouraging the onset of ENSO.   

The MJO interacts with a wide range of atmospheric and oceanic phenomena: 

the Indian monsoon system (Lau and Chan 1986); the tropical ocean (via strong 



 132

westerly surface wind bursts); and the extratropics (Jones et al. 2004; Pohl and 

Chamberlin 2006), through which the MJO may impact weather and climate forecasts 

on longer timescales.  In addition to the kinematic response in the lower- and upper-

tropospheric wind fields, other near-surface and upper-ocean parameters also exhibit the 

MJO 30- to 60-day signature (e.g., Krishnamurti et al. 1988; McPhaden and Hayes 

1991; and Jones and Weare 1996).  Because the MJO is characterized by timescales 

long enough to interact with the oceans, the feedback is not limited in the atmosphere-

to-ocean direction.  SST variations in the Indian and Pacific Oceans, including the 

annual cycle of SST in the Indian Ocean monsoon region, can be determining factors in 

the spatial and annual variations of the MJO (Jones et al. 1998).  In some cases, 

following successive eastward MJO passages into the eastern Pacific Ocean, westerly 

wind bursts that follow the convective anomalies excite Kelvin waves that propagate 

into the east Pacific.  These oceanic waves result in slow eastward movement of higher 

SSTs and bear some similarities to the onset of the warm ENSO phase (Kessler et al. 

1995).  However, the knowledge of how these SST variations complement, or even 

cause, the onset of El Niño is still very incomplete (Jones et al. 1998).   

 

4.1.3. MJO effects in North America 

The eastward progression of MJO convective anomalies has been shown to 

influence the downstream development of a persistent North Pacific lower- and upper-

tropospheric circulation anomaly during boreal winter (e.g., Higgins and Schubert 1996; 

Higgins and Mo 1997; Mo 2000; Hendon et al. 2007).  This circulation anomaly – and 

therefore the MJO – has been connected with rainfall variability along the western 
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United States, including flash flooding events (Jones 2000; Whitaker and Weickmann 

2001; Benedict and Randall 2007).  Furthermore, Northern Hemisphere summertime 

precipitation variability is directly linked with the circulation anomalies over the 

Pacific-South American sector (e.g. Jones and Schemm 2000; Paegle et al. 2000; Ruane 

and Roads 2007).  The North American monsoon, a seasonal enhancement of 

convective precipitation from June-September that is driven largely by enhanced solar 

heating along the Sierra Madre Occidental, is also directly affected by the MJO.  When 

the MJO is active in the Western Hemisphere, there is a 40% increase (over the inactive 

phase) in the frequency of surges of moisture up the Gulf of California (Higgins and 

Gochis 2007).  Northwest Mexico and Arizona rainfall exhibits significant correlation 

with MJO phase (Lorenz and Hartmann 2006).   

 

4.1.4.  Predicting the MJO   

Although observed in multiple time series and studied for over three decades, 

the causative forcing of the MJO remains uncertain (Jones et al. 1998; Vitart et al. 

2007).  Several recent studies have demonstrated skillful empirical prediction of the 

MJO at lead times out to 15-20 days (von Storch and Xu 1990; Waliser et al. 1999; Lo 

and Hendon 2000; Mo 2001; Wheeler and Weickmann 2001; Jones et al. 2004; Reichler 

and Roads 2005; Hendon et al. 2007).  This skill, while empirical, is demonstrably 

greater than current and previous NWP models (Waliser et al. 1999; Jones et al. 2000; 

Hall et al. 2001; Vitart 2003; Vitart et al. 2007).  Given the theoretical growth of 

baroclinic disturbances (e.g., Lorenz 1969, 1982), the theoretical limit of predictability 

of synoptic-scale systems is on the order of a week or so.  However, in the tropics, due 
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to the overwhelming influence of diabatic heating from cumulus convection (Tiedtke et 

al. 1988) and the difficulty of parameterizing such processes whose timescales are much 

shorter than one week, NWP models often show skill at only a few days (Hendon et al. 

2000).  Additionally, NWP models with prescribed (fixed) SSTs have been generally 

unable to simulate the MJO event, producing a weak MJO that moves eastward too fast 

and with the wrong seasonality (Zhang 2005). An ensemble of forecasts can improve 

upon a single model’s prediction (Toth and Kalnay 1993), providing a better estimate of 

weather elements’ expected value and dependent probability distribution (Toth et al. 

2001).  However, beyond the skill barrier, useful extended-range predictions must rely 

on the exploitation of lower-frequency periodicities which occur in the atmosphere 

(Wheeler and Weickmann 2001).  The MJO is one such intraseasonal oscillation that 

exists in the tropics and acts to organize convective elements upscale, from the 

mesoscale into spatial scales much larger than the individual elements themselves, and 

to temporal scales up to several weeks.  

 

4.2. MJO connection to TC activity 

4.2.1. Climatology of tropical cyclogenesis 

Environmental conditions necessary for tropical cyclogenesis have been well 

known for four decades (e.g., Gray 1968; Gray 1979; Briegel and Frank 1997; Webster 

et al. 2005; Emanuel 2005; Mann et al. 2007):  SSTs greater than 26.5 C with a deeply 

mixed warm ocean layer; a cyclonic low-level vorticity anomaly; weak and preferably 

easterly vertical shear of the horizontal wind; high values of low and middle 

atmospheric specific humidity; and a persistent region of organized deep convection.  
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However, these conditions are not sufficient, as individual tropical cyclones form 

infrequently and sporadically within large areas of otherwise favorable environmental 

conditions.  Furthermore, Gray (1979) observed that tropical cyclogenesis tends to 

cluster in time, with a two- to three-week period of multiple instances of TCs, followed 

by a two- to three-week period of few to no occurrences of cyclogenesis.  This temporal 

periodicity suggests a connection to an intraseasonal mode of variability, such as the 

MJO.  During periods of MJO activity in the tropics, medium-range numerical weather 

prediction (NWP) models exhibit significantly greater skill if the tropical convection 

associated with MJO passage is correctly handled (Inness and Slingo 2003).   

A climatology of TC occurrence indicates that the entire western Atlantic basin, 

including the Windward and Leeward Islands, the Greater Antilles, the northern coast of 

South America, the eastern coasts of Central America, the Gulf of Mexico, and the 

Atlantic seaboard from Florida to Newfoundland, is at risk for destructive effects from 

TCs.  The East Pacific basin, while experiencing more TC activity each season, is less 

prone to landfalls due to the lack of continental areas once disturbances move west from 

the Mexican coast.  Nevertheless, East Pacific TCs still affect the west coast of Mexico, 

and their remnant moisture plumes contribute to frequent flooding events in the North 

American monsoon region.   

To discuss modulation of TC genesis by various-scale atmospheric phenomena, 

it is important to first begin with a discussion of the basic TC climatology.  Specifically 

important is the geographic and seasonal distribution of TC formation in each basin (see 

Figs. 1.1-1.2).  The North Atlantic hurricane season begins each year on 01 June and 

continues until 30 November (Sheets 1990).  While Atlantic tropical and sub-tropical 
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(Herbert and Poteat 1975) cyclones have existed in every month of the calendar year, 

the six-month “season” coincides with the prevalence of the classical TC genesis 

parameters (Gray 1968).  In the East Pacific basin, the hurricane season begins fifteen 

days earlier, on 15 May, and also continues until 30 November.  Although the 

background environmental conditions are similar between basins and seasons (as has 

been discussed earlier in this section), TCs have been observed to develop from a 

diversity of types of disturbances; for example, from trade wind cloud clusters, easterly 

waves, vorticity centers along the Intertropical Convergence Zone (ITCZ), or from 

convective clusters persisting over a stalled midlatitude cold front (McBride 1981).     

Tropical weather patterns are not as predictable as mid-latitude weather patterns 

(Geerts and Wheeler 1998).  The mid-latitudes are governed by upper-tropospheric 

Rossby waves, and these interact with surface weather patterns through baroclinic 

instability.  In the tropics, Rossby waves and baroclinic instability are largely absent, 

and therefore near-term (1-10 day) predictability is less.  Until recently the tropical 

weather patterns on timescales less than one year were believed to be essentially 

random.   

 

4.2.2. Current understanding of the relationship between the MJO and TC activity 

Several studies have examined the connection between tropical cyclone activity 

and the MJO.  Von Storch and Smallegange (1991) focused on the North and South 

Pacific oceans and found connections between outgoing longwave radiation (OLR) and 

TC numbers over a 5-year period.  Liebmann et al. (1994) attributed changes in west 

Pacific TC activity with the phase of the MJO and were the first to connect these 
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changes to meso- and synoptic-scale organization of deep convection.  Maloney and 

Hartmann (2000) found a strong connection between eastern North Pacific hurricane 

activity and the MJO, with hurricanes more than four times more likely to generate 

during easterly than during westerly wind phases, and they attributed the relationship to 

the modified low-level 850 hPa anomalies during the passage of the eastward-

propagating MJO.  Mo (2000), using a very limited dataset (five selected years from 

1976-1986), examined OLR anomalies and N. Atlantic tropical storm activity and found 

that – in the selected years – a relationship exists between positive OLR anomalies (i.e., 

suppressed convection) in the Indian Ocean and enhanced tropical storm activity in the 

N. Atlantic.  Hall et al. (2001) were the first to quantify the statistical significance of the 

relationship between the MJO and tropical cyclone activity, and they focused on the 

Australian region.  Separating the MJO into five “phases”, and binning TC genesis into 

each of those “phases”, they found that cyclogenesis was especially favored during one 

phase of the MJO and suppressed during another.  They connected this relationship to 

the MJO’s modulation of low-level relative vorticity, finding large regions of 

anomalous cyclonic vorticity corresponding to the favored cyclogenesis regions for a 

particular phase of the MJO.  Other than Hall et al. (2001) in the Australian region, 

however, little quantitative research has been undertaken to study the frequency and 

statistical significance of the relationship in other basins, particularly the East Pacific 

and North Atlantic.   
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4.3.  MJO modulation of North Atlantic, East Pacific, and sub-basin TC activity 

The MJO is poorly simulated by dynamical NWP models, at least partially due 

to the poor parameterization of tropical cumulus convection (Xue et al. 2002).  

Ensembles of dynamical NWP models, as well as statistical prediction methods, have 

shown modest skill for two-week predictions of wintertime precipitation (Whitaker and 

Weickmann 2001).  However, neither statistical nor dynamical prediction models have 

demonstrated skill in forecasting the MJO beyond week two (Xue et al. 2002).  It is 

hypothesized that the lack of skill of these models, particularly statistical models, is at 

least partially related to a continued lack of theoretical understanding of the MJO and 

our inability to accurately identify the circulation in real-time.  Thus, efforts continue to 

improve the monitoring and assessment of the MJO’s influence on atmospheric 

circulation, and this identification is accomplished primarily by developing EOFs (see 

section 4.3.1) from geophysical data and mapping the MJO through spatial patterns in 

the principal components.   

 

4.3.1.  The method of extended empirical orthogonal functions 

For at least four decades, geophysicists, meteorologists and climate dynamicists 

have observed that geophysical fields are often significantly correlated in both time and 

space.  Empirical orthogonal function (EOF) analysis techniques were developed to 

enable relatively simple descriptions of complex variations in these geophysical fields 

using a small number of functions with time coefficients (Kutzbach 1967; Barnett 

1977).  These derived empirical functions are extremely useful as they often enable 

insightful physical interpretation of complex variables (Walsh and Richman 1981), 
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including the development of phase propagation vectors and spatial correlations 

(Richman 1981).   Kutzbach (1967) concisely described EOFs as a series of time-

independent functions which are derived so that they are, successively, the most correct 

linear predictors of a geophysical field.  An eigenvalue-eigenfunction equation arises 

when the functions are linear combinations of the data.  From this equation’s solution, 

the “principal components” may be derived.  Finally, these components together 

objectively explain a measurable fraction of the total variance in the original field. 

Weare and Nasstrom (1982) developed an analysis technique that allowed data 

set expansion in terms of functions that “best represent” the data set for a time series.  

They defined functions that not only analyze geophysical fields in space, but also in 

time, computing the auto- and cross-correlations between these interrelated fields.  The 

advantages to this approach are two-fold:  (1) the data fields can often be compacted to 

be used in regression models; and (2) the dominant functions are able to be interpreted 

not only in terms of their dominant modes of variability but also in terms of the 

“dominant modes of space-time sequences of events” (Weare and Nasstrom 1982).  

Kim and Wu (1999) tested eight different methods of EOF analysis on an idealized 

geophysical field, including the extended-EOF (EEOF) method of Weare and Nasstrom 

(1982).  They found that the EEOF method correctly identified both the pattern (spatial) 

and temporal correlations as well as the physical modes.  Kim and Wu (1999) 

concluded that the EEOF technique was a valid method of EOF analysis for periodic 

datasets, but they cautioned that discretion be used with any EOF technique when 

applying them to non-stationary datasets.   
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It is not the goal of this study to develop EOFs from geophysical data and 

identify the MJO from the principal components.  In fact, several recent studies have 

done just that (Lo and Hendon (2000), Higgins and Shi (2001), Hall et al. (2001), Xue 

et al. (2002), and Wheeler and Hendon (2004)).  The NOAA Climate Prediction Center 

currently maintains a real-time MJO composite index (Xue et al. 2002), and because 

this study focuses on the relationships – both statistical and physical - between the MJO 

and TC activity, this study will use the MJO composite of Xue et al. (2002) rather than 

redevelop indices that have already been published in multiple studies.   

 

4.3.2. Velocity potential as a measure of divergence 

The real-time MJO composite index of Xue et al. (2002) uses the 200 hPa 

velocity potential to identify the oscillation.  It is therefore important to understand the 

properties of the velocity potential and how it is connected to deep convective activity.  

The two-dimensional condition of irrotationality is 

0dv du
dx dy

− = , 

where u and v are the two-dimensional zonal and meridional components of the three-

dimensional wind, and x and y are the spatial derivatives.  The condition of 

irrotationality guarantees the existence of a scalar functionφ  called the velocity 

potential, which provides that the velocity vector u can be written as the gradient of a 

scalar potentialφ , 

φ≡ ∇u . 

This velocity potential is related to the components u and v by 

(4.1) 

(4.2) 
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du
dx
φ

≡  ; dv
dy
φ

≡ . 

The velocity potential satisfies the Laplace equation, 

2 2
2

2 2x y
φ φφ ∂ ∂

∇ = +
∂ ∂

  . 

Within the tropics, upper and lower-level velocity potential anomalies tend to be 

180° out of phase (Knutson and Weickmann 1987).  Thus, large-scale convergence, 

represented by positive velocity potential anomalies at lower-levels, tends to be 

accompanied by large-scale divergence (negative velocity potential) anomalies at upper 

levels.  This results in large-scale rising motion in the intermediate levels.  The 

divergent wind is therefore directed toward higher values of velocity potential.  

Negative velocity potential anomalies identify regions of anomalous rising motion, and 

regions of high (low) height anomalies can be inferred to exist when the velocity 

potential anomalies are positive (negative).  In the tropics, upper-tropospheric 

divergence (convergence) is strongly associated with the formation of deep cumulus 

convection (Knutson and Weickmann 1987).  MJ72 recognized this connection as well, 

and the MJO schematic (Fig. 4.1) shows that upper divergence (convergence) tends to 

be co-located with active (suppressed) regions of cumulus convection.   

 

4.4.  Construction of Madden-Julian Oscillation indices 

 To construct indices of the MJO, Xue et al. (2002) apply extended empirical 

orthogonal function (EEOF; Weare and Nasstrom 1982) analysis to the bandpass 

filtered non-overlapping five-day means of velocity potential at 200 hPa derived from 

the NCEP/NCAR Reanalysis data (Kalnay et al. 1996) during the November to April 

(4.3) 

(4.4) 
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period from 1979-2000.  The bandpass filter eliminates frequencies that are not 

germane to the MJO, and in this dataset, the band was set to 10-90 days (e.g., Zhou and 

Miller 2005).  The five-day periods will be referred to as pentads, and the boreal winter 

months are selected for the EEOF analysis because the MJO signal is most pronounced 

during boreal winter (Madden and Julian 1994).  To limit contamination of the signal by 

ENSO, the dominant interseasonal mode, the EEOF is only calculated from data during 

neutral and weak ENSO years (as defined by the NOAA Climate Prediction Center, 

available online at http://www.cpc.nep.noaa.gov/research_papers/ncep_cpc_atlas/8/ 

ensoyrs.txt). This filtering results in 15 of the 22 years in the dataset selected to 

calculate the EEOF of velocity potential at 200 hPa.  The first EEOF is composed of ten 

time-lagged patterns (i.e., ten modes, or principal components, of variation) and 

describes an eastward propagation of the MJO with a timescale of about 45 days.  The 

ten time-lagged patterns were found to be centered at ten unevenly spaced longitude 

locations:  80°E, 100°E, 120°E, 140°E, 160°E, 120°W, 40°W, 10°W, 20°E, and 70°E 

(see Fig. 4.5).   

