
DESIGN AND IMPLEMENTATION OF AN OBJECT­

ORIENTED DATABASE MANAGEMENT

SYSTEM FOR AQUIRE DATABASE

By

HUA LIOU

Bachelor of Science

Zhongshan University

Guangzllou, P. R. China

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1995

DESIGN AND IMPLEMENTATION OF AN OBJECT­

ORIENTED DATABASE MANAGEMENT

SYSTEM FOR AQUIRE DATABASE

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Huizhu Lu

for her intelligent supervision, constructive guidance, encouragement and patience. My

sincere appreciation also extends to my other committee members Dr. Blayne E.

Mayfield and Dr. Mitchell Neilsen. Their guidance, assistance, encouragement, and

friendships are very helpful and invaluable throughout the research.

Special thanks go to Dr. Burk for providing AQUIRE data files, and Dr.

Clement Ward, Mr. Roland Stolfa and Mr. Mark J. Vasoll for their assistant with the

research and thesis preparation.

I would also like to give my special appreciation to my parents, Jinkun Liu and

Meiji Fan, and my husband, Mingwu Su, for their strong encouragement, love and

understanding throughout this research.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

Object-Orientation Concepts 1
Object-Oriented Database Management Systems 2
Graphical User Interface 2
Microsoft Visual C+ + 2
AQUIRE Database 3
The Objective of the Thesis 3
The Organization of the Thesis 4

II. LITERATURE REVIEW 7

Relational Database Model .. 7
Basic Concepts of the Object-Oriented Programming 8
Object-Oriented Database Systems (OODBS) 10

III. ANALYSIS OF THE AQUIRE DATABASE 17

Relationships Among the AQUIRE Database 17
Object-Oriented Analysis Model (OOA/Coad-Yourdon) .. 19

IV. DESIGN OF THE OBJECT-ORIENTED AQUATIC TOXICITY
DATABASE MANAGEMENT SYSTEM (OOATDBMS) 23

Design Database Retrieval Strategy 23
Design Indexes 25
Object-Oriented Design (OOD/Booch) 27
Design Database Classes and Objects 28
Design User Interface Classes and Objects 33

V. IMPLEMENTATION AND TESTING OF THE OOATDBMS 43

The Basic MS Visual C++ Components 43
Implementation of the OOATDBMS 46

IV

Chapter Page

Testing of the OOATDBMS 49

VI. SUMMARY AND CONCLUSIONS 51

BIBLIOGRAPHY 53

APPENDIXES 57

APPENDIX A - DATA REPRESENTATION AND CONVERSION 58

APPENDIX B - INSTALLATION GUIDES 62

APPENDIX C - USER'S MANUAL 65

APPENDIX D - SAMPLE OUTPUT 68

APPENDIX E - A PROCEDURE FOR PRINTING RESULTS 73

v

Table

LIST OF TABLES

Page

1. List of the Original AQUIRE Text Files 18

2. List of the Original AQUIRE Data Files 18

3. List of the External/Internal Record Pointers and Other Fields
in Nine Data Files 20

4. List of the Indexes in the OOATDBMS 26

5. List of the Database Classes and Objects 29

6. List of Eight View Objects and Their Information 35

7. List of Templates and the Relationships Defined 47

8. List of the Files After Installation 64

VI

Figure

LIST OF FIGURES

Page

1. The Difference Between Conventional Relational
Database and Object-Oriented Database 11

2. The Eight Database Classes and Their Relationships 21

3. The Architecture of Class Objects in the OOATDBMS 48

4. The VAX FORTRAN Data Representation 59

5. The Intel 80486 Data Representation 60

6. AQUIRE Main Information 68

7. AQUIRE Citation Information 69

8. AQUIRE Species Information 69

9. AQUIRE Chemical Registry Information 70

10. Concentration-Conf. int-BCF Information 70

11. Purity / Chemical Characteristic Information 71

12. AQUIRE Remarks Information 71

13. Temp-Hardness-Alk.-D.O.-pH Information 72

vii

CHAPTER 1

INTRODUCTION

Object-Orientation Concepts

Although the concepts of object-oriented programming [Rine 1992, Wagner

1992] were developed three decades ago, it is only in the last decade that the concepts

of objected-oriented programming (such as classes of objects with methods and

inheritance) and languages (such as Smalltalk, C+ +, Eiffel and Common LISP Object

System (CLOS» have become popular. Thereafter, more and more researchers express

interest in the applications of object-orientation concepts and approaches, such as the

design and implementation of the relational database system utilizing the object-oriented

analysis and design methodologies, graphic user interface and office information

systems (OIS) design and implementation, computer aided design (CAD), etc. [Alagic

1989, Bertino 1991, Fichman 1992, Pappas 1994, Rine 1994, Weiser 1989, Wells

1992].

The object-orientation concepts have evolved in three different disciplines: first

in programming languages, then in artificial intelligence, and then in database. The

basic concepts of object-orientation are objects, classes, abstract data type, data

encapsulation, and inheritance. An object-oriented approach to programming is based

on the concepts of encapsulation and extendibility. Encapsulation means to shape some

of the data from the user in the programming, while extendibility refers to the ability to

extend an existing system without introducing change to it. Based on the object­

oriented approach, the object-oriented analysis (OOA) is an analysis model developed

to describe the functionality of the system, it represents the domain of real world

problems. After the object-oriented analysis is done, one can utilize the object-oriented

1

design (OOD) methodology to design and implement the simulation or solution of a

problem.

Object-Oriented Database Management Systems

Object-oriented Database Management Systems (OODBMS) are one of the

major application areas of object-orientation concepts. Several OODBMS have been

developed to date [Mariani 1993, Hurson 1993, Bertino 1989, Weinreb 1988, Velez

1989, Weiser 1989]. The advantages of them are listed as follows:

(a) data structures are flexible;

(b) there are many facilities for describing data;

(c) data values can be inherited;

(d) complex models can be built;

(e) source codes are reusable.

Graphic User Interface

Graphic User Interface (GUI) is one of the most popular techniques used in the

user interface design. The GUI usually can provide users with several convenient data

input and output formats, such as windows, menus, mice, image, and voice. With

GUI, the system is more user-friendly, easy-to-learn and easy-to-use. This is very

important for non-professional users.

Microsoft Visual C++

Microsoft Visual C++ is a complete Windows software development kit (SDK)

product. MS Visual C+ + Version 1.5 or later contains a lot of windows programming

and user interface design tools, and many pre-defined basic classes and functions, such

as, AppWizard, ClassWizard, Resource Editor, Microsoft Foundation Class Library

2

(MFC) and MFC dynamic link library (DLL). MFC version 2.5 supports Open

Database Connectivity (ODBC) which allows the application to access and update data

stored in many popular databases, like Microsoft Access, FoxPro, and SQL Server.

MFC version 2.5 also supports Object Linking and Embedding (OLE) which supports

for in-place editing, linking, drag-and-drop, and OLE Automation. Moreover, the

application developed under MS Visual C++ development environment contains

reusable and modular components, which are very useful for programmers to modify

the application in the future. The applications can also provide users with standard

graphic user interface and multiple data input and output methods.

AQUIRE Database

The Aquatic Toxicity Information Retrieval (AQUIRE) Database was firstly

created by the United States Environmental Protection Agency Office of Pesticides and

