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Abstract

Modern experimental methods have made it possible for physicists to investigate matter

in extreme conditions. Two of the most extreme conditions are low temperature and low

dimensionality. Fabricated semiconductor or metal nano-ring arrays and narrow quantum

wells in semiconductor heterostructures at low temperatures provide such an extreme envi-

ronments for electrons. I will explain these systems in this dissertation.

Quantum Wells: In a closely spaced double quantum well (DQW), electrons are thought

to form an interlayer coherent state when a perpendicular magnetic field is applied such that

the total Landau level filling factor νT = 1. The low energy topological excitations of the

electron gas in these structures includes charged pseudo-spin vortices and anti-vortices. By

calculating the energy per electron and the electron densities in the Hartree-Fock approx-

imation, we show that there are new excited states with interwoven spin and pseudo-spin

and that their presence in the system can explain new experimental results. The excitations

of DQW’s (called merons) also have important effects on transport in these systems. These

objects carry charge, vorticity, and electric dipole moment. Disorder is likely to unbind

them and allow them to diffuse through the system independently. Due to their differ-

ent dipole moments, the various types of merons may then in principle be distinguished

in transport activation energies by an interlayer bias potential. We explore the dynamics

of merons using Chern-Simon theory for quantum Hall systems. We numerically estimate

their energies in various circumstances and compare them to the recent experiments.

Nano-rings: In this dissertation we also fully analyze the possible phases of a model

of singly charged one and two dimensional arrays of rings each having a diameter ∼ 100

nm. Using the Hartree approximation and Monte-Carlo simulations we demonstrate that

the electrostatic polarization of these arrays undergoes a quantum phase transition due to

quantum mechanical fluctuations. Using a complete finite size scaling analysis for a one

dimensional array we show that this phase transition is in the universality class of the

transverse field Ising model. Also we will show that an external magnetic field changes

the polarization behavior from anti-ferroelectric to ferroelectric due to the Aharanov-Bohm

effect.
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Chapter 1

Introduction

One of the most beautiful aspects of physics is the collective phenomena that arise in

condensed matter. Systems containing many atoms, molecules or electrons can show

completely different behavior than systems containing few particles. For example,

interacting manybody systems can display superfluidity and superconductivity as

well as a variety of other phase transitions. At the same time, these many particle

systems are among the hardest systems to deal with. In classical physics (at high

temperatures) it is rarely possible to solve for observables analytically and one has to

approach the problem numerically or through simulations. In quantum mechanical

systems (low temperatures) the situation becomes even harder: not only we must

deal with interactions, but particle interference plays a very important role in the

behavior of the system as well. During the past few decades physicists have devised

various techniques for dealing with such problems. Although complicated, most of

these systems can be classified by two properties that play an essential role in their

behavior: their Symmetries and Dimensionality. Using these common properties

physicists are able to analyze manybody systems in various circumstances and make

predictions about their behavior or explain the observed phenomena.

Throughout this work the role of dimensionality is crucial. By changing the di-

mensionality of a system we have actually confined the particles in that system to

a different environment than the everyday three dimensional world. This changes

the range of quantum and classical fluctuations which in turn affects the collective

phenomena in systems leading to behaviors not seen in three dimensions. In par-

ticular in quantum mechanics, the solution to the Schrödinger’s equation changes.

These changes have dramatic effects on the observables of the system depending on

the environmental conditions.
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But how can one control the dimensionality of a manybody system? Quantum

mechanics naturally provides us with an answer: The characteristic energy of fluctu-

ations of a quantum mechanical particle in a specific direction in its host structure,

like a crystal or a quantum dot, is nothing but the energy level separation between

the particle’s ground state and its excited state associated with that direction. To

reduce dimensionality we must change the host and environment so that the particle

can not access the excited level. This can be done for example, in narrow structures

like quantum rings and quantum wells. In these types of systems the energy level

separation is usually ∆E ∼ ~2/(2m∗W 2) in which W is a characteristic length of the

system (e.g. the width of the quantum well or the radius of the quantum ring) and

m∗ is an effective mass of the particle. By reducing the temperature to lower than

this energy gap so that kBT < ∆E we can prevent the particle from being excited to

higher levels thus confining one of its degrees of freedom. As long as the inter-particle

interaction is smaller than this energy gap we can assume the particles are confined.

But what about interactions? The inter-particle interaction is usually Coulombic

depending on the inverse of the inter-particle separation Ec = q2/r. The inter-

particle separation can be controlled by controlling the density, n. For example in

two dimensions r ∼ 1/
√

n. Thus by controlling the density we control the interactions

and can ensure that the system acts in a two (or one) dimensional fashion!

The main work in this dissertation is the study of charged topological excita-

tions of bilayer quantum Hall systems. With today’s advancement in semiconductor

technology physicists are able to grow almost perfect crystalline layers of semicon-

ductors. By varying the composition of these layers they produce heterostructures

(growth techniques will not be discussed in this text as it is out of the scope of the

dissertation and we refer the reader to the literature[2; 44]). Electrons in these het-

erostructures move to regions where they have lowest energy. If the bandgap of the

adjacent layers is chosen carefully, it is then possible to confine electrons in a plane

only a few atomic layers thick. Such a two dimensional electron gas is not only es-

sential to modern microelectronics, it has led to fundamental new physical systems.

For example, under a strong magnetic field (∼ 10 T) a two dimensional electron gas’s

(2DEG) response to external drives is extremely unusual[51]. The longitudinal resis-

tivity of the 2DEG is zero and the transverse conductivity is an integer multiple of

an elementary constant. The discovery of this phenomena known as the Quantized

Hall Effect by Klaus von Klitzing was awarded the 1985 physics Nobel prize. The

physics of the 2DEG became the subject of intense research after this discovery. It
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soon turned out that this system is more like a liquid than a gas. At low enough

densities the electrons are localized by the strong magnetic field and their kinetic

energy is frozen out at low enough temperatures ( ¿ 100 Kelvin). This liquid can

become dissipationless and incompressible.

By varying the magnetic field and lowering the temperature, even more surprising

results were discovered. For example the system can, at certain field strengths, appear

perfectly metallic, as if no magnetic field were applied. At other field strengths still

more quantized levels were observed[51]. These highly non-linear results were later

explained by works of Robert B. Laughlin who along with Horst L. Störmer and

Daniel Tsui won Nobel prize for physics in 1998.

Rich new phases were discovered later when such quantum wells were grown close

together. In a typical double quantum well structure, two GaAs quantum wells are

separated by an AlAs barrier layer. The tunneling conductance between the two

layers can then be studied. The results of these studies strongly indicated that the

two electron gasses have become coherent and selected a new type of ground state[49].

This is now a well established description of the ground state of this system[27]. In

this state they behave as though they are together in a single layer. One is able

to change the tunneling strength between these two layers or change the separation

between them and study various responses of the system.

The most prominent property of a double well system is the existence of a new

degree of freedom for electrons. In a quantum mechanical picture each electron can be

in one layer or in a superposition of layer states. This degree of freedom is isomorphic

to spin. The spin of an electron can either be up or down or be in a superposition of

up and down so that it is pointing in a perpendicular direction. This new degree of

freedom, called pseudo-spin changes the spectrum of the excitations of the electron

gas in a bilayer system. However the nature of the excitations will still remain similar

to the spin excitations in single layers. A valid interpretation of the data from different

responses of the bilayer system is still not well known.

In this dissertation we will focus on nuclear magnetic relaxation time (NMR) and

activation energy measurement data. We will show that new types of excitations

exist in bilayer systems that include both spin and pseudo-spin. Some of these exci-

tations that are very important in explaining experimental results are topological. A

topological excitation is a particular kind of smoothly varying spatial (or sometimes

temporal) distribution in charge or spin density of electrons. This distribution can

not be deformed to a uniform distribution by a continuous set of transformations.

3



It will turn out that these excitations can be responsible for the unexpected NMR

results. We will also show how the topological pseudo-spin excitations of bilayer sys-

tem can dissipate energy in these systems and that the dissipation is activated, with

activation energy behavior consistent with experiments.

In the second chapter we will review physics of an electron gas in a two dimensional

quantum well under a strong magnetic field. We will explain how the integer quantum

Hall effect arises. However our emphasis will be on topological spin excitations, their

dynamics and the measurements by which we can detect them. This chapter is a

review of the works done in late 80’s and early 90’s to explain the integer quantum

Hall effect. For more detailed review we refer the reader to the literature[18; 22]. In

the third chapter we will review the physics of the coherent state of the electrons in

double quantum wells and try to explain how the same kind of excitations exists in

bilayer systems but this time of pseudo-spin nature. In this chapter the fundamental

theory was developed following references[24; 27]. In this chapter we will also explain

the microscopic Hartree-Fock approximation used to calculate the densities of the

bilayer system. The numerical results and all the plots presented are the works of

the author. We will then extend the theory presented in this chapter to include

the spin of electrons and explain the microscopic Hartree-Fock calculations with spin

and pseudo-spin and present our numerical results. In the fourth chapter we will

introduce two different theoretical approaches mainly to explain the results of an

activation energy measurement performed on double quantum wells[56].

In the fifth chapter we will introduce our model of interacting quantum ring ar-

rays. In this model, the Coulomb interaction between electrons confined in each ring

can induce a phase transition in the electrostatic polarization of the system. The po-

larization suddenly changes from zero to a finite value in this system as one changes

the inter-ring separation. The geometry in which the electrons are confined and the

Coulomb interaction are crucial for occurrence of this transition. In a true second

order phase transition the observables of the system diverge in the thermodynamic

limit when the system size diverges[1]. The first signal for this behavior is the increase

of the value of an observable of the system as the size of the system increases. This

signal is observed in Monte Carlo simulations as we will see in this chapter. We will

explain the approximate analytic calculations of the polarization in this system. Then

we will present our more precise numerical results that demonstrates novel quantum

phase transitions in their electrostatic polarization. These numerical results include

Hartree iterative calculation and Monte-Carlo simulation.
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Finally in chapter six I will summarize my new results and discuss possible future

directions of this research.
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Chapter 2

Two Dimensional Electron Gas Under Strong

Magnetic Field

In this section I will first discuss the physics of the integer quantum Hall effect.

I will then present a detailed discussion of the ferromagnetism and topological spin

excitations at a specific range of densities called filling factor ν = 1 following references

[22; 27]. At the end following references [22; 48] I will discuss two very important

characteristics of these spin excitations that can be detected in experiments.

2.1 Overview of Integer Quantum Hall Effect

Transport in a two dimensional electron gas under strong magnetic field displays a

completely different behavior than many other two dimensional systems at low tem-

peratures. The basic experimental observation is that at sufficiently low temperatures

and high magnetic fields the system becomes dissipationless in the longitudinal di-

rection(Fig. 2.1):

ρxx → 0 (2.1)

and the conductance in the transverse direction, called the Hall conductance, becomes

quantized:

σxy = ν
e2

h
(2.2)

in which ν is a constant integer called the filling factor and will be defined later. This

ratio depends on the density and magnetic field strength. Surprisingly this behavior

is material and geometry independent. This kind of transport does not happen at

higher temperatures (higher than few Kelvins depending on the host semiconductor).

How are electrons confined in two dimensions? There has been tremendous effort

during past few decades to fabricate layered semiconductor structures to host two
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Figure 2.1: Integer and fractional quantum Hall effect: Hall(transverse) and longi-

tudinal resistance v.s. magnetic field. The numbers indicate the filling factor of the

Landau levels. After ref.[51]

dimensional electron gases. Progress in Molecular Beam Epitaxy (MBE) has allowed

for the possibility of growing epitaxial crystal structures that have high enough mo-

bility to show the quantum Hall effect.[18] Von Klitzing and collaborators did their

experiments on a silicon metal-oxide-semiconductor field effect transistor (MOSFET)

whereas Tsui, Stormer and Gossard did their experiment on a two dimensional elec-

tron gas (2DEG) formed at the interface of a GaAs/AlGaAs heterojunction for which

the mobility is much higher. GaAs/AlGaAs heterojunctions have since become the

standard system on which quantum Hall effect experiments are performed.

In GaAs the band gap is 1.5 eV and AlxGa1−xAs has a larger gap that de-

pends on the concentration, x, of aluminum. In a modulation-doped heterojunction

AlxGa1−xAs is n-doped with silicon away from the interface to minimize the disor-

der potential caused by the donor ions. Because of the band mismatch electrons

move from the AlxGa1−xAs to the GaAs. Once in the GaAs, the electrons feel the

Coulomb attraction due to the positive ions left behind and as a consequence the

bands are bent near the interface as shown in Fig.2.2. Once equilibrium is reached

the electrons at the interface will occupy the narrow quantum well created by the

bent bands. Here they are free to move in the directions parallel to the junction but

see a random potential that has contributions from the remote ionized donors and

imperfections in the interface. If the subband spacing due to the confinement in the

direction perpendicular to the interface is much bigger than all relevant energy scales
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Figure 2.2: Schematic profile of band structure at the junction of GaAs-AlGaAs.

then the electron gas in the quantum well is, for all practical purposes, a 2DEG. In

simple words, electrons in these narrow structures move to the layer with the lowest

energy band gap. This way electrons are trapped in the lowest level of the quantum

well and at low enough temperatures their third spatial degree of freedom is frozen,

so that they are effectively living in two dimensions.

Since the presented work here is not an experimental research we will not go into

the experimental details of fabrication of these structures. The density of trapped

electrons in the GaAs host can be controlled by dopants like Si or Ge. The densities

of these gases are typically on the order of 1010 cm−2 . Today samples are of very high

quality with very low disorder, with mobilities up to 600000 cm2/Vs. These samples

are cooled in dilution refrigerators usually down to around 30 mK .

We will first review the two dimensional transport of a non-interacting electron

gas in the classical regime. When a current flows into a thin conducting material

under a perpendicular magnetic field (Fig.2.3) a voltage drop develops perpendicular

to the direction of current flow due to the Lorentz force.

Consider a 2DEG, in the absence of any disorder. The electron gas is transla-

tionally invariant, and as a result we can make a Gallilean transformation to a frame

moving with velocity −v relative to the lab frame. In this frame the electron moves

at a velocity +v and carries a current density:

J = −nev (2.3)
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Figure 2.3: Schematic picture of a Hall bar experiment. The magnetic field is per-

pendicular to the plane and the contacts are made to edges of the bar.

where n is the density of electrons. In the lab frame the electric field is zero, E = 0

and magnetic field B = Bẑ. In the moving frame to lowest order in v/c :

E =
−1

c
v ×B

B = Bẑ. (2.4)

The transformation above is nothing but the Lorentz force. We can then write the

electric field in eq.(4.30) as:

E =
B

nec
J×B (2.5)

The resistivity tensor is defined as:

Eµ = ρµνJ
ν (2.6)

so we can identify the resistivity tensor for a disorder-free classical 2DEG as:

ρ =
nec

B

(
0 −1

+1 0

)
(2.7)

The conductivity tensor is then:

σ = ρ−1 =
B

nec

(
0 +1

−1 0

)
(2.8)

Note that the above argument was purely based on Lorentz covariance so that the

same argument can be made for a quantum system. As we can see in two dimensional

translationally invariant systems no matter what kind the charge carrier is (since only

the density entered here) and whether it is classic or quantum there is no quantization

of the Hall effect and no dissipationless behavior. This result clearly shows that

the quantum Hall effect as seen in the transport data (Fig.2.1) does not occur in
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translationally invariant systems! and some level of disorder is needed to destroy this

invariance.

To analyze the quantum dynamics of 2DEG under strong magnetic field we have

to first choose a gauge. Because the experimental set up is a Hall bar (fig. 2.3) it is

more convenient to use the Landau gauge:

A = xBŷ (2.9)

which obeys ∇×A = Bẑ. The Hamiltonian of an electron in two dimensions is then:

H =
1

2m

[
p2

x +
(
py +

eB

c
x
)2]

. (2.10)

Because of the translational invariance in the y direction we can write the eigenfunc-

tion of the above Hamiltonian as:

ψk(x, y) = eikyfk(x) (2.11)

in which fk is eigenfunction of the Hamiltonian:

hk =
1

2m
p2

x +
(
~k +

eB

c
x
)2

=
1

2m
p2

x +
1

2
mω2

c (x + k`2)2. (2.12)

which is the Hamiltonian of a one dimensional oscillator with frequency ωc = eB/mc,

(called the cyclotron frequency) and central position Xk = −k`2. The parameter

` =
√

~c
eB

is called the magnetic length, and is the characteristic length for variation

of the electron’s wave function in the x-direction. The energy spectrum of the electron

then will be:

Enk = (n +
1

2
)~ωc. (2.13)

Each of these levels n = 0, 1, 2, ... is called a Landau level. As we can see, the

energy levels are independent of quantum number k and consequently each Landau

level is degenerate. Assuming periodic boundary conditions in the y direction in a

rectangular sample with dimensions Lx and Ly, the momentum quantum number k

will be quantized as kn = 2πn`2/Ly. On the other hand each kn is associated with

the center of the wave function at Xn = −kn`2. This center can be anywhere on the

x axis. The degeneracy, N of a Landau level will then be:

N∆X = N
2π`2

Ly

= Lx ⇒ N =
LxLy

2π`2
= NΦ (2.14)
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in which NΦ = BLxLy/Φ0 and Φ0 = hc/e is the flux quantum. The eigenfunction of

the Hamiltonian for the n-th Landau level is then

ψnX(r) =
1√
Ly

eiXy/`2Hn(x + X)e−(x+X)2/(2`2), (2.15)

where the guiding center parameter is X = −k`2 and Hn is the n-th Hermite poly-

nomial.

Consider the case where electrons fully occupy an integer number of Landau levels

at the ground state. We introduce the filling factor:

ν = N/NΦ (2.16)

in which N is the total number of electrons and NΦ is the order of Landau level

degeneracy. In this case the filling factor ν is an integer number. When the perpen-

dicular magnetic field is strong enough to make the degeneracy of the Landau levels

macroscopic and their spacing ~ωc high enough so that their mixing due to disorder

or interaction can be seen as small perturbation, we are in the quantum Hall regime.

2.1.1 Integer Quantum Hall Edge States

Now we consider the problem of electrons in a Hall bar of finite width. Assuming

translational invariance in the y direction, the wavefunction of the states inside this

region still look like ψ(x, y) = 1
Ly

eikyfk(x) but the function fk(x) is the eigenfunction

of the Hamiltonian:

hk =
p2

x

2m
+

1

2
mω2

c (x + Xk)
2 + V (x) (2.17)

in which V (x) is the disorder potential confining the bulk extended states. Assum-

ing this confining potential is smooth enough (i.e. it varies on scales longer than a

magnetic length `) the peak of this wavefunction is still near the point Xk = −k`2.

The eigenvalues εk will no longer be exactly linear in k but will still reflect the kinetic

energy of the cyclotron motion plus the local potential energy V (Xk). We then see

that the group velocity:

vk =
1

~
∂εk

∂k
ŷ (2.18)

has opposite signs on the two edges. This means in the ground state there are edge

currents of opposite signs flowing in the sample. The semi-classical interpretations of

these currents is that they represent skipping orbits in which the circular cyclotron

motion is interrupted by collisions with the walls at the edges.
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Figure 2.4: Illustration of a smooth confining potential varying in the x direction.

The horizontal dashed line indicates the equilibrium Fermi level. Electrons head into

the page on the left edge state and out of the page on the right. The magnetic field

is perpendicular to the lines.

Using an argument quite analogous to the Landauer picture of transport in narrow

wires [15; 16] we can calculate the Hall conductance in this Hall bar (Fig. 2.3). The

skipping orbits only travel in one direction to the left on the upper edge and to the

right on the lower edge. If the Fermi energy is the same on the two edges these currents

cancel out. To get a net current we need a difference in the chemical potential of the

two edges. The Hall voltage drop is basically this electrochemical potential difference

between the two edges. We will show later on that there are gapless excitations only

at the edges of the Hall bar (Fig. 2.4) and that means we can ignore any changes in

the electrostatic potential in the bulk and take the electrochemical potential difference

between the two edges in the form of a chemical potential difference. To calculate

the Hall current we have to add up the group velocities of the occupied states:

I = − e

Ly

∫ +∞

−∞
dk

Ly

2π

1

~
∂εk

∂k
nk (2.19)

in which we have assumed at the moment that only a single Landau level has been

occupied and nk is the probability of the state k of the Landau level being occupied.

At zero temperature we will have then:

I = − e

h

∫ µL

µR

dε = − e

h
[µL − µR] (2.20)

By definition the Hall voltage drop is:

+eVH = +e[VR − VL] = µR − µL. (2.21)

Hence:

I = −ν
e2

h
VH (2.22)

where we have considered the possibility that ν different Landau levels are occupied in

the bulk which means there are ν separate edge channels contributing to the current.

So the final result is:

σxy = −ν
e2

h
. (2.23)
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For a single channel in a one dimensional wire in the Landauer picture a disordered

region will reduce the conductivity to:

I =
e2

h
|T |2, (2.24)

where |T |2 is the probability for an electron to be transmitted through the disordered

region. The reduction in transmitted current is due to backscattering. However in our

quantum Hall problem in the Hall bar scattering into the backward moving states

is impossible because all the electrons in the channels of one edge move in the same

direction. This property is called chirality. As long as the disorder in the bulk

is smooth enough to preclude any charge transfer from one edge to the other the

backscattering does not occur in the edge states and therefore the edge currents are

dissipationless. Disorder might scatter an electron at one edge from one channel to

the other but still it will not reduce the current as long as they are moving in one

direction. This is why the chirality of the edge keeps the Hall conductance quantized

independent of disorder.

Disorder will broaden the Landau levels in the bulk and provides a reservoir of (lo-

calized) states which will allow the chemical potential to vary smoothly with density.

These localized states will not contribute to the transport and so the Hall conduc-

tance will be quantized over a plateau of finite width in density. However if all the

states in the bulk were localized then it would not be possible to have a transition

from one plateau to the other. This transition can be explained qualitatively using a

semiclassical percolation picture.

2.1.2 Percolation

Remote dopants like Si ions in donor layers along with other impurities make up

a spatially random but smoothly varying potential landscape. Because the kinetic

energy is quantized, the electron in a Landau level can not continuously increase its

kinetic energy, so energy conservation restricts its motion to regions of constant po-

tential. This argument means that the electronic wave functions in our landscape

potential will be localized on equipotential lines. At very low densities in the ground

state the electrons are living in deep valleys while at very high densities the elec-

trons are localized on mountain tops (Fig.2.5). From very low densities by increasing

density the valleys fill up gradually until when they can percolate and make up new

wider regions. This process continuous until a percolation transition reaches across

the system and electrons can travel from one end to the other, which means the Fermi
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Figure 2.5: Contour map of a smooth disorder landscape. close lines indicate valleys.

The yellow filled areas are the increasing sea level whole shore lines finally percolate

from one end of the system to the other end.

surface is now in a region extended states. This percolation transition corresponds

to the transition between quantized Hall plateaus (fig. 2.1). To see why note that

below the percolation point the electrons are localized in the valleys so the system is

insulating but above the percolation point the electrons have occupied some extended

states and they can carry a quantized Hall current. Another way to see this is that

above the transition the confining potential will make a shoreline along the edge of the

system and the edge states will carry current from one edge of the system to the other.

2.2 Quantum Hall Ferromagnets

For a 2DEG one might imagine that electrons in the quantum Hall regime have their

spin dynamics frozen out by the Zeeman splitting gµBB. In free space with g = 2 the

Zeeman splitting is exactly equal to the cyclotron splitting ~ωc ∼ 100K as illustrated

in Fig.2.6(a). Thus at low temperatures we would expect for filling factors ν ≤ 1 all

the spins would be fully aligned. It turns out that this naive expectation is incorrect

in GaAs for two reasons. First, the small effective mass (m∗=0.08) in the conduction

14



Figure 2.6: Schematic diagram of Landau level splitting due to Zeeman coupling in

(a) vacuum (b) in GaAs host.

band of GaAs increases the cyclotron energy by a factor of m/m∗ ∼14. Second,

spin-orbit scattering effects reduces the effective coupling to the external magnetic

field by a factor of -5 making the g factor -0.4. The Zeeman energy is thus some 70

times smaller than the cyclotron energy and typically has a value of about 2 Kelvin

as indicated in Fig.2.6(b).

This decoupling of the scales of the orbital and spin energies means that it is

possible to be in a regime in which the orbital motion is fully quantized (kBT ¿
~ωc) but the low-energy spin fluctuations are not completely frozen out (kBT ∼
g∗µBB). The spin dynamics in this regime are unusual and interesting because the

system is an itinerant magnet with a quantized Hall coefficient. As we shall see, this

leads to some quite novel physical effects. The introduction of the spin degree of

freedom means that we are dealing with the QHE in multicomponent systems. This

subject has a long history going back to an early paper by Halperin [17] and has been

reviewed extensively [19; 18]. In addition to the spin degree of freedom there has

been considerable recent interest in other multicomponent systems in which spin is

replaced by a pseudospin representing the layer index in double well QHE systems

which will be the subject of next chapters in this dissertation. Experiments on these

systems are discussed by Shayegan and J. Eisenstein in [18]. Our discussion will focus

primarily on ferromagnetism near and at filling factor ν = 1.

2.2.1 Coulomb Exchange

In the description of the integer quantum Hall effect in the previous sections the

Coulomb interaction was ignored because disorder plays a much more important
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role and the Coulomb force does not have any effect on the integer Hall plateaus

as a perturbation. However in analyzing the spin fluctuations of this system the

Coulomb interaction becomes important[20]. For the ν = 1 system in its ground

state one can imagine that all the electrons are in the majority(up) spin subband

of the lowest Landau level and so the system is spin polarized. However it is the

Coulomb exchange force that prevents the fluctuations from destroying this order. In

other words, magnetism in a quantum Hall ferromagnet does not happen because of

direct magnetic forces, but rather because of a combination of electrostatic forces and

the Pauli principle.

In a fully ferromagnetic state all the spins are parallel and hence the spin part of

the wave function is exchange symmetric:

|ψ〉 = Φ(z1, ..., zN)| ↑↑↑↑ ... ↑〉. (2.25)

The spatial part Φ of the wave function must therefore be fully antisymmetric and

vanish when any two particles approach each other. This means that each particle is

surrounded by an exchange hole which thus lowers the Coulomb energy per particle.

For filling factor ν = 1 this Coulomb exchange energy is:

〈Vex〉
N

= −
√

π

8

e2

ε`
∼ 200K (2.26)

This energy scale is two orders of magnitude larger than the Zeeman splitting and

hence strongly stabilizes the ferromagnetic state. Indeed at ν = 1 the ground state is

spontaneously fully polarized at zero temperature even in the absence of the Zeeman

term. Ordinary ferromagnets like iron are generally only partially polarized because

of the extra kinetic energy cost of raising the fermi level for the majority carriers.

Here however the kinetic energy has been quenched by the magnetic field and all

states in the lowest Landau level are degenerate. For ν = 1 the large gap to the next

Landau level means that we know the spatial wave function Φ essentially exactly. It is

simply the single Slater determinant, representing the fully filled Landau level. This

simple circumstance makes this perhaps the world’s best understood ferromagnet.

2.2.2 Charge-Spin Entanglement

As was mentioned in the previous chapter the exchange energy prevents the spin

fluctuations of electrons at ν = 1 from destroying the ferromagnetic order. This high

exchange energy cost then must be included when one adds an electron to this system.
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Figure 2.7: Illustration of magnetic translation and phase factor. When an elec-

tron travels around a parallelogram (generated by τqτkτ−qτ−k) perpendicular to the

magnetic field it picks up a phase φ = 2πφ/φ0 = q × k.

The extra electron has no choice but to be in the minority (down) spin level. In an

ordinary (B=0) 2D electron system just like 3D systems the charged excitations are

quasi-electrons according to Landau Fermi liquid theory[74], and the ground state is

not spin polarized. The spin excitations are single spin flips or spin waves. However

in quantum Hall ferromagnets the lowest Landau level dynamics of electrons changes

this scenario.

