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NOMENCLATURE 

a 

b 

C 

CMD 

D 

E 

F 

fl , f2 

fwr 

fP 

fkcr 

h, 

I 

K 

L 

M 

ML 

MD 

web span length, (in) 

web width, (in) 

roller length, (in) 

cross machine direction 

web bending stiffness [ ~ t ~ / ( 1 2 -  1 2v2)] 

modulus of elasticity, (psi) 

total force the web imposes onto the roller, (lb) 

constants of KL given in derivations [2] 

internal force per unit length of the web required to cause a wrinkle 

traction capacity, (Ib) 

critical traction capacity, (Ib) 

,ir film height, (in) 

area moment of inertia [tw31 121 

sqrt(TIE1) 

web span length, (in) 

moment in web, (lb-in) 

moment in web at x = L, (lb-in) 

machine direction 



shear in web at x = L, (lb) 

pressure per unit width of the web on the roller, (lb/in3) 

tram Error, (in) 

roller Radius, (in) 

web wrap distance about the Roller, (in) 

web thickness, (in) 

portion of tram period where Npe,qk > Ncr 

web line tension, (lbf) 

web velocity, (fpm) 

web width, (in) 

lateral web displacement 

lateral web displacement at x = L 

lateral displacement at x = L, frequency domain 

roller wrap angle, (radians) 

Tram angle [q/c] for small q at x = L, (radians) 

normalized Stress [n2~/w2t ]  

web MD Stress, (psi) 

lateral stress, (psi) 

Mohr's circle second principle stress, (psi) 

critical compressive stress at x = L, (psi) 

web time constant [LN], (sec) 

critical shear, (lb) 



roller time constant - time web is in contact with roller, (sec) 

tram frequency, (radlsec) 

coefficient of traction 

dynamic viscosity of air, (lb-s/in2) 



CHAPTER I 

Introduction 

The research presented herein is in the area of dynamic web wrinkling. In the web 

handling industry, a web is considered as any material that is long and wide as compared 

to its thickness. Paper, foil, magnetic tape film, film, and plastic wrapping are examples of 

web materials. A web can withstand a high longitudinal stress prior to failure but can 

withstand little lateral compressive stress before buckling. The purpose of this research 

project is to determine how web wrinkles form as a fbnction of web line parameters and 

web properties. Examples of web line parameters are web line velocity, and web tension. 

Examples of web properties are modulus of elasticity, Poisson's ratio, and roughness. The 

reason for predicting when wrinkles occur is that web degradation will occur upon 

wrinkling. 

Wrinkling is divided into the two basic areas of static web wrinkling and dynamic 

web wrinkling. Static wrinkling is defined such that the tram rate of the 'steering' or tram 

roller is small enough so that the shear in the web is independent of the tram rate and, 

thus, time. Tram rate is defined as the amount of displacement, q, per unit time. Refer to 



Figure 1.1 below for identification of variables. Any variables are also defined in the 

nomenclature. 

Figure 1.1 Web Free Body Diagram and Schematic 

Shelton [2] developed an equation to predict the shear in a taut, planar web, for small qlc, 

namely: 

However, for the static case, the shear equation (1.2) accurately approximates equation 

(I .  1) for small qlc. 



According to the shear found by equation (1.2), an accurate prediction of wrinkling is 

determined by relating the shear within the web, and thus tram error, with the lateral 

compressive stress necessary to buckle the web. This relationship is discussed in Chapter 

3. 

Dynamic wrinkling is defined such that the tram rate is large enough so that 

elementary beam theory fails in determining the shear stress because the shear is time 

dependent. A more detailed explanation of the differences between static wrinkling and 

dynamic wrinkling is made in Chapter 2. 



CHAPTER I1 

Dynamic Shear and Web Lateral Displacement 

This Chapter provides the development of dynamic shear relations for a sinusoidal 

input tram. The derivations apply only to center pivoted, taut, planar webs. The 

hndamental equations, from which Shelton [I]  begins his derivation, are presented in [ 2 ] .  

The derivation starts with the lateral web velocity relationship for a center pivoted, taut, 

planar web and ends with a frequency response transfer fknction equating tram anguiar 

velocity with web line parameters and web material properties. 

2.1 Lateral Web Displacement Amplitude Ratio 

The amplitude ratio is defined as the lateral web displacement at x = L, y ~ ,  divided 

'L ' . The amplitude ratio derivation begins by the span length, L, per tram angle, qfc, or - 
q/c  

with the lateral web velocity relationship from "Lateral Dynamics of a Real Moving Web", 



Equation (2.1.2) represents the acceleration of the web for a succession of moving points 

on the web located at a fixed position relative to the tram roller. This equation was 

developed and experimentally verified by Shelton. (2.1.2) can not be obtained by 

differentiating (2.1.1). 

From [3], 

Where, 

( K L ) '  (Cosh (KL)  - 1) 
f ,  ( K L )  = 

K L  * Sinh (KL)  - 2(Cosh (KL)  - 1) 



K L ( K L  * Cosh(KL)  - Sinh (KL) )  
f 2  ( K L )  = 

K L  * Sinh (KL)  - 2 ( C o s h ( K L )  - 1) 

Substituting (2.1.1) and (2.1.2) into (2.1.3) gives: 

Equation (21.7) is rewritten by substituting (L) with the time constant r. Thus, v 

Taking the Laplace transform of equation (2.1.8) and dividing through by fi gives: 

Solving for Y L ( S )  1 L gives: 
Q ( s >  1 c 



Equation (2.1.10) represents the lateral displacement frequency response with respect to 

tram angle. Illustrated below in Figure 2.1 is the frequency response and phase lag as 

governed by equation (2.1.10). Later in Chapter 5 experimental data is shown to confirm 

the theory plotted in Figure 2.1. 

Lateral Displacement Amplitude Ratio and Phase Lag - 
Center Pivot, Taut, Planar Web 

i / P h a s e  Lag - T h e o y  I I 1 \! i 1 

Figure 2.1 Amplitude ratio and phase lag. 

2.2 Development of Shear Force Frequency Response 



Another important aspect for the explanation of web behavior for the center 

pivoted roller is the shear magnitude. The fiequency response of the shear magnitude at x 

= L, INLI, is developed in terms of the MD tension, T, displacement, q, and roller length, 

c. Refer to Figure 1.1 for definitions of q and c. The shear relationship is derived 

separately for pure rotation and pure translation of the tram roller. The two independent 

shear terms are then added together to obtain the total shear for a rotating and translating 

web. These derivations are shown below in sections 2.2.1 and 2.2.2. 

