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PREFACE 

The purpose of this thesis was to implement a graphical tool to model and analyze 

operating system deadlocks using Process-Resource graphs. The topics covered as 

background and context for the implementation in this work consist of introductions to: 

(1) operating system deadlocks, including algorithms for their detection and analysis; (2) 

graph drawing algorithms, graph editors, and graph browsers; (3) the Sequent S/81 

computer system including its architecture and operating systems; ( 4) the X Window 

System including its definition, fundamental components, client/server interaction, and 

software layers; (5) the OSF/Motif toolkit including its architecture, widget set, and 

programming structure; and (6) the MotifApp application framework. 

The programming part of this work consisted of the design and implementation of 

the modeling and analysis tool referred to as Prograph including its class hierarchy, data 

structures, widget hierarchy, and interface objects. The Prograph program, coded in the 

C++ language, has about 15,000 lines of code with 3 major class hierarchies, 56 classes, 

and 394 member and non-member functions. The Prograph program enables users to 

model operating system Process-Resource graphs rapidly, analyze the graphs, and then 

view the different stages of the deadlock analysis. The deadlock representation and 

analysis tool Prograph was prototypically evaluated by the students in the graduate level 
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Operating Systems II class as well as a number of graduate students at the Computer 

Science Department of Oklahoma State University. The feedback obtained from the users 

of the Prograph program indicated that it was functional and useful for modeling and 

analyzing Process-Resource graphs. 
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CHAPTER I 

INTRODUCTION 

One of the tasks of an operating system is to manage the allocation of resources 

among cooperating and competing processes. An operating system has to manage the 

"fair" allocation of resources. During this process, unless the dynamic situation is 

properly managed, there is a possibility of things going awry and resulting in scenarios 

that can lead to deadlock and starvation. A process is said to be in a state of deadlock if it 

is waiting for a particular event that is not going to happen. One such possible event 

might be acquiring control of a certain resource. 

An operating system designer needs to consider these aspects, among other things, 

when building an operating system. A method by which this can be achieved is to build a 

model of the system before it is actually constructed, and analyze the model for 

deadlocks. Also, even after the system is constructed, the designer might want to analyze 

the system dynamically for the presence of deadlocks. One of the means to achieve this is 

to take occasional snapshots of the state of the running operating system, and analyze the 

state in order to determine the behavior of the system from the point of view of 

deadlocks. 

Analyzing a system's behavior requires the use of an analysis tool. The tool can 

construct models of the system states and has the capability to present the states 
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graphically for convenient analysis. In the educational field, such a tool can be useful in 

helping grasp the concept of deadlocks, as well as their detection and recovery from 

deadlocks. 

The objective of this thesis was to develop a graphical tool to aid in the study and 

analysis of operating system deadlocks through capturing and representing the associated 

resource graphs. The tool was implemented using the Motif Toolkit on a Sequent S/81 

computer running the DYNIX/ptx operating system. Chapter II of this thesis provides a 

review of the literature on modeling process-resource graphs and analyzing them for 

deadlocks. Chapter III provides a discussion on the implementation platform and 

environment. Chapter IV takes a look at the software architecture and detailed design of 

the software tool that was developed as part of this thesis. The testing and evaluation of 

the software tool developed are discussed in Chapter V. This thesis ends with Chapter VI 

that provides a summary, the conclusions drawn from the study, and some suggestions for 

future work. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Operating System Deadlocks 

According to Isloor and Marsland [Isloor and Marsland 80], deadlocks arise when 

members of a group of processes which hold resources are blocked indefinitely from 

access to resources held by other processes within the same group of processes. When no 

member of the group will relinquish control over its resources until after it has completed 

its current resource acquisition, deadlock is inevitable and can be broken only by the 

involvement of some external agent. 

A set of processes becomes deadlocked essentially as a consequence of exclusive 

access and circular wait. The simplest illustration of these conditions involves only two 

processes, each requesting exclusive access to the resource held by the other. The result is 

a circular wait which cannot be broken until one of the processes releases its resources or 

cancels its request. 

2.1.1 Conditions fur Deadlock 

Coffman et al. showed that four conditions must hold for a deadlock to exist 

[Coffman et al. 71]. 