Toxic Substances in 1981 and updated annually. The AQUI~E database contains
~~~;;-

various information of chemical toxicity related to the different aquatic organisms and

plants. The information includes: the citation of scientific articles published nationally

and internationally in aquatic toxicity area; the chemical name and its Chemical

Abstract Service (CAS) registry number of each chemical material presented in the

database; and the latin and common name of each aquatic organism and plant, etc. The

information is organized as one main information data file which contains up to

105,394 records with eight associative information data files. The AQUIRE database

used in this search is the version created in 1989 [Kulpaiboon 1993].

The Objective of the Thesis

The researcher will apply object-orierlted analysis (OOA/Coad-Yourdon) and

object-oriented design (OOD/Booch) methodologies to analyze and design the database

3



management system for the AQUIRE database. This system is expected to be a

complete, efficient, and user-friendly database management system for the Aquatic

Toxicity Database.

The original AQUIRE database contains the aquatic toxicity information stored

in the VAX FORTRAN format without any attached software to retrieve the

information and generate the query reports. Currently, there is a commercial company

that can provide a set of reports. However, it is expensive for a user who needs a lot of

information for his/her research. Moreover, since PCs are used widely than Mini­

computer and IBM mainframe machines by users, and a database management system

running on PC will be an inexpensive and very convenient solution for users to retrieve

the information as often as he/she needs.

The objectives of the research are: (1) design and implement an Object-Oriented

Database Management System for the AQUIRE database; (2) provide the Graphic User

Interface to users by utilizing the graphic user interface design tools of Microsoft

Visual C+ + ; (3) make the system user-friendly to both professional and non­

professional users; (4) present a method of how to analyze, design, implement and test

an object-oriented database management system for an existing very large relational

database.

The Organization of the Thesis

The thesis presents the introduction and literature reviews of the research, the

detail steps of system analysis, and how it leads to the system design and

implementation. The thesis also describes how to utilize the OOA/Code-Yourdon and

OOD/Booch methodologies in practical project development and implementation.

Chapter I, which is the current chapter, is an introduction that describes the

object-orientation concepts, object-oriented database management systems, graphic user

4



interface, and Microsoft Visual C++ as the background of the research. The

introduction of the original AQUIRE database, the objective and organization of the

thesis are also presented in this chapter.

Chapter II is the literature reviews for the research. It discusses the object­

oriented model in detail, such as objects, classes, inheritance, encapsulation, and

polymorphism, etc. The object-oriented database management system is also described

with the reviews of some related OODBMS.

Chapter III describes the system analysis which includes the analysis of the

original AQUIRE database, OOA/Coad-Yourdon methodology and how to utilize the

methodology in the practical research.

Chapter IV discusses how the system analysis leads to the system design by

utilizing OOD/Booch methodology. It presents the design of the database retrieval

strategy, indexes, database classes and objects, and user interface classes and objects.

The detail design of each class and its data members and function members are

described also.

Chapter V presents the implementation of the system with Microsoft Visual

C+ + Version 2.0 environment under Windows NT 3.5. Firstly, some of the basic

components of MS Visual C++ are introduced, then the implementation of the system

with the complete architecture of the classes and objects is described. Secondly, the

detail information of how to utilize MS Visual C++ in implementing the design of

the system is illustrated. Finally, the three kinds of system testing technologies which

are used to test the system are discussed.

Chapter VI is the summary and conclusions of the thesis and the suggestion of

the future modification for the system. It followed by references, Appendix A, B, C

and D. Appendix A discusses the data representation of the VAX FORTRAN and the

INTEL 80486 formats, and the data conversion methods between two machines for

four different data types. Appendix B, C, D are the system installation guides, user's

5



manual and sample output respectively. Appendix E describes a procedure for printing

results.

6



CHAPTER II

LITERATURE REVIEW

Relational Database Model

A database is a collection of persistent data used by an application program

[Date 1990]. A database management system (DBMS) is a proprietary software for

handing the storage and retrieval of data. Generally, a DBMS provides the following

advantages: (1) data independence; (2) data integrity; (3) data concurrence and

consistency; (4) recovery; (5) access control; (6) controlled data redundancy; (7)

centralized control; (8) data maintenance.

The overview of the architecture of a DBMS is separated into three logical

views: internal view, global view, and external views. The internal, global, and

external views are described using a Data Definition Language (DDL). Users and

applications access data through an external view using a DBMS specific languages

called Data Manipulation Language (DML).

A relational DBMS is a type of DBMS, which is perceived to hold data in a

series of two dimensional tables. Each table consists of a number of rows (called

tuples) and columns (called attributes). Relationships between rows in the different

tables are represented by the storage of foreign keys within one table. The relational

DBMS provides several relational algebra among the tables to generate new tables.

These algebra include: Restrict, Project, Product, Union, Intersection, Difference,

(Natural) Join, and Divide.

Currently, there are several relational DBMS products available, such as DB2,

SQL/DS, OS/2 Extended Edition Database Manager, SQL/400 DB Manager,

ORACLE, Sybase, Informix, Foxpro, Paradox, dBase IV, etc.

7



Basic Concepts of Object-Oriented Programming

Object-oriented programming is a modeling paradigm which supplies the raw

modeling power of objects with the management flexibility of classes and inheritance.

In the object-oriented paradigm, objects are the atomic units of encapsulation; classes

manage the collections of objects; inheritance structures the collection of objects and

the inheritance structures of classes.

Objects

Complex objects are built from simpler ones by applying constructors to them.

The simplest objects are integers, characters, byte strings of any length, Boolean, and

floats (one might add other atomic types). Objects may be attached to or communicate

to another by way of a well-defined user interface; also, objects maybe classified

according to common behavior and other characteristics, such as: (1) Abstract data

type; (2) Data encapsulation; (3) Inheritance. The object constructors must be

orthogonal to the objects; that is, any constructor should apply to any object.

Classes

Classes specify the behavior of a collection of objects with common operation.

They correspond to the notion of an abstract data type. They have two parts: the

interface and the implementation. Only the interface part is visible to the users of the

classes; the implementation part of the object is seen only by the class designer. The

interface consists of a list of operations together with their signatures (Le. the type of

input parameters and the type of the result).

Implementation consists of a data part and an operation part. The data part

which describes the structures of this data part can be more or less complex. The

8



operation part consists of procedures which implement the operations of the interface

part.

Inheritance and Class Hierarchies

The concept of inheritance is a second reusability mechanism. It lets a class,

called a subclass, be defined starting from the definition of other classes and messages.

In addition, a subclass can have specific attributes, methods, and messages that are not

inherited. Moreover, the subclass can override the definition of the super class's

attributes and methods.

A class can have several subclasses. Some systems let a class have several super

classes (multiple inherence), while others impose the restriction of a single super class.

Based on inheritance, the set of classes in the schema can be organized in an

inheritance graph. The inheritance graph is a tree when the model does not provide

multiple inheritance.

Encapsulation

The idea of encapsulation comes from the need for a clear distinction between

the specification and the implementation of an operation, and the need for modularity.

Modularity is necessary to structure complex applications designed and implemented by

a team of programmers. It is also necessary as a tool for protection and authorization.

The idea of encapsulation in programming language comes from the abstract

data types. An object has operations that can be performed on the object. It is the only

visible part of the object. The implementation part has a data part and a operation part.

The data part is the representation or state of the object, and the operation part

describes the implementation of each operation.

9



In an object-oriented database system, for example, we define Employee as an

object that has a data part, probably very similar to the record that was defined in the

relational system, which consists of salary raises and termination of the Employee. The

operation part of the Employee object consists of some operations, such as to store the

information to the data part, and to retrieve the information from the data part, etc.

Encapsulation provides a form of "logical data independence"; we can change

the implementation of a class without changing any of the programs using that class.

Thus, the application programs are protected from implementation changes in the lower

layer of the system.

Object-Oriented Database Systems (OODBS)

Comparison of Conventional Database System and OODBS

Database systems have long been successful for business applications, like an

office information system (OIS), Computer Aided Design (CAD), and transaction

mechanics. Conventional database systems provide database languages to allow

application programmers or end-users to define and manipulate the database. A

conventional database consists of three components (or sub-languages): a data definition

language, a data manipulation language, and a data control language.

A data model that captures object-orientation concepts is an object-oriented data

model. An object-oriented database is a collection of objects where the behavior and

state, and the relationships are defined in accordance with an object-oriented data

model. An object-oriented database system is a system which allows the definition and

manipulation of an object-oriented database system.

Object-oriented database systems [Sun 1992, Mariani 1993, Hurson 1993]

integrate techniques from database systems and object-oriented paradigms, therefore,

10



they have been regarded as the next generation of commercial database systems. An

object-oriented database system is both a database system and an object-oriented

system. As a database system, it provides support for accessing and updating large

amounts of persistent, reliable, and shared data. As an object-oriented system, it

supports features such as complex objects with identity, inheritance (of classes or

types), encapsulation (of an object state by the methods defined on its class), overriding

(redefining methods in classes), and run-time binding of methods to objects. The

difference between conventional relational database and object-oriented database is

shown as Figure 1.

instance

Figure 1. The difference between conventional relational database and
obj ect-oriented database

Survey of Current OODBS

Currently, few commercial object-oriented database systems are available. Also

there exists no single, widely agreed upon object data model in the sense of the

11



relational model. Generally, most of the OODB system designers have followed the

three principal approaches. These are:

(1) A programming-language-neutral object model extends relations or semantic

data models with object-oriented features.

(2) With a database programming language, a new programming language is

defined from the group to support database capabilities.

(3) In the programming-language-specific approach, the object data model is

equivalent to the type of system of an existing programming language, with the