2.2.1 Shear Derivation For Web End Translation 

For pure translation of the downstream end of the web, where N is positive for positive y ~ :  

y l I 1 =  y L K 3  - s inh  K L  cosh K x  + (cosh  K L  - I )  s inh Kx.  (2.2,1) 
K L  s inh  K L  - 2(cosh  KL - 1) 

NL . At x  = L, substituting I = - - 
EI  ' 

N I. -- s i n h  K L  
E I  - K ' y L  K L  s i n h  K L  - 2 ( c o s h  K L  - I )  

Substituting T = E IK ' , 

s i n h  K L  
N~ = T K y ~  K L s i n h K L -  2 ( c o s h K L  - 1) 



NL Or solving for - gives: 
T 

N ,  v ,  K L sinh K L 
I - i r  

T - L K L  sinh K L  - 2 ( c o s h K L  - 1) 

Replacing sinhKL and coshKL with a series expansion and assuming only small values of 

KL, equation 2.2.4 simplifies into: 

1 Substituting = and I = t n ,  the translational component of shear is 
1 2  

represented with hndamental dimensions, non-dimensional terms, and material properties 

as shown in equation (2.2.6). 

Taking the Laplace transform of equation (2.2.5) results in the translational shear 

frequency response. 



Where 
Y L  ( s )  / L 

is defined by equation (2.1.10) 
Qcs) c 

2.2.2 Shear Derivation For Web End Rotation 

For pure rotation of the end of the web, where N is negative for positive y ' ~ :  

J T " ' =  K28, (cosh K L  - 1) cosh Kx  + (KL - sinh K L )  sinh K x  (2.2.8) 
K L  sinh K L  - 2(cosh K L  - 1 )  

-NL at x = L substituting y' ' I ,  = - 
EI ' 

sinh2 KL - cosh2 KL + cosh KL - KL sinh KL (2.2.9) 
KL sinh K L  - 2(cosh KL - 1 )  

Substituting EIK = T into equation (2.2.9) gives: 

KL sinh KL - (cosh KL - 1) 
N ,  = 

KL sinh KL - 2(cosh KL - 1 )  

Or, dividing through by T, equation (2.2.10) is rewritten as: 



-- * L  - K L  s i n h K L  - (cosh  K L  - 1) 
T - e L ~ ~ s i n h ~ ~ - 2 ( c o s h ~ ~ - 1 )  

Applying a series expansion for sinhKL and coshKL and assuming only small values of 

KL, equation (2.2.1 1) simplifies into: 

d ETl 1 Again, substituting K = , and I = - t ,  3 ,  the shear force due only to rotation is 
1 2  

represented with findamental dimensions, non-dimensional terms, and material properties 

as shown in equation (2.2.13). 

Taking the Laplace transform of equation (2.2.12) results in the shear frequency response 

due to a pure web rotation at x = L. 

h' ,  1 T 

Where 
Y L  0) / L is defined by equation (2.1.10). 
Qcs) / c 



2.2.3 Total Shear Derivation 

Summing the rotational and translational component of shear and simplifying for small KL 

gives the total shear magnitude frequency response. 

Substituting equations (2.2.14) and (2.2.7) into (2.2.15) and algebraically simplifying 

results in the total shear frequency response equation. 

Illustrated below in Figure 2.2 is the theoretical dynamic shear magnitude and phase lag as 

predicted by equation (2.2.16). 



! 
i Shear Magnitude and Phase Lag - Center Pivot, 
I Taut, Planar 

Figure 2.2 Shear Magnitude and Phase Lag - Center Pivot, Taut, Planar Web 

As seen from Figure 2.2, the peak dynamic shear magnitude at high so is three times the 

static shear magnitude at low so. It is important to note that the shear magnitude for high 

6EI8 
so is accurately represented with the equation N ,  = - , whereas the equation for 

L2 

2EI8 
static shear is N ,  = - 

LZ 
, which is a factor of 3 smaller for the same rotation angle, 

theta. Also, the shear magnitude approaches 180 degrees out of phase with the 

displacement at high ro. Conversely, the shear is in phase with the displacement for static 

cases or low ro values. 



CHAPTER I11 

Static Wrinkling Algorithm 

3.1 Static Wrinkling Criteria 

In this Chapter the static wrinkling algorithm developed by Good et a1 [7] and 

Quan [4] is derived for a center pivoted, taut, planar web. The wrinkle algorithm is 

applicable for the static shear and regime I cases, and used to determine the tram error 

incident upon web failure, where regime 1 is independent of roller traction. A main 

assumption for regime I is that no slippage appears between the web and roller. The 

wrinkling algorithm is used to calculate the critical shear and critical buckling stress. 

When the critical shear and critical buckling stress are known, the critical tram error is 

calculated in terms of web line parameters and web material properties. 

3.1.1 Critical Compressive Stress 

Good [7] produced a static algorithm that determines the shear stress necessary to 

buckle the web. This algorithm was developed on the assumption that troughs oriented in 



the machine direction have a half sinusoid cross section shape. The algorithm was later 

modified on the assumption that the troughs do not have a perfect sinusoid cross section 

but rather flatten out into a troughed shape over the majority of the length. Quan [4] 

derived expressions for the critical CMD stress for both the sinusoid cross section and the 

troughed cross section. Both expressions require calculating the half wave number, n, 

and other constants which are dependent on wrap angle, material properties, and web 

dimensions. 

For the method assuming a sinusoid web cross section used to calculate o ~ , ~ ~ ,  the 

half wave number is determined by solving the inequality shown in equation (3.1) below. 

Calculating g,, with the sinusoid cross section assumption gives nearly identical results as 

the troughed cross section method. 

The lateral compressive stress necessary to buckle the web is now calculated with 

equation (3.2). 

Equations (3.1) and (3.2) supply us with an accurate failure prediction model for critical 

compressive stress. 



3.1.2 Application of Critical Compressive Stress Algorithm 

Now that an expression for the critical compressive stress is available, we can 

incorporate it into a failure algorithm in terms of web line properties and material 

properties. First, Mohr's circle analysis is applied to relate the compressive stress with the 

shear stress, compressive stress, and tensile stress. The following equation gives the 

Mohr's circle relationship for these stresses. 

Where T is the shear stress in equation (3.3). With equation (3.3) the maximum allowable 

shear stress is determined by substituting q,cr, calculated with equation (3.2) for o, 

yielding equation (3.4). 