In order to understand how spin dynamics effects the orbital motion in the lowest

Landau level we start with understanding the dynamics of electrons confined in the

lowest Landau level at ν = 1 [21]. For this purpose we introduce a new gauge to

represent the vector potential, called the symmetric gauge: A = B(−y, x, 0). In

this gauge electrons are two dimensional symmetric oscillators with their frequency

equal to the cyclotron frequency. Using the symmetric gauge the eigenfunction of

the kinetic energy and angular momentum of a non-interacting electron in the lowest

Landau level is:

φm(z) =
1

(2π2mm!)1/2
zm exp

(
− |z|2

4

)
(2.27)

in which m is the angular momentum quantum number and z = (x+ iy)/`. Any wave

function of an electron in the lowest Landau level (LLL) is then a linear superposition
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of powers of z multiplied by an exponential weight. This is nothing but the space of

all analytic functions:

ψ(z) = f(z) exp
(
− |z|2

4

)
(2.28)

in which f is an analytic function of z. We define an inner product in this space

between two analytic function as

(f, g) =

∫
dµ(z)f ∗(z)g(z) (2.29)

where

dµ(z) = (2π)−1dxdye−|z|
2/2. (2.30)

We can define bosonic ladder operators that connect φm to φm±1 (which acts on the

polynomial part of φm only):

a† =
z√
2

(2.31)

a =
√

2
∂

∂z
(2.32)

so that

a†φm =
√

m + 1φm+1

aφm =
√

mφm−1

(f, a†g) = (af, g)

(f, ag) = (a†f, g) (2.33)

All operators that have nonzero matrix elements only within the lowest Landau level

(LLL) can be expressed in terms of a and a†. It is essential to notice that the adjoint

of a† is not z∗/
√

2 but a =
√

2 ∂
∂z

, because z∗ connects states in the LLL to higher

Landau levels. Actually a is the projection of z∗/
√

2 onto the LLL as seen clearly in

the following expression:

(f,
z∗√
2
g) = (

z√
2
f, g) = (g†f, g) = (f, ag). (2.34)

So we find:

z∗ = 2
∂

∂z
(2.35)

in which the overbar indicates projection onto the LLL. Since z∗ and z do not com-

mute, in order to project any function of z and z∗ we have to first normal order z∗’s

to the left of z’s and then replace them with their corresponding LLL operators.
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Now we are equipped to understand the dynamics in the LLL. Let’s find out how

the density is written in the LLL. The Fourier transform of the density operator

ρ(r) =
∑

i δ
2(r− ri) is:

ρq =
1√
A

e−iq·r =
1√
A

e−
i
2
qz∗e−

i
2
q∗z (2.36)

where A is the area of the system and q = qx + iqy. Hence:

ρq =
1√
A

e−iq ∂
∂z e−

i
2
q∗z =

1√
A

e−
|q|2
4 τq (2.37)

where

τq = e−iq ∂
∂z
− i

2
q∗z (2.38)

is a unitary operator satisfying the closed Lie algebra

τqτk = τq+k sin
(q× k

2

)
(2.39)

[τq, τk] = 2iτq+k sin
(q× k

2

)
(2.40)

where q × k = `2(qxky − qykx) is scalar. We also have τqτkτ−qτkτ−k = eiq×k. These

relations are familiar features of the group of translations in a magnetic field, because

q×k is exactly the phase generated by the flux in the parallelogram generated by q`2

and k`2. Hence the τ ’s form a representation of a magnetic translation group (fig.2.7).

In fact τq translates the particle a distance `2ẑ × q. This means that different wave-

vector components of the charge density do not commute ! It is from here that the

nontrivial dynamics arises even though the kinetic energy is totally quenched in the

LLL subspace.

We can generalize this formalism for many electron systems

ρq =
1√
A

N∑
i=1

e−iq·ri =
1√
A

N∑
i=1

e−q2/4τq(i) (2.41)

Sµ
q =

1√
A

N∑
i=1

e−iq·riSµ
i =

1√
A

N∑
i=1

e−q2/4τq(i)S
µ
i (2.42)

Where ρ and S are Fourier transforms of total density and spin of the electrons

respectively. From the above we immediately see that

[ρq, S
µ
q ] 6= 0 (2.43)

which means spin dynamics is entangled to the charge dynamics in the LLL. This is

the origin of the fact that spin excitations in the quantum Hall ferromagnet change

the charge density, which we will discuss more in the next sections.
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2.2.3 The Effective Action

For a smooth spin distribution it is very useful to construct an effective action for the

electron-electron interaction in the lowest Landau level. The technique of projection

to lowest Landau level in the section 2.2.2 can be used here as a tool to derive the

action directly from the microscopic Hamiltonian. Following previous works [27], the

projection of the Hamiltonian in the LLL looks like

V =
1

2

∑
q

Vq(ρqρ−q −Ne
−q2`2

2 ) (2.44)

in which Vq =
∫

d2rV (r)e−ik·r. The ground state wave function of the ν = 1 quantum

Hall ferromagnet is represented as follows:

Ψ = ΨV | ↑↑↑↑↑↑ · · · ↑〉 (2.45)

in which ΨV is a Vandermonde determinant wave function believed [26] to be the

exact orbital ground state wave function of the ν = 1 electron system

ΨV = Πi<j(zi − zj)Πk exp(−|zk|2/4`2) (2.46)

in which z = x + iy is the coordinate of an electron. One can create any spin

distribution m(r) using the rotation operator

O =
N∑

j=1

Ω(rj) · Sj =
∑

q

e
q2`2

4 Ωµ
qS

µ
−q (2.47)

where Ω(r) = ẑ×m(r) is the angle over which the spin is rotated. The rotated state

then is as follows

|ψ[m(r)]〉 = e−iO|ψ0〉 (2.48)

The change in expectation value of the energy of the rotated state will then be

δE = 〈ψ0e
iO[V , e−iO|ψ0〉

= −i〈ψ0|[V ,O]|ψ0〉 − 1

2
〈ψ0|[O, [O, V ]|ψ0〉+ · · · (2.49)

in which we can keep the first few terms of the expansion if we assume that the spin

rotates smoothly in space on a scale longer than a magnetic length (in other words

Ωq is negligible when q` > 1). Since Ωz = 0, the first term of the expansion is zero

(because the ground state is fully polarized in z-direction) so we will have

δE = −1

2
〈ψ0|[O, [O, V ]|ψ0〉

= −1

4

∑

k

Vk〈ψ0|[O, [O, ρkρ−k]|ψ0〉. (2.50)
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The commutator in the above equation can be evaluated using

[ρk,O] =
1√
A

e−
k2

4

∑
j

[τk(j),
∑

q

Ωµ
qS

µ

−q]

=
2i

A

∑
j,q

e−
k2

4 Ωµ
qS

µ
j τk−q(j) sin

(q× k

2

)
. (2.51)

which can be used to calculate the energy as follows

δE = − N

2A2

∑

k

Vk

∑
q

(Ωx
qΩ

x
−q + Ωy

qΩ
y
−q)

1

4
(q× k)2h(k)

=
ρ0

s

2

∑
q

[(iq)Ωx
q(−iq)Ω−q + (iq)Ωy

q(−iq)Ωy
−q]

=
ρ0

s

2

∫
d2r[(∇Ωx)2 + (∇Ωy)2] =

ρ0
s

2

∫
d2r(∇m)2. (2.52)

in the above the spin stiffness ρ0
s is implicitly defined as

ρ0
s = − ν

32π2

∫
dkk3Vkh(k) (2.53)

and h(k) = − exp(−k2/2) is the pair correlation function. The physical origin of the

stiffness is the loss of exchange and correlation energy when the spin orientation varies

with position. For the Coulomb interaction, ρ0
s = e2/(16

√
2πε`) ∼ (e2/ε`)2.49× 10−2

at ν = 1.

The above calculation of spin stiffness is from a first-principle calculation which

agrees with other types of numerical calculations [27]. The classical model defined by

the Eq.(2.52) is called the O(3) non-linear sigma model and has been studied in great

detail[25]. It is important to note that the quantum fluctuations will only correct the

higher gradient terms. It turns out [27] that the next non-zero correction is of the

fourth order and after a lengthy calculation [27] it has been shown that

δE(4) ∼ 1

2

∫
d2rd2r′V (|r− r′|)δρ(r)δρ(r′) (2.54)

in which δρ = (ν/8π)εµν(∂µm × ∂νm) ·m is the Pontryangin index of the spin field

[25]. We should emphasize that according to ref.[27] the above result is only true in

long length scales where the Coulomb interaction is small.

From the above we conclude that the static part of the effective action for the

ν = 1 quantum Hall ferromagnet is

Lstatic =
ρ0

s

2

∫
d2r(∇m)2 +

1

2

∫
d2rd2r′V (|r− r′|)δρ(r)δρ(r′) (2.55)
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To find the dynamical part we write down the equation of motion for the spin. The

Fourier transform of the spin polarization density with the appropriate weight factor

is

dmµ
q

dt
=

4π

ν
e

q2

4 〈dSµ
q

dt
〉 = −4πi

~ν
〈ψ̃|[e q2

4 Sµ
q , V ]|ψ̃〉

' −4π

~ν
〈ψ0|[O, [O, V ]]|ψ0〉

=
4π

~ν
δ

δΩµ
−q

E[m]. (2.56)

in which we have used the equation 2.50 in the last line and used the approximate

series expansion for the exponential. Up to first order in m the above equation would

be
dmq

dt
=

4πρ0
sq

2

~ν
ẑ ×mq. (2.57)

The above equation can be derived from a Lagrangian like

Ldynamical =
ν

4π

∫
d2rA[m] · ∂tm (2.58)

in which

∇m ×A = m (2.59)

This dynamical term is exactly the Berry phase for the spin [14]. So from the whole

discussion in this chapter the effective Lagrangian for the quantum Hall ferromagnet

is as follows

L =
ν

4π

∫
d2rA[m] · ∂tm− ρ0

s

2

∫
d2r(∇m)2 +

− 1

2

∫
d2rd2r′V (|r− r′|)δρ(r)δρ(r′)−∆z

∫
d2r mz(r). (2.60)

in which the last term is the Zeeman coupling.

2.2.4 Topological Spin Excitations

There are various types of low lying excitations in the quantum Hall ferromagnet in-

cluding collective mode charge density excitations just like in superfluid 4He. However

unlike in 4He this magnetophonon is gapped[22] as observed in Raman scattering[23].

Another kind of excitation is spin waves which are also gapped with a minimum

energy gap equal to the Zeeman energy[22]. These excitations are neutral and do

not take part in transport. The main focus of this section is however the charged

excitations which will affect the transport experiments.
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Figure 2.8: The spin of electrons in a skyrmion gradually rotate from the minority

direction at the center to the majority direction at the boundaries. Unlike a U(1)

vortex, a skyrmion does not have any singularity at the center. Figure taken from

[22]

.

The lowest lying charged excitations of the QHF turns out to have an exotic

nature. The main features of these excitations are

• They are of a spin nature and can be expressed solely in terms of the electron

spin field.

• They are topological, which means they carry topological number, and they are

stable against normal perturbations.

• They are not localized but spread over a finite area.

We will explain all of these below. Before we start going into details about these

features we should realize a very important connection in two dimensional quantum

Hall systems[22]:

Adiabatic insertion of a flux quantum changes the state of the system by pulling

in (or pushing out) a quantized amount of charge.

This statement is always true for a dissipationless system with quantized Hall con-

ductivity. To see why, imagine we insert a thin long solenoid that carries magnetic

flux into a QH system (fig. 2.9) and increase the magnetic flux in it slowly (adia-

batically) from 0 to Φ0. This adiabatic process is possible and reversible because the

ground state is gapped so there is a time scale ~/∆ such that processes that take a
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Φ(t)

E(t)
J(t)

Figure 2.9: Illustration of insertion of an imaginary flux tube into QH state.

time longer than this can be considered adiabatic. Now according to Faraday’s law

the change of flux induces a rotating electric field in the 2DEG
∮

C

dr · E = −1

c

dΦ

dt
(2.61)

This electric field does not have Fourier component with frequencies ~ω < ∆ so it

will not cause any dissipation which means ρxx and ρyy stay zero. This electric field

however induces a current density

E = ρxyJ× ẑ (2.62)

so that

ρxy

∮

C

J · (ẑ × r) = −1

c

dΦ

dt
. (2.63)

The integral on the left hand side represents the total current flowing into the region

enclosed by the contour C (fig. 2.9). Thus the charge inside this region obeys

ρxy
dQ

dt
= −1

c

dΦ

dt
. (2.64)

After one quantum of flux has been added the final charge is

Q =
1

c
σxyΦ0 =

h

e
σxy. (2.65)
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Thus on the quantized Hall plateau at filling factor ν where σxy = νe2/h we have the

result

Q = νe. (2.66)

Reversing the sign of the total flux would reverse the sign of the charge. Note that

addition of a quantum of flux does not have any effect on the wave function of the

electrons because the induced Aharanov-Bohm phase for a quantum of flux is unity.

So this shows that adding a quantum of flux to the QH system adiabatically means we

have added a charge of νe. This is also true for each of the electrons in a QH system

with filling factor ν: Each electron is localized in an area of 2π`2 which contains a

magnetic flux of Φ = 2π`2B = h/ec = Φ0.

Now let’s examine the spin excitations. Let’s start with the Lagrangian of a free

electron traveling in the QHF. This electron has a velocity ẋµ. If this electron is

moving adiabatically (in other words if it is staying in the ground state of the QHF)

then its spin should follow the local spin orientation mµ(r) of the QHF. Consequently

the rate of change of the electron spin orientation would be ṁµ = ẋν ∂mµ

∂xν , this change

of spin induces a Berry phase (see previous section). The Lagrangian of this electron

then would be

L = −e

c
ẋµAµ + ~SṁµAµ[m] (2.67)

where Aµ is the usual electromagnetic vector potential and Aµ is the geometrical

vector potential defined in Eq. (2.59). There should be other terms included in this

Lagrangian, kinetic energy and Coulomb which we omit for now. Given ṁ we can

write the Lagrangian as follows

L = −e

c
ẋµ(Aµ + aµ) (2.68)

where:

aµ = −Φ0S(∂µmν)Aν . (2.69)

This new vector potential represents the Berry connection which reproduces the Berry

phase. This extra fake magnetic vector potential has a magnetic field b:

b = εαβ∂αaβ

= −Φ0Sεαβ
{

(∂α∂βmν)Aν + (∂βmν∂αmγ)
∂Aν

∂mγ

}

= −Φ0Sεαβ(∂βmν∂αmγ)
1

2
F νγ (2.70)

in which

F νγ =
∂Aγ

∂mν
− ∂Aν

∂mγ
(2.71)
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and using the gauge F νγ = εανγmα we obtain

b = −Φ0ρ̃ (2.72)

where

ρ̃ =
1

8π
εαβm · ∂αm× ∂βm. (2.73)

The above is a topological density called Pontryagin density. This is equivalent

to the winding number of a vortex in a two dimensional field but here m is three

dimensional [22]. The charge density here is determined by the two dimensional

plane of the vector field m(r). Each point on the plane can also be mapped into a

three dimensional unit vector determined by its location in the plane. For example,

the point r = r(cos φx̂ + sin φŷ) could correspond to the 3D vector v = sin θ cos φx̂ +

sin θ sin φŷ + cos θẑ where

θ =
πr

1 + r
. (2.74)

Then the function m(r) can be written as m(v), which is a map of a unit 3-vector into

a unit 3-vector. Such smooth mappings can be separated into different topological

classes[25] by their Pontryagin index, the integral of 2.73 over the plane. It can be

shown that for smooth maps this integral wit a uniform boundary conditions is an

integer.

So far we have found out that any spin distribution is equivalent to an additional

Berry phase or fake magnetic flux. According to our previous discussion, addition

of a magnetic flux is equivalent to addition of an electric charge so our additional

magnetic flux will be equivalent to an electrostatic charge density

δρ = νe
b(r)A

Φ0

= −νeρ̃ (2.75)

in other words a spin field distribution m(r) that has nonzero topological charge

density ρ̃ carries an electrostatic charge density equal to −νeρ̃. This remarkable

result is telling us that in QHF the electrostatic potential can couple to the spin of

the electrons! The most elementary topological spin texture( n = ±1 vorticity) is

a soliton called Skyrmion. At the center of a skyrmion (fig.2.8) spin of electron is

down (in minority band) and it gradually rotates toward the boundary where it is

pointing upward (majority direction). This smooth change of spin direction lowers

the energy of the system. In fact it is possible to calculate the energy of a Skyrmion

using an effective action for the quantum Hall ferromagnet. It is also possible to

use a microscopic Hamiltonian with the Hartree-Fock approximation to numerically
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Figure 2.10: Energy of a skyrmion and anti-skyrmion compared to single spin flip

energy v.s. g-factor (Zeeman coupling). After ref.[24].

estimate the energy of Skyrmions (Fig.2.10). The latter method is the main subject

of this dissertation for this and other quantum Hall system excitations. Figure (2.10)

shows the Hartree-Fock (HF) approximation for the energy of a skyrmion and an

anti-skyrmion compared to energy of a spin particle-hole excitation. At low Zeeman

energies it is seen that the cost of a spin flip is higher than (double) the skyrmion’s

cost [24]. This also has been confirmed by effective action calculations [20; 25].

A skyrmion in which the spin at the center is in minority direction has charge −e

while the spin at the center of an anti-skyrmion with charge +e is in the majority

direction. The number of flipped spins in a skyrmion is dependent on the size of

the skyrmion. The charge of the skyrmion is sharply quantized but the size of the

skyrmion depends on two parameters: the Coulomb interaction and the Zeeman

coupling, the last two terms in the Lagrangian in Eq.2.60. The Coulomb interaction

tries to make the spin distribution as smooth and uniform as possible and the Zeeman

term tries to shrink the size to lower the Zeeman cost. The competition between the

two terms determines the size of the skyrmion.
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2.2.5 Detecting Skyrmions

Direct evidence for the existence of skyrmions was first observed by Barret et. al.

[28] using a novel optically pumped NMR technique. The Hamiltonian for spin of a

nucleus is [31]

HN = −∆NIz + ΩI · S (2.76)

where ∆N is the nuclear Zeeman frequency about three orders of magnitude smaller

than the electron Zeeman frequency, Ω is the hyperfine coupling and S is the electron

spin density at the nuclear site. If, as a first (mean field) approximation we replace

S by its value

HN ≈ (−∆N + Ω〈Sz〉)Iz. (2.77)

we can see that due to coupling with electron spins the precession frequency of the

nucleus will be shifted by an amount proportional to the magnetization of the electron

gas. The magnetization deduced using the so called Knight shift is shown in fig. 2.11.

The electron gas is 100% polarized at ν = 1, but the polarization drops off sharply

(and symmetrically) as charge is added or subtracted. This is in sharp disagreement

with the prediction of the free electron model as shown in the figure. The initial

steep slope of the data allows one to deduce that 3.5-4 spins reverse for each charge

added or removed. This is in excellent quantitative agreement with Hartree-Fock

calculations for the skyrmion model [24]. Other evidence for skyrmion comes from

the large change in Zeeman energy with field due to the large number of flipped spins.

This has been observed in transport [32] and in optical spectroscopy [33]. Spin-orbit

effects in GaAs make the electron g factor -0.4. Under hydrostatic pressure g can

be tuned towards zero which should greatly enhance the skyrmion size. Evidence for

this effect has been seen [34].

2.2.6 Skyrmion Dynamics

In the last section I briefly discussed how it is possible to find evidence for existence

of skyrmions. In this section we will discuss how the dynamics of skyrmions is in-

vestigated and related to another very important experimental signature for their

existence namely nuclear magnetic resonance (NMR). Figure 2.12 shows the relax-

ation rate of the average nuclear spins[30]. This rate greatly reduces as it approaches

the filling factor ν = 1. This means that the nuclear spin relaxes more slowly: in

other words it is not coupled to any external force. However at ν 6= 1 the rate in-

creases implying that the nuclear spin relaxes much faster (tens of minutes to many
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Figure 2.11: NMR Knight shift measurement of the electron spin polarization near

filling factor ν = 1. Circles are data of Barret et. al.[28]. the dashed line is just con-

necting the circles. The solid line is the prediction for polarization of non-interacting

electron gas.
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Figure 2.12: NMR nuclear spin relaxation rate 1/T1 v.s. filling factor. After Tyco et.

al. [30]
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hours depending on temperature). This suggests that at filling factors away from

ν = 1 the nuclear spin is coupled to an external field that carries angular momentum

so it can randomize the nuclear spins. The lowest frequency spin wave excitations

of the quantum Hall ferromagnet lies above 20-50 GHz [22] while the nuclear spin

precession rate is at about 10-100 MHz [22]. On the other hand, based on a free

electron model, it is impossible for nuclear and electron spins to undergo a mutual

flip because the Zeeman energy would not be conserved. So spin wave excitations in

an electron gas unlikely to be responsible for the long nuclear relaxation time. Hence

one needs to look for another low energy mode (modes) to explain the data. One

candidate is disorder: As was discussed in the section 2.2.2 a spin flip excitation in a

QHF is always accompanied by a translation in space. This can provide a mechanism

in which a disorder induced spin flipped electron is translated to a region with lower

Zeeman and exchange energy cost, and this can be providing a mechanism for a low

energy spin mode. However it turns out that this analysis will not predict the sharp

feature in data [35].

Skyrmions have degenerate degrees of freedom that can provide low energy spin

modes. A skyrmion is symmetric with respect to a global rotation in two dimensional

space (U(1)) and also its energy is invariant with respect to translation of its center.

To investigate the dynamics of a single skyrmion [22] we will ignore the structural

excitations of a single skyrmion and treat it as one solid object ( this is approximately

correct since all the spin wave excitations are gapped). Now we can consider a static

distribution for the skyrmion, ms(r). Then the spin configuration at time t is:

m(r, t) = ms(r−R(t)) (2.78)

in which R(t) is the position degree of freedom of the skyrmion. From Eq.2.58 we

find

L0 = −~S
∫

d2ṁµAµ[m]n(r) (2.79)

where

ṁµ = −Ṙν ∂

∂rν
mµ

0(r−R) (2.80)

and n(r) is the density of the electron gas in the presence of the skyrmion

n(r) = n0 +
1

8π
εµνm · ∂µm× ∂νm. (2.81)

The equation 2.79 then becomes

L0 = ~Ṙνaν(R) (2.82)

30



where the vector potential

aν(R) = Sn0

∫
d2∂νm

µAµ (2.83)

and represents a magnetic field

bs = ελν ∂

∂Rλ
aν = −Sn0ε

λν

∫
d2r∂λ(∂νm

µ)Aµ

= −Sn0

2

∫
d2rελν∂νm

µ∂λm
γF γµ

= −2πn0Qtop (2.84)

in which we have taken the derivative inside the integral and changed variable to rµ

and in the second line used the equations 2.71 and 2.59.

The Lagrangian in Eq.2.82 is then the kinetic part of the Lagrangian of a massless

particle of charge −eQtop moving in uniform magnetic field of strength B = Φ0

2π`2
which

is the skyrmion! We have ignored other high energy excitations in this analysis which

lead to higher time derivatives because we are only interested in low frequency spin

modes for the NMR.

Following the above discussion we can now quantize this Lagrangian. By ignoring

the disorder and interaction with other skyrmions we can find the energy levels of the

skyrmions which turn out to be Landau levels [22]. Because the skyrmion is massless

it will be in the lowest Landau level with a large degeneracy and therefore capable of

having very low energy modes that relax the nuclei.

The other free degree of freedom of the skyrmion is its global rotation. The

standard analytic form for the skyrmion spin distribution that minimizes the gradient

energy [25] is

mx =
2λr cos(θ − φ)

λ2 + r2

my =
2λr sin(θ − φ)

λ2 + r2

mz =
r2 − λ2

λ2 + r2
(2.85)

in which (r, θ) are the polar coordinates in the plane, λ is a constant that controls

the size scale, and φ is a constant that controls the XY spin orientation for which

the energy is invariant. To find the dynamics of the skyrmion rotation one needs to

use the Skyrmion Lagrangian and integrate over quantum fluctuations of all the other

degrees of freedom of the skyrmion, which is a non-trivial task. Instead we can simply

use the symmetries and some valid approximation to avoid this calculation[22].
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The effective Lagrangian for the rotational degree of freedom of the skyrmion has

to be a function of φ̇ The lowest order symmetry-allowed terms then would be

Lφ = ~Kφ̇ +
~2

2U
φ̇2 + · · · (2.86)

The first order term is allowed because of the breaking of time reversal symmetry

by the magnetic field. We can identify K using the fact that the first term must

be coming from the Berry phase term. Under slow rotation of all the spins of the

skyrmion by 2π the equation 2.79 yields

∫
d2rn(r)(−2πS)[1−mz

0(r)] =
1

~

∫ T

0

Lφ = 2πK. (2.87)

in which the second term has been dropped because it vanishes for T → ∞. The

left hand side of the above equation is the value of the in-plane spin polarization of

the skyrmion averaged which means the number of flipped spins in the skyrmion,

consequently K is the total number of flipped spins in a skyrmion. This number is a

classical estimate so it does not need to be integer. To understand more about the

dynamics of the skyrmion rotation it is helpfull to derive the Hamiltonian from the

Lagrangian Eq.2.86 and analyze the quantum fluctuations. It can be seen easily that

the Hamiltonian corresponding to this Lagrangian is

Hφ =
U

2
(−i

∂

∂φ
−K)2. (2.88)

The above is the Hamiltonian of a charged XY quantum rotor with moment of inertia

~2/U circling a solenoid containing K flux quanta. From this point of view the Berry

phase term is the Aharanov-Bohm term. The eigenfunctions of this Hamiltonian are

ψm(φ) =
1√
2π

eimφ (2.89)

and eigenvalues are

εm =
U

2
(m−K)2. (2.90)

From the eigenfunction above we see that |ψm|2 = 1/2π which means that the global

U(1) rotation symmetry broken in the classical solution is restored in the quantum

solution because of quantum fluctuations in the coordinate φ. This analysis is con-

sistent with the microscopic calculations[36] of the excitation energies in which near

parabolic solutions with respect to K has been seen. The typical value is K ∼ 4. Ex-

cept for half integer values of K the spectrum of these excitations is non-degenerate

and has an excitation gap of the order of U which is of the scale of Coulomb energy
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scale ∼ 100K . In the absence of disorder even a gap of 1 K would make these excita-

tions irrelevant to NMR. However there are other cases where one can deduce lower

energy modes namely in the presence of many skyrmions.

2.2.7 Skyrme Lattice

At filling factors slightly away from ν = 1 there will be a finite density of skyrmions or

antiskyrmions in the ground state. The skyrmions interact via the Coulomb potential

in Eq.(2.60) so one expects the lowest energy possible state to be a lattice. This lattice

state will be a state with broken translational and rotational symmetry and it turns

out that in the thermodynamic limit of an infinite number of skyrmions coupled

together, it is possible for the global U(1) rotational symmetry breaking to survive

quantum fluctuations [22]. If that is true then there would be gapless Goldstone

modes for each broken symmetry even in presence of Zeeman field[38]. The mode

associated with the broken translational symmetry is the ordinary magneto-phonon

of the Wigner crystal.

On the other hand we should be careful that disorder can play an important

role. The disorder potential is able to pin skyrmions or a finite density of skyrmions.

Also NMR experiments have been performed at temperatures likely above the lattice

melting point which suggests that the lattice may have been pinned by disorder and

still can support the existence of some form of overdamped diffusive modes derived

from Goldstone modes. In any case the essential physics is that the spin fluctuations

have strong spectral density at frequencies far below the Zeeman gap.

