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CHAPTER I

INTRODUCTION

The renewed focus on energy conservation and environmental protection in recent

years has lead to an increased interest in energy efficient, environmental friendly systems.

Because of this focus on conservation, interest is on the rise for innovative heating and

cooling systems depending on Ground Source Heat Pumps (GSHP).

GeothermallGSHP's provide a highly efficient space conditioning and water

heating technology that can help utilities increase electricity usage, while reducing peak

demand. The ground remains at a fairly constant temperature throughout the seasons,

providing a higher temperature source in winter and a cooler sink in summer. GSHP's

utilize this thermodynamic advantage to provide highly efficient space conditioning and

water heating (1).

The GSHP circulates a heat transfer fluid through the ground loop, absorbing the

earth's natural warmth in winter and rejecting heat to earth in summer. The fluid may be

either a refrigerant or more commonly a secondary fluid, a water and antifreeze mixture in

the heat exchanger with the refrigerant. The GSHP-systems have potential savings of

60% during the heating cycle and 25% during the cooling cycle (2).

The International Ground Source Heat Pump Association (IGSHPA), was

established in 1987 in order to advance GeothermallGSHP technology on local, state,

national and international levels. The IGSHPA is based at Stillwater, OK on the

Oklahoma State University campus (3).

1



The properties of the heat transfer fluid and the heat exchanger employed become

the prime criterion for the efficient use of the system. Water may be used in heat pump

systems, except in climates where the temperature during winter drops below the freezing

point of water, and then antifreeze solutions are necessary. Several such antifreeze

solutions have been considered and their relative merits and demerits evaluated. Glycols,

a group of commonly used antifreeze solutions and methanol have been repudiated based

on their relative toxicity levels (4, 5).

The cheap production of ethanol, its good heat transfer properties and

environmental friendliness make ethanol a solution that can be used as an antifreeze basis

in heat pumps (6). Though the use of acetates as antifreezes is recognized to be efficient

and environmentally safe, their general use is restricted by high cost (4).

Besides the heat transfer properties and environmental friendliness, it is necessary

for the fluid to be compatible with the materials in a heat pump system. The thrust of this

research has been to evaluate and identify incompatibility and corrosion, in heat pump

systems utilizing an ethanol based heat transfer fluid. Experiments have been conducted

with pure ethanol to use as a comparative base for the data obtained from the experiments

using denatured ethanol and a commercial ethanol based heat transfer fluid,

ENVIRONOL, developed recently by Waterfumace Inc (7). The experimental procedure

used in earlier research to study the effect of acetates in general and potassium acetate, in

particular, on heat pump materials has been followed in this study (8).
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CHAPTER II

LITERATURE REVIEW

1. CORROSION CONSIDERATION IN HEAT PUMP

Corrosion is the destructive result of the chemical reaction between a metal or

metal alloy and its environment (9). A study in 1976 showed that the economic cost of

corrosion in United States alone was $70 billion annually (9). A figure of 3 - 4% of the

Gross National Product (GNP) is usually accounted as the cost of corrosion annually in a

developed country(10). The cost of corrosion worked on this basis would approximately

amount to $200 billion in the United states for the year 1993. The indirect costs due to

corrosion, involve such factors as the following (9, 10).

Plant Downtime: Besides cost of labor and parts, the loss of production during

shutdown is quite enormous. A commonly cited example is the shutdown of a nuclear

plant where the costs could run into millions of dollars per day (9). In the case of direct

consumer related services, as in the case of GSHP's, besides replacement and maintenance

costs considerable ill will be generated. In adverse climatic conditions, loss of heating or

air conditioning systems could become more than irritating.

Maintenance and operating costs: Corroded parts have to be constantly replaced for

the proper working of the units, and the operation of units with corroded parts is

expensive and any leaks might have a considerable hazardous effect on the surrounding
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environment and safety of the populace. Corrosion products accumulating on heat

exchanger tubing , piping and on the pumps of ground source heating systems, could

decrease the efficiency of heat transfer and reduce the pumping capacity substantially.

Contamination: Soluble corrosion products in heat transfer fluid could lead to several

problems in the case ofheat pumps. Variations in heat transfer fluid may lead to change in

chemical, physical and thermal properties, thereby reducing the working capacity of the

heat pump unit.

Environmental concern: Accidents could involve spillage of the antifreeze chemicals

during installation or by rupturing of the ground loop coil. Once in the environment, many

factors influence the fate of the chemicals. Table [1] lists some of the variables that may

influence the mechanism of contaminant movement, retention and reaction (4).

In the absence of adequate corrosion rate information, the units have to be over

designed to ensure reasonable life, however at the cost of extra resources and power. The

indirect costs, due to change in appearance, damage to life and property, are quite minimal

in this case. It, therefore, becomes necessary to generate corrosion data in environments

resembling the real working climate, to understand the corrosion properties of any heat

transfer fluid.

2. ETHANOL

Industrial ethanol is one of the largest volume organic chemicals used in industrial

and chemical products (6). Ethanol has been used in u.S. to a considerable extent as an

antifreeze (6). The production of ethanol from regenerable sources makes it

4



1. MOVEMENT OF CONTAMINANT THROUGH SUBSURFACE
Parameter Variables
Ground water flow rate -formation permeability

-time (eg. season)
-depth

Subsurface permeability

Ground water direction

-grain size and distribution
-structural variability (ego fractures)

-depth
-location (eg. recharge or discharge zone)
-time (eg. season)

2. RETENTION OF CONTAMINANTS IN SUBSURFACE
SoiVsediment absorption -chemistry of subsurface formation

-grain size, sorting, structure.

Microbial communities -temperature
-moisture
-oxygen availability
-nutrient availability

3. REACTION OF CONTAMINANT WITH SUBSURFACE
MATERIALS AND BIOTA

pH -chemistry of subsurface formation
-microbial activity

Redox status -chemistry of subsurface formation
-microbial activity
-moisture
-oxygen availability

Biodegradation

Hydrolysis

-temperature
-moisture
-oxygen availability
-nutrient availability

-temperature
-moisture

Table 1: Mechanisms influencing subsurface fate of contaminants
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more attractive from the economic and environmental point of view. The manufacturing

cost of ethanol is approximately 28.5 ¢/L, which is equivalent to a selling price of 60 ¢/L

and the cost of denatured ethanol would be around 30 ¢/L (6). Since the emergence of

ethanol as a key industrial raw material, chemical controls (denaturants that make ethanol

unpalatable) have been administered by the government to prevent the tax-free ethanol

from finding its way into beverages. The Tax-Free Industrial and Denatured Alcohol Act

of 1906 was passed in the United States (6). The United States Treasury, Bureau of

Alcohol, Tobacco and Firearms (BATF) now oversees the production, procurement and

use of ethanol in the United States(6). Prevention of tax free industrial ethanol from

finding its way into beverages calls for a combination of financial, administrative and

chemical controls. Regulations establish four distinct classifications of industrial ethanol.

The classifications with the most stringent financial and administrative controls call for

little or no chemical denaturants. The classification that call for the most effective

chemical denaturants require the least financial and administrative controls.

2.1 Physical Properties

Ethanol, (C2H50H), under ordinary conditions, is a volatile, flammable, clear,

colorless liquid. Pure ethanol has an ethereal odor. This compound bums with a non

luminous flame, without soot, and forms carbon dioxid~ and water. (6, 11). The hydroxyl

group imparts polarity to the molecule and also gives rise to intermolecular hydrogen

bonding. It is these two properties that account for the differences between the physical

behavior of lower molecular weight alcohols and that of hydrocarbons of equivalent

weight. Anhydrous alcohol is hygroscopic and absorbs moisture from the air. There is a

volume contraction when ethanol is mixed with water and it reaches a maximum when one

molecule of alcohol is mixed with three molecules of water, with evolution of heat (11).
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Ethanol is an excellent solvent for many compounds (11). Gas solubility of oxygen is 25

vol. per 100 vol. of alcohol, 7 vol. ofhydrogen, and 16 vol. of solubility for nitrogen in the

same alcohol. The freezing point curve for aqueous solution of ethanol indicates its

potential value as an antifreeze agent, Fig 1 provides a comparison of freezing point

curves for aqueous solutions of methanol, ethanol and isopropanol(11 ).

A summary of physical properties (6) of ethanol are presented in Table [2]. The

Material Safety Data Sheets (MSDS) of 200 proof ethanol and the denatured ethanol

used for this study are given in the appendix.

2.2 CHEMICAL PROPERTIES

The chemistry of ethanol is largely that of the hydroxyl group, namely reactions of

dehydration, dehydrogenation, oxidation and estrification (6). The hydrogen atom of the

hydroxyl group can be replaced by an active metal, such as sodium, potassium, and

calcium, to form a metal ethoxide with the evolution ofhydrogen gas (6).

Aluminum and magnesium also react to form ethoxides but in the presence of

mercury as a catalyst. Well cleaned aluminum filings react at room temperature in the

presence of mercuric chloride (12,13). In an autoclave metallic aluminum and ethyl

alcohol react without a catalyst at 1200 C (14). The reaction can also be promoted by

addition of sodium ethoxide (15). Ethanol behaves like water of crystallization and forms

complexes with various inorganic compounds. The alcohol also combines with calcium,

magnesium and platinum chlorides to form crystalline products(11).
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Fig 1: Freezing point curve for aqueous solutions ofethanol, methanol and
isoproponal(11)
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Property

Freezing point, °C
Normal boiling point, °C
Critical temperature, °C
Critical pressure, kPa
Critical volume, Llmol
Density, g/mL
Surface tension, at 25°C mN/m
Viscosity, at 20°C, mPa.s
Solubility in water, at 20°C
Heat ofvaporization, at normal boiling point, Jig
Heat of combustion, at 25°C, Jig
Heat affusion, Jig
Flammable limits in air, vol%

lower
upper

Auto ignition temperature, °C
Flash point, closed-cup, °C
Specific heat, at 20°C, J/g.oC
Thermal conductivity, at 20°C, W/(m.K)
Dipole moment, liq at 25°C, C.m
Magnetic susceptibility at 20°C
Dielectric constant at 20°C

Table 2: Physical properties of ethanol (11)

9

Value

-114.1
78.32
243.1
6383.48
0.167
0.7893
23.1
1.17
miscible
839.31
29676.69
104.6

4.3
19.0
423.0
14
2.42
0.170
5.67 X 10-30

0.734 X 10-6

25.7



2.3 TOXICOLOGY AND SAFETY CONSIDERATIONS

Ethanol is a flammable liquid requiring a red label by the Department of

Transportation (DOT) (17). Vapor concentrations between 3.3 and 19.0% by volume in

air are explosive. Experience in industry indicates that ethanol is not a serious industrial

poison. If proper ventilation of the work environment is maintained, there is a little

likelihood that inhalation of the vapor will be hazardous. The threshold limit for ethanol

vapor in air has been set at IOOOppm by the American Conference of Governmental

Industrial Hygienists. At 350ppm the odor of ethanol can be barely identified(lI).

Ethanol is oxidized completely to carbon dioxide and water in the body, thus it is

not a cumulative poison(6). Ethanol, whether ingested or inhaled, inhibits the higher

functions of the brain and then acts as an anesthetic. About 75-80gm of ingested alcohol

will produce symptoms of intoxication in an average (70kg) person. About I50-200gm

will cause stupor, and 250-500 gm may be a fatal dose(6). Repeated exposure to ethanol

can lead to the development of a degree of tolerance, as measured by decreasing

symptomatic reactions. Ingestion of ethanol does not damage the optic nerve as does

methanol, but ocular functions - field of vision, depth, perception, visual acuity and eye

coordination are affected adversely if more than 1 oz ofwhiskey per 30 Lb of body weight

is imbibed (11).

2.4 ETHANOL AS AN ANTIFREEZE

The primary role of the circulating fluid in the heat pump is to transfer heat to or

away from the earth. To provide efficient heat transfer, the antifreeze must have a high

specific heat and thermal conductivity and low viscosity at operating temperatures. The

efficiency of heat transfer is defined by the heat transfer coefficient (HTC). the higher the
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HTC, the greater the efficiency of the system. The HTC is directly proportional to the

thermal conductivity, the specific heat, and the density of the fluid and is inversely

proportional to the viscosity, A slight penalty is incurred when an antifreeze is added to

the aqueous heat transfer fluid. However, an antifreeze fluid is required to keep the

equipment operational in subfreezing temperatures experienced during some part of the

year.

Melinder and Granryd (16) in a study compared various heat transfer fluids as

secondary refrigerants for heat pump systems based on, freezing point temperature,

thermal conductivity, specific heat, density and viscosity, for various aqueous and non

aqueous liquids. They found that, from a pure thermodynamic viewpoint calcium chloride,

potassium carbonate and methanol would be best. The coefficient of heat transfer for

calcium chloride and potassium carbonate is 25-100% higher than for other aqueous

solutions. However, corrosion behavior, the environmental characteristics, flammability

and toxicity have to be considered (16).

Though glycols are commonly used antifreeze solutions. they have been repudiated

based on their high toxicity levels (17). Recently, it was recognized that acetates of

calcium, magnesium and potassium possess the favorable combination of properties that

are essential for any heat transfer fluid (8). In fact, potassium acetate has been widely

used for deicing of runways in Europe(18). A comparison of ethanol-water, ethylene

glycol-water and potassium acetate-water from the study of Melinder and Granryd (16)

indicates the good potential of ethanol as an antifreeze.

The concentration required of ethanol to give a freezing point temperature of -15°

C is 24.5%, where as that of potassium acetate is 23% and ethylene glycol is 30.5% Fig 1.