To relate the critical shear stress with web line parameters, web properties, and tram error, 

web beam analysis is performed. The following schematic and web free body diagram 

illustrated below is used as a reference for beam analysis. 



Figure 3.2 Drawing of Web Free Body Diagram and Schematic. 

The moment in the beam is: 

M ,  = N * x - M  

With this moment equation you can express the tram angle (q/c), in terms of the moment 

by employing Castigliano's second theorem: 

Similarly, at the critical condition: 



Finally, for small tram angles, equation (3.7) is accurately approximated as: 

TRAM ERROR 6~~~ L2 -- - 
LR E w  

This failure criterion is only valid for a center pivoted roller in static shear conditions and 

regime I cases. Equation (3.8) allows one to compare the critical tram error with web line 

parameters and web material properties. The failure algorithm for an end pivoted roller is 

the same as the center pivoted roller algorithm as long as (1) LR is measured from the 

point of rotation and (2) the tram error of the end-pivoted roller does not alter the web 

line tension. 

Equation (3.8) is an accurate model for web failure prediction, however it requires 

the iterative process of calculating the half wave number, n, which in turn is used to 

calculate the critical compressive stress and then the critical shear stress. To simplifl 

calculations of the critical shear and lateral compressive stress, another approach is 

documented by Shelton [ 5 ] .  Timoshenko and Gere [6] developed an analysis of buckling 

of a rectangular plate with tension in the machine direction, tension in the cross machine 

or lateral direction, and simple supports at all edges. The assumptions made while 

simplifying a plate to a web are that Poisson's ratio is 0.3, and the longitudinal strain, 

(q /E) ,  is much larger than ( t /  L) and (t/L)' (Elq)'.'. These are safe assumptions 

when dealing with most common web products. The simplified equation for critical 

buckling stress is: 



Substituting equation (3.9) into equation (3.7) yields a simplified expression for the critical 

shear stress as shown in equation (3.10). 

The shear force is defined as N = ztw. Similarly, the critical shear force is defined as 

Ncr = zcrm. Multiplying equation (3.10) by tw gives the critical shear equation in terms 

of the MD stress and hndamental web parameters t, L, and E as shown in equation (3.11). 

For a more practical application of the failure criteria, substitute equation (3.4) into 

equation (3.10) and obtain an expression for critical tram error in terms of the hndamental 

web parameters and web material properties. This relationship is shown in the condensed 

form in equation (3.12). 



Equation (3.12) is the experimentally verified failure criteria for a center pivoted or end 

pivoted, taut, planar web in terms of web line properties and web material properties. 

This static wrinkling criteria is used in a spreadsheet to confirm static wrinkling tests on 

the wrinkle module. 

Illustrated below are three charts that compare how the MD stress varies with 

critical shear, tram error varies with critical shear, and how the MD stress varies with 

critical tram error as governed by equations (3.1 l), (3.13), and (3.14). The following 

charts apply strictly to Regime I, static shear wrinkles. 

o 1000 2000 3000 4000 5000 j 
i 

MD Stress (psi) 1 
I 

Figure 3.3 Critical Shear versus MD Stress - 1377, 48 Gage, Static Wrinkling 



Figure 3.3 illustrates the affect of MD stress upon the static shear required to wrinkle a 48 

gage, ICI 377, PET web as governed by equation (3.10). This relation is valid for any 

isotropic material with constant cross section and unchanging material properties. 

0.02 0.04 0.06 0.00 0.08 0.10 : 
I 

I 

I Critical Tram Error (in) i i 
1 I I 

Figure 3.4 Critical Tram Error versus Critical Shear - 1377, 48 Gage, Static Wrinkling 

Figure 3.4 illustrates how the critical tram error varies almost linearly with the critical 

shear for any isotropic material with a constant cross section per equation (3.10). 



0 1000 2000 3000 4000 5 0 0 0  

MD Stress (psi) 
I 

Figure 3.5 MD Stress versus Critical Tram - 1377, 48 Gage, Static Wrinkling 

Figure 3.5 illustrates that the MD stress required to wrinkle the web varies non-linearly 

with the resulting critical tram. This chart is important because it shows that increasing 

the MD stress, and thus the MD tension, requires an increase in tram to wrinkle the web. 

However, increasing the tension may cause other problems within the web line process. 



CHAPTER IV 

Experimental Setup and Procedure 

4.1 Experimental Setup 

Web wrinkling experiments for static and dynamic tram conditions were performed 

at the Web Handling Research Center at OSU. The entire test apparatus used to conduct 

these experiments is shown below in Figure 4.1. 

Figure 4.1 Splicer winder with wrinkle module. 



The wrinkle module shown in Figure 4.1, donated by 3M, was originally built for 

an end pivot tram roller. However, the wrinkle module was modified for a center pivoted 

tram roller. Previous wrinkling research, primarily static wrinkling, was experimentally 

verified with an end pivoting tram roller. In the previous research in static wrinkling, a 

micrometer was used to impose a known displacement to the tram roller [4]. Very slowly 

imposing a known tram displacement simulates the low ro shear magnitude and 

displacement magnitude web response. The experimental apparatus was later modified for 

a center pivoted tram roller. Center pivoting ensures symmetrical geometry when 

comparing CW tram rotation with CCW tram rotation, whereas with end pivoting the 

stress distribution changes when comparing CW rotation with CCW rotation. In other 

words, for an end pivoted roller at high frequency conditions, there would be an oscillating 

bending stress superimposed upon an oscillating uniform stress. 

To control the tram displacement and frequency, a servo motor was mounted to 

the experimental apparatus. A function generator was used to input a sinusoidal voltage 

to the servo motor to produce a sinusoidal tram input displacement. Adjusting the 

amplitude and frequency of the tram roller was easily accomplished by adjusting the 

amplitude and frequency of the output voltage from the fbnction generator. 

To perform successfU1 wrinkling experiments, small wrinkles must be spotted as 

well as bigger wrinkles. To account for poor lighting surrounding the tram roller, a laser 

was mounted on the edge of the roller mount such that the light beam skims across the 



tram roller. When the web wrinkles as it crosses the tram roller, the light beam illuminates 

the wrinkled web material allowing visual contact of the wrinkle. 

4.2 Experimental Procedure 

The first step taken when performing experiments is to warm-up all the electronics 

for at least 20 minutes. This equipment includes: 

1) Splicer winder motor and load cell. 

2) Fife (SE-4) displacement transducers. 

3) Fife A9 signal processor feedback. 

4) Servo motor. 

5) DCDT displacement transducer. 