Ignoring the coupling between magneto-phonon modes and U(1) modes we can

capture the long wavelength physics of the Skyrmion lattice with a simple Hamiltonian[38]

H =
U

2

∑
j

(K̂j −K)2 − J
∑

〈ij〉
cos(φi − φj) (2.91)

in which K̂j = −i∂/∂φj for the jth skyrmion. In the microscopic Hartree-Fock cal-

culation that is one of the principal parts of this dissertation, we will see that the

ground state of the skyrmion lattice is the one in which one skyrmion is rotated by π

with respect to the neighboring one, consequently this antiferromagnetic order forces

the coupling to be negative so J in the above Hamiltonian is positive.

This Hamiltonian is very close to the quantum XY rotor model and boson Hubbard

model[11]. The angular momentum eigenvalue of the operator K̂j represents the

number of bosons on site j and the U term describes the charging energy cost when
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this number deviates from the electrostatically optimal value of K. On the other

hand K is the average number of overturned spins so we can assume that K À 1

i.e. the negative angular momentum states are very high in energy. This makes

the boson number interpretation of m justified. A simple qualitative analysis of the

boson-Hubbard Hamiltonian in the above will be very useful in understanding the

skyrmion lattice dynamics [22]:

For U À J the system of bosons are not interacting and so it is insulating with

the wave function

ψ(φ1, · · ·, φ2) =
∏

j

eimφj (2.92)

where m is the nearest integer to K in the ground state. In this state every site has

a definite angular momentum and the energy of the system has a gap

∆ ≈ U(1− 2|m−K|) (2.93)

justifying the state being insulating. In this phase |ψ|2 ≈ 1 and therefore the phases

are spread which means the system is quantum disordered. On the other hand for

U ¿ J the above wave function is no longer an eigenfunction. In this case a crude

variational guess can be[39]

ψ(φ1, φ2, · · ·, φN) = eλ
∑
〈ij〉 cos(φi−φj) (2.94)

which is consistent with the invariance under φj → φj + 2π and λ is a variational

parameter. In this phase all the phases on neighboring sites are coupled and the

system is superconductor. For λ ¿ 1 the wave function ψ is large when all the

phases are the same. Expanding around this state gives the Goldstone mode of the

superconductor phase. To find the frequency of this mode it is easier to write the

Lagrangian of this system

L =
∑

j

[~Kφ̇j +
~2

2U
φ̇2

j ] + J
∑

〈ij〉
cos(φi − φj) (2.95)

The first (Berry phase) term is a total time derivative and can be dropped. The

expansion of the above Lagrangian gives

L =
~2

2U

∑
j

φ̇2
j −

J

2

∑

〈ij〉
(φi − φj)

2 (2.96)

which is the Lagrangian for the phonons with a linearly gapless spectrum

~ωq =
√

UJ(qa) (2.97)
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where a is a lattice constant. By fitting this spectrum to results of a microscopic

calculation one can find the regime of filling factors and Zeeman energies in which

the U(1) symmetry is broken. This broken U(1) symmetry state is a new kind of spin

state in which the phase angle of the skyrmions is well defined but the number of their

over-turned spin is uncertain. Consequently a flipped spin arising from interaction

with a nuclear spin will be spread all over the system making the average Zeeman

energy cost almost zero. That is why gapless spin fluctuations are possible in this

electron gas. These low frequency spin fluctuations can couple to the nuclear spin.
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Chapter 3

Double Layer Quantum Hall Systems

In this chapter I will discuss the physics of coherent quantum state of the electron

gasses in double quantum well systems using a series of tunneling spectroscopy mea-

surement results (see below for references). I will then explain how one can write an

effective action for this system similar to a single layer system described in the previ-

ous chapter. Next, I will discuss the known topological excitations of bilayer systems

and explain my method of calculations of these excitations following reference [24]

and present the results. Finally I will present our theory for excitations that involve

spin of electrons and discuss the results.

3.1 Quantum Coherence in Bilayer Quantum Hall

Systems

Tunneling spectroscopy is one method of measuring the lifetime of electrons close to

the Fermi surface[43]. To study the lifetime of electrons in two dimensional quantum

Figure 3.1: Schematic representation of the heterostructure containing the double

quantum well (DQW) where the electron bilayers are confined.
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wells, double quantum well heterostructures (DQW) have been used in which the

densities of each well can be adjusted using gate electrodes deposited on the top

and bottom of the sample[43] and each well is contacted separately (Fig. 3.1). In

most of the experiments the heterostructures are GaAs layers separated by undoped

AlxGa1−xAs barriers. The thickness of the wells are of the order of few hundreds

of angstroms. The top and bottom gates can deplete the electron gas in either the

nearest quantum well or in both the wells depending on the strength of the applied

negative voltage. In this way it is possible to cut off the current flow selectively in

each quantum well [44]. By cutting the current flow out of for example the upper

well one can measure the interlayer tunneling conductance G = dI/dV in terms of

interlayer voltage V . The tunneling conductance reveals the single-particle density of

states available for the addition of an electron from the other quantum well while the

transport measurements provide information about the density of states available for

excitation of an electron from the Fermi sea into a conducting state.

A qualitative understanding of some of the spectrums of the double quantum well

systems will help us understand the physical importance of the phenomena of double

layer quantum Hall systems. In strong perpendicular magnetic fields when all the

electrons are accommodated in the lowest Landau level in the ground state, there is

a Coulomb energy cost for addition of an extra tunneling electron into the electron

liquid: Ec = e2/〈a〉 in which 〈a〉 is the mean inter-particle distance. The kinetic

energy of electrons in the lowest Landau level at high magnetic fields is quantized

and therefore it is almost impossible for the electrons to change their kinetic energy

at very low temperatures(∼ 4K) compared to Landau level spacing(∼ 100K). In this

situation the Coulomb interaction becomes very important and will make the ground

state a highly correlated state. In figure (3.2) the zero field differential tunneling

conductance are consistent with a simple single-particle picture [45] in which electrons

are non-interacting. In this situation, because of energy and momentum conservation,

the tunneling can only happen when eV = EF − E ′
F in which EF and E ′

F are the

Fermi energy of each quantum well. Consequently there is only a conductance peak at

V = 0 when the layer densities are equal. On the other hand the zero bias tunneling

conductance in the presence of a magnetic field , figure (3.3), is clearly suppressed

at zero bias revealing the existence of a Coulomb barrier for tunneling electrons. At

higher voltages however there is enough energy for the electron to go to the next

Landau level which is followed by another suppression signalling the gap above the
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Figure 3.2: Typical tunneling conductance observed in 2D-2D tunneling experiments

when quantum wells are balanced, at various temperatures and zero magnetic field.

The inset shows the quantum well band diagrams. After [43].

next Landau level[46]. For further analysis of different tunneling data we refer the

reader to the literature[45].

One parameter that will effect the I-V current is the interlayer separation d. For

large enough separation it is expected that no tunneling can happen. When compared

to the effective inter-particle separation in each well, the layer separation determines

the order of intra-layer interaction. On the other hand the effective inter-particle

distance in the presence of perpendicular magnetic field is the magnetic length ` =√
~/eB. Hence for d/` ¿ 1 we expect no tunneling to happen, for d/` > 1 the

tunneling feature discussed in the figure (3.3) appears and it is expected that as d/`

is further reduced barrier to injection will grow. Surprisingly this is not what happens

in experiment.

Figure (3.4) shows the tunneling conductance for different total densities[49] NT =

2eBν/h, thus different magnetic field strengths in the double well system. Reduction

of density (from A to D) corresponds to a reduction of the magnetic field which

in turn means the reduction of d/`. As d/` decreases a peak at zero bias appears

and eventually dwarfs all the other features in the data. The occurrence of a zero

bias tunneling peak means that the electrons are finding a new lower energy state to

accommodate the incoming electron.
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Figure 3.3: Tunneling current v.s. interlayer voltage for three different samples with

three tunneling strengths at B=8 T and T=0.6 K. Zero bias suppression is due to

gapped excitations of the 2D electron fluid. After [46]
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Figure 3.4: Tunneling conductance v.s. interlayer voltage at νT = 1 at T=40 mK for

four different total densities NT (in units of 1010cm−2) and thus three different layer

separation d/`. The first three in the left column show regular Coulomb gap behavior

while the one in the right column shows a zero bias resonance. After [49].
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Figure 3.5: A schematic diagram of an ideal double quantum well. The first two

eigenstates are symmetric and antisymmetric.

This remarkable feature can be explained by remembering the very important

quantum mechanical characteristic of electrons: electrons can have a finite probability

amplitude to be in both layers at the same time. The single particle wave function for

electrons in a double quantum well system in the ground state has two solutions: a

symmetric amplitude and an asymmetric amplitude.(Fig.3.5). The energy separation

between the two states (∆SAS) is nonzero for nonzero tunneling samples. In fact

∆SAS = 2t where t is the tunneling amplitude through the barrier. By including this

new degree of freedom for each electron it is understandable that when all electrons

are in the symmetric state, the tunneling of an electron from one well to the other

does not make any change in the many-body state and thus leaves the ground state

unchanged. This explains why a peak appears at the zero bias.

Introducing this new degree of freedom of the electrons in double layer systems

opens a new path for investigating different properties and new ideas for the many-

body electronic states. We can create a group of rotations of the electron state

that rotates the electronic wave function from one particular state (like a symmetric

combination of the two wells) to another state (like antisymmetric one). This group

is mathematically isomorphic to the group of rotations in two dimensional complex

space, SU(2) equivalent to that of the spin of an electron. This new degree of freedom

therefore is called pseudo-spin:

|S〉 =
1√
2
(|U〉+ |L〉)
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Figure 3.6: Splitting of the Landau levels for ∆SAS < ∆Z .

|A〉 =
1√
2
(|U〉 − |L〉) (3.1)

in which the S(A) refers to symmetric(antisymmetric) combination and U(L) refers

to electron being in the upper(lower) layer. If we denote the direction of the state

|U〉 as +ẑ (or psudo-spin up) and |L〉 as −ẑ (or pseudo-spin down) the symmetric

state would be parallel to +x̂ and antisymmetric state parallel to −x̂. An electron

with pseudo-spin up means an electron is totally in the upper layer and an electron

with pseudo-spin in +x̂ direction means the electron is both in upper layer and lower

layer.

The real spin of electrons is another degree of freedom which was the subject of

discussion in the last chapter. In this section we first assume that the Zeeman energy

is higher than tunneling gap, ∆Z ¿ ∆SAS so that in this situation the spins are frozen

and we only include the pseudo-spin fluctuations.

When the total filling factor νT = νU + νL = 1 all electrons occupy the symmetric

sub-band of the lowest Landau level (Fig.3.6), this will reduce the charging energy

cost from a capacitive point of view. A trial wave function exhibiting this interlayer

phase coherence can be written as follows[37]

|ψ〉 =
∏

k

[ cos(θ/2)c†kU + sin(θ/2)eiϕc†kL]|0〉 (3.2)

in which c†kσ creates an electron with guiding center momentum k (eq. 2.15) in the

layer σ = U,L. The amplitude to find an electron in upper layer in this state is

cos(θ/2) and in the lower layer it is sin(θ/2)eiϕ. This state can represent the ground

state of the bilayer system even if there is no tunneling between the layers. This is

possible from a quantum mechanical point of view where we can not say for certain

that the electron is in a given layer. In the above state θ and ϕ are then the azimuthal

and polar angles of the pseudo-spin vector respectively.
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3.2 Bilayer Effective Action

A bilayer system in which the true electron spin is frozen is similar to a quantum Hall

ferromagnet in which spins are replaced by pseudo-spin. An important difference is

in Coulomb interaction. For non-zero d/` the inter-layer and intra-layer Coulomb

interactions are different and thus the Coulomb potential depends on the pseudo-spin

direction, unlike the quantum Hall ferromagnets where Coulomb potential is spin

independent. In order to correctly include the interactions in the effective action we

define[27]

V S
k =

1

2
(V a

k + V e
k ) (3.3)

V A
k =

1

2
(V a

k − V e
k ) (3.4)

in which V a
k = 2πe2/k is the inter-layer Coulomb potential and V e

k = exp(−kd)V a
k is

the intra-layer Coulomb potential in Fourier space. The symmetric potential V S then

is pseudo-spin independent unlike the antisymmetric potential V A. We now define

the pseudo-spin dependent densities

ρ̂αβ(X,X ′) = c†αXcβX′ (3.5)

in which α, β = U,L and X,X ′ are the guiding center indices. Throughout this

chapter we use the Landau gauge (eq. 2.9). We then define the pseudo-spin operators

P z(X) = ρUU(X, X)− ρLL(X, X)

P x(X) + iP y(X) = ρUL(X, X) (3.6)

Using the above we can write the antisymmetric part of the Coulomb potential in the

lowest Landau level as(see section 2.2.2)

VA = 2
∑

k

V A
k P

z

kP
z

−k (3.7)

because the coefficients V A
k are positive this term forces the pseudo-spins to lie in the

plane, so the bilayer system is an easy-plane pseudo-ferromagnet. This term breaks

the SU(2) invariance of the Hamiltonian to U(1). Excluding the antisymmetric part

of the Coulomb term the effective action of the bilayer system will be the same as

the quantum Hall ferromagnet. To add the antisymmetric part we use the same

technique of projection as in section (2.2.2)[27]. The energy change associated with
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small deviation of the pseudo-spin vector from x̂ direction vanishes at the first order

of approximation (as seen in the section 2.2.2). The second order term is

δEA = −
∑

k

V A
k 〈ψ0|2[O, P

z

k][O, P
z

−k]

+ P
z

−k[O, [O, P
z

k]] + [O, [O, P
z

k]]P
z

−k|ψ0〉 (3.8)

The first term on the right hand side for ν = 1 yields

− 2
∑

k

V A
k 〈ψ0|[O, P

z

k]|ψ0〉〈ψ0|[O, P
z

−k]|ψ0〉

=
ν2

2A2

∑

k

V A
k e−

k2

2 Ωy
kΩ

y
−k

=
ν2

2A2

∑

k

V A
k e−

k2

2 my
km

y
−k

=
N2

2A2

∫
d2rd2r′Ṽ A(r− r′)mz(r)mz(r′), (3.9)

in which Ṽ A(r) is Fourier transform of V A
k e−k2/2. This term is the Hartree-like charg-

ing energy of the bilayer. In the limit of smooth texture of the pseudo-spin field we

can expand this term and obtain

β

∫
d2r(mz)2 (3.10)

where

β =
ν2

8π2

∫
d2rṼ A(r). (3.11)

This term is a symmetry breaking term which will force the vector m to lie in the

plane in the ground state.

The second part of the energy in Eq.(3.8) requires a lengthy calculation so we just

quote the final result for the antisymmetric Coulomb term[27]

δEA =

∫
d2r

{
βm(mz)2 + C[m] +

ρz
s

2
(∇mz)2

− ρz
s

2
[(∇mx)2 + (∇my)2]

}
(3.12)

in which βm is like a mass for out of plane fluctuations

βm =
−ν

8π2

∫ ∞

0

dk[V A(k = 0)− V A(k)]kh(k), (3.13)

and

ρz
s =

−ν

32π2

∫ ∞

0

V A(k)h(k)k3 (3.14)
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and

C[m] = − e2d2

16πε

∫
d2q

(2π)2
|q|mz

−qm
z
q. (3.15)

where h(k) = −e−k2/2 . Including all the other terms in Eq.(2.60) we obtain[27]

Ebilayer[m] =

∫
d2r

{
βm(mz)2 + C[m] +

ρA

2
(∇mz)2

+
ρE

2
(∇mx)2 + (∇mx)2]

}
− ∆SAS

4π`2

∫
d2rmx(r)

− 1

2

∫
d2rd2r′V (|r− r′|)δρ(r)δρ(r′). (3.16)

in which

ρA =
−ν

32π2

∫ ∞

0

dkV a(k)h(k)k3 (3.17)

and

ρE =
−ν

32π2

∫ ∞

0

dkV e(k)h(k)k3. (3.18)

The first term, as discussed before, is the inter-layer Hartree energy preferring mz = 0.

The second term C vanishes at d = 0, this term is an inter-layer exchange energy

which tries to align the pseudo-spins in the z-direction. The other two terms are

in-plane exchange energies. The next term is the tunneling term which is not derived

here but can be easily derived using the tunneling hamiltonian[27]

ĤT = −t
∑
X

(c†LXcUX + c†UXcLX). (3.19)

The tunneling term forces electrons to be in both layers which means it tries to line

their pseudo-spin in x̂ direction. The last term is the interaction between pseudo-spin

textures. Pseudo-spin textures similar to skyrmions are present in the bilayer system

and because of their electrostatic charge can be detected. In the next section we will

explain the details of these objects.

We should note that this effective action can be used to explain the properties

of bilayer system at large wavelengths. The quantum fluctuations will redefine the

effective parameters and can have dramatic effects for d/` À 1 where a likely phase

transition happens into a decoupled system. This transition has indeed been observed

in experiment[47].

3.3 Pseudo-spin Topological Excitations

For very small tunneling (∆SAS ¿ ∆Z) the real spin of the electrons does not fluc-

tuate and the lowest energy excitations of the bilayer systems are in the pseudo-spin
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subband of the lowest Landau level. These excitations are of two types, the neutral

pseudo-spin waves and charged topological textures just like spin waves and skyrmions

in the quantum Hall ferromagnets. The neutral excitations and topological excita-

tions are gapped. Since only charged excitations can contribute to the conductivity

the low-temperature transport coefficients will be activated. We will address the

transport in bilayers and its theory in the following chapters.

A very important observation in bilayer systems at total filling factor νT = 1 is

that the bilayer system exhibits quantized Hall effect[47]. This is expected to be

true because from a coherence point of view the electrons in both layers have formed

a single coherent state just like when they are in a single layer. This expectation

is in fact confirmed by experiments[47]. We can use this fact to set up the same

argument as in section 2.2.4 that adiabatic insertion of a flux quantum to the system

is equivalent to addition of a quantized amount of charge. On the other hand a

pseudo-spin texture would induce a Berry phase in each electron, and this additional

Berry phase can be seen as coming from an additional fake magnetic flux which, as

we proved in section 2.2.4 is equivalent to an electrostatic charge density. In other

words any pseudo-spin texture will have a charge density associated with it :

δρ =
−νe

8π
εαβp · ∂αp× ∂βp (3.20)

in which p is the pseudo-spin vector.

To go further in analogy with quantum Hall ferromagnets, we need to redefine

directions: Let’s define pseudospin in symmetric state as being in +ẑ direction and

pseudo-spin in antisymmetric state being in −ẑ direction. Using this convention the

ground state of the bilayer system is pseudo-spin polarized in the +ẑ direction just

like spin of quantum Hall ferromagnet. Therefore the topological spin texture will

have to be a pseudo-spin skyrmion. In a pseudo-spin skyrmion the pseudo-spin in

the center is in antisymmetric(−ẑ) state and it smoothly changes its direction toward

the boundaries and finally turns into the symmetric(+ẑ) direction which is the lower

energy region. In a more systematic way we can define

p̃z = ρSS − ρAA

p̃x + ip̃y = ρSA (3.21)

in which ραβ = 〈c†αcβ〉. The vector field p̃ then has the distribution of a skyrmion.

On the other hand it will be more useful in the future to work in the (U,L) basis

c̃† = M · c† (3.22)
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State Basis Vector Representation Topology

Bimeron |U〉,|L〉 px + ipy = ρUL, pz = ρUU − ρLL ZY-plane vorticity

Pseudo-spin Skyrmion |S〉,|A〉 p̃x + ip̃y = ρSA, p̃z = ρSS − ρAA XY-plane vorticity

Table 3.1: Comparison between two representations of a bimeron.

in which

c̃† =

(
c†S
c†A

)
,M =

(
1√
2

1√
2

1√
2

−1√
2

)
, c† =

(
c†U
c†L

)
. (3.23)

The densities are defined as

ρ = c† · c (3.24)

Now we can rotate the pseudo-spin vectors to the (U,L) basis by rotating the densities

ρ = M† · ρ̃ ·M. (3.25)

Note that M is a unitary matrix. Using the fact that ραβ = ρ∗βα and Eq.(3.6) we can

see that

pz = p̃x

px = p̃z

py = −p̃y (3.26)

This rotation of pseudo-spin vectors will change the field distribution to a new one

that does not have in-plane vortex symmetry (Fig.3.10) however it is still the same

state as pseudo-spin skyrmion and possesses the same vorticity number. Most of the

time this topological excitation is called a Bimeron. Only later on it will turn out

that this object can split up under special circumstances into two topological objects

called merons. In order to study merons it is necessary to use the (U,L) basis.

We can summarize the pseudo-spin skyrmion and bimeron representation of a

charged topological excitation of a bilayer system as in table 3.1.

3.4 Microscopic Calculation of Texture Lattices

Similar to quantum Hall ferromagnets for total filling factors slightly away from

νT = 1, the ground state of the bilayer system will have a finite density of charged
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topological objects. Because of the interaction between these objects the lowest en-

ergy configuration will be a square lattice[48]. To study the various properties of

these states including charge and spin density in each layer, it is necessary to per-

form microscopic calculations. Also, as we will see in the next sections, it will turn

out that a pure pseudo-spin analysis of the excitations of bilayer systems is not suf-

ficient to explain all the experimental observations and a full spin and pseudo-spin

analysis is needed for more investigation. Evidently such an analysis requires a more

microscopic calculation than just the effective action method. The most important

investigation performed in this dissertation is the numerical calculation of the energy

of the electrons and excitations and also the spin and charge density of the 2DEG in

the lattice states of bilayer systems slightly away from νT = 1 using the Hartree-Fock

approximation. In this section we will explain the method and the basic microscopic

theory for calculating the energy and charge density of electrons in pseudo-spin tex-

ture lattices. In the next section we will use the same technique to calculate the real

spin density of electron gas in other texture lattice states of bilayer system.

In the limit of clean bilayer system at total filling factors close but not equal to

νT = 1 we assume the lowest energy state of the bilayer system is a square lattice

of topological textures. It will turn out that there is more than one type of pseudo-

spin texture lattices depending on the number of extra electrons chosen per unit

cell(density) and depending on the important parameters of the system including

tunneling gap ∆SAS, layer separation d/`, interlayer bias ∆b and total filling factor.

Because of the interaction between these textures only one type of lattice has the

lowest energy per electron in various parts of parameter space.

Following previous works[24] we start by finding the equation of motion for the

Green’s function in Hartree-Fock approximation. Throughout this calculation we use

the Landau gauge A = (0, Bx, 0) for which the wave function of the free electron in

the lowest Landau level is

ψX(r) =
1√

Ly`π1/2
eiXy/`2e−(x−X)/2`2 . (3.27)

The Green’s function is defined as

Gαβ(XX ′, τ) = −T̂ 〈cαX(τ)c†βX′(0)〉 (3.28)

in which c†αX is the creation operator that creates an electron in the lowest Landau

level with guiding center X in the subband α, and τ is the imaginary time. For pure

pseudo-spin excitations α = U,L for upper and lower layers.
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The equation of motion for the Green’s function is obtained using the Hamiltonian

of the interacting electron system in the lowest Landau level:

Ĥ =
1

2S

∑
q

∑

{X}

∑

α′β′
Vα′β′(q)Mα′

q (X1|X4)M
β′
−q(X2|X3)c

†
α′X1

c†β′X2
cβ′X3cα′X4

− ∆SAS

2

∑
X,σ

(c†U,XcL,X + c†L,XcU,X) (3.29)

in which

Mα
q (X ′|X) = eiqx(X+X′)/2δX′,X+qy`2 (3.30)

and the Coulomb interaction is represented by

Vαβ(q) =
2πe2

q
e−q2`2/2 α, β = same layer

=
2πe2

q
e−qd−q2`2/2 α, β = different layer

(3.31)

by finding the time derivative as follows

∂Gαβ

∂τ
= −T̂ 〈 ∂

∂τ
cαX(τ)c†βX′(0)〉 − δαβδXX′δ(τ). (3.32)

The Heisenberg equation of motion for the annihilation operator is

∂

∂τ
cαX(τ) =

[
Ĥ − µN̂ , cαX

]
=

[
Ĥ, cαX

]
− µ

[
N̂ , cαX

]
=

=
1

2S

∑

q,X,α′β′
Vα′β′(q)M

α′
q (X1|X4)M

β′
−q(X2|X3)

[
c†α′X1

c†β′X2
cβ′X3cα′X4 , cαX

]

− ∆SAS

2

∑

X′

[
c†U,X′cL,X′ + c†L,X′cU,X′ , cαX

]
+ µcαX

=
1

2S

∑

q,X,α′β′
Vα′β′(q)M

α′
q (X1|X4)M

β′
−q(X2|X3)

[
c†α′X1

c†β′X2
, cαX

]
cβ′X3cα′X4

− ∆SAS

2

∑

X′

[
− {c†UX′ , cαX}cLX′ − {c†LX′ , cαX}cUX′

]
+ µcαX .

(3.33)

in which N̂ =
∑

Xα c†αXcαX . Using the identities [AB, C] = A[B, C] + [A, C]B and

[AB, C] = A{B, C} − {C, A}B we can simplify the above

∂

∂τ
cαX =

1

2S

∑

q,X,α′β′
Vα′β′(q)M

α′
q (X1|X4)M

β′
−q(X2|X3)×

× (c†α′X1
δβ′αδXX2 − c†β′X2

δαα′δXX1)cβ′X3cα′X4

+
∆SAS

2

∑
σ

(δU,αcLX + δL,αcUX) + µcαX .

(3.34)

48



Inserting the above into Eq.(3.32) we obtain

∂Gαβ(XX ′)
∂τ

= −δαβδXX′δ(τ)− 1

2S

∑

q,X,α′β′
Vα′β′(q)M

α′
q (X1|X4)M

β′
−q(X2|X3)×

×
[
T̂

〈
c†α′X1

(τ)cβ′X3(τ)cα′X4(τ)c†βX′(0)
〉
δαβ′δXX2

− T̂
〈
c†β′X2

(τ)cβ′X3(τ)cα′X4(τ)c†βX′(0)
〉
δαα′δXX1

]

+
∆SAS

2

[
− δU,αT̂

〈
cLXc†βX′(0)

〉
− δL,αT̂

〈
cUXc†βX′(0)

〉]

− µT̂
〈
cαXc†βX′(0)

〉
. (3.35)

We approximate the four point correlation functions above up to the tree diagram

level(Hartree-Fock approximation)

T̂
〈
c†α′X1

(τ)cβ′X3(τ)cα′X4(τ)c†βX′(0)
〉

= T̂
〈
c†α′X1

(τ)cβ′X3(τ)
〉
〈cα′X4(τ)c†βX′(0)

〉

− T̂
〈
c†α′X1

(τ)cα′X4(τ)
〉
〈cβ′X3(τ)c†βX′(0)

〉

T̂
〈
c†β′X2

(τ)cβ′X3(τ)cα′X4(τ)c†βX′(0)
〉

= T̂
〈
c†β′X2

(τ)cβ′X3(τ)
〉
〈cα′X4(τ)c†βX′(0)

〉

− T̂
〈
c†β′X2

(τ)cα′X4(τ)
〉
〈cβ′X3(τ)c†βX′(0)

〉
.

