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CHAPTER 1

1. INTRODUCTION

Living organisms are perfect problem solvers due to their versatility. These

organisms come by their abilities through the apparently undirected mechanisms of

evolution and natural selection. Genetic algorithms are search algorithms that are based

on the mechanics of natural selection and natural genetics. By harnessing the powers of

natural selection and evolution, genetic algorithms are able to breed solutions to problems

whose structures are not fully understood. Although genetic algorithms in their present

form were invented by John Holland [HOL73], the idea of simulating biological

evolution for optimization dates back to the 196Os. Genetic algorithms are optimized by

maximizing a fitness function or minimizing a penalty function.

Genetic algorithms make it possible to explore a far greater range of potential

solutions to a problem than do conventional programs through the use of two primary

processes: natural selection and reproduction. Genetic algorithms model the way in

which biological genetic processes seem to operate. This is accomplished by using three

processes known as genetic operators. The definition of the genetic operators in the

context of genetic algorithms was obtained by studying the natural evolution of biological

beings or organisms. Evolution is a powerful process that created the form of life as we

know today. A few billion years ago life existed in the form of extremely primitive

organisms that contained very little genetic information. These biological organisms

1
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exhibited only primitive functions that were enough to sustain them. From generation

to generation, these organisms became more complex and better able to adapt themselves

to the changing environment. The algorithm that achieves this function uses three natural

biological processes: reproduction, mutation, and mating. Following is a description of

the roles of these three biological processes in natural evolution and how these processes

are adapted to solve problems in the field of genetic algorithms.

The biological environment in genetic algorithms is simulated by use of a fitness

function. The environment in biological evolution provides the standards which organisms

must meet in order to survive. As stated by Goldberg [GOL89], "In natural populations,

fitness is determined by a creature's ability to survive predators, pestilence, and other

obstacles to adulthood and subsequent reproduction." Fitness plays a similar role in

genetic algorithms. Just as organisms in a biological environment evolve to improve

their ability to survive, chromosomes in genetic algorithms evolve to attain higher fitness

values and become more adept at solving the problem. The fitness of a chromosome is

a measure of its ability to solve the problem. Chromosomes in the context of genetic

algorithms consist of a group of string values, each of which represents a characteristic

called a gene. The chromosome represents a possible solution to the problem. The

fitness function is the criterion for choosing the best chromosomes to use in creating a

new generation. This selection strategy is based on the Darwinian principle of the

survival of the fittest. Just as surviving organisms reproduce in nature, the selected

chromosomes will be mated to reproduce. The mating or crossover process is

accomplished by combining different parts of different chromosomes to produce offspring
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chromosomes with characteristics derived from their parents. Occasionally one of the

string values of a randomly selected chromosome is altered. This process simulates a

process which is the biological equivalent of a mutation. This evolution process, in

short, consists of repeatedly applying the three genetic operators, mating, mutation, and

selection, until a good solution is obtained, i.e, in biological terms, when the

chromosomes evolve sufficiently to contain enough of the desired features or

characteristics. This condition for termination signifies the convergence to a solution,

since at this point the population will be dominated by superior chromosomes.

Genetic algorithms are used in optimization problems, in which afitnessfunction

facilitates the selection of the best chromosomes in a population. The solution to an

optimization problem is to maximize an objective/fitness function J(x) on a set X, where

X is the entire solution space. Fitness came from an analogy with Darwinism that

underlies this whole approach of simulating an evolution to guarantee the survival of the

fittest. The design and implementation of the objective function is problem dependent and

is described in Chapter 3. The process of solving this optimization problem using

evolution is explained in the following five steps. (1) First the population size is fixed

at some value n. Then n elements Xi are chosen at random from X to form the

individuals of the first generation. (2) For each of the individuals Xi' the value J (xJ is

computed. (3) Then for each of the individuals Xi' the survival probability Pi is computed

as the ratio of the individual's fitness to the sum total of the fitnesses of all the

individuals. A random number generator generates each individual Xi with the probability

Pi and also selects individuals to populate the next generation. This process is explained
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in Chapter 3. The formula for Pi actually means that survival probability is proportional

to fitness, F(xi). (4) At this point, the n individuals that will populate the next generation

are determined. Some of these individuals remain the same as in the previous generation

and others are computed. A new individual is obtained by running the random individual

generator twice to get two individuals Xi and Xl and then combining these two individuals

according to some combination rule. The combination rule involves the use of genetic

operators whose operation and implementation are described in Chapter 2. This process

is repeated until an entirely new generation of size n is obtained. (5) Steps 2 through 4

are repeated with the individuals of the new generation.

It is desirable that each generation contain individuals that solve the problem

better than their predecessors. In other words, each population set will contain

individuals whose fitness is greater than that of their predecessors. Thus each generation

produces successively better solutions to the problem. According to the schema theorem

explained by Michalewicz [MIC92], progressive improvement of the solutions is

guaranteed when binary string representations of the solution are used. The key to a

successful genetic algorithm is to determine appropriate fitness criteria.

Genetic algorithms have been applied successfully to a wide range of real-world

problems such as, scheduling, machine learning, partitioning of graphs, the traveling

salesman problem, and the transportation problem to name a few. The genetic codes

used in solving each of these problems were different, since the representation issues are

problem specific. There are no rules for designing a genetic code.

The extraction of n-tuples plays an important role in designing a perfect hashing
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scheme. Various hashing schemes that use n-tuples to build perfect hash functions are

described in Chapter 2. The problem of extracting these n-tuples from a given word list,

using a genetic algorithm is addressed in this paper and is stated as follows. From a

given list of words, it is required to extract a list of n-tuples. Each n-tuple is an ordered

list of n characters picked from each word of the list. Characters must be picked from

distinct positions in a word and the same positions used for all the words in the list.

Furthermore, the n-tuples must be unique and the number of characters picked to form

the tuples must be minimal. Since the n-tuples are potential solutions to the problem, a

genetic representation of an n-tuple must be defined. The genetic representation of the

n-tuple is defined by a binary string's', of length equal to the word length of the shortest

word, such that if sri] = 1 then characters from position i are selected to form the tuple.

The size of the tuple is the number of 1's in the string's'. For example, consider the

words, CONST, LABEL, VALKE, PACKED. The genetic code, 010100, would

represent the list of 2-tuples, (O,S), (A,E), (A,K) , (A,K) , obtained by selecting

characters at positions 2 and 4 from the word list. The genetic code (chromosome) for

this selection is pictured in Figure 1.

00100

The 1's indicate the selection of characters
In pOsitions 2 and 4

Figure 1: The genetic representation of a tuple
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The fitness function is designed to rate these tuples according to their size and

overlap. The overlap in this context is the total number of duplicate entries among the

list of tuples. For example the overlap of the list of tuples mentioned above is 2 since

there are two duplicate entries, namely (A,K) and (A,K).

The initial generation will contain a population of a random mix of these

chromosomes. The three genetic operators, selection, mating and mutation, are applied

randomly to this population to obtain the new population. These genetic operators are

described in Chapter 2. This process is repeated to create each new generation until a

terminating condition is reached, such as a maximum number of generations, or until the

individuals of the new generation reach a desired level of fitness. The fitness in this

context refers to the ability of a member of the generation to solve the problem. While

it may seem that this search for a solution is random, in fact, the improvement of fitness

values in each generation indicates that the genetic algorithm provides an effective

directed search technique. The basic genetic cycle that creates a new generation by

applying the three genetic ,operators on an existing population is shown in Figure 2.

old
population

new
popUlation

Figure 2: The genetic cycle
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The goal of the fitness function is to select not only the tuples with least amount

of overlap but also of the smallest size. As in this case, many practical problems require

that more than one constraint be satisfied. Constraints are usually classified as equality

or inequality relations. The goal of the fitness function is to minimize the overlap of the

tuples; subject to the constraint that among tuples of the same overlap, smallest tuples

are selected. The overlap as well as the size must be minimal for a good solution, but

in case of a tie, the overlap is used for rating the solution. The implementation of

constraints (explained in Chapter 3) on solutions play an important role in designing a

chromosome representation of solutions to the problem.

Decoders are used by fitness functions to identify chromosomes that violate one

or more constraints, during the selection process. The decoder identifies and isolates the

individuals that violate constraints and repairs or destroys them. Constraints that cannot

be violated can be implemented by imposing great penalties in the fitness function on

individuals that violate them, by imposing moderate penalties, or by creating decoders

of the representation that avoid creating individuals that violate the constraint. Each of

these methods has its advantages and disadvantages. If a high penalty is incorporated

into the evaluation routine and the domain is one in which production of an individual

violating the constraint is likely, then there exists a risk of creating a genetic algorithm

that spends most of its time evaluating illegal individuals. Furthermore, there is a risk

of premature convergence to a solution that is not optimal, since the likely paths to better

individuals require the production of illegal individuals as intermediate structures, and

the penalties for violating the constraint make it unlikely that such intermediate structures
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will reproduce. On the other hand, imposing moderate penalties may result in producing

individuals that violate the constraint but are rated better than those that do not because

the rest of the evaluation function can be satisfied better by accepting the moderate

constraint penalty than by avoiding it. A decoder built into the evaluation procedure can

be designed to intelligently avoid building an illegal individual but running it is frequently

computation-intensive. In the implementation of the constraints discussed in Chapter 3,

a repair procedure is designed and incorporated in the evaluation scheme. This

procedure admits illegal individuals but then immediately identifies them and sets a

severe penalty on such individuals to avoid violation of the constraint.

Chapter 2 presents a review of related work and the history of genetic algorithms.

It also defines the genetic operators and terms that are commonly used. The design and

implementation of the combinatorial approach to solving the problem is explained in

Chapter 3. In Chapter 4, the performance of this approach is compared with the

performance of the genetic approach and observations are made. The execution time to

arrive at the solution is computed for both methods and graphed for various randomly

generated data sets. The quality of the output in terms of tuple size and overlap size is

evaluated and compared for the solutions obtained by both these methods.
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2. LITERATURE REVIEW

2.1 History

Biological analogies have been part of the science and the lore of computation

since the 1940s. The concept of evolution in molecular biology has been extended to

include computing. Landauer [LAD?1] made it clear that there are parallels between

evolutionary and computer processes.

According to Lander [LAN91], the field of biology is rapidly becoming much

more computational and analytical. Molecular biologists determined that the gene is

made up of DNA, deoxyribonucleic acid. Lander states that the DNA double helix, to

computer scientists, is a clever, robust, information storage and transmission system.

Damian [DAM91] describes the structure of a DNA double helix as a polymer consisting

of four elements, A, T, C, and G (adenine, thymine, cytosine, and guanine). According

to him, the four letter alphabet of DNA can encode messages of arbitrary complexity.

Fast matching algorithms have been applied in sequence analysis [PAV92] of DNA

sequences consisting of the four elements mentioned above.

Analogies between computing and biology are not a mere coincidence. Both

biological genes and computers record, copy, and disseminate information. Douglas

Hofstadter of Indiana University showed this clearly [HOF85] by demonstrating that the

action of DNA and RNA during the reproduction of the living cell can be interpreted as

9
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an example of a self-reproducing Turing machine. Lawrence Hunter [HUN91] says that

the early AI systems functioned in the field of molecular biology and were later adapted

and modified to apply in different fields of computing such as, computational linguistics,

that can be applied to text and DNA sequences, neural networks, qualitative modelling,

hierarchical pattern recognition, case-based reasoning, visual processing, expert systems,

knowledge-based systems, minimal length encoding, etc.

The beginnings of genetic algorithms can be traced back to the early 1950s.

Goldberg [GOL85] says that during this time several biologists used computers for

simulations of biological systems. The work done in the late 1960s and early 1970s at

the University of Michigan under the direction of John Holland led to genetic algorithms

as they are known today. Holland was inspired by a Darwinian notion of evolution in

which only the fittest survive. He proposed that a learning machine's search for a good

learning strategy be organized as the breeding of many strategies in a population of

candidates, rather than as the construction and refinement of a single strategy. Holland

and his students called their searches reproductive plans which later became popularly

known as genetic algorithms, after Holland's seminal book published in 1975 [HOL75].

In 1989 David Goldberg of the University of Alabama published "Genetic Algorithms"

[GOL89] a book, that demonstrated a solid scientific basis for the field and cited more

than 73 successful applications.

2.2 Terms and notations

The term chromosome is analogous to a biological organism. Just as the process
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of natural evolution works on a population consisting of biological organisms, so the

computer model of evolution works on a population of chromosomes, which in the

context of computers, denotes a string of characteristics. A gene is the basic building

component of a chromosome, which in the context of computing is a single element of

the string of characteristics representing the chromosome.

Just as surviving organisms reproduce in nature, so do selected chromosomes in

a genetic pool. The selection of the chromosomes that are mated to produce offspring

is based on their high fitness values. This process of selecting the chromosomes that

yield better fitness when input to a fitness function is called natural selection or biased

reproduction. Fitness function, also known as evaluation function, plays the role of the

environment, rating potential solutions in terms of their fitness. Consider for example

the problem of optimizing a simple function of one variable, f(x) = x2-2x+ 1, in the

domain [1,10]. If the evaluation function is chosen to be equivalent to the function f,

then the 3 chromosomes, vI = (01012), v2 = (10102), v3 = (01102) would be rated as

follows,

Fitness (vI) = f(vl) = f(010I 2) = f(5) = 16

Fitness (v2) = f(v2) = f(10102) = f(10) = 81

Fitness (v3) = f(v3) = f(01102) = f(6) = 25

The process of mating involves combining different parts of different

chromosomes to produce new chromosomes, also known as crossover. This process is

explained in the next section.