 The CPC archives the ten MJO indices on-line (http://www.cpc.noaa.gov/ 

products/precip/CWlink/daily_mjo_index/proj_norm_order.ascii).  A sample of the data 

for the period 02 June to 29 November 2005 is provided in Table 4.1.  Each pentad has 

ten MJO index values associated with it.  The values are the result of regressing the 200 

hPa velocity potential anomalies onto the corresponding pattern of the first EEOF and 

then standardizing each index value by dividing it by its standard deviation.   
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4.4.1. Physical interpretation of MJO Index values 

 The MJO phases used in this study are defined as follows:  ENH, or 

“enhanced”, is any value equal to or lower than -1.00; NEU, or “neutral”, is any value 

between -1.00 and +1.00, and SUP, or “suppressed”, is any value greater than or equal 

to +1.00.  Because velocity potential is physically coupled with convergence, a positive 

index value implies that upper-tropospheric convergence is favored.  A favored region 

of upper-tropospheric convergence implies that the convectively inactive phase of the 

MJO is also centered at that index.  Upper-tropospheric divergence has been shown to 

be positively correlated with anomalously low values of outgoing longwave radiation 

(OLR).  OLR is a reasonable approximation for tropical cumulus and cumulonimbus 

activity because the tops of the very tall (“deep”) convective clouds are much colder, 

and thus do not radiate at the same blackbody temperature as the sea surface.  The 

causal relationships between upper-tropospheric zonal wind and tropical deep 

convection can be summarized as follows:  positive [negative] velocity potential 

anomalies  upper-tropospheric convergence [divergence]  suppressed [enhanced] 

deep cumulus convection.  Thus, the phases are named “enhanced”, “neutral”, and 

“suppressed” because of the connection between the 200-hPa divergence (and, by 

association, the velocity potential) and deep convection.   

The value of MJO Index 1 on 02 June 2005 is calculated by regressing the 200 

hPa pentad velocity potential anomaly, taken as a simple mean of the 00 UTC velocity 

potential anomalies from 31 May to 04 June 2005 at 80° E (computed every five 

degrees along 80°E from 30°N to 30°S), onto the pattern of the first EEOF at 80°E.  The 

resulting value is then normalized by the standard deviation of the MJO values at Index 
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1 from 1979-1995.  Thus, the 02 June 2005 MJO value for Index 1, +1.13, implies that 

the 200 hPa velocity potential anomaly centered at 80°E is 1.13 standard deviations 

above normal.  Following from the discussion above, this also implies that above-

normal 200 hPa convergence and suppressed convective activity are centered on 80°E.   

 The entire MJO Index values for the pentad centered on 02 June 2005 are: 

+1.13, +0.49, -0.23, -1.01, -1.42, -1.00, -0.30, +0.52, +1.29, and +1.24 for Indices 1-10, 

respectively.  Indices 4, 5, and 6 are in “ENH” phase; Indices 2, 3, 7, and 8 are in 

“NEU” phase; and Indices 1, 9, and 10 are in “SUP” phase.  Table 4.2 presents the 

linear correlations of each index with the other indices from June to November 2005.  

The global (wavenumber one) spatial distribution of the oscillation is very apparent in 

the linear correlations between indices: the largest positive correlations occur between 

adjacent indices (e.g., Index 1 and Index 10, + 0.97; and Index 2 and Index 3, +0.88) 

and the largest negative correlations occur between indices that are farthest apart (e.g., 

Index 1 and Index 6, -0.99; and Index 3 and Index 8, -0.98).  Thus, the coherence 

between the adjacent – and the opposing –indices (Fig. 4.6) is not surprising, and the 

wave number and amplitude of the oscillation is readily apparent in the 02 June time 

series (Fig. 4.7).   

 

4.4.2. Transforming the indices to normality 

After normalizing each index by its standard deviation, the regression results in 

ten Gaussian indices with mean zero and standard deviation one.  A positive (negative) 

index corresponds to a positive (negative) 200 hPa velocity potential anomaly.  The 

base period for calculating the standard deviation of each index is 1979 to 1995.  
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However, the tropical cyclone activity occurs only from May (June) to November for 

the East Pacific (North Atlantic) basin, and therefore we only use a subset of the annual 

dataset.  Because the statistical test (the z-test) used below assumes a normally-

distributed dataset, it is important to ensure normality of the indices.  The seasonal MJO 

Index values are approximately centered on zero (their central value is zero), but they 

exhibit long left and right tails (the second, third, and fourth statistical moments, 

standard deviation, skewness, and kurtosis, are not zero, zero, or three, respectively; see 

Table 4.3).  Therefore, to bring the seasonal subset closer to normality, the Manly 

(1976) exponential transformation technique was applied (e.g., Delleur and Kavvas 

1980).  While useful in adjusting the first four moments closer to normality, Delleur and 

Kavvas (1980) note that for meteorological datasets, it is possible that no exponential 

transformation can bring the original data to normality (and this was the case with Index 

10).  Manly’s transformation is given as 

[exp( ) 1]/ 0
0{ kx k k

kx
Y

− ≠

=
= , 

where x is the original series and Y is the transformed series.  For the MJO seasonal 

(Jun-Nov) Index values, the optimal k-values are given in Table 4.3 along with the first 

four untransformed and transformed statistical moments.   

 

4.5.  Significance testing TC activity     

For this study, “TC activity” is measured using two methods, and each method 

is tested separately: (1) cyclogenesis and intensification; (2) landfall.  To determine TC 

activity for the first method, every point of tropical cyclogenesis was identified for nine 

different basins and sub-basins (see Table 1.1 and Figs 1.1-1.2 for basin and sub-basin 

(4.5) 
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identification, and see sections 1.1 and 1.2.2 for definitions of a TC, hurricane, and 

intense hurricane).  Tropical cyclogenesis is defined as the first TC point in the best-

track historical record with at least 35 kt sustained surface winds.  It is important to note 

that the best track record includes non-tropical systems, but this study excludes these 

recordings of subtropical cyclones (Herbert and Poteat 1975), tropical waves, tropical 

depressions (McBride 1981), and extratropical cyclones (e.g., Evans and Hart 2003).  

Hurricane genesis is defined as the first TC point with at least 65 kt sustained surface 

winds.  Intense hurricane genesis is defined as the first TC point with at least 100 kt 

sustained surface winds.  The location of the TC, hurricane, or intense hurricane genesis 

point defines the basin to which the TC belongs.  Each east Pacific TC can belong to at 

most two basins:  the whole EPAC basin and one sub-basin; each North Atlantic TC can 

belong to at most three basins:  the whole NATL basin and possibly two sub-basins: 

either the Gulf of Mexico or the Caribbean and/or the “main development region” 

(Goldenberg and Shapiro 1996), which overlaps with the Caribbean.  The Julian date of 

genesis determines the MJO pentad to which it belongs, and TC genesis events are then 

binned according to basin, MJO Index phase, and storm type.   

To determine TC activity for the second method, only the Julian date of landfall 

is considered, as it determines to which MJO pentad the landfall point belongs.  TC 

landfalls are only computed for the NATL and EPAC.  Landfall points are determined 

subjectively using several rubrics.  First, if the post-storm report includes a landfall 

coordinate, then this study considers it.  However, landfall coordinates are usually given 

only when the eye of the TC crosses a coastline.  This restriction unnecessarily excludes 

TCs that cause great damage to coastlines as the eyewall passes nearby but does not 
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actually cross the coast.  Many of the “landfalls” of the West Indies and Greater Antilles 

fall into this category, and in general, if the eye of a TC passes within 60 miles, and/or 

the post-storm report includes mention of high sustained winds with a near-miss, it is 

recorded as a landfall.  Finally, for the EPAC and sub-basins, no detailed landfall 

database (i.e., one that includes information about the specific landfall, such as date, 

time, location, and intensity) exists.  Instead, the best-track dataset includes only a 

binary “landfall” discriminator: either the TC made landfall or it did not.  This 

information, while limited, is still useful, and it is therefore included in the “landfall-

genesis” section below. 

 

4.5.1. Null hypotheses and test statistics 

To test the connection between the MJO and TC activity, this study will test a 

null hypothesis that tropical cyclone events are uniformly distributed across MJO phase.  

The null and alternative hypotheses are given as  

0 0

A 0

ˆ:
ˆ:

H p p
H p p

=
≠

, 

where the null hypothesis implies that there is no modulation of TC activity by the MJO 

and the alternative hypothesis implies that TC activity is modulated by the MJO.  

Coincident with this null hypothesis, the probability of cyclogenesis was assumed to be 

fixed, thus leading to a binomial distribution (e.g., Hall et al. 2001; Bessafi and Wheeler 

2006).  The relevant test statistic – which exists for each of the ten MJO indices, and is 

duplicated for both TC activity methods – is therefore  

0

0 0 _

ˆ

(1 ) /
MJO_phase

MJO_phase MJO_phase

basin,storm_type,MJO_phase
basin,storm_type,MJO_phase

storm type

p p
Z
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−
=

−
 

(4.6) 

(4.7) 
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where p̂ and p0 are the observed and expected fraction of TCs that form in each 

category and N is the total number of TC events in each category.  The indices basin, 

storm_type, and MJO_phase are defined as follows:  

Index Description 

Basin 

Location of the TC event, either 

EPAC, NATL, CARIB, GOM, 

EEPAC, CEPAC, WEPAC, CPAC, 

or AMDR (acronyms defined in 

Table 1.1) 

Storm_type 
Type of TC event: tropical storm, 

hurricane, or intense hurricane 

MJO_phase 
Phase of the relevant MJO index (1-

10): “ENH”, “NEU”, or “SUP” 

 

 For example, Index 1 was in the ENH phase 161 (out of 1066) pentads, or 

15.1% of the total seasonal pentads.  Index 1 was in the NEU and SUP phases 774 and 

131 pentads, or 72.6% and 12.3%, respectively.  If the MJO does not modulate TC 

event activity, then we should expect to find that 15.1% of TC events occur when Index 

1 is in the ENH phase and that 72.6% and 12.3% of TC events occur when Index 1 is in 

the NEU and SUP phases, respectively.   
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4.5.2.  MJO phase definition 

 As stated above, the MJO phases are defined as follows:  ENH is any value 

equal to or lower than -1.00; NEU is a value between -1.00 and +1.00, and SUP is a 

value greater than +1.00.  The namesake recipient of the expression is the tendency of 

the 200-hPa velocity potential to act on deep convection.  For example, the MJO index 

values for the pentad centered on August 1, 2005 are: 0.44, -0.55, -1.34, -1.83, -1.41, -

0.22, 0.79, 1.58, 1.76, and 0.80, for Indices 1-10, respectively.  Indices 3, 4, and 5 are in 

“ENH” phase; Indices 1, 2, 6, 7, and 10 are in “NEU” phase; and Indices 8 and 9 are in 

“SUP” phase. 

The observed fraction of TCs, p̂ , is calculated as follows.  For each phase 

(ENH, NEU, SUP) of each MJO Index (1-10), the number of TC events (either genesis 

or landfall) per basin and storm type are calculated, and this total is divided by the sum 

of TC events across MJO phase.  For example, in the East Pacific basin, 45, 345, and 91 

TCs formed when Index 1 was in ENH, NEU, and SUP phase, respectively, resulting in 

p̂  of 0.09, 0.72, and 0.19, respectively, for Index 1.  (See Tables 4.5-4.9 for a complete 

summary of the observed TC fractions).  The expected fraction of TCs, p0, is calculated 

as follows.  The number of pentads of each phase (ENH, NEU, SUP) of each MJO 

Index is divided by the total number of pentads.  For example, Index 1 had 161, 774, 

and 131 pentads in the ENH, NEU, and SUP phases, respectively, resulting in p0 of 

0.15, 0.73, and 0.12, respectively.  (See Table 4.4 for a complete summary of the 

expected TC fractions).  N is the total number of TC events for each basin and storm 

type, and in the example above, N is 481 total TCs.  Therefore, for the example above, 

the relevant test statistics, Z, are -3.52, -0.43, +4.43, for TC genesis when Index 1 is in 
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the ENH, NEU, or SUP phase, respectively.  For a two-tailed test, the corresponding 

critical values of Z that allow 95% confidence in rejecting the null hypothesis are ± 

1.96.  (For reference, the critical Z for 90% confidence is ± 1.645, and for 99% 

confidence, the critical Z is ± 2.575.) Thus, with 95% confidence, we can reject the two 

null hypotheses that Index 1 ENH and SUP phases are unrelated to TC activity.  In the 

ENH case, TC events are not favored, and in the SUP phase, TC events are favored.   

 

4.6. Interpreting the Z-statistics 

4.6.1.  TC activity as measured by genesis points 

Table 4.10 presents a summary of all of the test Z-statistics, sorted by basin, 

storm type, MJO phase, and MJO Index.  The statistics should be interpreted as follows:  

positive Z-statistics indicate that TC events are favored; and likewise, negative Z-

statistics indicate that TC events are not favored.  For the example in subsection 4.6.1., 

it is important to realize that Index 1 of the MJO is centered in the eastern hemisphere at 

80°E, thus when Index 1 is in ENH phase, the 200-hPa velocity potential anomalies 

enhance deep tropical convection at that longitude.  The MJO has a zonal wavenumber 

of one, and 180 degrees east of 80°E is 100°W, which is squarely in the middle of the 

East Pacific basin.  If the MJO velocity potential anomaly centered at 80°E is negative, 

corresponding to upper-tropospheric divergence and enhanced deep convective activity, 

then the atmospheric response in the opposite hemisphere will likely be opposite: 

positive velocity potential anomaly, upper-tropospheric convergence and suppression of 

deep convective activity.  The opposite-hemisphere response is not completely certain 

because the atmosphere is influenced by many other components of variability besides 
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the MJO.  Regardless of the uncertainty, however, the confidence is very high (99%) 

that TC activity in the East Pacific basin is modulated by the MJO when Index 1 is in 

either the ENH or the SUP phase.  Specifically, Index 1 ENH depresses TC genesis 

activity, while Index 1 SUP supports genesis activity.   

The statistical relationship with the MJO decreases for EPAC hurricane activity, 

which measures the numbers of already-formed TCs that continue to intensify into 

hurricanes (with sustained 1-min 10 m winds of 64 kt or greater).  Specifically, the test 

Z-statistics are -3.02, +1.22, and +1.63, for Index 1 ENH, NEU, or SUP.  These 

statistics can be interpreted as a strong depression of hurricane genesis when Index 1 is 

in ENH phase (confident at the 99% level), but essentially neutral modulation of EPAC 

hurricane genesis when Index 1 is in the NEU or SUP phases.  For EPAC intense 

hurricane genesis, we cannot reject the null hypothesis for any of the three phases of 

MJO activity, as the test Z-statistics lie between -1.00 and +1.00.   

 

4.6.2. Comparing basins and sub-basins 

Instead of focusing on one particular basin or MJO Index, it is also possible to 

interpret the test Z-statistics through the lens of determining favorable conditions for TC 

events.  For example, the results can be used to answer the question “When is intense 

hurricane genesis favored in the North Atlantic Main Development Region (AMDR)?” 

With 95% confidence, the important answer to that question is “Intense hurricane 

genesis is favored in the AMDR sub-basin when MJO Indices 5 and 6 are in SUP phase.  

Additionally, intense hurricane genesis is not favored, or unlikely when MJO Indices 1 

and 10 are in SUP phase and when Index 6 is in ENH phase.”  The actual data that 
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support that claim are as follows:  “A total of thirty-three intense hurricanes formed in 

the AMDR sub-basin from 1978-2006, and when MJO Index 5 was in SUP phase, 10 

intense hurricanes formed (30% of the total that formed).  Similarly, 10 intense 

hurricanes formed when MJO Index 6 was in SUP phase.  Zero intense hurricanes 

formed when MJO Indices 1 and 10 were in ENH phase and when MJO Index 6 was in 

SUP phase.”  Thus, the data are very useful in identifying modulation of TC events by 

the MJO and in quantifying the statistical significance of the modulation. 

 

4.6.3.  TC activity measured by landfall 

In addition to measuring TC activity by genesis events, activity can also be 

measured by landfall frequency.  Setting aside the scientific questions, this method of 

quantifying TC activity is arguably more beneficial to society, as landfalling TCs are 

one of the most damaging geophysical events on the planet’s surface.  Similar to the 

method discussed above, landfalling TCs, hurricanes, and intense hurricanes are 

stratified by the phase of ten MJO indices.  As before, the null hypotheses state that the 

TCs will be distributed with the same frequency as the MJO indices.  With the same 

assumption of a binomial distribution, the relevant Z-statistic remains 

0
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 where the variable definitions are given above.  The only difference is that now instead 

of counting all TC genesis events, only TC landfall events are counted.  Thus Nstorm_type 

is not the total number of TCs but instead the total number of landfalling TCs (or 

hurricanes, or intense hurricanes).   

(4.8) 



 153

This study uses two methods to stratify landfalling TCs by MJO phase.  The first 

method bins the future landfalling TC (or hurricane, or intense hurricane) by the MJO 

phase at its genesis; this method will be referred to as landfall-genesis.  The second 

method bins the landfalling TC (or hurricane, or intense hurricane) by the MJO phase at 

its landfall; this method will be referred to as landfall-actual.  The difference is subtle 

(and in the case of TCs that form within 5 days of making landfall, irrelevant), but 

important: the MJO’s modulation of TC landfall activity begins at genesis and ends 

with the actual landfall.  Thus both will be examined, although accurate landfall records 

(which include date, time, and intensity of landfall) back to 1978 were only kept for the 

North Atlantic.  Therefore, only the NATL events will be binned by MJO phase at 

landfall.   