The thermal conductivity of ethanol is 30% higher than potassium acetate over the whole

temperature range of 30°C to -30° C. Ethylene glycol has a higher thermal

11
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Where,

conductivity at lower temperatures but the difference drops with increase in temperature

(fig 2). Potassium acetate and ethylene glycol have lower values of viscosity than ethanol,

however the dynamic viscosity of ethanol drops at a faster rate at a higher temperature.

The heat transfer coefficient F (a ) is calculated as

F(a)(l5) =0.023 x ').,2/3 ( t;,. Ct;,)1/3. 11/3-0.8

A= Thermal conductivity (w/mk)

l; = Density (kg/m3)

C~ = Specific heat (J/kgK)

y = Kinematic viscosity (m2/s)

w = Flow velocity (mls)

d = Tube diameter (m)

The F(a) for different fluids is given in Fig 3.

3. CORROSION AND ENVIRONMENTAL DETERIORATION IN

METHANOLIC AND ETHANOLIC SOLUTIONS

With the production of alcohols from renewable energy sources becoming feasible

and economical from the 70's, new uses for the lower alcohols are being discussed in

several fields (19). Of the monohydric alcohol's, methanol and ethanol are being

considered for various purposes, such as secondary energy carriers, additives to process

streams in chemical industries and alternative vehicle fuels. Ethanol is being primarily

considered to be used as an antifreeze in GSHP's, because of its favorable physical and

chemical properties and environmental friendliness.
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The corrosion processes in organic solvents are different from those in aqueous

media (20). With monohydric alcohols emerging as the alternative fuels, several studies

have been undertaken to evaluate the corrosivity of ethanol and methanol with various

materials. The longer chain length of ethanol seems to provide resistance to corrosion

compared to the shorter chain length of methanol, hence a comparison is drawn between

these alcohols in most of the studies. Some practical methanol and ethanol fuels have

been found to contain appreciable amounts of acid residues left behind by the production

process.

A study conducted to investigate the compatibility of hydrated ethanol to different

metals revealed that oxygen and carbon dioxide have an active participation in the

corrosion process (21). Corrosion of tested materials Viz., zinc, aluminum, lead, tin was

evaluated by mass loss, X-ray analysis of corrosion products and by pH, conductivity and

acidity comparisons of solutions before and after testing (21). The presence of sulfates

and acetates indicated that impurities present in ethanol were in part responsible for

corrosion.

An elipsometric investigation of carbon steel corrosion in ethanol showed that

carbon steel passivates in ethanol in both aerated and deareated solution; chloride

additions led to pitting corrosion and may make the oxide more electrically conductive

(22). Acid additions, except phosphoric acid, cause film dissolution followed by an oxide

film growth. Nitric and sulfuric acid additions after an initial dissolution, followed by film

growth, promote surface roughening, a process similar to the metallographic grain

boundary etching, observed when etching solutions, such as nita!, are used.

Anna (23) studied the effects of water and chloride ions on the electrochemical

behavior of iron and 304L stainless steel in alcohols. It was found that iron passivates in

all of the anhydrous alcohol media studied except methanol. The water concentration at

16



the metal-solution interface differs from the bulk. In principle, solvent mixtures of alcohol

and water behave such that the less water, like alcohols, show a stronger dependency on

water concentration. In these instances, the diffusion of water to the metal solution

interface is enhanced and therefore the passive film is more stable. On 304L stainless

steel, additions of water have a passivating effect in HCI- containing alcohols independent

of chain length. The anodic current density increased with an increase in water content for

C2-C4 alcohols. For methanol the maximum occurred at a concentration of 0.5% H20,

but at 1% H20, the current decreases and follows the trend of other alcohols.

The corrosion rates of zinc, iron and copper were observed in pure alcohols and in

alcohol solutions of HCOOH, CH3COOH, HCOONa, CH3COONa (19). Higher acid

strength seemed to increase the severity of corrosion. It was found that corrosion rates

were higher in methanol than in ethanol. This was accounted for by the fact that longer

aliphatic chain seems to afford corrosion protection. With the exception of Cu/CH30H,

corrosion rates decreased with time.

Stress Corrosion Cracking (SCC) tests have been carried out in methanol and

ethanol solutions to verify the different behavior of rnetals as a function of physico

chemical characteristics of the solvents, in particular dielectric constant and dipole

moment (24). Tests carried out in organic solvents were done with lithium perchlorate as

the supporting electrolyte. The choice of this supporting electrolyte was based on the

assumption that the perchlorate ion, having a symmetric and low electric charge density, is

characterized by a negligible complexing power and a low tendency to be absorbed on the

metal surface. (24).Tests carried out in methanol and ethanol solutions containing 10-1

mol m-3 LiCI, 10-1 mol m-3 H2S04, without a supporting electrolyte, gave well

developed cracks on low alloy steel specimen. Stress corrosion cracks were developed on
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the specimens subjected to an ethanol solution containing 10-1 mol m-1 LiCI and 102 mol

m-3LiCI04·

The electrochemical behavior of austenitic 304 stainless steel in ethanol,

isoproponal and t-butanol containing different concentrations of H2S04 has been

investigated by Singh et al (20). It was found that the critical current density for passivity

depended on the concentration of the acid. The anodic critical current density increased as

the acid concentration increased in ethanol. The shift in the corrosion potential may be

explained in terms of dissolution of the air formed oxide that is formed at the time of

immersion of the test specimen in the solution. The dissolution of the oxide is favored

more and more as the acid content is increased, and the resulting surface assumes a more

negative corrosion potential value. Scanning electron microscopy examination of the

electrode surfaces after the polarization studies showed severe pitting of stainless steels in

high concentration of acid in ethanol.

The dissolution and passivation kinetics of amorphous alloys with 10% chromium

were investigated as a function of the water content in ethanoVwater mixtures with O.5N

HCI, and compared to the behavior of the 304 stainless steel by Elsner et al (25). For 304

stainless steel, the same mechanisms were found to be effective both in aqueous and

inorganic/water solutions. A stable passive film, consisting of hydrated chromium - oxy 

hydroxide - is formed in the presence of sufficient amount of water. However, for the

amorphous alloy Fe- 10Cr- 13B-7C, the fundamental passivation mechanism is the same

but the formation of the B02- leads to the formation of a membrane inhibitor on the

surface, and reduces the critical current density for passivation, so , passivation is possible

in organic solution with a lower water content.

Cavalcanti et al (26) studied the effect of water , sulfate and pH on the corrosion

behavior of carbon steel in ethanolic solutions. No corrosion was noticed on the surface
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of the specimens exposed to non aqueous ethanol, whilst pits could be observed on

specimens exposed to ethanol+ 10% vlo H20. With reference to ethanolic solutions

containing 4.8% vlo H20, a few pits could be detected, when observed under an optical

microscope at SOX magnification. As suggested by Heitz (27), the greater solubility of

corrosion products in hydrated ethanol may account for such behavior. However, an

opposite effect is observed in the case of more noble ferrous alloys, such as stainless steel,

where H20 in methanol and ethanol was found to enhance passivation and inhibit pitting

corrosion (28, 29). A more recent investigation, utilizing infrared absorption spectrometry

and X-ray diffraction, detected an amorphous film on the surface of carbon steel

specimens immersed in 6% vlo water ethanol solution, in contrast with the observed

presence of crystalline films developed at higher concentrations of water (30).

Considering the greater corrosion resistance conferred by amorphous films in relation to

crystalline films, the possible existence of an amorphous film on the surface of the

specimen exposed to 4.8% vlo water ethanol solution may also account for the relatively

low extent of corrosion verified in the latter case. No corrosion attack was found when

the pH was maintained between 8 and 9, by the introduction of sodium hydroxide (26).

Szkolarka et al (28) investigated the pitting of stainless steel in water containing

methanol. Pitting of stainless steel occurred in anhydrous CH30H and in that containing

less than 8 moles H20/liter, but did not occur in solutions with higher contents,

suggesting that H20 increases the resistance of the passive film to localized breakdown.

The aggressiveness of CH30H towards anodically polarized steel is probably caused by

the formation of oxidation products of methanol. Oxidation of methanol leads to

acidification of the solution, thereby increasing the corrosivity. The total oxidation process

of methanol can be presented as

CH30H ---------> CH20 + 2H++ 2e-
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CH20 + H20 ---------> HCOOH + 2H+ + 2e

HCOOH ----------> C02 + 2H+ + 2e-

Additional experiments have shown that the steel investigated also suffered pitting, when

anodically polarized in other alcohols like ethanol and propanol (28).

Wear rates have been studied in high C- Cr steels (AISI 52100) in gasoline 

ethanol - water (31). The variables were speed, load, temperature and water content in

the gasohol. The highest wear rates of steel were found to be in gasohol with about 20%

ethanol content. The wear was classified as corrosive wear, which is jointly effected by

02 and H20. The main mechanism of metal loss was by mechanical adhesive wear(31).

Stainless steels, titanium and aluminum are representatives of alloys that develop a

protective oxide or film on the surfaces exposed, and they appear to be more readily

cracked in methanol-chloride solution than metals, with less protective films such as

ordinary steels or brass (32). Investigations upon unnotched specimens of titanium and its

commercial alloys revealed that at least 10-5N chloride is necessary for either SCC or any

corrosive attack to occur (32). The oxide film is penetrated and the base metal is attacked

whether stress is applied to annealed specimens or not (32). Sensitized 302 stainless steel

was susceptible to attack by methanol containing chlorides, but no detectable damage

occurred after 1000 hours in pure methanol (32). The two austenitic steels investigated,

302 and 321, were susceptible to attack by methanol containing 0.01N FeC13, in spite of a

stabilized anneal (32). Neither alloy was attacked by methanol containing O.OIN NaCI

after a stabilizing anneal, but the 302 alloy cracked when sensitized.

Persiantseva et al (33) studied the affect of aqueous ethanol on aluminum, copper

and steel. The investigations were conducted in unmixed hydrolysis alcohol with different

water contents, the specimens were completely immersed for 15 days. They found that

the dependence of the corrosion rate of steel and copper on the water content had a
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maximum at 50% water. Water contents ofmore than 50% acted as a passivator for steel.

It was assumed that at specific contents, water forms a protective film at points of

damage. The complex dependence of the corrosion on the water content may be due to

competing adsorption of the solution components and formation of various surface

compounds.

Titanium alloys are subjected to SCC in methanol (34).A study by Scully and

Powell (35), on the stress corrosion cracking mechanism of a-titanium alloys at room

temperature, discusses the role of H in causing rapid transgranular SCC in relation to the

hypothesis that H enters the unfilmed surface at the crack tip and causes slow strain rate

embrittlement. It was found that the ratio of the activating to passivating species in the

environment is important in promoting film formation and accounts for the protective

effect of cathodic polarization. It is not effective in non film-forming conditions. Results

in CCl4 suggest that the residual water content (200ppm) is responsible for cracking. In a

CH30H -HCI environment, the degree of embrittlement increases as the strain rate is

lowered. Evidence for H embrittlement is provided by quantitative fractographic

measurements of specimens anodically polarized in CH30H -HCI, on which the cleavage

markings obtained upon subsequent fracture in air are not seen, if the dissolving front

progresses at a rate comparable to H diffusion and by fractographic comparisons with

broken hybrid specimens.

Sedriks and Green (36) studied the effect of additions of various metal ions to the

to the environment on intergranular SCC and corrosion of unalloyed titanium in a

methanol-HCI solution. Separate additions to the solution of palladium, gold iron, and

copper ions in quantities ranging from 0.01 to lOOOppm, caused increase in both

susceptibility to SCC and inter granular corrosion. Electrochemical studies established

that this increase resulted from the enhancement of the overall cathodic process (36).
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4.SUMMARY

The conclusions from the foregoing are that austenitic stainless steels and titanium

are subjected to see in methanolic and ethanolic environments. Iron, stainless steel, zinc

and copper are susceptible to pitting in methanolic and ethanolic environments. The

longer aliphatic chain length of ethanol seemed to afford corrosion protection compared to

methanol.

Stainless steels are subject to see in Methanol and ethanol in presence of

chlorides. However, they are not susceptible in pure alcohols. The mode of cracking in

see was intergranular.

Pitting propensity is proportional to the acid concentration in the solution. The

critical current density for passivity depended on the concentration of the acid. The

susceptibility to pitting is dependent on a critical vlo ofwater percent in the solution. This

critical value may be different for different metal-solution systems. The susceptibility of

pitting is effected by the pH of the solution. No corrosion is found to occur when pH is

maintained approximately between 8 and 9.

22



CHAPTERlli

EXPE~ENTALPROCEDURE

I.MATERIALS

The materials investigated are gray cast iron, 304 stainless steel, yellow brass,

copper, sealants, solders and rubber hoses. Gray cast iron has been chosen as it is known

that it is more susceptible to corrosion than ductile iron. 316 austenitic steel being more

noble it was presumed that if 304 stainless steel remains unaffected in the test environment

so would 316 stainless steel. Similarly yellow brass with 30% zinc is more susceptible to

attack in the form of dealloying than red brass. Polyethylene which is the ground loop

material in GSHP systems was not tested as it was seen fron the review of literature that it

is not subject to any form of attack by alcohols.

1.1 ETHANOLS:

Tests were conducted in the laboratory with 200 proof ethanol, a denatured

ethanol ( Aaper alcohol ) and an inhibited commercial product "ENVIRONOL". The

properties of the denatured ethanols are given in tables [3] and [4] respectively. The

Material Safety Data Sheets (MSDS) are given in the appendix.