Mutation is the alteration of the value of an arbitrary gene of a chromosome.
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The concept of evolution is simulated on a computer by random applications of these

three operators: selection, crossover, and mutation.

2.3 The Role Of Mating/Crossover

The process of mating ensures the mixing and recombination among the genes of

their offspring. Thus this process is responsible for transferring the combined properties

Parents Children

IIIIIIIIII
Cross Site

Crossover/Mating: Crossover never
changes the value of genes. It simply
rearranges existing gene values in
different ways

Figure 3: The crossover operation

III lli:: 111111

III IIIIII

of the mating genes of the current generation to their offspring in the next generation.

The conventional scheme of mating is the swapping of characteristics between two

chromosomes across a random point within the length of both chromosomes. Many

variations of this scheme are permitted as long as a monotonic increase in the quality of

genes in succeeding generations is ensured on an average over all the chromosomes in

a population. The process is demonstrated in Figure 3.
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2.4 The Role Of Mutation

Mutation in the genetic algorithm is an arbitrary change in a given characteristic

in the chromosome. This process is demonstrated in Figure 4. The mutation rate is set

at a very low level as its main function is to restart a process of evolution that has

stalled. Mutation also helps to maintain pattern diversity and introduce new

characteristics into the population. Pattern diversity in the population corresponds to the

IIIIIIIIII

IIII i~i~i IIIII

Parent

Child

Mutation: Mutation changes the gene
value of an arbitrarily selected gene of a
chromosome.

Figure 4: The mutation operation

breadth of the searched domain. Loss of this diversity results in an undesirable,

premature convergence of the algorithm to a non-optimal solution.

2.5 Natural Selection (Biased reproduction)

The process of natural selection determines which members of a population

survive to reproduce and is done by using a biased, random-selection methodology.
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Parents are randomly selected from the current population in such a way that the fittest

genes in the population have the greatest chance of being selected. Holland [HOL75]

suggested a scheme for this type of selection which involved a linear search through a

roulette wheel with slots weighted in proportion to string fitness values. The roulette

wheel implements the natural selection process in a way that incorporates the Darwinian

notion of the survival of the fittest. Using natural selection of the fittest points in a

solution space forces the algorithm to move in the most promising direction in its overall

search.

2.6 Fitness Concept

The genetic algorithm exploits the higher-payoff, or target, regions of the solution

space due to the fact that successive generations of reproduction and crossover produce

increasing numbers of strings in those regions. A region is a schema which is defined

as follows. Let 0 be the set of all strings of some fixed length over some alphabet E,

then I0 I = IE In. let 'It be the power set of (}. Then the schema H is defined by Vose

[VOS9l] as a function that maps into the set {true, false} according to the rule,

H(x) = true iff x E: M where H is the schema describing the subset (of 0) M E: 'It .

For example let (} be the set of all strings of length 2 over the alphabet E = {O, I}. Then

the set 0 = rOO, 01, 10, II} and the power set of 0, '1' = {ef>, rOO}, {Ol}, {10}, {II},

{oo,Ol}, {oo,lO}, {oo,ll}, {Ol,lO}, {Ol,ll}, {IO,II}, {oo,Ol,IO} ,

{oo,OI,IO,II}}. Any element of '1' represents a schema. For instance {Ol, II} E: v is
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described by the schema *1 which maps binary strings of length two into the set {true,

false} as follows,

*1 (x) = true iff x E: {01, II}.

The * in the above equation represents a don't care symbol which can take on any single

character from the alphabet. This notation was adopted by Vose [VOS91]. As an

example the schema 1*0* would contain the strings, 1000, 1001, 1100, 1101.

According to Holland [HOL92], a genetic algorithm casts a net over a landscape

of potential solutions, where the rate at which the genetic algorithm samples different

regions corresponds to the regions' average elevation or fitness. The algorithm favors

the fittest genes as parents, and so above-average genes will have more offspring in the

next generation. The remarkable ability of genetic algorithms to focus their attention on

the most promising parts of a solution space is a direct outcome of their ability to

combine genes containing partial solutions.

The choice of a fitness function depends on the nature of the optimization

problem. Consider for example the problem of solving the two simultaneous equations

ax + by = c and dx + ey = f. The solution domain is the set of equations made up

of either the addition, subtraction, or multiplication of the six constants a, b, c, d, e and

f. Since the chromosome should represent any equation in the solution domain, it is

denoted by a binary tree of nodes containing the coefficients. If we choose values for the

coefficients, such as a=l, b=2, c=4, d=O.5, e=2 and f=3, then the solution is x =

2. So let the fitness of a chromosome be defined as the sum of the squares of the

differences between the correct answer 2 and the selected chromosome. The best
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chromosome will have a fitness of 0 and the worst will be a large number. The best

chromosome will represent the solution for all values of a through f with a high

probability.

Game theory suggests that each player should minimize the maximum damage the

other player can inflict. For example, in the simple game known as prisoner's dilemma,

Michalewicz [MIC92] describes two prisoners that are held in seperate cells and are

unable to communicate with each other. Each prisoner is asked to defect and to betray

the other prisoner. If both defect, they are both tortured. If one defects, he is rewarded

and the other prisoner is punished. Thus, if anyone prisoner selfishly chooses defection,

he is guaranteed a higher payoff than if he chooses cooperation. But if both defect at the

same time then both are worse off than if they had cooperated. The prisoner's dilemma

is to decide whether to defect or cooperate with the other prisoner. Applying the genetic

algorithm to such problems requires translating possible strategies into strings. One

simple way is to base the next response on the outcome of the last three plays. The value

of each gene would be either 1 or 0 depending on whether the preferred response to its

corresponding history was cooperation or defection. The fitness of each string could be

heuristically constructed as the average of the payoffs its strategy received after repeated

play.

For problems in which various factors affect the optimization of the solution, the

fitness function might be constructed as the weighted sum of all the factors, the weights

being dependent on the nature of the problem.

Thus there are no general rules for the design of the fitness function. The fitness
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function for an optimization problem is usually designed at a heuristic and intuitive level,

taking into consideration the factors that play a role in determining an optimal solution

to the problem.

2.7 Need for Extraction of n-tuples

In this paper, an n-tuple is an ordered list obtained by extracting characters at n

different fixed positions in a word. This implies that the word has to be at least n

characters long. Let w = Cl~C3 ••• Cp be a word containing characters C1 through cp,

where p > n. An n-tuple extracted from this word is defined as, In = (Ch cj , Ct, ...)

where 1 < i < j < k < ... s p and Iln I = n. For an arbitrary list of words, an n-

tuple is extracted from each word with the same values of i, j, k,.. to form a set of n-

tuples. The set of n-tuples extracted from an arbitrary list of words is said to be unique

when no two tuples in the set are identical. Chang [CHI91] states that finding a good

heuristic algorithm to extract a unique n-tuple for an arbitrary list of words with the least

amount of required time still remains an open problem. In his paper Chang [CHI91]

says, "Up to now researchers have proposed many perfect hashing schemes using

extracted n-tuples. They all used trial and error to find the needed n-tuples." In this

paper Chang introduces a letter-oriented perfect hashing scheme with a space complexity

of :

4w fn/21o ( )
N
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,where UJ is the cardinality of the set of characters appearing in all extracted n-tuples, N

denotes the number of words hashed and n is the tuple length. The time spent in finding

a perfect hashing function is based on the time complexity of the Matrix Compression

algorithm used, which is :

where p the compression rate, 1 < p < 1.

From this equation it is apparent that the space needed by this hashing scheme

depends on the size of the extracted tuples n. The genetic algorithm used to extract these

tuples attempts to optimize this parameter n. Numerous hashing schemes can be cited

where extraction of n-tuples from an arbitrary list of words played a key role. The only

method suggested for the extraction of these n-tuples involved repeated attempts at

guessing a possible n-tuple on a trial and error basis. An overview of various hashing

schemes that use extracted n-tuples is given below.

2.7.1 Annlication to Perfect Hashina Schemes

Up to now researchers have proposed many perfect hashing schemes using

extracted n-tuples. Their performance relies on the low cardinality of the extracted n-

tuples. The cardinality of a tuple is the number of characters that it contains. The

disadvantage of perfect hashing functions to date has been that the process for
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constructing them is slow. Cichelli's algorithm [CIC80] searches a table that contains a

calculated value for each letter in the word (key) alphabet. Cichelli's algorithm has the

advantage of simplicity but it also has an exponential expected time complexity, O(er
),

where r is the number of keys in the set to be stored. Values associated with the letters

from the key are used in determining the storage address for the corresponding record.

The minicycle algorithm described by Sager [SAG85] grew out of an attempt to optimize

Cichelli's algorithm for generating perfect hash functions. The minicycle algorithm,

which is currently the most computationally efficient, has a worst case time complexity

of O(f) observed by Marshall Brain [BRA89].

Marshall Brain [BRA89] presented a near perfect hashing scheme on large word

sets based on a modification of Cichelli's algorithm. The improved procedure was the

result of examining the original algorithm for the causes of its sluggish performance and

then modifying them. Similar to the original Cichelli's algorithm, a table that contains

a calculated value for each letter in the key's alphabet was maintained. Then the hashing

function,

h(key) - tablevalue-l!f-}irst-klter(key) +tablevalue_l!f_fast-klter(key)
string -length(key)

was used. An improvement was made in the ability to backtrack intelligently in case of

a collision, which is the case when the first and last characters of two equal-length words

are the same. Though this improved algorithm had the advantage of efficiency and
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simplicity, the great disadvantage was the larger storage usage than other methods.

In a new approach, described by Chang [CHA91], to design a perfect hashing

scheme, the assigned address of each keyword was determined as the following form,

address = VI (the keyword's ith character) + V2 (the keyword's jth character)

where VI and V2 were two integer-valued functions defined on the set of twenty-six

English letters. The letter value assignments for VI and V2 were determined by a letter­

oriented merging-and-exchanging algorithm. The loading factor depended heavily on the

extracted pairs. When a pair of extracted letters was not sufficient to distinguish all the

keys, this scheme failed.

Chang and Lee [CHA86] describe a minimal perfect hashing function suitable for

letter-oriented keys, based on the Chinese Remainder Theorem. This hash function was

a result of modifying the algorithm proposed by Chang [CHA84] to handle letter-oriented

keys. This scheme depended on the extraction of unique 2-tuples from the letter­

oriented keys. The 2-tuples were extracted from the set of keys by picking characters

from two arbitrary character positions in the key.

2.7.2 Matr~Compression

The hashing schemes mentioned above require the use of a matrix compression

technique. The n-tuples are extracted from the keys and stored in a matrix. The

cardinality of a set is the number of elements in the set. It is a measure of the size of

the set. The smaller the cardinality of the extracted n-tuples, the greater the sparseness
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of the matrix and hence the more effective are the compression techniques when applied

to the matrix. The trial and error schemes used for the extraction of n-tuples in these

schemes left the choice of cardinality of the tuples to the discretion of the person making

these repeated trials. The proposed genetic scheme will take into consideration the

cardinality of the n-tuples as a factor in determining a fitness function for the genes.

An efficient implementation of a trie structure using a new internal array structure

suggested by Aoe, Mormoto and Sato [AOE92], called the double array, combines the

fast access of a matrix form with the compactness of a list form. This paper suggests

the possibility of applying the algorithms presented for updating the double array to the

reduction of static sparse matrices.

Tarjan and Yao present a scheme for storing a sparse table ofn entries [TAR79],

each an integer between 0 and N-1, with an access time of O(lognN) and a storage of

O(n).

2.8 Possibility of a Genetic Solution

The problem of extracting n-tuples that uniquely identify the key space is a

combinatorial problem. Genetic algorithms are stochastic search procedures based on the

randomized operators, mating, crossover and mutation. Ever since Holland gave the

schema analysis [HOL73], genetic algorithms have been successfully applied to solving

a wide variety of hard combinatorial problems in areas such as scheduling and

transportation problems described by Goldberg [GOL89], partitioning graphs described
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by Kernighan [KER70], and the traveling salesman problem described by Lin [LIN65].

The search behavior of the genetic algorithm has been modeled in a Markovian

framework by Arunkumar [ARU93] and strong convergence of the search to a solution

was proved. Genetic algorithms employ a randomized heuristic search strategy for which

a priori complete knowledge of the features of the domain are not required, which makes

it favorable for attempting to solve the combinatorial problem of the extraction of n­

tuples.

The search strategy adopted in genetic algorithms in the context of combinatorial

optimization is described by Arunkumar [ARU93]. The algorithm begins with an initial

generation of a uniformly random population of genetic codes that should represent the

solution patterns. The solution patterns are the syntactic encoding of a solution. This

is an issue of representing the problem in a genetic schema, which in many cases is not

trivial, as observed by Michalewicz [MIC92], depending on the nature of the problem.

The nature of the problem at hand lends itself easily to a genetic solution because of the

ease with which the solution patterns can be constructed, as explained in Chapter 3.

Battle and Vose [BAT93] conclude that schemata more general than Holland's can also

be made to direct a genetic search, and that a duality exists between problem

representations and the schemata that are relevant for their optimization. This duality

provides a theoretical framework in which to interpret problem representations.