1. Mutual Exclusion: Each resource is either currently assigned to exactly one process or 
is available. 

2. Hold and Wait: Processes currently holding resources granted earlier can request new 
resources. 
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3. No Preemption: Resources previously granted cannot be forcibly taken away from a 
process; they must be explicitly released by the process holding them. 

4. Circular Wait: There must be a circular chain of two or more processes, each of which 
is waiting for a resource held by the next member of the chain. 

2 .1.2 Deadlock Modelin~ 

Holt showed how these four conditions can be modeled using directed graphs 

[Holt 72]. The graphs have two kinds of nodes: processes, shown as circles, and 

resources, shown as squares. An arc from a resource node (square) to a process node 

(circle) means that the resource previously has been requested by, has been granted to, 

and is currently being held by that process. An arc from a process to a resource means 

that the process is currently blocked waiting for that resource. Figure 1 illustrates an 

example. 

Resource R1 

0 0 

Process P1 

Resource R2 Resource R3 

0 

0 

Process P2 

0 

0 

Figure 1. Representing Process-Resource states graphically 
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2.1.3 Deadlock Detection and Recovery 

Since this thesis deals with detecting deadlocks using resource graphs, this section 

takes a look at the different mechanisms available by which deadlocks can be detected, 

and how deadlock situations can be removed or recovered from. 

2.1.3.1 Detection with~ Resource Qf&cll ~ 

In the case of a system in which only one resource of each type exists, deadlocks 

can be detected by testing for the existence of cycles in the corresponding resource graph. 

If the graph contains one or more cycles, deadlock exists. Any process that is part of a 

cycle is deadlocked. If no cycles exist, the system is not deadlocked. Tanenbaum gives a 

simple algorithm [Tanenbaum 92] that inspects a graph and terminates either when it has 

found a cycle or when it has shown that none exists. It uses one data structure called L for 

a list of nodes. To avoid repeated visiting of the nodes, arcs are marked to indicate that 

they have already been inspected. The algorithm is given below. 

1. For each node N in the graph, perform the following 5 steps with N as the starting 
node. 

2. Initialize L to the empty list and designate all the arcs as unmarked. 

3. Add the current node to the end of L and check to see if the node now appears in L 
two times. If it does, the graph contains a cycle (listed in L) and the algorithm 
terminates. 

4. From the given node, see it there are any unmarked outgoing arcs. If so, go to Step 5; 
if not, go to Step 6. 

5. Pick an unmarked outgoing arc at random and mark it. Then follow it to the new 
current node and go to Step 3. 

6. We have now reached the end of this path. Go back to the previous node, that is, the 
node that was current just before this one, make that one as the current node, and go 

·-~~-----~-··- -~----
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to Step 3. If this node is the initial node, the graph does not contain any cycles and the 
algorithm terminates. 

In the worst case this algorithm has complexity O(n!). 

2.1.3 .2 Detection with Multiple Resources of Eacl1 ~ 

Habermann describes an algorithm [Habermann 69] which handles the case when 

multiple copies of some of the resources exist. This is a matrix-based algorithm for 

detecting deadlocks among n processes P 1 through P n· Let the number of resource classes 

or types be m, with Ei resources of class i, 1 <= i <= m. E is the existing resource vector. 

It gives the total number of instances of each resource type. 

At any given time, some of the resources are assigned and are not available. Let A 

be the available resource vector, with Ai giving the number of instances of resource i, 1 

<= i <= m, that are currently available (i.e., unassigned). There are two additional arrays: 

C, the current allocation matrix, and R, the current request matrix. The ith row of C 

indicates how many instances of each resource class is currently being held by process Pi. 

Thus Cij is the number of instances of resource j that are held by process i. Similarly, R;j 

is the number of instances of resource j that process Pi wants. 

An important invariant holds for these four arrays. Every resource is either 

allocated or is available, i.e., if we add up all the instances of resource j that have been 

allocated, and add to it all the instances of the same resource that are available, the result 

is the number of instances of that resource class that exist in the system. 

The deadlock detection algorithm [Habermann 69] is based on comparing vectors. 

Let us first define the relation A <= B on two vectors A and B to mean that each 

L 
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component of A is less than or equal to the corresponding element of B. Thus, A<= B 

holds if and only if Ai <= Bi for 0 <= i <= m. 