(3.36)

Single particle densities can be defined as

ραβ(XX ′) = 〈c†α′Xcβ′X′〉. (3.37)

Using the above definition and Eq.(3.36) in Eq.(3.35) we find

∂Gαβ(XX ′)
∂τ

= −δαβδXX′δ(τ)− 1

2S

∑

q,X,α′β′
Vα′β′(q)M

α′
q (X1|X4)M

β′
−q(X2|X3)×

×
{

[ρα′β′(X1X3)(−Gα′β(X4X
′)) + ρα′α′(X1X4)Gβ′β(X3X

′)]δαβ′δXX2 +

− [ρβ′β′(X2X3)(−Gα′β(X4X
′)) + ρβ′α′(X2X4)Gβ′β(X3X

′)]δαα′δXX1

}
+

+
∆SAS

2

[
δU,αGL,β(XX ′) + δL,αGU,β(XX ′)

]
+

+ µGαβ(XX ′). (3.38)

We can find the textured lattice solutions of the above equation using Fourier trans-

forms. Because we are in the Landau gauge, it is more convenient to define a special

Fourier transform in which only one direction is transformed

Gαβ(q, τ) =
1

g

∑

XX′
Gαβ(XX ′, τ)e−iqx(X+X′)/2δX′,X−qy`2 (3.39)
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ραβ(q) =
1

g

∑

XX′
ραβ(XX ′)e−iqx(X+X′)/2δX′,X+qy`2 . (3.40)

in which g = S/2π`2 is the degeneracy of the Landau levels. Using this transformation

the equation of motion 3.38 will be

−iωGαβ(k) = −δk,0δαβ − g

S

∑

q′,α′,β′
Vα′β′(k− q′)ρβ′β′(k− q′)Gα′β(q′)ei `2

2
k×q′δαα′ +

+
1

S

∑

α′,β′;q,q′
Vα′β′(q)ei`2q×(k−q′)ρβ′α′(k− q′)Gβ′β(q′)ei `2

2
k×q′δαα′

+
∆SAS

2

[
δU,αGL,β(k) + δL,αGU,β(k)

]
+ µGαβ(k).

(3.41)

in which ω is a Matsubara frequency. The third term in the above equation has a

sum over q that is equivalent to the following function

Iαβ(G) ≡ 1

S

∑
q

Vαβ(q)ei`2q×G

=

∫
d2q

(2π)2
Vαβ(q)ei`2q×G

=
e2

2π

∫
dqdθe−q2`2/2ei`2qG sin θ (α, β the same layer)

=
e2

2π

∫
dqdθe−q2`2/2ei`2qG sin θe−qd (α, β different layer).

(3.42)

For the same layer the above function is

Is
αβ(G) = e2

∫ ∞

0

dqJ0(`
2qG)e−q2`2/2

= e2/`

√
π

2
I0(G

2/4`2)e−G2/4`2 . (3.43)

in which I0 is the modified Bessel function of the zeroth order and for different layers

we will have

Id
αβ(G) = e2

∫ ∞

0

dqJ0(`
2qG)e−q2`2/2e−qd

= e2/`

∫ ∞

0

dq′J0(G
′q′)e−q′2/2e−q′d/`. (3.44)

In which we have scaled the wavevectors with 1/`. Finally the equation of motion for

the Green function becomes:

(−iω − µ)Gαβ(k) = −δk,0δαβ − Uαα′(k,k′)Gα′β(k′) =

= −δk,0δαβ − ei `2

2
k×k′Wαα′(k− k′)Gα′β(k′). (3.45)
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in which there is summation over repeated indices and

Uαα′(k,k′) = ei `2

2
k×k′Wαα′(k− k′) (3.46)

where W is defined as follows:

Wαα′(G) =
δαα′

2π`2

∑

β′
Vαβ′(G)ρβ′β′(G)− Iαα′(G)ρα′α(G) +

− ∆SAS

2
δG,0(σx)αα′ (3.47)

in which σx is the Pauli spin matrix. In this equation the first term represents intra-

layer direct interactions while the second term represents the inter-layer (I = Id) and

intra-layer (I = Is) exchange interaction between electrons. To avoid divergencies due

to the self-interaction of the electron gas we should have considered an interaction

term with a uniform density of positive ion background in the beginning. However we

can directly include that effect here by setting Vαβ(G = 0) = 0 for α, β representing

the same layer. This includes the effect of the positive background to each layer

separately. In addition each layer will interact with the electric field of the positive

uniform charge background of the other layer which is proportional to the interlayer

separation so we set Vαβ(G = 0) = −d/` when α 6= β.

Equation (3.45) can be solved for densities by diagonalizing the matrix U . Suppose

Aα
λ(k) is an eigenvector of U with eigenvalue Ωλ

∑

β

Uαβ(k,k′)Aβ
λ(k′) = ΩλA

α
λ(k). (3.48)

We expand the Green’s function in the basis of these eigenvectors

Gαβ(k, iω) =
∑

λ

cβ
λ(ω)Aα

λ(k) (3.49)

with the coefficients being

cβ
λ =

Aβ
λ(k = 0)

iω + µ− Ωλ

(3.50)

which yields

Gαβ(k, iω) =
∑

λ

Aβ
λ(k = 0)Aα

λ(k)

iω + µ− Ωλ

. (3.51)

where in the above overbar means complex conjugate. Now we can find densities

using the fact that

ραβ(k) = Gβα(k, τ → 0−)

=
∑

λ

∑
ω

Aα
λ(k = 0)Aβ

λ(k)

iω + µ− Ωλ

(3.52)
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in which the sum over Matsubara frequencies ω will yield the Fermi function

ραβ(k) =
∑

λ

Aα
λ(k = 0)Aβ

λ(k)fB(µ− Ωλ) (3.53)

where fB(x) = 1
1+eβx and β = 1/kBT . The chemical potential µ can be found using

the fact that ∑
α

ραα(k = 0) = ν. (3.54)

At zero temperature the equation (3.53) will become

ραβ(k) =
∑
Ωλ<µ

Aα
λ(k = 0)Aβ

λ(k) (3.55)

in which only a finite set of eigenvalues of matrix U are being used.

To set up the bimeron lattice structure we assume that there is one extra electron

per unit cell of a square lattice so the lattice constant would be a =
√

2π`2/|ν − 1|.
The lattice vectors are then a1 = ax̂ and a2 = aŷ. Equation (3.45) has many solutions

for different ranges of parameters. To find each one of them in an iterative method we

start with a simple guess that obeys the desired symmetries of the solution. Usually,

for starting densities, only the first few shells in reciprocal lattice space are non-zero.

For a lattice of bimerons as was mentioned before we should note that the in-

plane component of bimeron pseudo-spin has vortex symmetry like skyrmions, which

imposes the following restriction on the space of solutions

ρSA(Rϕr) = eiϕρSA(r). (3.56)

in which ϕ = ±π/2 for a vortex(anti-vortex) with winding number n = ±1. Note

that this symmetry is true only when densities are calculated in the S,A basis.

Using the densities one can calculate the energy per electron of the texture lattice

E = 〈Ĥ〉/N in the Hartree-Fock approximation

〈Ĥ〉 =
1

2S

∑
q

∑

{X}

∑

α′β′
Vα′β′(q)Mα′

q (X1|X4)M
β′
−q(X2|X3)

〈
c†α′X1

c†β′X2
cβ′X3cα′X4

〉
+

− ∆SAS

2

∑
X

[
〈c†UXcL,X

〉
+

〈
c†LXcUX

〉]
.

(3.57)

in Hartree-Fock approximation

〈Ĥ〉 =
1

2S

∑
q

∑

{X}

∑

α′β′
Vα′β′(q)Mα′

q (X1|X4)M
β′
−q(X2|X3)

[
ρα′β′(X1X3)ρβ′α′(X2X4) +
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− ρα′α′(X1X4)ρβ′β′(X2X3)
]
− ∆SAS

2

∑
X

[
ρU,L(X,X) + ρL,U(X, X)

]
.

(3.58)

in which the first term is the sum of inter-layer and intra-layer correlation energies

while the second term is the sum of inter-layer and intra-layer exchange energies. The

Fourier transform of the above is

〈Ĥ〉 =
1

2

∑

k,α,β

Iαβ(k)ραβ(k)ρβα(−k)− 1

2

∑

αβ

Vαβ(q)ραα(−q)ρββ(q)

− ∆SAS

2

[
ρU,L(0) + ρL,U(0)

]
. (3.59)

Using the above we can also calculate the energy increase of a single excitation (Eex)

like a bimeron from the uniform background when the density deviates from νT = 1

Etexture =
νT

|1− νT |
[
E − E0(d)

]
(3.60)

in which E0(d) is the uniform background energy at νT = 1 calculated by minimizing

the energy (3.59)

Etexture = −∆SAS

2
− 1

4

[
Is(q = 0) + Id(q = 0)

]

= −∆SAS

2
− 1

4

[√π

2
+

√
π

2
ed2/2`2Erf(

d/`√
2
)
]
. (3.61)

in which Erf is the error function. In the limit of vanishing bimeron density (νT → 1),

the quantity Etexture is the so-called neutral excitation energy, related to the chemical

potential µ± at densities just above and below the critical density νT = 1, through

the relation

µ± = ±Etexture + E0(d). (3.62)

In which plus and minus signs are for excitations above and below νT = 1. As a

consequence of particle-hole symmetry which applies in the thermodynamic limit,

the chemical potential satisfies the relation

µ+ + µ− = 2
[
E0(d) +

∆SAS

2

]
. (3.63)

It is therefore possible to extract the energy gap for a single charged excitation (the

charge gap) from the knowledge of Etexture alone

∆ = µ+ − µ− = 2Etexture + 2
[
E0(d)− E0(d = 0)

]
. (3.64)
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Figure 3.7: Four typical convergence factors for the last 50 iteration for densities of

a meron-meron lattice at d/` = 0.8 and zero tunneling.

Figure 3.8: Contour plot of a bimeron at

interlayer separation d/` = 0(The SU(2)

symmetry of the Coulomb potential is not

yet broken) and zero tunneling at νT =

1.02. The contour labels are values of den-

sity in units of 1/2π`2
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3.5 Numerical Results

To numerically solve equation (3.45) for the densities ραβ(G) we use a finite number

of reciprocal lattice vectors |G| < Gmax. Using the symmetries explained above we

guess an appropriate set of densities for the first few shells in reciprocal lattice vector

space to calculate the matrix U (Eq. 3.46). This matrix is then diagonalized. Using

the resulting eigenvectors the densities will be calculated (Eq. 3.55) to calculate U

again. This iteration over ρ’s continues until the solutions do not change. Figure

(3.7) illustrates convergence factors for a single run of iterations. The convergence

factors are defined as

δ2
αβ =

∑
G |ραβ(G)− ρ′αβ(G)|2∑

G |ραβ(G)|2 (3.65)

in which ρ′’s are the solutions after ρ’s in the iterative process. The behavior of

δ factor is usually of three types: divergent, convergent and unstable. A divergent

δ usually increases with increasing iteration number. A convergent δ decreases with

increasing the iteration number (figure 3.7) usually down to around 10−6 or lower. The

unstable δ usually converges first and very quickly rises up with increasing iteration

number. We only accept the convergent solutions.

For very dilute lattices Gmax increases and usually the self-consistent iterative

method does not converge for filling factors |1− νT | 6 0.015. Figure 3.8 is a contour

plot of charge density of a bimeron in the center of a unit cell of a square lattice

at filling factor νT = 1.02 and layer separation d = 0 and at zero tunneling. In

this lattice there is one bimeron(one extra electron) per unit cell so the minimum

distance between two bimerons is of the order of 17.7`. As we can see the charge

density has circular symmetry around the center. The figure 3.9(a),(b) show the XY

and Z-component of the pseudo-spin in the (S,A) basis respectively. In this picture

the pseudo-spin vector at the center is pointing out of the plane (−ẑ) (note that Pz

is negative at the center) representing electron being in the antisymmetric band and

gradually tilts away toward the boundary where it eventually points in the symmetric

(+ẑ) direction. Figure 3.10 represents the same texture. The pseudo-spin vectors are

now calculated in the (U,L) basis (see section 3.3). The upper figure represents the

XY components of the pseudo-spin vectors. The direction perpendicular to the page

(+ẑ) now represents pseudo-spin being up, in other words electron’s wave function

is localized in the upper layer. The vectors lying in the plane perpendicular to ẑ are

distributed in both layers. In this representation the bimeron consists of a vortex and

an anti-vortex that are connected by a string of over-turned pseudo-spins. They are
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(a) (b)

Figure 3.9: (a) In-plane components of a bimeron in (S,A) basis at νT = 1.02 , zero

tunneling and zero layer separation. The length of the vectors is proportional to the

magnitude of |ρSA| at each point. (b)Z-component of the same bimeron in (S,A)

basis: ρSS − ρAA in units of 1/2π`2. The colors do not have a physical interpretation.

over-turned from the majority direction which is to the right (+x̂) representing equal

distribution in both upper layer and lower layer. The lower left of the picture shows

a profile of the z-component of the pseudo-spin (= ρU − ρL). Each of the vortices in

the bimeron has a local charge imbalance at the center but in the opposite direction.

At d = 0 the bimeron texture is equivalent to a skyrmion texture because the

Hamiltonian has the full SU(2) symmetry. By increasing the separation between the

layers the bimeron is still a solution to the ground state at νT = 1.02. Figure 3.11

shows a contour plot of the charge density of a bimeron at d = 0.2` and zero tunneling.

The circular symmetry is clearly broken. Figure 3.12 shows the same texture again

in the (U,L) basis.

This change in shape of the bimeron charge density continues in higher separations

so that when we get to d = 0.8` the charge density clearly starts to split. Figure 3.13

shows the bimeron charge density at d = 0.8` and zero tunneling. The charge density

has split. This happens because at higher separations the inter-layer exchange is weak

and fails to keep the bimeron from spreading. On the other hand the interaction

between bimerons in the lattice prevents bimerons from expanding in a symmetric

way in order to keep each other from overlapping. Figure 3.14 shows a bimeron

pseudo-spin distribution at d/` = 0.8. As we can see the constituent vortices are

moved away from each other so that the z-component of their pseudo-spin at the
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(a) (b)

(c) (d)

Figure 3.10: (a)In-plane components of the pseudo-spin of a bimeron in (U,L) basis

at νT = 1.02 , zero tunneling and zero layer separation. The length of the vectors is

proportional to the magnitude of |ρUL| at each point. The plot shows the two merons

bound together in this excitation. (b) The In-plane pseudo-spin field (vectors) and Z-

component of the same set of vectors(contour). (c) Z-component of the same bimeron

in (U,L) basis: ρUU − ρLL in units of 1/2π`2. (d) 3D plot of the excess density of the

bilayer system due to the same bimeron in units of 1/2π`2.

57



(a) (b)

Figure 3.11: (a) Contour plot of a bimeron charge density at interlayer separation

d/` = 0.2(the SU(2) symmetry of the Coulomb potential is broken) and zero tunneling

at νT = 1.02. The contour labels are values of density in units of 1/2π`2. (b) In-plane

components of the same bimeron. The length of the vectors is proportional to the

magnitude of |ρSA| at each point.
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(a) (b)

(c) (d)

Figure 3.12: (a) In-plane components of the pseudo-spin of a bimeron in the (U,L)

basis at νT = 1.02 , zero tunneling and d/` = 0.2. The length of the vectors is

proportional to the magnitude of |ρUL| at each point. (b) The In-plane pseudo-spin

field (vectors) and Z-component of the same set of vectors(contour). (c) Z-component

of the same bimeron in (U,L) basis: ρUU − ρLL in units of 1/2π`2. (d) 3D plot of the

excess density of the bilayer system due to the same bimeron in units of 1/2π`2. The

colors do not have a physical interpretation.
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(a) (b)

Figure 3.13: (a) Contour plot of a bimeron at interlayer separation d/` = 0.8 and

zero tunneling at νT = 1.02. The contour labels are values of density in units of

1/2π`2. (b) In-plane components of the same bimeron. The length of the vectors is

proportional to the magnitude of |ρSA| at each point.

center are more pronounced. As we mentioned before each of the constituent vortices

of a bimeron are called a meron. Merons have vorticity and a strong imbalance at

their core. In a bimeron, just like a skyrmion, the pseudo-spin gradually rotates by

180 degrees from the center to boundary (as can be seen in S,A basis) while in a

meron the pseudo-spin rotates only 90 degrees from the center to boundary. Another

possible lattice solution for the Hartree-Fock equations is having two extra electrons

per unit cell in a square lattice of merons. In fact it turns out that at zero tunneling

and high density of bimerons this lattice is energetically favorable (Figure 3.15). A

meron lattice can be obtained by imposing vortex symmetry on ρUL:

ρUL(Rπ
2
r) = eiπ/2ρUL(r). (3.66)

Figure 3.16 shows a lattice of merons. The arrows are the XY components of the

merons in (U,L) basis:

pz = ρUU − ρLL

px + ipy = 2ρUL (3.67)

Each meron has half the total charge of a bimeron so it carries total of ±e/2 charge.

Also clearly each meron is carrying a local charge imbalance (∝ pz) at its center which
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(a) (b)

(c) (d)

Figure 3.14: (a)In-plane components of the pseudo-spin of a bimeron in (U,L) basis at

νT = 1.02 , zero tunneling and layer separation d/` = 0.8. The length of the vectors

is proportional to the magnitude of |ρUL| at each point. (b)The In-plane pseudo-spin

field (vectors) and Z-component of the same set of vectors(contour). (c) Z-component

of the same bimeron in (U,L) basis: ρUU − ρLL in units of 1/2π`2. (d) 3D plot of the

excess density of the bilayer system due to the same bimeron in units of 1/2π`2.
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filling factor of the bilayer system at zero tunneling.

is an electric dipole moment called the meron’s polarity. Consequently merons are

of four types: V↑,A↑,V↓ and A↓, in which V(A) represents vortex(anti-vortex) and

↑(↓) represents polarity up(down) toward upper(lower) layer. In a balanced bilayer

system the charge of a meron is q = −nσ in which n is the vorticity and σ is the

polarity [27]. It turns out later on that in the imbalanced case the charges are slightly

different.

3.6 Spin Investigations in Bilayers

3.6.1 NMR Experiment

As mentioned in the previous section, for very low tunneling ∆SAS ¿ ∆Z , the lowest

energy charged excitations of the bilayer quantum Hall system are bimerons which

are of pseudo-spin nature. This result, however, assumes that the spin fluctuations

are frozen out and have no contribution to the ground state of the texture lattice,

an assumption that is only valid when ignoring many body effects. In an attempt to

investigate the spin structure of the electron system in bilayers two different exper-

iments have been performed separately, nuclear magnetic resonance experiments[50]

and tilting the sample in magnetic field. We will explain the latter in the next section.

Figure(3.17) shows the nuclear magnetic relaxation times of the bilayer system for

different filling factors away from νT = 1. This result is reminiscent of the data from

single layer quantum Hall ferromagnets discussed in section 2.2.6. The rapid reduc-

tion of the relaxation time of nuclear spins can be interpreted as coupling to a low
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(a)

(b) (c)

Figure 3.16: (a)In-plane components of pseudo-spin vectors of a meron lattice in (U,L)

basis at νT = 1.02, layer separation d/` = 0.8 and zero tunneling. The length of the

vectors is proportional to the magnitude of |ρUL| at each point. (b) Z-component of

the same meron lattice state in (U,L) basis: ρUU −ρLL in units of 1/2π`2. (c) 3D plot

of the excess density of the bilayer system due to the same meron lattice in units of

1/2π`2.
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frequency spin wave mode. Because the Coulomb interaction is not spin dependent it

is expected that in the coherent regime the spin wave excitations of the bilayer sys-

tem have the same properties as that of single layers, meaning that they are gapped

with a frequency much higher than the nuclear spin frequency, and consequently it

is not possible for the nuclear spins to come to equilibrium via this mode. The other

possibility would be the presence of a skyrmion lattice similar to single layers. This

interpretation of the experimental data suggests that the lowest energy excitations of

the bilayer system might have spin textures involved. We should note that the NMR

data represented have been taken at relatively large layer separations d/` & 1 where

many body effects are the most effective, as one expects for very large separations

where pseudo-spin excitations are destroyed by quantum fluctuations.

Based on these ideas it seems necessary to find microscopic solutions of the bilayer

texture that involves both spin and pseudo-spin. In fact at large separations, it may

be possible that some of the charging energy associated with the imbalance at the

center of merons is compensated by the lower energy cost of tilting the spin at those

regions. This will give us a motivation to investigate the pseudo-spin with interwoven

spin textures.
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Figure 3.18: The energy gap as a function of tilt angle in a weakly tunneling bilayer

sample ∆SAS = 0.8K. The solid circles are for νT = 1. The triangles for νT = 2/3.

The dashed line is the predicted behavior of ∆SAS

∆(θ=0)
. After [47].

3.6.2 Parallel Magnetic Field

The longitudinal resistivity in bilayer systems is activated (i.e. has Arrhenius be-

havior) when the resistance is caused by thermally activated processes. The low

temperature activation energy of bilayer system is shown in the inset of the figure

3.18. This activation energy measured here is much larger than ∆SAS. This alone can

be a signal of the fact that this gap is not a single particle gap. Also the Arrhenius

behavior is valid up to temperatures much lower than ∆ (∼ 0.05∆) which means this

gap can not be a single particle gap. This destruction of the activated behavior at

low temperatures is because the order that had been produced by the collective gap

is destroyed.

One of the early experiments performed in order to investigate the coherence

between the quantum wells was the application of a relatively weak magnetic field

parallel to the plane of the 2D electron systems[47]. This task can be achieved by

tilting the sample in a magnetic field. In this situation the activation energy is

measured with respect to the tilt angle. The behavior of the bilayer activation energy

with respect to the tilt angle is seen in figure 3.18. This response is definitely not

consistent with the assumption that the tilting only changes the Zeeman coupling

because the activation energy is not sensitive to Zeeman coupling. In this sample,

in which tunneling is non-zero, the tunneling electrons will acquire an Aharanov-

Bohm phase as is illustrated in the figure (3.19). Consequently one can replace the
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Figure 3.19: Schematic diagram of two parallel 2DEG in presence of a parallel mag-

netic flux Φ0. The arrows show the path of a typical tunneling electron.

tunneling amplitude t by teiQx in the Hamiltonian in which Q = 2π/`‖ and so the

effective energy becomes

E =

∫
d2r

[1

2
ρs|∇ϕ|2 − t

2π`2
cos(ϕ−Qx)] (3.68)

where ϕ is the phase degree of freedom of the pseudo-spin[29]. At low B‖, Q is

small and the low energy state has ϕ ≈ Qx in other words the local spin orientation

tumbles. On the other hand, at large B‖ the gradient cost is too large and we have

ϕ ≈ constant. This is a change in the ground state that can be seen in figure 3.18. In

other words, at small tilt angle the pseudo-spin activation rapidly changes but very

soon prefers to stay constant and remains so at large angles.

It is anticipated that by a continuous change of the layer charge densities the

system can go from a balanced coherent bilayer system to a single layer system where

all the charges are gathered in one layer. In this process how do the low energy exci-

tations of the system change? We already know that the excitations of the balanced

system have pseudo-spin nature while in the single layer it involves only real spin.

Measuring the behavior of the activation energy with respect to tilt angle for different

density imbalances can reveal what happens. Figure 3.20 shows the activation energy

with respect to tilt angle for imbalances equal to zero to nearly 100%. As we can

see the behavior changes continuously from non-monotonic to monotonic signalling

a continuous change of the activated state from pseudo-spin to spin. This is telling
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us that a combination of spin and pseudo-spin texture state may be present in the

system. In the next section we will explain how we can numerically show that the

Hartree-Fock equations support the existence of a spin combined with pseudo-spin

texture lattice state.

3.7 CP3 Skyrmions

Including the spin of electrons in a bilayer system, the lowest Landau level subbands

would be α = (S, ↑), (A, ↑), (S, ↓), (A, ↓). The group of rotations of the wave function

of electrons would be isomorphic to the SU(4) group. However the Hamiltonian of

the bilayer system has an extra U(1) gauge symmetry that reduces the SU(4) to the

CP(3) group [52]. A CP(3) transformation rotates the four-component spinor with a

common local phase

ψσ(r) → eiϕ(r)Rσσ′ψσ′(r) (3.69)

in which R is an SU(4) rotation matrix. The Hamiltonian for each of the layers

separately has a U(1) symmetry due to spin but for a bilayer system the inter-layer

exchange interaction requires that the phase of the two layers be the same to keep the

Hamiltonian invariant. This is a very important fact about the bilayer system, other-

wise one could argue that the spin-pseudo-spin textures are nothing but two separate

spin and pseudo-spin textures each with a separate topological winding number. In

the bilayer system this is not in fact true and the inter-layer interaction makes it

possible to have one spin-pseudo-spin texture with one topology, in other words this

texture has a single topological winding number. This CP(3) object is often called a

CP(3) Skyrmion or an interwined texture.

To find the equation of motion for the Green’s function of the bilayer system that

involves both spin of electrons and pseudo-spin we proceed exactly as in section 3.4.

The Hamiltonian now involves both the Zeeman term and tunneling term

H =
1

2S

∑
q

∑

{X}

∑

αβ

Vαβ(q)Mα
q (X1|X4)M

β
−q(X2|X3)c

†
αX1

c†βX2
cβX3cαX4

+
∆Z

2

∑
X,j=U,L

(c†j↑,Xcj↑,X − c†j↓,Xcj↓,X)− ∆SAS

2

∑
X,σ

(c†Uσ,XcLσ,X + c†Lσ,XcUσ,X)

(3.70)

in which M ’s are defined in equation (3.30) and α, β = U ↑, L ↑, U ↓, L ↓ (Note that

we are using the (U,L) basis). Because the Coulomb potential is spin independent
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the matrix elements of the V are exactly the same as ones in eq.(3.31). Following the

same line of derivation as in equations (3.33-3.38) we find

∂Gαβ(XX ′)
∂τ

= −δαβδXX′δ(τ)− 1

S

∑

q,X,α′β′
Vα′β′(q)M

α′
q (X1|X4)M

β′
−q(X2|X3)×

×
{

ρβ′β′(X2X3)Gα′β(X4X
′)− ρβ′α′(X2X4)Gβ′β(X3X

′)
}

δαα′δXX1 +

−∆Z

2

[
(σz)

4×4G(XX ′)
]

αβ
+

∆SAS

2

[
(σx ⊗ 1)4×4G(XX ′)

]
αβ

+ µGαβ(XX ′).

(3.71)

In which :

σ4×4
z ≡

(
1 0

0 −1

)
, σx ⊗ 1 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




G =




GU↑,U↑ GU↑,L↑ GU↑,U↓ GU↑,L↓

GL↑,U↑ GL↑,L↑ GL↑,U↓ GL↑,L↓

GU↓,U↑ GU↓,L↑ GU↓,U↓ GU↓,L↓

GL↓,U↑ GL↓,L↑ GL↓,U↓ GL↓,L↓




(3.72)

The projection of the Coulomb potential in the lowest Landau level will give the same

functions as before because the Coulomb term is spin independent. So finally after

Fourier transforming we will have

(−iω − µ)Gαβ(k) = −δk,0δαβ − Uαα′(k,k′)Gα′β(k′) =

= −δk,0δαβ − ei `2

2
k×k′Wαα′(k− k′)Gα′β(k′). (3.73)

in which

Wαα′(G) =
δαα′

2π`2

∑

β′
Vαβ′(G)ρβ′β′(G)− Iαα′(G)ρα′α(G) +

+
∆Z

2
(σ4×4

z )αα′δG,0 − ∆SAS

2
(σx ⊗ 1)αα′δG,0. (3.74)

In all the above there is a summation over repeated indices. The potentials I are de-

fined in equations (3.43,3.44). To understand the interplay between spin and pseudo-

spin we can calculate the energy of the system in the Hartree-Fock approximation

following the equations (3.57-3.59)

〈H〉 =
1

2

∑

k,αβ

Iαβ(k)ραβ(k)ρβα(−k)− 1

2

∑

αβ

Vαβ(q)ραα(−q)ρββ(q) +
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+
∆Z

2

∑
j=U,L

[
ρj↑,j↑(0)− ρj↓,j↓(0)

]
− ∆SAS

2

∑

σ=↑,↓

[
ρUσ,Lσ(0) + ρLσ,Uσ(0)

]

(3.75)

The first term in the above equation involves the inter-layer and intra-layer exchanges

including terms like IULρU↑ρL↓ which are spin-pseudo-spin exchange terms. The sec-

ond term involves inter-layer and intra-layer direct Coulomb interactions.