Holland defined a schema as describing a subset of strings (in a population) with

similarities at certain string positions [HOL73]. Vose [VOS91] generalized this notion

of the schema in genetic algorithms by defining it as a predicate. Battle and Vose
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[BAT93] generalized Holland's schemata in a manner which preserves the algebraic

structure, which behaves according to the Schemata Theorem given by Vose [VOS91].

According to Michalewicz [MIC92] , the theoretical foundations of genetic

algorithms rely on a binary string representation of solutions and on the notion of

schema. According to the schema theorem as stated in Chapter 3 of [MIC92], above

average solution strings grow exponentially in subsequent generations of the genetic

algorithm, resulting in convergence to a solution. Since the nature of the problem being

addressed in this paper is such that it favors binary string representations of its solutions,

a genetic algorithm designed to solve this problem will guarantee a convergence to a

solution, as it is backed up by the Schema theorem.



CHAPTER 3

3. DESIGN AND IMPLEMENTATION ISSUES

This section describes three independent approaches to solving the problem of

extracting a set of unique tuples from a given word list. The combinatorial and trial and

error approaches are used as standards to compare and evaluate the performance of the

genetic approach, which is the focus of this paper. The genetic algorithm used to solve

the problem is implemented by two different approaches: writing a C program and using

a genetic application tool called LibGA. This is done in order to investigate the

usefulness of the application tool. The results obtained by these two different approaches

are compared.

Since the terms tuple, overlap, and cardinality will be referred to on more than

one occasion, their definitions are given. Tuple is defined as an ordered list of

characters. Cardinality refers to the length of a tuple and overlap refers to the presence

of duplicate entries in the list.

3.1 Description of the Genetic Approach

The problem of extracting a unique set of tuples from a given word list involves

a search without any prior knowledge about the search domain. A solution is

characterized as good according to the following two criteria; low cardinality and low

24
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overlap of the tuples. Since the extracted tuples will be used in a perfect hashing

scheme, the solution must put more stress on realizing the latter of the two criteria. The

genetic approach to the problem as described in this paper was designed to do just this.

Genetic algorithms are well known to be applied to optimization problems. The design

of the fitness evaluation scheme, which will be described later in this section, relates

directly to the measure of overlap of the tuples. The goal of the genetic algorithm was

to effectively search for better candidates for the solution using only the payoff or fitness

of each candidate. This search required no auxiliary information in order to work and

hence suited this problem very nicely.

3.1.1 outline of the Genetic AI&orithm

The genetic algorithm described in this paper is a classical genetic algorithm,

which means that it operates on binary strings. Hence a mapping between the potential

solutions and the binary representation is required. This process, called the coding of

strings, is explained in detail in section 3.1.2. The genetic algorithm begins with a

randomly generated initial population ofbinary strings. This scheme of forming the initial

population is described in section 3.1.3. Then the genetic operators, explained in section

3.1.4, are applied. This application basically involves the copying and swapping of

partial strings of the original population to form a new population. The new population

thus created is evaluated using an evaluation scheme, explained in detail in section 3.1.5.

This process is repeated as shown in Figure 5, until a termination is reached. The
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conditions leading to a termination of the cycle are explained in section 3.1.7.

Old Population~---~

Apply Genetic
Operators Old Population

=
New Population

New Population

Evaluate~----~

Figure 5: Outline of the genetic algorithm

During the genetic cycle some of the chromosomes are just copied into the new

population and others are modified by the genetic operators and then introduced into the

new population. When implementing a fixed size population it is required to replace

existing chromosomes by the new modified ones. Different implementations can use

different techniques of performing this replacement process. In the genetic program

described by Goldberg[GOL89], two chromosomes selected for mating are invariantly

replaced by their resulting offspring. In the application tool called libGA, which is

discussed in section 3.1.8.2, the replacement strategy is different. Of the four

chromosomes involved in the mating operation, i.e. the two parents and their two

offspring, only the best two chromosomes are selected for the new population.

3.1.2 CodinK of StrinKs



27

The coding of strings that represent potential solutions facilitates the mapping of

the parameters of the optimization problem to a string in the population. The parameters

of optimization are the tuple length and the amount of overlap. Thus a string should map

to a list of tuples of a known length and overlap. Consider the binary string 01101. In

this string the l's occur at the character positions 2, 3, and 5. The tuples that

correspond to this string are obtained by picking out the characters at these positions

from each word in the word list. For example, Figure 6 shows the mapping of the binary

string 01101 to a set of tuples for a given word list. In general, for a binary string

X t X2X3•• Xn where Xi is either a 0 or 1 for all i in (l,n) and n is the length of the words in

the data set, the tuples that this string represents are obtained by picking characters from

each word at positions i for which Xi = 1. The length of the tuple is the number of l' s

in the string. The measure of overlap is represented by the hashlength, which is

computed from the tuples that the string represents.

e r
n t
c h
r n
s e

[lLTl 0

off
9 r a
tea
1 e a
tho

rnmaps to these tuples I
l

f f r
rat
e a h
e a n
hoe

Figure 6 : Genetic code
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3.1.3 Creation of the Initial Population

The population size is stored in the variable popsize, which is input to the

program during execution. The initial population contains chromosomes selected from

the solution space. The complete solution space consists of 2n -1 chromosomes, where

n is the word length of the words in the input list. For example, if we consider words

of length 3 then the complete solution space consists of the chromosomes,

001,010,011,100,101,110,111. In general, the solution space is much larger than the

population size. Hence the initial population can contain only a few chromsomes from

the solution space. This selection process is implemented using two methods: a random

initialization, and a biased initialization.

3.1.3.1 Random Initialization

The initial population contains chromosomes selected randomly from the entire

solution space. The logic for creation of the initial population follows,

for i = 1 to popsize

x = a random number in the range [1 ..2D-1]

chrom = a binary string equivalent of x

insert chrom into the population

end loop

If the population size is smaller than or equal to the solution space, then the initial
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population is constructed to contain the whole solution space.

3.1.3.2 Biased Initialization

In the biased initialization method, the initial population will consist of k1 number

of I-tuples , k2 number of 2-tuples, k3 number of 3-tuples, .. ,leu number of n-tuples. The

values k1, k2, k3, •• ,leu are computed from the following equation:

p rft-rft~
k. ::: _i_ • ps, where Pi----

• n rft-l
'lJPi
i=1

,where ps is the population size, Pi is the probability that two tuples of size i will not be

identical, r is the alphabet size, n is the word length of the input word list. The

expression for Pi is derived below.

4 groups

Figure 7: A sample solution space
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Consider the simple case of an input word set consisting of words of length 4,

formed from the alphabets: 0,1. There are altogether 24 possible words that can be

formed from this alphabet which constitutes the solution space, as shown in Figure 7.

There are 21 possible ways of constructing tuples of size 1. However there are totally 24

tuples. Therefore, the 24 I-tuples consists of 2 groups of 24/21 (= 8) identical I-tuples,

as seen in Figure 7. Similarly it can be said that the 24 = 16 possible words will consist

of

4 groups of 24
/ 22 (=4) identical 2-tuples

8 groups of 24
/ 23 (=2) identical 3-tuples

1 group of 24
/ 24 (= 1) identical 4-tuples

3.1.3.2.1 Probability that any two I-tuples will be identical The total

number of ways of selecting 2 I-tuples from a list of 16 =

16
C = 120
2

The number of ways of selecting 20's =

8
C = 28
2

,since there are 80's altogether in the list of I-tuples.

Similarly the number of ways of selecting 2 l's from a group of 8 l's is also = 28
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Therefore the probability of two I-tuples being identical =

number of ways of selecting 20's + number of ways of selecting 21's
Total number of ways of selecting two I-tuples

8
2-C'

2 = 28-2 = S6
16 120 120
C
2

3.1.3.2.2 Probability that any two 2-tuples will be identical Since there are

4 groups of 4 identical 2-tuples, by a similar treatise it can be seen that this

probability evaluates to :

4

4-C'
2

16

C
2

64--
120

24--
120

3.1.3.2.3 A Generalization: Probability that any two k-tuples will be identical

For a list of words of word length n and alphabet size r, the total number of distinct

tuples that can be formed is fl. This is the size of the entire solution domain. Following

along the line of intuition presented in the previous two sections, it can be seen that this

entire solution domain of size fl will contain rk groups of fl-k: identical tuples. The

probability of two k-tuples being identical, 1~k~n, is given by :
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(number of groups of identi~a1k-tu.ples)(probability of selecting two tuples from a group)
Total number of ways of selecting two tuples

,.
C
2

The probability that two k-tuples will be different:

r,,-k-l
1---

r"-l

r"-r,,-k

r"-1

3.1.4 The Genetic Operators; Reproduction, Crossover, and Mutation

The functioning of each of the three genetic operators depends on random choice.

This random choice is implemented in three functions: Random, Rnd, andflip. The first

of these returns a pseudorandom number between 0 and 1. Rnd returns an integer value

between specified lower and upper limits, and flip returns a boolean true value with

specified probability.

In the genetic algorithm, reproduction is implemented in the function select as a

linear search through a roulette wheel with slots weighted in proportion to string fitness
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values. Select returns the population index value corresponding to the selected

individual.

A routine crossover takes two parent strings called parentI and parent2 and

generates two offspring strings called chiidl and child2. The probabilities of crossover

and mutation, pcross and pmutation, are passed to crossover, along with the string length

lchrom. At the beginning of the routine crossover, function flip is used to determine

whether the crossover operation will be performed on the current pair of parent

chromosomes. The function flip uses pcross as an argument to determine whether a

cross is called for. The crossing site is selected randomly using the function Rnd, which

returns a pseudorandom integer between I and lchrom. If no cross is to be performed,

then the mutation operator visits each bit and calls the flip function with argument

pmutation to determine whether that bit value will be altered.

3.1.5 The Evaluation Scheme

Literature confirms that there is no deterministic method other than an exhaustive

search to solve this problem. Although genetic algorithms use probabilistic transition

rules to guide their search, this use does not suggest that the search is some simple

random search. The Genetic algorithm uses the fitness function as a tool to guide the

random search toward regions of the search space with likely improvements. The genetic

approach was designed with the prospect of achieving better performance than a totally

random approach ( trial and error) at one extreme and a totally deterministic approach
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(exhaustive search) at the other.

The population is a collection of candidate solutions that are represented by binary

strings. Each binary string represents a set of tuples. The mapping of a binary string

to the set of tuples that it represents is accomplished easily by picking characters from

the word list at positions corresponding to the 1's in the binary string. For example,

consider the list of words shown in Figure 6. The highlighted characters of the word

correspond to the 1's in the binary string. These characters form the tuples that the

binary string represents, namely {ffr, rat, eah, aan, hoe}. The evaluation scheme assigns

a fitness value to each binary string by computing the measure ofoverlap present in the

set of tuples that are mapped to it. This measure ofoverlap, also called hashlength, is

computed as follows. Consider an individual of a population represented by the binary

string 01011. Let the input word list be stored in an array of strings WN , where N is the

total number of words in the list. Then the set of tuples that are mapped to the binary

string 01011, obtained by extracting characters from positions 2,4, and 5, are denoted

by the list:

T1 = (W12' W14 ' W1S)

T2 = (W22, W24 , W2S)

By way of frequency count, this set of N tuples T = {T1,T2, •• , TN} can be partitioned

into a set of groups G = {G1, G2, •• , Gw} with the following properties:

Each group Gi is a set of one or more tuples.
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all the tuples in each group are identical.

If i =1= j, then Gi n Gj = ~, the null set.

If Ord (X) represents the number of elements in the set X, then

w
lJOrd(Gj) = Ord(1) = N
1

When all the tuples are unique, as seen from the above equation, W = N

which means that each group will contain only one tuple.

The hashlength of the set of tuples T, corresponding to the binary string is evaluated by

the summation :

W Ord{GJ}

hashlength(1) =lJ lJ k
j=1 1=1

When there is no overlap among the tuples, all the tuples are unique and W =

N and Ord(Gj) = 1, resulting in hashlength = N, the number of words in the input word

list. The fitness function for this case must be evaluated to its maximum value, which

is 1. Thus the fitness function is computed as :

N
fitness(7) - ----

hashlength(7)

When there is an overlap, the hashlength > N and the fitness evaluates to a fraction.

The smaller this fraction is, the higher the overlap.

The crossover/mating operation is designed to achieve a guided search toward

regions of the search space with likely improvement as illustrated in the following
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scenario. Consider the following two individuals/chromosomes that may have been

selected for mating: 101100 and 010011. After the mating operation, the overlap of the

offspring mayor may not be significantly less than that of the parents. Upon crossover

the best parts or contributors to fitness of each chromosome may be combined into one,

resulting in a higher fitness value of one of the offspring. This scenario may not take

place, but when it does, the search moves significantly towards a better solution.

The evaluation of the fitness is based solely on the computation of the hashlength

according to the above equation for fitness(). The hashlength depends directly on the

number of duplicate entries among the list of tuples. The higher the number of

duplicates, the greater the value of the hashlength. It is clear that choosing more letters

from the word list to form the tuples will not make the hashlength worse. Stated in

another way, if T1 is the set of tuples mapped by the chromosome 011000 and TI is

the set of tuples mapped by the chromosome 011011 then the following is always true:

hashlength (T1) ~ hashlength (TI)

This happens because the latter of the two chromosomes considers two additional

character positions to form the tuple TI. If hashlength(TI) is greater than

hashlength(T1) then the tuple set TI should be given a greater fitness value than TI.