Each process is initially said to be unmarked. As the algorithm progresses, 

processes will be marked, indicating that they are able to complete and are thus not 

deadlocked. When the algorithm terminates, the unmarked processes are known to be 

deadlocked. 

The deadlock detection algorithm [Habermann 69] can now be given as follows. 

1. Look for an unmarked process Pi, for which the ith row ofR is less than A. 

2. If such a process if found, add the ith row of C to A, mark the process, and go back to 
Step 1. 

3. If no such process exists, the algorithm terminates. 

When the algorithm finishes, all the unmarked processes, if any, are deadlocked. 

The complexity of the deadlock detection algorithm is O(n2
). 

2.2 Drawing Directed Graphs 

2.2.1 .GraJili Drawin~ Al~orithms 

It is not easy to conceptually grasp the overall structure of a digraph unless 

vertices are laid out in some regular form (e.g., clustered layout) and unless edges are 

drawn in such a form that paths can be readily traced visually. A number of researchers 

have tackled this problem [Warfield 77] [Sugiyama et al. 81] [Tamassia et al. 88] 

[Gansner et al. 93] and have come up with ways for the aesthetic display of graphs. Some 

of the aesthetic principles involved in displaying a graph are: 
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1. Expose the hierarchical structure in the graph. If possible, edges should be aimed in 
the same general direction. This helps in finding directed paths and highlights source 
and sink nodes. 

2. Try to avoid visual anomalies that do not convey information about the underlying 
graph. Some examples include edge crossings and sharp bends. 

3. As far as possible, an attempt should be made to keep edges short. This makes it 
easier to find related nodes. 

Sugiyama and his colleagues [Sugiyama et al. 81] proposed an algorithm for 

drawing directed graphs. The algorithm has three basic steps as mentioned below. 

1. Preprocessing: The first step in the algorithm is to topologically sort the graph with a 
view towards assigning levels to all nodes. Cycles are eliminated in this step by 
temporarily reversing edges that cause cycles. To guarantee that each edge spans only 
one level, dummy nodes are introduced at all intermediate levels for long edges 
(edges that cross several levels). 

2. Barycentric ordering: This step attempts to reduces the edge crossings between pairs 
of nodes on each level. This involves rearranging the nodes at each level. The 
ordering of the nodes in the top level is fixed. The position of nodes in the next level 
is determined based upon its barycentre which is the average position of the 
successors. This downward pass is continued and then a similar upward pass is done. 
This iteration is done a number of times, until no more improvement in the edge 
crossings is obtained. 

3. Fine tuning: This step is responsible for fixing the final x and y coordinates for each 
node. The y coordinate of each node is the product of the vertical spacing factor and 
the level number of each node. Determining the x coordinates involves a number of 
downward-upward iterations. The x coordinates of the nodes in the top level are set 
initially, so that they are spread apart by the horizontal spacing factor. Then the nodes 
in the next level are placed based upon the following order. Dummy nodes are placed 
first followed by nodes with the largest number of incoming and outgoing edges. The 
x coordinate of each node is calculated as the average position of its predecessors and 
successors. Each node is placed as close as possible to its desired position without 
shifting previously placed nodes or changing the relative order of the nodes. Since a 
dummy node will always have exactly one predecessor and successor, it will always 
request to be placed at the same x coordinate as its predecessor or successor. Dummy 
nodes are positioned first to align them and this straightens 'long' edges. Finally the 
original directions of edges, which were temporarily reversed to accommodate cycles, 
are restored. 

____ L 
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A faster algorithm for drawing directed graphs was proposed by Gansner et al. 

[Gansner et al. 93]. They describe a four-pass algorithm for drawing directed graphs. The 

first pass finds an optimal rank assignment using a network simplex algorithm. The 

second pass sets the vertex order within ranks by an iterative heuristic algorithm 

incorporating a novel weight function and local transpositions to reduce crossings. The 

third pass finds optimal coordinates for nodes by constructing and ranking an auxiliary 

graph. The fourth pass makes splines to draw the edges. 

2.2.2 Qnu;ili Editors and Qnu;ili Browsers 

A number of papers having been published detailing various editors for displaying 

and editing graphs. Paulisch and Tichy [Paulisch and Tichy 90] discuss the 

implementation of EDGE: an extensible editor kernel for the direct and visual 

manipulation of graphs. According to the authors, EDGE was designed to solve a number 

of potential problems faced by any graph editor. Two such problems are mentioned 

below. 