1.2 GRAY CAST IRON:

Gray cast iron (GCI) is used for housings of GSHP's. Cast iron is the preferred

material due to its ready availability and low cost.
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COMPOSITION

Component Approx %

Ethanol 87

Methanol 5

Ethyl acetate 1

Methyl iso butyl ketone 1

Hydrocarbon solvent 1

water 5

COLOR : Clear colorless liquid

VAPOR DENSITY : 1.59

BOILING POINT : 79.4°C

FREEZING POINT :N/A

SPECIFIC GRAVITY : 0.81

SOLUBILITY IN WATER : Miscible

VAPOR PRESSURE : 40

FLASH POINT : 57°C

Table 3: Physical properties ofdenatured ethanol
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COMPOSITION

Component Approx%

Ethyl alcohol 89.14

D. I. Water 1.36

Sodium Meta bisulfite 0.06

Danatonium benzoate 0.0005

Isopropyl alcohol 0.18

Methylene blue 0.0006

COLOR : clear and light blue

VAPOR DENSITY : 1.59

BOILING POINT : 173° F

FREEZING POINT : -150° F

SPECIFIC GRAVITY : 0.80 @60°F

SOLUBILITY IN WATER : Substantial

VAPOR PRESSURE : 44.6 mm Hg at 60°F

FLASH POINT : 52°F

Table 4: Physical properties of "Environol"
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GCI's are alloys of iron that contain 2.5 to 4% carbon and 1 to 3% silicon. They

can be thought of as a composite of steel and flake graphite. Silicon is a graphitizer. It

also promotes the formation of a strongly adherent surface film on cast iron, although

considerable time may be required in some environments (37). As a consequence, the

corrosion rate declines in most environments to a low steady state rate after the film

formation.

A form of corrosion unique to GCI is the selective leaching attack, commonly

referred to as graphitic corrosion. Graphitic corrosion is observed in GCI in relatively

mild environments in which the selective leaching of iron leaves behind a loose network of

graphite. This type of corrosion takes place because graphite establishes a galvanic cell

with the iron matrix. The flake graphitic structure traps corrosion products and retards

the corrosion rate. Graphitic corrosion occurs only when corrosion rates are low. When

rates are high, the graphite is also removed and uniform corrosion occurs.

1.3 COPPER:

Copper is extensively used for piping in the heat pump systems. It is commonly

used in the heat exchanger coils of the heat pumps. While copper is an essential

constituent of GSHP systems, tests were not carried out in this study for the following

reason. Ifyellow brass was not susceptible to corrosion in this environment than the more

noble copper would not be. In a study conducted by Ngoh (17) using acetate based

solutions copper did not show any potential for corrosion. SCC a common problem with

copper alloys is practically unknown in commercial copper (38). Coppers resist corrosion

under almost all conditions of service in alcohols (38).
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1.4 BRASS:

Brass is found in the pressure and temperature sensing ports located in the inlet

and outlet of the heat pumps. It is also widely used as fittings and pipe connectors.

Brasses are basically copper-zinc. Zinc improves the mechanical properties by

solid solution strengthening and reduces the cost of alloy. Yellow brass (30% zinc) is the

most common alloy. The potential corrosion issues with brass are sec, dezincification

and erosion corrosion.

SCC occurs in alloys with a static tensile stress in the presence of specific

environmental conditions. For SCC, a passive surface film under oxidizing conditions

must be present, and corrosion rates are consequently quite low. Brasses are susceptible

to see in ammonia solutions.

Dezincification is a corrosion process in which selective dissolution of zinc, being

the more active of the two, occurs in preference to the copper, and is common in chloride

solutions. Removal of zinc leaves behind a porous mass of copper, which is readily

recognizable by its reddish color. Dezincification, if not arrested, continues leading to

penetration and unexpected failure. Where dezincification may be a problem, red brasses

(zinc < 15%) are used, for they are practically immune (9).

1.5 STAINLESS STEEL:

Many circulator pump interior components are made of stainless steel, for example

the rotor and impeller. They are typically cold worked items and may have residual

stresses. Also, the impeller may have spot welds. For some pump models, the pump

housing is made of stainless steel.

Iron based alloys containing at least 10.5% chromium are called stainless steels.

The austenitic stainless steels to which type 304 belongs, are widely used in industry. The

27



addition of nickel to iron-chromium alloys stabilizes the face-centered cubic (FCC)

austenitic phase and improves corrosion resistance synergistically with chromium. FCC

stainless steels are identified easily, because they are not magnetic. Stainless steels derive

their corrosion resistance from a thin hydrated, oxidized, chromium-rich, passive surface

layer. SCC, pitting and crevice corrosion are the potential corrosion problems that could

arise due to the breakdown of passive layer. Metallurgical segregation, causing localized

depletion of chromium, can result in passive breakdown at grain boundaries and inter

granular corrosion. This can often happen in welding and terms such as weld decay and

sensitization are descriptive (9).

1.6 SOLDERS:

Lead - tin solders find extensive use in joining the copper piping of the heat pumps.

Solders are traditionally lead - tin alloys. Recently, there has been an effort to develop

lead free solders because of the Federal Hazardous Substances Act passed in 1986 (39).

This act restricted the maximum lead content of the solders used in potable water systems

to be not more than 0.2%. Some special purpose solders, like 95% tin/5% antimony

solder, and tin/silver solders, have been in use prior to the ban on lead. However, their

use was restricted by high cost (39).

With the concern about lead solders, a host of new lead free solders have been

introduced. One of the earlier solders is the generic 95% tin/5% antimony solder which is

widely used in joining copper alloys in heating systems. Like 95/5, tin/silver solders have

been in use prior to the ban on lead in refrigeration lines. Silverbrite 100, the tin-based

4.5% copper, 0.5% silver alloy; Bridget, containing 5% antimony, 3.5% copper and

0.275% silver; AquaClean containing 0.2 0.5% silver, 0.20% copper and 3.25% bismuth

were the first of the new silver based solders to be introduced(39). Because of their
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relative high cost, however, the tin/silver solders have not been used too much on

hardware involving potable water systems. The tin/silver solder outperformed the

conventional tin/lead solder in rupture tests and stress rupture tests. According to

metallurgists at Fry Metals choosing a lead free solder which has a melting range similar

to that of a lead-based solder may be the quickest way to reach a decision, but other

factors, such as cost, corrosion behaviour, joint strength, service temperature, flux,

process and availability also have to be considered (39).

For an understanding of the corrosion behavior of the solders, two features must

be taken into consideration. Firstly, fluxes are usually used, and, secondly, the solder

exposure areas are much smaller than the area of the materials being joined.

Fluxes, function as oxide removers and may contain hygroscopic products that, if

not removed, will promote corrosion. Some powerful fluxes contain as additives,

chlorides, bromides, H3P04 and mixtures of these (40). Residues from such fluxes must

be removed as completely as possible, by either mechanical wiping or with solvents.

However, right design with the formation of protective corrosion products over the joints,

permits the satisfactory use of the soldered joints in conditions that may appear hostile at

first.

The overall corrosion behavior of solders will be similar to that of the predominant

metal. In most cases, the presence of lead forms many insoluble deposits, for example

oxides and sulfates, which prevent further corrosion. VolatHe organic acids, such as acetic

acid, attack lead containing solders and produce a white encrustation and cause severe

destruction of the metal. Where such attack occurs, substitution with a higher tin content

has been suggested (40).

Solders, even though being anodic to copper, have been widely used without

trouble in conventional commercial and domestic plumbing. But, under adverse
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conditions, lead is selectively leached from the commonly used 50 tin 50 lead plumbing

solders into the system, which has caused concern about lead poisoning.

Pure tin, on the other hand, may be dissolved by alkalis with the production of

soluble stannates or stannites. Any surface oxides will be dissolved in solutions with pH

>12 and sometimes with a pH of 10 and corrosion will follow. When corrosion is

possible, the corrosion rate is governed by the temperature and the rate of arrival or any

oxidizer to the initial surface, and is not greatly affected by the character of the alkali in

long periods of immersion.

1.7 ELASTOMERS:

Elastomers are used to connect the water source heat pumps to the main supply

headers or the circulator pumps.

The most outstanding characteristic of rubber and elastomers is resilience or low

modulus of elasticity. Flexibility accounts, for the most part, its use in tubing.

Organically, rubbers are long chained molecules and are usually soft by nature. This

problem is overcome by what is known as "Vulcanization" or simple stated, adding sulfur

and heating to enhance the bonding between the molecular chains or cross linking.

Commonly rubbers deteriorate by physical or chemical means or both. Physical means,

include swelling by absorption water and chemical. disintegration occurs due to failure of

bonding between the molecular chains (41). It is important to note that rubers are usually

polar, based on isopropene or butadeine, but polar rubbers are needed to resist swelling by

non polar gasoline and vice versa.
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1.8 SEALANTS:

Sealants are normally used as fillers for joints and for binding building materials.

In the heat pump systems, sealants are used at the piping joints. Several types of sealants

are available in the market for this purpose. Sealants are classified broadly as silicones,

urethanes, polysulfides, halogenated butyl rubber etc., based on the binders used. In the

present study an effort has been made to classify the different sealants used based on the

composition available from the Material Safety Data Sheets and data obtained from the

technical information services of the manufacturers. The sealants are classified and

tabulated with their physical properties in table [5].

The sealants are elastomeric products, which cover a wide range of elasticities and

cold flows, and as such they are ideal for filling joints. They can deform under stress to

such a degree that the contraction and expansion of the rigid structure can be easily

absorbed without destroying the bonds. Because of their cushioning and damping

properties, they can change industrial techniques and building practices (42). When cured,

they bind the structural materials and are able to expand or contract with the motion of the

connected elements. They also form a tight barrier against moisture, gases and chemicals.

On curing the sealants may harden or remain tacky (42)

1.9 INHmITORS:

Inhibitors, in critical quantities, reduce the corrosivity of the environment. In heat

pump systems inhibitors are circulated along with the heat transfer fluid.

A corrosion inhibitor may work by forming a protective coating, In situ, by

reaction of the solution with the corroding surface. (10). In another sense, it is a

corrosion retarding catalyst. Alternatively, inhibitors may work by removing an active

species (eg. oxygen) from the system. A corrosion inhibitor must be effective at low
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concentrations, broad range of pH, working temperature and must have nummum

toxicological effects when discharged. (42).

Most inhibitors used in corrosion control are proprietary and hence specific

information is lacking. A study conducted by Nayak (8) on GS-4, a potassium acetate

based antifreeze solution, indicated high levels of phosphorus and silicon in the EDX
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Name of Classification Color and Vapor Boilin Vapor Specific Solubility Flash
Sealant Appearance densit g Point Pressure Gravity in water Point

y

Real Tuff Isopropanol White N/A N/A N/A 1.56 Insoluble N/A
based thixotropic paste

Harvey's Seal Isopropanol Yellow-tan Paste N/A 173°F N/A 1.36 Slight 70°F
based

Gripp Isopropanol Dark brownish 2.07 180°F 33 at 1.29 Insoluble 53°C
based black paste 20°C

LA-CO Slick Silicone sealant White paste N/A 350°F 1 1.42. Insoluble 300°F

ZEP Pipe Seal Isopropanol N/A N/A N/A N/A N/A N/A N/A
based

Teflon Paste Isopropanol White paste 1 173°F N/A 1.41 Slight 70°F
with TFE

Permatex Isopropanol N/A N/A N/A N/A N/A N/A N/A
based

Jomar-green Isopropanol Green paste >1 180°F 0.88 at 1.41 Slight 70°F
based 25°C

Hercules Block Isopropanol N/A N/A N/A N/A N/A N/A N/A
based

HVAC Permatex Acrylic sealant Blue paste N/A 212°F N/A 1.7 Water None
based

Pro-dope Isopropanol Gray paste N/A N/A N/A 1.61 Insoluble N/A
based

LA-CO Anaerobic Isopropanol White paste N/A 300°C 10mmHg 1.21 Slight >200°F
based at 80°F

Table 5: Classification of sealants and their physical properties.
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analysis, indicating the probability of phosphate, polyphosphate or a phophonate and may

be silicate or combination of these, like potassium silicate and tri-potassium phosphate.

Typically phosphates and silicates are used as inhibitors in heat pump systems along with

an organic film former.

Inhibitors can be broadly classified as anodic, cathodic or mixed mode inhibitors

according to the rate process being controlled. Anodic inhibitors suppress the anodic or

the oxidation reactions; likewise, cathodic inhibitors impede the cathodic reaction, and the

mixed mode hinders both.

Phosphates are anodic inhibitors and are effective in the presence of oxygen (43).

The protective properties are a function of pH. The use of phosphate as an inhibitor is

relegated to mostly alkaline environments (pH>8). At low concentrations (few mg/liter),

the phosphate ions will cause pitting attack (44). The oxygen content of the system is

primarily responsible for the ability to inhibit corrosion of the steels by phosphates.

Oxygen in the system produces a thin film of Fe203 and the phosphate ions help in

accelerating the film formation, which restrict further diffusion ofFe2+ ions to the surface.

The presence of aggressive chlorine ions can cause film breakdown and pitting attack

takes place. The repair of the film will depend on (P04)3- level and oxygen

concentration. Also, the overall inhibition by the phosphate ion is sensitive to water

quality and pH. With high calcium hardness of water, the potential for calcium phosphate

deposition increases with water hardness, phosphate level, pH and temperature.

Sometimes this can simulate under deposit corrosion.

Polyphosphates are cathodic inhibitors. Different kinds of polyphosphates are

available for use as inhibitors. Orthophosphates, used either as mono, di or tri metal salts,

are mostly suggested for use in alkaline environments (43). In case of polyphosphates,

calcium ions are needed for effective inhibition of steels, as it promotes the film formation.
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Phosphates protect ferrous materials through a mixed mode of inhibition and differ

from polyphosphates by the direct bond formation between the phosphorus and carbon

atoms, instead of the phosphorus-oxygen bond. They are good especially at high pH

values. Locally, incipient attack occurs initially but is rapidly arrested. However, CI-4

ions degrade the inhibitors. Phosphonates are good for non-ferrous alloys but this can be

overcome by addition ofzinc.