This is indeed the case in the evaluation scheme. But in the case where the two

hashlengths are identical, the tuple set TI should be given a greater fitness value because

the tuple size for T1 is less than that for TI. The evaluation scheme does not recognize

this situation and ends up assigning a higher fitness to TI. This situation is rectified by

a repair algorithm that keeps the cardinality, or tuple size, under check. This algorithm
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is explained in section 3.1.3.

The genetic operators are applied to selected candidates of the population and the

resulting offspring are introduced into the new population. The probability of selection

of a candidate is designed to be proportional to its fitness. This selection is repeated

until the new population reaches a desired size, which is at least the size of the old

population. As this process is repeated again and again, duplicate copies of a particular

candidate will dominate the population. Theoretically this leads to a complete domination

by the individual. At this point the genetic algorithm is terminated and the solution is

represented by this dominant individual.

3.1.6 Enforcement of the Constraints

The evaluation scheme as it stands serves the purpose of minimizing only the

overlap present in the extracted tuples. The genetic search must incorporate the

constraint on the length of the tuple; otherwise the search suffers a potential risk of

favoring tuples of high cardinality and ending up with the redundant solution of a tuple

set that is identical to the word list itself. The constraint must be enforced to ensure that

the search will be directed towards solutions whose combination of overlap and tuple­

length is minimal. This is stated more formally as follows: Let P denote a population

of size n. Then Pi denotes the ith individual of the population P. F(PJ, O(PJ, and L(PJ

denote the fitness, a measure of overlap, and the length of the tuples that are represented

by the individual Pi.. For all i in {I,n} F(PJ < every element in the set S : {F(Pj ) I
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O(Pj ) = O(PJ & L(Pj ) > L(PJ, 1<j <n and j < > i}. In the implementation, the

elements of the set S are assigned a very low fitness value so that they eventually die out.

These candidates are undesirable since they violate the tuple-length constraint.

The implementation of this constraint is explained. A table called RestrainLength

is used to update the smallest hashlength for each tuple size. For example, consider all

tuple sets of size one extracted from a list of words of length four. There are four such

tuple sets obtained by string coding the four chromosomes, 1000, 0100, 0010, 0001.

The process of string coding was explained earlier. As each of these four chromosomes

are evaluated in the course of the genetic search, the first entry of the table

RestrainLength will be updated to the smallest hashlength. This update algorithm is

described below:

chrom :represents the chromosome being evaluated

card (chrom) :represents the cardinality of the chromosome chrom

hashlength (chrom) :represents the hashlength of the tuples mapped by the

chromosome chrom

if hashlength(chrom) < RestrainLength(card(chrom» then

RestrainLength(card(chrom» = hashlength(chrom)

If any of the entries above the updated entry has a hashlength that is less than or equal

to the hashlength of the updated entry, then the chromosome corresponding to the

updated entry is undesirable and assigned a low fitness value.

3.1.7 Conditions leadine to Termination of the Genetic A1eorithm
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The genetic algorithm forms a new population from the existing one on each

iteration of the genetic cycle. The population created on each cycle is known as a

generation. Theoretically the population representing the nth generation as n approaches

infinity will contain chromosomes that are perfect solutions to the problem. In practice

, however, the cycle is terminated when one of the following two conditions occur.

1. A solution is found.

This occurs when all the individuals of the population attain the same

fitness value, and is referred to as convergence to a solution. This does

not necessarily mean that all the individuals of the population are

identical. The genetic algorithm may find more than one solution, if it

exists. Elitism is used to improve the performance of the genetic algorithm

by speeding up the rate of convergence. Use of elitism ensures that each

successive generation is as good or better than the generations that precede

it. This is implemented by maintaining the best few chromosomes in each

generation. Occasionally the application of genetic operators on good

chromosomes yield poor successors, resulting in a drop in the fitness of

the succeeding generation. Use of elitism ensures a monotonic increase

in the fitness of a generation because the best few chromosomes are

reintroduced into the population. Implementation of elitism in the C

program implementation is carried out by replacing the parents by their

offspring only if the offspring are better.

2. A solution is not found.
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A counter called gencount is used to keep track of the number of

generations created. When gencount exceeds MAXGEN, a preset constant,

the cycle is terminated. This indicates that a solution was not found

within the maximum number of iterations allowed.

3.1.8 Implementation Issues

This section describes the two approaches used to implement the genetic

algorithm. In the first approach, a C program is written to implement all the aspects of

the genetic algorithm. The code is written entirely from a scratch and includes the

design and implementation of the data structures, the code for the genetic operators, the

code for the evaluation scheme, the code for various randomized operators, and other

support modules. In the second approach use of a genetic application package helps to

drastically reduce the amount of coding. Only the code for the evaluation scheme and

the main driver routine has to be constructed.

3.1.8.1 Approach 1: The C pro&ram

The implementations of the data structure for the population and the genetic

operators are identical to the implementations presented by Goldberg [GOL89]. The

source code for the genetic algorithm is written in the 'C' programming language. The

choice of a binary string as a data structure for the chromosome well suited the
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transformation of the problem into genetic coding as explained in the section on solution

coding. In the genetic algorithm the probability of mutation pmutation is set at a much

lower value then the probability of crossover pcross. Mutation by itself is a random

walk through the string space. When used sparingly with reproduction and crossover,

it prevents the premature convergence to a non-optimal solution. This is due to the fact

that the potentially better solutions that cannot be generated by recombination of existing

ones will be introduced by use of the mutation operator, thus preventing convergence to

an otherwise optimal solution.

The actual population size is set as an input parameter to the genetic algorithm,

so that its value can be altered easily. The strength of the genetic approach comes from

the fact that the population size is usually much smaller than the actual solution domain.

The genetic search focusses on the more promising parts of the solution space instead of

on the entire solution space. As an input parameter, the population size can be set at

different values for different data sets to study its effects on the convergence of the

genetic algorithm.

3.1.8.1.1 Data Structures The primary data structure for the genetic algorithm

is a string population. The population is constructed as an array of individuals where

each individual contains the genotype (the artificial chromosome or bit string), and the

fitness (evaluation function) value along with other auxiliary information such as the

cross point and the parents involved in the mating. A number of constants are defined:

the maximum population size, MAXPOP, and the maximum string length, MXLNGm.
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These set upper bounds on the population size and the string length. The type population

is an array of type individual, which is indexed between 0 and MAXPOP-l. Type

individual is a record composed of a type Chromosome called chrom, and a real variable

called fitness. These represent the artificial chromosome, and the string fitness value.

Type chromosome is itself an array of type gene, which is indexed between 0 and

MXLNGTH-l. Gene is another name for the character type to represent a single gene

value of '1' or '0'.

In the genetic algorithm, the genetic operators are applied to the entire population

in each generation. In the implementation, the offspring of the genetic operations replace

the parents in the new population. The population size remains fixed. The computer

implementation uses a number of important global variables: pcross, pmutation, and

sumfitness. The variables pcross and pmutation are the probabilities of crossover and

mutation respectively. The sumfitness variable is the sum of the population fitness

values.

The array RestrainLength of size MXLNGTH is defined to be of type long. This

array is used to update the maximum fitness at each tuple length that accumulates during

the genetic cycle. The information in this array is used in the evaluation function to keep

the tuple length under check. This is explained in detail in a later section.

3.1.8.1.2 The Driver/Main program The driver/main section of the program

serves as a breeding ground for each generation to evolve into the next through a

repeated cycle or loop. The generation counter is incremented, the function generation
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is called to generate a new generation, and the population is advanced: oldpop =

newpop. In addition, the main program is responsible for reading in the input data for

the problem, randomly initializating the first population, calculating of relevant statistics,

and reporting various parameters for plotting graphs. As part of the statistics, the best

k strings accumulated over every three generations are reintroduced into every fourth

generation. This procedure, called elitism, ensures the monotonic increase in the average

fitness level of the population over the generations. The value of k is selected as the

bigger of 1 and LPopulation_size/25J.

3.1.8.2 Approach 2: Usin& the LibGA annlication tool

When using the LibGA application tool [COR93], only the code for the evaluation

scheme and the main driver routine need to be written. The code for the evaluation

scheme is written in a function called objJun() which is declared in the main program

main(). This main program consists of essentially two parts, namely, the initialization

and the execution of the genetic algorithm. The objJun takes a chromosome as an

argument and returns a real fitness value. The chromosome is defined as a string of bits

using a configuration file. The process of evaluating the fitness of a chromosome

remains the same as before. The only difference lies in the coding of the main program,

the configuration file, and the user data file. These are explained below.

3.1.8.2.1 The Main proeram The main program consists of two parts, the
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initialization and the execution. The initialization of the genetic algorithm is

accomplished by the function GA_conjig ("tupleapp.cfg", objJun). This function sets

the configuration of the genetic algorithm to the contents of the file tupleapp. cfg and sets

the function objJun as the evaluation scheme for the genetic algorithm. The function

objJun takes a data structure of type Chrom_Ptr as the argument. This data structure is

shown in Appendix A. The chromosome is stored in an array of type Gene_Ptr. Other

useful information is stored along with the chromosome, such as its length and fitness.

A population consists of a group of chromosomes. So the data structure for the

chromosome contains an index that is used to reference this chromosome in the group.

The configuration of the genetic algorithm is stored in a data structure of type

GA_Info_Ptr, which is returned by the function GA_conjig. The configuration file

contains the settings for the data type of the gene, the chromosome length, the population

size, the selection method, the genetic algorithm type, the crossover method, the

mutation method, etc. The configuration is set to a default setting unless changed. In

the configuration file tupleapp. cfg, the following settings are used:

user data the name of the input data file that contains the word list

data_type data type of a gene is a bit representing 1 or 0

initpool random (initial population is generated at random)

length length of the chromosome is set from the input data file

pool_size the population size is set from the input data file

The remaining conjiguration is at the default settings.

Every application will have its own configuration file where the configuration settings
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for that application are stored. The configuration file used for this application is called

tupleapp.c[g. As mentioned earlier, one of the settings called user_data is used to store

the name of the input data file. This input data file will contain the word list from which

the tuples will be extracted. A function called readwords () reads the input word list from

the data file user_data. The execution of the genetic cycle is started by simply calling the

function GA_run (ga_info). The argument ga_info is a data structure of type

GA_Info_Ptr that is initialized to the contents of the configuration file.

3.1.8.2.2 The Confipration file The configuration file consists of settings that

are used to initialize the data structure GA_Info_Ptr. The components of this data

structure are given in Appendix A. Some of the components are explained briefly. The

entry user_data is used to store the name of the input data file. Data_type is an integer

flag representing the data type of the gene. The different data types allowed for a gene

are, bit, int, and real. The entry chrom_len refers to the length of the chromosome. A

boolean minimize is used to represent the type of optimization that is needed. If minimize

is true then the genetic algorithm minimizes the objJun; otherwise the objJun is

maximized. The crossover rate and the mutation rate are contained in the entries x rate

and mu_rate respectively.

3.1.8.2.3 The User Data file The user data file is the file that contains the input

word list. The first line of this file contains the number of words, the length of each

word, and the alphabets used to form the words. This is followed by the word list. The
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function readwords reads the contents of this file and stores the words in an array of type

string. In the evaluation of the fitness of a chromosome, the tuples that it represents are

extracted from these words. The evaluation scheme, as explained in section 3.1.5 takes

these tuples as input to determine the fitness of the chromosome.

3.2 Description of the Combinatorial/Exhaustive Search Approach

The combinatorial approach systematically eliminates all possible non-solutions

starting from tuples of cardinality 1 and ending at the whole word length. At any point

in this process as soon as a solution is found the program terminates immediately. A

solution is one for which the overlap is O. A non-solution is one for which an overlap

exists. The extent of this overlap is not evaluated as it serves no purpose to this search

method in yielding a solution. All possible combinations of tuples of size 1 are tested

first. Then all combinations of tuples of size 2 are tested and so on until tuples of size

w are tested, where w is the length of the whole word. Thus in the worst case the

number of trials made computes to :

where w is the length of the word. This approach guarantees finding an optimal solution

if one exists.

When the number of words and the alphabet size used to form the words are

known in advance, the combinatorial approach can be modified to improve its

performance. Consider a list of words constructed from an alphabet of size r. The total
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number of unique tuples of size 2 that can be constructed is r. Hence if the total number

of words in the list is greater than r, any set of tuples of size 2 extracted from the list

will have duplicates. So any tuple of size 2 cannot be a solution. In general any tuple

of size k, for which rt < total number of words in the input list, is not a solution and

can be skipped. This technique is incorporated into the combinatorial algorithm to

improve the efficiency of the exhaustive search.

3.3 General Description of the Trial and Error Approach

The trial and error approach to finding a solution is a completely random process

in which the solution is sought by repeated attempts or guesses at the tuples hoping to

hit the mark. This approach does not guarantee a solution even if one exists. Also the

solution, if found, is not necessarily the optimal one.

The basic technique of the trial and error approach consists of picking characters

at random positions from each word in the word list. Each such attempt, called a trial,

can be represented as a sequence of character positions. For example, one such trial

sequence [3,5,4] represents the set of tuples of size 3 obtained by extracting characters

from positions 3, 4 and 5 from the word list. The tuples obtained on each trial are

evaluated to determine the overlap. If the overlap is 1 then the solution is found and no

more trials are made; otherwise, another trial to guess the solution is made. No

assumption or knowledge of the word list is used in taking a guess at the solution. A

specified upper limit on the number of trials on each tuple size is used. When this limit
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is exceeded then trial sequences of the next larger size are generated and so on. This

process is repeated until either a solution is found or the limit on the total number of

trials allowed is exceeded.