Before starting the calculation we should note that the CP(3) skyrmion may not

exist in all parts of the phase diagram. The phase diagram of the spin-pseudo-spin

system includes interlayer bias, interlayer tunneling, Zeeman coupling and of course

layer separation and filling factor. In this five dimensional parameter space we have

been able to find only a few solutions of equation (3.73). As was mentioned before

it is expected that high Zeeman couplings (∆Z À ∆SAS) destroy the spin textures.

We also argued that at the center of a CP(3) skyrmion texture a tilt of spin may

compensate for the charging energy associated with the local imbalance of the pseudo-

spin texture, in other words a spin flip at the center may be able to relax some of the

charging energy cost. This argument however would be true if we are at large inter-

layer separations (d/` > 1) where the pseudo-spin exchange energy is small enough

for spin to be able to compensate. Consequently the CP(3) skyrmion may not exist

at small layer separations (d/` ¿ 1). In fact the spin transition in NMR experiments

have been observed close to the phase boundary. These experiments have been also

performed at vanishing tunneling samples. These analysis suggest we should start

to look for CP(3) solution in zero tunneling, low Zeeman gap and large separations.

On the other hand as was discussed in the previous section at low tunneling the

bimeron lattice prefers to transform to a meron lattice which is a vortex-antivortex

lattice. Consequently we start the iterative process with the spin and pseudo-spin

distribution following the idea of reference [52] in which we impose vortex symmetry

in spin of each layer and at the same time impose vortex symmetry in the pseudo-spin

in each spin band:

ρU↑L↑(Rπ/2G) = eiπ/2ρU↑L↑(G)

ρU↓L↓(Rπ/2G) = e−iπ/2ρU↓L↓(G)

ρU↑U↓(Rπ/2G) = eiπ/2ρU↑U↓(G)

ρL↑L↓(Rπ/2G) = e−iπ/2ρL↑L↓(G) (3.76)

Usually the iterative procedure itself finds the solution imposing only three of the

above.
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3.7.1 Numerical Results

The Hartree-Fock approximation does not converge at separations larger than d/` ∼
1.2 (due to lack of sufficient accuracy for correlations) so we limit our calculations for

separations 0 ≤ d/` ≤ 1.2. Experiments have been performed[50] at larger separations

(d/` ∼ 1.92) but we should note that our calculations neglect layer thickness and

disorder. Figure (3.23) represents the core of our numerical results. This figure

shows the reduction of the charge density due to the presence of a vortex-antivortex

lattice of spin and pseudo-spin at total filling factor ν = 0.97 at d/` = 1., zero

tunneling and ∆Z = 0.002(e2/`). Because the total filling factor here is smaller

than νT = 1 the textures are equivalent to quasi-holes of an electron gas hence the

density difference plotted is negative. The lower plots are spin and pseudo-spin out

of plane distributions which show that neither spin nor pseudo-spin have complete

polarization. The vorticity of spin and pseudo-spin is shown in figure (3.22) as well.

The size of the vectors are relative to the projection of the pseudo-spin or spin into

the XY plane. As we can see each pseudo-spin vector is rotated by π/2 locally with

respect to the spin vector at the same position, in other words

ρU↑,L↑(G) = eiπ/2ρU↑,U↓(G)

ρU↓,L↓(G) = eiπ/2ρL↑,L↓(G).

(3.77)

Figure (3.23) shows the energy difference of CP(3) skyrmion lattice and meron lattice

(ECP3 −EMeron) per electron in terms of mK. The energies are with respect to layer

separation for three different Zeeman gaps. The experimentally relevant Zeeman gaps

are about ∆Z = 0.006(e2/`)[50]. As we can see in this picture the CP(3) skyrmion

lattice has lower energy at high layer separations. This figure also clearly shows

the spin polarization per electron for the CP(3) skyrmion lattice with respect to

layer separation is incomplete for three different Zeeman couplings. In figure (3.21)

although the density of excitations is low (νT = 0.97) the CP(3) skyrmions have

distributed their density much more uniformly than a bimeron lattice. In fact no

bimeron-skyrmion combination has been observed as solution. The CP(3) skyrmion

lattice stays the lowest energy state for the whole density interval of 0.8 ≤ νT ≤ 0.97.

The CP(3) skyrmion lattice is not the only result of the numerical investigation of

bilayer excited states. At different parts of the phase diagram of the spin-pseudo-spin

system we have found other states. A list of all these states plus the pure pseudo-spin

states follows:
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Figure 3.21: (a) Charge density ρ(r) − 1
π`2

of a CP3 skyrmion lattice at νT = 0.97,

d/` = 1.0, zero tunneling and ∆Z = 0.002(e2/`) in unit cell. (b) Energy per electron of

the same kind of lattice relative to that of a meron lattice at νT = 0.8 at zero tunneling

v.s. layer separation. (c) Z-component of psudo-spin in units of 1/2π`2 of the same lattice

in (a). (d) Z-component of the real spin in the same state. Colors do not have a physical

interpretation.
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(a) (b)

(c) (d)

Figure 3.22: In plane component of the (a) spin in upper layer (b) spin in lower layer

(c) pseudo-spin in up spin band (d) pseudo-spin in lower spin band of CP3 skyrmion

lattice at d/` = 1.0, zero tunneling, ∆Z = 0.002(e2/`) and νT = 0.97. All four

distributions are associated with one single quantum state of the bilayer system.
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Figure 3.23: (a) Total spin polarization of a CP3 skyrmion lattice state of bilayer

system at νT = 0.8 and zero tunneling v.s. layer separation for different Zeeman

couplings. (b) Energy per electron of the same state relative to the meron state.

• CP3 Skyrmion: a square lattice with four spin-pseudospin textures(each being

half a bimeron) of opposite phases per unit cell as was discussed earlier. This

state is represented in Figures 3.21 and 3.22 in the case of zero tunneling.

• Symmetric Skyrmion Lattice (SS): this is a pseudospin- polarized square-lattice

state with two symmetric-band spin Skyrmions of opposite phases per unit cell.

In other words the skyrmions are formed in a superposition of the upper and

lower layer

ρS↑,S↓(Rπ/2G) = eiπ/2ρS↑,S↓(G) (3.78)

At the same time however in this state there is spin vortex and antivortex

state present in each layer separately. This state exists also at finite tunneling

strengths and low Zeeman couplings. Figure 3.24 shows the total excess density

of a SS lattice at ∆SAS = 0.04(e2/`), ∆Z = 0.003(e2/`) and d/` = 0.8. The

vector field in this picture is the XY component of the real spin in symmetric

band. The same texture lattice is seen in each layer separately but no texture

is seen in spin band.

• High tunneling CP3 (HCP3): a square lattice with two spin-pseudo-spin Skyrmions

of opposite phase per unit cell. The difference between this state and the CP3

state above is that here the spin texture exists in the symmetric and antisym-

metric bands while in the latter it exists separately in each quantum well. This
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state is the ground state only when the tunneling gap is higher than the Zee-

man gap. We note that the HCP3 state is an intermediate state between SS

and bimeron lattice states. The textures in the HCP3 state splits into two

vortices with charge e/2 by reducing the Zeeman gap. Figure 3.25 shows the

total excess density of HCP3 lattice state at d/` = 0.1, ∆SAS = 0.04(e2/`)

and ∆Z = 0.002(e2/`) at filling factor νT = 1.2 which is a high density of

textures. In this density as we can see the textures have spread their charge

density much more uniformly than a usual bimeron lattice. Figure 3.26 shows

the XY component of real spin of this state in symmetric, antisymmetric band

and the pseudo-spin in up and down spin band. In all these cases we can see

the vorticity while separately in each layer no spin or pseudo-spin vorticity can

be seen:

ρHCP3
L↑,L↓ (Rπ/2G) 6= eiπ/2ρHCP3

L↑,L↓ (G) (3.79)

• Bimeron Lattice: Discussed in previous section.

• Meron Lattice: Discussed in previous section.

One expects that the SS state will not exist at high Zeeman couplings which is

true for all spin textures. One also expects that since the pseudo-spin is polarized,

this state should be stable only at high tunneling. However there is an asymmetry

between states with filling factor νT < 1 and νT > 1 as the SS state is stable for

low and even zero tunneling at νT < 1 while unstable for low tunneling at νT > 1.

This issue of asymmetry between filling factor above and below νT = 1 continues to

exist for other spin-pseudo-spin states like the CP(3) skyrmion state in which our

numerical routines do not converge for filling factors above νT = 1. This may seem to

be in contrast with the symmetry observed in the NMR experiments however there

are several possibilities that must be addressed:

First this is not surprising because in this four subband level there is no particle-

hole symmetry unlike the case of a pure skyrmion or bimeron. Also the stability of

these states greatly depends on the lattice structure. In all our numerical work we did

not try any other lattice basis such as the triangular basis. One explanation for the

existence of high tunneling states like HCP3 at low tunneling samples can be disorder

which can pin the lattices and locally stabilize them.

Figure 3.27 shows the difference in the energy of the HCP3 or SS and the bimeron

lattice. As we can see, by increasing ∆SAS the ground state changes from bimeron

lattice to HCP3 and then to SS. Also in Fig.3.27 we can see the spin depolarization
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(a) (b)

(c) (d)

Figure 3.24: (a) Excess of total charge density of the symmetric skyrmion lattice state

at d/` = 0.8, ∆SAS = 0.04(e2/`) and ∆Z = 0.003(e2/`) at filling factor νT = 1.04.(b)

The contour plot of the same state. (c) In-plane component of the spin distribution

of the same state. The size of vectors are proportional to |ρS↑S↑| at each point. (d)

Z-component of the spin ρS↑S↑ − ρS↓S↓.
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(a) (b)

Figure 3.25: (a) 3D plot (b) contour plot of the excess of the total charge density of

a bilayer system in an HCP3 lattice state at νT = 1.2, d/` = 0.1, ∆SAS = 0.04(e2/`)

and ∆Z = 0.002(e2/`).

in HCP3 state as a function of ∆SAS. The spin polarization of the HCP3 state is

more sensitive to ∆SAS than the SS state. For νT > 1 the SS state also can be

the ground state. At νT = 1.04, we find that the SS state is the ground state for

d/` . 0.8, ∆SAS > 0.03 and 0 < ∆Z . 0.002(e2/`). The spin polarization with

interlayer separation in the SS state is shown in Fig.3.27. The linear behavior is also

seen at νT < 1. This smooth response to layer separation is very different from the

response of CP(3) skyrmion state (Fig. 3.23).

3.7.2 Effect of interlayer bias

To conclude this section, we look at the effect of a potential bias on the spin polar-

ization. Intuitively we understand that a CP3 skyrmion involves a twist in some high

dimensional space that is difficult to plot in two-dimensions. That twist will occur

through degrees of freedom where it costs the least energy, and the texture will vary

less in sectors where the system is stiff. If we can change the stiffness of textures along

some direction of phase space, we can drive the texture into or out of that degree of

freedom. A simple analogy would be to drive an O(3) model into an XY model by

making excursions into the z direction too costly. The behavior of this system with

respect to bias illustrates this physics. We choose the parameters d/` = 1, νT = 0.8,

∆SAS = 0.0002(e2/`) ∼ 0.03K and ∆Z = 0.01(e2/`) so that, at the balanced point,
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(a) (b)

(c) (d)

Figure 3.26: In-plane component of the (a) spin in the symmetric band |ρS↑S↓| and (b)

in the antisymmetric band |ρA↑A↓|. (c) pseudo-spin in the up spin band |ρS↑A↑| and (d)

pseudo-spin in down spin band |ρS↓A↓|. All these distributions are associated with a single

HCP3 state at νT = 1.2, d/` = 0.1, ∆SAS = 0.04(e2/`) and ∆Z = 0.002(e2/`).
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Figure 3.27: (a) Energy difference between the HCP3 crystal or SS crystals and the

meron state as a function of tunneling for νT = 1.2,∆Z = 0.0015(e2/`) and d/` = 0.1.

(b) Spin and pseudo-spin polarization as a function of tunneling for the HCP3 and SS

states. (c) Spin polarization as a function of interlayer separation in the SS state for

different values of the Zeeman coupling and filling factors. Here ∆SAS = 0.04(e2/`)

and νT = 1.04.
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(c) Figure 3.28: (a) Energy differ-

ence between the CP3 or SS

states and the SPB state. (b)

Spin polarization per electron as

a function of bias for νT =

0.8,∆SAS = 0.0002(e2/`) and

∆Z = 0.01(e2/`). (c) Filling fac-

tor in the right and left wells in

the CP3 state.

80



∆V/(e2/κl)

<
S

||2
>

(1
/2

)

0.00 0.05 0.10 0.15 0.20
0

0.1

0.2

0.3

0.4

0.5

0.6

∆Z/(e
2/κl)=0.002

∆Z/(e
2/κl)=0.004

∆Z/(e
2/κl)=0.006

Figure 3.29: Average in-plane spin polarization in the CP3 crystal state as a function

of applied bias for νT = 0.8,∆SAS = 0.0002(e2/`) and d/` = 1.0.

the ground state is a spin-polarized bimeron crystal. Our numerical results, plotted

in Fig.3.28, show that there is a transition first into a CP3 crystal and then into the

SS state as the applied bias increases. The energy of the CP(3) skyrmion crystal

interpolates nicely between the bimeron and SS phases as can be seen in the figure.

The corresponding spin polarizations are shown in Fig.3.28(a,b). The bias induces a

linear spin depolarization of the 2DEG in the CP(3) skyrmion state. In effect, the

texture inducing the deviation of charge density from νT = 1 is being shifted from

the pseudo-spin degree of freedom to the spin degree of freedom in a continuous way.

Note that the spin polarization varies only slightly with d/` in the SS state. Figure

3.28(c) shows the filling factors νL and νU in the CP(3) state (the exact same curves

are obtained in the SS state). Above ∆b ∼ 0.30(e2/`), all the charge is transferred

into the upper layer and the spin polarization is that appropriate for a monolayer

skyrmion crystal with filling factor ν = 0.8 and Zeeman coupling ∆Z = 0.01(e2/`)

and is then independent of the interlayer separation. We expect the marked decrease

in the spin polarization with bias to translate into an increase of the NMR relaxation

rate with increasing bias.

Our numerical calculations show that crystals involving spin and/or pseudo-spin

textures are likely candidates for the ground state of the 2DEG in a bilayer quantum

Hall system around filling factor νT = 1. At small tunneling and for νT < 1, we find

intertwined spin and pseudo-spin textures (CP3 crystal) with a spin polarization that

is strongly interlayer dependent while at higher tunneling, a symmetric Skyrmion state
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with fully polarized pseudo-spins or another type of spin-pseudo-spin state minimizes

the energy. As was discussed in the previous section, a Skyrmion crystal has an extra

gapless spin mode in the crystal phase and possibly in some over-damped form in

a Skyrmion liquid state that is believed to be responsible for the rapid nuclear spin

relaxation observed in the experiments (Fig. 3.17). This extra Goldstone mode is

present both in the SS and CP3 crystal states that we studied in this section, but not

in the bimeron or meron lattice states. To make a direct comparison with the NMR

experiments, it is necessary to compute the NMR relaxation rate.

Results of such calculations are presented in ref.[41]. The inverse relaxation

time T−1
1 ∼ ∫∞

−∞ dt〈S−(t)S+〉e−iωN t where ωN is the nuclear magnetic resonance

frequency.[42]. If the spin correlation function relaxes exponentially i.e., 〈S−(t)S+〉 =

〈S2
x+S2

y〉e−t/τ = 〈S2
||〉e−t/τ then T−1

1 ∼〉S2
||〈τ/(1+ω2

Nτ 2) is proportional to the in-plane

spin polarization so that the behavior of spin polarization Sz should be an indication

of the behavior of the relaxation time T1. The rapid change in the spin polarization

that we found in the CP3 crystal state (very small ∆SAS for filling factors around

νT = 1) may explain the rapid change in the NMR relaxation rate measured in the

experiment of [50] which was carried out at almost zero tunneling. Our Hartree-Fock

calculation indicates that the ground state at higher tunneling is a SS state instead

of a CP3 crystal. In this case, the spin polarization Sz varies much less rapidly with

filling factor than for CP3 crystal. Moreover, the spin polarization does not depend

much on the interlayer separation as can be seen, for example, in Fig. (3.27(b)).

These results as well as a strong dependence on the interlayer separation would be

more readily explained by a CP3 crystal state than by the SS state that we find. This

is also true for their measurement of the relaxation rate in the presence of an applied

bias. Figure (3.29) illustrates the in-plane component for various Zeeman couplings

as a function of bias, which we believe is a measure of the NMR relaxation rate,

for small ∆SAS. The evident continuous behavior is reminiscent of the experimental

results in shown in figure (3.20). This remarkable diagram illustrates how in the

spin-pseudo-spin state one can manipulate the spin distribution using an interlayer

bias.
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Chapter 4

Activated Transport in Bilayer Systems

4.1 Introduction

In previous chapters we discussed the coherence of the electrons in a double quantum

well system under strong magnetic field at total filling factor νT = 1. We discussed

how this system selects a new type of ground state in which electrons have a new

degree of freedom, pseudo-spin. We also demonstrated how this system supports new

types of low energy excitations in the pseudo-spin and spin sector. Transport in this

system exhibits new features and challenging experimental results that need to be

addressed. At filling factor νT = 1 a single quantum well under strong magnetic

field exhibits quantized Hall conductivity and zero longitudinal resistivity at low

temperatures as was reviewed in the chapter 2. For a bilayer system at total filling

factor νT = 1, it is also expected the same features will be observed because the

system is in a quantum state equivalent to that of a single quantum well state. In

fact, it is now experimentally verified that the Hall conductivity in bilayer systems at

total filling factor νT = 1 is also quantized and the longitudinal resistivity vanishes

at low temperatures.(Fig. 4.4).

In a typical experimental set up, quantum wells are formed in a thin (∼ 15-20

nm) GaAs layer sandwiched between two AlGaAs layers with typical thickness of

around 300 nm. The AlGaAs layers have different conduction band gaps causing

the conduction band electrons supplied from Si-doped regions to become trapped in

the quantum wells. The barrier (of thickness ∼ 12 nm) is typically an AlAs/GaAs

layer in which the tunneling nearly vanishes. The intrinsic electron density trapped

in these quantum wells can be measured and it is usually around 4×1010 cm−2. All

these crystal structures are grown using MBE technique offering an advantage over

other crystal growth techniques which is growth in a controlled ultra high vacuum
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Figure 4.1: A schematic picture of a double quantum well heterostructure. The

metallic gates are used to deplete the electron gases in top and bottom wells (green).

The contacts are used to make electrical contact to each electron gas. The red layer

is the barrier layer.

environment. This provides samples with relatively low disorder in which the mobility

can exceed 400000 cm2/Vs at the required densities. The low disorder is crucial

because one needs to avoid localization before reaching the required magnetic fields.

In order to measure resistivity in different directions in each layer one has to be able

to make contact to each layer separately. In order to do that, electrical contacts to the

quantum wells are made by thermally evaporating Au/Ge on photolithographically

defined regions of the mesa and then annealing the metal. This allows it to diffuse

down into the crystal and through the quantum wells (see figure 4.1). Through such

contacts electrical access to both electron gases is possible at the same time. In order

to make contact to each quantum well separately, Eisenstein first realized [44] that it

is possible to block the electrical contact to an arbitrary well by depleting the electron

gas using another metallic (Cr/Au) gate that has been deposited on top or below the

bilayer structure. For full experimental details, complications and methods we refer

the reader to literature [44].

4.2 Excitonic Superfluid

At νT = 1 in the bilayer system the filling factor of the lowest Landau level in each

layer is smaller than one. Consequently each layer has a number of holes at the same
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Figure 4.2: A schematic picture of a counterflow in a double quantum well. Arrows

show the direction of electron (red) movement. The counterflow will move electron-

hole (red-white) pairs.

energy level. One expects the holes to be able to pair with the electrons in the other

layer to form a gas of excitons. The quantum state of an exciton formed by two

fermions is a boson, hence in principle this gas can bose condense and become an

excitonic condensate. This is equivalent to phase coherence in the bilayer system. To

see this note that the ground state wave function of the bilayer system is

|Ψ〉 =
∏
X

[
c†X,↑ + eiϕc†X,↓

]
|0〉 (4.1)

in which ↑(↓) refers to electron being created in upper(lower) layer. This state can

be seen as a collection of paired electrons(↑) and holes(↓) with the same wave vector

(k = X/`2) or as a coherent state of two electron fluids which translates to all electrons

in the two well having the same pseudo-spin state (| →〉 = | ↑〉+ | ↓〉).
The superfluid aspect of the bilayer system has been subject of research in recent

years. In order to drive this excitonic state one needs to inject counterflow currents in

the bilayer system. In a counterflow distribution the current has the same magnitude

but with opposite direction in each layer (Fig. 4.2). If the ground state of the system

is an excitonic superfluid one expects the counterflow which drives neutral excitons to

be dissipationless and display vanishing Hall resistance. On the other hand a parallel

flow would derive the νT = 1 quantum Hall liquid state and must show quantized

Hall conductivity and zero longitudinal resistivity. Figure (4.3) shows the results

of measurement of counterflow and parallel flow Hall and longitudinal resistivity at

different filling factors at 30 mK. At νT = 1 the counterflow Hall resistivity has

clearly vanished signalling the fact that the current is carried by neutral particles.

The longitudinal resistivity on the other hand is nearly zero in both cases. In figure

(4.4) we see that as temperature decreases the longitudinal and Hall resistivity in

counterflow measurement decreases indicating a condensate state at zero temperature.
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Figure 4.3: Hall and longitudinal resistances (solid and dotted traces, respectively)

in a low density double-layer 2DES at T=50 mK. (a) Currents in parallel in the

two layers. (b) Currents in counterflow configuration. Resistances determined from

voltage measurements on one of the layers. After [53]

Figure 4.4: Temperature dependencies of various resistances and conductivities at

νT = 1 and d/` = 1.48. (a) Parallel current flow. Open dots: R
||
xx; closed squares:

R
||
xy. (b) Counterflow. Open dots RCF

xx , closed squares RCF
xy . (c) Parallel and

counterflow longitudinal conductivities, R
||
xx and RCF

xx , respectively. After [53]

86



The fact that no superfluidity has been observed at any finite temperature needs to

be explained.

Another signal of superfluidity in this system was mentioned in the beginning of

the previous chapter: the interlayer tunneling peak at zero bias. This effect is simi-

lar to the tunneling peak observed in conductance between superconducting islands

known as DC Josephson effect [54]. However in the case of bilayer systems this peak

remains finite even at very low temperatures, contrary to superconductors where it

is infinite. There is still debate on what is the underlying explanation for this im-

perfect superfluidity. In this chapter we will only discuss the parallel and counterflow

dissipation and on the subject of tunneling refer the reader to literature[59; 58; 69].

At the moment there are very few theories trying to explain the finite temperature

dissipation of excitonic superflow. In this chapter we will develop two different theo-

ries both arguing that disorder and topological excitations (vortices) have an essential

role in dissipation of superflow.

In transport measurements each quantum well can be contacted separately. In a

so called drag geometry current is injected only into one layer and longitudinal and

Hall resistivities are measured in each layer separately. Because of the Coulomb in-

teraction between the electrons in different layers the moving electrons on the current

carrying layer(drive layer) induces a voltage drop in the other layer(drag layer) which

is called drag resistivity. Because electron gases in both layers together make one sin-

gle quantum state, one expects the Hall resistivity in the drag layer to be quantized as

well as in drive layer. This has been indeed observed as seen in figure 4.5. The main

motivation behind our theories however has been the measurement[56] of the temper-

ature dependent resistivity in drag geometry. This measurement has been performed

for various layer imbalances. Imbalance between two layers can be created using the

large metallic full front and back gates. By application of suitable voltages one can

tune the density of each layer separately using these gates. The activation energies as

a function of interlayer imbalance are shown in figure 4.6. The drive activation energy

is almost linear and antisymmetric with respect to interlayer imbalance. The other

linear plot is for when the drag and drive layers have been interchanged. In this plot,

the drag activation energy looks almost symmetric. The most naive interpretation

of this result would be that each layer has separate charged excitations, leading to

the different activation energies, and interlayer coherence essentially plays no role.

Yet such a picture is very difficult to reconcile with the experiments described above,

in which imperfect superfluidity is manifest. In other words it is expected that the
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Figure 4.5: Conventional and Coulomb drag resistances of a low density double layer

2DES. Trace A: Conventional longitudinal resistance Rxx measured with current in

both layers. Trace B: Hall drag resistance Rxy,D. Trace C: Longitudinal drag re-

sistance Rxx,D; sign reversed for clarity. Trace D: Hall resistance R∗
xy of the single

current-carrying layer (displaced vertically by 5 kV for clarity). Trace B reveals the

quantization of Hall drag in the νT = 1 excitonic QHE. Insets schematically illustrate

the measurement configurations: Current is injected and withdrawn at the open dots;

voltage differences between the solid dots are recorded. Traces A, B, and D obtained

at T = 20mK; trace C at 50 mK. Layer densities: N1 = N2 = 2.6×1010 cm−2, giving

d/` = 1.6 at νT = 1. After [55].

excitations have the responsibility for dissipation in both layers and consequently the

activation energy for them should behave the same in either layer.

4.3 Role of Disorder

Although trapped electron gasses in today’s semiconductor quantum wells have mo-

bilities exceeding 400000 cm2/Vs we believe the remaining disorder can play an im-

portant role in dissipation. There are some theoretical works in support of this

suggestion[57]-[62]. The remote dopants such as Si atoms can form a slowly varying

random external potential for the electron fluid. Based on the Efrös model[70; 71],
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Figure 4.6: Activation energies of the νT = 1 state vs density imbalance. Squares

correspond to the activation energy determined from the longitudinal resistance in the

lower and upper layer, respectively. Triangles denotes the activation energy obtained

from the longitudinal drag. After [56].

these spatial fluctuations are screened nonlinearly by the incompressible νT = 1 elec-

tron fluid. This screening generates puddles or islands each one having density higher

or lower than average νT = 1 density4.7. Consequently these puddles must contain

a finite density of charged excitations of bilayers. At relatively large Zeeman ener-

gies we neglect any spin fluctuations and assume that these excitations are bimerons

(see previous chapter). Inside puddles with νT > 1 there are bimerons (meron pairs)

and inside puddles with νT < 1 there are anti-bimerons (anti-meron pairs). Between

the puddles there are narrow regions that still have their total filling factor νT = 1.

These strips have a width of approximately a magnetic length `. These incompress-

ible strips follow the equipotentials of the total effective potential and are the only

regions where there is still coherence left and there is a charge gap for excitations.

On the other hand the quantum coherence is locally lost inside puddles because of

the random motion of mobile bimerons. At the edges of the coherent strips merons

and anti-merons from two neighboring puddles are weakly paired (Fig. 4.7). These

pairs can not cross the incompressible links at zero temperature because they have

to overcome the charge gap inside the strips. At high enough temperatures however

this barrier can be overcome and a meron (anti-meron) can cross these strips.
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Figure 4.7: Schematic picture of two neighboring puddles inside a νT = 1 bilayer

system. Red objects are merons with vectors indicating their dipole moment direction

(which is perpendicular to the plane of puddles) and signs indicating their electric

charge. The white objects are anti-merons.

A meron is a vortex in pseudo-spin phase or equivalently in the phase of the exciton

condensate wave function in analogy to 2D superfluids. In this analogy a supercurrent

(in this case an exciton current) will apply a Magnus force[67] on vortices (merons)

transverse to the supercurrent direction. The appearance of Magnus force is very

general and has nothing to do with quantum mechanics (it was originally discovered

in classical fluids[67]). In a 2D neutral superfluid with the fixed boundary condition

(uniform flow v = ~
m∗∇ϕ at the boundaries or equivalently constant current at the

two ends of the Hall bar) a vortex placed in this fluid will feel a Magnus force of

magnitude

FM = ρv × n̂ (4.2)

in which ρ is the density of the neutral fluid forming the vortex and n̂ = ẑ
∮

v · dl
is perpendicular to the plane of the superflow. The motion of vortex perpendicular

to the flow (as in eq. 4.2) produces a voltage drop along the direction of the flow.