6) Data acquisition board. 

Warm-up of this equipment ensures that electronic drift is minimized when taking data, 

resulting in better data. After the equipment is sufficiently warmed, the load cell on the 

splicer winder must be calibrated. This is done by feeding a string through the web path 

and hanging a known weight from the end of the string and adjusting the tension control 

until the tension scale reads the proper weight. Now that the load cell is calibrated the 

tram roller must be adjusted so it is parallel with the upstream roller. This is done with 

low web velocity and under low so or static conditions so as to avoid air entrainment or 



any time variance problems of shear, respectively. The tram roller position is adjusted by 

tweaking the null position on the A9 signal processor until a static wrinkle appears during 

full servo motor extension and retraction. Note that the tram is still under a sinusoidal 

motion. Next, the data acquisition is prepared for use. When the proper channels are 

connected, a sample output run is printed to the screen and viewed to ensure all channels 

and input data appear normal. When all instruments are warm and are working properly, 

then experiments are run and recorded using a 80386 computer and Labtech Notebook 

data acquisition software. 

There were several precautions taken while performing wrinkling experiments. 

These primarily come from the necessity to operate in Regime I wrinkling, because the 

theory developed in Chapter 2 fails when traction is lost between the web and tram roller. 

To ensure sufficient traction is present, low web velocities are run in conjunction with high 

web tension. Low web velocity combined with high tension produce a minimum amount 

of air entrainment, thus keeping the coefficient of traction at a maximum value. High web 

tension also increases the normal pressure applied on the rollers, thus increasing the 

traction capacity of the web. 

Experimentally, the first step taken was to confirm the frequency response shear 

magnitude, amplitude ratio, and phase lag equations as shown in Chapter 2. Data read 

into the computer included the lateral web displacement relative to the tram roller, and the 

tram displacement via the DCDT. Data was taken for values of T ~ I  varying from 0.4 to 

12. These values represent practical limits of TW. With the equipment used in this 

research, specifically the lateral web displacement Fife (SE-4) transducer, the upper end of 



zo was limited to 12 because the lateral web displacement approaches zero with increasing 

zo, and the resolution of the Fife (SE-4) transducer is not sufficient to accurately read 

such low displacements. Many data points were taken at varying values of zo and the 

resulting data were imported into an Excel spreadsheet for data analysis. All of the 

experiments were performed with 48 gage ICI 377 polyester. 

The resolution of the Fife transducer is 0.002 in. However, the web edge has 

slight discontinuities, decreasing the effective resolution of the Fife transducer to 

approximately 0.005 in. This resolution is sufficient for lateral web displacements of no 

less than 0.020 in., which is sufficient for all zo values up to 12. The DCDT resolution is 

0.00 1 in., which results in very accurate experimental tram data. 

In the lateral displacement and phase lag spreadsheet, Microsof? Excel Solver is 

used to fit a theoretical sine wave to the output of the DCDT. This theoretical sine wave 

was, in turn, used to determine the tram frequency, amplitude, and period. The-tram 

frequency, amplitude, and period are used to calculate experimental vaIues of zo, shear 

magnitude, amplitude ratio, and phase lag. These experimental values are then plotted on 

top of theoretical predictions from equations (2.1.10) and (2.2.16) for comparison and 

analysis. A sample lateral displacement and phase lag spreadsheet is shown below. Also, 

experimental verification of amplitude ratio and phase lag is illustrated later in Chapter 5. 



Form: Asin(Bti2pi + D) 
Tram: Minimize 

Amp. 0.0415 Tram: 
Per. 10.2319 0.20 1 1 

D.C off: 0.2934 
Phase 5.1985 

Time 
0 

0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 
1.8 
2 

2.2 
2.4 
2.6 
2.8 
3 

3.2 
3.4 
3.6 
3.8 
4 

4.2 
4.4 
4.6 
4.8 
5 

5.2 
5.4 
5.6 
5.8 
6 

6.2 
6.4 
6.6 
6.8 
7 

7.2 
7.4 
7.6 
7.8 
8 

Web disp 
4.2871 
4.27 

4.2358 
4.2261 
4.2432 
4.248 
4.2578 
4.2676 
4.2798 
4.2676 
4.2627 
4.2578 
4.2773 
4.2944 
4.2749 
4.3042 
4.3408 
4.3359 
4.3408 
4.3481 
4.3604 
4.375 
4.397 

4.3994 
4.41 41 
4.4336 
4.421 4 
4.4287 
4.4482 
4.4287 
4.4458 
4.4751 
4.4556 
4.4751 
4.4751 
4.4458 
4.4702 
4.4556 
4.436 
4.4238 
4.4263 

Avg. Web 
Disp. (in) 

0.3066 
0.2941 
0.2834 
0.2852 
0.2906 
0.2941 
0.2989 
0.3043 
0.3043 
0.3001 
0.2977 
0.3013 
0.3 102 
0.3096 
0.3120 
0.3281 
0.3358 
0.3358 
0.3388 
0.3436 
0.3501 
0.3591 
0.3650 
0.3692 
0.3775 
0.3793 
0.3781 
0.3846 
0.3846 
0.3840 
0.3954 
0.3978 
0.3978 
0.4025 
0.3954 
0.3942 
0.3966 
0.3882 
0.3805 
0.3781 

Tram Em 
(v) 

0.3296 
0.3149 
0.2905 
0.2612 
0.2271 
0.1 904 
0.1514 
0.1 123 
0.0732 
0.0342 
-0.0049 
-0.0439 
-0.0806 
-0.1 123 
-0.144 
-0.166 
-0.1929 
-0.21 

-0.2222 
-0.2295 
-0.2344 
-0.2368 
-0.2368 
-0.2344 
-0.2344 
-0.2271 
-0.2026 
-0.1831 
-0.1587 
-0.1318 
-0.105 
-0.0708 
-0.0391 
-0.0049 
0.0293 
0.0635 
0.0977 
0.1318 
0.166 
0.1953 
0.2246 