3.4 About the Implementation Platform

The machine used is a Sequent Symmetry S81 with 24 80386 processors running

at 20 MHz each and with a RAM of 108 Mbytes. Each processor also has both a 80387

and a Weitek floating point co-processor.
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4. RESULTS AND OBSERVATIONS

The problem is to extract a unique set of tuples from a given word list. A tuple

is a sequence of characters picked from a word in the list. All the tuples are extracted

by picking characters in the same sequence from each word in the list. The tuples must

not only be distinct but also obtained by picking as few characters as possible. A

genetic algorithm is implemented to solve this problem. The results obtained by this

algorithm are displayed in the form of graphs. From these results the performance of

the genetic algorithm is observed. The input data consists of a list of words. Each word

in the list is constructed by randomly selecting characters from a given alphabet set. For

the purpose of evaluation of the genetic algorithm, the length of the words and the

number of words in a data set are varied.

The genetic algorithm implemented using the C programming language is called

gengrph. Another implementation called the tuple-app uses the libGA application tool.

The results obtained by these two implementations are compared in section 4.5. The

performance of the genetic algorithm gengrph is compared to the combinatorial algorithm

combon, that uses an exhaustive search technique to find an optimal solution to the

problem. This is discussed in sections 4.2 and 4.3. Also the effect of using a biased

initialization of the initial population, based on the probabilities established in section

3.1.3.2 of chapter 3, on the performance is observed in section 4.4.

49



50

4.1 The Performance of the Genetic Algorithm

The performance of the genetic algorithm is evaluated in terms of the execution

time required to find a solution and the quality of the solution found. The execution time

is measured in microseconds and represents the cpu time required to find a solution. The

combon uses an exhaustive search and guarantees to find an optimal solution. The

solution obtained by the genetic algorithm is optimal if the solution's fitness is 1.00 and

the size of the solution tuple is same as that of the solution obtained by combon. The

two types of graphs presented in the following sections display results of comparing the

execution time and solution quality obtained by both the genetic and combinatorial

algorithms.

4.2 The Execution Time

The execution time required to find a solution is compared for both the methods:

combon and gengrph. The solution obtained by the combinatorial algorithm combon, is

guaranteed to be optimal but the exhaustive search that it employs is time consuming.

The performance of gengrph is studied to determine under what circumstances it will

outperform the combinatorial algorithm combon. This section discusses the execution

times, but the quality of the solutions obtained from these runs are discussed in the next

section.

The execution time plotted on the y-axis is representative of an average over
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several runs. On each of these runs a different set of words of the same length and

number is used. The execution times for all these runs are averaged. The graphs that

depict this performance use two types of x-axes: one in which the word length is fixed

and the number of words varied, the other in which the number of words is fixed and

the word length varied.

For the graph shown in Figure 8, the size of the input data set increases along the

x-axis. For all the data sets on the x-axis the word length remains fixed at 6. Each

point on the y-axis is computed as an average of the execution times obtained on 40

separate runs. For example consider the fourth point on the gengrph curve.
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Figure 8: Performance Graph for words of length 6

The x-coordinate of this point corresponds to the input data containing 100 words. The
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y-coordinate of this point was obtained by generating 40 different data sets each

containing a 100 words and taking the average of the execution times for each one of

these data sets. The graphs shown in Figures 9 and 10 are constructed in exactly the

same fashion, except that the word length used in Figure 9 is 8 and that used in Figure

10 is 10. The graph in Figure 8 shows that the combon method outperforms the gengrph.

We also see from Figures 8, 9, and 10 that as the number of words in the
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Figure 9: Performance graph for words of length 8

input list increases, the gengrph curve rises more rapidly than the combon curve.

From Figure 8 to Figure 9, the gap between the performance of the two methods has

reduced. From Figure 9 to Figure 10, the gap has reduced even more. From this

observation, it seems that although the execution time of both the methods increase

linearly with input data size, the increase in word length favors the performance of the
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genetic method gengrph. It was noted in section 3.1.3 of Chapter 3 that the size of the

entire solution domain increases exponentially with word length. Since the combon uses

an exhaustive search mechanism, it comes as no surprise to see why the performance of

the genetic algorithm gengrph is rapidly catching up to the performance of the combon.

The genetic search is a biased form of the trial and error search because more trials are

made in regions of the search space that look promising than in those that are not.
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Figure 10: Performance graph for words of length 10

Thus the increase in the word length does not seem to effect the performance of gengrph

as much as it effects cornbon. This phenomenon is seen in the graph shown in Figure

11. The graph in this figure uses a varying word length along the x-axis, and a fixed
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size for number of words in the input data set. As before, each point on the y-axis is

computed as an average over 40 separate runs. From this graph, a marked difference

in the performance of the two methods is seen. The gengrph appears to outperform the

combon after a certain word length is crossed. The combon shows an exponential rate

of growth of the execution time, where as the genetic algorithm remains almost

unaffected. The graph in Figure 12 is constructed in a similar fashion using input words

of increasing length, but the number of words used in all the data sets is now fixed at

600. The gengrph curve in this graph exhibits the same form as before, running almost
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Figure 11: Performance graph #1 for words of increasing length
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level in a zigzag fashion across the figure. The combon curve rises exponentially across

the figure, as expected. The genetic algorithm outperforms the combinatorial algorithm

when words of larger length are considered.
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Figure 12: Performance graph #2 for words of increasing length

It is not enough to note a significant improvement of the performance relating to

execution time. The question is whether the genetic algorithm finds acceptable solutions

to the problem with this efficiency. The quality of the solutions obtained by the genetic

algorithm is discussed in the next section.
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4.3 The Solution Quality

The quality of the solution is measured in terms of solution tuple size and the

solution tuple's fitness. The quality of the solutions obtained by the genetic algorithm

is determined by comparing it with the optimal solutions obtained by the combinatorial

algorithm.

The graph in Figure 13 shows the sizes of the solution tuples obtained by both the

methods: gengrph, and combon. These solutions were obtained in the execution times
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Figure 13: Solution quality for words of length 6

represented in Figure 8. The graph has the same x-axis as in the graph of Figure 8, but

the y-axis represents the average of the solution tuple sizes obtained on 40 separate runs
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for each input data set on the x-axis. It is seen in the graph that the optimal solution
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Figure 14: Solution quality for words of length 10

tuple size seems to increase with the size of the input data set. This is expected, since

more the number of words, the higher the chance of overlap among the extracted tuples.

Hence tuples must use more characters to avoid overlap, resulting in an increase of the

solution tuple size. The graph in Figure 14 is constructed in the same fashion except that

all the data sets on x-axis now use a larger word length of 10. A match between the size

of the solution tuples obtained by gengrph and combon indicates that the genetic

algorithm found an optimal solution. By comparing the graphs of Figures 13 and 14, it
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is seen that the latter of the two shows more mismatches between the solution tuple sizes.

This seems to be the affect of choosing input data sets containing words of higher length.

This affect is seen more clearly in the graph of Figure 15. In this graph the x-axis

represents input data sets of increasing word length. The y-axis represents the average

of the solution tuple sizes obtained over 40 separate runs of each data set. Towards the

higher word lengths, the mismatches between the solution tuple sizes seem to occur more

frequently. Thus the quality of the solutions obtained by the genetic algorithm worsens

as the word length increases. Considering the efficiency of the genetic algorithm on

data sets of higher word lengths, as demonstrated in the previous section, this loss of

solution quality is acceptable. For the most part, the solutions obtained by the genetic
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algorithm, when not optimal, differ in length from the optimal by utmost 3 characters.

In the graph of Figure 14, the x-axis has 19 points. As mentioned before, the

average solution tuple size over 40 independent data sets was computed for each of these

points on the x-axis. This gives a total of 19x40 or 760 runs for this graph alone.

Similarly the graph of Figure 13 represents the outcome of another 760 runs. Similar

runs were performed for two additional graphs of this type, for which the word lengths

were fixed at 8 and 12. Thus the grand total number of runs performed was 4x760 or

3040. A shell program, designed to perform this simulation, keeps track of the number

of times the genetic algorithm yielded a solution of fitness value less than 1.0. These are

the times that the genetic algorithm failed to find a solution. For this simulation set this

happened 4 times, yielding an almost perfect success rate of 3036/3040 or 99.86 %.

4.4 Biased Initialization Vs Random Initialization

Two methods of creating the initial population are implemented, namely random

initialization and biased initialization. This was discussed in section 3.1.3 of chapter 3.

The effect of using biased initialization on the performance in contrast to the random

initialization is observed.

In the graph shown in Figure 16, the x-axis represents the data sets with varying

word lengths and the y-axis represents the execution time in microseconds. The

execution time was computed as an average over 40 separate runs using the

corresponding data set on the x-axis. The word length of the data sets increase along the
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x-axis, but the number of words in all the data sets if set to 400. Figure 17, shows the

quality of the solutions obtained by these runs.

From Figure 16, we see that the performance of both the implementations, as far

as the execution time is concerned, does not differ much. Just as the gengrph curve

shown in Figures 11 and 12 , the curves in this graph exhibit the same shape and form.
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Figure 16: Comparison of performance of two initialization techniques

The increase in word length does not seem to effect the execution time, which stays

almost level.
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The real differences in the performance between these two implementations of the

genetic algorithm is seen in the next graph in Figure 17, which shows the solution tuple

sizes obtained. The x-axis is same as that of the graph in Figure 16. The y-axis

represents the size of the solution tuples. These sizes were computed as an average over

40 separate runs using the corresponding data sets on the x-axis. The solutions obtained

by the implementation that uses biased initialization seem to be better than the ones

obtained by the other implementation. This is due to the fact that the solution tuple sizes
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are smaller for the genetic algorithm that uses biased initialization even when the fitness

of the solutions for both the implementations are equal.

Consider for example the data set corresponding to the word length of 10. The

graph in Figure 17 shows that the solution obtained by the implementation that uses the

biased initialization is much better, even though, as seen in Figure 16, it takes more

execution time than the implementation that uses random initialization. Now consider

the data set corresponding to the word length of 9. From Figure 16, it is seen that the

implementation using random initialization takes more execution time than the other

implementation. However, the solution tuple size obtained by both are the same. So it

appears that even though the genetic algorithm that uses biased initialization occasionally

takes longer to find a solution, it finds a better solution. This cannot be said for the

genetic algorithm that uses random initialization.

4.5 Comparison of the two implementations of the genetic algorithm

The libGA implementation of the genetic algorithm is called tuple-app and the C

programming language implementation is called gengrph. The convergence to the

solution by both these implementations is expressed in a graph form. The graph

represents the standard deviation and average of the fitness of all the chromosomes in

each generation. The point where the standard deviation curve reaches the zero level

represents the point of convergence. At this point the average curve represents the

fitness of the solution to which the genetic algorithm converged.
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The graph in Figure 18 shows the convergence to a solution by both the

implementations. in this graph, both implementations do not use elitism. It is seen that

both the implementations seem to converge at the same rate. The graph in Figure 19

shows the same phenomenon, but both the implementations now use elitism. Although

both the implementations still converge at the same rate, a marked improvement is noted

from the graphs shown in Figure 18.
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Figure 18: Convergence when not using elitism
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Figure 19: Convergence when elitism is used

4.6. Additional graphs presented in Appendix A.

In section 4.2, it was mentioned that the performance graphs use two types of x-

axes: one in which the word length is fixed and the number of words varied, the other

in which the number of words is fixed and the word length varied. The graphs in
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Figures 8, 9, and 10 represent the first kind. A computation of the success rate of the

genetic algorithm for these 3 graphs was given in section 4.3. Appendix A shows graphs

that represent the solution quality for the performance graphs shown in Figures 11 and

12. The computation of the success rate of the genetic algorithm for these set of graphs

is also given in the appendix A. In section 4.4, a comparison of the performance of the

two initialization techniques was presented. The graph in Figure 16 compared the

execution times and the graph in Figure 17 compared the solution qualities. Appendix

A shows more graphs of these type.



CHAPTERS

S CONCLUSIONS AND FUTURE WORK

S.1 Conclusions

A genetic algorithm was implemented to solve the problem of extracting tuples

from word sets. Two implementations were realized, one using the C programming

language, and the other using the libGA application tool. The performance of these two

implementations were similar. The implementation of genetic algorithms is easier using

the libGA application tool, since only the fitness function needs to be coded. To

implement more complex genetic program, the libGA application tool does not provide

the flexibility needed to alter the data structures and provide decoders and repair

algorithms. The libGA application tool can handle implementations of only classical

genetic algorithms. The C programming implementation of the genetic algorithm used

two separate techniques of initializing the population. The first used a random

initialization that involves a random selection of points from the entire solution domain.

The second used a biased initialization that involves selection of points based on

estimated probabilities of overlap for each separate tuple size. When using the random

initialization technique the genetic algorithm converged to a solution in less time,

however the biased version seemed to converge to a better solution. The execution time

of the genetic algorithm to converge to a solution increased with the population size used.
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But using larger population sizes yielded better solutions. The performance of the

genetic search was compared to an exhaustive search.