This occurs because the passage of a vortex across the flow produces a phase slip of

2π along the flow, and the rate of change of the phase is directly proportional to the

voltage. However this is not all that determines the dynamics of merons. In order to

completely understand the dynamics of merons in a bilayer quantum Hall system we

need to remember that these merons have electric charge and one needs to take this

into account in a systematic way. We will address this using Chern-Simon Theory in

the next section.
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Figure 4.8: Operation of exchange of two indistinguishable particles is equivalent to

half the rotation of one around the other.

4.4 Chern-Simon Theory for Quantum Hall Systems

In this section we are going to show how one can use boson statistics for fermions in

two dimensions and what is the consequences of this view in quantum Hall systems. A

detailed, mathematically rigorous Chern-Simon theory is unnecessary for our purposes

here and is out of the scope of this dissertation[72]. However we will try to lay out a

simplified view in order to be able to use it for our bilayer system.

Imagine two spinless fermions on a two dimensional surface. The wave function

of this two body system must be antisymmetric

Ψ(r1, r2) = eiπΨ(r2, r1) (4.3)

In two dimensions one can imagine this property of the wave function as arising from

the Aharanov-Bohm phase induced by an external magnetic vector potential. This

can be justified by noting that the operation of exchanging of two particles can be

regarded as half the operation of rotating one around the other (see figure 4.8). The

induced Aharanov-Bohm phase then will be

φAB =
e

2~

∮
A · dl =

eΦ

2~
(4.4)

in which the integral is over the closed loop as seen in figure (4.8) and Φ is the

magnetic flux. For this phase we should have φAB = π which yields

Φ = φ0. (4.5)

in which φ0 = h/e is a quantum of magnetic flux. In conclusion we see that in

two dimensions fermionic statistics can be constructed by using a charged boson

(with charge e) with a fake magnetic flux quantum. The important notion here is

that the exchange operation is merely statistical and only limits the properties of

the wave function independent of the Hamiltonian while the Aharanov-Bohm phase

interpretation automatically includes the Hamiltonian. This is basically telling us
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that converting fermions to bosons plus magnetic flux is Hamiltonian dependent and

so its process will be different for different many body systems. In fact there is a

method to include the many body effects into account in a more systematic way.

Below we will briefly explain such a method for the quantum Hall effect. Consider

N spinless electrons in a two dimensional layer under strong magnetic field. The

Hamiltonian of such a system is

Ĥ =
N∑

i=1

1

2m
[pi + eA(ri)]

2 +
∑

i

eA0(ri) +
∑
i<j

V (ri − ri) (4.6)

One can show rigorously that this Hamiltonian operator can be rotated to a new

Hamiltonian for a bosonic system with an extra as yet undetermined gauge field a(ri)

Ĥ′ =
N∑

i=1

1

2m
[pi + eA(ri) + ea(ri)]

2 +
∑

i

eA0(ri) +
∑
i<j

V (ri − ri) (4.7)

in which we require

a(ri) =
φ0

2π

θ

π

∑

j 6=i

∇iαij (4.8)

where φ0 is the quantum of flux and θ will be determined later. The derivatives ∇i

are with respect to ri and angles are

αij = tan−1 yj − yi

xj − xi

. (4.9)

The eigenfunctions of the fermionic Hamiltonian Ψ(r1, r2, ..., rN) are antisymmetric

while the eigenfunctions of the bosonic Hamiltonian Φ(r1, r2, ..., rN) are symmetric.

The operator that rotates Ĥ to Ĥ′ is

U = exp
[
i
∑
i<j

θ

π
αij

]
. (4.10)

One can show that

H = UH′U−1 (4.11)

which means that if one can solve the bosonic problem and find its eigenfunctions Φ

with eigenvalues E then

Ψ = UΦ (4.12)

is an eigenfunction of H with the same eigenvalue as E. The parameter θ will be

adjusted by imposing the correct statistics for Ψ. To connect bosons to fermions we

require θ to be an odd multiple of π

θ = (2k + 1)π. (4.13)
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From the above discussion it is clear that the rotation operator in fact contributes a

phase e±iθ when two particles are exchanged. The vector potential a interacts with

the bosons and this phase transformation arises as the Aharanov-Bohm phase. From

equations (4.8) and (4.9) we can find the desired gauge field

aα(ri) =
φ0

2π

θ

π
εαβ

∑

j 6=i

(xj − xi)β

|ri − rj|2 . (4.14)

This vector potential can be interpreted as coming from the field A(r) created by a

particle at point rj acting on the particle at position ri.

A =
φ0

2π

θ

π

(−y

|r|2 ,
x

|r|2
)

=
φ0

2π

θ

π

1

r
eϕ (4.15)

is the vector potential with the strength φ0
θ
π

at the origin with the associated magnetic

field

∇×A = φ0
θ

π
δ(r)ẑ (4.16)

For an arbitrary closed path C around the origin we obtain

Φ =

∮

C

A(r) · dl = φ0
θ

2π
(4.17)

which is the flux associated with this vector potential.

Equation (4.14) can be written as

a(ri) =
∑

j 6=i

A(ri − rj). (4.18)

Consequently a particle at position rj can be regarded as the source of the magnetic

flux φ0(θ/π), creating a vector potential at ri. As was mentioned the exchange of two

particles is equal to half a rotation of one around the other and the Aharanov-Bohm

phase change of their wave function would be

∆φAB =
e

2~

∮

C

A(r2 − r1) · dr2 =
e

2~
φ0

θ

π
= θ (4.19)

which means for fermions it should be θ = π. However for more general discussions

we keep θ unspecified.

In order to be able to use reliable approximations it is useful to express the bosonic

representation of the electronic system using second quantized formulation

Ĥ′ =

∫
d2rφ†(r)

{ 1

2m

[
− i

~
∇+ eA(r) + ea(r)

]2

− µ + eA0(r)
}

φ(r)

+
1

2

∫
d2rd2r′ρ(r)V (r− r′)ρ(r′). (4.20)
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Here φ(r) is the bosonic creation operator

[φ(r), φ†(r′)] = δ(r− r′), (4.21)

and ρ(r) = φ†(r)φ(r) is the particle density. The Chern-Simon gauge field then will

have the form

a(r) =

∫
d2r′A(r− r′)ρ(r′). (4.22)

which yields

ẑb(r) = ∇× a(r) = φ0
θ

π
ρ(r)ẑ. (4.23)

as the Chern-Simon magnetic field density proportional to the particle density ρ.

This is indicating that to every boson one gauge flux (θ/π)φ0 is attached and the

combination of the two will make a fermion.

The above discussions introduces a systematic way to include the Chern-Simon

gauge field into the problem of a fermionic system in two dimensions. Note that the

importance of dimensionality is apparent here when one wants to use the Aharanov-

Bohm effect to derive the correct statistics as was mentioned in the beginning of this

section.

In summary we have learned that one can replace the two dimensional electron

system with a system of charged bosons that are interacting with each other via a

short-range repulsive force expressed as a gauge term in the Hamiltonian called the

Chern-Simon gauge field. In a simple mean field approximation and for the case where

the external magnetic field is constant ∇ × A = −Bẑ one can neglect the density

fluctuations and estimate the average magnetic field at each point as

B = −Bẑ + φ0
θ

π
ρẑ. (4.24)

At filling factor ν we will then have

B = B(
νθ

π
− 1)ẑ (4.25)

which indicates that at ν = 1 we can choose θ = π which makes B = 0. Consequently

the 2D electron system in constant magnetic field at ν = 1 will be equivalent to the

mean field approximation of a charged bosonic system with Chern-Simon gauge field

with zero total magnetic field. This will immediately suggest that this system may

bose condense and become a superfluid. Using this fact one will be able to derive

all properties of the quantum Hall system including zero longitudinal resistivity and

quantized Hall conductivity.
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Now let’s go back to eq.(4.25) in which we choose θ = π. From this equation

we see that adding(removing) a charge to(from) the ν = 1 system is equivalent to

adding(removing) a quantum of magnetic flux to(from) the system. This is the same

property discussed in the chapter 2 where spin configuration actually provided an

additional flux equivalent to additional charge with the assumption that the Hall

conductivity is quantized however we have gone through a reverse argument here and

did not use the quantized Hall conductivity assumption.

4.5 Dynamics of Merons in Bilayer System

According to the discussions above we can interpret a νT = 1 bilayer as a system of

bosons each having a flux quantum attached to them. The magnetic field providing

this flux is anti-parallel to the external magnetic field (eq.4.24). On average the total

magnetic field on this bosonic system then will be zero and we will have a νT = 1 bose

condensate (a superfluid). Bosons in this condensate however have another degree

of freedom, their pseudo-spin. One may also view this composite boson condensate

with a pseudo-spin degree of freedom as a composite boson condensate together with

an excitonic condensate.(see section 4.2)

In this section we are going to calculate the forces on merons for any current

distribution in a bilayer system. As was discussed in section 4.3 from these dynamics

we will be able to find the dissipation mechanism and may be able to explain the

observed activation energies.

Let’s take JU and JL as current densities in the upper and lower layers respec-

tively. This current distribution has two components: a parallel flow component,

J|| = (1/2)(JU + JL) and a counterflow JCF = (1/2)(JU − JL). As was mentioned

in the section 4.3 a meron will feel a Magnus force from the counterflow in analogy

to fluid dynamics. On the other hand from the discussion in the previous section we

understand that addition of a charge to the ν = 1 quantum Hall system is equivalent

to the addition of a flux quantum to the bosonic system. This should also be true for

a charged excitation of the bilayer system. Consequently a bimeron or any charged

excitation with total charge q will be carrying a Chern-Simon flux equal to (q/e)φ0.

This magnetic flux will interact with the current that flows inside the νT = 1 charged

bosonic superfluid by the Lorentz force. These two forces (the Magnus force from

excitonic superfluid and the Lorentz force on the νT = 1 charge flow) will determine
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the motion of merons. In order to derive these forces first we consider the general im-

balanced bilayer (relevant to biased bilayer experiments mentioned in the beginning

of this chapter) with filling factors νU and νL for upper and lower layers respectively.

The charge of merons in this case can be determined according to the table 4.1. The

Magnus force due to the counterflow (Eq. 4.2) is

FM = −(sφ0)JCF × ẑ, (4.26)

in which s = 1
2π

∮ ∇ϕ ·dl is the vorticity, φ0 is the quantum of flux and the minus sign

is because JCF is the current density of electron charge (-e) . It is also important to

note that we are defining the currents as the current of electrons moving in the lab

frame while we should use the counterflow with respect to the νT = 1 bosonic system

as the background. In order to find the velocity of the excitons with respect to this

background first we note that the velocity of the electrons in the background system

with respect to the lab frame is

vLab
back =

2π`2

−eνT

J||. (4.27)

To determine the velocity of excitons with respect to the lab frame we can assume

νU > νL without loss of generality

vLab
exciton =

2π`2

−eνL

JL. (4.28)

Consequently the exciton(counterflow) current density with respect to the background

will be

Jrel
CF =

−eνL

2π`2
vrel

exciton

=
−eνL

2π`2
(vLab

exciton − vLab
back)

=
sφ0

νT

[JU − νU(JU + JL)]. (4.29)

As we mentioned the free topological excitations(merons) carry a flux which results

in a Lorentz force from the charged bosonic background current. This force can be

written as

FLorentz = −(qφ0)J|| × ẑ (4.30)

in which q is the charge of the meron that has to be determined in a general imbalanced

bilayer case using the table (4.1). From the equations (4.30) and (4.29) we conclude

that the total force on a meron from any current distribution in bilayer system is

Fmeron =
φ0

νT

{[(1− νL)s− qνT ]JL − [sνL + qνT ]JU} × ẑ. (4.31)
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s +1 +1 -1 -1

p +1 −1 +1 −1

qsp −νL νU νL −νU

Table 4.1: Electrostatic charge of each type of meron in units of e. νU , νL are the

upper and lower filling factors respectively. s and p are vorticity and dipole moment

respectively.

At νT = 1 using the table (4.1) we find that in a drag experiment (JU = J and JL = 0)

the force on two types of merons with the same dipole moment (p = +1) vanishes !

This indicates that for the drag geometry merons of only one dipole moment type are

able to dissipate current. On the other hand, because merons have a dipole moment,

their activation barrier energy in the presence of an interlayer bias must be linear in

lowest order approximation in bias V

∆meron ≈ ∆0 + pV (4.32)

in which p is the meron dipole moment. Consequently if one varies the interlayer

bias the observed activation energy must behave asymmetrically which agrees with

experiment as is seen in figure (4.6). The detailed behavior of the energy barrier can

be calculated numerically as will be explained in the next section. To complete this

analysis one has to calculate the voltage drop in each layer explicitly.

In a general current distribution we consider ∆VU and ∆VL as the voltage drops

inside the upper and lower layers between two points a distance y apart as a result

of transverse meron motion. Using an analogy to the Josephson effect in a weak link

inside a superconductor for a density nsp of merons with vorticity s and dipole p we

will have
−e

~
∆V =

dϕ

dt
= 2πsnspuspy (4.33)

in which ϕ is the phase of the exciton condensate and usp is the velocity of the

merons. Because this voltage drop is in a exciton (a particle-hole pair) condensate

∆V = ∆VU −∆VL. Taking into account all the meron types

1

y
[∆VU −∆VL] = −φ0

∑
s,p

snspusp. (4.34)

On the other hand the motion of meron means motion of a magnetic flux in the

bilayer system which induces a voltage drop according to Faraday’s law

−e

~
∆V = 2πy

∑
s,p

nspuspqsp (4.35)
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in which ∆V is the total voltage drop in both layers: ∆V = νU∆U + νL∆L. Conse-

quently
1

y
[νU∆VU + νL∆VL] = −φ0

∑
s,p

qspnspusp. (4.36)

For the drag geometry(JL = 0) one immediately concludes that ∆VL = 0 and at

νT = 1

∆Vdrive = yφ2
0(µV ↑nV ↑ + µA↑nA↑) (4.37)

in which we have defined µ = v/F as the effective mobility of merons.

In order to explain the voltage drop in the drag layer (VL 6= 0) we must identify

how forces on the p =↓ merons might arise. A natural candidate for this is the

interaction between merons with opposite vorticities, which in the absence of disorder

binds them into pairs at low meron densities. Assuming that driven merons crossing

incompressible strips will occasionally be a component of these bimerons, a voltage

drop in the drag layer will result, of the same sign as that of the drive layer. The

mobility of such bimerons is limited by the energy barrier to cross an incompressible

strip. Since these strips are narrow compared to the size scale of the constituents

of the bimeron, we expect the activation energy to be given approximately by the

maximum of the activation energies for merons of the two polarizations p =↑, ↓.
This leads to a drag resistance much smaller than that of the drive layer, and an

activation energy that is symmetric with respect to bias. Both these behaviors are

observed in experiment[56; 68]. It is interesting to notice that, within this model,

as samples become increasingly clean one expects such mobile bimerons to become

more prominent relative to single merons, so that the voltage drop in the two layers

will increasingly match with decreasing disorder. In principle a drag experiment in a

sample clean enough that all merons are paired will result in precisely the same voltage

drop in each layer, so that pure counterfow becomes dissipationless, and parallel flow

dissipation occurs in a manner such that one cannot distinguish whether the electrons

are moving in the upper or lower layer.

The most important difference between the Chern-Simon theory of bilayer dissi-

pation presented here and other theories is the involvement of topological charges.

Thus it is important to know how the energy barrier of incompressible links for these

charges behaves as a function of various parameters as we discuss in the next section.
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(a)

(b)

Figure 4.9: (a)Finite reciprocal lattice vector construction of a checkerboard strip

bias potential with a width ∼ 1.04` for νT = 1.02 lattice. The length of each strip is

∼ 10`.(b) Unit cell of a lattice of merons for layer separation d/` = 1 at νT = 1.02

and zero tunneling.
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4.6 Model of Activation Barrier For Merons

In equilibrium, one expects the energy of merons residing in different puddles to be

roughly equal. When a meron hops from one puddle to the next it must pass through

an incompressible strip, where its energy is higher. Computing the activation energy

directly for such a process is challenging because it is difficult to find the energy of a

meron in a puddle with any precision. However, one can estimate the relative activa-

tion energy for merons to pass through the barrier region for different biases. In order

to do this, we compute the energy of a lattice of merons in a commensurate potential,

for which there is a strip with interlayer bias running directly through the center of

every meron in the lattice (Fig. 4.9). By taking the difference in energy between

configurations in which the meron polarizations are parallel and antiparallel to the

bias potential, one arrives at an estimate for the bias dependence of the activation

energy. We used the same method to derive the energy of topological excitations as

in chapter 3.

To compare with experiment we wish to compute the energy difference as a func-

tion of the difference in filling factors for the layers, ∆ν. To accomplish this we also

compute meron lattice states with a uniform bias, to estimate the ∆ν associated with

a given bias. Estimates of the incompressible strip width indicate that it should be of

order `, which is rather narrow compared to the size a meron for very small tunnel-

ing so we consider this situation in computing the bias dependence of the activation

energy. Typical densities resulting from the calculations are illustrated in Figures

(4.10(a),4.10(b)). Figure (4.10(a)) shows the density of a meron before applying the

strip bias potential at d/` = 1 and zero tunneling. This distribution clearly has

circular symmetry. Figure (4.10(b)) shows the density of the meron after applying

the strip bias potential that creates an imbalance of ∆ν/νT ∼ %4.8. As we can see

the meron has lost the circular symmetry in trying to avoid the bias region. Figure

(4.11)(b) shows the difference between the two densities where we can see that the

meron has transferred part of the charge density away from the biased region. In fact,

part of the charge has moved to the sides of the strip creating an asymmetry toward

a direction perpendicular to the strip.

In our numerical derivation the initial condition for the meron had a vortex sym-

metry (ρ(RθG) = eiθρ(G)). During all the iterations the solution kept this symmetry

even in the presence of the strip bias without the need to enforce it. This indicates that

the meron lattice solution is robust against the different variations of bias potential.
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(a)

(b)

(c)

Figure 4.10: (a)Charge density of a meron at d/` = 1, νT = 1.02 and zero tunneling.

(b) The applied bias strip potential with a width of ∼ 1.04`. (c) Charge density of

meron after applying the bias strip potential that creates an imbalance of ∆ν ∼ %4.8.
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(a)

(b)

Figure 4.11: (a) The same potential as in figure 4.10(b) . (b) Difference of charge

density of a meron after applying the potential with strength v = 0.01e2/` creating

an imbalance of ∼ %4.8 at d/` = 1.0, νT = 1.02 and zero tunneling.

102



Figures (4.12) shows the difference in charge density of a meron at a smaller separa-

tion d/` = 0.5 and zero tunneling with almost the same imbalance ∆ν/νT ∼ %4.6.

Clearly the change is much smaller than the case with larger separation. Physically,

this difference is a result of the larger exchange energy for smaller layer separations,

which makes it more difficult for merons to deform. Through such deformations, the

electron density in the merons can avoid the most energetically expensive regions. On

the other hand, for very small layer separation, the bias required to displace charge

from one layer to the other becomes very small, so that for a fixed population imbal-

ance ∆ν, the energy difference between the two polarizations must vanish as d → 0.

As a result, the activation energy for fixed ∆ν is expected to be a non-monotonic

function of d/` as can be seen in figure (4.13). This is an important prediction that

can be tested in experiment. Figure (4.14) shows the energy difference of a meron

as a function of layer imbalance. The results are qualitatively quite similar to exper-

imental observations although the overall magnitude is roughly a factor of 3 larger.

Likely causes of this discrepancy are the absence of finite well-width corrections in

our calculations, and the absence of quantum fluctuations which should lower the ex-

change stiffness in the incompressible strip. Discrepancies of this magnitude between

Hartree-Fock calculations and measured activation energies are quite typical [63; 20]

in quantized Hall systems. On the other hand this value decreases with decreasing

the width of the strip bias potential as can be seen in figure (4.15). This indicates

that the observed activation energies in experiments are indeed the energy barrier

against merons hopping across the incompressible strips rather than their excitation

energy out of the νT = 1 vacuum and another reason why they are smaller than the

actual calculated values in the numerical Hartree-Fock approximations.

Before we finish this section it is important to point out that it has been argued

that the Lorentz force and Magnus force on a skyrmion in a single layer quantum

Hall system are in fact equivalent and are two representations of the same force[64].

This argument is true and must be answered for the case of bilayer system. First we

should remember that the Magnus force and Lorentz force come from two different

external current sources, namely counterflow current and parallel flow current and

one can distinguish between the two experimentally. Second it is possible to derive

the dynamics of merons using a classical theory of vortex dynamics in ferromagnets

[65]. In this theory out-of-plane vortices are defined as the vortices that have an out

of plane component determining their polarity. Depending on the polarity one can

show that these vortices will feel a force called gyromagnetic force. One can show that
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(a)

(b)

Figure 4.12: (a) The same potential as in figure 4.10(b) . (b) Difference of charge

density of a meron after applying the potential with strength v = 0.003e2/` creating

an imbalance of ∼ %4.6 at d/` = 0.5, νT = 1.02 and zero tunneling.
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in presence of any current distribution the Magnus and gyromagnetic force together

give rise to the same total force as the one in equation (4.31).

4.7 Future Work

The presented theory in the last few sections is a new approach in analyzing the

transport properties of the bilayer systems. This theory can be developed in so many

different ways. The possible role of low but non-zero tunneling amplitude in activation

energy of merons can be investigated using for example parallel magnetic field. As

was discussed in chapter (3) in a sample with non-zero tunneling bimerons are lower

in energy than merons. Bimerons on the other hand do not have an electric dipole

moment consequently they don’t respond to the interlayer bias which results in the

disappearing of the asymmetric behavior in the activation barrier. It would also be

interesting to know the response of a bimeron to a strip bias potential. Does the

bimeron prefer to split into two separate merons? This may illustrate why disorder

can unbind merons. This response can be studied by varying interlayer bias, tunneling

and separation. On the other hand the role of spin has been completely ignored in

this chapter. First of all one needs to find out what would be the response of the

meron to strip potential when the Zeeman gap is low such that it allow the spin of

electrons tilt away from majority direction in order to compensate for energy cost of

the bias strip. On the other hand CP3 skyrmions are robust against interlayer bias

as was illustrated in the previous chapter. The question then remains whether they

are robust against the application of strip biases ? and how their energy will change.

All these questions can be answered by extending the above numerical work and also

by studying a possible spin-pseud-spin Chern-Simon theory for bilayer system. These

questions also may in principle be studied by experiments.

4.8 Meron-Edge Theory, An Alternative?

The edge current in quantum Hall system has unique properties. In the above discus-

sions edge current was totally ignored assuming that in the absence of backscattering

there is no dissipation in the edge current. However throughout the whole theory it

was assumed that the edge current is responsible for the quantized Hall conductance

(as discussed in chapter 2). There is a serious concern among the Hall effect commu-

nity about the role of edges of the Hall bar in the measured transport properties [66].

105



0.5 0.6 0.7 0.8 0.9 1 1.1
d/l

B

0

0.2

0.4

0.6

0.8

1

∆−
∆ 0[Κ

]

∆ν/νΤ=0.06

∆ν/νΤ=0.02

∆ν/νΤ=0.1

Figure 4.13: The energy barrier for a meron crossing a strip bias of width ∼ 1.04` as

a function of layer separation for three different imbalances.
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Figure 4.14: Energy barrier for a meron crossing a strip bias of width ∼ 1.04` as a

function of layer imbalance for three different three different layer separations.
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Figure 4.15: Energy barrier for a meron crossing a strip bias as a function of layer

imbalance for three different strip widths ∆ξ at d/` = 0.8.

Figure 4.16: Schematic picture of

one possible process through which

a meron driven toward edge can be

absorbed by edge current follwed by

emission of a meron with opposite

vorticity. The dashed drawing on

the right is the image of the meron

(vortex).
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One of the reasons for this concern is that the contacts made to the electron fluid are

first of all interacting with the edge current. In an attempt to interpret the activation

energy results of the experiments (Fig. 4.6) one can consider the interaction of the

edge current with the bulk in presence of merons. In this section we introduce an

effective theory of meron-edge interaction and show that it is possible to explain the

experimental results using this theory.

We assume the edge current possess two independent properties : local charge

density ρ(y) = ρU(y)+ρL(y) and pseudo-spin density m(y) = ρU(y)−ρL(y). Assuming

the system is in coherent quantum Hall regime the Hall resistivity is nonzero and

quantized in both layers (fig. 4.5). Also we assume that the charge of merons are

close to half the electronic charge independent of imbalance. This assumption is only

true for small imbalances. Finally we consider the specific case of current in top layer

IU 6= 0 and in bottom layer IL = 0.

One can view the current distribution as the sum of a counterflow and a parallel

flow as was used before. The counterflow current drives excitons in the system so

it couples to the excitonic superfluid. This current in the superfluid will produce a

Magnus force (eq. 4.2) on the merons already present in the system, a force transverse

to the direction of the current. This force drives vortices to one edge and anti-vortices

to the other edge of the system. Voltage probes in a layer measure the local edge

current at the leads. The charge and dipole moment of the driven merons at the

edge will influence the local charge and pseudo-spin density of the edge and cause

dissipation. The measured activation energies are then the energies of merons trying

to overcome the incompressible barriers formed by disorder. This activation energy

is numerically calculated in the previous section.

We use n↑ , n↓ , p↑ and p↓ to denote the charge densities associated with merons

of the type V− ↑ , A− ↓ , A+
↑ and V+

↓ respectively. The ± sign indicate the charge

of the meron. We assume there is no recombination inside a puddle and that the

charge transfer between puddles occurs almost instantaneously in the steady state so

the current density associated with any type of meron flowing into the edge will be:

j(x0) = µICF +Γδn(x0) in which ICF is the counterflow current, x0 is the position of

the last strip a meron has to hop across to reach the edge and µ is the effective mobility

of the meron. We have assumed only the merons drift in the x-direction perpendicular

to the current flow. Finally δn indicates the deviation from zero-current density, n0.

We assume this process is thermally activated, Γ = Γ0e
−∆/kBT and µ = µ0e

−∆/kBT in

which the activation energy has been calculated in the previous section.
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Assuming current flows in the top layer, the pseudo-spin of electrons at the edge

are polarized toward top layer. The merons hopping the last energy barrier join

the edge current. From a microscopic point of view it is very difficult to find out

what happens to the local charge density when a meron enters the edge, however

macroscopically, using basic physical principles we can argue in a semiclassical way

that the edge current can absorb the charged merons: When a meron V− ↑ is close

to the edge, in order to satisfy the correct pseudo-spin boundary conditions one can

imagine an image charge which has to be A+ ↑ or A− ↓ approaching the edge from

outside (Fig. 4.16), edge current absorbs the V − ↑ and A+ ↑ or A− ↓ will enter the

system so in effect the charge density or pseudo-spin density at the edge has changed

by one unit. Note that the only type of charge needed to be conjugated is the vorticity

charge not the real electric charge because there is no restrictions on the electric field

distribution at the edge. The same type of processes can occur for other types of

merons. These processes will dissipate the edge current and depending on the type

of process the dissipation in drag and drive layer will be different. Consider the edge

that absorbs vortices and emits anti-vortices, and assume the interlayer bias is toward

the top layer. In this case the most energetically favorable process is V− ↑→ A+ ↑ in

which the total charge at the edge changes by one electronic charge. This charge will

be added only to the upper layer to minimize the exchange interaction energy with

the existing pseudo-spin up electrons. The rate of this process can be formulated as

gn↑n↑−gp↑p↑ which includes the reverse process and the g’s are the coupling constants

indicating the strength of the process. The next lowest energy process is V− ↑→
A− ↓. This process doesn’t change the total charge density of the edge but increases

the pseudo-spin density of the edge electrons by trying to rotate their pseudo-spins

toward the upper layer reducing the charge density in the bottom layer. The rate

for this process can be written as hn↑n↑ − hn↓n↓. The next process is V↓+→ A↑+:

again this will not change the total charge density of the edge but tries to rotate the

pseudo-spin of the edge electrons toward bottom layer reducing the charge density

of the upper layer. The rate of this process is : hp↓p↓ − hp↑p↑ . The last and least

favorable process is V↓+→ A↓ in which the total charge of the edge reduces by one

electronic charge but the pseudo-spin of edge is not affected. The rate of this process

is gp↓p↓− gp↓p↓ . The above discussion implies gn↑, gp↑ À hn↑, hn↓ À hp↓, hp↑, gp↓, gn↓ .