Theoretical Sine wave: 
Tram: Difference: 
0.2567 0.0032 
0.2594 0.0038 
0.2625 0.0035 
0.2662 0.0030 
0.2702 0.0022 
0.2746 0.0015 
0.2793 0.0006 
0.2842 0.0000 
0.2892 0.0005 
0.2943 0.0009 
0.2993 0.0013 
0.3043 0.0019 
0.3092 0.0022 
0.3137 0.002 1 
0.3180 0.0023 
0.3219 0.0015 
0.3254 0.00 18 
0.3284 0.0012 
0.3309 0.0005 
0.3328 0.0004 
0.3341 0.0010 
0.3348 0.0014 
0.3349 0.0015 
0.3343 0.0012 
0.3332 0.0001 
0.3314 0.0007 
0.3291 0.0005 
0.3262 0.0003 
0.3228 0.0004 
0.3 190 0.0004 
0.3 148 0.0000 
0.3103 0.0003 
0.3055 0.0000 
0.3006 0.0001 
0.2955 0.0004 
0.2904 0.0006 
0.2854 0.0008 
0.2804 0.0010 
0.2757 0.0009 
0.2712 0.0012 
0.2671 0.0012 

Table 4.1 Lateral Displacement and Phase Lag Spreadsheet 



48 gage 

qo74359.d~ 
Exp. Amplitude Ratio 

Max Avg. Min Avg. P-P 
Web disp Web disp Amplitude 
0.0000 0.0000 0.0000 

Max Tram Min Tram 
Amplitude 

0.3334 0.251 1 

Exp. Amplitude Ratio 
0.000 

Experimental Phase Lag 
TramTo Web To 

0 0 
Tram Frequency(rad/s) 

Exp. Phase Lag (Deg) I O 

Web Velocity (FPM) 
Tau * Omega 

Theoretical Amplitude Ratio 
0.592 

P-P Tram 

0.0823 

42 
1.32 

T (Ib.) Q (in.) C (in.) 
9 0.0412 9.75 / 

t(in) w(in) Theta (at L) 
0.00048 6 0.004222 

(N(at L)/T I Q/C } * (KL)"2 (chart) = 

3.3 1 

N (at L) = 0.22 

Using N (at L) = 2EI*ThetalZA2 
N (at L)= 0.14 

q (dynamic) 1 q (static) 
Theory Experimental 

0.60 0.63 

Theoretical Phase Lag 
-51.1 

Table 4.2 Calculation Results From Lateral Displacement Spreadsheet 



Figure 4.2 High Frequency Sample Plot From Lateral Displacement Spreadsheet 

Figure 4.2 represents a high fiequency, zo = 7.5, experimental data chart. It includes the 

tram experimental data, corresponding tram curve fit and resulting lateral web 

displacement. Note that the web displacement is relatively small as compared to the tram 

displacement and that the web displacement phase lag is nearly 180 degrees from the tram 

displacement. 
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Figure 4.3 Low Frequency Sample Plot from Lateral Displacement Spreadsheet 

Figure 4.3 represents a low fiequency, so = 0.43, experimental data chart. This chart 

illustrates that the web displacement grows relatively larger than the tram and the tram 

phase lag approaches zero. This is common among low fiequency web response 

experimental data. 



CHAPTER V 

Experimental results 

After performing many experiments at varying values of zo, the amplitude ratio 

and phase lag results attained from the spreadsheet in Table 4.2 are plotted over 

theoretical predictions, as shown below in Figure 5.1. This chart shows the experimental 

verification of equation (2.1.10). Verification of equation (2.1.1 O), in turn, leads to 

confidence that the shear magnitude, described by equation (2.2.16), does exist within the 

web. Confidence that the shear magnitude described by equation (2.2.16) exists within the 

web leads to the development of the dynamic wrinkling criteria as developed in-Chapter 3 .  

I 
I Lateral  Displacement - Center  P i v o t  I 

Figure 5.1 Lateral Displacement and Phase Lag - Experimental Verification 



With the web amplitude ratio and phase lag relations verified, as governed by 

equation (2.1.1 O), dynamic wrinkling experiments are performed next to begin 

development of a working wrinkling algorithm. 

5.1 Analysis of experimental dynamic shear 

To develop a wrinkling algorithm which describes when a web will wrinkle under 

dynamic conditions, we must understand how a web acts while subject to dynamic shear. 

While referring to Figure 2.2, note that, for increasing zo, dynamic shear grows larger 

than static shear by a magnitude of 3 .  The first obvious conclusion that someone may 

make is that the web will wrinkle at a tram angle inversely proportional to the shear 

increase. For example, for any given TO, if the critical shear is two times that c~eated by 

static conditions, one might expect the critical tram angle to be one half of the critical tram 

angle for the static condition. Similarly, for large zo, the shear force is three times the 

shear force created by static conditions; therefore, we expect the dynamic critical angle to 

be one third of the critical angle resulting fiom static conditions. If this was true, then we 

could modify the static wrinkling algorithm by substituting the dynamic shear equation, 

equation (2.2.16), for the static shear equation into the static wrinkling algorithm, and the 

problem is solved. However, observing experimental data, given in Figure 5.2 below, 

shows that the critical tram increasingly drifts fiom theoretical prediction with increasing 

zo. Note that low zo experiments merge with theoretical predictions. This shows that the 



verified static wrinkling tests correspond with a low zo frequency response. Note that 

both Figures 5.2 and 5.3 could have been presented as ratios of shear without affecting the 

graphs. 



(1) (21 

Q(1arge so)/Q(low so)  

s o  Theory Experimental 
[eqn. (2.2.16)]/ [eqn. (1.2)] 

(21 /{11 

0.43 0.93 0.99 1.06 

0.61 0.86 0.9 1.05 

0.72 0.82 0.87 1.06 

0.78 0.8 0.85 1.06 

0.8 0.79 0.88 1.11 

0.84 0.77 0.82 1.06 

0.95 0.73 0.74 1.01 

0.96 0.73 0.76 1.04 

1.03 0.7 0.75 1.07 

1.2 0.64 0.69 1.08 

1.32 0.6 0.63 1.05 

1.44 0.57 0.58 1.02 

1.55 0.54 0.66 1.22 

1.61 0.53 0.57 1.08 

1.88 0.48 0.52 1.08 

1.97 0.46 0.54 1.17 

2.02 0.45 0.54 1.20 

2.03 0.45 0.48 1.07 

2.18 0.43 0.51 1.19 

2.57 0.4 0.46 1.15 

2.6 0.4 0.5 1 1.28 

2.75 0.39 0.5 1.28 

3.37 0.36 0.46 1.28 

3.53 0.36 0.5 1.39 

3.64 0.36 0.5 1 1.42 

4 0.35 0.44 1.26 

4.09 0.35 0.64 1.83 

4.96 0.34 0.5 1.47 

5.07 0.34 0.54 1.59 

5.2 0.34 0.6 1.76 

5.49 0.34 0.54 1.59 

5.52 0.34 0.54 1.59 

5.99 0.34 0.54 1.59 

6.12 0.34 0.68 2.00 

6.61 0.34 0.6 1.76 

6.75 0.34 0.48 1.41 

7.07 0.34 0.57 1.68 

7.18 0.34 0.66 1.94 

7.67 0.34 0.68 2.00 

8.36 0.33 0.64 1.94 

9.2 0.33 0.63 1.91 

Table 5.1 Static and Dynamic Critical Tram Data 



Impending Wrinkling Tram - Q(dynamic)/Q(static) 

- Thy - @~rmc/Static Tram 

+ Eip - DynarclStatic Tram 

Figure 5.2 Impending Wrinkling Tram (DynarnicIStatic ratio) 

Figure 5.2 illustrates that, theoretically, the dynamic critical tram is one third the value of 

the static critical tram at high *co for equivalent tram angles, web line parameters, and web 

properties. Figure 5.2 also illustrates how experimental data varies from theoretical data 

with increasing zo. 