The genetic search seemed to perform better under certain conditions and the

exhaustive search under other conditions. For smaller word lengths the exhaustive search

outperformed the genetic search. As words of larger length were considered the

performance of the genetic search improved until finally it outperformed the exhaustive

search. The solution domain increases exponentially with the word length. The genetic

search seemed to perform better for larger solution domain. This performance was not

gained without paying a price. The price paid was the length of the solution tuple. The

solution tuple lengths were larger than the optimal solution tuple lengths for larger word

lengths, but this was under tolerable limits. The gain in the performance of the genetic

algorithm outweighed the loss in the optimality of the solution tuples. For word lengths

of 20 and more the length of the solution tuple was larger than the optimal length by

utmost 3 or 4 characters. Although the exhaustive search guarantees an optimal solution,

this search is combinatorially explosive. The genetic algorithm on the other hand shows

an approximate linear increase in the search time and finds a solution with 85 % chance

of being optimal. Even when word length was fixed and the input word list was

increased, the genetic search eventually outperformed the exhaustive search.

5.2 Future Work

The population size effects the performance. Larger populations yield better
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solutions but also take longer time to converge. Choosing an appropriate population size

for this problem is an issue that can be addressed in future. Also the affect of using

different variations in the implementations of the genetic operators on the performance

can be explored. The evaluation scheme can be modified to incorporate the probabilities

that were computed in section 3.1.3.2 of Chapter 3. A suggestion would be to use these

probabilities to form a biased fitness evaluation scheme.
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APPENDIX A

The graph in Figure 20 shows the comparison of execution times required to find a
solution by the genetic search and exhaustive search. Word length varies along the x­
axis. The number of words in each data set is fixed at 800. This graph is an
addition to the graphs of figures 11 and 12, in which the size of the data sets were
fixed at 400 and 600 words respectively. The graph on the next page shows the
quality of the solutions obtained for the same data sets as depicted in Figure 20.

The graphs in figures 23 through 26 compare the performance between the two
implementations of the genetic algorithm which use random and biased initialization
respectively. Graphs in figures 23 and 25 compare the execution times and the
graphs in figures 24 and 26 compare the solution qualities.
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Numberofwords =600, Population Size =40
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Figure 22: Solutions corresponding to graph in figure 12

The graphs shown in figures 11, 12, and 20 belong to the category in which the length
of the words in the input data sets increase along the x-axis. The only difference
between these graphs is the size of the input data set. For the graph in figure 11 all the
data sets have 400 words. Similarly for the graph in figure 12 the size of input data sets
are set at 600 words, and for figure 20 the size is set at 800 words. Each of these
graphs are constructed from 24*40 independent runs, because each point on the y axis
is computed as an average over 40 runs and there alltogether 24 points. Thus the total
number of runs performed in all the three graphs is 3*24*40 = 2880. The number of
times the genetic algorithm failed to find a solution of fitness 1.00 is 57, which gives a
success rate of (2880-57)/2880 = 98.02%.
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APPENDIXB

The source code of the genetic algorithm gengrph implemented in C

Uinclude < stdlib.h >
#include < stdio.h >
Uinclude <time.h >
Uinclude < math.h >

Uinclude "const.h"
Uinclude "def.h"

Uinclude "rand.h"
Uinclude "print.h"
Uinclude "eval.h"
Uinclude "genop.h"

/*Constants used */
/*Data Structures defined*/

/*Random number generation related functions*/
/*Output functions*/
/*Functions related to fitness evaluation */
/*Functions related to genetic operations */

/****************************************************
Driver Module of the Genetic Algorithm.

Creates a new generation from an existing one. The
population continues to evolve through the generations
until a solution is found, or the population is dominated
by a single chromosome/individual.
*****************************************************/

main (argc,argv)
int argc;
char *argvD;
{
Population pop, npop; /* old and new populations */

int maxndx,
minndx,
gencnt;

/* index to the chromosome of maximum fitness*/
/* index to the chromosome of minimum fitness*/
/* Generation counter */

float

int

avg, av, stdev; /* average and standardeviation */

i, j,
lchrom, /* length of chromosome */
nofwords, /* total number of words in the input file*/
popsize, /* population size */
stop, stpndx; /* stop is used to store a boolean 1 or 0

for termination condion. */
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char letters[ORDINAL] , /* The alphabet used by the input word set */
words[MAXNUMBEROFTUPLES][MXLNGTH]; /* the list of

input words */

float scale [MAXPOP]; /*cumulative sumfitness used in selection
process*/

/* The command line syntax : consists of the file name that contains the
input data, the population size of a generation, and a boolean value for elitism
of 1 or O. If elitism is 1 then elitism is applied otherwise no elitism is
applied*/

if (argc !=4 ) {
printf ("\nFormat : %s <input file> <pop size> <elitism> \n", argv[O]);

exit (1);
}

clock (); /* Clock is reset to O. The next time clock is invoked upon termination
of the genetic algorithm to determine the amount of cpu time used to
execute the program. */

MXPOP = atoi (argv[2]);
ELIT = atoi (argv[3]);

/* This module generates the initial pool of chromosomes that the first
generation will consist of. The initial pool is created using either a random
initialization or a biased initialization. */

Initialize (pop, &popsize, scale, argv[l], &lchrom,
letters, words, &nofwords);

gencnt = 1; /* Start the generation counter */
do {

/* This module creates a new population by applying the genetic operators:
reproduction, crossover, and mutation to selected chromosomes

of the old population */

Generation (pop, npop, &popsize, lchrom, scale,
words, nofwords);
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/* The old population is replaced by the new population */
for (i=O;i <popsize;i+ +) pop[i] = npop[i];

/* Increment the generation counter to indicate the creation of the next
generation*/
gencnt++;

/* Compute relevant statistics for the new generation*/
statistics (popsize, &maxndx, &avg, &minndx, pop);

/* This module tests for the termination of the Genetic Cycle. If
the module returns with a stop value of 1 then the cycle/loop
terminates */

Terminate (pop, popsize, &stop, maxndx);

} while (!stop);

printf ("\n %s", pop[maxndx].chrom); /* The genetic program converged to this
solution */

}

flle: const.h (constants used)

31
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/*Maximum population size*/
/* Number of unique alphabets contained
by the list of words */
/* Maximum String Length of all the
words */

Udefine MAXNUMBEROFTUPLES 1001 /*Maximum number of tuples*/

Udefine MAXPOP
Udefine ORDINAL

Udefine MXLNGTH

file: def.h (Data structures used)

typedef int BOOL;
typedef char Allele;
typedef Allele Chromosome[MXLNGTH];
typedef struct {

Chromosome chrom;
float x;
float fitness;
int parentI, parent2, xsite;
int count;
} Individual;



typedef Individual Population[MAXPOP];

int nmutation, ncross, MXPOP = 0, ELIT=O;
float pcross, pmutation, sumfitness; 1* probability of crossover, mutation. *1

long RestrainLength [MXLNGTH+1]; 1* used in the fitness function to
update the smallest hashlength for each
tuple size *1

tlIe: rand.h

long seed = 1.0;

/*****************************************************
Function : Random 0
Fetch a single random number between 0.0 and 1.0
*****************************************************/
float RandomO
{
float random;

long temp_seed; 1* temp_seed is declared as long ie, 32 bit accuracy */
int aa= 16807; 1* { 7A5 } *1
long m=2147483647; /* {2 A31 -1 } *1
int q= 127773; 1* {m 1 aa}*/
int r =2836; /* {m mod a} */

temp_seed=aa*(seed % q) - r* «int)(seed/q»;
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if (temp_seed > = 0) 1* if the temp_seed is greater than
zero seed is made equal to temp_seed
otherwise m is added to temp_seed to
make it positive. *1

seed = temp_seed;
else

seed =(temp_seed + m);

random = (float)seed/m;

return(random);

1* seed is divided by m to get the
random number . To preserve the
accuracy of random the float value
is taken *1

1* returning the Random number *1



pop;
*popsize;
scaleD;
*filename;
*lchrom;
letters[];
words[] [MXLNGTH];
*nw;

}

/*****************************************************
Function: Rnd (low .. high)
Returns an integer selected uniformly and pseudorandomly
between upper and lower limits.
*****************************************************/
int Rnd (low, high)
int low, high;
{
int i;
if (low> = high)

i = low;
else

{
i = (RandomO * (high-low+1) + low);
if (i > high)

i = high;
}

return i;
}

rIle: genop.h

/*********************************************************
The Initialization Module

This function is responsible for the initialization of all
the parameters, and data structures needed for use by
other modules. Among various other initializations, the
gene pool for the first generation is initialized here.
The input data, the word list, is read from the input file.
**********************************************************/

Initialize (pop, popsize, scale, filename, lchrom, letters,
words, nw)

Population
int
float
char
int
char
char
int
{
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int i, end, nofletters, nofindivid, n, tuplesize, pndx;
char msg [MXLNGTH], ch;
float objfunc 0, sum, power 0, find_series_sum 0;
FILE *fp;

/* Initialize the probilities of application of the genetic operators*/
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pmutation = 0.001;
nmutation = 0;

pcross = 0.25;
ncross = 0;

/* Probability of mutation/mutation rate */
/* Counter to keep track of the number of
mutations performed */
/* Probability of crossover/crossover rate */
/* Counter to keep track of the number of
crossover operations performed */

/* Opening the input file that contains the list of words */
if «fp = fopen(filename, "rN» == NULL) {

printf ("\nError in opening the input file containing the words.\n lf
);

exit (1);
}

/* The data structure: RestrainLength, is used in the eval.h header file
to keep check on the size of the tuples. */

for (i = 1; i < = MXLNGTH; i++)
RestrainLength[i] = 80000L;

/* Read in the header section of the input file, which contains the
the parameters: nw (number of words ), lchrom (word length),
and the letters (the alphabet comprising the words) */

fscanf (fp, "%d %d If ,ow ,lchrom);
i = 0;
while «ch=getc(fp» != '\n') letters[i+ +] = ch;
nofletters = i;
letters[i] = '\0';

/* Read in the words from the input file*/
i = 0;
while (fscanf (fp, "%8", words[i]) != EOF) i+ +;
fclose (fp);

/* Computing the size of the complete solution domain. If the
lchrom is 5 then the population will consist of chromosomes
ranging from: 00001 to 11111, which totals to 64 -1 = 63 */

for (end=O,i=O;i< *lchrom;i+ +)
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end = (end < < 1) IOxO1;

/* if size of solution space is greater than the maximum population
size then population size is set at MXPOP, otherwise population
size is set at the size of solution domain.

Also if size of solution domain > MXPOP then the initial population
will consist of MXPOP randomly selected entries from entire solution
domain, otherwise the initial population will be the entire solution
domain. */

if (end > MXPOP){
if (INITYPE = = O){ /*Implementing Random Initialization */

*popsize = MXPOP;
for (i = O;i < *popsize; i+ +) {

convertobin (Rnd(l,end), msg, *lchrom);
strcpy (pop[i].chrom, msg);
}

}
else {
/* Implementing Biased initialization based on probability of overlap

among tuples calculated as explained in section 3.1.3.2.
From section 3.1.3.2 it was stated that the probability that two k-tuples
will not be identical is (t'-t'-")/(t'-I). The number of k-tuples that will
be introduced into the population will be biased by the weight given by

r lI_r ll-1
weight =---- =

II

E (rll-r lJ
-;

1=1

II

E (l-l/r~
k=1

So the number of k-tuples = weigth x total number of words*/
*popsize = MXPOP;
pndx = 0;
nofindivid = 0;

/* This function computes the denominator of the expression for weight
given above*/
sum = find_series_sum (nofletters, *lchrom);
for (tuplesize= 1; tuplesize < = *lchrom; tuplesize+ +) {

/* the number of tuples of size tuplesize that will be introduced into the
population is computed */

n = *popsize * «I-I/power(nofletters, tuplesize»/sum);
/* these tuples are now introduced into the population */



for (i = O;i < n; i++) {
createAtupleofsize (tuplesize, msg, *lchrom);
strcpy (pop[pndx+ + ].chrom, msg);
}

}
if (pndx < *popsize-1)

for (i =pndx;i <*popsize;i+ +) {
createAtupleofsize (*lchrom,msg,*lchrom);
strcpy (pop[i].chrom, msg);
}

}

}
else {

*popsize = end;
for (i=O;i < end;i+ +) {

convertobin (i+ 1, msg, *lchrom);
strcpy (pop[i].chrom, msg);
}

}

/* Initialize the sum total of the fitness of all the chromosomes */

for (sumfitness = 0, i = 0; i < *popsize; i + +) {
pop[i].fitness = objfunc (pop[i].chrom, *lchrom,

words, *nw);
sumfitness + = pop[i].fitness;
}

/* Initialize the cumulative sum of the fitness of all the chromosomes */

scale[O] = pop[O].fitness;
for (i = 1;i< *popsize;i+ + )

scale[i] = scale[i-1]+pop[i].fitness;
}

/*****************************************************
Generation 0
Create a new generation through select, crossover,
and mutation.
Generation size remains same when an even numbered popsize
is considered. If the popsize is odd then the resulting
new generation will contain one extra chromosome.
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******************************************************/
Generation (popold, popnew, popsize, lchrom, scale, words, nw)
Population popold, popnew;
int *popsize, lchrom;
float scaleD;
char wordsD[MXLNGTH];
int nw;
{
int j, mateI, mate2, jcross, i;
Allele Mutation 0;
float objfuncO;

j = 0;

do {
matel = Select (*popsize, sumfitness, popold, scale);
mate2 = Select (*popsize, sumfitness, popold, scale);
Crossover (popold[mateI] .chrom, popold[mate2].chrom,

popnew[j].chrom, popnew[j +1].chrom, lchrom);

popnew[j].fitness = objfunc (popnew[j].chrom, lchrom, words, nw);
popnew[j +1].fitness =

objfunc (popnew[j + I].chrom, lchrom, words, nw);