Assuming the edge current flows only in one edge channel with constant velocity vE

the evolution of the edge charge density for each layer will be as follows :

dρ↑
dt

= vE
∂ρ↑
∂x

+ (gn↑n↑ − gp↑p↑) +
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− (hp↓p↓ − hp↑p↑)− (gp↓p↓ − gn↓n↓)
dρ↓
dt

= vE
∂ρ↓
∂x

+ (hp↓p↓ − hp↑p↑) +

− (hn↑n↑ − hn↓n↓). (4.38)

In the absence of tunneling the meron dipole moment can not flip which along with

the charge conservation allows us to conclude that the number of each meron type

is constant in the steady state. Using this boundary condition we can then find the

density gradient of the edge of each layer in terms of the g’s and h’s in the steady

state. Besides the zero bias energy, the activation energy ∆ includes the dipole-bias

interaction contribution ∆̃(V ) ∝ V for small biases: ∆ = ∆0 + ∆̃(V ). Because the

first process has the largest matrix element we can approximately ignore the other

processes. Also we can assume the coupling for exchange of V − ↑ and A+ ↑ merons

at the edge are nearly equal: gn↑ ∼ gp↑ . With these assumptions, for the drive layer

one can get:

dρ↑
dx

=
gn↑e∆̃/kBT (µn↑ + µp↑)

2e∆0/kBT gn↑ + Γ0e∆̃/kBT
ICF (4.39)

In the above µ’s are the zero temperature mobilities. In the zero temperature limit

we will have δρ↑ ∼ 1
2
ICF e−(∆0−∆̃)/kBT for all positive and negative values of interlayer

bias which means the activation energy of the drive layer is behaving asymmetric

with respect to V . At this level of approximation no voltage drop can be seen for the

drag layer. To the lowest non-zero approximation the charge density gradient for the

edge of drag layer will be:

dρ↓
dx

= −e∆̃/kBT ((µn↑ − µp↑)hn↑ + (µn↓ − µp↓)hn↓)

hn↑e∆0/kBT + hn↓e
2∆̃+∆0

kBT + Γ0e∆̃/kBT

ICF . (4.40)

for which at zero temperature limit we see that

δρ↓ ∼ −e−(∆0+∆̃)/kBT [(µn↑ − µp↑)hn↑/hn↓ + (µn↓ − µp↓)]ICF (4.41)

for V > 0 and

δρ↓ ∼ −e−(∆0−∆̃)/kBT [(µn↑ − µp↑) + (µn↓ − µp↓)hn↓/hn↑ ]ICF (4.42)

for V < 0. This is showing a symmetric activation energy with respect to V .

Of course ultimately the above two pictures (Chern-Simon theory and meron-edge

interaction theory) must be united. The Chern-Simon theory neglects edges entirely

and only assumes a balanced meron population. However this can only be true for a

finite system if we allow for charge conversion as given in figure (4.16). Conversely, the

edge picture does not predict the mobilities and transition rates implicit in eq.(4.38).

These must be generated by a microscopic theory such as the Chern-Simon approach.
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Chapter 5

Nanoring Arrays

Traditional solid state physics deals with systems of macroscopic size. Using a com-

bination of statistical mechanics and quantum mechanics physicists have been able

to understand many physical aspects of different types of materials. These materials

consist of a macroscopic number of particles of the order of Avogadro’s number N and

volume V. In order to be able to use statistics in calculations one needs to assume N

and V approach infinity in a way that the density n = N/V stays constant. Quantum

interference effects in these systems usually are suppressed due to the large number

of particles except at special circumstances like in superfluid systems at low tempera-

tures or most of the second order magnetic phase transitions. However fabrication of

micro- and nano-sized structures like quantum dots, wires and rings in recent years[3]

has made it possible for physicists to examine new ideas in the physics of electronic

devices. In these systems two important interrelated quantum mechanical character-

istics can change the behavior from being a regular macroscopic system: discreteness

of energy levels and interference. These small size devices act as artificial atoms with

discrete spectra and shell structure similar to those of real atoms. It is also possible

to control the properties of these synthetic atoms in a way that is impossible with real

ones. For example, a regular atomic orbital is three dimensional and one has limited

control over the electronic wave function, while in contrast by controlling the shape

of a quantum dot we can distort the wave function, controlling its polarizability and

its interaction with adjacent dots.

When the number of particles in a quantum system is small one can expect to

observe quantum interference effects. However even in very dilute systems quantum

phase coherence can be destroyed by inelastic scattering events. In very small systems

on the other hand, the confined particle’s path can be short enough to reduce the
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Figure 5.1: SEM Images of Ni Nano-Rings a patterned perpendicular recording me-

dia. Fabricated using bottom-up Alumina Templates with top-down fabrication tech-

niques. Courtesy of Prof. Johnson’s Lab, Department of Physics, University of

Oklahoma.

number of inelastic scattering. In the next section I will explain how inelastic scat-

tering can destroy the quantum mechanical phase of a particle and show that if the

size of the systems is smaller than or of the order of a characteristic length Lφ called

phase breaking length then one can expect quantum interference effects to appear in

the measured properties.

The focus here is on the periodic arrays of nano-rings. The basic difference between

the ring geometry and a quantum dot is the excluded middle(Fig.5.1) which confines

the electron in a ring to a narrow spatially periodic channel. This system is capable of

exhibiting various interesting phenomena such as a persistent current [4; 5; 6; 7] and

electrostatic polarization[8] due to quantum mechanical phase coherence. We should

emphasize that the model used here is very simple and does not include many different

structural details of the rings. This idea of electrostatic polarization of interacting

ring arrays is a new idea and it is intended to open up a new field investigation on

collective phenomena in nanostructures.

5.1 Phase Coherence

As mentioned in the introduction the main feature of small size devices is the ab-

sence of scatterings that destroy the quantum mechanical phase and consequently
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any possible interference effects. This is a very important feature in nanostructures

like interacting quantum rings. In these systems the particles behave quantum me-

chanically and one needs to take the uncertainty principle and interference effects into

account in analysis. These systems usually are coupled to a much larger system called

the environment. The environment can be a lattice, surrounding electron gas or the

measurement probes. If in the scattering event the state of the environment changes

then a measurement has happened. These types of scattering events are called inelas-

tic. In this case the coupling of the particle with the environment involves this change

of state in the total state of the particle+system and causes the interference terms to

vanish. As an example let’s consider the Aharanov-Bohm experiment in a quantum

ring as figure (5.2) is demonstrating. In this setup an electron is expected to have

the option of traveling either right or left arm of the ring. The ring is threaded by a

magnetic flux Φ. In case of no interaction with the environment the wave function of

the electron at time t is:

ψ = ψl(t) + ψr(t) (5.1)

in which ψl and ψr are the probability amplitudes of the electron taking the left and

right arms respectively. The probability distribution then will have an interference

term 2Re[ψ∗l ψr] and this term will have the Aharanov-Bohm phase φAB = eΦ/~ as

it is the real part of the probability amplitude of the electron traveling once around

the ring.

Now when a measurement event takes place or there is an interaction with the

environment the wavefunction will not be the same as before. Let’s say χl(η) and

χr(η) are the wavefunctions of the environment for the left and right arms respectively.

η is a coordinate of the environment. The wavefunction of the electron+environemt

system will then be:

ψ = ψl ⊗ χl(η) + ψr ⊗ χr(η) (5.2)

After time t the interference term would be :

2Re[ψl(t)
∗ψr(t)

∫
dηχ∗l (η, t)χr(η, t)] (5.3)

The integral over η is because the state of the environment is not being measured at

any time during the electron travel so we have to sum over all η’s. This is nothing

but the scalar product of two states of the environment. These two states are the

same at t = 0 but at time t the interaction has happened and they are different.

When these two states are orthogonal to each other then the state of the electron

has been identified and the interference term is zero, the states can be distinguished.
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Figure 5.2: Schematic picture of the possible electron path through a semi-circular

circuit threaded by a magnetic flux.

The dephasing rate, 1/τφ is defined as the frequency of this type of event which is the

shift of the environment state to another orthogonal state. The dephasing length, Lφ

is defined as the average length at which the particle travels without changing the

state of the environment to an orthogonal one.

5.2 Model of Interacting Rings

We consider a one dimensional array of singly charged narrow quantum rings with

radius R and center-to-center separation of D (Fig.5.2). The width of each ring

is much smaller than its inner radius so that the lateral confinement energy of the

electron is high enough that we need only consider the one dimensional movement

of the electron around the ring. The rings are isolated from each other so there

is no charge transfer between rings however we consider the Coulomb interaction

between nearest neighbors to be in effect. The Coulomb interaction scales inversely

with distance, whereas the tunneling is exponentially suppressed. Indeed it would

be experimentally difficult to achieve the limit where electrons can tunnel between

rings. In the limit where electrons can tunnel from ring to ring the dynamics are much

richer. While in principle the Coulomb interaction is long range, we assume that there

is sufficient screening that next nearest neighbor interactions can be neglected. All

the phenomena explained here only will show up in real experiments if the rings are

sufficiently narrow, ~
2m∗w2 À kBT in which w is the width of the ring, so that electrons

are effectively one dimensional. On the other hand as we mentioned before it is very

important that electrons do not lose their quantum mechanical phase, i.e. the ring’s

perimeter has to be smaller than the electron’s coherence length (2πR < Lφ ) and the

temperature has to be lower than the dephasing temperature (T < Tφ). Only in this

conditions we can treat electrons as particles in a periodic one dimensional potential
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even in presence of disorder. With these assumptions one can solve for the extended

state solutions for the wave function of the electron. Major sources of dephasing are

usually electron-phonon interaction and impurity of the system whose effects will be

highly reduced in today’s fabricated nano-rings .

In each ring the confinement energy of the electron scales as Eq = ~2/2m∗R2; this

energy opposes localization of the wavefunction in the ring. The inter-ring Coulomb

repulsion, which scales as Ec = e2/D, tries to localize the wavefunction. Electrons are

repelled from regions of the ring where it is too close to the charges on neighboring

rings. The competition between these two physical scales creates a quantum phase

transition in the array from a localized state to extended state.

5.3 Classical Charges

Before solving a quantum mechanical problem it is always helpful to look at the

similar classical case which is usually easier to solve. The classical model considers

one charged point particle per ring with only nearest neighbor Coulomb interaction.

Unlike the quantum mechanical case there is only one energy scale in the classical

problem which is the Coulomb energy Ec = e2/D. The energy of a 1D array is given

by U1D =
∑N

i=1 e2/|~ri(θi)− ~ri+1(θi+1)|, where θi is the location of the i-th electron as

measured from horizontal axis. In the dipole approximation we can write this as :

U1D − U0 ≈ ε2e2

2D

∑
i

[3 cos 2θi + cos(θi − θi+1)

− 3 cos(θi + θi+1)]

=
ε2e2

D

∑
i

[~si · ~si+1 +
3

2
(D̂ · (~si − ~si+1))

2].

(5.4)

where ε ≡ R/D and U0 is a constant, U0 ≡ Ne2

D
(1 + ε2

2
). In the second expression we

identify the position of each charge by a vector ~si in the 2D plane of the ring pointing

from the center of the i-th ring to the charge on that ring. The unit vector D̂ lies on

the horizontal axis (see figure 5.3).

The cos 2θ (or (D̂ · ~s)2) term explicitly breaks the rotational symmetry, driving

the system from XY to Ising-like behavior. The Heisenberg term in the last line of

equation (5.4) drives the system ferroelectric at zero temperature while the second

and larger term favors states where neighbors point in opposite direction. Thus the

system at zero temperature orders in an antiferroelectric (AFE) pattern (Fig.5.2)
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in one dimension. Our numerical Monte Carlo simulations of the exact Coulomb

interaction also verifies the existence of such a minimum energy configuration in the

classical finite size arrays.

We can examine the stability of the AFE state by finding the higher energy modes

of the system. We expand the energy function (5.4) to quadratic order in displacement

angle around the AFE configuration using θi = (−1)i π
2

+ αi. The AFE configuration

has a basis with two sites so we find two independent normal modes with frequencies:

ω
(1D)
± (k) = 2ω0

√
4± 2 cos

kD

2
. (5.5)

Where ω0 ≡
√

e2/m∗D3. Both the modes are gapped since the Ising-like term pro-

vides the harmonic restoring force at each site. The modes are shown in Fig.(5.2).

The normal modes are found to be independent of the ring radius.

Another interesting classical limit of our ring problem is when there is a classical

self-interacting fluid of charge on each ring while the nearest neighbor fluids are still

interacting with each other. A quantum mechanical wave function for a particle

behaves to some extent like such a fluid although a wave function does not have

self-interaction.

To find the minmum energy distribution of charge density on each ring we define

an angular dependent charge density ρi(θi) on each ring where:
∫

ρi(θi)dθi = 1. We

are looking for the minimal solution to the variational quantity :

I =
1

2

∫
dθ

∫
dθ′

∑

〈ij〉

ρi(θ)ρj(θ
′)

|~ri − ~rj| + λ
∑

i

∫
dθρi(θ). (5.6)

For a 1D ring this expression is divergent due to infinite self energy. We can regu-

larize this in several ways. One method is to introduce a short distance cutoff ζ to

the Coulomb interaction, discretize the integral equation and then solve the prob-

lem numerically. An approximate analytic solution can then be obtained by Fourier

expanding the distribution, keeping only the first three modes. For 1D array with

periodic boundary condition we find that the amplitude of the non-trivial Fourier

mode as a function of ζ and ε ≡ R/D for ρ is given by:

ρ̂(2) ≈ −3πε3(2− 5ζ2)

4(−2 + 4 log(ε/ζ))
. (5.7)

We compare this analytic result with the numerical digitalization of (5.6) in Fig.(5.5).

As we can see in Fig.(5.5) the minimum energy configuration of the 1D array of charge

fluid does not break the up-down symmetry of the system.
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Figure 5.3: A schematic picture of the groundstate of classical point electrons for 1D array

of rings. The ring radius is R and the separation is D. The 1D ordering is antiferroelectric

and thus has a double degenerate groundstate.

(a)

(b)

Figure 5.4: Normal modes of the 1D ring array with gaps of (a) 2
√

2ω0 and (b) 2
√

6ω0.

Figure 5.5: A plot of the second fourier amplitude of the classical charge distribution

on a ring in a 1D horizontal array. The circles are numerical results, the solid line

is a scaled plot of eq.(5.7). Scaling is required since the analytic result neglects all

higher fourier modes. Inset: a sketch of the charge distribution that corresponds to

this Fourier mode. Note that the symmetry of the array is not broken by the charge

distribution.
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5.4 Quantum Charges

At first glance the quantum mechanical wave function of a charged particle resembles

the classical charge fluid. Although the wave function does not have self-interaction,

the quantum particle has a kinetic energy which opposes localization, making the

analogy to charge fluid even stronger. Unlike the classical case, the quantum prob-

lem has two competing energy scales: the quantum kinetic energy, Eq, preventing

localization and the Coulomb interaction energy, Ec, trying to localize the charges

away from each other. At Eq ¿ Ec we expect charge localization on each ring and

at Eq À Ec we expect no localization of charge, however it is not a priori obvious

whether the charge localization pattern (system polarization) breaks the symmetry

or not, exactly when this transition happens and the exact nature of this transition.

As a first step we can use a simple variational wave function to find the polarization

behavior of the system in ground state. The dimensionless Hamiltonian of an array

of one dimensional rings with radius R is given by:

Ĥ = −
∑

i

∂2

∂θ2
i

+ δ
∑

〈ij〉

1

|~ri(θi)− ~rj(θj)| , (5.8)

where δ = Ec/Eq is the interaction strength and the energy is measured in units of

Eq = ~2/2mR2. To find the ground state energy of the 1D array we employ a simple

ansatz for the wavefunction of each sublattice :

ψA(θ) =

√
1− y2

√
2π

+
y√
2π

cos(θ − φ)

ψB(θ) =

√
1− y2

√
2π

− y√
2π

cos(θ − φ)

(5.9)

The ground state values of y and φ is obtained by minimizing the energy (5.8) using

dipole approximation for Coulomb interaction we find:

y(δ, ε) =

{
1
4

√
11− 4

δε2
for δ ≥ δc(ε)

0 δ < δc(ε)
(5.10)

and φ = π/2, where the critical value of the interaction is given by δc(ε) = 4
11

ε−2. To

find out the degree of polarization we define the staggered polarization vector as:

~Ps =
∑

i

(−1)i

∫
|ψi(θ)|2~ri(θ)dθ. (5.11)
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Using variational results the staggered polarization of the system is as follows:

~Ps(δ, ε) =

{
1
8
(4+5 δε2

2δε2
)

1
2 (11− 4

δε2
)

1
2 D̂⊥ δ ≥ δc

0 δ ≤ δc

. (5.12)

Where D̂⊥ is the unit vector perpendicular to the common axis of the rings and δc

is defined in equation (5.10). A plot of this function is shown in figure 5.6 (see the

discussion of next section). As we can see variational calculation suggests that the

ground state of the 1D array of rings antiferroelecrically polarizes in perpendicular

direction at high interaction strengthes while at lower values the wave functions are

not localized, hence the system has no polarization. The validity of this result will

be confirmed in next sections using more exact and reliable methods of calculation.

5.5 Hartree Approximation

The rings considered here are well separated with exactly one electron on each ring.

Under this condition and because of strong Coulomb repulsion the effect of inter-ring

transfer of electrons and overlap of wave functions is small. We can therefore neglect

the inter-ring transfer from our calculations. Since without overlap the electrons

do not have any exchange interaction, the Hartree approximation is exact for this

problem. We can decompose the wave function in each ring into a limited number of

Fourier modes:

ψi(θ) =

n0∑
n=−n0

cne
inθ (5.13)

and then solve the system numerically in the Hartree approximation. We impose

the periodic boundary conditions on the array and by an iterative self-consistent

method we find the ground state wave function of the rings. In Fig.(5.6) we can see

the numerical results of the polarization and energy change of the 1D array of rings

for different number of Fourier modes using exact Coulomb interaction and also its

agreement with the variational calculation when we restrict the number of Fourier

modes to n ∈ {−1, 0, 1}. The results are little changed when we increase the number

of Fourier modes mostly in the high coupling regime. All the above results suggest

that there is transition from unpolarized to polarized state at zero temperature by

changing the coupling. By looking at the behavior of polarization when the number

of Fourier modes increases we realize that this transition tends to be sharper and

sharper for higher number of Fourier modes suggesting a true phase transition in

the system.If true, this transition would be a sudden change of ground state of the
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Figure 5.6: A comparison of numerical and analytical calculations of the staggered

polarization and energy as a function of δ in a 1D quantum ring array obtained in the

Hartree approximation. The numerical results are for the case include Fourier modes

|m| ≤ 1 (triangles) and |m| ≤ 6 (boxes). The solid line is the analytic result assum-

ing |m| ≤ 1. The quantity δ is a measure of the competition between the Coulomb

interaction and the quantum kinetic energy

quantum system at zero temperature, known as quantum phase transition.[11] We

will find out if this phenomena happens and find out the universality class of the

transition in the next section using the Monte Carlo simulation.

5.6 Monte Carlo simulation

It is well-known[11] that we can write the quantum partition function of a quantum

system, Z = Tre−βĤ as the sum over all paths taken by the system in an imaginary

time defined by the scale ~β. If the quantum system is D-dimensional then the par-

tition function will look like the path integral of a D+1-dimensional classical system

in which the extra dimension is the time direction 0 < τ < β~. At zero temperature

β → ∞ the classical system is truly D+1-dimensional. One can derive an effective

Hamiltonian for such a classical system from the quantum Hamiltonian using a com-

plete basis states. In this classical system the parameter of the quantum system (in

our case δ) is a control knob like temperature.

We can use Monte Carlo simulation of such a classical system to find out the

universal behavior of the quantum system. To develop a 1+1-dimensional classical
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theory for our 1D ring array we first stagger the order parameter,θi → (−1)iθi so that

we can analyze the Monte Carlo results easily. We also use dipole approximation for

the Coulomb interaction. Consequently we can write the Hamiltonian of the system

as:

Ĥ =
Ec

2

N∑
j=1

(−i
∂

∂θj

)2 − EJ

N∑
j=1

V̂ . (5.14)

In which Ec = ~2/mR2 and EJ = e2ε2/2D. In a standard derivation[12] of the

classical field theory one start with expanding the partition function by defining a

time parameter T = β~ and dividing it to N sections, T = N δτ

Z =
∑

{θ}
〈{θ}|e−N δτĤ/~|{θ}〉 =

=
∑

{θ(1)}
· · ·

∑

{θ(N )}
〈{θ(1)}|e−δτĤ/~|{θ(2)}〉〈{θ(2)}|e−δτĤ/~ · ·· (5.15)

in which |{θ}〉 = |θ1, θ2, ..., θN〉 and we used the fact that 1 =
∑

{θ(a)} |{θ(a)}〉〈{θ(a)}|
for all sets a = 1, ...,N . We can approximate the exponential for N →∞

e−δτĤ/~ ≈ e−δτK̂/~e−δτV̂ /~ (5.16)

in which K̂ and V̂ are the kinetic and potential energy of the Hamiltonian(5.14). We

can use the eigenstates of the kinetic Hamiltonian |m〉 to find

〈{θ(τa)}|e−δτĤ/~|{θ(τa+1)}〉 =
∑

{m}
〈{θ(τa)}|e−δτK̂/~|{m}〉 ×

× 〈{m}|e−δτV̂ /~|{θ(τa+1)}〉. (5.17)

where we have parametrized the sets with τ1, ..., τN . Using 〈θ|m〉 = eimθ for the above

matrix element we find

=
∑

{m}
exp

{
− (δτ/2~)EC

∑

k

m2
ke

imk[θk(τa+1)−θk(τk)] ×

× e+(δτ/~)EJ

∑

k

cos[θk(τa+1)− θk(τa)]
}

(5.18)

Because δτ is small, the sum over the m is slowly convergent. We may remedy this

by using the Poisson summation formula

∑
m

e−(δτ/2~)ECm2

eimθ =

√
π~

δτEC

∑
n

e−(~/2ECδτ)(θ+2πn)2 . (5.19)
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This periodic sequence of very narrow Gaussians is (up to an irrelevant constant

prefactor) the Villain approximation[13] to

e+(~/ECδτ)cos(θ). (5.20)

Strictly speaking, we should keep δτ infinitesimal. However, we may set it equal to

the natural ultraviolet cutoff, the inverse of the δτ = ~/
√

ECEJ ,without changing

the universality class. This frequency is actually the frequency of a classical rotating

particle in the ring that is under the influence of Coulomb force e2/D. Substituting

this result into Eq.(5.18) yields

Z ∝
∫
Dθ(τ)

N∏
a=1

exp
{ ~

Ecδτ

N∑

k=1

cos[θk(τa+1)− θk(τa)]

+
δτEJ

~

N∑

k=1

Vk(τa)
}

. (5.21)

Where D(θ) ≡ ∏N
a=1 Dθ(τa) and

Vk(τa) = 3 cos[θk(τa)− θk+1(τa)] + cos[θk(τa) + θk+1(τa)]

− 3 cos[θk(τa)− θk+1(τa)] cos[θk(τa) + θk+1(τa)].

(5.22)

Because of the trace in the partition function the starting and final states are the

same so θ(τ +β~) = θ(τ). We will also assume periodic boundary conditions in space

direction all over the simulation. By defining the spin vector ~Si = (cos θi, sin θi) we

can interpret Eq.(5.21) as a two dimensional classical spin model. Our early calcu-

lations suggested that the system of 1D rings has a transition from the unpolarized

to the AFE state. In this classical analogue because we have already staggered the

order parameter we expect to see a transition from an unpolarized to a ferromagnet-

ically polarized state (FE). Close to this transition the spatial variation of the order

parameter ~S is smooth so we can approximate (5.22) as follows:

Vk(τa) ≈ 3 cos(θk(τa)− θk+1(τa))− 2 cos 2θk(τa). (5.23)

Using the above potential finally the classical partition function looks like:

Z ∝
∫
Dθ(τ) exp

{
K

∑

〈ij〉
cos(θi − θj)− 2K

3

∑
i

cos 2θi

}
. (5.24)

Where i and j run over an infinite 2D square lattice and we have determined δτ to

identify the two couplings in eq.(5.21) as K =
√

3EJ

Ec
. Equation (5.24) is a 2D XY
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Figure 5.7: Monte Carlo results of the Cv = ∆E
2

for different system sizes. The

system is a 1+1D classical equivalent of 1D quantum ring array at zero temperature.

model with a symmetry breaking field which is 2/3 the XY coupling. Our Monte

Carlo analysis shows that this model has a continuous second order phase transition.

The order parameter of this system is the total magnetization density equivalent to

the total staggered polarization of the 1D ring array:

~m ≡ 〈~S〉 ←→ ~Ps. (5.25)

Where the average on the left hand side is the thermodynamic average over the infinite

size lattice. The fluctuations in this system are controlled by K which is the analogue

of 1/T in real classical systems. We can measure the analogue of specific heat of the

system using:

Cv = 〈E2〉 − 〈E〉2 (5.26)

in which 〈.〉 is the average over an ensemble and E is the total energy of the system.

This quantity diverges at the critical point of the infinite system undergoing a con-

tinuous phase transition. Fig.(5.7) shows the change of the specific heat of our 1+1D

system in terms of the parameter K for different lattice sizes. As we can see at Kc

the peak gets sharper and sharper with increasing lattice size L. An extrapolation

of the point of the maximum of Cv, Kc(L) to L−1 = 0 determines the approximate

critical point of the infinite lattice(Fig.5.8) . Also an extrapolation of m(L,K) for

different values of K in Fig.(5.9) shows that a real continues phase transition happens

in the infinite size system. The effective classical system derived here does not fully

explain all the physical aspects of the 1D quantum system mainly because of the

approximations used to derive the path integral. However, we believe that, close to

the critical region, these approximations do not play any role in the general behavior
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Figure 5.8: Plot of critical coupling Kc(L) at different system sizes taken from the

Cv plots.The solid line is a linear fit to the data indicating Kc(∞) ≈ 0.699.

of the system and the universality class remains unchanged. Hence using the finite

size scaling method we can determine the critical exponents of the classical system

and determine the universality class of the actual quantum system.

5.7 Finite size scaling of the 1+1D system

One of the best parameters for examining the phase transition and find the universal

exponents with finite size scaling is the dimensionless Binder ratio [9]:

gL =
〈m4〉
〈m2〉2 (5.27)

defined for a system with size L. In the disordered phase K < Kc the correlation

length ξ is finite so for L À ξ the distribution of m is Gaussian around m = 0 with

the width ∼ N−1/2 ∼ L−d/2 so gL → 0. On the other hand for K > Kc where 〈m〉
is finite, gL approaches a constant as L → ∞. The variation of gL with K becomes

sharper and sharper as L increases, however all the g’s cross at the transition point

Kc. The variation is given by the following finite size scaling function:

gL(K) = g̃(L1/ν(K −Kc)). (5.28)

Where g̃ is a scaling function which depends on L and K only in that particular form.