Critical Tram - ExperirnentaYTheory Ratio 

Figure 5.3 Critical Tram - ExperimentaVTheory Ratio 

Figure 5.3 illustrates how the experimental to theoretical ratio varies, as zo increases. At 

low -to values, equivalent to static wrinkling, experimental and theoretical values approach 

the same magnitude. Conversely, as zo increases, the experimental to theoretical ratio 

increases to a magnitude near 2. In other words, nearly twice the tram predicted by theory 

is necessary to wrinkle the web at large zo. 



CHAPTER VI 

Discussion 

At this point, we have found that the static wrinkling model presented in Chapter 3 

is inadequate to describe dynamic wrinkling as identified by experiments. The following 

analyses were performed to investigate parameters which may or may not need to be 

accounted for in the dynamic wrinkling model. 

6.1 Analysis of Dynamic Stress State in Web 

When considering high .co values, the lateral displacement amplitude ratio 

approaches zero and the in-plane bending moment at the tram roller increases with 

increasing tram. At high ~ o ,  due to small lateral displacement, the web is accurately 

modeled as a cantilevered - pinned beam with an imposing moment acting on the pinned 

end as illustrated in Figure 6.1. 
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Figure 6.1 Cantilevered - Pinned Beam 

For this pinned-cantilevered beam, the moment necessary to cause the rotation angle 9 is 

given by equation (6.1). 

4E18 
M=- 

L 

Similarly, the shear force due to the rotation angle 9 is written as: 

Note that the shear force represented by equation (6.2) is 3 times the magnitude of the 

shear for the static case represented by equation (1.2). These elementary beam models of 

shear and moment agree with Shelton's frequency response derivation [I]  for large zo. 



More exact than (6. I), the moment in the web for high frequency response is represented 

by equation (6.3). 

Similarly, approximating for small KL, equation (6.3) is written as: 

Applying elementary beam analysis to the web, the MD stress state is now described for 

large zo conditions. A simple beam loaded with a bending moment on the end will have a 

linearly varying stress distribution. This stress distribution varies as described by equation 

(6.5). 

Hence, for a tram displacement at high ro, the stress distribution in the web immediately 

preceding the roller is graphically illustrated with Figure 6.2. 



Figure 6.2 Web stress distribution drawing - dynamic conditions. 

The maximum and minimum stress magnitude at the web edges increases and decreases, 

respectively, with M. Thus, for small or negligible tram displacements, the bending 

moment approaches zero, leading to a constant stress distribution. 

6.1.1 Effect of Varying Stress Distribution on Critical Compressive Stress 

Using a critical tram displacement for high ro, q = 0.033 in., to calculate the 

maximum bending moment within the web results in M = 3.973 lb-in. Substituting M = 

3.973 in-lb, c = 3 in., and I = 0.00864 i d .  results in a MD stress increase of 1380 psi on 

the high stress edge and a decrease of 1380 psi on the low stress edge. All experiments 

were performed at 9 lb. MD tension which results in an average MD stress of 3 125 psi. 



Thus, the change in stress due to bending is plus and minus 45% on the high and low 

stress edge, respectively. Observation of Shelton's simplified critical stress, equation 

(3.9), shows that the critical stress is proportional to the square root of the MD stress. 

From this, we can conclude that the critical compressive stress on the edge increases no 

more than the square root of (1 + 0.45 ) times the average critical compressive stress in 

the center of the web. Similarly, the critical compressive stress on the low stress edge 

decreases no less than the square root of (1 - 0.45 ) times the average critical compressive 

stress in the center of the web. 

However, by observing wrinkling experiments, it is obvious that a wrinkle occurs 

at approximately 40 % of the web width into the web or, 10 % of the web width from the 

center of the web. At this point on the web, the change in MD stress due to bending is 

only plus and minus 9 % of the average MD stress. Thus, the change in critical 

compressive stress, due to the 9 % change in MD stress, is 1.04 times the average critical 

compressive for the high stress side, and 0.96 times the average critical compressive stress 

for the low stress side. This change in critical compressive stress is insignificant and will 

not be considered hrther in the final formulation of the dynamic wrinkling algorithm. 

6.1.2 Effect of Varying Stress Distribution on Traction Capacity 

The traction capacity of a web is defined as the maximum amount of lateral force 

per unit length within the web required to cause web slippage upon a roller. The traction 



capacity equation is documented in [5] for uniform web stress and is shown below in 

equation (6.5). 

Where y is the distance fiom the web edge to the point of interest in inches. 

For many practical static wrinkling and traction applications, the tension 

immediately preceding the tram roller of interest approaches a constant value. In the case 

of a constant tension distribution the traction capacity increases Iinearly fiom the web edge 

to its maximum value at the center of the web, and then decreases linearly beyond the web 

center to the other edge. For the purpose of developing a dynamic wrinkling algorithm, it 

is important to understand how the traction capacity varies with the bending moment. 

This is important because, at any instant, one side of the web has a lower stress magnitude 

than the opposite side of the web, therefore causing a nonlinear variance of traction 

capacity across the web width. 

By understanding how the traction capacity varies with the web width, one can 

determine if either side of the web, particularly the lower stress side, has sufficient traction 

to support a wrinkle. The traction decreases on the lower stress side; on the other hand, 

the MD stress decreases, thus requiring a lower buckling stress. However, it was 

concluded in section 6.1.1 that the change in critical compressive stress due to the bending 

moment is an insignificant factor in the development of the wrinkling algorithm and will no 

longer be considered. 



Referring to the web MD stress distribution graph in Figure 6.2, a relationship for 

tension variance with respect to web width is derived, as is needed for equation (6.5). 