1. Automatic Graph Layout: They discuss how their implementation can integrate 
application-specific layout requirements, individual preferences, and layout stability 
with automatic layout algorithms. 

2. Graph Abstraction: How can users deal with large graphs containing hundreds of 
nodes and edges, and thousands of edge crossings? EDGE solves this by using 
subgraph abstractions and a clustering technique developed by the authors called edge 
concentration. 

Vlissides and Linton [Vlissides and Linton 90] discuss a framework called 

Unidraw for creating graphical editors in various domains such as technical and artistic 

drawing, music composition, and circuit design. The Unidraw architecture simplifies the 

construction of these editors by providing programming abstractions that are common 

1 
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across domains. Other research efforts on directed graph editors include the work done by 

Gansner et al. [Gansner et al. 88] and by Rowe et al. [Rowe et al. 87]. 

l 
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CHAPTER III 

IMPLEMENTATION ISSUES 

3.1 Implementation Platform 

3 .1.1 Seqyent Syrometzy .sLll 

The Sequent Symmetry S/81, Sequent Computer System, Inc. is a mainframe 

class computer system with a multiprocessor architecture. The multiprocessing and 

shared memory architecture consists of the following elements [Sequent 90]: 

• A parallel architecture that utilizes multiple industry-standard microprocessors. 

• Either the DYNIX v3.0 operating system or the DYNIX/ptx operating system, both 

UNIX system ports. 

• A standard set of network interfaces such as Ethernet, SCSI, VMEbus, and 

MULTIBUS. 

The Sequent Symmetry S/81 's operating system has been engineered to 

incorporate features that support the underlying parallel architecture. In addition to this, 

software that has been written for the UNIX operating system can run on the Sequent 

Symmetry S/81 with little or no modification. In the case of multi-user applications, the 

operating system of the Sequent Symmetry S/81 automatically distributes the tasks to 

multiple processors in an attempt to reduce response time and increase system throughput 

[Sequent 90]. 

11 
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The DYNIX v3.0 operating system supports the two major command sets of 

UNIX, namely, the Berkeley UNIX and UNIX System V. On the other hand, the 

DYNIX/ptx operating system is compatible with AT&T System V v3.2 only [Sequent 

90]. 

3.2 Implementation Environment 

3 .2.1 X Window System 

The graphical user interface (GUI) for the deadlock analysis tool developed for 

this research was implemented on top of the X Window System software environment. X 

supports a device independent graphics system that permits software developers to 

engineer portable GUis [Young 90]. The only requirement for complete portability is that 

the X protocol should be supported by the hardware platforms to which the software is to 

be ported. The interaction between a client and server is defined by the X protocol. The X 

Window System follows a client-server architecture. An application acts as a client and 

the responsibility for all input and output devices is with the server [Young 90]. 

An application interacts with the X Window System by means of the X library. 

One of the libraries, which provide access to the device independent graphics of X and 

interface routines through C language functions, is Xlib [Johnson 90] [Barkakati 91] 

[Keller 90]. Since Xlib is very low level, programmers often have to deal with a lot of 

complexity in writing programs using Xlib. Hence programs are written at a layer above 

the Xlib library. These are the Toolkit libraries. Toolkits are easier to use than Xlib for I 

I 

I developing GUis. The standard toolkit for the X Window System is the X Toolkit. It 

. I 
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consists of two modules: Xt Intrinsics, which is the layer that directly interacts with the X 

Window System, and the widgets, which are a set of user interface building blocks 

[Johnson 90]. Many popular widget sets are supported by Xt Intrinsics. The Motif widget 

set by the Open Software Foundation (OSF) is one of the more popular widget sets. The 

Motif widget set supplies GUI components such as windows, menus, buttons, scroll bars, 

icons, and bitmaps. The relationship among the various layers in the X Window System 

is shown in Figure 2. 

User 

Window Manager 

Client 

Motif Widgets 

Xt lntrinsics 

X Window System 

Operating System and Network 

Hardware Platform 

Figure 2. Layers in the X Window System (Source: [Barkakati 91]) 

i 
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3.2.2 OSF/MotifToolkit 

The OSF/Motif Toolkit is a set of functions and procedures that provides quick 

and easy access to the lower layers of the X Window System. The OSF/Motif Toolkit 

was designed by the Open Software Foundation (OSF) and is based on the X Toolkit 

Intrinsics (Xt). OSF/Motifprovides a number of user-interface objects known as widgets. 