objective of eliminating the mismatch between the programming language and the

database.

Following, more than ten representative operational object-oriented database

systems are described, most of them are designed and implemented by using one of the

three approaches described above.

Gemstone

GemStone [Bertino 1989] supports a client/server architecture, which developed

by extending the Smalltalk-80 into database system. Although the Gemstone database

model is an extension of Smalltalk-80, it only supports single inheritance. The design

approach of GemStone is rather different from most other systems with respect to

persistence. In sum, GemStone is one of the more visible object-oriented database

systems available today, both in term of the database features provided and

contributions to research into object-oriented database architecture.

VBASE

VBASE [Andrews 1987] is implemented in C, and runs on SUN workstations

under a 3.2 UNIX operating system. It is implemented in a client/server architecture

12



and it provides two programmatic interfaces: Type Definition Language and C Object

Process. All objects known to VBASE become persistent and they persist until users

explicitly delete them. Also noteworthy, most parts of the system are designed and

implemented by taking advantage of the separation of the type· specifications and their

implementation.

Statice

Statice [Weinreb 1988] is implemented in Common LISP to run on the

Symbolic LISP machine. It uses a client/server architecture, and can support multiple

servers. The Statice data model is largely based on the DAPLEX functional data

model. Statice provides a fairly rich set of database features, including transactions,

concurrence control, recovery, a query language, query optimization, indexing, and

multimedia management. The Statice query language is a rather natural extension of

the LISP syntax.

IRIS

The IRIS [Fishman 1987] system is implemented in C and PASCAL, and runs

on the HP68000 workstation. IRIS provides object management services to C programs

and LISP programs through a C-interface and a LISP-interface to IRIS. The data model

of IRIS is based on the DAPLEX functional data model and it allows explicit deletion

of persistent objects. The elegant aspect of IRIS is the consistent use of a function

formalism in its data modeling and novel aspect of IRIS is the extendibility built into its

architecture.

02

13



02 [Velez 1989] is implemented in C and runs on SUN workstations under

SUN OS 4.0. 02 is designed to support multiple object-oriented paradigms under a

client/server environment. The 02 programmatic interface is embedded in C and Basic,

and the object manager of 02 has been implemented on top of the Wisconsin Storage

System (WiSS), which is a simplified version of the RSS storage system in SQL/DS.

Also, the 02 data model supports multiple inheritance and is designed to run

differently in a development mode and a production mode.

Jasmin

Jasmin [Makinouchi 1988] has been developed in Fujitsu, Ltd. Japan. The data

model of Jasmin is based on the DAPLEX functional data model and is similar to the

IRIS and Statice data models. It also includes multiple inheritance. The programmatic

interface is called Jasmin/C and is an object-oriented extension of C. One of the goals

of Jasmin is the seamless integration of a programming language and a database

system.

ENCORE/ObServer

ENCORE/ObServer [Hornick 1987] is implemented in C. ENCORE is the

front-end object manager and Observer is the back-end object server. ObServer runs on

SUN workstations under UNIX while ENCORE runs on SUN workstations and DEC

machines under VMS. It is designed for a cooperative computer-aided design

environments. The ENCORE data model includes multiple inheritance and multi-valued

attributes. The ObServer stores multimedia data and supports locking-based

concurrence control, log-based recovery and transactions.

POSTGRES

14



POSTGRES [Rowe 1987] is a sequel to the INGRES relational database system,

which along with System R from IBM's San Jose Research Lab, played a major role in

ushering in the area of relational databases. The POSTGRES data model includes some

basic object-oriented concepts. One of the noteworthy aspects of the POSTGRES is the

proposed support for historical data besides data versions. Another novel aspect of the

POSTGRES design is the incorporation of advances in hardware technology into the

database system architecture.

AVANCE

AVANCE [Bjoninerstedt 1988] is designed for use as a tool for office

applications development. The user of the AVANCE program uses the PAL language

which is a strongly typed programming language largely influenced by Simula,

Smalltalk, and CLU. AVANCE is designed to be a fully distributed object-oriented

database system. It is the only object-oriented database system that supports nested

transactions. One of the aspects of AVANVCE is its use of a multi-version protocol

for concurrence control.

OZ+

OZ+ [Weiser 1989] is implemented in C and Turing Plus and runs on SUN

workstations under UNIX. The system, like AVANCE, is designed to facilitate the

implementation of office applications and the modeling of office activities. The OZ+

data model is noteworthy in its combination of the complex-object representation of

objects and the actor model of communication among active objects. The data model

supports single inheritance.

15



EXTRA

The EXTRA object manager [Carey 1988] is being contracted on top of the

EXODUS extensible storage system. The data model of EXTRA is a rich amalgamation

and extension of the data models of 02, GemStone, POSTGRES, etc. It includes

multiple inheritance composite objects, collections and set and array type constructors.

For the implemented of EXODUS, a new programming language called E was

designed and implemented by extending C++. EXTRA contains a number of features

appropriate for the implementation of a database system.

16



CHAPTER III

ANALYSIS OF THE AQUIRE DATABASE

The original AQUatic toxicity Information and REtrieval database (AQUIRE)

and the description files are stored in one source tape. The AQUIRE database is

implemented by VAX FORTRAN language in binary format running on the VMS

operating system on a DEC VAX 11/785 computer. No retrieval and manipulation

software is contained in the source tape.

The completed AQUIRE database contains files 10 to 18 as text or binary data

files and text files 1 to 9 as corresponding description files. File 11 consists of the main

information for each record in the AQUIRE database and files 10, 12 to 18 consist of

additional information in the different areas for the records in file 11. File 1 describes

the general information for the AQUIRE database and the first data file which is the

Chemical Abstract Service (CAS) registry numbers and the chemical names for all the

chemicals in the AQUIRE database. Files 2 to 9 are in FORTRAN COMMON block

descriptions showing the records format for data files 11 to 18 respectively. The purity

/ chemical characteristic data file 16 appends by trailing one blank character per record

for blocking purposes. Table 1 shows the files names, characters per line for all the

original text files in the AQUIRE database. Table 2 shows the file names, maximum

record number, record sizes and their contents for all the original data files in the

AQUIRE database.

RELATIONSHIPS AMONG THE AQUIRE DATABASE FILES

The AQUIRE database consists of nine fixed-size record data files. File 11 is

the main data file which contains 6 external record pointers to files 13 to 18. One

foreign key matches the candidate key in file 12. Each record in files 14 to 18 contains

17



TABLE 1

LIST OF THE ORIGINAL AQUIRE TEXT FILES

File Char per File
name line (Byte) size(Byte)

File Contents

1 80 4640 Description file for the database and file 10
2 80 5280 Description file for file 11
3 80 2880 Description file for file 12
4 80 1680 Description file for file 13
5 80 2560 Description file for file 14
6 80 2080 Description file for file 15
7 80 1760 Description file for file 16
8 80 1680 Description file for file 17
9 80 1920 Description file for file 18

TABLE 2

LIST OF THE ORIGINAL AQUIRE DATA FILES

File
Name

Record size Record
(Byte) no.

Files Size
(Byte)

File Contents

10 136 5,392 733,312 CAS registry no. and chemical name
11 160 105,392 16,863,040 AQTOX main information
12 544 9,952 5,413,888 Citation Information
13 68 2,184 191,420 Species Information
14 24 117,103 2,2810,472 CAS number in each test
15 20 369,003 7,380,060 Concentration-Conf. int-BCF
16 45 117,100 5,269,500 Purity / Chemical characteristics
17 72 260,816 18,778,752 Remark Information
18 16 777,825 12,445,200 Temp-Hardness-Alk-D.O.-pH

18



one pointer field to the corresponding record in the main data file 11. The CAS number

is the primary key in files 10 and foreign key in file 14.

Besides the external record pointers to other corresponding files, some of the

files also contain the internal record pointers to the other records in the same files. File

14 contains one internal record pointer to the next chemical in the same test, two

internal record pointers to the predecessor and successor locations with the same CAS

hash #. File 15 contains one internal record pointer to the next Concentration-Conf. int­

BCF record which can link to up to 12 records in this file to make up the complete

information. Files 16 to 18 contain the similar internal record pointers which can link

to up to 6, 7 and 15 records in the same file respectively.

There are three types of relationships among these nine data files, such as many­

to-one, one-to-many and one-to-one relationships. For example, there is a one-to-one

relationship between files 11 and 13, and there are one-to-many relationships between

files 10 and 14, files 11 and 12, and files 11 and 15 to 18. Table 3 shows the list of

the external/internal record pointer fields and other fields in the data files.

OBJECT-ORIENTED ANALYSIS MODEL (OOA / Coad-Yourdon)

Object-oriented analysis is an analysis model developed to describe the

functionality of the system. Coad and Yourdon extended this model with respect to

processes, human interfaces and DBMS issues. Coad and Yourdon view their OOA

methodology as building upon the best concept from information modeling, object­

oriented programming languages, and knowledge, as a system. OOA results in a five­

layer model of the problem domain, where each layer builds on the previous layer. The

layer model is constructed using a five-step procedure.

19



TABLE 3

LIST OF THE EXTERNAL/INTERNAL RECORD POINTERS
AND OTHER FIELDS IN NINE DATA FILES

File
names

Ext. record
pointers

Int. record Other field names
pointers

10 None None CASNo., Chemical Name
11 zcasptr, zchrptr, None zflag, zupdate, zrefnum, zrploc,

zispec, zccbptr, zrsloc, zauthor, zyear, zaploc, zasloc,
zthaptr, zremptr ztestl, ztest2, zrevur, zrcode, zlfield,

zfwsw, zstudy, zsploc, zssloc, zlifstg,
zcontrol, zeffect, zresvrd, zcctyp1,
zcctyp2, zbctyp1, zbctyp2, zbtime1,
zrtimel, zbtime2, zrtime2, ztimeun,
zexpty, zconc, zfill

12 None None author, year, yeara, title, source,
refnum, reftyp, aploc, asloc, rploc,
rsloc, mi, di, yi, mu, du, yu, litev,
garmark

13 None None latin, common, major, minor, spref
14 casaqloc casploc, casnum, castype

cassloc,
nextcas

15 ccbaploc nextccb ccbcf, ccbfield
16 chraploc nextchr purity, chrtype, chrfield, chrfill
17 remaploc nextrem remark, remfield, remfill
18 thaaploc nexttha thadp, thafield

(1) Define object and classes

(2) Define structure

(3) Define subject areas

(4) Define attributes

(5) Define services

The primary tools for Coad and Yourdon OOA are class and object diagrams

and series charts. Coad and Yourdon explicitly support each of the essential principles

20



of object orientation. In addition, encapsulation of objects IS modeled through the

concept of exclusive series.

By applying OOA/Coad-Yourdon methodology, the Object-Oriented Aquatic

Toxicity Database Management System (OOATDBMS) is defined as two modules of

objects, such as database and retrieval system objects and user interface objects. The

objects in the database and retrieval system are redefined as eight objects, files 11, 12,

13, 15, 16, 17 and 18 are defined as seven objects respectively, files 10 and 14 are

defined as one object due to the closed relationship of the CAS registry number. These

objects and the associated manipulation procedures are defined as classes. Each class

consists of its data members which are the data fields in each data file; and function

members which are the procedures used to manipulate its data members. There are

message passing relationships between these eight classes which are represented as the

external pointers relationships among the original AQUIRE data files. Figure 2 shows

the eight database classes and their relationships.

Note: A~ B means A contain an external record pointer to B

AH B means A and B contain external record pointers