This expression for tension per unit width is then substituted into equation (6.5) to get an 

equivalent expression of web traction capacity, as a hnction of the bending moment. The 

equivalent stress represented as a function of y is: 

The traction capacity equation (6.5) requires the tension per unit width (Tlw). Thus, 

multiplying (6.6) by the web thickness, substituting I = (l/12)tw3, and dividing by R, 

results in the equivalent pressure per unit width between the web and roller as shown in 

equation (6.7). 

Integrating (6.7), with respect to y, yields the modified traction capacity equation for high 

ro, taut, center pivoted, planar webs and is shown in equation (6.8). 



However, the traction capacity is defined as the minimum of the capacity of either side of 

the point of interest y, to resist slippage as shown in Figure 6.2. For this reason we must 

derive the force per unit length expression assuming the origin begins at the opposite side 

of the web. However, the stress must still be tensile, or positive, on the right hand edge of 

the web. This is achieved by substituting (w/2 - y) for (y - w/2) into equation (6.7) and 

integrating as before. After integrating, the expression of force per unit length with the 

origin at the high stress edge is equation (6.9). 

Hence, the true traction capacity over the full width of the web at any distance y from the 

edge is the minimum of equations (6.8) and (6.9) with y varying from 0 to w. 

Now that the tension and traction capacity expressions are established, the traction 

coefficient, y, must be considered because it is also a fbnction of tension and air 

entrainment. The coefficient of traction is directly dependent on the air film thickness, b. 

Knox-Sweeney [8] developed a relation describing h, as a function of air properties and 

web line parameters as shown in equation (6.10). 

2 r 1 2 ~ ~  -17 
ho = 0.65R - 

L T J  



Multiply equation (6.7) by the wrap distance, s, to obtain the web tension as a fknction of 

y, and substitute F(y) into equation (6.10) to get the resulting Knox-Sweeney air film 

equation accounting for the tension variation across the web width. 

Solely for the purpose of determining a worst case scenario, a maximum moment 

encountered during high frequency conditions is used in the calculation because this is 

when insufficient traction problems would occur. After substituting T(y) and a maximum 

moment of 3.97 lb-in., into equation (6. lo), h, is found to vary fiom 3.22 E -5 in. on the 

low stress edge to 1.71 E -5 in. on the high stress edge. Previous experimental air film 

height data gives a traction coefficient corresponding to hm, and hmi, of 0.16 to 0.25, 

respectively. Here 0.16 corresponds to the low stress edge and 0.25 corresponds to the 

high stress edge. v is assumed to vary linearly from y = 0 to y = w. Incorporating these 

numbers for the traction coefficient and the expression for the lateral tension variation into 

equation (6.8) and (6.9), and plotting the minimum of both equations for y = 0 to y = w 

results in the following graph. 
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Figure 6.3 Traction Capacity Variance - Dynamic Conditions 

Figure 6.3 represents the traction capacity at high ~o and for several different tram 

errors. The curve for Q = 0.0 in. is equivalent to static conditions, and note that this 

traction capacity curve is a linear response. For comparison purposes, two different tram 

displacement traction capacities are plotted. Q = 0.033 in. is a common experimental high 

.co critical tram. The traction capacity for Q = 0.053 in. is plotted to illustrate how 

traction capacity varies with tram. 

To determine whether the change in traction capacity due to the bending moment 

has any effect on wrinkling, calculations are made to determine the lateral force per unit 

width necessary to buckle the web. When this force is known, one can determine the 

percentage of web width necessary to support a wrinkle. This is calculated with the 

equation documented in [ 5 ]  shown in equation (6.11). 



Where fysCr is the internal force per unit length of the web necessary to cause web 

buckling. Thus, plotting fy,,, on the traction capacity graph and noting at what web edge 

displacement the equations are equal, gives the distance into the web where sufficient 

traction exists to support a wrinkle. This is illustrated below in Figure 6.4. 

0 1 2 3 4 5 6 

Web Position (in) 

Figure 6.4 Web Traction Capacity Versus the Load Necessary to Buckle the Web 

Shown in Figure 6.4 is the distance from either web edge where sufficient traction 

exists to support a wrinkle. From the low stress edge and high stress edge, only less than 



one-half inch of web is needed to provide sufficient traction to sustain a wrinkle. 

Experimental observation shows that, at high zw, the wrinkle forms approximately 40% 

inward fiom the high stress edge. Due to the bending moment, the traction capacity is 

decreased on the low stress edge of the web, below the traction capacity for a uniform 

stress condition. In any case, the traction capacity is much in excess of the load required 

to retain the web in a wrinkled condition as the web passes over a roller. Note that for v 

changing fiom 0.16 to 0.25 has negligible effect on the ability of the web to support a 

wrinkle. Thus, the traction capacity variation across the web width due to the bending 

moment is not a significant factor affecting the discrepancy between theoretical predictions 

and experimental results of critical tram error. 

6.2 Dynamic Wrinkling Algorithm 

Many web line systems use a pivoting or laterally traversing tram roller to laterally 

position the web. Many of the web guide systems give an output tram velocity 

proportional to the input signal. If a discontinuous web edge exists due to a splice or 

manufacturing problem, then the web edge sensor sees a step input. This step input, in 

turn, causes a high tram velocity response. If the combined tram velocity and tram 

displacement is large enough, then large dynamic shears are produced leading to web 

failure, provided that sufficient traction exists to support a wrinkle. Web failure results in a 

decrease in product quality and lower customer satisfaction. 



The economic importance of web degradation varies between different products. 

For example, a scratch or wrinkle in a newspaper may be much less costly than a scratch 

or wrinkle on a sample of pressure sensitive film. Hence, this constitutes the development 

of a dynamic wrinkling algorithm that predicts web failure as a function of web material 

properties, web line properties, tram rate and tram displacement. Accurate prediction of 

web failure allows one to alter system parameters so as to avoid wrinkling, thus resulting 

in improved product quality, less wasted resources, and increased customer satisfaction. 

The theoretical predictions of lateral displacement amplitude ratio and phase lag 

were confirmed as recorded in Chapter 5. The experimental confirmation led to 

confidence in the magnitude and phase lag of shear existing within the web as described by 

equation (2.2.16). The fact that the experimental critical tram increases to twice the 

theoretical predicted critical tram at high ~ o ,  leads one to believe that the web wrinkles 

due to an RMS value of shear. However, two obvious experimental observations show 

that more is involved with wrinkling than just the RMS shear value. First, the 

experimental critical tram merges with theory at low .co as depicted in Figure 5.3. This is 

important because if the web wrinkled due to an RMS shear, and if the peak shear was 

equal to the critical shear, then a much lower critical tram would be necessary than 

predicted by theory. Second, at medium and low values of ro, the RMS shear is less than 

the critical shear and the peak shear barely exceeds the critical shear, yet the web wrinkles. 