Silicates, another group of inhibitors, are used in heating and cooling systems

frequently. These are again available as metal salts with varying degrees of silicate

polymerization. The silicates are stable only at high pH levels and readily form insoluble

slats with water hardness formers. These precipitates are highly abrasive and can also

form high thermal insulating layers on the heat exchangers. They, however, are useful in

neutralizing the effects of acid soft cuprosolvent waters and to minimize dezincification.

2. SPECIMEN PREPARATION

2.1 Cylindrical Specimens:

Cylindrical metal specimens were cut from bar stock, using a cut off wheel. The

specimens were approximately 12.7nun in diameter and 12.7 nun in height. They were

ground to a 240 grit finish to simulate a machined surface. Some specimens were ground

through 600 grit abrasive paper and polished 5Jlm alumina, in order to get a mirror finish.

Stainless steel and brass specimens were then indented using a 10mm ball indentor to

induce residual stresses, so as to may be induce stress corrosion cracking subsequently.

The specimens were cleaned and degreased by rinsing in water and water free absolute

200 proof ethanol and then dried using hot air blowers.

35



2.2 Wedge opening loading (WOL):

The slow bend version of the WOL specimen was made based on a schematic

given for the self loaded configuration for a wedge opening loading specimen. The

specimen was bolt loaded to constant displacement at K1>K1scc. The dimensions of the

specimen were 25mm x 25mm x 12.7mm. The V notch was rough machined to an angle

of40± 2°.

2.3 Sealants:

The sealants were tested using 25mm long couplings of low carbon steel with

threaded ends closed with hexagonal galvanizedlbrass fittings. The cylinders were filled

with the test solution and the threaded ends tightened using the sealants under test.

3. TEST PROCEDURE

3.1 IMMERSION TESTS:

The test procedures used the ASTM G31-72 specifications as a guideline (45). It

describes the standard practice for the laboratory immersion testing of metals. In

designing these tests, for the simulation of corrosion of heat pumps in the laboratory,

factors that are encountered in practice were taken into consideration, so as to emulate the

purpose of the tests. For immersion tests, the volume of the solution used was calculated

as 125 ml/in of metal exposed (45). Due to the evaporative nature of the solutions at the

test temperatures, composition was controlled by the periodic addition of solution to

maintain the necessary volume within ±2%. The test beakers were filled with solution

covered with Saran Wrap, a commercial poly vinylidene chloride plastic film that has
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barrier properties, secured with rubber band and then covered with Aluminum foil to

minimize evaporation losses, minimize oxygen pickup and avoid contamination of the test

solution. The tests were carried out (in a fume hood) at 50° C, using a hot plate. This

temperature was selected as it was slightly above the highest temperature anticipated with

a heat pump system in service. The solutions were saturated with air, whenever necessary,

by bubbling air for about 3 minutes through the solution on a daily basis. The testing

conditions were controlled throughout the tests in order to ensure reproducibility of

results. For studying the effects of dilution with water, a 50 % vlo solution were used in

the tests as it was seen from the review of literature that corrosion rates had the strogest

dependancy on water content at 50 v/o..

The metal specimens were then taken out of the solution and rinsed according to

the chemical procedure given in the ASTM specification G1-AI (45), dried and weighed

every week. Changes in surface conditions were monitored by observing under a

stereoscopic zoom microscope. Also, visual changes in the test solutions were recorded

for each test conducted. The corrosion rate was calculated in mils per year ( lmil =

1/1000 in) wherever applicable by using the equation (9).

MPY = (534 W)/ DAT

where,

MPY - Corrosion rate in mils per year

W - Weight loss in milligrams

D - Density in grams per cubic em

A - Area exposed in square inches

T - Time of testing in hr.

37



3.2 METALLOGRAPHY:

For evaluation of pitting corrosion, specimens were chemically cleaned to remove

corrosion products (45). Gray cast iron was cleaned in a solution of 200 g sodium

hydroxide (NaOH), 20 g zinc chips and reagent water to make 1000 ml for about 30

minutes at a temperature of 80 C. Brass specimens were cleaned in a solution of 500ml

hydrochloric acid (HCI) and 500 ml water. Type 304 stainless steel specimens were

cleaned in a solution of 100 m1 nitric acid (RN03 Sp gr 1.42) and 900 ml reagent water.

The pit density was determined by counting the number of pits through a

microscope eyepiece by using a paper grid containing 30° V notch placed on the metal

surface. The pits were counted in each gap, and the grid was moved symmetrically until

all the surface has been covered (45).

To evaluate the extent of pitting and compare with standard rating charts for pits,

a microscopical method was used, as the pits were difficult to penetrate with a probe type

of instrument. A single pit was located on the metal surface and centered under the

objective lens of the microscope at low magnification. The objective lens magnification

was increased until the pit area covered most of the field under view. The lip of the pit

was first brought under focus, using first the coarse and then the fine focusing knob. The

initial reading was noted from the fine focusing knob. Then, the bottom of the pit was

brought into focus and the reading on the fine focus knob noted. The difference between

the initial and the final reading gave the pit depth (45). Metal penetration was then

expressed in terms of pitting factor, which is the ratio of the deepest metal penetration to

average metal penetration.

The WOL specimen is shown in fig 5. The modified form of slow bend version of

WOL specimen is shown in fig 6. In this type of specimen one of the loading pins is

replaced by a threaded bolt, which permits self loading. The specimen used for tests is
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given in figure 7. The specimen was bolt loaded to constant displacement at K1>K1scc

and exposed to corrosive solution.

3.3 Sealant Tests:

Recognizing that temperature cycling occurs in GSHP's, the sealants were

subjected to test environment at 50°C, 80°C and to a freeze thaw cycle, where the sealant

test specimens where alternately exposed to 80°C and -5°C every 24 hours over a periods

of 6 weeks. These temperatures were chosen to exceed temperature variations in a heat

pump system. A heat pump experiences typically a temperature cycle from 0- 50°C.

Immersion tests were conducted on sealants, as sealant adhesion is nearly always adversely

by water immersion. The U. S. Bureau of Reclamation states that" the single most

deteriorating influence on the bond of elastomeric sealants is continuous water

submergence (46). The sealants were graded based on leakage over a period of 6 weeks.

Observations were made of solution color change and leakage. Apart from these, tests

were also done to measure the time taken by the various sealants under study to harden

completely by exposing them on a sheet of aluminum foil. The solutions were graded as

hard or tacky after a period of 2 weeks.

3.4 SOLDERS:

Tin-Lead solders with compositions of 40-60 tin/lead, 50-50 tin/lead. 60-40

tin/lead, 70-30 tin/lead, 90-10 tin/lead were subjected to immersion tests. Besides the

sealants made in the laboratory, tests were also conducted on commercial sealants with

flux. Tests were also conducted on two lead free solders whose composition was 95 tin/5

antimony and 95 tin/5 silver. The solders were made in the laboratory in the form of small
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cylinders approximately 12.7mm in height and 12.7mm in diameter. Observations were

for any leaching, attack or deposition.

3.5 HOSES:

In the case of the tests for rubber hoses, about 12.7mm length of hose material was

cut from the three different hose samples provided and were subjected to immersion tests

as per ASTM D471 specification. Three commercial hose materials were subjected to

tests

1. Red rubber hose

2. Yeoman hose

3. Wildfire hose.

Observations were made to note any change in texture, swelling or feel of the

specimen and any change in the color of the test solution.
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Fig 5: A schematic ofWOL specimen with dimensions
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Bolt for preloading to~
initial Kli level

Displacement \

gauge \

Precracked by fatigue
loading at a low Kli level

50/0 side notch to ensure
in-plane crack propagath

Fig 6: A modified form of slow bend version ofWOL specimen
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Fig 7.: Slow bend version of the WOL specimen used in the tests.
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CHAPTER IV

RESULTS

1. METALS

1.1 ABSOLUTE ETHANOL

Gray Cast Iron: The attack on GCI was minimal. There was some etching on the top

surface with a reddish brown deposition and pitting on the crevice side. The corrosion

rate increased with air saturation, table 11. As can be seen from table 11 and 12 the effect

of surface finish was negligible. Microscopic evaluation of deepest and average metal

penetration revealed uniform corrosion with a pitting factor close to 1, table 13. However,

pit density was the highest, table 14.

Stainless steel and Brass: The attack on brass and stainless steel was minimal with no

significant attack in the form of pitting except slight staining of the brass specimen.

The WOL specimens did not develop any crack in both aerated and non aerated

solutions

1.2 DILUTE ABSOLUTE ETHANOL

Gray Cast Iron: As was expected from the literature survey, dilution with water

increased the corrosion rate of GCI in diluted absolute ethanol. The corrosion rate

increased with air saturation, with affects of surface finish being negligible. However, the
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attack could be termed uniform general corrosion as there was general roughening of the

surface pit dimensions could not be measured even under a magnification of375X

Stainless Steel and Brass: There was no attack on either stainless steel or brass. There

was a slight staining of the specimens on the outer edge of the bottom face. The WOL

specimens remained unaffected in both aerated and non aerated solutions.

1.3 DENATURED ETHANOL

Gray Cast Iron: Pitting on both surfaces of the specimen was visible to the unaided eye.

There was a reddish brown deposition on the crevice side. Aeration of the solution

increased the corrosion rate, table 11. The effect of surface finish was negligible. A

pitting factor of 1 in case of aerated solution suggests uniform corrosion. The pit densities

however vary by a factor of2.5 from aerated to non aerated solutions, table 14.

..Stainless Steel and Brass: There was a slight staining of the stainless steel specimen.

There was a reddish brown deposite on the outer edge of the crevice side of brass

specimen. Brass was prone to crevice corrosion and pitting. However, the attack was

minimal.

The WOL specimen of stainless steel developed a unbranched crack with a sharp

lip at the notch root on the ninth day. There was no evidence of crack growth on

subsequent examination. The brass specimen remained unaffected.
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1.4 DILUTE DENATURED ETHANOL

Gray Cast Iron: The corrosion rate of GCI was highest in aerated denatured ethanol in

terms of MPY, table 11. On visual observation, the specimen in non aerated solution

seemed the most affected, with blackish brown deposits all over the surface. However, on

chemically cleaning the specimen it was observed that the surface was less affected than

the specimen in the aerated solution. Though aeration seemed to subdue metal

penetration, table 13, it enhanced the corrosion rate in MPY, table 11. The pitting was

more uniform in non aerated solution as can seen from the pitting factor, table 13.

Stainless Steel and Brass: There was no attack on brass or stainless steel in both the

cases of the cylindrical and WOL specimens.

1.5 COMMERCIAL DENATURED ETHANOL

Gray cast iron: The corrosion rate was minimal and in the form of pitting. There was no

measurable weight loss. Aeration did not have any effect on the corrosion rate. There

aws some crevice corrosion on the bottom surface of the specimen. Microscopic

examination showed traces of pitting.

Stainless steel and Brass: There was no attack of any kind on stainless steel. There was

a white precipitate deposition on the sides and top surface of the brass specimen. The

WOL specimens did not show any traces of a crack, for an immersion test period of four

weeks.
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2. SEALANTS

Sealant tests were evaluated on the basis of leakage, solution color change and

state of hardness. "HVAC Permatex " though hardened on exposure to air in two weeks

showed considerable leakage in the immersion tests. The test solution color changed to

bright yellow. The commercial denatured ethanol changed to colorless from light blue.

There was a white deposition on the bottom of the beaker. "Jomar-green" and "pro-dope"

hardened on exposure, besides being leak resistant in the test environment. The test

solution remained clear. A summary of the sealant test results is given in table 14.

3. ELASTOMERS

Ofthe three elastomers tested there was no attack observed in any of the solutions.

There was a solution color change in all the cases. The red rubber hose softened to touch

in the dilute denatured ethanol. There was no swelling or change in texture in any of the

test specimens which is characteristic of some elastomers in alcohols.
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1.

2.

3.

4.

Test type

Specimen

Temperature

Condition

Time

Material

Results

Material

Results

Material

Results

Material

Results

ABSOLUTE ETHANOL

Laboratory immersion

cylindrical

500 C ± 20 C .

a) As poured, aerated.

b) As poured, non aerated

4 weeks

Gray cast iron

a) Reddish brown deposits on crevice side. Pitting visible

under the microscope at lOX. No cracks were observed.

b) Muddy brown deposit on crevice side ofspecimen.

Traces ofpitting visible under the microscope

Stainless steel

a) No traces ofcorrosion, staining or etching ofthe

specImen.

b) No corrosion was observed on the specimen except loss

of brightness

Brass

a) There was no significant corrosion or pitting except for

slight staining ofthe specimen.

b) There was a slight staining ofthe specimen.

Elastomers

a) No softening or swelling was observed but a solution

color changed to brwon in case ofYeoman and Wildfire and

yellow in case ofRed rubber

b) The results were the same as in aerated solution.

Table 5: Summary of immersion test results



1.

2.

3.

4.

Test type

Specimen

Temperature .

Condition

Time

Material

Results

Material

Results

Material

Results

Material

Results

DILUTE ABSOLUTE ETHANOL

Laboratory immersion

cylindrical

500 C ± 20e
a) As poured, aerated.

b) As poured, non aerated

4 weeks

Gray cast iron

a) Reddish brown deposits on crevice side. Pitting visible

under zoom microscope. Solution color changed to light

brown.

b) Results were the same as in aerated solution.

Stainless steel

a) Slight staining ofthe specimen at the edges.

b) Same as above.

Brass

a) There was no significant corrosion except slight staining

of the specimen.

b) Same as above.