/* Replace worst child with parentI if parentI is better */
if (popnew[j].fitness < popnew[j + I).fitness) {

if (popold[mateI].fitness > popnew[j].fitness)
popnew[j] = popold[mateI];

}
else {

if (popold[mateI].fitness > popnew[j + I].fitness)
popnew[j + 1] = popold[mateI];

}

/* Replace worst child with parent2 if parent2 is better */
if (popnew[j).fitness < popnew[j + I].fitness) {

if (popold[mate2].fitness > popnewU].fitness)
popnew[j] = popold[mate2);

}
else {

if (popold[mate2] .fitness > popnew[j +1) .fitness)
popnew[j +1] = popold[mate2);

}
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j += 2;

} while (j < *popsize);

*popsize = j;

scale[O] = popnew[O].fitness;
for (i = 1;i< *popsize;i++)

scale[i] = scale[i-I]+popnew[i].fitness;

}

/*****************************************************
Function : Mutation 0
******************************************************/
Allele Mutation (alleleval)
Allele alleleval;
{
int mutate;
mutate = Flip (pmutation);
if (mutate) {

if (alleleval = '0') return ' I';
else return '0';
}

else
return (alleleval);

}

/*****************************************************
Crossover 0
Cross 2 parent strings, place in 2 child strings
*******************************************************/
Crossover (parentI, parent2, childI , child2, lchrom)
Chromosome parentI, parent2, childI , child2;
int lchrom;
{
int jcross;
int pent, ccnt=O;
char tmpstore[MXLNGTH];
Allele Mutation 0;

if (Flip (pcross» {
jcross = Rnd(l, lchrom-I);
}
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else {
jcross = lchrom;
}

for (pcnt=O;pcnt <jcross;pcnt+ +) {
childl[ccnt] = Mutation (parentl[pcnt]);
child2[ccnt] = Mutation (parent2[pcnt]);
ccnt++;
}

for (pcnt=jcross;pcnt<lchrom;pcnt++) {
child2[ccnt] = Mutation (parentl[pcnt]);
childl[ccnt] = Mutation (parent2[pcnt]);
ccnt+ +;
}

childl[ccnt] = child2[ccnt] = '\0';
}

/*****************************************************
Function : Select 0
Selects an individual from a Population biased by the fitness
of this individual. (Anologous to Selection on a Roulette Wheel
*******************************************************/
int Select (popsize, sumfitness, pop, scale)
int popsize;
float sumfitness;
Population pop;
float scaleD;
{
int i;
float Rand;

Rand = RandomO * sumfitness;

for (i=O;i <popsize;i+ +)
if (Rand < scale[i])

return i;
return -1; /* error */
}

/*****************************************************
Function : Flip (probability)
Returns result of a simulated biased coin toss
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*****************************************************/
BOOL Flip (probability)
float probability;
{
if (probability = = 1.0)

return 1;
else

return (RandomO < = probability);
}

/****************************************************
Funtion takes an integer as the input argument,
and converts it to a binary string equivalent.
****************************************************/

convertobin (n,msg,l)
char msg[];
int n,l;
{
int i;

for (i=l-l;i> =O;i--) {
if (n&l)

msg[i] = '1';
else

msg[i] - '0';
n=n> > 1;
}

}

/***************************************************
Module responsible for determining whether the
termination of the Genetic cyle should be performed
****************************************************/

Terminate (pop, popsize, terminat, maxndx)
Population pop;
int popsize, *terminat, maxndx;
{
int i, count;

*terminat = 0;

count = 0;

/* if population is dominated by a single chromosome type
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then terminate. i.e When all the chromosomes in the population
have identical fitness values, the genetic cycle is terminated*/

for (i = 0; i < popsize; i++)
if (pop[i].fitness = = pop[maxndx].fitness)

count+ +;

if (count> = popsize)
*terminat = 1;

}

/* Computes the maximum, minimum, average, and standard deviation of fitness
values of all the chromosomes in the population */

statistics (popsize, maxndx, avg, minndx, pop)
int popsize, *maxndx, *avg, *minndx;
Population pop;
{
int i;

sumfitness = pop[O].fitness;
*minndx = 0;
*maxndx = 0;

for (i = l;i < popsize; i++) {
sumfitness + = pop[i].fitness;
if (pop[i].fitness > pop[*maxndx].fitness) *maxndx = i;
if (pop[i].fitness < pop[*minndx].fitness) *minndx = i;
}

*avg = sumfitness/popsize;
}

/* Finds the length of the tuple represented by the chromosome. This carried out
by counting the number of 1's in the chromosome. This value is used to plot the
solution quality in terms of tuple length. */
findtuple_length (tuple, lchrom)
Chromosome tuple;
int lchrom;
{
int i, len = 0;
for (i = O;i < lchrom; i++)

if (tuple[i] == '1 ') len++;
return len;
}



1* Function is used to compute the probabilities mentioned in section 3.1.3.2.
These probabilities are used to implement a biased initialization of the initial
population. *1

float find_series_sum (r, n)
int r, n;
{
int i;
float sum = 0, power 0;

for (i=l;i< =n;i++) {
sum = sum + (1 - 1/power(r,i»;
}

return (sum);
}

1* Computes the value of a raised to the power of n. This function is also used in
the computation of probabilities mentioned in section 3.1.3.2*1
float power (a, n)
int a, n;
{
int i;
float prod = 1.0;

for (i = 0; i < n; i++) prod = prod * a;
return prod;
}

1******************************************************
This function creates a random tuple of size k
******************************************************1
createAtupleofsize (k, tuple, I)
int k;
char *tuple;
int I;
{
int pos[MXLNGTH], j, i, ndx, ps, len;

len = I;
for (i = 0; i < 1; i + +) {

pos[i] = 0;
tuple[i] = '0';
}
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for (i=O; i < k; i++) {
ps = Rnd (0, I-I);
while (pos[ps] == -1) {

ps++;
if (ps == len) {

ps = 0;
}

}
tuple[ps] = '1';
pos[ps] = -1;
1--·,
}

}

rde: eval.h

/*********************************************************
The FITNESS Evaluation Module

The objfunc 0 takes a chromosome as an argument and assigns it a fitness
value in the range 0.. 1. The higher the fitness value the closer the
chromosome is to the solution. For fitness value of 1, the chromosome
represents the solution.

The chromosome represents a set of tuples. The fitness value gives a measure
of the number of duplicate entries existing in the list of tuples. This
is computed as an average hashlength = nw/hashlength.

for example : if the chromosome 0101 represents the tuples : aa ab cd aa ba cd
ba ba. Then a frequency count of this list will tell us that there are
2 aa's, 1 ab, 2 cd's, and 3 ba's in the list of tuples. Then the hashlength
is computed as

(1 +2) + (1) + (1 +2) + (1 +2+3).

********************************************************************/
float objfunc (candidate, length, words, nw)
Chromosome candidate;
int length;
char wordsO[MXLNGTH];
int nw;
{
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int i, fscount=O, fs[MXLNGTH], j, overlap;
long hashlength, find_average_hashlengthO;
float fitness;
char tuples[MAXNUMBEROFTUPLES][MXLNGTH];

/* Construct the set of tuples that are represented by the chromosome
This is done by picking characters from the word list, at positions indicative
of the presence of l' s in the chromosome */

for (i = 0; i < length; i++)
if (candidate[i] == '1') {

fs [fscount+ + l = i;
if (fscount > = MXLNGTH) {

printf ("\nThe size of the tuple has exceeded the maximum limit!. It);
printf ("\nAborting process. It);
exit (1);
}

}
for (i = 0; i < nw; i++)

{
for (j = 0; j < fscount; j++)

tuples[i+ 1lU] = words[i][fsU]];
tuples[i+1lUl = '\0';
}

heap_sort (tuples, nw);

hashlength = find_average_hashlength (tuples, nw);

/* RestrainLength is used in the method of selecting
the better tuple among two tuples with the same fitness value but
different tuple size.

RestrainLength keeps track of the maximum fitness value for each
tuple length size. If there exists a smaller tuple for which the
fitness is = to the fitness of this chromosome, then this chromosome
is undesirable and hence given a very low fitness. */

if (hashlength < RestrainLength[fscountl)
RestrainLength[fscount] = hashlength;



for (i = 1; i < fscount; i++) {
if (RestrainLength[fscount] == RestrainLength[i]) {

RestrainLength[fscount] = 80000L;
fitness = 1.0/80000L;
return fitness;
}

}

fitness = (float)nw/hashlength;

return fitness;
}

/*******************************************************
Computes the hashlength of the tuples. T is list of
tuples, and n is the number of tuples in this list.

The function first identifies groups from the list, such
that each group consists of one or more identical tuples
and no two groups have any tuples in common.

Then the hashlength is computed as sum of all sumseries for
each group. sumseries for a group is the natural sum of its
size i.e. if group size is 4, then sumseries for this
group computes to 1+2+3+4.
**********************************************************/

long find_average_hashlength (T,n)
char T[][MXLNGTH];
int n;
{
int i, overlap = 1;
long sum, sumseriesO;
char comparewith[MXLNGTH];

sum = 0;
strcpy (comparewith, T[l]);
for (i = 2; i < = n; i+ +) {

if (strcmp (comparewith, T[i]) == 0)
overlap++;

else {
strcpy (comparewith, T[i]);
sum + = sumseries(overlap);
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overlap = 1;
}

}
sum + = sumseries(overlap);
return sum;
}

/******************************************************
Computes the natural sum of its argument. If argument
is 5 then this function computes the natural sum
1+2+3+4+5.
******************************************************/

long sumseries (uplimit)
int uplimit;
{
int i;
long sum;
sum = 0;
for (i = 1; i < = uplimit; i++)

sum += i;
return sum;
}

/*******************************************************
Prints the list of tuples T. n is the number of tuples
in the list
*******************************************************/

printlist (T, n)
char TO[MXLNGTH];
int n;
{
int i;
printf (n\nThe tuples: \nn);
for (i = 1; i < = n; i++) {

printf (n %s ", T[i]);
if (i%5 == 0) printf("\n");
}

}

/*******************************************************
Splits the tuples into the groups by use of sorting.
*******************************************************/

heap_sort (T, n)
char TO[MXLNGTH];
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int n;
{
int i;
char tmp[MXLNGTH];

make_heap (T, n);
for (i = n; i > = 2; i--) {

strcpy (tmp,T[I]); strcpy (T[I],T[i]); strcpy (T[i],tmp);
sift_down (T, 1, i-I);
}

}

make_heap (T, n)
char T[][MXLNGTH];
int n;
{
int i;

for (i = n/2; i > = 1; i--)
sift_down (T, i, n);

}

sift_down (T, i, n)
char TO[MXLNGTH];
int i, n;
{
int k, j;
char tmp[MXLNGTH];

k = i;
do {

j = k;
if «2*j < = n) && (strcmp(T[2*j], T[k]» 0» k = 2*j;
if «2*j < n) && (strcmp (T[2*j+l],T[k]) > 0» k = 2*j + 1;
strcpy (tmp,T[k]);
strcpy (T[k] ,TU]);
strcpy (TU],tmp);
} while (j != k);

}
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APPENDIX C

The Configuration file used by the libGA implementation of the genetic algorithm
called tuple-app.