These two facts lead to the conclusion that the web wrinkles according to a time variance 

of shear as discussed in section 6.2.1. 



6.2.1 Time Variance of Shear 

It is considered that the web will wrinkle if the following two conditions are true: 

1) the magnitude of shear in the web is greater than the critical shear. 

2) this magnitude of shear does not drop below the critical shear for the period of 

time required for a wrinkle to transgress the roller. 

For the first criterion, the magnitude of shear in the web is determined from the dynamic 

shear equation, equation (2.2.16), and then equation (3.1 1) is used to calculate the critical 

shear. The second criterion is checked by comparing the amount of time the web is in 

contact with the roller with the amount of time that the shear exceeds the critical shear. 

Equations are derived below which enable one to easily calculate conditions to check 

criterion two. 

Solving for tl  yields: 

No 
t ,  = Sin-' (-) 

N P d  



Where tl represents the beginning point of where the shear magnitude equals the critical 

shear. Similarly, t2 is the point at which the shear magnitude drops below the critical 

shear. For a sine wave, the slope magnitude is equal but is opposite in sign. Thus, 

Solving for t2 yields equation (6.5). 

t l  and t2 are not units of time; however, tz - tl  represents a part of the period T. Thus, 

equation (6.6) shown below enables one to calculate the length of time that a shear force 

stays in the web before dropping below Ncr.  

However, oT = 2n, so equation (6.6) simplifies into equation (6.7). 



However, o T  = 27t, SO equation (6.6) simplifies into equation (6.7). 

A simplified way of calculating equation (6.7) is shown in equation (6.8). 

The time a particular point of the web spends on the roller for a given wrap angle is: 

Finally, the failure criterion is summarized as follows. The web will wrinkle if 

1) The peak shear is greater than the critical shear, and 

A table of experimental wrinkle data along with the 1) and 2) wrinkle criteria is shown 

below. 



ii - eqn. (2.2.16) 

0.23 
0.22 
0.23 
0.23 
0.24 
0.23 
0.21 
0.22 
0.23 
0.23 
0.22 
0.22 
0.26 
0.23 
0.23 
0.25 
0.25 
0.22 
0.25 
0.24 
0.27 
0.27 
0.27 
0.3 
0.3 

0.27 
0.39 
0.3 1 
0.34 
0.37 
0.34 
0.34 
0.34 
0.43 
0.38 
0.3 1 
0.36 
0.42 
0.43 
0.41 
0.4 

Table 6.1 Experimental Shear and Time Variance Data 



The entries in Figure 6.5 labeled #NUM! are results obtained when an imaginary 

number from a calculation is encountered. These imaginary numbers are caused by taking 

the inverse cosine of a number greater than 1. More specifically, for these cases, Npeak was 

less than N,,, causing ACOS(N~,/N~,~~) to be imaginary. This is due to discrepancies while 

taking experimental data. Theoretically Npeak should be greater than N,, for a wrinkle to 

occur. 

A plot comparing z, with 2/w*Aco~(N,/N,,,~) is shown below in Figure 6.6. 
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Figure 6.5 Plot of Wrinkle Criteria 

By comparing columns (1) and (21, it is evident that column (2) is approximately 

2 times column ( 1 ) . Theoretically, according to equation (6.1 O), columns ( 1 ) and (2) 

should be equal at the point of wrinkle. From these data, considering only a 90 degree 

wrap angle, one may conclude that the shear needs to exist for the time necessary for a 



necessary for a point on the web to move across one-half of the roller wrap length, Re, to 

produce a permanent wrinkle. A plot of this empirically modified wrinkle criteria is 

shown below in Figure 6.6. 

I 
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Figure 6.6 Empirically Modified Wrinkle Criteria 

Assuming the shear needs to exist for only one half of the roller wrap length is valid for a 

90 degree wrap angle. However, this empirically modified wrinkle criteria will most 

likely fail for any other wrap angles. Future research should include wrinkle experiments 

at varying degrees of wrap angle. 



CHAPTER VII 

Conclusions 

7.1 Overview 

Development of the dynamic wrinkling algorithm is important for the 

improvement of industrial web line systems. With the exception of non parallel rollers, 

many wrinkles occur due to over steering the web either in the web line or on the rewind. 

The static wrinkling algorithm agrees well with experimental data and is important for 

non parallel rollers, which encompasses many wrinkling problems. However, the 

dynamic wrinkling algorithm covers many other wrinkling problems such as web guiding 

systems. 

The dynamic wrinkling criteria can be stated as follows. A wrinkle will progress 

into a permanent deformation in the web if the following two criteria are met. 

1) The peak shear is greater than the critical shear, and 



The shear force is cyclic with a frequency equal to that of the tram frequency. This 

means that the web "sees" peak values of shear changing direction twice per period, and 

while changing directions the shear force passes through zero. The shear force that 

equation (2.2.16) predicts is the peak shear that the web experiences. However, it is 

apparent that the web reacts to the root mean square value of shear, not different than 

how an electric appliance operates on the RMS value of the input voltage. In addition to 

the web wrinkling from an RMS value of shear, this RMS shear must exist long enough 

for a wrinkle to traverse the roller as discussed in Chapter 6.1.1. 

The failure criteria listed above in 1) and 2) for regime I, taut, planar have been 

experimentally verified at the Oklahoma State University Web Handling Research Center. 

Accurate prediction of web failure, while subject to dynamic conditions, requires having 

sufficient traction between the web and roller, which usually implies having low web 

velocities, accurate web tension, accurate tram error, and accurate measurement of tram 

frequency and period. These conditions are not always achievable in common industrial 

production web lines. However, this research brings forth a knowledge base about 

dynamic wrinkling that is essential for further wrinkling research. 

7.2 Future Work 

Future work expanding the wrinkling research should contain work with lateral 

displacement, and off center pivot tram rollers. These two types of steering systems 

encompass a large part of the web guide systems employed in industry. This should also 



encompass the regime I and regime I1 wrinkling areas. Regime I1 is a separate field of 

wrinkling where traction between the web and roller is not large enough to prevent web 

slippage. Much of the aforementioned theory fails for regime I1 wrinkling. 
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