Elastomers

a) The results were the same as in absolute ethanol.

b) Same as Above.

Table 6: Summary of immersion test results



DENATURED ETHANOL (CHEMICAL GRADE)

1.

2.

3.

4.

Test type

Specimen

Temperature .

Condition

Time

Material

Results

Material

Results

Material

Results

Material

Results

Laboratory immersion

cylindrical

500 C ± 2°C

a) As poured, aerated.

b) As poured, non aerated

4 weeks

Gray cast iron

a) Reddish brown deposits on the crevice side. Pitting

visible to unaided eye from 24th day. Rough surfaces on

crevice side and top. Microscopic examination revealed

pitting on both sides

b) Deposition was lesser compared to the specimen in

aerated solution.

Stainless steel

a) Slight staining of the specimen at the edges. Evaporation

was high when compared to beakers containing other

specimens. The WOL specimen immersed in this solution

developed an unbranched crack with a sharp lip at the notch

root.

b) Slight staining of the specimen at the edges.

Brass

a)There were traces of crevice corrosion and slight

deposition at the edges of the crevice side.

b) Same as above.

Elastomers

a) The results were the same as in absolute ethanol

b) Same as in aerated solution.

Table 7: Summary of immersion test results.



1.

2.

3.

4.

Test type

Specimen

Temperature .

Condition

Time

Material

Results

Material

Results

Material

Results

Material

Results

DILUTE DENATURED ETHANOL

Laboratory immersion

cylindrical

500 C ± 20 C

a) As poured, aerated.

b) As poured, non aerated

4 weeks

Gray cast iron

a) Black brown deposition all over the specimen decreasing

progressively towards the crevice side. _Solution color

changed to muddy brown.

b) Brown deposition allover the specimen. Solution color

changed to muddy brown. Microscopic examination after
.......... "

chemical cleaning revealed severe pitting comapred to the
J

specimen in aerated solution

Stainless steel

a) Slight staining of the specimen at the edges. Evaporation

was high when compared to beakers containing other

specImens.

b) Slight stainign of the specimen. The surfaces lost their

lusture.

Brass

a) There was no significant corrosion except for white

deposition on the outer edge ofthe top surface.

b) Same as above.

Elastomers

a) The results were the same as in absolute ethanol

b) Same as above.

Table 8: Summary of immersion test results.
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COMMERCIAL DENATURED ETHANOL (ENVIRONOL)

1.

2.

3.

Test type

Specimen

Temperature .

Condition

Time

--
Material

Results

Material

Results

Material

Results

Laboratory immersion

cylindrical

500 C ± 20C

a) As poured, aerated.

b) As poured, non aerated

4 weeks

Gray cast iron

a) There was no attack on the exposed surfaces. There was

a brown deposition on the crevice side ofthe specimen.

b) The results were the same as in aerated solution. There

was a white precipitate deposition at the bottom of the

beaker.

Stainless steel

a) There was no attack even in the form staining or etching.

b) White deposition at the bottom of the beaker.

Brass

a) There was no attack however there was a white

deposition on the sides and top surface.

b) Same as above.

Table 9: Summary of immersion test results.



MIRROR FINISH (600 Grit); AERATED

i Weeks t Pure ethanol Pure ethanol Pure denatured Denatured diluted
i diluted ethanol ethanol
I

I
---

I 0.0262 0.0364 0.0326 0.0421

2 0.0842 0.0542 0.0621 0.0986

3 0.0962 0.1863 0.0842 0.1824

4 0.1555 0.2068 0.1938 0.2639
i-:.-c--"'-_--

MPYafter
4 weeks 1.3 1.8 1.7 2.3

-
NON-AERATED

1 0.0086 0.0163 0.0214 0.0312

2
r

0.06421 0.0698 0.0748 0.0643

3 0.0932 0.0945 0.0961 0.0988

4 0.1006 0.1320 0.1322 0.1321

MPYafter
4 weeks 0.9 1.1 1. I 1.1

Table 11: Weight loss measurements for Gel (600 grit finish) in aerated
and non aerated solution



MACHINE SURFACE FINISH (240 Grit); AERATED

Weeks Pure ethanol Pure ethanol Pure denatured diluted denatured
diluted ethanol ethanol

1 0.0243 0.0298 0.0294 0.0361

2 0.0756 0.0496 0.0432 0.0598

3 0.0842 0.1823 0.0769 O. 1968

4 0.1436 0.2004 0.1842 0.2582

MPYafter
4 weeks 1.2 1.7 1.6 2.2

NON-AERATED

1 0.0084 0.0042 0.0067 0.0018

2 0.0583 0.0592 0.0438 0.0354

3 0.0863 0.0763 0.0842 0.0842

4 0.0985 0.0926 0.1082 0.1127
--

MPYafter
4 weeks 0.85 0.79 0.93 0.97

Table 12: Weight loss measurements for Gel (240 grit finish) in aerated
and non aerated solutions



Material: Gray cast Iron

Test Solution Test condition Deepest metal Avg. metal Pitting

at 50 C penetration penetration factor*

(nun) (nun)

Pure ethanol
Aerated 30 x 10-3 .21 x 10-3 1.43 --7

Pure ethanol+
50%v/o water Aerated - - -

Pure ethanol Non-aerated - - -

Pure ethanol+
50%v/o water Non-aerated - - -

Denatured
ethanol Aerated 3 x 10-3 3 x 10-3 1.00

Diluted
denatured
ethanol Aerated 43 x 10-3 18 x 10-3 2.3

Denatured
ethanol Non-aerated 9 x 10-3 3 x 10-3 3.00

Diluted
.

denatured
I

I
ethanol

I
Non-aerated 63 x 10-3 36 x 10-3 1.7I

!

Pitting Factor = Deepest metal penetration
Avg. metal penetration

Table 13: Pitting factor of gray cast iron in various test conditions.



MATERIAL: Gray Cast Iron

~ Test condition No. of counts No. ofpits Avg. No. of pits I

Aerated pure ethanol 1 11136
at 50°C

2 10428 10802

3 10842

Aerated denatured ethanol 1 4632
at 50°C

2 4244 4406
I

3 4342

Aerated diluted denatured 1 5864
ethanol at 50°C

2 5243 5524

3 5464

Non aerated denatured 1 1898
ethanol at 50°C

2 1642 1779

3 1796

Non aerated diluted denatured 1 2068
ethanol at 50°C

2 2482 2263

3 2238
y-

Table 14: Pit density evaluation

56



I
SEALANT STATE OF LEAKAGE SOLUTION COLOR

HARDNESS CHANGE

Real Tuff T N N

Harvey's Seal T N N

Gripp SH y F

LA-CO Slick T y F

ZEP Pipe Seal T Y N

Teflon Paste T N N

Permatex SH N N

Jomar-green stuff H N N

Hercules Block T Y F

HVAC Permatex H y. C

Pro-dope H N N

LA-CO Anaerobic T N N

I

. State of hardness: T= Tacky, SH= Semi-hard, H= Hard.

Leakage: Y= Yes, N= No: Y*= Considerable leakage

Solution color: C= considerable, F= Faint, N= None.

Table 15: Summary ofthe sealant test results.



0.25
, Solution : Pure ethanol
Material : GCI

0.20 Condition: Aerated

~
Temp : 50°C

en
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en
en

0.100

~
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0.00
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Fig 8: The plot shows corrosion rate to be minimal, but is linear, presumably, a
protective· film has not formed....' .. _. ", ' .,', '. ...

0.25
. Solution : Dilute ethanol
Material : GCI

0.20 Condition: Aerated 0
Temp : 50°C 0

~

en
E 0.15C)

'-"'"
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~
0.05 0

0.00
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Fig 9: The plot shows the rate ofweight loss to be maximum after the third week.
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o

o25 -.' ,~
• I Solution : Denatured ethanol

IMaterial : GCI
0.20 Condition: Aerated

Temp : 50°C.,..,...-....,
en
E
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0.05

0.00

0 1 2

o

3 4 5
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Fig 10: The corrosion rate is maximum in the fourth week. The corrosion rate at
the end of four weeks is 1.7 :MPY. This rate is low, although a protective film has
not yet formed.
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Solution : Dilute denatured ethanol
Material : Gel
Condition: Aerated
Temp : 50°C

~ 0.15
o

~ 0.10

0.05

0.00

o 1 2 3 4 5

Weeks
Fig 11: The plot shows a linear relation ofweight loss with time. The corrosion
rate at the end offourth week is 2.3 :MPY
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0.25
: Pure ethanolSolution

Material : GCI

0.20 Condition: Aerated
Temp : 50°C,...........,.

en
E 0.15C)

'--"""
U)
en

0.100

~
0.05

0.00

0 1 2 3 4 5

Weeks

o
o

Fig 12: The weight loss has approximately a linear relation with time. The
corrosion rate at the end offour week is 0.9 MPY

0.25 Solution: Dilute ethanol
Material : Gel
Condition: Aerated
Temp : 50°C

0.20
,...........,.
U)

E 0.15C)
'--"""
en
en
0 0.10

~
0.05

o 1 2 3 4 5

Weeks

Fig 13: The corrosion rate is maximum in the third week as in the case of dilute
pure ethanol.
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Solution : Denatured ethanol
Material : GCI
Condition: Aerated
Temp : 50°C

0.25

0.20
~en
E 0.15C)
'-'"
U)
U)

0.100

~
0.05

0.00

0 1 2

Weeks

o

3 4 5

Fig 14: The corrosion rate is maximum in the fourth week as was the case in
aerated denatured ethanol

0.30
Solution : Dilute denatured ethanol
Material : Gel
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Temp : 50°C
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U) 0.20 0E
C)
'-'"
en 0.15
en
0

......, 0.10
~

0.05 0

0.00

0 1 2 3 4 5

Weeks

Fig 15: The corrosion rate is maximum in the third week with the rate being
1.1 MPY at the end of four weeks.
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0.25 Solution : Pure ethanol

Material : GCI

0.20 . Condition: Non Aerated
~ Temp : 50°C

...............en
E 0.15C)

'"'"'"'"enen
0.100

~
0.05

0.00

0 1 2 3 4 5

Weeks

Fig 16: The weight loss is linear with respect to time, which could be due to the
absenne. of.a, protective film.

o
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0.12 ~---·l--h-1---------...,...-
Solution : 01 ute et ano
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Condition: Non Aerated
Temp : 50°C

...............E 0.08
C)..........,..

en 0.06
en
o
~ 0.04
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o

0.00

o 1 2 3 4 5
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Fig 17: The corrosion rate is maximum in the second week and maybe
approaching a pleteau after the fourth week.

62



0.25
Solution : Denatured ethanol
Material : GCI

0.20 Condition: Non Aerated

......--... Temp : SO°C
en
E 0.150)
'-"'"
enen

0.100

~
0.05

0.00 ~---r----_---......---- ----4

a 1 2

weeks

3 4 5

Fig 18: The corrosion rate is linear with respect to time. The corrosion rate is
1.6 MPY at the end of four weeks.

0.14 --S-ol-utt-·o-n-:-D-i-Iu-te-d-en-a-tur-ed-eth-an-o-l-------~------,

Material : Gelo.12 Condition: Non Aerated
Temp : 50°Cen 0.10

E
~ 0.08
en
~ 0.06

~ 0.04

0.02

0.00

o 1 2

Weeks

3 4 5

~ I. _ ~ C" " ..: .r '\\ I ~ r- ,:~r; ~ .; --:', ,-'

Fig 19: The corrosion rate at the end of4 weeks is 2.2 M1>v
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0.25
Solution : Pure ethanol
Material : GCI

0.20 Condition: Non Aerated

~
Temp : 50°C

(/)

E 0.15C)
~

(/)
en

0.100

~
0.05

0.00

0 1 2 3 4 5
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Fig 20: The weight loss seems to be achieving a plateau in the fourth week.
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Solution : Dilute ethanol
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~en 0.08E Q
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0 1 2 3 4 5

Weeks

Fig 21: The maximum w~ight loss occurs l~ thefirsiweek.. the ~eductionof
corrosion rate in the latter weeks could be to the formation of a protective film.
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Material : GCI
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Temp : 50°C
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Fig 22: The corrosion rate at the end offour weeks is 0.93

0.14 Solution : Oilute denatured ethanol
Material : Gel

0.12 Condition: Non Aerated
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Fig 23: The weight loss is maximum in the third week, but starts reducing in the
fourth week, may be on account of film formation.
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---'-- -_._--- .__ ......_.'~~: .._~.~ ......

Fig 24: Cylindrical immersion test specimens ofBrass, stainless steel and Gray cast
iron. Arrow indicates the indent to induce residual stress and possible SCc.

Fig 25: Wedge opening loading specimens of304 stainless steel and brass with a
rough machined V-notch of 400 ± 2°
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Fig 26: Sealant specimen showing smears on the surface indicating leakage after 6
weeks of immersion in absolute ethanol

-li-.

Fig 27: Sealant specimens after 6 weeks immersion in absolute ethanol showing no
leakage
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Fig 28: Top surface of Gray Cast Iron specimen showing muddy brown deposit after
4 weeks of immersion in aerated dilute denatured ethanol

Fig 29: Top surface of specimen in Fig 28, after chemical cleaning showing uniform
pitting all over the surface
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Fig 30: Side view of Gray Cast Iron specimen after immersion for 4 weeks in aerated
dilute denatured ethanol. The attack and deposition decreased progressively
towards the bottom surface.

Fig 31: Chemically cleaned surface of specimen shown in Fig 30. Attack is minimal
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Fig 32: Gray Cast Iron specimen after immersion in aerated dilute absolute ethanol
for a period of 4 weeks. The bright surface indicates that attack is minimal.