to each other

Figure 2 The eight database classes and their relationships

The user interface objects consist of a set of visual objects associated with the

windows, views, menus, icons, dialog boxes, etc., which are used to display the

information on the screen after the information has been retrieved from the AQUIRE

database. These visual objects and their relationships are predefined in Microsoft Visual

C++ object-oriented development environment for all the MS Visual C++ Windows

21



applications. The OOATDBMS needs to derive its own user interface objects and

define the interactive relationships between themselves and between the user interface

objects and database and retrieval system objects.

22



CHAPTER IV

DESIGN OF THE OBJECT-ORIENTED AQUATIC TOXICITY
DATABASE MANAGEMENT SYSTEM (OOATDBMS)

Design is the process of mapping system requirements defined during analysis to

an abstract representation of a specific system-based implementation, meeting cost and

performance constraints. Compared to OOD, none of the conventional design

methodologies supports the definitions of classes, inheritance, methods or message

protocols, even though both of the methodologies provide the tools that define a

hierarchy of modules.

Design Database Retrieval Strategy

The original AQUIRE Database consists of nine data files, some of the them

already contain external and / or internal record pointers to other files or other records

in the same files. For example, file 11 contains the external record pointers to files 13

to 18. Files 14 to 18 contain the external record pointers to file 11. File 14 contains

internal record pointers also. However, some of the files do not contain any external or

internal record pointer indicating the relationships between each other and some of

them only have the key matching relationships. For example, there is no pointer to

each other among files 12 to 18. The relationship between file 11 and file 13 is

established by matching the zispec field in file 11 with the record no. of file 13, and the

relationship between file 11 and file 14 is established by matching the ziref field in

file 11 with the zrefnum field in file 14.

The goal of designing an effective database retrieval strategy is to provide users

with accurate information by multiple data retrieval methods and fast retrieval response

time. The original AQUIRE Database is a very large database'since the total database

occupies about 80 MB. The maximum data records in one file is 777,825 and up to six

23



files contain more than 100,000 data records in each file. In this case, the database

retrieval strategy for Object-Oriented Aquatic Toxicity Database Retrieval System

(OOATDBMS) is designed as follows.

Multiple Data Retrieval Methods

(1) To retrieve main information of a record in AQUIRE database, users may

enter either one of the following fields on the AQUIRE main window: its record

number, Citation reference number, CAS file record number, Species record number,

purity /chemical record number, conf.-int-BCF record number, temp-hardness record

number; or click the Aquire push button on other windows;

(2) To retrieve Citation information of a record, users may enter the reference

number on citation information window; or click the Citation push button on other

windows;

(3) To retrieve Species information of a record, users may enter either one of

the following fields on the Species windows: latin name, common name, major code,

minor code, species reference number, its record number; or click the Species push

button on other windows;

(4) To retrieve CAS information of a record, users may enter its record no. or

click the Previous or Next push button to retrieve the previous. or next record with the

same CAS # on CAS window; or click the CAS push button on other windows;

(5) To retrieve Concentration conf.-int-BCF information of a record, users may

enter the Refer push button on a window other than concentration conf.-int-BCF

information;

(6) To retrieve Purity/chern characteristic information of a record, users may

click the Purity push button on a window other than purity/chern characteristic

information;

24



(7) To retrieve Remark information of a record, users may click the Remark

push button on a window other than remark information;

(8) To retrieve Temp-Hardness-Alk-D.O.-pH information of a record, users

may click the Temp push button on a window other than Temp-Hardness-Alk-D.O.-pH

information.

Fast Retrieval Response Time

(1) retrieve the data record by directly accessing the file using its record no.;

(2) create indexes for the files;

(3) by using file 11 as an intermediate bridge, visually establish the relationships

among files 12 to 18 if they do not contain any record pointers to each other.

Design Indexes

An index is a special kind of sorted file, which is generally used to speed up the

retrieval. The file which has an index associated with it is called an indexed file. There

are two types of indexes: one is called primary index where the index key is the

primary key field in the indexed file; another is called secondary index where the index

key is the field other than the primary key field in the indexed file. In OOATDBMS,

there are three files which need to create the indexes.

File 11 (AQUIRE main information) contains 105,392 records with the fields

ziref and zispec unsorted. In order to quickly retrieve file 11 by a given ziref or zispec,

it is necessary to create two secondary indexes, one for mapping the ziref value to

record number, another for mapping the zispec value to the record number.

File 12 (Citation information) contains 9,952 records with the citation reference

numbers unsorted. In order to quickly retrieve file 12 by a given zrefnum, it is

25



necessary to create one secondary index for mapping the zrefnum value to the record

no.

File 13 (Species information) contains 2,815 records with latin name, common

name, major code, minor code and species reference number unsorted. In order to

quickly retrieve species information, it is necessary to create one primary index for

latin name and four secondary indexes for common name, major code, minor code and

species reference number individually. Each index only contains two fields, i.e. the

corresponding indexed field and the record no. in file 13. Table 4 shows the detail

information of eight indexes designed for the OOATDBMS.

TABLE 4

LIST OF INDEXES IN THE OOATDBMS

Index file Max record no. Search key Associated file

aqziref. idx 105,392 ziref File 11
aqzispec. idx 105,392 zispec File 11
retoxref. idx 9,952 zrefnum File 12
latin.idx 2,814 latin File 13
common.idx 2,814 common File 13
major.idx 2,814 major File 13
minor.idx 2,814 minor File 13
spref.idx 2,814 spref File 13

The procedures used to create indexes are listed as follows:

(1) read the search fields from the indexed file and write them with the record

no. into a temporary file;

(2) sort the temporary file using a random disk access sorting algorithm [Schildt

1990] because the file size is too large to be read into the memory at one time;

(3) save the sorted file as an index;

(4) repeat steps (1) to (3) until eight indexes have been created.

26



After eight sorted indexes have been created, searching the indexes by applying

the binary search algorithm will achieve very good performance because the time

complexity of binary search algorithm is pretty good. The number of comparisons in

the best case is one, the number of comparisons in the worse case is llog2~ + 1 for

1
N~ 1, and the number of comparisons in the average case is approximately llog2~ + -

2

for N~ 1.

With the pre-existed external and internal record pointers and eight indexes, all

the data files in the AQUIRE Database are visually linked to each other and can be

retrieved by a direct access method.

These two sections discuss the database retrieval strategy and the procedures for

design indexes, which are the basic steps of the database retrieval system design. In

the next section, the design of OOATDBMS is discussed using the object-oriented

design (OOD/Booch) method, which is intended to implement the above retrieval

strategy.

Object-Oriented Design (OOD/Booch)

Object-oriented design (OOD/Booch) method is very similar to the OOA/Coad­

Yourdon method of finding objects, but the OOD/Booch method focuses more on

establishing a grounding for the implementation. Booch employs a detailed precedence

(where appropriate) for designing the data encapsulated within objects. He delineates

four major steps that must be performed during the course of the OOD:

(1) Identify the class and objects;

(2) Identify the semantics of classes and objects;

(3) Identify relationships between classes and objects;

(4) Implement classes and objects.

27



The primary tools used during the OOD / Booch method are:

• Class diagram and class template

• State diagram and timing diagrams

• State-transition diagram

• Operation templates

• Module diagrams and templates

• Process diagrams and templates

Design Database Classes and Objects

By applying the aOD / Booch method, the system design of the Object­

Oriented Aquatic Toxicity Database Management System is identified as two major

subsystems, one is a database retrieval subsystem and another is a user interface

subsystem. The database retrieval subsystem consists of eight classes which are

designed for data files 11 to 18. The data members of each class are the fields in each

file plus one index field called thisRecordNo, which is used to indicate the current

record no. in each file. The function members of each class are the constructor,

destructor and some special functions associated with each class. Table 5 shows the

database classes names, their data member number, function member number and their

relationships with the original AQUIRE data files.

The detail information of each class are listed as follows:

Class name:

Description:

CAqtoxClass

This class is designed for data file 11, which is the AQUIRE main

information file. This class is used to store the current AQUIRE

main information for the record which has just been retrieved from

file 11. The class provides three associated functions besides the

constructor and destructor. There are functions to return the

28



TABLE 5

LIST OF THE DATABASE CLASSES AND OBJECTS

Classes names Data member no. Function member no. Related to data files

CAqtoxClass 41 5 11
CRetoxClass 20 4 12
CSpeciesClass 6 11 13
CStocasClass 8 5 14
CStoccbClass 18 4 15
CStochrClass 14 4 16
CStoremClass 9 4 17
CStothaClass 17 4 18

current record no., to retrieve the record by a given record no.

and to search the citation record no. by a given citation reference

Data members:

number (zirej).

thisRecdNo, zflag, zupdate, zcasptr, zchrptr, ziref, zrploc, zrsloc,

zauthor, zyear, zaploc, zasloc, ztestl, ztest2, zrevur, zrcode,

zlfield, zafwsw, zstudy, zispec, zsploc, zssloc, zlifstg, zcontrl,

zeffect, zresvrd, zccbptr, zcctyp 1, zcctyp2, zbctyp 1, zbctyp2,

zbtimel, zrtimel, zbtime2, zrtime2, ztimeun, zexpty, zconc,

zthaptr, zremptr ,zfill;

Function members: aqtoxClass(), -- aqtoxClass(), long getRecdNo(),

ItemStruct searchRecdNum(ifstream& f, long 1),

int getRetoxRecdNo(ifstream& f, long keyRefNum);

Class name:

Description:

CRetoxClass

This class is designed for data file 12, which is the citation

information file. This class is used to store the current citation

29



Class name:

Description:

information for the record which has just been retrieved from file

12. The class provides two associated functions besides the

constructor and destructor. There are functions to retrieve the

record by a given record no. and to search the aqtox record no. by

a given citation reference number.

Data members: thisRecdNo, author, year, yeara, title, source, refnum, reftyp,

aploc, asloc, rploc, rsloc, mi, di, yi, mu, du, yu, litrev, garmark;

Function members: CRetoxClass(), - CRetoxClass(),

RetoxStruct searchRecdNum(long i),

long getAqtoxRecdNo(long keyRetNum);

CSpeciesClass

This class is designed for data file 13, which is the speCIes

information file. This class is used to store the current speCIes

information for the record which has just been retrieved from file

13. The class provides eight associated functions besides two

constructors and one destructor. There are functions to return the

current record no., to retrieve the record by a given record no., to

search the aqtox record no. by a given species record number, to

search the species record no. by a given latin name, or common

name, or major code, or minor code, or species reference number.

Data members: thisRecdNo, Latin, Common, Major, Minor, Spref;

Function members: CSpecies(), -CSpecies(), CSpecies(specStruct sp),

long getRecordNo(),

specStruct searchRecordNo(ifstream& f, long i),

long getAqtoxRecdNo(ifstream& f, long keySpec),

long searchByLatin(ifstream& f, CString latin),

30



Data members:

Class name:

Description:

long searchByCommon(ifstream& f, CString common),