 

4.6.4. MJO modulation of TC landfall activity 

Table 4.11 reports the Z-statistics for landfall-genesis events, and Table 4.12 

reports the Z-statistics for landfall-actual events.  When MJO Index 1 is in the ENH 

phase, significantly fewer (with 95% confidence) TCs and hurricanes that go on to 

make landfall form in the EPAC (see Table 4.11).  However, when Index 1 is in the 

ENH phase, significantly more (again with 95% confidence) TCs that go on to make 

landfall form in the NATL, CARIB, and AMDR.  Furthermore, significantly more 

hurricanes actually make landfall in the NATL (see Table 4.12).  Conversely, when 

MJO Index 1 is in the SUP phase, the EPAC and CPAC both favor TC genesis, and the 

CPAC favors TC, hurricane, and intense hurricane genesis.  The NATL, CARIB, and 

GOM do not exhibit any statistically significant favor for TC, hurricane, or intense 
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hurricane genesis (see Table 4.11).  Furthermore, significantly fewer TCs and intense 

hurricanes (but curiously not hurricanes) actually make landfall in the NATL (see Table 

4.12).  Finally, when MJO Index 1 is in the NEU phase, significantly fewer hurricanes 

actually make landfall in the NATL.   

 

4.7.  Graphical display of modulated TC activity 

The Z-statistic data found in Tables 4.10-4.12 are easily interpreted when plotted 

graphically using the freely available geographic information system (GIS) platform 

Google Earth (e.g., Smith and Lakshmanan 2006; Lakshmanan et al. 2007).  By creating 

a user-defined “layer”, the activity data can be easily combined with a wide range of 

other “layers”, including any type of archived meteorological and oceanographic data 

(e.g., monthly mean SSTs, mean 500 hPa heights, etc.), current or historical shipping 

routes, and population density, to name just a few.  Of the ten MJO Indices of Xue et al. 

(2002), Index 6 is centered closest to most of the data points in the nine basins and sub-

basins.  Thus it is selected as a mini case-study on the utility of graphically displaying 

the data.   

Recall that for each index and basin, the MJO can be sorted into three phases, 

and the TC events can be stratified by intensity (TC, hurricane, intense hurricane).  

Including the graphical display of all three phases for each basin, there exist 36 separate 

plots for TC events, 36 for hurricane events, and 36 for intense hurricane events.  

Considering that the MJO has ten indices, the number of plots quickly balloons – to 

1,080.  For this short example, I have chosen to include the 36 figures of Index 6 TC 

genesis events for each of the nine basins.  From the Z-statistics in Table 4.10, it is clear 
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that the relationships between TC genesis and the MJO will manifest themselves in 

several areas (see Table 4.13 for a summary):  activity is favored in the EPAC, CEPAC, 

WEPAC, and CPAC when Index 6 is in the ENH phase.  Activity is favored in the 

NATL and AMDR when Index 6 is in the SUP phase.  Activity is not favored in the 

EPAC and WEPAC when Index 6 is in the SUP phase, and activity is not favored in the 

NATL and CARIB when Index 6 is in the ENH phase.  When the MJO Index 6 is in the 

NEU phase, it does not significantly modulate TC activity in any basin, most likely 

because the indices are often in the NEU phase (over 70% of the pentads), and therefore 

any MJO modulation signal can be more easily masked by other sources of variability.  

These NEU phase results are in agreement with the Bessafi and Wheeler (2006) and 

Hall et al. (2002) studies, which also found no relationship between the NEU phase of 

the MJO and TC events.   

 

4.8.  Quantifying TC modulation by MJO at genesis 

Fig. 4.6 displays the location of every EPAC TC genesis point.  The points are 

colored by MJO Index 6 phase:  yellow for ENH, cyan for NEU, and red for SUP.  This 

color-coding scheme will be used throughout Figs. 4.6-4.17.  The TC genesis points 

cluster south and southwest of the Mexican Riviera coast and extend westward, trailing 

off in number, to 180°W.  The two genesis points northwest of Hawaii are real and 

included in the best-track dataset.  West of 125°W, only three TCs (out of over 50 total) 

formed when Index 6 was in SUP phase; therefore it is reinforced that TC genesis is 

favored in the CEPAC, WEPAC, and CPAC when Index 6 is in the ENH phase and not 

favored in the WEPAC when Index 6 is in the SUP phase.  Figs. 4.7-4.9 plot the TC 
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genesis points for the CEPAC, WEPAC, and CPAC for each MJO Index 6 phase.  Fig. 

4.10 plots the TC genesis points for the EEPAC, and due to the relatively even 

distribution, TC genesis is neither favored nor suppressed for any phase of the Index 

(although at the 90% confidence level, TC genesis is favored in the ENH phase).   

Moving eastward, Fig. 4.11 shows the location of every NATL TC genesis 

point.  The TC genesis points are spread throughout the basin, from the west coast of 

Africa through the West Indies, into the western Caribbean and Gulf of Mexico, and off 

the southeast U.S. coast into the central North Atlantic.  Fig. 4.12 shows the NATL TC 

genesis points stratified by phase of MJO Index 6.  It is clear that far more TCs form 

when Index 6 is in SUP phase (66 out of 325) than when it is in ENH phase (23 out of 

325).  This conclusion is supported by the Z-statistics in Table 4.10.  In the CARIB sub-

basin (Fig. 4.13), only 1 TC (out of 54 total) formed when the Index was in ENH phase.  

In the Gulf of Mexico, while more TCs formed when Index 6 was in the SUP phase (13 

out of 65) than in the ENH phase (5 out of 65; see Fig. 4.14), the result is not 

statistically significant.  The AMDR sub-basin, which has favored TC genesis when the 

Index is in the SUP phase (42 out of 159 verses 11 out of 159 for the SUP and ENH 

phases, respectively), is shown in Fig. 4.15.   

 

4.9.  Quantifying TC modulation by MJO at landfall 

As mentioned above, perhaps the most societally important modulation of TC 

activity by the MJO occurs with landfalling TCs.  Fig. 4.16 shows all 238 TCs (not 

stratified by intensity) that made landfall in the NATL basin between 1978 and 2006.  

As with the TC genesis display from the NATL, landfall events are clustered around the 
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Caribbean, Central America, the U.S. Gulf coast and eastern seaboard, even extending 

to the Canadian Maritimes and the island of Bermuda.  Fig. 4.17 shows the stratification 

of landfall by MJO Index 6 phase.  When Index 6 is in the ENH phase, only 13 TCs 

(out of 238 total) make landfall; while when Index 6 is in the SUP phase, 65 TCs make 

landfall.  As expected, this result is statistically significant (with 95% confidence): 

namely, that the MJO Index 6, when in the ENH phase,  suppresses TC landfall activity 

in the NATL, and when in the SUP phase, favors hurricane and intense hurricane 

landfall activity in the NATL.   

 

4.10.  Advantages to these methods of quantifying TC activity 

Two previous studies, Hall et al. (2001) and Bessafi and Wheeler (2006), 

developed and applied rigorous statistical hypothesis testing to determine the extent of 

MJO modulation of TC activity.  As previously mentioned, Hall et al. (2001) examined 

only the Australian region and limited their study to the 20-yr period ending in 1996.  

Bessafi and Wheeler (2006) examined the Indian Ocean basin.  Both of these studies 

develop only one MJO Index (instead of ten), and partition it into five (seven) different 

phases.  Thus the MJO is always confined to one phase in these two studies.  Higgins 

and Shi (2001) briefly examined the connection between the MJO and hurricane genesis 

in the Pacific Ocean.  They calculated seven MJO Indices from 200 hPa velocity 

potential, similar to Xue et al (2002).  However, they limited their study to a 19-year 

period and did not complete the analysis, omitting many of the genesis points for the 

Western North Pacific and nearly all of the points in the East Pacific and North Atlantic 

during this time.  For example, fewer than 20 hurricane genesis points were plotted for 
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the North Atlantic (Higgins and Shi 2001); yet during the period 1979-1997, 103 

hurricanes formed.   

This study uses the ten-index method of Xue et al. (2002) to quantify the MJO.  

Unlike Hall et al. (2001) and Bessafi and Wheeler (2006), which force the MJO into 

only one phase bin at any given time, the method of this study allows the MJO to be 

binned ten different times at ten different longitudinal locations spread throughout both 

the eastern and western hemispheres.  Like the Xue et al. (2002) method, the Hall et al. 

(2001) and Bessafi and Wheeler (2006) methods find the MJO in neutral phase more 

often than in any other phase.  Unlike the earlier studies, however, the method in this 

dissertation produces many “non-neutral” MJO phases.  For example, during the 

tropical season (June to November), the ten individual indices average 770 NEU phases, 

out of 1066 total (about 72%).  However, only 451 pentads (about 42%) have all of the 

ten indices in NEU phase, a gain of about 30%.  Hall et al. (2001) examined the 

sensitivity to changing the definition of the non-neutral phases and found slightly 

stronger modulation signals when the neutral phase was larger.  Thus, this study will 

keep the relatively high amplitude threshold of -1.00 and +1.00 (Bessafi and Wheeler 

2006 used thresholds of ± 0.8). 

 

4.11. Conclusions and connections to future work 

 This study examined the modulation of TC activity by the MJO.  Null 

hypotheses stating that the MJO had no effect on TC activity were tested, with the 

assumption that the occurrence of TC events in a non-modulated environment would be 

distributed evenly and at the same frequency as the various phases of the MJO.  TC 
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activity was measured in two methods:  genesis and landfall.  The Julian day of the 

corresponding TC event was matched with the corresponding pentad of velocity 

potential from the real-time MJO composite index produced by the NOAA CPC (Xue et 

al. 2002).  Observed frequencies of TC events for each MJO phase were compared with 

frequencies of the MJO phases themselves, and a test statistic was computed and 

compared against a critical score to determine if the null hypothesis could be accepted 

or rejected.  The landfall measure of activity was further divided into two parts, with the 

first measure using the Julian day of genesis of TCs that went on to later make landfall 

and the second measure using the Julian day of actual landfall.   

 The results of the statistical tests are that the MJO does indeed modulate East 

Pacific and North Atlantic TC, hurricane, and intense hurricane activity.  The primary 

advantage of this study is that it is the first to quantify the modulation by sub-basin and 

to report different modulations by different MJO Index phases.  The modulation was 

also frequently manifest in the form of a teleconnection, extending from the region of 

active convective activity a hemisphere away.  This study had far more cases of 

“neutral” MJO phase than either Bessafi and Wheeler (2006) or Hall et al. (2001), 

which allowed the MJO non-neutral signal to be amplified.  Several of the modulation 

Z-statistics exceed ±3.50, which correspond to greater than 99.9% confidence in a two-

sided test!   

 While connections between the MJO and TC activity have been hypothesized 

since the MJO was discovered in the 1970s, there have been very few studies to date 

that actually investigate and quantify the connection.  Part of this lack of research has 

stemmed from the absence, until recently, of a manner to quantify the MJO itself.   Thus 
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this study is pioneering in its combination of the MJO Index with the latest best-track 

TC data.  Now that the relationships between the EPAC, NATL, and other basins and 

the various MJO Indices have been established, it is a natural next step to implement 

them in a real-time forecasting procedure.  This application will prove very useful to 

society, especially the ability to connect the low-frequency oscillation with both genesis 

and landfall. 
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Chapter 5. Conclusions and future work 

 

Tropical cyclones are among the most extreme geophysical phenomena on the 

surface of the planet.  At landfall, death and destruction are spread across wide areas 

without respect for geopolitical boundaries.  Coastal buildings are flooded by the ocean 

surge; inland waterways overflow their banks and claim homes and businesses; 

tornadoes chart narrow but unpredictable paths in the outer bands and eyewall; and both 

coastal and inland structures are damaged and destroyed after prolonged battery by 

wind and wind-driven projectiles.  Besides their peril, TCs also bring beneficial rainfall 

and hydrologic basin recharge to coastal and inland regions.   

Because TCs are such significant geophysical events, it is essential that we 

understand their connections to the earth-atmosphere system.  Very recent advances in 

technological capacities, including high-resolution NWP models, advanced computing 

capabilities, improved instrumentation used to gather in situ observational data, and 

enhanced satellite and radar remote-sensing techniques, have enabled the expansion of 

our observational and theoretical understanding of TC genesis, structure, intensification, 

decay, and motion.  Historical datasets are now available that span thirty or more years, 

providing for the first time the ability to define climatological norms and anomalies and 

test the relationships between historical TC activity and leading modes of climatic 

variability.     

In this dissertation, I presented a series of investigations to expand our 

understanding of TCs in the East Pacific and North Atlantic basins.  First, I developed 

and applied a climatological tool that quickly and succinctly displays the spread of 
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historical TC tracks for any point in the North Atlantic basin.  This tool is useful in the 

real-time forecast setting because it is derived from prior storm motion trajectories and 

summarily captures the historical synoptic and mesoscale steering patterns.  It displays 

the strength of the climatological signal and allow for rapid qualitative comparison 

between historical TC tracks and NWP models.  Second, I have quantified the 

relationships between different metrics of TC activity spanning multiple ocean basins 

and climate indices of the leading modes of atmospheric and oceanic variability.  I 

found that SSTs dominate the frequency, intensity, duration, and seasonality of TC 

activity, and that there is a tendency for the strongest correlations to be found where the 

SST-related indices (ENSO, NOI, SOI, and NASST) are approximately in situ.  These 

patterns of variation – particularly the detailed linkages between the four NINO regions, 

the Northern and Southern oscillations, and North Atlantic SSTs and the nine basins – 

are one of the major contributions of this investigation.  Earlier studies of the 

relationship between TC activity and ENSO did not examine the NINO regions 

separately or correlate them over different basins or metrics of TC activity.  I also found 

that the QBO is very relevant, particularly to intense hurricane activity, at low latitudes, 

equatorward of 20°N, but that its importance to rapidly diminishes beyond the deep 

tropics.  Finally, I found significant relationships between TC frequency, intensity, and 

seasonality and the PNA, NAO, AO, and PDO, and that these associations are spread 

throughout the nine basins.  These relationships are vital to users across the disciplines 

of meteorology, economics, business, and sociology who wish to understand seasonal 

variability in TC activity.  The most natural next step for this research is to apply it in 

the forecasting arena on intraseasonal to seasonal timescales and in the climate arena on 
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interannual to interdecadal timescales.  Third, I have examined the leading intraseasonal 

mode of atmospheric and oceanic variability, the Madden-Julian Oscillation (MJO), and 

discovered statistically significant relationships between the MJO and the frequency of 

TC genesis, intensification, and landfall over the nine basins.  I found that during 

certain phases of the MJO, TC genesis is statistically favored, and during other phases, 

it is statistically not favored; similar relationships were found for intensification and 

landfall.  By comparing TC activity in nine different basins to a real-time global MJO 

index, this investigation adds significant value to earlier studies which only examined 

the MJO at one longitude or computed associations for TC activity over an entire ocean 

basin.  Just as the relationships between TC activity and the intraseasonal to 

inderdecadal atmospheric modes are valuable to intraseasonal and seasonal predictions 

of TC activity, the MJO associations are highly relevant to the problem of short-term 

(one- to two-week) predictability of TC activity.  Finally, as perhaps an unintended 

benefit, through these three investigations I have demonstrated the utility of historical 

datasets, despite their quality limitations, across a wide range of applications, from 

short-term forecasting to climate studies.   

This research can be extended in a variety of ways.  Landfalling TCs are not 

uniform in their destructive potential, with variations in maximum wind speed, radius of 

maximum winds, forward speed, angle of approach to the coastline, coastal bathymetry, 

coastal population density, liquid water content, and local topography all contributing to 

substantially different landfall impacts from different TCs.  It would be therefore useful 

to combine these parameters into a new metric of TC activity and test this metric for 

temporal and spatial variability as well as connections to the climate indices.  The 
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relationships between different levels of TC activity and climate indices can be 

combined into predictive equations, in the form of multiple linear regression, to forecast 

the levels of seasonal TC activity across the nine basins.  This method has advantages 

over the current techniques which forecast basin-wide levels of TC activity using 

predictors whose usefulness is limited to certain sections of a basin (such as the QBO’s 

relevance only to low-latitude TC activity).  The MJO may also be useful as a seasonal 

predictor, even though it is an intraseasonal oscillation.  For example, in the very active 

2005 North Atlantic season, several MJO indices exhibited non-zero phase, indicating 

that it continually favored TC activity throughout the season.   

In addition to the many extensions that are possible from this research, the TC 

boundary layer drag coefficient, and the impact of local island terrain on TC track and 

intensity, remain unanswered problems.  These questions, and their background from 

the peer-reviewed literature, are presented in Chapter 1.  On a personal note, after 

completing his ph.d. at the University of Oklahoma, the author will assume a two-year 

post-doctoral research appointment, under the direction of Dr. Rene Garreaud, at the 

University of Chile.  He will participate in the 2008 UCAR-University of Chile-

University of Washington cosponsored VOCALS field project to examine the climate 

and weather of the southeast Pacific.   