By using the finite size data we can try to find a data collapse and by calculating

the standard deviation find the best exponent ν fitting to the collapsed function.

Figure(5.10) shows the Binder ratio for different lattice sizes. For a correct exponent
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Figure 5.9: Extrapolation of the total magnetization density of the 1+1D classical

system to infinite size at couplings K/Kc(∞)=1.45(empty boxes), 1.32(triangles),

1.03(polygons), 0.74(filled boxes), 0.45(stars) and 0.16 (crosses). The solid lines are

linear fit to each set of data.

all the scaling functions calculated for different sizes have to be equivalent when

plotted against their argument. This can be achieved by minimizing the standard

deviation of all curves. When the correct exponent is obtained all the curves will

collapse on each other. Figure(5.11) shows the collapsed data and Fig.(5.12) shows

the best exponent is ν = 1± 0.01. The scaling for the order parameter |m| is:

m = L−β/νX0(L1/ν(K −Kc)). (5.29)

Where X0 is a function of x = L1/ν(K−Kc) only and β is one of the universal scaling

exponents of the system.To determine the universal exponent β we plot Lβ/ν vs. x

for different sizes.Fig.(5.14) and (5.15) show the the collapse of different data sets

and the standard deviation for different exponents respectively which shows the best

estimation is β = 1/8± 0.005 .

5.8 Universality Class

The universal exponents extracted from the finite size data indicate that our 1+1D

classical XY model in the symmetry breaking field is in the universality class of

2D classical Ising model, hence the nature of quantum phase transition of our 1D

quantum ring array is Ising. The Coulomb repulsion forces the electrons alternate

staying on the top and bottom of the rings. However the quantum kinetic energy

tries to avoid localization. This kinetic energy causes the electrons to tunnel from

top into bottom of the ring hence destroying the antiferroelectric order. This ordering
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Figure 5.10: Plots of Binder ratio for different system sizes. The behavior is sharper

at larger sizes.
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Figure 5.11: Collapse of Binder plots at the critical region.The best collapse is ob-

tained for ν = 1± 0.01.
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exponents.The case for ν = 1 is the best choice which is plotted in Fig.(5.11).

126



0 0.2 0.4 0.6 0.8 1
K

0

0.2

0.4

0.6

<
È
m
È
>

N=30

N=10

N=8

N=4
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127



0 2 4 6 8 10 12 14
∆

0

0.05

0.1

0.15

0.2

E
0

Figure 5.16: Plot of the energy of an interacting quantum ring array when all the

wavefunctions are constant around the ring (dashed) or all are in the form of ψd =

a+b cos 2θ(solid).The points are the actual results coming out of the numerical Hartree

calculation indicating that ψd is the selected behavior for δ < δc ≈ 8.

behavior shows up in the probability distribution on each ring. Fig.(5.16) shows the

energy of each electron with the wavefunction ψd(θ) = x + y cos(2θ) compared to

when the wavefunction is a constant all around the ring.The wavefunction ψd has two

maxima on top and bottom of the ring which means the electron is fluctuating up

and down. As we can see by increasing the coupling the lower energy state selected

by the exact Hartree calculations (dots) gradually matches ψd instead of constant

wavefunction. This behavior persists in a range of couplings close but smaller than

the critical coupling i.e. in disordered region δ < δc. Needless to say that after

transition point the ground state wavefunction is no longer ψd and the system starts

to excite more angular momentum eigenstates (Fourier modes).

All the above discussion suggests that the nature of the antiferroelectric transi-

tion is not just the simple 2D Ising but is similar to 1D transverse field Ising(TFI)

which has a quantum phase transition at zero temperature in the same universality

class as 2D Ising. We can develop an effective 1D TFI Hamiltonian for our ring

array in the dipole approximation. In this approximation we can write down the

Hamiltonian(5.14) as follows :

Ĥ = Ĥ0 + V̂

Ĥ0 =
∑

i

[(−i
∂

∂θi

)2 + 3δε2 cos 2θi]

V̂ = −δε2
∑

i

[3 cos(θi + θi+1) + cos(θi − θi+1)]. (5.30)
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Figure 5.17: Plot of the cos 2θ potential around a ring (the thick solid line), the

ground and first excited state of this potential (thin solid lines) coming out of a

simple numerical Schrodinger equation solver and the up and down states (dashed

lines) constructed from the two eigenstates(see appendix).The scale of the potential

is exaggerated for easier comparison.

The cos 2θ term in the Hamiltonian Ĥ0 has minima at the top and bottom of the

ring.

Fig.(5.17) shows the potential and the two lowest energy states of it with energies

E0 < E1. The rate of tunnelling from top to bottom or vise versa is determined by

∆ ≡ E1 −E0. The potential V̂ tries to align the electrons hence it acts like the Ising

interaction. A more rigorous derivation using Holstein-Primakov bosons[8] shows that

the projection of the Hamiltonian H into the subspace of the ground and first excited

states of Ĥ0 can be written as:

Ĥ ≈ ∆
N∑

i=1

σx
i − J

N∑
i=1

σz
i σ

z
i+1. (5.31)

In which σ’s are Pauli spin matrices and J = 8δε2. Numerical diagonalization of Ĥ0

tells us that ∆ ≈ 1− 0.1δε2 for small ε.

Close to transition the Coulomb repulsion is not strong enough to excite the elec-

trons to higher states, consequently the TFI model in Eq.(5.31) is valid and indicated

the nature of transition of the 1D ring array.
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Figure 5.18: Plots of ground state energy of the interacting quantum ring array in

the external magnetic flux threading each ring for different couplings δ. The physics

is periodic because of Aharanov-Bohm induced phase that is proportional to the flux.

5.9 Effect of Magnetic Flux

Y. Aharanov and D. Bohm (AB) have predicted [10] that the wave function of an

electron moving in a vector potential ~A(x) along the path C acquires a phase shift:

∆Λ =
e

~c

∫

C

~A · ~dr. (5.32)

AB predicted that this phase shift can be observable.When an electron is confined

on a closed path like the case of charged ring threaded by magnetic flux φ the phase

shift after one 2π rotation would be :

∆Λ =
e

~c

∮
~A · ~dr = φ/φ0. (5.33)

Where φ0 = hc/e ' 4.135× 10−7G.cm2 is the quantum of flux.

The phase shift above has been observed in numerous experiments and different

devices including the experiments of persistent current and excitons in quantum rings.

In this section we show how magnetic field changes the behavior of polarization.

The kinetic energy of an electron in a ring threaded by a constant uniform mag-

netic field Bẑ (the ring is in the x-y plane) is as follows:

Ĥ =
1

2m
(~P − e

c
~A)2. (5.34)

For the choice of gauge: ~A = B
2
(−y, x, 0) the Hamiltonian (5.34) will look like:

Ĥ =
~2

2mR2
(i

∂

∂θ
+

φ

φ0

) (5.35)
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wavefunction at low couplings. The potential is in units of δε2.
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Figure 5.20: Results of numerical Hartree calculations of the polarization of a 1D

quantum ring array threaded by half-flux quantum φ/φ0 = 1/2.At δ < δc before

staggered polarization (Ps) starts to develop a finite transverse total polarization(Px)

appears in the system.
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in which the momentum is in the polar coordinates:p̂ = −i ~
R

∂
∂θ

and the eigenfunctions

are periodic: ψ(θ + 2π) = ψ(θ). The eigenenergies of (5.35) will be:

En =
~2

2mR2
(n− φ/φ0)

2 (5.36)

in which n is an integer. By changing the gauge ~A → ~A−∇Λ wavefunctions undergo

a phase change ψ → e
ie
~c

Λψ. For example we can use the gauge transformation with

the choice of Λ = (BR2/2)θ to remove the vector potential from (5.35) but at the

same time we have to shift the phase of the wavefunctions to e
−i φ

φ0
θ
ψ. As the result

the eigenfunctions change:

ψn(θ) =
1√
2π

ei(n−φ/φ0)θ. (5.37)

This eigenfunction however has a different boundary condition than the previous one

:

ψ(θ + 2π) = e2πiφ/φ0ψ(θ) (5.38)

but as one physically expects the eigenenergies are not changed.

The ground state energy of the interacting quantum ring array in the magnetic

flux φ can be written as:

E0(δ, φ) =

n0∑
n=−n0

|cn|2(n− φ/φ0)
2 +

+ δ
∑

〈ij〉

∫
dθdθ′

|Ψ0(θ)|2|Ψ0(θ
′)|2

|~ri(θ)− ~rj(θ′)
(5.39)

where Ψ0(θ) = eiφ/φ0θ
∑n0

n=−n0
cne

inθ is the ground state wavefunction expanded in

the free Hamiltonian basis states.

As we can see in Eq.(5.39) the only part that is affected by the AB phase is

the kinetic energy and the potential energy is not sensitive to the phase. When the

magnetic flux changes the Eq.(5.39) changes with a period of φ0 because for φ/φ0 = 1

we can rearrange the sum and show that the value of the kinetic energy is equal to its

value at φ = 0. This is an evidence for the fact that the physics of quantum ring arrays

in the presence of magnetic field doesn’t change at integer flux quanta. For infinite

n0 this argument is true at any range of magnetic flux however in our numerical

calculations where we have used a finite number of Fourier modes E0 is periodic only

at the range 0 < φ < n0φ0 in Fig.(5.18) we can see the periodic behavior of the ground

state energy of the ring array as magnetic flux changes. The results of our numerical

Hartree calculations indicate that in a 1D ring array in which each ring is threaded by
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a magnetic flux φ, the polarization pattern changes from unpolarized to ferroelectric

at half-integer flux quantum. Fig.(5.20) shows the behavior of Px , the component of

the total polarization vector ~P =
∑

i

∫ 2π

0
dθ|ψi(θ)|2~ri(θ) in the direction of the ring’s

common axis at half flux quantum. This plot shows that at δ < δc the wave function

has an unbalanced distribution around each ring. However the total polarization

vanishes at higher values of interaction where the wavefunction distribution becomes

antiferroelectrially polarized in the array. The finite polarization at small interaction

strengthes has a ferroelectric pattern which is degenerate left or right. From this

result we can see that the physics of quantum ring arrays changes at half integer flux

quantum. The total staggered polarization in the ŷ direction perpendicular to the

common axis of the rings starts to build up at δ > δc as in the case of no magnetic field.

We can explain this phenomena of finite transverse polarization due to magnetic field

in different approaches. We can use a simple perturbative discussion to understand

this behavior qualitatively. The Eq.(5.30) which is the dipole approximation of the

total Hamiltonian will modify in presence of a magnetic flux as follows:

Ĥ = Ĥ0 + V̂

Ĥ0 =
∑

i

[(−i
∂

∂θi

− φ

φ0

)2 + 3δε2 cos 2θi]

V̂ = −δε2
∑

i

[3 cos(θi + θi+1) + cos(θi − θi+1)].

(5.40)

In the above equation the kinetic energy Hamiltonian has a degenerate ground state.

For example at half filling, φ/φ0 = 1
2
, n = 0 and n = 1 levels are degenerate unlike

the case of zero magnetic field in which the ground state is unique and at n = 0.

By adding the symmetry breaking term cos 2θ in the zero flux the electron gains

enough energy to excite to the next higher level. This excitation causes the electron

to destroy any localization in the range where V̂ is not strong enough yet. However

when there is a finite magnetic field the cos 2θ can not lift the degeneracy between

n = 0 and n = 1 levels in the range of small δ’s. That is why in this case the ground

state of Ĥ0 remains degenerate(Fig.5.18). As long as δ is small the perturbative two

body potential in (5.40) can not excite the electron to higher levels and the kinetic

energy of the electron freezes. When this happens the electrons behave classicaly

and choose a wavefunction that minimizes the potential V̂ . In Fig.(5.19) we can see

a 3D plot of the two body potential V in which it has two stable minima at (π, π)
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Figure 5.21: Schematic picture of the ground state of a 2D array of singly charged

rings.

and (0, 0) indicating the preferred state of the quantum ring array at low δ being the

ferreoelectric right or left state.

5.10 Two Dimensional Array

The fabricated structures of nanorings are mostly two dimensional arrays. From the

analysis of the one dimensional array in the previous sections we can expect the

ground state of the two dimensional array to have some sort of antiferroelectric order

and indeed the results of numerical Hartree calculations for a square lattice shows

that the order of the ground state is of the type of striped antiferroelectric, in which

electrostatic polarization of rings in each column is aligned while the adjacent columns

have opposite polarization. (Fig.5.21) In order to display the striped antiferroelctric

order we define staggered polarization in the following way:

Ps =
1

N

∑
i,j

(−1)iPij (5.41)

In which Pij is the polarization of the ring at the site (i, j) and N is the number

of rings. In the calculations we used periodic boundary conditions and as before we

have ignored the effect of inter-ring charge transfer. In fig.(5.22) we can see that the

same behavior as the one dimensional array exists.

134



0 2 4 6 8 10
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

∆

P
s

Figure 5.22: Staggered polarization as a function of δ in a 2D quantum ring square

array obtained in the Hartree approximation. The numerical results are for the case

include Fourier modes |m| ≤ 6.

The obtained ground state of the 2D array is four-fold degenerate (the states

obtained by flipping every spin and or rotating them all by π/2 yield the same energy)

and the U(1) symmetry of unpolarized state has been broken.

In this chapter we reviewed phase transition phenomenon in a periodic array of

electrons each confined to a 1D ring. The parameter δ determines if the array will

spontaneously polarize; in 1D the transition is at δ ≈ 10. It is easy to achieve

small values of δ simply by choosing the ring separation to be large. Thus the

“quantum” limit where the kinetic energy dominates is simple to obtain. To ob-

tain the antiferroelectrically ordered state we need large δ. We may write this as

δ = (R2/a0D)× (m∗/m) where a0 is the Bohr radius and m∗ is the effective mass of

the electron. If R̃ and D̃ are R and D measured in nanometers, and m̃ ≡ (m∗/m),

then δ ≈ 18.9(R̃2/D̃)m̃. We require that the rings do not intersect, so that D̃ ≥ 2R̃.

Thus the ability to achieve large values of δ in semiconductors will depend upon the

value of the effective mass. If we set D̃ = 2R̃, then for GaAs (m̃ = 0.06) 1D arrays

of rings with a radius greater than ∼10nm will be polarized. For AlAs (m̃ = 0.4) the

crossover radius is about 70nm. Rings with a smaller radius will not spontaneously

polarize, but instead be isotropic It is well known that in 1D there is no ordered

state for T > 0 for the Ising model. However, for small arrays over finite time in-

tervals the system can order. To observe this behavior we want the characteristic

energies of the system to be greater than the temperature. For the Coulomb energy

kT < e2/D, which we may write as D̃T < 1.8 × 103 where T is in Kelvin. For the

kinetic energy this means kT < ~/2m∗R2; if we measure (m/m∗)R̃2T > 40 in the
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same units. For GaAs we can choose R to be about 14nm at 4K; choosing materials

with a smaller effective mass or going to lower temperature allows us to increase the

radius. A AFE polarized ring array will scatter light at a wavelength commensu-

rate with the inter-ring separation, D. In 1D there is a gap
√

2ω0, which we may

write as 2
√

2m̃(a0/D)3/2. For GaAs rings with a separation D = 1000nm this gives

ω ∼ 6.0 × 1010Hz. The 2D arrays have a similar sized gap at zone center, but the

gap vanishes at one zone edge. The excitation spectrum can be probed optically,

but scattering at the edge of the zone is difficult due to the constraints imposed by

conservation of energy and momentum. Typically in such cases Raman scattering

can be used to investigate the excitations. The 2D classical problem obviously has a

finite temperature phase transition, as shown by our Monte Carlo simulations. The

2D quantum problem can be mapped on to the 3D XY model, which is known to

order. Finally these calculations assume that each ring is singly occupied. This might

be obtained by fabricating the rings upon a thin insulating layer covering a gate. By

tuning the gate voltage we can bias the system so that it is energetically favorable

for an electron to tunnel to the rings. The gate will also serve to cutoff long distance

interactions between the rings, supporting the assumption of the nearest neighbor

interactions used here. Moreover, this work serves to start investigation into a broad

class of problems, such as rings occupied by an optically excited exciton/hole pair or

perhaps by a small, varying number of electrons created by a random distribution of

dopants.

The topic of quantum dot arrays and their correlations has obvious and useful

analogies with solid state models of crystalline arrays of atoms. In this work we wish

to point out that experimentalists have at their disposal a host of “unnatural atoms”

analogs: rings, quantum dot quantum wells, quantum rice, etc. The electrons in these

nanoscale constituents are confined to orbitals that may not have atomic analogs.

Morever, it may be possible to tune the shape of the constituent to optimize some

desired collective property such as frustration in electric or magnetic polarization,

high susceptibility or sensitivity to optical polarization of light. Even more rich

behavior will develop if we allow electrons to tunnel between these nanoscale periodic

structures.

136



Chapter 6

Conclusion

In this conclusion I will summarize the above work, emphasizing what results are my

own contribution to the field. I will also discuss possible future directions for this

research.

6.1 Spin in bilayer quantum Hall systems

At total filling factor νT = 1 the electron gas in bilayer system displays quantized

Hall conductance. The Coulomb interaction in this electron gas has nonperturbative

consequences as the kinetic energy of electrons at low temperatures is frozen out.

In a quantum mechanical picture the electrons in this system can be in both layers

at the same time or reside only in one. It is now a well established[27] fact that

this new ground state can explain the quantization of Hall conductivity in bilayer

system. In this new ground state the electrons have a new degree of freedom, the

layer index or pseudo-spin. An electron in the upper(lower) layer has pseudo-spin

up(down) or +z(−z). Consequently the state in which each electron wavefunction is

finite in both layers is a linear combination of the up and down states. At equal layer

densities the pseudo-spin of electrons is a symmetric combination of up and down

which corresponds to pseudo-spin in the perpendicular direction (±x).

By tuning the density above the νT = 1 the extra electrons have to flip their

pseudo-spin which costs exchange energy. This exchange energy however is minimized

in a new many body state in which electrons smoothly change their pseudo-spin from

the flipped direction (the minority direction) into the ground state direction (the

majority direction). An illustration of this new excited state can be seen in figure 3.14.

These excitations are of pseudo-spin nature and are called bimerons. The unusual

physics of electrons confined in the lowest Landau level dictates the electron gas
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charge density to change as the pseudo-spin distribution changes (see section 2.2.2).

The bimeron pseudo-spin distribution has an associated localized charge density equal

to one electronic charge. In fact as I argued in section 2.2.4 a topological charge is

directly associated with an electrostatic charge for the electron gas confined in the

lowest Landau level.

To minimize their Coulomb interaction a finite density of bimerons prefer to form

a square lattice. In this dissertation using the Green’s function equation of motion

and Hartree-Fock approximation I was able to calculate the pseudo-spin and charge

distribution of a state of bimeron lattice. At higher densities (νT > 1.02) each bimeron

prefers to split into two merons. Consequently at high densities the bimeron lattice

rearranges into a meron-meron lattice. By calculating the energy of meron-meron

lattice and bimeron lattice per electron separately I showed (fig. 3.15) for the first

time that this is in fact true and the meron-meron lattice has the lower energy for

square lattices.

Due to the fact that most of the experiments performed on bilayer systems use

very low tunneling samples [50] it is generally believed that the lowest energy bilayer

excitations are of pseudo-spin nature. The spin excitations are expected to be frozen

because of the high Zeeman and exchange coupling. However this is not certain

because of the nonperturbative nature of the quantum Hall liquid. In fact nuclear

magnetic relaxation time measurements reveal a behavior similar to the results for

single layers (compare figures 3.17 and 2.11). In this dissertation I was able to show

that new types of topological excitations exists in which both spin and pseudo-spin

are involved. These excitations, called CP3 skyrmions, are charged and form a lattice.

Similar to skyrmion lattice states, the CP3 skyrmion lattice state support low energy

Goldstone modes of spin waves which can couple to nuclear spin and change the

NMR relaxation time. To calculate the charge, spin and pseudo-spin density of the

new states I used the same numerical method of Green’s function equation motion as

in the previous works[24] and used the Hartree-Fock approximation.

For the first time I have been able to show that the CP3 skyrmion lattice is a

vortex-antivortex lattice of spin and pseudo-spin which has the lowest energy among

other types of bilayer excitations mostly at large layer separations ( d ∼ `) and small

tunneling values. The combined spin, pseudo-spin state of the bilayer system has

five adjustable variables: total filling factor, interlayer bias, tunneling amplitudes,

Zeeman coupling and layer separation. Finally the five dimensional phase space of

this system at zero temperature is not yet fully explored. In this dissertation I was
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able to show that at large layer separations, small tunneling values (∆SAS < ∆Z)

and νT < 1 the CP3 skyrmions exist as lowest energy excited state. At some other

parts of the phase space I was able to show that there are other types of spin and

pseudo-spin states: At νT > 1 and large tunneling amplitudes, ∆SAS > ∆Z , spin and

pseudo-spin states form a vortex-antivortex lattice I call the HCP3 state. This state

has the lowest energy compared to other excited states. In this regime increasing the

tunneling energy drives the system to select a state that has only spin texture and

no pseudo-spin texture. However, this state is formed in the symmetric band (i.e. a

linear superposition of the upper and lower layer states). This symmetric skyrmion

state is a lattice of skyrmions in which the pseudo-spin of the electrons are all parallel.

In a CP3 skyrmion lattice the spin and pseudo-spin of electrons are entangled.

This property is demonstrated in figure 3.29. The pseudo-spin of an electron deter-

mines the probability distribution of electrons in each layer. The inter-layer bias will

change this distribution and consequently it changes the pseudo-spin distribution of

the electron gas. At the same time, because of the entanglement of pseudo-spin and

spin, the spin distribution of the electrons changes. This change in the spin distribu-

tion may affect the NMR time of the bilayer systems. This manipulation of the spin

distribution of the electron gas in a bilayer system via an inter-layer bias is a unique

feature of the new CP3 skyrmion lattice presented in this dissertation.

Future work in this area will include a thorough mapping of the five dimensional

phase space and determining the nature of the transitions between the phases. Also

as was mentioned, no CP3 skyrmion square lattice solution at zero tunneling was

observed at filling factors νT > 1. Since there are four spin and pseudo-spin single

particle levels no particle-hole symmetry exists. Consequently absence of the CP3

skyrmion square lattice at νT > 1 is not unexpected. However one needs to investigate

possibilities of existence of such phase at νT > 1. These possibilities include different

lattice structure (e.g. triangular) and also a more flexible numerical method e.g.

a method that includes very small temperature fluctuations in order for a better

estimation of chemical potential (Eq. 3.54). Finally the numerical method used here

can be useful in finding nonlinear solutions to many other low dimensional manybody

systems like Graphine[73], quantum dot and quantum ring arrays, etc. This method

specifically is able to find those topological states that are highly nonlinear and often

very important in analyzing the observed properties of these systems.
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6.2 Activated dissipation in bilayer quantum Hall

systems

Activation energies are determined by longitudinal resistance measurements per-

formed separately in each layer of the bilayer system. These activation energies

must correspond to quasi-particles excited by temperature. However measurements

indicated that the behavior of the activation energies is different for different layers

as one changes the inter-layer bias. This is in clear contrast with the well established

coherence interpretation of quantum gas as explained in chapter three. In this dis-

sertation I have shown that the quasiparticles responsible for dissipation are in fact

merons, topological excitations of the coherent bilayer system. Following the ideas

in previous works by Fertig and Murthy [59] I assume that the disorder potential

breaks up the νT = 1 incompressible quantum liquid into equal number of puddles

with νT > 1 and νT < 1. Each puddle is full of bimerons as lowest excited states.

This disorder structure breaks the bimerons into merons and merons can move across

the system.

However this motion is activated as each meron needs to cross a barrier of in-

compressible state in between puddles. Using the fact that merons have vorticity,

charge and electric dipole moment and using a Chern-Simon theory I showed that

their motion induces a voltage drop across the system. This voltage drop is induced

through Faraday’s law as merons are charged and carry a Chern-Simon flux and also

through their vorticity in analogy to Josephson effect. I modeled the barriers as strip

shaped interlayer biases imposed over meron lattices. Using this technique I was able

to calculate the activation energies and show that their behavior is consistent with

experiment as I vary the interlayer bias strength.

In the future I hope that experiments can verify the predictions of my theory.

The presented theory is a new approach in analyzing the transport properties of the

bilayer systems. This theory can be developed in so many different ways. The possible

role of low but non-zero tunneling amplitude in activation energy of merons can be

investigated using for example parallel magnetic field. As was discussed in chapter

(3) in a sample with non-zero tunneling bimerons are lower in energy than merons.

Bimerons on the other hand do not have an electric dipole moment and consequently

they don’t respond to the interlayer bias. This results in the disappearing of the

asymmetric behavior in the activation barrier. It would also be interesting to know

the response of a bimeron to a strip bias potential. Does the bimeron prefer to split
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into two separate merons? This may illustrate why disorder can unbind merons.

This response can be studied by varying interlayer bias, tunneling and separation. In

addition we have assumed that the Zeeman energy is large enough so that the spin

of the electrons are polarized. First of all one needs to find out what would be the

response of the meron to strip potential when the Zeeman gap is low such that it

allow the spin of electrons tilt away from majority direction in order to compensate

for energy cost of the bias strip. On the other hand CP3 skyrmions are robust

against interlayer bias as was illustrated in the previous chapter. The question then

remains whether they are robust against the application of strip biases and how will

their energy change. All these questions can be answered by extending this numerical

work and also by studying a possible spin-pseudospin Chern-Simon theory for a bilayer

system. These questions also may in principle be studied by experiments.

In addition the Chern-Simon theory and the meron-edge interaction theory must

be united. The Chern-Simon theory neglects edges entirely and only assumes a bal-

anced meron population. However this can only be true for a finite system if we

allow for charge conversion as given in figure (4.16). Conversely, the edge picture

does not predict the mobilities and transition rates implicit in eq.(4.38). These must

be generated by a microscopic theory such as the Chern-Simon approach.

Finally it is worth exploring if the correlated behavior that lead to excitonic su-

perfluidity can be pushed to higher temperatures for example by using different host

material such as graphene [73]. While this may seem absurd, high Tc superconduc-

tivity was also absurd twenty years ago.

6.3 Nano-ring arrays

In the last chapter of this work I introduced a model of interacting ring arrays in order

to illustrate the idea that confined geometry can give physicists a new path for creating

new ideas to advance technology using nano-structures. In the model of interacting

quantum rings arrays each ring in a square lattice is free to move on a one dimensional

array but interacts with the electrons in its neighboring rings. The ground state

energy and wave function of these electrons were calculated using an iterative Hartree

approximation. I was able to show that these wave functions suddenly change from

uniform distribution around the ring to localized state as one reduces the inter-ring

separation. This localized state is distributed anti-ferroelectrically throughout the

array. Using a Monte-Carlo simulation I also showed that this transition is a true

141



second order phase transition for the two dimensional array and a true quantum

phase transition for the one dimensional array. In this simulation I showed that the

observables of the system like the specific heat and polarization diverge as the system

size diverges at the transition point. Then using a finite size scaling theory I showed

that this transition is in the universal class of transverse field Ising model.

I also calculated the polarization of the one dimensional array in the presence of

an external magnetic field. I showed that the external magnetic field threading each

ring will change the polarization of the system from anti-ferroelectric to ferroelectric

for large inter-ring separations through the induced Aharanov-Bohm phase.

Future work will include looking at 3D arrays of rings and 2D and 3D arrays

of spherical shells. In addition it would be good to calculate the optical excitation

spectrum of such arrays.

The collective excitations of these arrays will be another important part of ana-

lyzing these systems. The wave function distribution of these excitations can be of

topological nature similar to the spin distribution in skyrmions or domain walls in

spin lattices as the electrons try to minimize their Coulomb energy in a finite system.

The numerical methods of finding these kinds of excitations in bilayer quantum Hall

calculations may be useful in this context.
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