long searchByMajor(ifstream& f, CString major),

long searchByMinor(ifstream& f, CString minor),

long searchBySpref(ifstream& f, short spret);

CStocasClass

This class is designed for data files 10 and 14, which is the

chemical abstract service (CAS) registry number and chemical

name. This class is used to store the current CAS information such

as CAS number, its chemical name and type for the record which

has just been retrieved from files 10 and 14. The class provides

three associated functions besides the constructor and destructor.

There are functions to return the current record no., to retrieve the

record by a given record no., to search the CAS chemical name

information from file 10 by a given CAS number.

thisRecdNo, nextcas, casnum, casploc, cassloc, casaqloc, castype,

chemName;

Function members: CStocasClass(), -- CStocasClass(), long getRecordNo(),

stocasStruct searchRecdNum(long 1),

char* searchCASRecdNo(long casNum);

Class name:

Description:

CStoccbClass

This class is designed for data file 15, which is the Concentration­

Conf int-BCF information file. This class is used to store the

current concentration-Conf int-BCF information for the record

which has just been retrieved from file 15. The class provides two

associated functions besides the constructor and destructor. There

31



Data members:

Class name:

Description:

are functions to return the current record no. and to retrieve the

record information by a given record no.

Data members: thisRecdNo, mBcfFrom1, mBcfFrom2, mBcITo1, mBcITo2,

mBcIType1, mBcIType2, mConcFrom1, mConcFrom2,

mConcTo1, mConcTo2, mConcType1, mConcType2,

mInterFrom1, mInterFrom2, mInterTo1, mInterTo2, ccbaqloc;

Function members: CStoccbClass(), - CStoccbClass(), long getRecordNo(),

stoccbStruct searchRecordNo(long i);

CStochrClass

This class is designed for data file 16, which is the purity /

chemical characteristic information file. This class is used to store

the current purity / chemical characteristic information for the

record which has just been retrieved from file 16. The class

provides two associated functions besides the constructor and

destructor. There are functions to return the current record no. and

to retrieve the record information by a given record no.

thisRecdNo, chrAqloc, mChemchar1, mChemchar2,

mChemchar3,mChemchar4, mChemchar5, mChemchar6,

mPurity1, mPurity2, mPurity3, mPurity4, mPurity5, mPurity6;

Function members: CStochrClass(), - CStochrClass(), long getRecordNo(),

stochrStruct searchRecordNo(long i);

Class name:

Description:

CStoremClass

This class is designed for data file 17, which is the remark

information file. This class is used to store the current remark

information for the record which has just been retrieved from file

32



Class name:

Description:

17. The class provides two associated functions besides the

constructor and destructor. There are functions to return the current

record no. and to retrieve the record information by a given record

no.

Data members: thisRecdNo, remaqloc, remark[7][61];

Function members: CStoremClass(), - CStoremClass(), long getRecordNo(),

storemStruct searchRecordNo(long 1);

CStothaClass

This class is designed for data file 18, which is the temp-hardness­

Alk-D.O.-pH information file. This class is used to store the temp­

hardness-Alk-D.O.-pH information for the record which has just

been retrieved from file 18. The class provides two associated

functions besides the constructor and destructor. There are

functions to return the current record no. and to retrieve the record

information by a given record no.

Data members: thisRecdNo, mThaaqloc, mFrom[5][7], mTo[5][7], mValue[5][7];

Function members: CStothaClass(), - CStothaClass(), long getRecordNo(),

stothaStruct searchRecordNo(long 1);

Design User Interface Classes and Objects

The User interface classes and objects contain windows, menus, views, dialog

boxes, and controls such as buttons, edit boxes, etc. They functionally co-operate

together to display information on the screen and take users input. Users can open or

close windows and views, click on the menus item to activate windows, and click push

buttons to activate other views or dialog boxes, etc. All of these operations are parts of

33



the functions provide by the user interface classes and objects [Collins 1995,

Johnsonvaugh 1995, Neilsen 1995].

In the OOATDBMS, the user interface classes and objects are basically consists

of one main window with one menu screen, eight derived view classes, 94 edit boxes,

and 70 push buttons. Besides the basic menu items included in all standard windows

menu screen, the main window menu screen contains one additional menu item called

Retrieve with eight sub-menu items. There are: AQUIRE, Citation, Species, CAS,

Purity I Chemical, Conf. int-BCF, Remark, Temp-Hardness-Alk-D.O.pH. Each item

corresponds to one derived formview window. By selecting one of eight sub-menu

items, the corresponding view window will be created if it does not exist, or will be

activated if it already exists.

Some of the edit boxes in the eight derived views are the places where users

can input the search keys. Each view class object corresponds to one database class

object. It contains 4 to 25 edit boxes, 8 to 11 push buttons, and 12 to 15 message

handling functions. The edit boxes are used to accept user's search keys and lor hold

the information which is needed to be displayed on the screens. The push buttons are

used to accept users' control messages, such as transferring control to other views or

closing the view, etc. The message handling functions are used to maintain the

information changed in the edit boxes and process users' input control messages. Table

6 shows the view names, number of edit boxes, number of push buttons, number of

functions and associated database classes names for the view class objects.

The detail information of each view are listed as follows:

View name: CAqtoxView

Description: This view class is designed for CAqtoxClass to display information

contained in the CAqtoxClass instance and accept users' input data.

The information is displayed in 25 edit boxes. Users can input

search keys on eight different fields, Le., mRecdNum, mRetoxPtr,

34



TABLE 6

LIST OF EIGHT VIEW OBJECTS AND THEIR INFORMATION

ViewNames Edit Boxes Push Buttons No. of Func. Associated DB Files

CAqtoxView 25 9 13 CAqtoxClass
CRetoxView 9 9 13 CRetoxClass
CSpeciesView 6 9 13 CSpeciesClass
CStocasView 4 11 15 CStocasClass
CStoccbView 16 8 13 CStoccbClass
CStochrView 12 8 12 CStochrClass
CStoremView 7 8 12 CStoremClass
CStothaView 15 8 12 CStothaClass

mSpecNo, mCasRecd, mCcbPtr, mChrPtr, mRemarkPtr,

mTempPtr, and click the Search button on the screen or press

ENTER from the keyboard. The retriev·al information will be

displayed if the record exists, otherwise, an error message will be

displayed. If the user clicks buttons other than the Search button,

for example, the Citation button, the window control will be

transferred to CRetoxView and the CRetoxView with the retrieval

citation information, which corresponds to the CAqtoxClass record

information, will be displayed if the record exists, otherwise, an

error message will be displayed. There are nine push buttons,

seven of them for transferring control to other view class objects,

two of them for searching the records and closing the current

view.

Edit boxes: mAuthor, mCasRecd, mCcbPtr, mChrPtr, mControl, mEffect,

mExposure, mLifeStage, mMedia, mMethod, mRetoxPtr,

35



Push buttons:

Functions:

View name:

Description:

mReviewer, mCode, mSpecNo, mStudy, mTempPtr, mTestField,

mTiml, mTime2, mTotalTest, mYear, mDate, mTestNo,

mRecdNum, mRemarkPtr;

mCitationCtrl, mCASCtrl, mTempCtrl, mSpecCtrl, mRemarkCtrl,

mRefCtrl, mPurityCtrl, mSearch, mClose;

void OnClickButton(int bt), int mySearch(),

virtual - CAqtoxVw(),

virtual void DoDataExchange(CDataExchange* pDX) ,

void OnClickedAqtoxClose(), void OnClickedAqtoxSearch(),

void OnClickedAqtoxCas(), void OnClickedAqtoxCitation(),

void OnClickedAqtoxPurity(), void OnClickedAqtoxReference(),

void OnClickedAqtoxRemark(), void OnClickedAqtoxSpecies(),

void OnClickedAqtoxTempHard();

CRetoxView

This view class is designed for CRetoxClass to display information

contained in the CRetoxClass instance and accept users' input data.

The information are displayed in 9 edit boxes. Users can input

search keys on two different fields, i.e., mRetoxRecdNo,

mRetoxRefNum, and click the Search button on the screen or press

ENTER from the keyboard. The retrieval information will be

displayed if the record exists, otherwise, an error message will be

displayed. If the user clicks buttons other than the Search button,

for example, the AQUIRE button, the window control will be

transferred to CAqtoxView and the CAqtoxView with the retrieval

AQUIRE main information, which corresponds to the CRetoxClass

record information, will be displayed if the record exists,

36



Edit boxes:

Push buttons:

Functions:

View name:

Description:

otherwise, an error message will be displayed. There are nine push

buttons, seven of them for transferring control to other view class

objects, two of them for searching the records and closing the

current view.

mRetoxAuthor, mRetoxInsertDate, mRetoxRecdNo,

mRetoxRetNum, mRetoxReIType, mRetoxSource, mRetoxTitle,

mRetoxUpdateOate, mRetoxYear;

mRetoxTemp, mRetoxSpecies, mRetoxRemark, mRetoxRefer,

mRetoxPurity, mRetoxCAS, mRetoxClose, mRetoxSearch,

mRetoxAquire;

void OnClickButton(int bt), int mySearch(),

virtual - CRetoxVw(),

virtual void DoDataExchange(COataExchange* pOX),

void OnRetoxSearch(), void OnClickedRetoxAquire(),

void OnRetoxClose(), void OnRetoxCas(),

void OnRetoxPurity(), void OnRetoxRefer(),

void OnRetoxRemark(), void OnRetoxSpecies(),

void OnRetoxTemp();

CSpeciesView

This view class IS designed for CSpeciesClass to display

information contained in the CSpeciesClass instance and accept

users' input data. The information is displayed in 6 edit boxes.

Users can input search keys on all six fields, i.e., mLatin,

mCommon, mMajor, mMinor, mSpref, mSpecNum, and click the

Search button on the screen or press ENTER from the keyboard.

The retrieval information will be displayed if the record exists,

37



Edit boxes:

Push buttons:

Functions:

View name:

Description:

otherwise, an error message will be displayed. If the user clicks

buttons other than the Search button, for example, the AQUIRE

button, the window control will be transferred to CAqtoxView and

the CAqtoxView with the retrieval AQUIRE main information,

which corresponds to the CSpeciesClass record information, will

be displayed if the record exists, otherwise, an error message will

be displayed. There are nine push buttons, seven of them for

transferring control to other view class objects, two of them for

searching the records and closing the current view.

mLatin, mCommon, mMajor, mMinor, mSpref, mSpecNum;

mSpeciesTemp, mSpeciesRetox, mSpeciesRemark,

mSpeciesPurity, mSpeciesRefer, mSpeciesCAS, mClose, mSearch,

mAquire;

void OnClickButton(int bt), int mySearch(),

virtual - CSpecView(),

virtual void DoDataExchange(CDataExchange* pDX),

void OnClickedClose(), void OnClickedAquire(),

void OnClickedSearch(), void OnSpeciesCas(),

void OnSpeciesPurity(), void OnSpeciesRefer(),

void OnSpeciesRemark(), void OnSpeciesRetox(),

void OnSpeciesTemp();

CStocasView

This view class is designed for CStocasClass to display information

contained in the CStocasClass instance and accept users' input data.

The information is displayed in 4 edit boxes. Users can input

search keys on one field, i.e., mCASRecordNo and click the

38



Edit boxes:

Push buttons:

Functions:

View name:

Search button on the screen or press ENTER from the keyboard.

The retrieval information will be displayed if the record exists,

otherwise, an error message will be displayed. If the user clicks

buttons other than the Search button, for example, the AQUIRE

button, the window control will be transferred to CAqtoxView and

the CAqtoxView with the retrieval AQUIRE main information,

which corresponds to the CStocasClass record information, will be

displayed if the record exists, otherwise, an error message will be

displayed. There are eleven push buttons, seven of them for

transferring control to other view class objects, two of them for

retrieving previous and next record with the same CAS number and

two of them for searching the records and closing the current view.

mCASNum, mChemName, mChemType, mCASRecordNo;

mStocasSpecies, mStocasTemp, mStocasRemark, mStocasRefer,

mStocasPurity, mStocasCitation, mStocasAquire, mPreview,

mSearch, mNext, mClose;

void OnClickButton(int bt), int mySearch(),

virtual - CStocasVw(),

virtual void DoDataExchange(CDataExchange* pDX) ,

void OnClickedStocasNext(), void OnClickedStocasSearch(),

void OnClickedStocasPreview(), void OnStocasClose(),

void OnStocasAquire(), void OnStocasCitation(),