To conclude succinctly, the results presented in this dissertation represent a 

significant and positive contribution to meteorology.  Collectively, they reveal multiple 

characteristics of TCs in the East Pacific and North Atlantic and provide greater 

understanding of the complex interactions between TCs and their surrounding larger-

scale environment.   
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Appendix: tables and figures 

 

 
 
 
 
 
 

Table 1.1.  Definitions, geographic regions, and abbreviations of the two basins 
(EPAC and NATL) and the seven sub-basins (CARIB, GOM, EEPAC, CEPAC, 
WEPAC, CPAC, and AMDR).   
 

Latitude Longitude Basin 
South North East West 

Text  
abbr. 

East Pacific all TCs in the best-track dataset EPAC 
North Atlantic all TCs in the best-track dataset NATL 

Caribbean 10°N 20°N 60°W 90°W CARIB 
Gulf of Mexico 18°N 31°N 82.5°W 98°W GOM 
East East Pacific n/a n/a n/a 100°W EEPAC 

Central East Pacific n/a n/a 100°W 115°W CEPAC 
West East Pacific n/a n/a 115°W 140°W WEPAC

Central Pacific n/a n/a 140°W 180°W CPAC 
Atlantic Main Development Region 10°N 20°N n/a n/a AMDR 

Table 1.2: Criteria for HURRAN (Hope and Neumann, 1970) analog selection. 
 

Selection Criteria Selection Range 
 

Radius of acceptance circle (distance 
from the existing storm) 

2 ½ ° of latitude 

Time of year Current date +/- 15 days 
Acceptance sector (heading) 22 ½ ° of current storm 

Acceptance speed 
+/- 5 kt (current storm <10  kt) 
+/- 50% (10 kt < current storm < 20 kt) 
+/- 10 kt (current storm > 20 kt) 
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Table 2.1: Tropical cyclone prediction methods used in this study. 
 

Name Acronym Reference Organization Comments 
Statistical and 
Dynamical 
Hurricane 
Track Model 

A98E 

Neumann and 
McAdie (1991) NOAA TPC 

 

NCEP Global 
Forecast 
System 

AVNO 
Kanamitsu 
(1989); Lord 
(1993) 

NCEP 
Aviation run 

Beta and 
Advection 
Models 

BAMS 
BAMM 
BAMD 

Marks (1992); 
Holland (1983) NOAA TPC 

S-shallow-layer  
M-medium-layer  
D-deep-layer 

Climatology 
and Persistence 
Model 

CLP5 
Neumann 
(1972) NOAA TPC 

 

Canadian 
Meteorological 
Center Model 

CMC 
Côté et al. 
(1998) CMC 

 

Geophysical 
Fluid Dynamics 
Laboratory 
Hurricane 
Forecast 
System 

GFDL 

Kurihara et al. 
(1993, 1995, 
1998); Bender 
et al. (1993) NOAA GFDL 

 

Consensus 
Forecast 
Models 

CONU 
GUNS 
GUNA 

Goerss (2000) NCEP TPC 

CONU: a consensus 
of at least two of 
GFDL, GFDN (U.S. 
Navy run of GFDL), 
GFS, NOGAPS, and 
UKMET 
 
GUNS: consensus of 
GFDL, UKMET, and 
NOGAPS 
 
GUNA: consensus of 
GFDL, UKMET, 
NOGAPS, and GFS 

Limited Area 
Sine Transform 
Barotropic 
Model 

LBAR 

Chen et al. 
(1997); Horsfall 
et al. (1997) NOAA TPC 

 

U.S. Navy NOGAPS Hogan and Fleet Numerical  
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Operational 
Global 
Atmospheric 
Prediction 
System 

Rosmond 
(1991); Goerss 
and Jeffries 
(1994) 

Meteorological 
and 
Oceanographic 
Center (FNMOC)

United 
Kingdom 
Meteorological 
Office Model 

UKMET 

Cullen (1993); 
Heming et al. 
(1995) UKMET 

 

TPC Official 
Forecast OFCL  NOAA TPC  

 
Table 2.2: Hurricane Ivan trajectory errors for the thirty-five 24-h 
forecasts generated between 0000 UTC 4 Sept. and 1200 UTC 12 
Sept.   The acronyms are defined in Table 2.1. 

Acronym Heading error 
(degrees) Position error (km) 

A98E -0.4 74 
AVNO 6.2 115 
BAMD 3.7 107 
BAMM 1.5 83 
BAMS 3.2 139 
CLP5 -0.8 87 
CMC 3.0 108 
CONU 5.9 82 
GFDL 4.0 86 
GUNA 6.3 91 
GUNS 5.8 77 
LBAR 3.2 97 
NOGAPS 4.3 75 
UKMET 4.6 78 
NHC OFCL 5.8 85 
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Table 2.3: p values (for α = 0.01, two-tailed t-test) comparing model trajectory errors 
to zero, CLP5, or OFCL.  p values less than 0.005 imply that the model errors are 
significantly different from zero, CLP5, or OFCL at the 99% confidence level.  p 
values in bold represent cases where there is no statistically significant difference 
between the models’ heading errors and no (zero) error, CLP5, or OFCL.  The 
acronyms are defined in Table 1. 

Acronym No Error CLP5 OFCL 
A98E 0.718 0.726 0.000 
AVNO 0.000 0.000 0.630 
BAMD 0.000 0.000 0.022 
BAMM 0.072 0.007 0.000 
BAMS 0.014 0.002 0.037 
CLP5 0.441 1.000 0.000 
CMC 0.000 0.000 0.001 
CONU 0.000 0.000 0.814 
GFDL 0.000 0.000 0.020 
GUNA 0.000 0.000 0.326 
GUNS 0.000 0.000 0.966 
LBAR 0.001 0.000 0.005 
UKMET 0.000 0.000 0.191 
NOGAPS 0.000 0.000 0.074 
NHC OFCL 0.000 0.000 1.000 

 
 
Table 2.4: Selected examples from the 2004 tropical Atlantic season where mean 24-h 
statistical-climatological model position errors are less than average 24-h NWP model 
position errors over the life of the TC.  Acronyms are defined in Table 2.1. 

Storm 
name 

Statistical-
climatological 

model 

Model position 
error (km) NWP model 

Model 
position error 

(km) 
Bonnie A98E 107 AVNO 170 
   GUNA 181 
   LBAR 135 
Danielle A98E 165 AVNO 212 
 CLP5 192 UKMET 191 
Ivan A98E 80 AVNO 104 
 CLP5 94 GFDL 96 
   NOGAPS 96 
   GUNA 83 
Jeanne A98E 107 GFDN 115 
   NOGAPS 119 
   UKMET 117 
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Table 3.1: CSU seasonal forecasts of TC activity. Skill 
relative to climatology (1.00 is a perfect forecast) 
 TCC HC IHC 
December 0.05 -0.08 0.08 
April -0.13 -0.33 -0.17 
June 0.57 0.46 0.42 
August 0.61 0.60 0.69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.3:  Anderson-Darling test of normality for TC activity metrics. 
 TCC HC IHC ACE PDI STCD SSD SMD SED
EPAC 0.32 0.54 0.41 0.50 0.62 0.39 0.35 0.28 0.41
NATL 0.80 0.97 1.77 1.37 1.86 17.31 0.75 1.26 0.92
CARIB 2.26 2.63 4.52 2.16 3.11 1.28 0.82 0.61 0.16
GOM 1.07 2.29 6.34 2.25 3.35 1.35 1.15 1.19 0.48
EEPAC 0.90 4.39 14.12 2.59 4.04 1.35 3.47 0.37 0.41
CEPAC 0.44 0.64 0.80 0.56 0.31 1.01 0.38 0.27 0.43
WEPAC 0.94 0.92 1.96 1.36 1.42 1.25 0.59 0.53 0.22
CPAC 3.16 5.26 5.89 2.16 3.31 1.40 3.34 0.34 1.37
AMDR 0.85 1.73 3.73 2.33 3.09 1.18 2.03 1.29 0.42
 TCLC USLC USLHC TCLP USLP USLHP    
EPAC 1.34   1.09      
NATL 0.60 1.85 2.04 0.21 1.22 0.88    

Table 3.2: Mean and standard deviation of number of TCs 
that form per season (TCC). Coefficient of variation is mean 
divided by standard deviation. 

Basin 

Mean 
seasonal 

TCC 

Standard 
deviation of 

TCC 
Coefficient of 

Variation 
Western Pacific 27.8 4.4 0.16 
EPAC 15.9 4.4 0.28 
NATL 12.1 5.1 0.42 
CARIB 2.1 1.8 0.84 
GOM 2.5 1.6 0.67 
EEPAC 2.3 1.5 0.63 
CEPAC 9.3 3.2 0.34 
WEPAC 3.4 2.1 0.63 
CPAC 1.0 1.2 1.25 
AMDR 5.9 3.4 0.59 
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Table 3.4: Anderson-Darling test of normality for climate indices. 
 JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ DFJ
NINO1 2.22 2.19 1.88 1.84 1.87 1.94 1.97 1.68 1.04 1.24 1.71 2.14
NINO3 1.10 1.93 1.28 30.26 0.28 0.63 0.83 0.82 0.63 0.59 0.71 0.79
NINO3.4 1.19 1.04 1.03 0.74 0.54 0.67 0.69 0.54 0.48 0.56 0.79 0.97
NINO4 0.39 0.68 0.66 0.34 0.31 0.36 0.42 0.34 0.24 0.20 0.21 0.29
NATL 0.62 0.39 0.18 0.24 0.21 0.37 0.40 0.65 0.87 1.00 0.68 0.72
QBO 0.74 1.08 1.30 1.36 1.34 1.08 1.11 1.23 1.15 0.79 0.74 0.62
PDO 0.61 0.55 0.78 0.41 0.26 0.70 0.77 0.53 0.42 0.34 0.41 0.47
SOI 0.51 0.19 0.25 0.38 0.52 0.27 0.34 0.17 0.31 0.51 0.62 0.45
NOI 0.59 0.41 0.38 0.27 0.47 0.20 0.39 0.24 0.27 0.29 0.28 0.61
NAO 0.51 0.20 0.41 0.42 0.35 0.50 0.23 0.32 0.30 0.16 0.56 0.35
PNA 0.57 0.44 0.16 0.46 0.56 0.22 0.31 0.59 0.25 0.38 0.45 0.27
AO 0.46 0.78 0.42 0.26 0.33 0.41 0.46 0.21 0.29 0.61 0.32 0.15
 
 
Table 3.5:  Interbasin correlation of TCC, 1970-2006 

 
EPAC 
TCC 

NATL 
TCC 

CARIB 
TCC 

GOM 
TCC

EEPAC 
TCC 

CEPAC 
TCC 

WEPAC 
TCC 

CPAC 
TCC 

AMDR 
TCC 

EPAC 1.00         
NATL -0.24 1.00        
CARIB -0.39 0.75 1.00       
GOM -0.30 0.66 0.45 1.00      
EEPAC 0.16 -0.06 0.05 0.03 1.00     
CEPAC 0.71 -0.08 -0.32 -0.34 -0.20 1.00    
WEPAC 0.60 -0.16 -0.16 -0.01 -0.11 0.07 1.00   
CPAC 0.61 -0.33 -0.43 -0.24 0.01 0.22 0.39 1.00  
AMDR -0.41 0.82 0.73 0.48 -0.19 -0.19 -0.22 -0.40 1.00 
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Table 4.1: Sample of the real-time MJO composite indices for the August to September
2005.  Pentad averages of 200 hPa velocity potential anomalies, normalized by standard
deviation, are shown for each of the 10 indices for the period 02 June to 29 November
2005.  Positive (negative) values correspond to positive anomalies of 200 hPa velocity
potential, and thus upper-tropospheric convergence (divergence) and enhanced
(suppressed) convection.   
 

Date Index 
1 

80°E 

Index
2 

100°E

Index
3 

120°E

Index
4 

140°E

Index
5 

160°E

Index
6 

120°W

Index 
7 

40°W 

Index 
8 

10°W 

Index
9 

20°E

Index
10 

70°E
20050801 0.44 -0.55 -1.34 -1.83 -1.41 -0.22 0.79 1.58 1.76 0.8 
20050806 1.56 0.52 -0.56 -1.66 -2.11 -1.33 -0.24 0.95 1.97 1.75 
20050811 0.45 0.49 0.39 0.13 -0.28 -0.51 -0.51 -0.35 0.03 0.4 
20050816 -0.02 0.43 0.72 0.84 0.51 -0.09 -0.53 -0.81 -0.76 -0.23
20050821 -0.15 0.17 0.4 0.53 0.38 0.03 -0.26 -0.48 -0.51 -0.23
20050826 -0.8 -0.57 -0.17 0.4 0.91 0.86 0.49 -0.07 -0.81 -1.00
20050831 -0.78 -0.59 -0.24 0.32 0.84 0.86 0.55 0.02 -0.71 -0.98
20050905 -1.75 -2.3 -2.17 -1.22 0.69 2.07 2.39 1.9 0.18 -1.67
20050910 -0.43 -1.7 -2.42 -2.43 -1.08 0.76 1.93 2.5 1.87 -0.01
20050915 -0.13 -1.01 -1.54 -1.65 -0.86 0.36 1.18 1.63 1.34 0.18 
20050920 0.86 0.62 0.21 -0.37 -0.91 -0.9 -0.57 -0.04 0.69 0.96 
20050925 0.52 0.87 1.00 0.82 0.14 -0.55 -0.91 -0.99 -0.57 0.25 
20050930 -0.19 -0.23 -0.15 0.05 0.28 0.35 0.26 0.05 -0.3 -0.43

 
Table 4.2: Correlations of each MJO index with the other nine indices.   
 

  Index Index Index Index Index Index Index Index Index Index
  1 2 3 4 5 6 7 8 9 10 
  80°E 100°E 120°E 140°E 160°E 120°W 40°W 10°W 20°E 70°E

Index1 1           
Index2 0.785 1          
Index3 0.392 0.877 1         
Index4 -0.12 0.52 0.87 1        
Index5 -0.76 -0.2 0.3 0.734 1       
Index6 -0.99 -0.87 -0.53 -0.04 0.651 1      
Index7 -0.69 -0.99 -0.93 -0.63 0.066 0.8 1     
Index8 -0.21 -0.77 -0.98 -0.95 -0.47 0.36 0.85 1    
Index9 0.466 -0.18 -0.63 -0.93 -0.93 -0.3 0.31 0.764 1   
Index10 0.971 0.625 0.18 -0.34 -0.89 -0.9 -0.52 0.015 0.656 1 
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Table 4.3.  First four statistical moments of the seasonal (June-Nov) MJO indices, pre- 
and post-transformation (Manly 1976).   
 

  
Index1 
80°E 

Index2 
100°E 

Index3
120°E

Index4
140°E

Index5
160°E

Index6
120°W

Index7 
40°W

Index8 
10°W 

Index9
20°E 

Index10
70°E 

Mean -0.06 -0.05 -0.03 0.00 0.05 0.07 0.05 0.02 -0.05 -0.08
Stdev 0.86 0.88 0.92 0.95 0.92 0.88 0.89 0.93 0.94 0.90 
Skew 0.10 0.21 0.15 0.05 0.04 -0.11 -0.20 -0.11 -0.05 0.00 
Kurt -0.35 -0.06 0.03 -0.15 -0.17 -0.33 0.00 -0.03 -0.14 -0.32
K-parameter -0.05 -0.09 -0.06 0.025 -0.025 0.05 0.08 0.04 0.025 0 
Mean_T -0.07 -0.09 -0.06 -0.01 0.04 0.08 0.08 0.03 -0.03 -0.08
Stdev_T 0.86 0.88 0.92 0.95 0.92 0.88 0.89 0.93 0.94 0.90 
Skew_T -0.01 -0.01 -0.01 -0.02 -0.02 0.00 0.00 0.00 0.02 0.00 
Kurt_T -0.35 -0.18 -0.08 -0.17 -0.18 -0.34 -0.12 -0.11 -0.15 -0.32
 
 

Table 4.4.  Expected fraction of TC activity p0 given by MJO phase 
frequency per index. 
 

Index 
Total 

number 
Number 

ENH 
Fraction 

p0 
Number 

NEU 
Fraction 

p0 
Number 

SUP 
Fraction 

p0 
Index 1 1066 161 0.15 774 0.73 131 0.12 
Index 2 1066 169 0.16 775 0.73 122 0.11 
Index 3 1066 172 0.16 771 0.72 123 0.12 
Index 4 1066 175 0.16 738 0.69 153 0.14 
Index 5 1066 144 0.14 764 0.72 158 0.15 
Index 6 1066 125 0.12 781 0.73 160 0.15 
Index 7 1066 117 0.11 784 0.74 165 0.15 
Index 8 1066 133 0.12 766 0.72 167 0.16 
Index 9 1066 159 0.15 760 0.71 147 0.14 
Index 10 1066 165 0.15 769 0.72 132 0.12 
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Table 4.5.  Observed fraction of TC genesis events p̂ for each of the 9 basins and sub-
basins.  Indices 1-5 are shown.   
 