Fig 33: Gray Cast Iron specimen finished over 240 grit after immersion in aerated
dilute absolute ethanol for a period of 4 weeks. It shows minimal attack.
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Fig 34: WOL immersion specimen of stainless steel which developed a crack at
notch root after 4 weeks of immersion in pure denatured ethanol(aerated)

Fig 35: The unbranched crack with a sharp lip of the WOL specimen
of stainless steel shown in fig 34.
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Fig 37: Pitting corrosion of Gray Cast Iron (600 grit finish) in aerated denatured
ethanol after 4 weeks of immersion
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Fig 38: Crevice corrosion of brass specimen. The dark region is the zone of attack.
The specimen was immersed in denatured ethanol for 4 weeks.

Fig 39: Pitting Corrosion of the brass specimen after immersion in denatured ethanol
for 4 weeks
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Fig 40: Immersion test beakers maintained at test temperature in fume hood

Fig 41: Unaffected surface of stainless steel in environol (325X)
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Fig 42: Cylindrical specimen of GCI showing crevice corrosion after
immersion in environol for 4 weeks.

Fig 43: Crevice corrosion of gray cast iron specimen shown in above fig at a
higher magnification (325X)
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Fig 44: The top surface of brass specimen showing no attack after immersion in
environol for 4 weeks (13X)

Fig 45: Side view of the brass specimen showing white deposition after immersion
in environol for 4 weeks.
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CHAPTER V

DISCUSSION

I.METALS

As was apparent from the review of literature, any corrosivity with alcohols is due

to the acid residues left behind in the manufacturing process, oxygen, any electrolytes and

the water used for dilution. Ethanol itself is a poor electrolyte with a specific conductivity

of 1.35 X 10-9 mhos compared to 5 X 10-7mhos ofwater.

In accord with the foregoing, the attack in absolute ethanol was minimal. The

solubility of oxygen is 25 vol per 100 vol of alcohol compared to 88.88% in water.

Moisture and oxygen can be picked up while pouring, though extreme care was taken to

minimize exposure. The traces of deposition and attack on Gel must be due to the acid

residues ( common in alcohols), moisture and lor oxygen.

The behavior of metals in denatured ethanols is effected by the denaturants

(electrolytes) and the water composition. The reddish brown deposites of oxides of iron

and traces of pitting are a consequence of the electrochemical reactions. Chemical grade

denatured ethanol contains methanol, as a denaturant,that increases the corrosivity of the

solution. The shorter chain aliphatic chain length of methanol seems to afford lesser

corrosion protection on account of higher conductivity than ethanol. In commercial

denatured ethanol, brass and stainless steel remained relatively unaffected as in absolute

alcohol and denatured ethanol. Sodium meta bisulfite present in "Environol" is an oxygen

purger, which explains the reduced attack on cast iron.

77



With the introduction of water, the solution becomes conducive to electrolytic

corrosion. The characteristic electrochemical reactions of electrolytic corrosion could be

represented as follows. At the anode, in general, oxidation of the metal to its ions takes

place by the reaction

M -----> MJ1+ + ne-

and for iron in specific,

Fe -----> Fe+ + 2e-

At the cathode, it is the reduction of dissolved oxygen that is often observed in

neutral and acidic solution exposed to ambient air. The reduction proceeds primarily

according to the reactions

02 + 2H20 + 4e- ------> 4 OH- ( in alkaline or neutral solutions)

02 + 4H- + 4e- ------> 2H20 ( in acidic solutions)

In the absence of the above two reactions, water will be reduced by a reaction

which is equivalent to the dissociation ofwater and is given by

2H20 + 2e- ---------> H2 + 20H-

In denatured ethanol, the presence of denaturants and water make the solution an

electrolyte. The presence of water increases the oxygen solubility, which enhances the

reduction reaction and thereby corrosion. The cylindrical specimens of stainless steel and

brass remained unaffected. However, the WOL specimen of stainless steel developed an

unbranched crack with a sharp lip at the notch root which is characteristic of SCC. In a

study by Farina et aI., (24), it was found that low alloy steel specimens developed cracks

in ethanolic and methanolic environments in the presence of an electrolyte. The presence

of denaturants, methanol and water(5%) must have made the solution conducive to SCC.

The crack which developed on the ninth day of immersion did not show any subsequent
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growth which could be on account of the reducing stress at notch root due to crack

operung. It is to be noted that this WOL study was purely qualitative as fatigue

precracking was not used. Crack growth sessetion correspond to a SCC threshold stress.

It has been found that the presence of water even at low concentrations «5%), leads to

the formation of a passive protection film, which is essential for SCC. The 304 stainless

steels depend on oxygen for the formation of passive film in active environments. At

higher temperatures, it is the formation of a true oxide which prevents corrosion. A

hydrated chromium oxyhydroxide film is formed in organic media and the dissolution and

passivation mechanism remains the same in solutions containing 5 to 100 vol% water (25).

1.1 Effect of Aeration

Aeration of the solution increased the corrosion rate. As already explained, the

higher oxygen content facilitates the corrosion enhancing reduction reaction.

The higher rates of corrosion in non aerated solutions could be explained by the

failure of oxygen to escape at the testing temperature, increasing corrosion rates linearly

with time. The increase in corrosion in the later weeks of testing, was because of the

addition of solution/water, to maintain the concentration of the solution which provided

more dissolved oxygen for corrosion to proceed, after the expenditure of all dissolved

oxygen in the solution. In the case of GCI pitting was more severe in non aerated, dilute

solutions than in aerated solution. In the presence of very little dissolved oxygen, a

magnetite film is formed that is adherent to the surface. However, the pits already formed

will act as anodes due to the depression of the pH at the pit bottom compared to the

surface and thereby cause further pitting. The crevice corrosion observed in commercial

denatured ethanol could be due to the differences in oxygen concentration between the

shielded environment of the crevices and the surrounding area. The outer area, being
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higher in oxygen, is predominantly cathodic. Anodic dissolution occurs in the area where

the solution remains stagnant and is lower in oxygen.

1.2 Effect of Dilution

The corrosion rates increased with dilution. With dilution, the solution becomes

conducive to electrolytic corrosion. The higher content of water increases the

concentration of dissolved oxygen, as well as the ability of the solution to retain oxygen,

which facilitates reduction reaction enhancing reaction. The decreasing rate of corrosion,

even in dilute solutions with increasing time is due to the formation of an oxide as a

protective film on the surface. The oxides of iron Fe203 and Fe304 are stable over a

wide range of pH and potential (10). A passive film is formed by the direct

electrochemical reaction

Fe + 2H20 --------> Fe(OH)2 + 2H+ + 2e-

In the case of stainless steel, as already mentioned, the dissolved oxygen helps in

the formation of a passive film which is evident from the loss of brightness. The active to

passive transition in 304 stainless steel depends on water content. However, once the

hydrated chromium oxy hydroxide film is formed, the passivation mechanism remains the

same in any solution containing 5 to 100 vol% water (25).

In the case of recirculating systems, using solutions containing oxygen purgers as

inhibitors, care should be taken to keep the solution free of suspended particles, as this

could impinge the surface of film exposing the substrate making more corrosion possible.

2. SEALANTS

In tests with denatured ethanol, most of the sealants provided exhibited an egregious

performance. Sealants containing, isopropyl alcohol group and wood based resin
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exhibited good performance in terms of both leakage and solution color change.

Presuming that these sealants have the same alcohol ring structure, they harden by cross

linking into a three dimensional network. The time interval for cross linking referred to as

"potlife" can vary depending on the reinforcement and fillers added as compounding

agents.

Degradation In color of the test solution could be due to either loss of

pigmentation used in the sealant or due to deterioration of the sealant itself The loss of

color or deterioration is predominantly true of the low recovery sealants with little or no

crosslinking. This may be attributed to the fact that chemical reactions with sealant

material takes place at a higher rate in the soft state than when hard.

Hence based on color change and leakage, isopropyl alcohol based sealants which

hardened in two weeks on exposure to air seem to perform satisfactorily in the tested

conditions.

3. ELASTOMERS

As is evident from the results, no physical changes were observed in the three

rubber hoses. The solution color change to yellow is presumably due to the dissipation of

sulfur into the solution. The reddish or orange tinge to the solution is the possible

dissipation of the pigment from the rubbers. Studies have been conducted on various

rubbers and their compatibility with gasoline and alcohols with the emergence of gasohols.

It was found that polar rubbers were susceptible to deterioration in non polar liquids and

vice versa, hence care is to be taken regarding the polarity (45). Since there was no

deterioration detectable in the form of softening or swelling, which could mean bonding

failure, no problem is foreseen with their use in heat pumps.
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4. SOLDERS

In the study conducted by Nayak(8) and Pai(46), on various solders in potassium

acetate based solution there was no attack except for deposition on the solder joints. In

this study test conducted on conventional tin-lead solders revealed no attack. The results

of tests on lead free solders was encouraging as there were no traces of corrosion or

deposition.
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CHAPTER VI

CONCLUSIONS

The following conclusions have been reached in this study, conducted to evaluate

the material compatibility of Ground Source Heat pumps using ethanol based heat transfer

fluids.

1. Though stainless steel is prone to see in pure chemical grade denatured

ethanol, it does not exhibit any attack in diluted systems or in pure ethanol. Hence,

stainless steel should not pose any problems in service with ethanol based antifreezes

under any conditions that are anticipated in the heat pump systems.

2.Yellow brass does not show any significant corrosion problems. Some etching

and crevice corrosion is observed under stagnant conditions. Since the fluid is not stagnant

in the heat pump systems, substitution by the costlier red brass is not necessary.

3.Gray cast iron exhibits pitting and crevice corrosion, however the corrosion rate

is uniform and low. Cast iron is expected to give a good service in GSHP systems using

ethanol based antifreezes.

4. The rubber hoses, "Yeoman", "Wildfire", and the "Red rubber" hoses did not

show any signs of swelling, dissolution and change in appearance or feel under constant

immersion in test solutions. Some sulfur diffuses out of the hoses, initially but is not

expected to cause in any problem with the working of the pumps. Care should be taken to

confirm that non polar elastomers are used.
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5. Of the twelve sealants tested, isopropyl alcohol based, high recovery sealants

(Jomar green and Hercules Pro-dope) exhibit good resistance to pure and denatured

ethanols and maybe preferred over the others for use in ethanol based systems.

6. Common lead-tin solders, and two of the commercial lead free solders did not

show any attack or deposition and could be safely used in the heat pump systems using

ethanol based antifreezes.

7. Many literature sources cited are in agreement that polyethylene, the buried loop

material, will not be affected by ethanol.
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SECTION I - NAME AND PRODUCT

MFG NAME AND ADDRESS
EM SCIENCES /MCB
P.O. BOX 5018

""

::8:.0:" PT{:)}::;::

CHEMICAL NUMBER: MEX0280-3
ITEM NUMBER 489575
VNDR CATLG NBR :
ENTRY DATE 08-15-85
CHANGE DATE 11-25-85
EMERGENCY PHONE: 609 3549200

... . .
,...... . . .....

SECTION I I - HAZARDOUS INGREDIENTS

HAZARDOUS COMPONENTS:
REFER TO SECTION 4-9

COMPONENT
ETHANOL
METHANOL
ETHYL ACETATE
METHYL ISO-BUTYL KETONE
HYDROCARBON SOLVENT
WATER

APPROX. %
87

5
1
1
1

BALANCE

TLV
1000 PPM
200 PPM
400 PPM
100 PPM

SECTION I I I - PHYSICAL DATA S/10 SEE SECTION X

BOIL.
POINT

79.4C

SPECIFIC VAPOR
GRAVITY PRESS.

0.81 40

MELT.
POINT

N/A

VAPOR
DENSITY
1.59

EVAP. SOLUBLE
RATE IN WATER

3.3 MISCIB
BUTYL ACETATE

PERCENT
VOLATILE

100

APPEARANCE AND ODOR:
CLEAR, COLORLESS LIQUID. CHARACTERISTIC ODOR.

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

FLASH POINT:
FLAMMABLE LEL:
FLAMMABLE UEL:

57 DEG. F. (CC)
3.3 (ETHANOL)
19.0 (ETHANOL)

EXTINGUISHING MEDIA:
DRY CHEMICAL, C02, OR ALCOHOL FOAM
WATER SPRAY TO COOL FIRE-EXPOSED CONTAINERS & DISPERSE VAPORS.

SPECIAL FIRE FIGHTING PROCEDURES:
WEAR SELF-CONTAINED BREATHING APPARATUS

UNUSUAL FIRE AND EXPLOSION HAZARDS:
HIGHLY FLAMMABLE LIQUID.
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~. . ..... ..... . .... . . .. . . . . .. - .. -. . . . ,'. .

-:: :>:;:·.~.EC.T:I ON ::V':"~;::H EALTH::-:HAZARD:OAT,A' .

THRESHOLD-LIMIT-VALUE:
OSHA STD-AIR: TWA 1000 PPM TXDS: ORL-HMN LDLO: 500 MG/KG

ORL-WMN TDLO: 256 GM/KG/12W*

EFFECTS OF OVEREXPOSURE:
POISONI CAUSES BLINDNESS AND DEATH ON INGESTION. EYE IRRITATION ON
CONTACT; MAY DEFAT SKIN AFTER PROLONGED CONTACT. INHALATION IS NARCOTIC
IN HIGH CONCENTRATIONS, CAUSING HEADACHE AND DIZZINESS.
TOXIC EFFECTS ON ENDOCRINE GLANDULAR SYSTEM

EMERGENCY AND FIRST AID PROCEDURES:
GET MEDICAL ASSISTANCE FOR ALL CASES OF OVEREXPOSURE. EYES: FLUSH WITH
WATER 15 MINUTES; GET MEDICAL ASSISTANCE. SKIN: FLUSH WITH WATER;
WASH THOROUGHLY WITH SOAP AND WATER. INHALATION: REMOVE TO FRESH AIR:
GET MEDICAL ASSISTANCE. INGESTION: DRINK 1 OR 2 GLASSES OF WATER
AND INDUCE VOMITING IF CONSCIOUS; GET MEDICAL ASSISTANCE.