void OnStocasPurity(), void OnStocasRefer(),

void OnStocasRemark(), void OnStocasSpecies(),

void OnStocasTemp();

CStoccbView

39



Description:

Edit boxes:

Push buttons:

Functions:

View name:

Description:

Edit boxes:

This view class is designed for CStoccbClass to display information

contained in the CStoccbClass instance in 16 edit boxes. There are

eight push buttons, seven of them for transferring control to other

view class objects and one of them for closing the current view.

mStoccbBcfFrom1, mStoccbBcfFrom2, mStoccbBcITo1,

mStoccbBcIT02, mStoccbBcIType1, mStoccbBcIType2,

mStoccbConcFrom1, mStoccbConcFrom2, mStoccbConcTo1,

mStoccbConcT02, mStoccbConcType1, mStoccbConcType2,

mStoccberFroml, mStoccberFrom2, mStoccberTo1,

mStoccberT02;

mStoccbTemp, mStoccbSpecies, mStoccbRemark, mStoccbPurity,

mStoccbCitation, mStoccbCAS, mStoccbClose, mStocccbAquire,

void OnClickButton(int bt), int mySearch(), virtual -stoccbVw(),

virtual void DoDataExchange(CDataExchange* pDX) ,

void OnClickedStoccbAquire(), void OnStoccbSearch(),

void OnStoccbClose(), void OnStoccbCas(),

void OnStoccbCitation(), void OnStoccbPurity(),

void OnStoccbRemark(), void OnStoccbSpecies(),

void OnStoccbTemp();

CStochrView

This view class is designed for CStochrClass to display information

contained in the CStochrClass instance in 12 edit boxes. There are

eight push buttons, seven of them for transferring control to other

view class objects and one of them for closing the current view.

mStochrChemchar1, mStochrChemchar2, mStochrChemchar3,

mStochrChemchar4, mStochrChemchar5, mStochrChemchar6,

40



Push buttons:

Functions:

View names:

Description:

Edit boxes:

Push buttons:

Functions:

mStochrPurity1, mStochrPurity2, mStochrPurity3,

mStochrPurity4, mStochrPurity5, mStochrPurity6;

mStochrCAS, mStochrTemp, mStochrSpecies, mStochrRemark,

mStochrRefer, mStochrCitation, mStochrClose, mStochrAquire;

void OnClickStochrSearch(), int mySearch(),

virtual - CStochrView(),

virtual void DoDataExchange(CDataExchange* pDX),

void OnClickedStochrAquire(), void OnStochrClose(),

void OnStochrCas(), void OnStochrCitation(),

void OnStochrRefer(), void OnStochrRemark(),

void OnStochrSpecies(), void OnStochrTemp();

CStoremView

This view class is designed for CStoremClass to display

information contained in the CStoremClass instance in 7 edit

boxes. There are eight push buttons, seven of them for transferring

control to other view class objects and one of them for closing the

current view.

mStoremRemark1, mStoremRemark2, mStoremRemark3,

mStoremRemark4, mStoremRemark5, mStoremRemark6,

mStoremRemark7;

mStoremTemp, mStoremSpecies, mStoremRefer, mStoremPurity,

mStoremCitation, mStoremCAS, mStoremClose, mStoremAquire;

void OnClickStoremSearch(), int mySearch(),

virtual - CStoremView(),

virtual void DoDataExchange(CDataExchange* pDX),

void OnClickedStoremAquire(), void OnStoremClose(),

41



View name:

Description:

Edit boxes:

Push buttons:

Functions:

void OnStoremTemp(), void OnStoremSpecies(),

void OnStoremRefer(), void OnStoremPurity(),

void OnStoremCitation(), void OnStoremCas();

CStothaView

This view class is designed for CStothaClass to display information

contained in the CStothaClass instance in 15 edit boxes. There are

eight push buttons, seven of them for transferring control to other

view class objects and one of them for closing the current view.

mStothaFroml, mStothaFrom2, mStothaFrom3, mStothaFrom4,

mStothaFrom5, mStothaTo1, mStothaTo2, mStothaTo3,

mStothaTo4, mStothaTo5, mtothaValuel, mStothaValue2,

mStothaValue3, mStothaValue4, mStothaValue5;

mStothaSpecies, mStothaRemark, mStothaRefer, mStothaPurity,

mStothaCitation, mStothaCAS, mStothaClose, mStothaAquire;

void OnClickStothaSearch(), int mySearch(),

virtual - CStothaView(),

virtual void DoDataExchange(CDataExchange* pDX),

void OnClickedStothaAquire(), void OnStothaClose(),

void OnStothaCas(), void OnStothaCitation(),

void OnStothaPurity(), void OnStothaRefer(),

void OnStothaRemark(), void OnStothaSpecies().

42



CHAPTER V

IMPLEMENTATION AND TESTING OF THE OOATDBMS

The Object-Oriented Aquatic Toxicity Database Management System

(OOATDBMS) is implemented under Microsoft Visual C+ + development

environment version 2.0 running on Windows NT version 3.5. Windows NT is a new

32-bit operating system that has an advanced file system with security features,

multithreading, true preemptive multitasking, enhanced network access, and portability

to selected RISC computers. C+ + is known as an object-oriented programming

language. Microsoft Visual C++ is a complete windows application development

system product [Kruglinski 1994, Pappas 1994].

The Basic MS Visual C++ Components

Application Framework

An application framework is a superset of a class library, that is, an integrate

collection of object-oriented software components for a generic program. It defines the

structure of the program.

App Studio

App Studio is a program used to design the application user interface and create

the application's resources; i.e. dialog boxes, custom controls, accelerator keys,

bitmaps, icons cursors, and strings.

AppWizard

43



AppWizard is a code generator that creates a working skeleton of a window

application with features, class names, and source code filename.

ClassWizard

ClassWizard is a program that provides the programmer with the prototypes of a

new class or function members and variables. It also works with App Studio Editor to

create the user-interface objects and generate functions and message-maps for each

user-interface objects.

Document

Document objects which are created by the document template objects manage

the application's data. The basic class for all the application-specific documents is

CDocument class. Each application can derive its own document class from

CDocument class.

Microsoft Foundation Class Library (MFC)

Microsoft Foundation Class Library (MFC) is an application framework defined

for MS Visual C++. The library's classes are presented as six categories, all the

classes in MFC support application development for Microsoft Windows version 3.0

and later. These six categories classes are: Root Class, Application Architecture

Classes, Visual Object Classes, General-Purpose Classes, Object Linking and

Embedding (OLE) Classes, Macros and Globals. The application can derive its

application-specific class from MFC Classes.

Multiple Document Interface (MDI) Application

44



A multiple document interface application is a kind of application that allows

multiple document frame windows to be opened in the same instance of an application.

It contains several MDI child windows, each child window contains a separate

document.

Single Document Interface (SDI) Application

A single document interface application is a kind of application that allows only

one document frame window to be opened in the same instance of an application.

Multiple Document Template

Multiple document template is a template for document in multiple document

interface (MDI) application, which allows more than one documents opened at a time.

Single Document Template

Single document template is a template for document in single document

interface (SDI) application, which allows only one document opened at a time.

View

View objects represent the client area of a frame window which is used to

display, accept, edit or select the input for a document. The basic view class for all the

application-specific is CView class. Each application can derive its own view class

from four types of view classes, i.e., CView, CScrollView, CFormView, CEditView.

Visual Workbench

45



Visual workbench is a windows-hosted interactive development environment. It

provides the windows application programmers with a lots of development tools, such

as App Studio Resource Editor, C/C + + Compiler, Linker, Resource Compiler, and

Debugger, etc.

Implementation of the OOATDBMS

A basic application project generated by AppWizard contains an application

class, a frame class, a document class and a view class. Only one application class is

allowed in each application project, however, there may be more than one frame class,

document class and view class objects in the application project depending on the type

of the project. For example, a multiple document interface application project may

contain more than one frame classes, several types of document classes, each document

class may associate with different types of view classes (also called multiple views).

There are three models of multiple views on the same document, that is, (1) Several

view objects of the same class, each view occupies in a separate MDI document frame

window; (2) Several view objects of the same class occupy in the same document frame

window; (3) Several objects of different classes occupy in a single frame window.

Based on the design, the implementation of the OOATDBMS is described as

following skeleton.

The application is a MDI and multiple view project, which consists of two

layers of class objects. The first layer contains four basic class objects for general MDI

application, i.e., one application object, one main frame windows object, one main

document class object and one main view class object. The second layer contains eight

MDI document templates, eight MDI child windows objects, ~ight derived documents

class objects and eight formview class objects. The main frame manages eight MDI

child windows class objects, the main document class object manages eight document

46



class objects, the main view class object manages eight formview class objects, and the

application object manages eight MDI documents templates.

Each document class object represents one database class object designed

previously. Each formview class object represents one view class object respectively.

Figure 3 shows the architecture of the class objects in OOATDBMS.

For this MDI application, eight different multiple document templates are

defined. Each template defines the relationship of one frame windows object, one

document object and one formview object. TABLE 7 lists the template names, frame

objects, document objects, and formview objects.

TABLE 7

LIST OF TEMPLATES AND THE RELATIONSHIPS DEFINED

Template names

mTemplatel

mTemplate2

mTemplate3

mTemplate4

mTemplate5

mTemplate6

mTemplate7

mTemplate8

Frame objects

CMDIChildWndl

CMDIChildWnd2

CMDIChildWnd3

CMDIChildWnd4

CMDIChildWnd5

CMDIChildWnd6

CMDIChildWnd7

CMDIChildWnd8

47

Document objects

CAqtoxClass

CRetoxClass

CSpeciesClass

CStocasClass

CStoccbClass

CStochrClass

CStoremClass

CStothaClass

Formview objects

CAqtoxView

CRetoxView

CSpeciesView

CStocasView

CStoccbView

CStochrView

CStoremView

CStothaView



~ mTemplatel

- mTemplate2

- mTemplate3

- mTemplate4

Ii CAquireApp
I

mTemplate5I
- mTemplate6

- mTemplate7

- mTemplate8

r----- CAqtoxClass

f--- CRetoxClass

~ CSpeciesClass

~ CStocasClass

H CAquireDoc
1

CStoccbClassr
- CStochrClass

- CStoremClass

- CStothaClass

IApplication r-
- CAqtoxView

- CRetoxView

- CSpeciesView

- CStocasView

~ CAquireView I
CStoccbViewI

- CStochrView

- CStoremView
"'"--- CStothaView

r----- CIvIDIChildWndl

f--- CIvIDIChildWnd2

f--- CIvIDIChildWnd3

- CIvIDIChildWnd4
~ CMDIFrarneWnd 1 CMDIChildWnd5

- CMDIChildWnd6

- CIvIDIChildWnd7

--- CIvIDIChildWnd8

Figure 3 The architecture of class objects in the OOATDBMS

48



System Testing for OOATDBMS

The system testing is one of the five procedures defined in software engineering

life cycle, which intends to check the verification and validation of the system.

Verification focuses on checking whether the result agrees with the system

specification, while validation focuses on checking the system behavior match the

requirements [Jacobson 1992]. Generally, there are many types of tests, one should

use a combination of them to perform the test for his/her system. Three types of the

most important tests have been used to test the OOATDBMS. There are: (1) Unit

testing; (2) Integration testing, and (3) User testing. Each type of test focuses on the

different parts of the system functions.

Unit Testing

Unit testing is a most primitive testing performed after a program (or called a

routine) is developed. This test focuses on the verification of the program. It tries to

test and find out the problems such as: whether the program completes all the required

functions, or if there is an exception handling function for data overflow, etc.

Integration Testing

Integration testing is a test performed after all the programs in the system are

completed. This test is focuses on co-operation of different units that have been

developed. It tries to test and find out the problems such as: whether program A

outputs the correct data to program B, or if program A calls a sub-routine of program B

using a correct argument, etc.

User Testing

49



User testing is a test performed after the system pasts the integration testing.

The users, other than the programmer conduct the test. This test is focuses on the