All TCs Index 1 
80°E 

Index 2 
100°E 

Index 3 
120°E 

Index 4 
140°E 

Index 5 
160°E . . . 

Basin Storm 
Type 

MJO 
Phase 

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p  

Number 
per 

phase 

^
p  

Total 
Number

ENH 45 0.09 50 0.1 48 0.1 51 0.11 69 0.14
NEU 345 0.72 348 0.72 355 0.74 358 0.74 357 0.74TC 
SUP 91 0.19 83 0.17 78 0.16 72 0.15 55 0.11

481 

ENH 23 0.09 29 0.11 22 0.08 19 0.07 28 0.1 
NEU 205 0.76 194 0.72 198 0.73 205 0.76 211 0.78H 
SUP 42 0.16 47 0.17 50 0.19 46 0.17 31 0.11

270 

ENH 16 0.12 15 0.11 10 0.08 10 0.08 11 0.08
NEU 97 0.73 95 0.71 101 0.76 100 0.75 106 0.8 

EPAC 

IH 
SUP 20 0.15 23 0.17 22 0.17 23 0.17 16 0.12

133 

ENH 72 0.22 69 0.21 57 0.18 47 0.14 31 0.1 
NEU 223 0.69 222 0.68 234 0.72 224 0.69 219 0.67TC 
SUP 30 0.09 34 0.1 34 0.1 54 0.17 75 0.23

325 

ENH 42 0.23 38 0.21 37 0.2 26 0.14 18 0.1 
NEU 130 0.71 131 0.72 127 0.69 128 0.7 119 0.65H 
SUP 11 0.06 14 0.08 19 0.1 29 0.16 46 0.25

183 

ENH 20 0.27 18 0.25 14 0.19 9 0.12 8 0.11
NEU 50 0.68 50 0.68 51 0.7 55 0.75 45 0.62

NATL 

IH 
SUP 3 0.04 5 0.07 8 0.11 9 0.12 20 0.27

73 

ENH 15 0.28 8 0.15 7 0.13 9 0.17 5 0.09
NEU 37 0.69 36 0.67 38 0.7 35 0.65 34 0.63TC 
SUP 2 0.04 10 0.19 9 0.17 10 0.19 15 0.28

54 

ENH 9 0.29 8 0.26 8 0.26 5 0.16 2 0.06
NEU 22 0.71 19 0.61 18 0.58 21 0.68 20 0.65H 
SUP 0 0 4 0.13 5 0.16 5 0.16 9 0.29

31 

ENH 5 0.26 5 0.26 4 0.21 1 0.05 1 0.05
NEU 14 0.74 11 0.58 11 0.58 14 0.74 13 0.68

CARIB 

IH 
SUP 0 0 3 0.16 4 0.21 4 0.21 5 0.26

19 

ENH 16 0.25 16 0.25 11 0.17 7 0.11 4 0.06
NEU 43 0.66 42 0.65 46 0.71 44 0.68 44 0.68TC 
SUP 6 0.09 7 0.11 8 0.12 14 0.22 17 0.26

65 

ENH 6 0.21 6 0.21 4 0.14 2 0.07 1 0.03
NEU 21 0.72 19 0.66 21 0.72 21 0.72 19 0.66H 
SUP 2 0.07 4 0.14 4 0.14 6 0.21 9 0.31

29 

ENH 1 0.08 3 0.23 3 0.23 2 0.15 2 0.15
NEU 11 0.85 8 0.62 8 0.62 9 0.69 9 0.69

GOM 

IH 
SUP 1 0.08 2 0.15 2 0.15 2 0.15 2 0.15

13 

ENH 5 0.08 5 0.08 5 0.08 2 0.03 7 0.11EEPAC TC 
NEU 45 0.73 45 0.73 42 0.68 46 0.74 48 0.77

62 
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SUP 12 0.19 12 0.19 15 0.24 14 0.23 7 0.11
ENH 0 0 2 0.17 2 0.17 0 0 0 0 
NEU 10 0.83 7 0.58 6 0.5 10 0.83 12 1 H 
SUP 2 0.17 3 0.25 4 0.33 2 0.17 0 0 

12 

ENH 0 0 0 0 0 0 0 0 0 0 
NEU 0 0 0 0 0 0 1 1 1 1 IH 
SUP 1 1 1 1 1 1 0 0 0 0 

1 

ENH 32 0.1 34 0.11 28 0.09 30 0.1 39 0.13
NEU 224 0.73 224 0.73 236 0.77 237 0.77 228 0.75TC 
SUP 50 0.16 48 0.16 42 0.14 39 0.13 39 0.13

306 

ENH 16 0.09 17 0.1 14 0.08 12 0.07 21 0.12
NEU 133 0.75 128 0.72 131 0.74 136 0.76 139 0.78H 
SUP 29 0.16 33 0.19 33 0.19 30 0.17 18 0.1 

178 

ENH 11 0.14 10 0.13 7 0.09 6 0.08 5 0.06
NEU 58 0.74 56 0.72 61 0.78 63 0.81 65 0.83

CEPAC 

IH 
SUP 9 0.12 12 0.15 10 0.13 9 0.12 8 0.1 

78 

ENH 5 0.06 9 0.11 12 0.14 15 0.18 18 0.21
NEU 60 0.71 62 0.74 61 0.73 59 0.7 62 0.74TC 
SUP 19 0.23 13 0.15 11 0.13 10 0.12 4 0.05

84 

ENH 6 0.09 10 0.15 6 0.09 7 0.11 6 0.09
NEU 51 0.78 48 0.74 52 0.8 52 0.8 51 0.78H 
SUP 8 0.12 7 0.11 7 0.11 6 0.09 8 0.12

65 

ENH 3 0.07 4 0.1 3 0.07 4 0.1 5 0.12
NEU 30 0.73 29 0.71 28 0.68 27 0.66 31 0.76

WEPAC 

IH 
SUP 8 0.2 8 0.2 10 0.24 10 0.24 5 0.12

41 

ENH 3 0.1 2 0.07 3 0.1 4 0.14 5 0.17
NEU 16 0.55 17 0.59 16 0.55 16 0.55 19 0.66TC 
SUP 10 0.34 10 0.34 10 0.34 9 0.31 5 0.17

29 

ENH 1 0.07 0 0 0 0 0 0 1 0.07
NEU 11 0.73 11 0.73 9 0.6 7 0.47 9 0.6 H 
SUP 3 0.2 4 0.27 6 0.4 8 0.53 5 0.33

15 

ENH 2 0.15 1 0.08 0 0 0 0 1 0.08
NEU 9 0.69 10 0.77 12 0.92 9 0.69 9 0.69

CPAC 

IH 
SUP 2 0.15 2 0.15 1 0.08 4 0.31 3 0.23

13 

ENH 44 0.28 38 0.24 24 0.15 19 0.12 13 0.08
NEU 100 0.63 104 0.65 119 0.75 115 0.72 100 0.63TC 
SUP 15 0.09 17 0.11 16 0.1 25 0.16 46 0.29

159 

ENH 22 0.29 17 0.22 14 0.18 8 0.11 3 0.04
NEU 51 0.67 52 0.68 52 0.68 53 0.7 47 0.62H 
SUP 3 0.04 7 0.09 10 0.13 15 0.2 26 0.34

76 

ENH 9 0.27 9 0.27 7 0.21 2 0.06 2 0.06
NEU 24 0.73 22 0.67 22 0.67 26 0.79 21 0.64

AMDR 

IH 
SUP 0 0 2 0.06 4 0.12 5 0.15 10 0.3 

33 

 
 
 



 204

Table 4.6.  As in Table 4.5, but Indices 6-10 are shown.   
 

All TCs Index 6 
120°W 

Index 7 
40°W 

Index 8 
10°W 

Index 9 
20°E 

Index 10 
70°E  

Basin Storm 
Type 

MJO 
Phase 

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p  

Number 
per 

phase 

^
p  

Total 
Number

ENH 90 0.19 72 0.15 69 0.14 58 0.12 56 0.12
NEU 342 0.71 360 0.75 362 0.75 369 0.77 344 0.72TC 
SUP 49 0.1 49 0.1 50 0.1 54 0.11 81 0.17

481 

ENH 43 0.16 43 0.16 46 0.17 38 0.14 31 0.11
NEU 201 0.74 201 0.74 205 0.76 209 0.77 205 0.76H 
SUP 26 0.1 26 0.1 19 0.07 23 0.09 34 0.13

270 

ENH 19 0.14 17 0.13 23 0.17 19 0.14 18 0.14
NEU 97 0.73 103 0.77 102 0.77 105 0.79 99 0.74

EPAC 

IH 
SUP 17 0.13 13 0.1 8 0.06 9 0.07 16 0.12

133 

ENH 23 0.07 31 0.1 39 0.12 64 0.2 73 0.22
NEU 236 0.73 237 0.73 235 0.72 225 0.69 223 0.69TC 
SUP 66 0.2 57 0.18 51 0.16 36 0.11 29 0.09

325 

ENH 7 0.04 15 0.08 23 0.13 36 0.2 46 0.25
NEU 136 0.74 133 0.73 128 0.7 128 0.7 126 0.69H 
SUP 40 0.22 35 0.19 32 0.17 19 0.1 11 0.06

183 

ENH 2 0.03 4 0.05 4 0.05 14 0.19 21 0.29
NEU 50 0.68 54 0.74 57 0.78 52 0.71 48 0.66

NATL 

IH 
SUP 21 0.29 15 0.21 12 0.16 7 0.1 4 0.05

73 

ENH 1 0.02 9 0.17 7 0.13 12 0.22 11 0.2 
NEU 42 0.78 37 0.69 39 0.72 37 0.69 40 0.74TC 
SUP 11 0.2 8 0.15 8 0.15 5 0.09 3 0.06

54 

ENH 0 0 3 0.1 4 0.13 9 0.29 9 0.29
NEU 21 0.68 20 0.65 20 0.65 20 0.65 21 0.68H 
SUP 10 0.32 8 0.26 7 0.23 2 0.06 1 0.03

31 

ENH 0 0 1 0.05 1 0.05 5 0.26 5 0.26
NEU 13 0.68 13 0.68 15 0.79 13 0.68 14 0.74

CARIB 

IH 
SUP 6 0.32 5 0.26 3 0.16 1 0.05 0 0 

19 

ENH 5 0.08 7 0.11 12 0.18 15 0.23 18 0.28
NEU 47 0.72 45 0.69 43 0.66 44 0.68 43 0.66TC 
SUP 13 0.2 13 0.2 10 0.15 6 0.09 4 0.06

65 

ENH 2 0.07 4 0.14 5 0.17 7 0.24 6 0.21
NEU 21 0.72 20 0.69 20 0.69 21 0.72 22 0.76H 
SUP 6 0.21 5 0.17 4 0.14 1 0.03 1 0.03

29 

ENH 1 0.08 1 0.08 1 0.08 2 0.15 2 0.15
NEU 10 0.77 9 0.69 9 0.69 9 0.69 9 0.69

GOM 

IH 
SUP 2 0.15 3 0.23 3 0.23 2 0.15 2 0.15

13 

ENH 12 0.19 13 0.21 14 0.23 11 0.18 7 0.11
NEU 43 0.69 44 0.71 44 0.71 46 0.74 45 0.73TC 
SUP 7 0.11 5 0.08 4 0.06 5 0.08 10 0.16

62 
EEPAC 

H ENH 3 0.25 3 0.25 3 0.25 1 0.08 0 0 12 
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NEU 7 0.58 7 0.58 8 0.67 11 0.92 10 0.83
SUP 2 0.17 2 0.17 1 0.08 0 0 2 0.17
ENH 1 1 1 1 0 0 0 0 0 0 
NEU 0 0 0 0 1 1 1 1 0 0 IH 
SUP 0 0 0 0 0 0 0 0 1 1 

1 

ENH 50 0.16 40 0.13 36 0.12 36 0.12 38 0.12
NEU 222 0.73 236 0.77 241 0.79 238 0.78 223 0.73TC 
SUP 34 0.11 30 0.1 29 0.09 32 0.1 45 0.15

306 

ENH 30 0.17 30 0.17 29 0.16 25 0.14 22 0.12
NEU 132 0.74 133 0.75 137 0.77 138 0.78 132 0.74H 
SUP 16 0.09 15 0.08 12 0.07 15 0.08 24 0.13

178 

ENH 9 0.12 8 0.1 9 0.12 8 0.1 13 0.17
NEU 58 0.74 62 0.79 64 0.82 65 0.83 57 0.73

CEPAC 

IH 
SUP 11 0.14 8 0.1 5 0.06 5 0.06 8 0.1 

78 

ENH 19 0.23 10 0.12 9 0.11 5 0.06 6 0.07
NEU 60 0.71 63 0.75 61 0.73 65 0.77 59 0.7 TC 
SUP 5 0.06 11 0.13 14 0.17 14 0.17 19 0.23

84 

ENH 8 0.12 7 0.11 7 0.11 6 0.09 8 0.12
NEU 50 0.77 49 0.75 52 0.8 52 0.8 50 0.77H 
SUP 7 0.11 9 0.14 6 0.09 7 0.11 7 0.11

65 

ENH 8 0.2 8 0.2 10 0.24 8 0.2 3 0.07
NEU 29 0.71 29 0.71 28 0.68 30 0.73 32 0.78

WEPAC 

IH 
SUP 4 0.1 4 0.1 3 0.07 3 0.07 6 0.15

41 

ENH 9 0.31 9 0.31 10 0.34 6 0.21 5 0.17
NEU 17 0.59 17 0.59 16 0.55 20 0.69 17 0.59TC 
SUP 3 0.1 3 0.1 3 0.1 3 0.1 7 0.24

29 

ENH 2 0.13 3 0.2 7 0.47 6 0.4 1 0.07
NEU 12 0.8 12 0.8 8 0.53 8 0.53 13 0.87H 
SUP 1 0.07 0 0 0 0 1 0.07 1 0.07

15 

ENH 1 0.08 0 0 4 0.31 3 0.23 2 0.15
NEU 10 0.77 12 0.92 9 0.69 9 0.69 10 0.77

CPAC 

IH 
SUP 2 0.15 1 0.08 0 0 1 0.08 1 0.08

13 

ENH 11 0.07 15 0.09 17 0.11 37 0.23 41 0.26
NEU 106 0.67 115 0.72 121 0.76 108 0.68 103 0.65TC 
SUP 42 0.26 29 0.18 21 0.13 14 0.09 15 0.09

159 

ENH 2 0.03 6 0.08 13 0.17 21 0.28 23 0.3 
NEU 53 0.7 56 0.74 52 0.68 51 0.67 49 0.64H 
SUP 21 0.28 14 0.18 11 0.14 4 0.05 4 0.05

76 

ENH 0 0 2 0.06 2 0.06 8 0.24 9 0.27
NEU 23 0.7 23 0.7 26 0.79 23 0.7 24 0.73

AMDR 

IH 
SUP 10 0.3 8 0.24 5 0.15 2 0.06 0 0 

33 
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Table 4.7.  Observed fraction of landfall-genesis events p̂ for each of the 9 basins and 
sub-basins.  Indices 1-5 are shown.   
 

Landfall-
genesis 

Index 1 
80°E 

Index 2 
100°E 

Index 3 
120°E 

Index 4 
140°E 

Index 5 
160°E . . . 