SECTION VI - REACTIVITY DATA

I

INDICATORS: STABILITY - STABLE
CONDITIONS TO AVOID:

HEAT, SPARKS, OPEN FLAME

POL YMER I ZAT I ON - MAY NOT OCCUR

INCOMPATIBILITY (MATL TO AVOID):
OXIDIZERS, CONCENTRATED NITRIC AND SULFURIC ACIDS. ALDEHYDES. HALOGENS AND
THEIR COMPS .

HAZARDOUS DECOMPOSITION OR BY PRODUCTS:
COX

POLYMERIZATION CONTIONS TO AVOID:
N/A

SECTION VI I - SPILL OR LEAK PROCEDURES OR DISPOSAL

MATERIAL RELEASE OR SPILL PROCEDURES:

ELIMINATE IGNITION SOURCES. FLUSH WITH WATER.

WASTE DISPOSAL METHOD:

TO BE PERFORMED IN COMPLIANCE WITH ALL CURRENT LOCAL. STATE, AND
FEDERAL REGULATIONS.
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N\PER HSDS NUMBER: lOO-A

ETIIYL ALCOf-IOL USP - 200 PROOF

AAPER Alcohol and Chemical Company
P.o. Box 339, 11 Isaac Shelby Drive
Shelbyville, Kentucky 40066-0339

Telephone: (502) 633-0650

EFFECTIVE DATE: JANUARY 1, 1991

24 Hour Emergency Assistance: Chemtrec 1-800-424-9300

AAPER Alcohol and Chemical Company urges the customer receiving this Material Safety Data Sheet (MSDS) to study it carefully
to become aware of hazards, if any, of tho product involved. In the interest of safety, you should: (1) Notify your
employees, agents, contractors of the information on this sheet, (2) Furnish a copy to each of your customers to inform
their employees and customers as well.

SECTION I - IDENTIFICATION

COMPOS rrION

PROOUcr NAME:

SYNONYMS:
O1LMICAL FAMILY:
HJL.ECULAR WEICHT:

FOPJ1ULA:

CAS RN.

Alcohol USP, Ethyl Alcohol, 200 prool'
Anhydrous Ethyl Alcohol, Dehydrated Alcohol
Alcohol
46.07
C':lB~OB

SECTION II - INGREDIENTS

Ethyl Alcohol 64-17-5 100.0 1000 ppm Flammable/Nervous System Depressant

INHALATION:

IUCESTION:
EYE CONTACT:
SKIN CONTAC'r:

SEC'rIOH I I I - BEALTB INFORMATION

Exposure to over 1000 ppm may cau~e headache, drowsiness and lassitude, loss of appetite, and inability to
concentrate. Irritation o( the throat.
Can cause depression of central nervous syseem, nausea, vomiting, d1arrhe~.

LiqUid or vapor may cause 1rrita~ion.

May cause irritation and defatting of skin on prolonged contact.

SEC'rION IV - OCCUPATIONAL EXPOSURE LIMITS

PEL (OSHA Permissible Exposure Limit):
TLV (ACGI" Threshold Limit Value):

Mixture - See Section II

H1xture - See Sec~1on II

SECTION V - D1ERGENCY FIPST AID PROCFJ)URE

FOR OVEREXPOSURE BY:

SWALLC\."lt:G: IC victim 1s conscious and able to 8wallOlJ, have victim drink water or milk to dilute. Never
give anything by lDOuth 1t victim i8 unconscious or having' convulsions. CALL A PHYSICIAN OR
O{£HTR[C (POISON CONTROL) IHHEOIAXELY. Induce vomitinq only il' advised by physician or
Chcmtrec (Potson Control).

INf~TION: Immediately re~ve victim to Cresh air. IC victim has stopped breathing, give artificial
respiration, prelerable mouth-to-mouth. CET K£DICAL ATTENTION IHHEDIATELY.

CONTACT WITH EYES OR SKIN: Immedia~ely flush affec~ed area with plenty ot cool vater. Eyes should be flushed for at least
15 minutes. Remove and wash contaminated clothing before reuse. GET MEDICAL ATTENTION

IHHEDIAn:LY.

SECTlotC VI - Pm'SICAL DAXA

BOILINC POlfrr:

MELTINC POIfrr:

VAPOR PRESSURE:

SPECIFIC GRAVITY:
VAPOR DENSITY' (AIR-i):

SOLUBILITY IN WATER:
APPEMANCE AND COLOR:

113·F
-17)·r

.(4 .6 IIDII Kg @ 68· F
0.194 @ 60·/60·r
1.59
Complete
Clear and colorless

SEc::rIOK VII - FIRE AND EXPLOSION BAZARDS

FLASH POIRT: 57-PO ASTK D-56 (Taq Closed Cup)
AUTO-ICNnION TEMPERATURE: 68S-F
nJJ-tHABLE LIMITS IN AIR, \BY VOL.: LOWER: 3.3 UPPER: 19
NFPA (NATIONAL FIRE PROTECTIaf ASSOCIATIaf) RATIKe:: HEALTH (0)
(Does not apply to exposure haurds other than durinq • tire.)
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SECTION VIII- SPECIAL PROTECTION INFORMATION

RESPIRATORY PROTECTION:
WEAR FRESH AIR MASK IN CONFINED AREAS.

VENTILATION - LOCAL:
PROVIDE ADEQUATE LOCAL EXHAUST VENTILATION.

VENTILATION - MECHANICAL:
PROVIDE ADEQUATE GENERAL MECHANICAL VENTILATION.

VENTILATION - SPECIAL:
N/A

OTHER
USE IN HOOD

PROTECTIVE GLOVES:
SAFETY GLOVES

EYE PROTECTION:
SAFETY GOGGLES

SECTION IX - SPECIAL PRECAUTIONS

HANDLING AND STORAGE PRECAUTIONS:
KEEP CONTAINER CLOSED. AND PROTECTED FROM PHYSICAL DAMAGE. STORE IN A COO
WELL VENTILATED AREA, AWAY FROM SOURCES OF IGNITION. DO NOT TAKE INTERNAL
DO NOT GET IN EYES. AVOID PROLONGED OR REPEATED BREATHING OF VAPOR OR
CONTACT WITH SKIN. WASH THOROUGHLY AFTER HANDLING.

SECTION X - OTHER INFORMATION

NFPA 704: o
HEALTH

3
FLAMMABILITY

o
REACTIVITY

CANNOT BE MADE NON-POISONOUS!

THE STATEMENTS CONTAINED HEREIN ARE OFFERED FOR INFORMATION PURPOSES ONLY.
WE MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AND ASSUME NO LIABILITY IN CONNECTION
WITH ANY USE OF THIS INFORMATION.

NOTE: NA OR N/A DENOTES NOT-AVAILABLE OR NON-APPLICABLE
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FIRE rIGIITIUG PROCEDURES: (Note: Individuals should'perlonD only ~hoSQ t1re-tight:lng procedures tor .....hich tlley
have ooen trdined.) Use dry chemical, "alcohol" toam, or carbon d1oxice; '-la~er m.3y be
ineffective, but: .....ater should bo used to k.eep l1re-(!)(posed containers cool. It a leak.
spill has not ignit.ed, usc water spray t.o disperse Chc vapors And to prot.ect: men
ae-tempt.ing to stop a leak. Water spray may be used t.o !lush spills away froru exposures
and to dilute spllls t.o nonflammable mixtures (tiFPA-49 1975).

lINUSUAL FIRE , EXPLOSION HAZARDS: f i ref ighters shou Id wear self-cont.ained breathing apparatus 1n t.he pos1 cive pressure mode
..... 1th a [ul1 (ace p:.ece When there is a possibilit.y o[ exposure to smoKe, furnes, or
hazardous decomposi cion product.s.

SECTION VIII - REAcrIVln

STh.BILITY:

li.l\ZA..RDOUS POLYMERIZATION:

CONDITIONS , MATERIALS TO AVOID:

Generally st.able.
Not likely.
Concact. ..... 1 t.h acetyl chloride and a wide range ot OXidiZing agent.s may react. violently.

SECTION IX - EMPLOYEE PROTECTION

CONTROL MEASURES:

RESPIRA'roRY PRorECTION:

PROTECTIVE CLOTHINC:

EYE PRorECTION:

Handle in the presence of adequate vent:ilation.
Where exposure is likely to exceed acceptable criteria, use NIOSU/HSBA approved respiratory
protection eqUipment. RespiIators should be &elected based on the toem and concentration ot
contaminant in air And in accordance with OSHA (29 CFR 1910.134).
Wear gloves and protective clothing which are impervious to the product for the duration of the
ant.icipated exposure it there i8 potential lor prolonged or repeated slcin contact..
Wear safety glasses meeting t.he specitications ot ANSI St4Ildard Z87.1 ....here no cont.4ct with t.he eye
1s a.nt.icipated. Chemical safety goqgles meeting the specifications ot ANSI Standard Z87.1 should .
be worn whenever there is the possibility ot splashing or other contact wlt.h t.he eyes.

SEcrION X - ENVIroNMENTAL PROrECTIOH

ENVIRONMENTAL PRECAUTIONS: Avoid uncontrolled releases ot this uterial. Where spills are possible, a comprehensive
spill response plan should be developed and implemented.

SPILL OR LEAK PROCEDURES: Wear appropriate respirat.ory protection and protective clothing as described in Section IX.
Contain spilled material. Transter to secure conuiners. Where necessary, collect. using
absorbent media. In the event ot an uncontrolled release ot t.his material, the user
should determine it the release is reportable under applicable laws and regu 1a tions.

,",'ASTE DISPOSAL: All recovered material should be p4ckaged, labeled, transported, and disposed ot, or recla1Joed
1n contormance with applicable laws and regulations and in conto~ce with good engineering
practices.

OEPARniENT Of TRAHSPORTATION (DOT):

OOT CLASSIFICJ\Tl~:

DOT PROPER SHIPPINC NAME:

c:rrHER DOT INFORMATION:

I\TF DISTILLED SPIRITS I\CT:

roXIC SUBSTANCE COtITroL 1o.cr (TSC1o.):

Fl4JSD&ble Liquid
Et.hyl Alcohol
Identification No. UNl170
Emergency Response Guide No. 26

Use ot ethyl alcohol wi thout prior payment of applicable excise t.ax is st.rictly
controlled by regulations prolDUlgate<1 and en!orced by the Bureau ot Alcohol, Tobacco,
and Firearma (Au), Deput.ment 0' the Treasury. eoverninq requlationa have been
de!lned in Title 27, Code 0' Federal Requlat.iona.
Thill product is listed in the TSCA Inventory ot ChemiCAl Subatances.

SECTIOtf XII - PRECAUTIONS: BAHDLINC, STORACE AND USACE

Pro~ect. conua1nor against physical damaqe. DetAched or outside storage is preferred. Inside atorage should be in a
NFPA approved !la.J'&W4ble liquid storage rooaa or cabinet. All ignition sources should be eliJDin&tcd. Smoking ahould be
prOhibited 1n atorage are4a. Electrical instAllations should be in accordance with 1o.rticle SOlo' tho National Electrical
Code. NFPA 30, Fl4LRlm4ble and Combuatible Liquids Code, ahould be 'ollOoied Cor all atorage and handlinq. Frequent. careCul
leakage inspect.ians should bG done. Auto..tic aprinkler system .should be provided. Isolate Crom axidi%ers, chemicals
capable at spontaneous heating, ..terials reacting with air or moisture to liberat.e heat., ignition aources and explosives.
Consult local !lre codea Cor additional storage 1nCarmat.ion.

When contents Are being transCerrea, t.he lnet.allic container must be bonded to the receiving container and grounded to avoid
stat.ic discharges. Never use pressure to empt.y. Replace closur••ecurely atter ea.ch openinq.

ll:.eep material packaged in drWDs or bott.les out. ot sua and away Croal heat. Remove closure careCullYi int.ernal pressure may
be present. l'eep closure on to prevent leakage.

Cont.ainer ha%ardaua when empt.y. Since empt.ied container. retain residual product. (vapor and liquid), all precaut.ions
described on this HSDS must be observed.

CAUTION: For JD4nufacturing, proce••ing, repackaging, or induatr1al use. Not Cor household use.

The information contained horoin 1s furnished without warranty 0' any kind. Eruployera ahould uae this information only a. a
supplement to other 1n!0r1D4tion gatJlerod by them And must condUC'1; te8unq and/or uka independent determ.1naUon. 0'
auitability and completene.. 0' informatioa Crom all source. to a ••ure proper uae 0' the•• aster1al. &Dei the satety and
health 0' uployee••
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MATI~nIJ\L SAFETY DATA SHEET~----------

oornONOL 2000 FORMUTA

AA~. Alcohol And c~ie~l ~nr
P.O. Box JJ9 r 11 1••ac OhQlby D~ivu

~h*lbYTil18, ~n.UQ~Y 40066~339
TelephOAeI (502 J 633-0650

24 Hour amerqonoy Aaai.tnno81 Ch..t~ 1-800-424-9300

MnJ' .\loohol azd ~1a.l ccapany uv- tka c..~r ncw1vul U11 KtU%tal f.&tny k" ~f'4J1: (KmI, too Itooy i~ O&.Nt&&11r
fO ~OOIM ..,.ca oC "AU,""., II ••y, of tluI proaor:r. S-nvai...-d. In u.e J.nMl~ 91 ...te1Y, fO'I .Mu.)4. (1) )feU" l'VU&"
dlQlcy.... , 19""1.. C"'Ot1tr.oM". at tn. J"Caa-tlon oa t"t• •h••~, (2) ,u.nuaa _ oopt ~ ..." of t9UZ ou.u..n to lnLotll
tha.11 .~loy... ~ CQ'~••• v.l1.