validation of the system. It tries to test and find out whether the system performs all the

expected requirements, or if there is some modification the user expects to change, etc.

The OOATDBMS is developed and tested using PC 486/ DX 33 with 8

megabytes memory and 540 MB hard disk space. The system pasts the three types of

the system test and the performance is satisfied by most professional or non­

professional users.

50



CHAPTER VI

SUMMARY AND CONCLUSIONS

The concepts of object-oriented model and programming languages have

become popular since last decade. The object-orientation concepts have evolved in

three different disciplines: first in programming languages, then in artificial

intelligence, and then in database. The basic concepts of object-oriented programming

languages are objects, classes, abstract data type, data encapsulation, inheritance and

polymorphism. Object-oriented analysis (OOA) is an analysis model developed to

describe the functionality of the system. It integrates the data and the associative

functions as objects rather than separates the data from the associative functions.

Object-oriented design (ODD) is a design model used to design and implement the

system analysis done by OOA or other analysis methods. Although no standard OOA

and ODD methodologies is defined currently, the OOAI Coad-Yourdon and ODD I

Booch are one of the well-known OOA and ODD methodologies most in use.

One of the major applications of an object-oriented model is to combine the

object-orientation concepts of programming and data model with database systems.

This type of database system is called Object-Oriented Database Systems (OODBS).

There are five major advantages of a OODBS: (1) data structures are flexible; (2) there

are many facilities for describing data; (3) data values can be inherited; (4) complex

models can be built; and (5) source codes are reusable.

The Object-Oriented Aquatic Toxicity Database Management System

(OOATDBMS) is the object-oriented database management s,ystem designed for the

original AQUIRE relation database. It is analyzed and designed by the object-oriented

analysis I Coad-Yourdon and the object-oriented design I Booch methodologies. It

consists of two sub-systems, one is a database and retrieval sub-system, another is a

user interface sub-system. The database and retrieval sub-system retrieves the data from

51



the original AQUIRE database and maintains them as an object-oriented database. The

user interface sub-system is a message-driven windows programs. It provides users

with graphical user interface objects, such as windows, menus, and push buttons, etc.

The user interface sub-system co-operates with database and retrieval sub-system to

take users' input and display the information on the screen. The OOATDBMS is a

complete and efficient database management system for the AQUIRE database because

it can retrieve all the information existing in the database. Moreover, since the

OOATDBMS is an object-oriented modular system with user-friendly interface

implemented under Microsoft Visual C++ development environment, the system is

very easy to use and maintain for future modification.

There are some restrictions apply to the OOATDBMS. The system retrieves the

information by one search key at a time and the string should be entered in full if it is

used as a search key. The suggestion for future system modifications is to implement

multiple-key search, which will make the system more powerful and efficient.

52



BIBLIOGRAPHY

Alagic, Suad. (1989). Object-oriented Database Programming. Springer-Verlag.

Alvey, P.L., Preston, N.J. & Greaves, M.F. (1987). High Performance for Expert
Systems: I Escaping from the Demonstrator Class. Medical Informatics, 12,
85-95.

Alvey, P.L., Preston, N.J. & Greaves, M.F. (1987). High Performance for Expert
Systems: II Escaping from the Demonstrator Class. Medical Informatics, 12,
pp. 97-114.

Andrews, T. C. (1987). Combining Language and Database Advances in an Object­
Oriented Development Environment. in Proc. of 2nd IntI. Conf. on Object­
Oriented Programming Systems, Languages, and Applications, Oct. 430-440.

Berman, Jay I., Moore, Harry H. 4th. & Wright, Jon R.(1994). Classic and PROSE
Stories: Enabling Technologies for Knowledge-based Systems. AT & T
Technical Journal, 73(1), 69-80.

Bertino, Elisa, & Martino, Lorenzo. (1991). Object-Oriented Database Management
System:Concepts and Issues. Computer, 24(4), 33 - 47.

Bertino, E., & Kim, W. (1989). Indexubg Techniques for Queries in Nested Objects.
IEEE Trans. in Knowledge and Data Engineering. Oct.

Bjoninerstedt, A., & Beitts, S. (1988). AVANCE: an Object Management System, in
Proc. 3rd IntI. Conf. on Object-Oriented Programming Systems, Language, and
Applications. San Diego, Calif., Sept.

de-Brito, J., Branco, F.A. & Ibanez, M. (1994). A Knowledge-based Concrete Bridge
Inspection System. Concete International, 16(2), 59-63.

Carey, M., DeWitt, D, & Vanfenberg, S. (1988). A Data Model and Query Language
for EXODUS. in Proc. of ACM SIGMOD IntI. Conf. on Management of Data.
Chicago, IL, June, 413-423.

Christerson, M., Jonsson, P., & Ovvergaard, G. (1992). Object-Oriented Software
Engineering. New York: Addison-Wesley Publishing Company.

Collins, Dave (David Hunter) (1995). Designing Object-Oriented User Interfaces.
Redwood City, CA : Benjamin Cumming.

53



Date, C.J. (1990). An Introduction to Database Systems (Fifth Edition). Addison­
Wesley Publishing Company.

Doherty, N. F., Kochhar, A. K., & Main, R. (1994). Knowledge-based Approaches to
Fault Diagnosis: A Practical Evaluation of the Relative Merits of Deep and
Shallow Knowledge. Proceedings of the Institution of Mechanical Engineers,
Part B, Journal of Engineering Manufature, 208(B1), 39-45.

Durham, T. (1989). Having the Last Word on Information Retrieval. Computing,
May.

Fishman, D., et ale (1987). IRIS: An Object-Oriented Database Management System.
ACM Trans. on Office Information Systems, 5(1), 48-69.

Fichman, Robert G., & Kemerer, Chris F. (1992). Object-Oriented and Conventional
Analysis and Design Methodologies. Computer 25(10), 22 - 40.

Gamm, W., & Herrmann, F. (1988). OCEX-Ein Expertensystem zur Uberpreufung
von Kundenauftagen und zur Konfigurierung von Produktions­
Seuerungsanforderungen. In K.-P. fahnrich(ed.): Expertersysteme in Panung
und Produktion, Kongreband, KOMMTECH.

Gurewish, Nathan. (1994). Master Visual C+ + 1.5. Indianapolis, IND. : SAMS.

Hornick, M., & S. Zdonik. (1987). A Shared, Segmented Memory System for an
Object-Oriented Database. ACM Trans. on Office Information Systems, 5(1),
70-95.

Hurson, A. R., Pakzad, S. H., & Cheng, Jia-bing. (1993). Object-oriented Database
Mangement Systems: Evolution and Performance Issues. Computer, 26(2), 48­
58.

Johnsonvaugh, Richard. (1995). Object-Oriented Programming in C+ +. Englewood
Cliffs, N. J. : Prentice Hall.

Keen, M. McBride (1986). Expert Systems in Clarifying Employment Law.
Proceedings of KBS '86. Online Publication.

Kiwi, the team (1988). contact Mecchia, A. A System for Managing Data and
Knowledge Bases. Proceedings of an ESPRIT technical meeting held in
Brussels, Nov.

Kruglinski, David J. (1994). Inside Visual C+ +, 2nd ED. Redmond, WA: Microsoft
Press.

54



Kulpaiboon, Kumpera. (1993). An Object-Oriented Database Retrieval System for
Aquatic Toxicity Data Files. M.S. Thesis. Computer Science Department,
Oklahoma State University.

Maier, D., et ale (1986). Development of an Object-Oriented DBMS. in Proc. 1st.
IntI. Conf. on Object-Oriented Programming Systems, Language, and
Applications. Porland, Oregon,Oct. , 472-486.

Makinouchi, A., & H. Ishikawa (1988). The Model and Achitecture of the Object­
Oriented Database System JASMIN. working paper, Fujitsu, Ltd. Kawasaki,
Japan.

Maraschini, F. (1988/89). Easyfind - Methods and Tools for Intelligent Database
Access. Inisys Italia report.

Mariani, J. A., (1993). Realizing Relational Style Operators and Views in the Oggetto
Object-oriented Database System. Information and Software Technology, 35(4),
207-216.

Neilsen, Kjell. (1995). Software Development with C+ + : Maximinzing Reuse with
Object Technology. Boston: AP Professional.

Pappas, Chris H., & Murray, William H. 111.(1994). The Visual C++ Handbook.
Berkeley, CA: Osborne McGraw-Hill.

Rine, David C. (1992). Object-Oriented Computing. Computer, 25(10), 13-12.

Rowe, 1., & Stonebraker, M. (1987). The POSTGRES Data Model. in Proc. IntI.
Conf. on Very Large Database. Brighton, Englandm, Sept., 83-95.

de-SAM Lazaro, A., Zhang, Jie, & Kendallm, L. A. (1994). Knowledge-based
Approach for Improvement of CNC Part Programs. Journal of Manufaturing
Systems, 13(1), 20-30.

Schildt, Herbert. (1990). C, The Complete Reference. Berkeley, CA: Osborne McGraw-Hill.

Sun, W., Meng, W., & Yu, C. (1992). Query Optimization in Distributed Object­
Oriented Database Systems. The Computer Journal, 35(4), 98 - 107.

Velez, F.G. & Bernard, V. Darnis. (1989). The 02 Object Manager: an Overview. in
Proc. 15th IntI. Conf. on Very Large Database, Amsterdam. the Netherlands,
Aug.

55



Venkatasubramanian, Venkat, & Vaidhyanathan, Ramesh. (1994). A Knowledge-based
Framework for Automating HAZOP Analysis. AIChE Journal, 40(4), 496-505.

Wagner, Peter. (1992). Dimensions of Object-Oriented Modeling. Computer, 25(10),
12-21.

Weinreb, D. et ale (1988). An Object-Oriented Database System to Support an
Integrated Programming Environment. IEEE Database Engineering Bulletin,
11(2), 33-43.

Weiser, S., & Lochovsky, F. (1989). OZ+: an Object-Oriented Database System.
Object-Oriented Concepts, Applications, and Databases, (ed. W. Kim, and F.
Lochovsky), Addision-Weslsy.

Wells, David L. (1992). Architecture of an Open Object-Oriented Database
Management System. Computer, 25(10), 74 -82.

56



APPENDIXES

57



APPENDIX A

DATA REPRESENTATION

VAX FORTRAN Data Representation

The AQUIRE database consists of nine data files. Eight of them are stored in

VAX FORTRAN binary format and one is stored in ASCII format. All of the fields in

the data files are represented by one of the following data types: CHARACTER, binary

INTEGER * 2, binary INTEGER * 4 and REAL * 4. VAX CHARACTER data are

stored in ASCII format. VAX binary INTEGER numbers are stored in two's

complement representation with the bytes stored in increasing order of significance,

that is, the least significant byte is first. The sign bit of the INTEGER number occupies

the most significant bit with zero for positive numbers and one for negative numbers.

INTEGER * 2 is stored in two contiguous bytes starting on an arbitrary

boundary and represents the integer value from -32,768 to 32,767. INTEGER * 4 is

stored in four contiguous bytes starting on an arbitrary boundary and represents the

integer value from -2,147,483,648 to 2,147,483,647.

REAL * 4, also called floating-point data type, is stored in four contiguous

bytes starting on an arbitrary boundary. Bits are labeled from the right to left, 0

through 31. The data are sign-magnitude with the sign bit occupying the 15th bit. Bits 7

through 14 are an excess 128 binary exponent for the floating-point data which

represents the exponent value from -127 to 127 by the corresponding binary number

minus 128. The normalized 24-bit faction of the floating-point data is stored in the bits

o through 6 and bits 16 through 31 without the representation of the most significant

fraction [Kulpaiboon 1993].

Figure 4 shows the VAX FORTRAN data representation.

58



7

I
15 8 7

@J I
31 24 16 8

@] I I I
31 30 23 22 16 15 8 7

S

Sign S Exponent E
(excess - 128
binary integer)

MantissaM
(faction part of sign-magnitude binary

significant with hidden integer bit)

Figure 4 The VAX FORTRAN Data Representation

0 bit

I CHARACTER

0 bit

I INlEGER * 2

0 bit

I INlEGER * 4

0 bit

REAL * 4

INTEL 80486 Data Representation

The major data types implemented by the INTEL 80486 processor are char,

short integer, long integer, and float. Char is stored in ASCII format. Short and long

integers are stored in contiguous two or four bytes in two's complement representation

following little-ending addresses model. The 32-bit floating-point number of INTEL

80486 adopted the IEEE 754 standard. It comprises a 23-bit mantissa field M, an 8-bit

exponent field E and a sign bit S. The base B is 2 and the sign bit occupies the left-

most bit position. Mantissa is a faction which forms a sign-magnitude binary number

with sign-bit. Since the exponent representation is the 8-bit excess-127, the actual

exponent value is calculated as E - 127. The formula used to calculate the number is

N = (-1)S2 E-127 (1.M).

Figure 5 shows the INTEL 80486 data representation.

59

(0 < E < 255 )



7 0 bit

I Char

7 o 15 8 bit

I ~ I short

7 o 15 8 23 16 31 24 bit

I I ~ I long

31 30 23 22 16 15 8 7 0 bit

float

Sign S

ExponentE
(excess - 127
binary integer)

MantissaM
(faction part of sign-magnitude binary
significant with hidden integer bit)

Figure 5 The INTEL 80486 Data Representation

DATA CONVERSION