Basin Storm 
Type 

MJO 
Phase 

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p  

Number 
per 

phase 

^
p  

Total 
Number

ENH 4 0.06 6 0.09 5 0.08 2 0.03 4 0.06
NEU 46 0.72 40 0.62 44 0.69 51 0.8 54 0.84TC 
SUP 14 0.22 18 0.28 15 0.23 11 0.17 6 0.09

 
64 

 

ENH 2 0.04 4 0.08 4 0.08 0 0 3 0.06
NEU 37 0.77 34 0.71 33 0.69 40 0.83 44 0.92H 
SUP 9 0.19 10 0.21 11 0.23 8 0.17 1 0.02

 
48 

 

ENH 2 0.1 2 0.1 2 0.1 0 0 1 0.05
NEU 15 0.71 16 0.76 15 0.71 18 0.86 19 0.9 

EPAC 

IH 
SUP 4 0.19 3 0.14 4 0.19 3 0.14 1 0.05

 
21 

 

ENH 26 0.25 22 0.22 12 0.12 11 0.11 8 0.08
NEU 69 0.68 69 0.68 77 0.75 70 0.69 67 0.66TC 
SUP 7 0.07 11 0.11 13 0.13 21 0.21 27 0.26

 
102 

 

ENH 12 0.21 12 0.21 7 0.12 5 0.09 5 0.09
NEU 42 0.74 39 0.68 43 0.75 41 0.72 37 0.65H 
SUP 3 0.05 6 0.11 7 0.12 11 0.19 15 0.26

 
57 

 

ENH 6 0.2 6 0.2 5 0.17 3 0.1 2 0.07
NEU 23 0.77 22 0.73 22 0.73 23 0.77 20 0.67

NATL 

IH 
SUP 1 0.03 2 0.07 3 0.1 4 0.13 8 0.27

 
30 

 

ENH 7 0.39 3 0.17 1 0.06 2 0.11 2 0.11
NEU 11 0.61 12 0.67 14 0.78 14 0.78 10 0.56TC 
SUP 0 0 3 0.17 3 0.17 2 0.11 6 0.33

 
18 

 

ENH 2 0.18 2 0.18 2 0.18 2 0.18 2 0.18
NEU 9 0.82 8 0.73 9 0.82 9 0.82 7 0.64H 
SUP 0 0 1 0.09 0 0 0 0 2 0.18

 
11 

 

ENH 2 0.33 2 0.33 1 0.17 0 0 0 0 
NEU 4 0.67 3 0.5 5 0.83 5 0.83 4 0.67

CARIB 

IH 
SUP 0 0 1 0.17 0 0 1 0.17 2 0.33

 
6 
 

ENH 11 0.23 12 0.26 8 0.17 5 0.11 4 0.09
NEU 31 0.66 30 0.64 33 0.7 31 0.66 30 0.64TC 
SUP 5 0.11 5 0.11 6 0.13 11 0.23 13 0.28

 
47 

 

ENH 4 0.24 4 0.24 3 0.18 1 0.06 1 0.06
NEU 11 0.65 10 0.59 11 0.65 12 0.71 11 0.65H 
SUP 2 0.12 3 0.18 3 0.18 4 0.24 5 0.29

 
17 

 

ENH 1 0.09 2 0.18 2 0.18 2 0.18 2 0.18
NEU 9 0.82 8 0.73 8 0.73 7 0.64 7 0.64

GOM 

IH 
SUP 1 0.09 1 0.09 1 0.09 2 0.18 2 0.18

 
11 

 
EEPAC TC ENH 1 0.05 1 0.05 1 0.05 0 0 1 0.05  
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NEU 15 0.71 13 0.62 12 0.57 16 0.76 19 0.9 
SUP 5 0.24 7 0.33 8 0.38 5 0.24 1 0.05

21 
 

ENH 0 0 1 0.25 1 0.25 0 0 0 0 
NEU 3 0.75 2 0.5 1 0.25 4 1 4 1 H 
SUP 1 0.25 1 0.25 2 0.5 0 0 0 0 

 
4 
 

ENH 0 0 0 0 0 0 0 0 0 0 
NEU 0 0 0 0 0 0 1 1 1 1 IH 
SUP 1 1 1 1 1 1 0 0 0 0 

 
1 
 

ENH 3 0.08 5 0.12 4 0.1 2 0.05 2 0.05
NEU 30 0.75 25 0.62 30 0.75 33 0.82 34 0.85TC 
SUP 7 0.17 10 0.25 6 0.15 5 0.12 4 0.1 

 
40 

 

ENH 2 0.05 3 0.07 3 0.07 0 0 2 0.05
NEU 33 0.79 30 0.71 30 0.71 34 0.81 39 0.93H 
SUP 7 0.17 9 0.21 9 0.21 8 0.19 1 0.02

 
42 

 

ENH 2 0.11 2 0.11 2 0.11 0 0 0 0 
NEU 14 0.78 14 0.78 13 0.72 15 0.83 17 0.94

CEPAC 

IH 
SUP 2 0.11 2 0.11 3 0.17 3 0.17 1 0.06

 
18 

 

ENH 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 
NEU 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a TC 
SUP 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 

 
0 
 

ENH 0 0 0 0 0 0 0 0 0 0 
NEU 1 1 1 1 1 1 1 1 1 1 H 
SUP 0 0 0 0 0 0 0 0 0 0 

 
1 
 

ENH 0 0 0 0 0 0 0 0 0 0 
NEU 1 1 1 1 1 1 1 1 1 1 

WEPAC 

IH 
SUP 0 0 0 0 0 0 0 0 0 0 

 
1 
 

ENH 0 0 0 0 0 0 0 0 1 0.33
NEU 1 0.33 2 0.67 2 0.67 2 0.67 1 0.33TC 
SUP 2 0.67 1 0.33 1 0.33 1 0.33 1 0.33

 
3 
 

ENH 0 0 0 0 0 0 0 0 1 1 
NEU 0 0 1 1 1 1 1 1 0 0 H 
SUP 1 1 0 0 0 0 0 0 0 0 

 
1 
 

ENH 0 0 0 0 0 0 0 0 1 1 
NEU 0 0 1 1 1 1 1 1 0 0 

CPAC 

IH 
SUP 1 1 0 0 0 0 0 0 0 0 

 
1 
 

ENH 11 0.33 8 0.24 1 0.03 2 0.06 2 0.06
NEU 21 0.64 20 0.61 26 0.79 25 0.76 19 0.58TC 
SUP 1 0.03 5 0.15 6 0.18 6 0.18 12 0.36

 
33 

 

ENH 4 0.2 3 0.15 1 0.05 1 0.05 1 0.05
NEU 16 0.8 14 0.7 17 0.85 16 0.8 14 0.7 H 
SUP 0 0 3 0.15 2 0.1 3 0.15 5 0.25

 
20 

 

ENH 3 0.27 3 0.27 2 0.18 0 0 0 0 
NEU 8 0.73 7 0.64 8 0.73 9 0.82 7 0.64

AMDR 

IH 
SUP 0 0 1 0.09 1 0.09 2 0.18 4 0.36

11 
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Table 4.8.  As in Table 4.7, but Indices 6-10 are shown.   

Landfall-
genesis 

Index 6 
120°W 

Index 7 
40°W 

Index 8 
10°W 

Index 9 
20°E 

Index 10 
70°E  

Basin Storm 
Type 

MJO 
Phase 

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p

Number 
per 

phase 

^
p  

Number 
per 

phase 

^
p  

Total 
Number

ENH 15 0.23 17 0.27 13 0.2 8 0.12 6 0.09
NEU 44 0.69 41 0.64 47 0.73 54 0.84 47 0.73TC 
SUP 5 0.08 6 0.09 4 0.06 2 0.03 11 0.17

 
64 

 

ENH 9 0.19 11 0.23 9 0.19 5 0.1 3 0.06
NEU 36 0.75 33 0.69 38 0.79 41 0.85 38 0.79H 
SUP 3 0.06 4 0.08 1 0.02 2 0.04 7 0.15

 
48 

 

ENH 4 0.19 4 0.19 3 0.14 1 0.05 3 0.14
NEU 15 0.71 15 0.71 18 0.86 19 0.9 15 0.71

EPAC 

IH 
SUP 2 0.1 2 0.1 0 0 1 0.05 3 0.14

 
21 

 

ENH 6 0.06 10 0.1 17 0.17 22 0.22 26 0.25
NEU 74 0.73 74 0.73 73 0.72 70 0.69 69 0.68TC 
SUP 22 0.22 18 0.18 12 0.12 10 0.1 7 0.07

 
102 

 

ENH 3 0.05 6 0.11 7 0.12 11 0.19 14 0.25
NEU 42 0.74 40 0.7 42 0.74 41 0.72 40 0.7 H 
SUP 12 0.21 11 0.19 8 0.14 5 0.09 3 0.05

 
57 

 

ENH 1 0.03 2 0.07 2 0.07 5 0.17 7 0.23
NEU 22 0.73 22 0.73 23 0.77 23 0.77 21 0.7 

NATL 

IH 
SUP 7 0.23 6 0.2 5 0.17 2 0.07 2 0.07

 
30 

 

ENH 0 0 2 0.11 3 0.17 1 0.06 5 0.28
NEU 14 0.78 12 0.67 13 0.72 15 0.83 12 0.67TC 
SUP 4 0.22 4 0.22 2 0.11 2 0.11 1 0.06

 
18 

 

ENH 0 0 0 0 0 0 1 0.09 3 0.27
NEU 8 0.73 8 0.73 8 0.73 8 0.73 7 0.64H 
SUP 3 0.27 3 0.27 3 0.27 2 0.18 1 0.09

 
11 

 

ENH 0 0 0 0 0 0 1 0.17 2 0.33
NEU 4 0.67 4 0.67 5 0.83 5 0.83 4 0.67

CARIB 

IH 
SUP 2 0.33 2 0.33 1 0.17 0 0 0 0 

 
6 
 

ENH 4 0.09 5 0.11 9 0.19 11 0.23 13 0.28
NEU 34 0.72 32 0.68 31 0.66 30 0.64 30 0.64TC 
SUP 9 0.19 10 0.21 7 0.15 6 0.13 4 0.09

 
47 

 

ENH 2 0.12 3 0.18 3 0.18 3 0.18 4 0.24
NEU 11 0.65 10 0.59 11 0.65 13 0.76 12 0.71H 
SUP 4 0.24 4 0.24 3 0.18 1 0.06 1 0.06

 
17 

 

ENH 1 0.09 0 0 1 0.09 2 0.18 2 0.18
NEU 8 0.73 9 0.82 7 0.64 7 0.64 7 0.64

GOM 

IH 
SUP 2 0.18 2 0.18 3 0.27 2 0.18 2 0.18

 
11 

 

ENH 5 0.24 8 0.38 7 0.33 3 0.14 2 0.1 
NEU 14 0.67 12 0.57 13 0.62 18 0.86 15 0.71

EEPAC 
TC 

SUP 2 0.1 1 0.05 1 0.05 0 0 4 0.19

 
21 
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ENH 1 0.25 1 0.25 1 0.25 0 0 0 0 
NEU 2 0.5 2 0.5 2 0.5 4 1 3 0.75H 
SUP 1 0.25 1 0.25 1 0.25 0 0 1 0.25

 
4 
 

ENH 1 1 1 1 0 0 0 0 0 0 
NEU 0 0 0 0 1 1 1 1 0 0 IH 
SUP 0 0 0 0 0 0 0 0 1 1 

 
1 
 

ENH 8 0.2 8 0.2 4 0.1 4 0.1 3 0.08
NEU 29 0.73 27 0.68 33 0.82 35 0.88 32 0.8 TC 
SUP 3 0.08 5 0.12 3 0.08 1 0.03 5 0.12

 
40 

 

ENH 7 0.17 10 0.24 8 0.19 5 0.12 3 0.07
NEU 33 0.79 29 0.69 34 0.81 36 0.86 34 0.81H 
SUP 2 0.05 3 0.07 0 0 1 0.02 5 0.12

 
42 

 

ENH 2 0.11 3 0.17 3 0.17 1 0.06 3 0.17
NEU 14 0.78 13 0.72 15 0.83 17 0.94 14 0.78

CEPAC 

IH 
SUP 2 0.11 2 0.11 0 0 0 0 1 0.06

 
18 

 

ENH 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 
NEU 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a TC 
SUP 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 

 
0 
 

ENH 0 0 0 0 0 0 0 0 0 0 
NEU 1 1 1 1 1 1 1 1 1 1 H 
SUP 0 0 0 0 0 0 0 0 0 0 

 
1 
 

ENH 0 0 0 0 0 0 0 0 0 0 
NEU 1 1 1 1 1 1 1 1 1 1 

WEPAC 

IH 
SUP 0 0 0 0 0 0 0 0 0 0 

 
1 
 

ENH 2 0.67 1 0.33 2 0.67 1 0.33 1 0.33
NEU 1 0.33 2 0.67 1 0.33 1 0.33 0 0 TC 
SUP 0 0 0 0 0 0 1 0.33 2 0.67

 
3 
 

ENH 1 1 0 0 0 0 0 0 0 0 
NEU 0 0 1 1 1 1 0 0 0 0 H 
SUP 0 0 0 0 0 0 1 1 1 1 

 
1 
 

ENH 1 1 0 0 0 0 0 0 0 0 
NEU 0 0 1 1 1 1 0 0 0 0 

CPAC 

IH 
SUP 0 0 0 0 0 0 1 1 1 1 

 
1 
 

ENH 1 0.03 4 0.12 6 0.18 8 0.24 9 0.27
NEU 23 0.7 23 0.7 25 0.76 23 0.7 22 0.67TC 
SUP 9 0.27 6 0.18 2 0.06 2 0.06 2 0.06

 
33 

 

ENH 0 0 2 0.1 2 0.1 4 0.2 5 0.25
NEU 16 0.8 16 0.8 16 0.8 15 0.75 14 0.7 H 
SUP 4 0.2 2 0.1 2 0.1 1 0.05 1 0.05

 
20 

 

ENH 0 0 1 0.09 1 0.09 2 0.18 3 0.27
NEU 8 0.73 7 0.64 9 0.82 9 0.82 8 0.73

AMDR 

IH 
SUP 3 0.27 3 0.27 1 0.09 0 0 0 0 

11 
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Table 4.9.  Observed fraction of landfall-actual events p̂ for each of the 9 basins and 
sub-basins.  Indices 1-10 are shown.   
 

Index 1 Index 2 Index 3 Index 4 Index 5 Landfall-actual 80°E 100°E 120°E 140°E 160°E 
. . . 

Basin Storm 
Type 

MJO 
Phase 

Number 
per 

phase 

 Number 
per 

phase 

 Number 
per 

phase 

 Number 
per 

phase 

 Number 
per 

phase 

 Total 
Number

ENH 26 0.21 23 0.19 15 0.12 15 0.12 11 0.09  
NEU 92 0.74 95 0.77 95 0.77 75 0.6 77 0.62 124 TC 
SUP 6 0.05 6 0.05 14 0.11 34 0.27 36 0.29  
ENH 24 0.29 21 0.25 18 0.22 7 0.08 10 0.12  
NEU 50 0.6 54 0.65 58 0.7 60 0.72 45 0.54 83 H 
SUP 9 0.11 8 0.1 7 0.08 16 0.19 28 0.34  
ENH 13 0.21 14 0.23 13 0.21 7 0.11 4 0.07  
NEU 48 0.79 43 0.7 40 0.66 47 0.77 40 0.66 61 

NAT
L 

IH 
SUP 0 0 4 0.07 8 0.13 7 0.11 17 0.28  

              
Index 6 Index 7 Index 8 Index 9 Index 10 Landfall-actual 120°W 40°W 10°W 20°E 70°E 

. . . 

Basin Storm 
Type 

MJO 
Phase 

Number 
per 

phase 

 Number 
per 

phase 

 Number 
per 

phase 

 Number 
per 

phase 

 Number 
per 

phase 

 Total 
Number

ENH 4 0.03 8 0.06 16 0.13 37 0.3 29 0.23  
NEU 96 0.77 100 0.81 95 0.77 76 0.61 86 0.69 124 TC 
SUP 24 0.19 16 0.13 13 0.1 11 0.09 9 0.07  
ENH 8 0.1 9 0.11 10 0.12 18 0.22 25 0.3  
NEU 49 0.59 55 0.66 57 0.69 54 0.65 50 0.6 83 H 
SUP 26 0.31 19 0.23 16 0.19 11 0.13 8 0.1  
ENH 1 0.02 5 0.08 9 0.15 7 0.11 13 0.21  
NEU 45 0.74 42 0.69 41 0.67 50 0.82 45 0.74 61 

NAT
L 

IH 
SUP 15 0.25 14 0.23 11 0.18 4 0.07 3 0.05  

 

^
p

^
p

^
p

^
p

^
p

^
p

^
p

^
p

^
p

^
p
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Table 4.10.  Relevant Z-statistics for all TC, hurricane, and intense hurricane genesis 
events from 1978-2006.  Positive (negative) Z-statistic indicates favorable 
(unfavorable) modulation of TC genesis.   
 