~u~ PJa.
8~1

C1DfICAL J'NULTI

~OL 2000
o.n_tuced Alcohol, -,peei.l lAcI...trtal .o1v_t.
"lDUhGl

tthyl Aloaftol
1) 1 W.1t • .r

.r ic)Cu. ".~. 111lultlt.
vIii. 011-- .-- --' -_._-

DanatonlGII »an.c..C.
].~coplr "loanol
... tbrl.n. Uue

6.-17-'
7112-10-5
7SI\-S1·4

37~4-:Jl~6

, 1-6]-0

10.1.
1.16
0.06
0.27
O.ooOS
Q.U
o.ooot

~

1000 PP-

-------------------------------------------------------
nU!AJA71all.

I He:tSTIC*.
nl a.wv.cT.
J AI. can:~.c,:t.

I~'W'. ~ owwr 1000 p~ lI&y olUM hN4&cha, 4row.1n....no 1•••1I;&&d.# 10.. ot .".U&.a, 'l)4 1~D!11c.y to
ccmonC"~. In:'.ltat14a 01 t". tkrOl~.

C4l" "u.. d.pl:W$a1o.a 0' cWJU.1 urwu. IY.CAJI. ".U'••, vam:1unQ, dllrriw••
L14uJd ot Y.~I' ~y a• .,.• .1n1tat1on,
~.-y caul. a.I'riu,.on mC1 dat..a~,"a"'9 ot ••1" on ptul0Q9M OOfaL&oC..

lOR OVIJUIXPOSUJUI I Y.

S"JAL.LOW1xc. rt ysc,:U. 1. ClOZI.;jo~aI and .b.1a to IWlll(JU, hint viDt.t. dzink ".t.ar or .Uk t.o cUl.at.. )C••U
Cltv••ny~i", fly ,..'" J.~ Itlat:£••• aa.Dou.n.o.1aa. CU" eaavlnq c:onv\lla1ont. CALL A rHYstCIAJIC oa
ClIH'fqC! (101'011 C'QttJIQLt UtGOIArcr.l. %ndUQO Y_l~1n; only if Ifdya.ad ~ plly.1oJ." or
C1\.-nt.rec (toJtOn Conuol J.

11l1lAlaATlClU 1.-..d1at1tly relDY. vJetS. t.o fn." air. 11 vl~1Ja ba••~ tut.Athj~, vivo ut.1lJolal
n.a,itat.lan, prat.r.ll.1a .a1Af.l·CO-tlIUIUlla. au NIOZW, A'JTaftlc. IttaDIAT8LI.

CONTACT Vl'Ttt Ina o~ ,IUK. r...~U.t.ly tlcs.n .ttocrt.e<t ..... with plenty tit 0004 wal.... It}""ft _hovla b. U"'ehlld '" a\. I...'
l' • .love... l.-ov••n4 w••ft ~ant ....h,.tN claU1.1OG DetON '.~. ~ KmICAL UTI~%DIC

l"'Ol~'t.

UC'l'JOif 't - fUlllC&L 'O&U

JQILI.g lOIn.
TUl'Cl..O roUl't,

VAlO~ ' ....UM.
."efrle QlAy,nr
V1t1oa DtJfIHn (lJ~·LJ:

SOLUJlIr.In I. WAnlU
A'.I:&MftCC JUrD CQtOIl,

11)"
-~'O·,
.4 ..... H9 • dl- ,
0.'0 • 'O'/,o'r
1.~,

lubat4ant.1.1ly
Cl..C' ~d Lt.. 11~

JlcnCltC VI .. ,tJ'Z AJI1) JX1'lDaIai~

YLUIl rom, 52-" MUi o-~' (,.., Cloo_ C'l9J
AtnQ-tClIl1'IOfl 't&:11PrAU'UR£ I ,as·,
'L~LE L1J.(t'fl IN All', , Dt'voL.. .LOWDI).J vr,"" l'
H',A U....rrn"AL , JU PN7l'tCTlCI' AUOCIA'fION) M"tlllQ& ItLU:nc (0)

(Doe. Mt .pply to ."PO'W" '~I.ard. a~r tllAn. aurl~. Uri.,
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rr,.sr vyaU"rllle PI'OC'l"tlvru:t (Note. Indl ..J~&UI.l••hauJ~ p.rfOc. only tho•• Clr•• CSantlDq p~.etur_ flU' ""'loh thtry
ha•• b6aft tr.1a.Ad.l V,. Uy .,,_••• ~, ".lc;obGl" tOUt, oc c:...OOft C!OII 1••, ~-C.r --yo be

In.ett.ct1w .. but ... t.a.r .ho.&.U:a .. -..ed w ..~ ILJoe-_,.-.d C:OlluiMt:. cv.l. 1 f a 1.... 06
jp.111 h,. JIOt !qnite41 0•• wat.1' .pray U ..La,..... tke y~l'. aM ·t. ~K' ....a
~t~C1IU' t4 at4., • J..... Wlt.ar Ipr.." IINY '0 r.1aa••,-'11- ...y tl'Ql ~pcM\I"'"

INS ta IUluea 1,111" til " .... 'J ......1. a1Mta£).'_ (,., -4. 1~1n).

ut-IUftJAl. rlJ2ll £ l:X2'lOIraf ~.. '£"t1fnw~. _M\ll .. wur Nlt-aontaln-S b","f,~ appu-.t.aa In t'" poett1vw pC'.'''I:.~
"itD « N.ll I~ ,l60. wh_ t.be~ , ... ,...1W.l1', .c ~~.... t4 • .,... , ru..., oc
~." ..... dw..,oa1dOlI ,rvUc:t••

tnUJ[,l'Tl',

fLUA.AOOUll POt.n«. t v.~toM •

CONDITlona , KAIYA TALa TO AVOID'

CtlMr.aJly .table.
Vot. 1.1kaly.

CODt.vt with .c:.ty' ohlocid••nd a Wid' ra",. of CUlidiata,q .,,"l. "'Y rw.aoc V101tntly.

~QI VIII - IK"LOrD nomcnar

COtftJ~ J1EJUl1U~J

~ar 1 MATOftY , I\O't"ECrtOti ,

V\lDTSOTIW Cl.annlfQ,

rTZ ,aar.a.c:;"lONI

>uJ:sdJ. 1.a t.be ~n•• ot ..~.t.e yent11atJOft.
""ber. e.poalLre 1. 11••1., to .JIC.....c:0.,,"1. oc1'-11'1&, 'l•• tQ.OaR/lUUA .pprov" r ..,l ... iory
proteetSon ~jpment.. ~ ... ic.tor. ahould be •• 1eOlwS ba... GO ~n. toe- ana 4:oa.ce.~•• t.lon at
<:oar.aa.t ..,,~ 1" .. .tc AAd fA Acc:~dA"'e. v.Ath OCUIA (31 ~ 1.10.1]4,.
~"Ir ~1~•••n4 p'Dt.eGU,.,.. olDuun, wnlOA ue ~_. ~ ttl. ~c ,~ tM dUZ.t10n of the
jl\tU.S.... , ...~.~• .if tbAre •• pot.eauAl tcu prAl~4 -.c "~c.G ....s. OOftuec.
W r .at"r gi U., \he .peottlcrattGna .c NUl 'tanc1ana .'7.1 ~" .0 OOAt.eC with t.ha are
.1. "n"igiHw4. OJllmc£.l •• '.ty 90991.. "d1ner the .~iCJoac.iau at u.r ItA....n 1.7.1 thoul.
be worn wMU'YtIr ~.,.. ta tu po.a.U~tltc't et .pl.aII1a, CC" aeMl' ......, wAUl th.w ."...

UVIROlftomn'At. ~r;C"trrlQ{11 AVoid unoQftt.rtJl1td r-.1..... ot \lti ....~dal. VheKli .pill...... po•• ible •• co.plu.n.lve
ap.1U. n.pGII" plan .boalCi " 4 .....1.". and 1JIpl....U4.

SPILL C!'. LlAJ( 'ftOC:ctnUtA, "',ar aPOrop-ctat. Il£.n~ry pro~.~lo" uel ~t.l... clot.hl.nq u ~'''I'J.bect 1" "c:t1on IX.
Oontaift .pil~ _ ct• .1. ftaAlltas t.6 -..cN'e ~.s..". WIIaI'1t DIIOAIt...,y, col.l.. , •• 1nO
ab••r .... t. __Ua. tn tr.t '''.d~ at an \lnooa~11'd naaa. ~ uua ..~t~, \h. "'"
abo\l.1d d.ura1.,. it U. ,..1•••• Se rwpOC'UD1. Under aop11O&Dla J..- ~ ~.-qu.l.ctOft••

IJM'~~ l11~roaAL' AJ~ I'"O~" Nt.,.£l .M\lleI .,. pacuq.d. laM1M, U'AallC'OC'''', h.,.... ot. or recU • ..laad

t. OGft'onIMn witla app,U....l. 141N. and rwqallcJOIla ANI 18 a4Ult~ "iUs 9004 en,....rlDG

pru'loee.

DO'J' ~.I'tCJ\nC*,
~ ,~,~ aKI,.Z-G aAHZ.
111'aZJ\ oar ~TIO',

Att Dr~ILLED "'''11' t,C1z

,J_..18 L1qu14
~••"""Al""1
I~nC1rlc:..t.ion 110. _Al.IS
RraervMaY aaapoU6 aUid. Ko. 25

U.a .J .. thy' .J~l \I!T1\Cut 'fitr ~)Wm' oC _P9l1.cable axoia.. C~ " .'c&~'lV

oorat.rol1w try req"lat1ona pt'ClM)••~ and enfOl'O-.i ~ tM auw.au ot AlC:D'lol. ~r..oco#

and 'ir-~ (Att), Dlput:Mnt of ~M fr.Mtae,. OO.,azn1aO xllQUUUGIU Unl .....
ct.llll~ in Title %1, ~ 0' l"VCI.ral Ja9uuUDlaa.
Ttl. a J1l"Ol1uoe 11 lltltAc! 'n the '.rDCA lnvatory DC chaatoal Jl.lbtuno•••

lrotllCt Genuin., AQainlt pbY1lLcal dUMl9-. Detaa"ad O~ ou~.lcs. _cor.,_ i. prefacl'e4. Ift,J.... tCW&q••hould b4I iD •

H"A .pprOYM f1.lllWUDle J.lquld .tOS'AO. ~ or eabic.c. All 194\1tioR IOYI'ee. .nould be .')'WIM~. '.oaihq .h.o"ld t.
pcob1blte4 in .toraq••r.... 11-e~1'.se.l 1n.c.aUaClona ."0"14 .. aD acoon..oe wlth AZUol. 101 ~f t~ ... tloew.l 11.cn....l~
~.. KrPA JO, l'lAl1iU01. 4knd eQdDuClb18 Liquida COO., ahaul. b. fOUVWM foe all .CQ~• .,. ~. ".1\41.1,... 'l"9qu••~ aar.tu.1l-aJu,. !n.t.,.."1on. .hCNld ~ Clone. Auto...C.1c: .pr.tnk1a~ .pc..••hould ~ p.rDY1d~. l_al_U (1"0. meldS.era .. ah.aa1ael.
c:apaAal. ot apoata"aou. " .. tinq. N~u1&.1. ~.*O~l... wtth &Jr or 1101.1.111:. to l1b4&'ac. h.." 19n1t.lan .0""." aM aQl••&.,•••
Cona".1 t lOCI 1 fir. Goa•• tot" addl \1.01\411 at.osaqa lDfanution.

When conc.nt. are ~&no tr.n.'.rr'ed. tna ..lAl110 OODu1nu ..uet ba bott~ to the reo.iyS.. oGftuinu &J\d ...Yft••d ~ avai"
.tetJ..o 41.o~~... "Q.".r ,.•• pc••~~ co ~,. J\eplaoa cloe",••ecunl1y aftar .acn ~niDO.

X..,. ".~.,..1al ~~~ ttl dnaa' U _",1•••~••c 'UD and ."'... ho- h.a1:. ~. ol.a-a-. ~l"UY" !nt.ar'~l prea.u",. Ny
~. , ......"t. It.., Q1Q8U~. DQ too pxn."c. leax~••

cotn:aJ".r bl,ardoUI wh.n Ul9tY. ~Unc. ..pt.tec1 conu1".C'. r.t.atll rl.14w prod~ (V.pol' An4 llqalc&J ••11 pJ.oAaac!oa.
4.'.J'UwlCl an th1. KeDS IIUlt c:.. ob••r.,8d.

ChtlrIOIfI ror unutaetuc 1n9_ proc•••1nq, rapac••,l",. Of 1ndWltrl'1 U'.. Wot cor hou••hold u•••
~."..~lO" .....L.-4 ...... tn ,. '~"A1.~ wi~~ ftcrln'Y oC &l\Y IUncI. hOl0Y'l" .twuld UI. eht• .1a,orMt.~on cmlr ...
• uppl_.~ to ottNr lntor_Clon g.Ul...... by tb.. and .v.~ OD"""", ,...a....nd/ol: .... iDd.~n...U•••t.l"NftAtlGft' at
eu It.d!l uy .... 00-1'1•••no.. o( iAtO....~io.. {~.11 lourc.a to ••aure pc~c 'I•• ul UN. Nt.ar11Ll. ADG U1. "".'T -..4

.".4klth of ..ploy....
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