Since the retrieval system is designed and implemented on the INTEL 80486

computer, the original data need to be converted from the VAX FORTRAN binary

format to the INTEL 80486 binary format before they can be calculated and displayed.

There are three types of conversion: ( 1 ) convert INTEGER * 2 to short integer; ( 2 )

convert INTEGER * 4 to long integer; and ( 3 ) convert REAL * 4 to float. No

conversion is needed for the character data since they are stored in ASCII format on

both machines.

The first two conversions can be processed by defining a struct data type in C

language, the INTEL 80486 processor will return the correct short and long integer

data values. However, the third type of conversion needs to be processed manually by

the following steps:

Assumed VAX.value and INTEL.value represent the REAL * 4 and float data

values on two machines,

60



Let

INTEL. sign = VAX.value > > 15;

INTEL. faction = ( VAX.value & Ox7f ) / 128 + 1;

INTEL.mantissa = « VAX.value & Oxff80) > > 7) - 127;

for (int k = 0; k < INTEL.mantissa; k++) INTEL.exponent < = 1;

then,

INTEL.value = «-1) ** INTEL.sign) * INTEL.faction * INTEL.exponent.

Note: Ox999 represents hexadecimal data.

61



APPENDIX B

OOATDBMS INSTALLATION GUIDES

The Object-Oriented Aquatic Toxicity Database Management System

(OOATDBMS) requires the following minimum configurations:

• A PC with an 80386 or higher processor (80486 or higher recommended), running

Microsoft Windows version 3.1 or Microsoft Windows NT version 3.5.

• A VGA monitor (SVGA monitor recommended).

• 8 megabytes of available memory.

• A hard disk with 85 MB free disk space in the working directory.

Installation Procedures

The source program and data files with their indexes of OOATDBMS are stored

in 11 3.5" floppy HD diskettes. The data files are compressed using PKZIP

compression utility. The installation procedures include five steps:

1. Create \OOATDBMS directory under hard drive [X] root directory;

2. Insert the program disk in the 3.5" floppy disk drive, such as a: drive, copy

SETUPl.exe and PKUNZIP.EXE to [X]:\OOATDBMS;

3. Use the File Manger to run the SETUPl.EXE from the hard disk drive, such as

[X]:\OOATDBMS\SETUPl.EXE

or

From the File menu in Program Manager, choose Run and type

[X]:\OOATDBMS\SETUPl.EXE to install the execution program;

4. Insert the data disk #10 in the floppy disk drive;

5. Use the File Manger to run PKUNZIP.EXE to uncompress the AQUIRE.ZIP from

the floppy disk drive, such as [X]:\OOATDBMS\PKUNZIP a:\AQUIRE.ZIP

62



or

From the File menu in Program Manager, choose Run and type

[X]:\OOATDBMS\PKUNZIP a:\AQUIRE.ZIP, then follow the prompt to install

the data files.

The installation programs SETUPl.EXE and AQUIRE.ZIP install one source

program, eight indexes, and nine data files and nine description files into the directory

[X]:\OOATDBMS. After the installation procedures is completed, there are totally

twenty-seven files under the directory [X]:\OOATDBMS. Table 8 shows the names,

sizes and their descriptions of the files that have been installed.

63



TABLE 8

LIST OF THE FILES AFTER INSTALLATION

File Names

AQUIRE.EXE
AQZIREF.IDX
AQZISPEC.IDX
RETOXREF.IDX
LATIN.IDX
COMMON.IDX
MAJOR.IDX
MINOR.IDX
SPREF.IDX
1.TXT
2.TXT
3.TXT
4.TXT
5.TXT
6.TXT
7.TXT
8.TXT
9.TXT
10.DAT
11.DAT
12.DAT
13.DAT
14.DAT
15.DAT
16.DAT
17.DAT
18.DAT

File Sizes (Bytes)

1,761,072
632,358
632,358
59,706
95,676
95,744
16,896
22,528
59,706

4,640
5,280
2,880
1,680
2,560
2,080
1,760
1,680
1,920

733,312
16,863,040
5,413,888

191,420
22,810,472

7,380,060
5,269,500

18,778,752
12,445,200

64

File Descriptions

System source program
Index for AQTOX file
Index for AQTOX file
Index for Citation file
Index for species file
Index for species file
Index for species file
Index for species file
Index for species file
Description file for 10.DAT
Description file for 11.DAT
Description file for 12.DAT
Description file for 13.DAT
Description file for 14.DAT
Description file for 15.DAT
Description file for 16.DAT
Description file for 17.DAT
Description file for 18.DAT
CAS number and Chemical name
AQTOX main information
Citation Information
Species Information
CAS number in each test
Concentration-Conf. int-BCF
Purity / Chemical characteristics
Remark Information
Temp-Hardness-Alk-D.O.-pH



APPENDIX C

User's Manual

The OOATDBMS is a MDI windows application, providing users with many

common graphical user interface items, such as menus, edit boxes, push buttons, etc.

Users can run the system as any other windows application by running the

AQUIRE.EXE file either under File menu of Program Manager, or under File menu

of File Manager.

The system consists of one menu screen and eight different view windows. The

menu screen contains five menu items, i.e. File, Retrieve, View, Window, and Help.

Each menu item contains several sub-menu items and the functions of these sub-menu

items are as the same as any other standard window menu items except the sub-menu

items under Retrieve menu. The detail information for those different sub-menu items

under Retrieve menu is described as follows.

Item Name: AQUIRE

Function: Create and display the AQUIRE main information screen if it does

not exist, otherwise, activate the screen ana display it on the front

window.

Item Name:

Function:

Item Name:

Function:

Item Name:

Citation

Create and display the Citation information screen if it does not

exist, otherwise, activate the screen and display it on the front

window.

Species

Create and display the Species information screen if it does not exist,

otherwise, activate the screen and display it on the front window.

CAS

65



Function:

Item Name:

Function:

Item Name:

Function:

Create and display the Chemical Abstract Service information screen

if it does not exist, otherwise, activate the screen and display it on

the front window.

Concentration-Conf. -BCF

Create and display the Concentration-conf-BCF information screen if

it does not exist, otherwise, activate the screen and display it on the

front window.

Purity/Chem Characteristic

Create and display the Purity / Chemical Characteristic information

screen if it does not exist, otherwise, activate the screen and display

it on the front window.

Item Name:

Function:

Item Name:

Function:

Temp-Hardness-Alk. -D.O. -pH

Create and display the Temp-Hardness-Alk.D.O.-pH information

screen if it does not exist, otherwise, activate the screen and display

it on the front window.

Remark

Create and display the Remark information screen if it does not exist,

otherwise, activate the screen and display it on the front window.

The system first displays the AQUIRE main information window with default

information. Users can enter a search key in one of eight edit boxes which can accept

users' input, then click the Search button, or press ENTER. If users click other push

buttons, such as the Citation button, the related citation information window will be

activated instead of current window. The information will be displayed if the record is

found, otherwise, a message will be displayed.

There are two methods that users can use to retrieve other information. One is

selecting the respective sub-menu item from the Retrieve menu under the main

66



windows; another method is clicking the respective push buttons on the current view

window.

When one view window is activated, users can enter search key to search the

information and retrieve other information by clicking one of, the corresponding push

buttons to activate other view window. Finally, each view window can be closed by

two methods, Le. either to click the Close button on the current window or to click the

windows close button.

In sum, the OOATDBMS is a very user-friendly and efficient database

management system for AQUIRE database, no matter for professional or non­

professional users.

67



APPENDIX D

SAMPLE OUTPUT

The Object-Oriented Aquatic Toxicity Database Management System

(OOATDBMS) is a windows application system. It can take the user's input, retrieve the

information and display it on the different screen windows. The following screen

windows are the sample output screens displaying the information for the record # 4 in

the data file 11.dat. Figure 6 shows the AQUlRE main information. Figure 7 to Figure 13

show the associative information respectively.

.....::R=
file Retrieve ~iew Window Help

AQUIRE NAIN INFORMATION

qlox D: Ie Date: 11/31/85 Pub_ Year: 169

uthor: SANDERS

~ Citation 885 Method: Unmeasured Efleet: LC50__

i Species: 6 Study: Exposure: 5

~ CAS It: 6 Test No.: 0 Life Stage: 2_MO_

: Purily D 20 Nedia: Fre~h Total Test 0

Cone. 11:: 6 Field: Lab Reviewer: 7

: Temp. 30 Code: 2 Control: Indeter

: Remark.: 13 Time1: 96 Hours: Time2: NR

)j!l'ijf:~'t
:!i!lia~ijijj

:~iiijM;~i~

:Iit.it1iii1~

:I!lilif.fI~

!~tj'iliijim~j~

:~!I~I~ijj!~!~!~~~

:~!ii.lf

:IIaliiff

Figure 6 AQUIRE Main Infonnation

68



....

Aquire Citation Information

ToxicitJ' of Pesticides to the Crustacean Gamm

Tech. Paper No_ 25... Bur_ Sports Fish_ Wildt ... Fi

1969 I Inserled Dale 19/20/82

A 1 Updated Date I0/0/0

i~riiit~tf

:~ii.i~~~

:~~~~f.~~tt~

\I~Ii~WI~~~~

:IttiiiJI
Ui_I
!fBililf~~

Retax No. 1107

S anders...H_0_
I~~Refnum

Author

Title

Source

Year

Ref Type

Figure 7 AQUIRE Citation Infonnation

....

Aquire Species Information

Latin Name

Common

Naior

Ninor

: Species Ref.

Species No.

li ammarus lacustris

Scud

eR
AMPH

31

6

I"i~~I
]aim,=f
mmma$~~~~~~~m

mmli~fimm~

~mm'~ijij~~I

]liRtm
mrhi!ifJ~

...........................................................................................................................................................................................................................................

Figure 8 AQUIRE Species Infonnation

69



· ...

Aquire Chemical Registry Information

! CAS Record tB I CAS Number 11320189 I~~~
; Chemical Name (2,4-DICHLOROPHENOXVJACETIC ACID, ESTEll ~~~

~ CAS Type TEST I

Figure 9 AQUIRE Chemical Registry Infonnation

....~
file Retrieve ~iew Window tlelp

Concentration-Conf int-BCF Information

210O__ To

~NA__ To
170O__ To 250O__

To

To

To

Value~ TEST 1

DCF t.vpe NR Value

Confidence interval value

!TEST 2 concentlatir type ~ Value
: DCF NR Value

. Confidence interval value

Figure 10 Concentration-Conf int-BCF Infonnation

70



....

file Betrieve ~iew Window Help

:i [] :lillll :1 iWl.! m~ "illmill; ~]ll[~~'-i:l~lllil11~11\~11~~Ti!:1!1i~1!!lt.l!11111111t;111]1i~~:1:~l\1\1]11!!!!1[1!!:;:1!::::~:::!!!ill!!11!]i~
~ ::

Purity/Chern Characterislic Informalion

No. Chemical Characterislic Purity Code

,. EC _

2_

3.

4.
5_

6.

NR ~j.j~if{

f:?jiiD~~

mm~~~.~~immj

Iifti,l«~mm

~Mrt.mt

~~ai.Jr~

~fj~$lijiim~m

Figure 11 Purity / Chemical Characteristic Information

•=t:::::J.:
....

file Betrieve ~iew Window Help

AQUIRE Remarks Information

1_

2. TDS_=_08. O._tdG_=_3.'_PPN._CA_=_7.1_PPW

3. ORGANISM5_EXHIBITING_' SI_SIGNS_OF_P

4_ O_EFCT_CONT/IRANSFER TO CLEAN_H20/

5.

6.

7.

Figure 12 AQUIRE Remarks Information

j~j~j~j~j_fi~fj

:~tlif:WJrm

:mi~rjJ~jftj

:mtt:~_r::t~t

~m~~~_Qi.imr~

71



....

Eile Retrieve ~iew Window Help

::~* IJi fa iii ill fJ@. mWE l~: 111: Jiiiliill!\~illf;11Iilill!!:iiiii~\lt1ijil;iiml;jill!1t1i~1t.111*1~1~1:i~ilii~1\~~11~~lti\t1j~~~~ill:~1i!!i!~1111Ij!~\111:
---- -.-.-.-.

Temp-H ardness-Alk-0.0. -pH Information

Fields Value Range From To

Temperature 121 .1_1 NA_
Hardness NR_

Alk 30.0_ NR_

D.O. NA_

pH 7.1 INA_I

Figure 13 Temp-Hardness-Alk-D.O.-pH Infonnation

72



APPENDIX E

A PROCEDURE FOR PRINTING RESULTS

In OOATDBMS, users can print the results displayed on the screen by

following the procedure described below:

1. Retrieve information and display the information on the screen;

2. Adjust the size of the windows to make all the variables visible;

3. Press Print Screen key from the keyboard;

4. Open Paintbrush application from the Windows Assessories group;

5. Maximum the size of Paintbrush application window;

6. Select Paste from the Edit menu on Paintbrush application window;

7. Select Print from File menu on Paintbrush application window to print the

window.

73



VITA

Hua Liou

Candidate for the Degree of

Master of Science

Thesis: DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED
DATABASE MANAGEMENT SYSTEM FOR AQUIRE DATABASE

Major Field: Computer Science

Biographical:

Personal Data: Born in Guilin, P.R.China, on September 18, 1968, the daughter
of Jinkun Liu and Meiji Fan.

Education: Graduated from Zhongshan University, Guangzhou, P.R. China in
July, 1990; received Bachelor of Science degree in Computer Science.
Completed the requirements for the Master of Science degree with a
major in Computer Science at Oklahoma State University in December
1995.

Professional Experience: Programmer/Analyst, American CCD-Online System
(China), Inc., 1990 to 1992; System Administrator, Oklahoma State
University Wellness Center, 1993 - 1994; Graduate Research Assistant,
Oklahoma State University, Department of Agriculture Economics, 1994
- present.