Basin Storm 
Type MJO Phase 

Index 
1 

80°E

Index 
2 

100°E

Index 
3 

120°E

Index 
4 

140°E

Index 
5 

160°E

Index 
6 

120°W

Index 
7 

40°W 

Index 
8 

10°W 

Index 
9 

20°E

Index 
10 

70°E
ENH -3.52 -3.28 -3.67 -3.44 0.54 4.76 2.8 1.24 -1.76 -2.33
NEU -0.43 -0.17 0.72 2.47 1.24 -1.07 0.65 1.66 2.63 -0.3 TC 
SUP 4.43 4 3.21 0.39 -2.09 -2.96 -3.21 -3.18 -1.63 2.97 
ENH -3.02 -2.3 -3.57 -4.16 -1.51 2.14 2.6 2.27 -0.39 -1.82
NEU 1.22 -0.31 0.37 2.38 2.36 0.44 0.33 1.49 2.22 1.39 H 
SUP 1.63 3.08 3.59 1.26 -1.54 -2.48 -2.66 -3.9 -2.51 0.1 
ENH -0.99 -1.44 -2.7 -2.77 -1.77 0.92 0.67 1.68 -0.2 -0.62
NEU 0.08 -0.33 0.93 1.49 2.06 -0.09 1.02 1.24 1.95 0.59 

EPAC 

IH 
SUP 0.97 2.12 1.81 0.97 -0.91 -0.72 -1.82 -3.06 -2.35 -0.12
ENH 3.55 2.65 0.69 -0.95 -2.09 -2.61 -0.83 -0.26 2.42 3.48 
NEU -1.61 -1.78 -0.13 -0.12 -1.71 -0.26 -0.25 0.18 -0.82 -1.42TC 
SUP -1.68 -0.56 -0.61 1.16 4.19 2.67 1.03 0.01 -1.42 -1.89
ENH 2.96 1.82 1.5 -0.81 -1.45 -3.32 -1.2 0.04 1.81 3.61 
NEU -0.48 -0.34 -0.89 0.21 -1.99 0.32 -0.27 -0.58 -0.4 -0.99H 
SUP -2.59 -1.61 -0.49 0.58 3.93 2.59 1.36 0.68 -1.34 -2.62
ENH 2.93 2.06 0.71 -0.94 -0.64 -2.39 -1.5 -1.81 1.02 3.14 
NEU -0.79 -0.81 -0.47 1.13 -1.9 -0.92 0.08 1.18 -0.01 -1.22

NATL 

IH 
SUP -2.13 -1.23 -0.15 -0.49 3.02 3.29 1.2 0.18 -1.04 -1.79
ENH 2.6 -0.21 -0.63 0.05 -0.91 -2.26 1.34 0.11 1.51 0.99 
NEU -0.67 -1 -0.32 -0.7 -1.42 0.75 -0.84 0.06 -0.45 0.32 TC 
SUP -1.92 1.63 1.18 0.87 2.68 1.1 -0.13 -0.17 -0.97 -1.52
ENH 2.17 1.52 1.46 -0.04 -1.15 -2.03 -0.23 0.07 2.21 2.09 
NEU -0.2 -1.43 -1.77 -0.18 -0.88 -0.69 -1.14 -0.91 -0.83 -0.55H 
SUP -2.08 0.26 0.8 0.28 2.23 2.69 1.59 1.06 -1.18 -1.55
ENH 1.36 1.25 0.58 -1.31 -1.05 -1.59 -0.8 -0.95 1.39 1.31 
NEU 0.11 -1.45 -1.41 0.42 -0.31 -0.48 -0.51 0.69 -0.28 0.15 

CARIB 

IH 
SUP -1.63 0.59 1.3 0.83 1.41 2.02 1.31 0.01 -1.08 -1.64
ENH 2.14 1.93 0.17 -1.23 -1.73 -1.01 -0.05 1.46 1.85 2.72 
NEU -1.17 -1.46 -0.28 -0.27 -0.71 -0.17 -0.79 -1.02 -0.64 -1.08TC 
SUP -0.75 -0.17 0.19 1.65 2.57 1.13 1.01 -0.06 -1.07 -1.52
ENH 0.84 0.71 -0.34 -1.38 -1.58 -0.81 0.49 0.78 1.39 0.78 
NEU -0.02 -0.87 0.01 0.37 -0.74 -0.1 -0.56 -0.35 0.13 0.45 H 
SUP -0.88 0.4 0.38 0.97 2.46 0.86 0.26 -0.28 -1.62 -1.46
ENH -0.75 0.71 0.68 -0.1 0.2 -0.45 -0.38 -0.52 0.05 -0.01
NEU 0.97 -0.9 -0.87 0 -0.2 0.3 -0.35 -0.21 -0.16 -0.23

GOM 

IH 
SUP -0.5 0.45 0.43 0.11 0.06 0.04 0.76 0.74 0.17 0.33 
ENH -1.55 -1.68 -1.73 -2.8 -0.51 1.87 2.52 2.41 0.62 -0.91EEPAC TC 
NEU 0 -0.02 -0.81 0.85 1 -0.7 -0.46 -0.16 0.5 0.08 
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SUP 1.69 1.96 3.12 1.85 -0.78 -0.82 -1.61 -2 -1.31 0.9 
ENH -1.46 0.08 0.05 -1.54 -1.37 1.43 1.55 1.31 -0.64 -1.48
NEU 0.83 -1.12 -1.73 1.06 2.18 -1.17 -1.19 -0.4 1.56 0.86 H 
SUP 0.46 1.48 2.36 0.23 -1.45 0.16 0.11 -0.7 -1.39 0.45 
ENH -0.42 -0.43 -0.44 -0.44 -0.4 2.74 2.85 -0.38 -0.42 -0.43
NEU -1.63 -1.63 -1.62 0.67 0.63 -1.66 -1.67 0.63 0.63 -1.61IH 
SUP 2.67 2.78 2.77 -0.41 -0.42 -0.42 -0.43 -0.43 -0.4 2.66 
ENH -2.27 -2.27 -3.32 -3.12 -0.39 2.51 1.17 -0.38 -1.55 -1.48
NEU 0.23 0.2 1.88 3.12 1.1 -0.28 1.42 2.68 2.51 0.29 TC 
SUP 2.16 2.33 1.2 -0.8 -1.02 -1.91 -2.74 -2.98 -1.69 1.23 
ENH -2.28 -2.3 -3 -3.48 -0.67 2.13 2.51 1.54 -0.33 -1.15
NEU 0.63 -0.24 0.38 2.07 1.9 0.27 0.35 1.52 1.84 0.6 H 
SUP 1.63 2.97 2.92 0.95 -1.77 -2.25 -2.6 -3.28 -2.08 0.45 
ENH -0.25 -0.73 -1.72 -2.08 -1.83 -0.05 -0.2 -0.25 -1.16 0.29 
NEU 0.35 -0.18 1.16 2.21 2.29 0.22 1.19 2 2.35 0.18 

CEPAC 

IH 
SUP -0.2 1.09 0.35 -0.71 -1.13 -0.22 -1.28 -2.25 -1.89 -0.57
ENH -2.34 -1.29 -0.46 0.36 2.12 3.1 0.27 -0.49 -2.31 -2.11
NEU -0.24 0.23 0.06 0.2 0.44 -0.38 0.3 0.16 1.23 -0.39TC 
SUP 2.88 1.16 0.45 -0.64 -2.59 -2.32 -0.6 0.25 0.76 2.85 
ENH -1.32 -0.1 -1.51 -1.23 -1.01 0.15 -0.05 -0.42 -1.29 -0.71
NEU 1.06 0.21 1.38 1.88 1.22 0.67 0.34 1.46 1.55 0.86 H 
SUP 0 -0.17 -0.19 -1.18 -0.57 -0.96 -0.36 -1.43 -0.71 -0.39
ENH -1.39 -1.07 -1.53 -1.15 -0.25 1.55 1.75 2.31 0.83 -1.44
NEU 0.08 -0.28 -0.58 -0.47 0.56 -0.37 -0.41 -0.51 0.27 0.84 

WEPAC 

IH 
SUP 1.41 1.62 2.58 1.83 -0.47 -0.94 -1.01 -1.47 -1.2 0.44 
ENH -0.72 -1.32 -0.85 -0.38 0.59 3.23 3.46 3.59 0.87 0.26 
NEU -2.11 -1.7 -2.06 -1.64 -0.74 -1.78 -1.82 -2 -0.28 -1.62TC 
SUP 3.64 3.9 3.87 2.56 0.37 -0.7 -0.76 -0.79 -0.54 1.92 
ENH -0.91 -1.68 -1.7 -1.72 -0.78 0.19 1.12 4.01 2.73 -0.94
NEU 0.06 0.05 -1.07 -1.89 -1 0.59 0.57 -1.6 -1.54 1.26 H 
SUP 0.91 1.85 3.45 4.31 2.02 -0.9 -1.66 -1.67 -0.8 -0.67
ENH 0.03 -0.81 -1.58 -1.6 -0.61 -0.45 -1.27 2 0.83 -0.01
NEU -0.27 0.34 1.61 0 -0.2 0.3 1.53 -0.21 -0.16 0.38 

CPAC 

IH 
SUP 0.34 0.45 -0.43 1.69 0.84 0.04 -0.78 -1.55 -0.64 -0.51
ENH 4.43 2.78 -0.36 -1.52 -1.97 -1.88 -0.62 -0.68 2.96 3.59 
NEU -2.75 -2.06 0.71 0.85 -2.46 -1.88 -0.35 1.19 -0.94 -2.07TC 
SUP -1.1 -0.3 -0.58 0.49 5.01 4.03 0.96 -0.85 -1.82 -1.13
ENH 3.37 1.55 0.54 -1.39 -2.44 -2.46 -0.86 1.22 3.11 3.56 
NEU -1.08 -0.84 -0.76 0.1 -1.9 -0.69 0.03 -0.67 -0.81 -1.49H 
SUP -2.21 -0.61 0.44 1.34 4.76 3.08 0.71 -0.29 -2.16 -1.88
ENH 1.95 1.8 0.79 -1.61 -1.25 -2.09 -0.9 -1.12 1.5 1.87 
NEU 0.02 -0.78 -0.73 1.19 -1.02 -0.46 -0.5 0.89 -0.2 0.08 

AMDR 

IH 
SUP -2.15 -0.97 0.1 0.13 2.5 2.46 1.39 -0.08 -1.29 -2.16
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Table 4.11:   Relevant Z-statistics for all TC, hurricane, and intense hurricane 
landfall-genesis events from 1978-2006.  Positive (negative) Z-statistic indicates 
favorable (unfavorable) modulation of TC genesis of TCs, hurricanes, and intense 
hurricanes that go on to make landfall.     
 

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9
Index 

10 
Basin 

Storm 
Type 

MJO 
Phase 80°E 100°E 120°E 140°E 160°E 120°W 40°W 10°W 20°E 70°E
ENH -1.98 -1.42 -1.81 -2.87 -1.7 2.91 3.99 1.9 -0.54 -1.35
NEU -0.13 -1.83 -0.64 1.81 2.26 -0.82 -1.72 0.28 2.31 0.23TC 
SUP 2.34 4.19 2.98 0.65 -1.23 -1.61 -1.35 -2.07 -2.47 1.17
ENH -2.12 -1.43 -1.47 -3.07 -1.47 1.51 2.65 1.32 -0.87 -1.77
NEU 0.7 -0.29 -0.55 2.12 3.07 0.27 -0.75 1.13 2.16 1.09H 
SUP 1.36 2.04 2.47 0.46 -2.48 -1.7 -1.37 -2.59 -1.93 0.46
ENH -0.71 -0.79 -0.82 -2.03 -1.17 1.04 1.18 0.25 -1.31 -0.15
NEU -0.12 0.36 -0.09 1.64 1.91 -0.19 -0.22 1.41 1.94 -0.07

EPAC 

IH 
SUP 0.94 0.41 1.08 -0.01 -1.3 -0.7 -0.75 -1.98 -1.2 0.26
ENH 2.93 1.58 -1.2 -1.54 -1.67 -1.83 -0.38 1.28 1.89 2.8 
NEU -1.12 -1.15 0.71 -0.13 -1.34 -0.16 -0.23 -0.06 -0.6 -1.01TC 
SUP -1.67 -0.21 0.38 1.8 3.31 1.85 0.61 -1.08 -1.17 -1.69
ENH 1.25 1.07 -0.79 -1.56 -1.05 -1.52 -0.11 -0.04 0.93 1.9 
NEU 0.18 -0.73 0.53 0.44 -1.13 0.07 -0.58 0.31 0.11 -0.33H 
SUP -1.62 -0.22 0.18 1.06 2.44 1.28 0.8 -0.34 -1.1 -1.63
ENH 0.75 0.62 0.08 -0.95 -1.1 -1.43 -0.76 -0.96 0.27 1.19
NEU 0.5 0.08 0.12 0.88 -0.61 0.01 -0.03 0.59 0.65 -0.26

NATL 

IH 
SUP -1.49 -0.82 -0.26 -0.16 1.83 1.28 0.68 0.15 -1.13 -0.95
ENH 2.82 0.09 -1.22 -0.61 -0.3 -1.55 0.02 0.54 -1.11 1.44
NEU -1.09 -0.57 0.52 0.79 -1.52 0.43 -0.66 0.03 1.13 -0.52TC 
SUP -1.59 0.7 0.68 -0.39 2.21 0.86 0.79 -0.53 -0.33 -0.88
ENH 0.29 0.21 0.18 0.16 0.45 -1.21 -1.16 -1.25 -0.54 1.08
NEU 0.68 0 0.7 0.9 -0.59 -0.04 -0.06 0.06 0.11 -0.63H 
SUP -1.24 -0.25 -1.2 -1.36 0.31 1.14 1.08 1.06 0.42 -0.33
ENH 1.25 1.17 0.04 -1.09 -0.97 -0.89 -0.86 -0.92 0.12 1.21
NEU -0.33 -1.25 0.6 0.75 -0.27 -0.37 -0.38 0.63 0.65 -0.3

CARIB 

IH 
SUP -0.92 0.4 -0.88 0.16 1.28 1.26 1.21 0.07 -0.98 -0.92
ENH 1.59 1.82 0.17 -1.07 -1 -0.69 -0.07 1.38 1.63 2.31
NEU -1.02 -1.37 -0.32 -0.49 -1.19 -0.14 -0.85 -0.9 -1.13 -1.27TC 
SUP -0.34 -0.17 0.26 1.77 2.48 0.79 1.1 -0.15 -0.2 -0.81
ENH 0.97 0.87 0.17 -1.17 -0.92 0 0.88 0.65 0.32 0.92
NEU -0.73 -1.28 -0.7 0.12 -0.64 -0.8 -1.38 -0.66 0.47 -0.14H 
SUP -0.07 0.8 0.79 1.08 1.69 0.98 0.92 0.22 -0.95 -0.81
ENH -0.56 0.21 0.18 0.16 0.45 -0.27 -1.16 -0.34 0.3 0.25
NEU 0.68 0 0.03 -0.4 -0.59 -0.04 0.62 -0.61 -0.56 -0.63

GOM 

IH 
SUP -0.32 -0.25 -0.25 0.36 0.31 0.29 0.25 1.06 0.42 0.58
ENH -1.32 -1.39 -1.42 -2.03 -1.17 1.72 3.98 2.89 -0.08 -0.75EEPAC TC 
NEU -0.12 -1.11 -1.56 0.69 1.91 -0.68 -1.7 -1.01 1.46 -0.07
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SUP 1.61 3.15 3.81 1.24 -1.3 -0.7 -1.36 -1.37 -1.83 0.93
ENH -0.84 0.5 0.48 -0.89 -0.79 0.83 0.9 0.76 -0.84 -0.86
NEU 0.11 -1.02 -2.12 1.33 1.26 -1.05 -1.07 -0.97 1.27 0.13H 
SUP 0.77 0.85 2.41 -0.82 -0.83 0.56 0.53 0.51 -0.8 0.77
ENH -0.42 -0.43 -0.44 -0.44 -0.4 2.74 2.85 -0.38 -0.42 -0.43
NEU -1.63 -1.63 -1.62 0.67 0.63 -1.66 -1.67 0.63 0.63 -1.61IH 
SUP 2.67 2.78 2.77 -0.41 -0.42 -0.42 -0.43 -0.43 -0.4 2.66
ENH -1.34 -0.58 -1.05 -1.95 -1.57 1.63 1.83 -0.47 -0.87 -1.4
NEU 0.34 -1.45 0.38 1.82 1.87 -0.11 -0.87 1.5 2.27 1.11TC 
SUP 1 2.69 0.69 -0.33 -0.86 -1.33 -0.52 -1.42 -2.07 0.02
ENH -1.87 -1.55 -1.58 -2.87 -1.66 1 2.66 1.29 -0.55 -1.49
NEU 0.87 -0.19 -0.13 1.65 3.05 0.78 -0.66 1.31 2.07 1.27H 
SUP 0.86 2.03 2.01 0.87 -2.27 -1.86 -1.49 -2.79 -2.14 -0.09
ENH -0.47 -0.55 -0.58 -1.88 -1.68 -0.08 0.77 0.54 -1.11 0.14
NEU 0.49 0.48 -0.01 1.3 2.14 0.43 -0.13 1.08 2.17 0.53

CEPAC 

IH 
SUP -0.15 -0.04 0.68 0.28 -1.11 -0.46 -0.51 -1.83 -1.7 -0.88
ENH n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
NEU n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aTC 
SUP n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ENH -0.42 -0.43 -0.44 -0.44 -0.4 -0.36 -0.35 -0.38 -0.42 -0.43
NEU 0.61 0.61 0.62 0.67 0.63 0.6 0.6 0.63 0.63 0.62H 
SUP -0.37 -0.36 -0.36 -0.41 -0.42 -0.42 -0.43 -0.43 -0.4 -0.38
ENH -0.42 -0.43 -0.44 -0.44 -0.4 -0.36 -0.35 -0.38 -0.42 -0.43
NEU 0.61 0.61 0.62 0.67 0.63 0.6 0.6 0.63 0.63 0.62

WEPAC 

IH 
SUP -0.37 -0.36 -0.36 -0.41 -0.42 -0.42 -0.43 -0.43 -0.4 -0.38
ENH -0.73 -0.75 -0.76 -0.77 1 2.96 1.24 2.84 0.9 0.86
NEU -1.53 -0.23 -0.22 -0.1 -1.47 -1.56 -0.27 -1.48 -1.45 -2.79TC 
SUP 2.87 1.19 1.18 0.94 0.9 -0.73 -0.74 -0.75 0.98 2.85
ENH -0.42 -0.43 -0.44 -0.44 2.53 2.74 -0.35 -0.38 -0.42 -0.43
NEU -1.63 0.61 0.62 0.67 -1.59 -1.66 0.6 0.63 -1.58 -1.61H 
SUP 2.67 -0.36 -0.36 -0.41 -0.42 -0.42 -0.43 -0.43 2.5 2.66
ENH -0.42 -0.43 -0.44 -0.44 2.53 2.74 -0.35 -0.38 -0.42 -0.43
NEU -1.63 0.61 0.62 0.67 -1.59 -1.66 0.6 0.63 -1.58 -1.61

CPAC 

IH 
SUP 2.67 -0.36 -0.36 -0.41 -0.42 -0.42 -0.43 -0.43 2.5 2.66
ENH 2.92 1.32 -2.05 -1.61 -1.25 -1.55 0.21 0.99 1.5 1.87
NEU -1.16 -1.56 0.83 0.81 -1.8 -0.46 -0.5 0.5 -0.2 -0.7TC 
SUP -1.62 0.67 1.19 0.63 3.48 1.97 0.43 -1.52 -1.29 -1.1
ENH 0.61 -0.1 -1.35 -1.38 -1.11 -1.63 -0.14 -0.34 0.64 1.18
NEU 0.74 -0.27 1.27 1.04 -0.17 0.68 0.65 0.81 0.37 -0.21H 
SUP -1.67 0.5 -0.22 0.08 1.28 0.62 -0.68 -0.7 -1.14 -1 
ENH 1.13 1.04 0.18 -1.47 -1.31 -1.21 -0.2 -0.34 0.3 1.08
NEU 0.01 -0.67 0.03 0.9 -0.59 -0.04 -0.75 0.73 0.77 0.04

AMDR 

IH 
SUP -1.24 -0.25 -0.25 0.36 2.01 1.14 1.08 -0.6 -1.33 -1.25
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Table 4.12.  Relevant Z-statistics for all TC, hurricane, and intense hurricane landfall-
actual events from 1978-2006.  Positive (negative) Z-statistic indicates favorable 
(unfavorable) modulation of TC genesis of TCs, hurricanes, and intense hurricanes at 
their time of landfall.     
 