#======================================
# (c) Copyright Arthur L. Corcoran, 1992, 1993. All rights reserved.
#
# Genetic Algorithm configuration file
#======================================
#-----------------------------------------------------------------------------
# User data file
# This information is not used by the GA, however, it is a convenient
# way to input a data file name or other information to your application.
#-----------------------------------------------------------------------------
# user data datafile

#-----------------------------------------------------------------------------
# Seed for random number generator
#
# Usage: rand_seed myj>id
# rand seed number
#
# myj>id = use system pid as random seed
# number = seed for random number generator, a positive integer
#
# DEFAULT: rand seed 1
#-----------------------------------------------------------------------------
# rand_seed myj>id
# rand seed 1

#-----------------------------------------------------------------------------
# The data type of the allele
#
# Usage: datatype [bit I int I intj>erm I real]
#
# bit = bit string
# int = integers
# intj>erm = permutation of integers
# real = real numbers
#
# DEFAULT: intj>erm
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i¥-----------------------------------------------------------------------------
datatype bit

i¥ datatype int
i¥ datatype intJ>erm
i¥ datatype real

= generate at random based on
datatype, chrom_len, & pool_size

from file = read from a file
filename = the name of the file to read from

interactive = read from stdin

i¥-----------------------------------------------------------------------------
# How to initialize the pool
#
# Usage: initpool [random I from_file filename I interactive]
#
# random
#
#
#
#
#
# DEFAULT: initpool random

#-----------------------------------------------------------------------------
# initpool random
# initpool from_file initpool.dat
# initpool interactive

#-----------------------------------------------------------------------------
i¥ Chromosome length, needed when "initpool random" selected
#
# Usage: chrom_len length
#
# length = chromosome length, a positive integer
#
# DEFAULT: chrom len 10
#-----------------------------------------------------------------------------
# chrom len 25

#-----------------------------------------------------------------------------
# Pool size, needed when "initpool random" selected
#
# Usage: pool_size size
#
# size = pool size, a positive integer
#
# DEFAULT: 100

#-----------------------------------------------------------------------------
# pool_size 200
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Iterations means the number of generations for the generational model
and the number of trials for the steady state model. Numbers must
be given as positive integers. It takes roughly pool_size/2
iterations of the steady state model to equal one iteration of
the generational model.

i¥-----------------------------------------------------------------------------
i¥ When to stop the GA
i¥
i¥ Convergence means when the variance = 0, or equivalently, when
i¥ all the fitness values in the pool are identical.
i¥
i¥
#
#
#
#
#
# Usage: stop_after convergence
# stop_after number [use_convergence I ignore_convergence]
#
# convergence - stop when the GA converges
# number - stop after specified number of iterations
# use_convergence - will stop early if GA converges (default)
# ignore_convergence - WILL NOT stop early even if GA converges
#
# DEFAULT: stop_after convergence
#-----------------------------------------------------------------------------
# stop_after convergence
# stop_after 5
# stop_after 500 use_convergence
# stop_after 500 ignore_convergence

roulette
append

1

Directives set as a side effect

selection
replacement
rp_interval

GA type

generational

#-----------------------------------------------------------------------------
# GA Type:
#
# Usage: ga [generational I steady_state]
#
# generational = generational GA
# steady_state = steady-state GA
#
# WARNING: This directive has the following side effects:
#
#
#
#
#
#
#
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rank biased
by_rank

100

selection
replacement
rp_interval

steady-state#
#
#
#
# DEFAULT: ga generational
#-----------------------------------------------------------------------------
# ga generational # most commonly used
# ga steady_state # used by Genitor

The generation gap represents a percentage of the population to copy
(clone) to the new pool at each generation. This only makes sense in
a GA with two pools as in the generational model. A gap of 0.0
is the traditional generational algorithm. As the gap increases,
it becomes more like a steady-state algorithm. A gap of 1.0
essentially disables crossover since only reproduction occurs.

#-----------------------------------------------------------------------------
# Generation gap:
#
#
#
#
#
#
#
#
# Usage: gap number
#
# number = generation gap, valid range = [0.0 .. 1.0]
#
# DEFAULT: gap 0.0
#-----------------------------------------------------------------------------
# gap 0.3

#-----------------------------------------------------------------------------
# Selection method:
#
# Usage: selection [roulette I rank_biased I uniform_random]
#
# roulette = Roulette wheel
# rank_biased = Ranked, biased selection as in Genitor
# uniform random = Pick one at random
#
# DEFAULT: selection roulette
#-----------------------------------------------------------------------------
# selection roulette # use with generational GA
# selection rank_biased # use with steady-state GA
# selection uniform_random # experimental

#-----------------------------------------------------------------------------
# Selection bias
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#
# Usage: bias number
#
# number = selection bias, valid range = [1.0 .. 2.0]
# Only used for rank_biased selection
#
# DEFAULT: bias 1.8
#-----------------------------------------------------------------------------
# bias 1.1

# use ony with integer permutations
# use ony with integer permutations
# use ony with integer permutations
# use ony with integer permutations
# use ony with integer permutations
# use ony with integer permutations
# use ony with integer permutations

= children get alternate "halves" of parents
= alleles swapped uniformly
= order based
= order based
= order based
= order based
= order based
= uniform order
= relative order
= swap two alleles

simple
uniform
order1
order2
position
cycle
pmx
uox
rox
asexual

#-----------------------------------------------------------------------------
# Crossover method:
#
# Usage: crossover [simple I uniform I orderl I order2 I position I cycle I
# pmx I uox I rox I asexual]
#
#
#
#
#
#
#
#
#
#
#
#
# DEFAULT: crossover orderl
#-----------------------------------------------------------------------------

crossover simple
# crossover uniform
# crossover order1
# crossover order2
# crossover position
# crossover cycle
# crossover pmx
# crossover uox
# crossover rox
# crossover asexual

#-----------------------------------------------------------------------------
# Crossover Rate
#
# Usage: x_rate number



#
# number = crossover rate (percentage), valid range = [0.0 .. 1.0]
# A crossover rate of 0.0 disables crossover
#
# DEFAULT: x_rate 1.0
#-----------------------------------------------------------------------------
# x rate 0.6

i¥-----------------------------------------------------------------------------
i¥ Mutation method:
i¥
# Usage: mutation [simple_invert I simple_random I swap]
#
# simple_invert = invert a bit
# simple_random = random bit value
# swap = swap two alleles
#
# DEFAULT: mutation swap
i¥-----------------------------------------------------------------------------

mutation simple_invert # use only with bits
# mutation simple_random # use only with bits
# mutation swap # use with any datatype

#-----------------------------------------------------------------------------
# Mutation Rate
#
# Usage: mu_rate number
#
# number = mutation rate (percentage), valid range = [0.0 .. 1.0]
# A mutation rate of 0.0 disables mutation
i¥
# DEFAULT: mu rate 0.0
#-----------------------------------------------------------------------------
# mu rate 0.1

#-----------------------------------------------------------------------------
i¥ Replacement method:
#
i¥ Usage: replacement [append I by_rank I first_weaker I weakest]
#
# append = append to new pool, as in generational GA
# by_rank = insert in sorted order, as in Genitor
# first_weaker = replace first weaker found in linear scan of pool
# weakest = replace weakest member of the pool

101



Elitism has two actions. For a generational GA, elitism makes two copies
of the best performer in the old pool and and places them in the new
pool, thus ensuring the most fit chromosome survives. The other action
works with both models. In this case, elitism picks the best two
chromosomes from the parents and children. Thus, if a child is not as
fit as either parent, it will not be placed in the new pool. Selecting
elitism in LibGA performs both actions.
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#
# DEFAULT: replacement append

#-----------------------------------------------------------------------------
# replacement append # use with roulette (generational GA)
# replacement by_rank # use with rank_biased (steady-state GA)
# replacement first_weaker # experimental
# replacement weakest # experimental

#-----------------------------------------------------------------------------
# Objective of GA:
#
# Usage: objective [minimize I maximize]
#
# minimize = minimize evaluation function
# maximize = maximize evaluation function
#
# DEFAULT: objective minimize
#-----------------------------------------------------------------------------
# objective minimize

objective maximize

#-----------------------------------------------------------------------------
# Elitism
#
#
#
#
#
#
#
#
#
# Usage: elitism [true I false]
#
# true = ensure best members survive until next generation
# false = no guarantee best will survive
#
# DEFAULT: elitism true

#-----------------------------------------------------------------------------
# elitism true
# elitism false

#-----------------------------------------------------------------------------
# Report type



#
# Usage: rp_type [none I minimal I short I long]
#
# none = output nothing
# minimal = output configuration and final result
# short = output minimal + statistics only
# long = output short + dump pool
#
# DEFAULT: rp_type short
#-----------------------------------------------------------------------------
# rp_type none
# rp_type minimal
# rp_type short
# rp_type long

#-----------------------------------------------------------------------------
# Report interval
#
# Usage: rp_interval number
#
# number = interval between reports, a positive integer
#
# DEFAULT: rp_interval 1
#-----------------------------------------------------------------------------
# rp_interval 10

#-----------------------------------------------------------------------------
# Output report filename
#
# Usage: rp_file file_name [file_mode]
================================~

#
# file_name = name of report file
# file_mode = optional file mode for fopenO
# a = append (DEFAULT)
# w = overwrite
#
# DEFAULT: (write to stdout)
#-----------------------------------------------------------------------------
# rp_file ga.out
# rp_file ga.out a
# rp_file ga.out w
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The source code of the libGA implementation of the genetic algorithm called
tuple-app

Uinclude "ga.h"

Uinclude "const.h"
Uinclude "eval.h"

/* code for the functions relating to the genetic
operations. (Part of the libGA application) */

/* Contains constants used by the application */
/* Fitness evaluation related functions */

int length, nw; /* length stores the length of the words
and nw stores the number of words contained
in the input data file */

char words[MAXNUMBEROFTUPLES][MXLNGTH];
/* The list of words from the input data file */

int obj_funO; /*--- Forward declaration of the fitness function ---*/

/*----------------------------------------------------------------------------
I main() : The main program runs the genetic algorithm. The name of the

input data file is ttdatafile". Two runs are performed: one using
the elitism and the other with elitism turned off.
The configuration settings for this application are in the file
called "tuple-app.cfg"

----------------------------------------------------------------------------*/
main(argc, argv)

int argc;
char *argv[];

{

/*--- Initialize the genetic algorithm ---*/
ga_info = GA_config(tttuple-app.cfg", obj_fun);

/*--- Read the input word list ---*/
read_words ("datafile");

/*--- Set chromosome length to the word length of the input word list ---*/
ga_info- >chrom_len = length;

/*--- Use elitism ---*/
ga_info- >elitist= 1;
/*--- Run the Genetic algorithm ---*/



i, fscount=O, fs[MXLNGTH], j, overlap;
hashlength, find_average_hashlength();

fitness;
tuples[MAXNUMBEROFTUPLES][MXLNGTH] ;
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/*--- Reset the genetic algorithm for the second run */
GA_reset (ga_info, Utuple-app.cfgU);
/*--- Tum elitism off ---*/
ga_info- > elitist=0;
/*--- Run the Genetic algorithm ---*/
GA_run(ga_info);

}

/*----------------------------------------------------------------------------
I obj_funO - user specified objective function
----------------------------------------------------------------------------*/
/*******************************************************************
The FITNESS Evaluation Module

The objfunc () takes a chromosome as an argument and assigns it a fitness
value in the range O.. 1. The higher the fitness value the closer the
chromosome is to the solution. For fitness value of 1, the chromosome
represents the solution.

The chromosome represents a set of tuples. The fitness value gives a measure
of the number of duplicate entries existing in the list of tuples. This
is computed as an average hashlength = nw/hashlength.

for example : if the chromosome 0101 represents the tuples : aa ab cd aa ba
cd ba ba, then a frequency count of this list will tell us that there are
2 aa's, 1 ab, 2 cd's, and 3 ba's in the list of tuples. Then the hashlength
is computed as

(1 +2) + (1) + (1 +2) + (1 +2+3).
and the fitness is evaluated as

(number of words) / hashlength

********************************************************************/
int obj_fun (chrom)
Chrom_Ptr chrom;
{
int
long
float
char



i·,
ch;

*fp;
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/* Construct the set of tuples that are represented by the chromosome
This is done by picking characters from the word list, at positions
indicative of the presence of l's in the chromosome */

for (i = 0; i < chrom- > length; i + +)
if (chrom- >gene[i] = = 1) {

fs [fscount+ +] = i;
if (fscount > = MXLNGTH) {

printf ("\nThe size of the tuple has exceeded the maximum limit!. ");
printf ("\nAborting process. If);
exit (1);
}

}
for (i = 0; i < nw; i++)

{
for (j = 0; j < fscount; j + + )

tuples[i+l]Ul = words[i][fsU]];
tuples[i+1]U] = '\0';
}

/* This function computes the frequency count of the tuples. First the tuples
are split into groups of identical tuples. And then the number of tuples
in each group gives is used to find the hashlength */

make_groups (tuples, nw);

/* compute the hashlength */
hashlength = find_average_hashlength (tuples, nw);

/* compute the fitness */
chrom- > fitness = (float)nw/hashlength;
}

/*********************************************************
The read_words 0 function

The input data, the word list, is read from the input file.
**********************************************************/

read_words (filename)
char *filename;
{
int
char
FILE



/* Opening the input file that contains the list of words */
if «fp = fopen(filename, "r"» = = NULL) {

printf ("\nError in opening the input file containing the words. \nIt);
exit (1);
}

/* Read in the header section of the input file, which contains the
the parameters: nw (number of words ), lchrom (word length),
and the letters (the alphabet comprising the words) */

fscanf (fp, "%d %d ",&nw ,&length);
i = 0;
while «ch=getc(fp» != '\n') ;
/* Read in the words from the input file*/
i = 0;
while (fscanf (fp, II %s", words[i]) != EOF) i++;
fclose (fp);
}

/*******************************************************
Computes the hashlength of the tuples. T is list of
tuples, and n is the number of tuples in this list.

The function first identifies groups from the list, such
that each group consists of one or more identical tuples
and no two groups have any tuples in common.

Then the hashlength is computed as sum of all sumseries for
each group. sumseries for a group is the natural sum of its
size i.e. if group size is 4, say, then sumseries for this
group computes to 1+ 2+3+4.
**********************************************************/

long find_average_hashlength (T,n)
char TO[MXLNGTH];
int n;
{
int i, overlap = 1;
long sum, sumseries();
char comparewith[MXLNGTH];

sum = 0;
strcpy (comparewith, T[l]);
for (i = 2; i < = n; i+ +) {
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if (strcmp (comparewith, T[i]) = = 0)
overlap++;

else {

strcpy (comparewith, T[i]);
sum + = sumseries(overlap);
overlap = 1;
}

}
sum + = sumseries(overlap);
return sum;
}

/******************************************************
Computes the natural sum of its argument. If argument
is 5 then this function computes the natural sum
1+2+3+4+5.
******************************************************/

long sumseries (uplimit)
int uplimit;
{
int i;
long sum;
sum = 0;
for (i = 1; i < = uplimit; i++)

sum += i;
return sum;
}

/* The code for the remaining functions used are same as that used in the
C language implementation: gengrph */
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