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 
10 Basin Storm 

Type 
MJO 
Phase 

80°E 100°E 120°E 140°E 160°E 120°W 40°W 10°W 20°E 70°E 
ENH 1.82 0.82 -1.22 -1.3 -1.51 -2.94 -1.61 0.14 4.66 2.43 
NEU 0.4 0.98 1.07 -2.11 -2.37 1.05 1.79 1.18 -2.46 -0.69 TC 
SUP -2.53 -2.31 -0.09 4.15 4.45 1.35 -0.79 -1.59 -1.59 -1.73 
ENH 3.51 2.36 1.37 -1.96 -0.39 -0.59 -0.04 -0.12 1.73 3.69 
NEU -2.53 -1.56 -0.5 0.6 -3.53 -2.93 -1.5 -0.64 -1.26 -2.42 H 
SUP -0.4 -0.52 -0.89 1.28 4.85 4.16 1.87 0.91 -0.14 -0.76 
ENH 1.35 1.52 1.1 -1.04 -1.59 -2.45 -0.69 0.54 -0.75 1.26 
NEU 1.06 -0.39 -1.18 1.32 -1.06 0.09 -0.83 -0.81 1.84 0.28 

NATL 

IH 
SUP -2.92 -1.2 0.39 -0.64 2.87 2.1 1.61 0.51 -1.64 -1.77 

 
 
 

Table 4.13.  Summary of MJO Index 6 modulation of TC 
activity as measured by TC genesis events.   
 
 TC genesis 

events Phase of MJO Index 6 

Basin ENH NEU SUP 
EPAC Favorable none Unfavorable 
NATL Unfavorable none Favorable 
CARIB Unfavorable none none 
GOM none none none 

EEPAC none none none 
CEPAC Favorable none none 
WEPAC Favorable none Unfavorable 
CPAC Favorable none none 
AMDR none none Favorable 
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Table 4.14.  MJO Index averages for each pentad from May 31 to Nov. 26, 1978-2006.  
Seasonal and “peak season” (Aug. 29 to Sept. 27) averages provided in last row.   
 
Pentad Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 10
0602 -0.07 0.10 0.24 0.32 0.25 0.04 -0.14 -0.29 -0.33 -0.15 
0607 -0.23 -0.10 0.05 0.22 0.31 0.22 0.06 -0.13 -0.31 -0.30 
0612 -0.21 -0.15 -0.06 0.08 0.21 0.21 0.13 0.01 -0.17 -0.24 
0617 -0.24 -0.29 -0.26 -0.13 0.10 0.26 0.29 0.22 0.00 -0.22 
0622 -0.11 -0.19 -0.22 -0.17 -0.02 0.13 0.20 0.20 0.09 -0.08 
0627 0.04 0.01 -0.01 -0.03 -0.04 -0.02 0.00 0.02 0.02 0.01 
0702 -0.14 -0.11 -0.06 0.03 0.13 0.14 0.10 0.02 -0.10 -0.16 
0707 -0.16 -0.16 -0.11 -0.01 0.12 0.17 0.15 0.07 -0.08 -0.18 
0712 -0.10 -0.07 -0.02 0.04 0.11 0.11 0.06 -0.01 -0.10 -0.13 
0717 -0.05 -0.05 -0.03 0.01 0.05 0.07 0.05 0.02 -0.05 -0.08 
0722 -0.12 -0.14 -0.12 -0.05 0.07 0.13 0.13 0.09 -0.03 -0.13 
0727 -0.18 -0.20 -0.16 -0.04 0.12 0.20 0.19 0.11 -0.06 -0.20 
0801 -0.13 -0.23 -0.25 -0.19 0.00 0.18 0.25 0.23 0.07 -0.13 
0806 0.03 -0.15 -0.28 -0.33 -0.20 0.03 0.20 0.30 0.27 0.06 
0811 0.02 -0.08 -0.14 -0.16 -0.10 0.02 0.10 0.15 0.12 0.02 
0816 -0.10 -0.13 -0.12 -0.07 0.04 0.11 0.13 0.10 0.00 -0.10 
0821 0.02 0.04 0.05 0.06 0.04 0.00 -0.03 -0.06 -0.07 -0.03 
0826 -0.05 0.00 0.05 0.10 0.11 0.05 -0.01 -0.08 -0.14 -0.10 
0831 0.04 0.06 0.06 0.04 0.00 -0.04 -0.06 -0.06 -0.04 0.01 
0905 0.04 0.06 0.07 0.06 0.02 -0.03 -0.06 -0.08 -0.07 -0.01 
0910 -0.04 -0.07 -0.07 -0.04 0.01 0.06 0.07 0.06 0.01 -0.05 
0915 0.02 0.00 -0.02 -0.03 -0.03 -0.01 0.00 0.02 0.02 0.02 
0920 -0.05 0.05 0.14 0.21 0.17 0.04 -0.08 -0.18 -0.22 -0.12 
0925 -0.28 -0.19 -0.05 0.14 0.30 0.28 0.16 -0.02 -0.25 -0.33 
0930 -0.19 -0.28 -0.28 -0.18 0.05 0.23 0.29 0.26 0.06 -0.18 
1005 0.00 -0.11 -0.19 -0.22 -0.13 0.03 0.14 0.20 0.17 0.02 
1010 0.10 0.12 0.12 0.07 -0.03 -0.10 -0.12 -0.10 -0.03 0.07 
1015 -0.01 0.07 0.13 0.17 0.13 0.01 -0.09 -0.16 -0.19 -0.08 
1020 -0.10 -0.08 -0.03 0.04 0.11 0.11 0.07 0.00 -0.10 -0.13 
1025 0.06 0.09 0.10 0.08 0.01 -0.07 -0.11 -0.11 -0.06 0.03 
1030 -0.08 0.05 0.16 0.23 0.20 0.05 -0.09 -0.20 -0.25 -0.14 
1104 -0.19 -0.17 -0.10 0.02 0.16 0.20 0.16 0.06 -0.11 -0.21 
1109 -0.02 -0.05 -0.06 -0.05 -0.01 0.04 0.06 0.06 0.02 -0.02 
1114 0.10 0.12 0.11 0.07 -0.02 -0.10 -0.12 -0.11 -0.04 0.06 
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1119 -0.05 0.01 0.07 0.11 0.10 0.04 -0.03 -0.09 -0.14 -0.09 
1124 -0.07 -0.05 -0.02 0.02 0.06 0.06 0.04 0.00 -0.05 -0.07 

Season 
Mean -0.07 -0.06 -0.04 0.01 0.07 0.08 0.06 0.01 -0.06 -0.09 

Aug 
29-
Sept 
27 

Mean 

-0.05 -0.02 0.02 0.06 0.08 0.05 0.01 -0.04 -0.09 -0.08 
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Fig. 1.1: Location of East Pacific and North Atlantic basins and Caribbean and Gulf of 

Mexico sub-basins. 

 

East Pacific: 
EPAC 

North 
Atlantic: NATL 

Gulf of 
Mexico: GOM 

Caribbean: 
CARIB 
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Fig. 1.2: Same as Fig. 1.1, but identifying locations of East Pacific and North Atlantic 

sub-basins.   

 
 

Main 
Development 
Region: AMDR 

A: East East Pacific (EEPAC) 

B: Central East Pacific 

(CEPAC) 

C: West East Pacific (WEPAC) 

D: Central Pacific (CPAC) 

A B C D 
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Fig. 1.3:  The variation of tangential wind, U, with height.  U is expressed as a ratio of 

the mean boundary layer (MBL) wind and follows a logarithmically-increasing profile 

until about 500 m, then decreases again.  From Powell et al. (2003). 
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Fig. 1.4: Different parameterizations of drag coefficient as a function of ten-meter wind 

speed, U10.   
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Fig. 1.5:  Drag coefficient (a) and friction velocity (b) verses wind speed.  Solid line fit 

according to the resistance law of Makin (2005), dashed line fit according to the 

Charnock (1955) relationship, and open circles and error bars represent observational 

data of Powell et al. (2003). 
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Fig. 1.6: Classic “trough-ridge-trough” sea-level pressure pattern observed in 

simulations of Typhoon Herb (Peng and Chang 2002).
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Fig. 2.1:  Track of Hurricane Ivan (2004).  Boxed region highlights the eight-day period 

from 0000 UTC 5 September to 1200 UTC 13 September when a strong climatological 

signal repeatedly conflicted with NWP forecasts.  Letters “A”, “B”, and “C” indicate 

the locations of the motion climatologies depicted in Fig. 2.2. 

A
B

C 
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Fig 2.2:  Historical motion climatology for 

three locations along the track of Hurricane 

Ivan; locations (a)-(c) are given in lower-

right corner of each panel.  Number of TCs 

comprising relative frequency (rf) is given 

by n.  Length of each sector corresponds to 

rf of a TC moving with that trajectory; rf is 

given by concentric circles and increases 

radially out from the center.  Colors 

represent mean 24-h speeds; color legend is 

in upper-right corner of (a).  Dark arrow 

represents Ivan’s actual motion vector. 
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Fig. 2.3. Ivan track and model spread, and 24-h track forecasts (initialized at 0000 UTC) 

for OFCL (open circle), CLP5 (cross), FLOW (open diamond), and GUNA (open 

square) models. (a) The period from 5 to 9 September. (b) The period from 10 to 14 

September. In (a), steering flow is primarily from E to W; in (b), steering flow becomes 

more S to N.  
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Fig 3.1: Histogram of NINO3.4 index values has a Gaussian shape.   
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 3.2: Correlations between climate indices and IHC for each basin. 
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Fig. 3.3:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EPAC TC activity metrics.  Statistically significant critical r is ± 0.329.   
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Fig. 3.4:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EPAC TC activity metrics.  Statistically significant critical r is ± 0.329.    
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Fig. 3.5:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EPAC TC activity metrics.  Statistically significant critical r is ± 0.329.    
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Figure 3.6:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.7:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and NATL TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.8:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and NATL TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.9:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and NATL TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.10:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and NATL TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.11:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and NATL TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.12:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CARIB TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.13:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CARIB TC activity metrics.  Statistically significant critical r is ± 0.329.     



 239

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.14:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CARIB TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.15:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and GOM TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.16:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and GOM TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.17:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and GOM TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.18:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.19:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.20:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and EEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.21:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.22:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.23:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.24:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and WEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.25:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and WEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.26:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and WEPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.27:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.28:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Figure 3.x A-B:  Spearman rank correlation coefficients between climate indices  
 
 
 
Fig. 3.29:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and CPAC TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.30:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and AMDR TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.31:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and AMDR TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.32:  Spearman rank correlation coefficients between climate indices NINO1.2 to 

AO and AMDR TC activity metrics.  Statistically significant critical r is ± 0.329.     
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Fig. 3.33:  Wavelet analysis of NINO3 SST data (a) showing peaks in the power 

spectrum, (b) and (c), on the timescales of the leading atmospheric modes.   

 



 259

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.34: Wavelet analysis of TCC showing peaks in the power spectrum on the 

timescales of the leading atmospheric modes.   
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Fig. 3.35: Wavelet analysis of TCC showing peaks in the power spectrum on the 

timescales of the leading atmospheric modes.   
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Fig. 3.36: Wavelet analysis of TCC showing peaks in the power spectrum on the 

timescales of the leading atmospheric modes.   
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Fig. 3.37: Wavelet analysis of TCC showing peaks in the power spectrum on the 

timescales of the leading atmospheric modes.   
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Fig. 3.38: Wavelet analysis of TCC showing peaks in the power spectrum on the 

timescales of the leading atmospheric modes.   
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Fig. 4.1 (MJ72, Figure 16):  

Schematic depiction of the time and 

space (zonal plane) variations of the 

disturbance associated with the 40—

50-day oscillation.  Dates are 

indicated symbolically by the letters 

at the left of each chart and 

correspond to dates associated with 

the oscillation in Canton’s station 

pressure.  The mean pressure 

disturbance is plotted at the bottom of 

each chart with negative anomalies 

shaded.  The circulation cells are 

based on the mean zonal wind 

disturbance.  Regions of enhanced 

large-scale convection are indicated 

schematically by the cumulus and 

cumulonimbus clouds.  The relative 

tropopause height is indicated at the 

top of each chart.   
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Fig. 4.2 (from Figure 14, Shinoda et al. 1998):  Schematic diagram showing magnitude 

and phase relationship relative to the convective anomaly of the surface fluxes and SST 

variations produced by the canonical MJO. The asymmetric zonal scale of the cloudy-

windy and suppressed-calm phases and eastward phase speed (4 m s−1) of the joint 

atmosphere–ocean disturbance across the warm pool are indicated. Typical extrema of 

surface fluxes and SST over life cycle of MJO are shown for western Pacific. 
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Fig. 4.3 (from Xue et al. 2002):  The ten MJO patterns of the first empirical orthogonal 

function of 200 hPa velocity potential.  Time t=0 days is in the upper-left, and time 

progresses every five days, to time t=20 days in lower-left, time t=25 days in upper-

right, and time t=45 days in lower-right.  Shading represents correlation between the 

empirical orthogonal function and 200 hPa velocity potential.  Positive correlations 

(orange and red shading) correspond to suppressed convective activity; negative 

correlations (blue shading) correspond to enhance convective activity.   
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Figure 4.4:  Time series of the 10 MJO Indices, with pentad data from 02 June to 29 

November 2005.   

 

 

 

 

 

 

 

Figure 4.5:  One pentad (02 June 2005) of the 10 MJO Indexes (derived from velocity 

potential anomalies).  The zonal wavenumber one oscillation is easily noticeable.   
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Fig. 4.6:  All EPAC TC genesis points, 1978-2006, stratified by phase of MJO Index 6:  

yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.7:  All CEPAC TC genesis points, 1978-2006, stratified by phase of MJO Index 

6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.8:  All WEPAC TC genesis points, 1978-2006, stratified by phase of MJO Index 

6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.9:  All CPAC TC genesis points, 1978-2006, stratified by phase of MJO Index 6:  

yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.10: All EEPAC TC genesis points, 1978-2006, stratified by phase of MJO Index 

6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.11: All NATL TC genesis points, 1978-2006, stratified by phase of MJO Index 6:  

yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.12: All NATL TC genesis points, 1978-2006, stratified by phase of MJO Index 6:  

yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.13: All CARIB TC genesis points, 1978-2006, stratified by phase of MJO Index 

6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.14: All GOM TC genesis points, 1978-2006, stratified by phase of MJO Index 6:  

yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.15:  All AMDR TC genesis points, 1978-2006, stratified by phase of MJO Index 

6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, respectively.   
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Fig. 4.16: All NATL landfall-actual points, from 1978-2006, stratified by phase of MJO 

Index 6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, 

respectively.   
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Fig. 4.17:  All NATL landfall-actual points, from 1978-2006, stratified by phase of 

MJO Index 6:  yellow, cyan, and red correspond with ENH, NEU, and SUP phases, 

respectively.   
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Fig. 4.18:  Wavelet analysis of NINO3 SST data (a) showing peaks in the power 

spectrum, (b) and (c), on the timescales of the MJO.   

 
 

 
 
 