These widgets are accessed and manipulated through the various functions and 

procedures provided by the OSF/Motif library. OSF/Motif is a specification rather than 

an implementation, making it entirely implementation independent [Heller 91]. 

The complete architecture of the OSF/Motif Toolkit consists of a number of 

important modules that are shown in Figure 3 [Berlage 91]. The hardware independent 

nature of the X Window System is due to the fact that it is built at the lowermost layer of 

the application hierarchy and hence applications are shielded from any system-dependent 

input/output variations. The primary window functions such as resizing, closing, moving 

and iconizing are managed by the Motif Window Manager (MWM). In achieving its 

tasks, the Motif Window Manager follows the Inter-Client Communication Conventions 

(ICCC) that enable it to manage X applications developed using different toolkits 

[Berlage 91]. The Motif Window manager is also responsible for other functions such as 

maintaining the stacking order of the overlapping windows and controlling the input 

focus to determine which application window should receive input [Berlage 91]. 

A Motif user interface can also be developed by using a specification language 

called the User Interface Language (UIL). Once the specifications of the required user 

interface are written, the UIL compiler translates the presentation details and loads it into 

__l 



15 

memory at run time. Using the UIL language approach is just another alternative to 

designing a Motif user interface, in other words it is not necessary for a Motif application 

to use it [Berlage 91] . 

.---
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Figure 3. Architecture of OSF /Motif (Source: [Berlage 91]) 
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The most important part of the OSF/Motif architecture, as shown in Figure 3, is 

the Motif Toolkit which provides the set of user interface widgets. The common 

user-interface objects such as push buttons, menus, labels, dialog boxes, scroll bars, and 

text entry or display areas are provided by the Motif Toolkit. In addition, there are 

widgets, known as manager widgets, that perform the function of controlling the layout of 

the other user interface widgets. A widget operates, to a large extent, independently of the 

application. A widget's actions are determined by the events dispatched to it by the Xt 

Intrinsics. A push button, for example, knows how to draw itself, how to highlight itself, 

and how to respond to a mouse click (or any other user-defined action) by executing an 

application procedure [Nye 90] [Heller 91]. 

A class inheritance hierarchy of the Motif widget set is shown in Figure 4. In that 

inheritance hierarchy, some of the classes are defined by the Xt Intrinsics. These include 

some of the base classes. Their behavior can be inherited by widgets that are derived 

directly from the base classes defined in Xt Intrinsics. The Xt Intrinsics classes also 

provide a common behavior for all widget classes based upon them. 

The Core widget class of Xt Intrinsics is the root of the widget class hierarchy. It 

is the super-class for all widget classes derived from it, and it provides a set of common 

resources such as size and position which are inherited by all the other classes. 

The highest level Motif widget class is the Primitive widget class. It is derived 

from the Core widget class. Besides inheriting some of its resources from the Core widget 

class, it also adds some of its own resources such as control of the three-dimensional 

shadows. The Label widget class is derived from the Primitive widget class. It inherits 
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some resources from the Primitive widget class and adds some features of its own. These 

include the ability to display a pixmap or a string of text, as well as mechanisms for 

positioning of a string and displaying the string in a variety of fonts. The sub-classes of 

the Label widget class are the Push Button class, the Drawn Button class, the Toggle 

Button class, and the Cascade Button class. These classes, besides inheriting the features 

of the Label widget class, add features that are necessary to support their unique behavior. 

The Composite widget class is again an Xt Intrinsics widget class that is 

sub-classed from the Core widget class. It adds features that provide it with the capability 

to manage its geometry. The Constraint widget class is also an Xt Intrinsics widget class 

that is derived from the Composite widget class. It supports the facility to manage the 

position and size of the widget. The Manger widget class is provided by Motif and is 

sub-classed from the Constraint widget class. The Manager widget class is the super-class 

for all the widgets that manage the geometry of their children such as the Row Column 

widget class, the Drawing Area widget class, the Scale widget class and the Bulletin 

Board widget class [Nye 90]. 

The Shell widget class is yet another Xt Intrinsics widget class, which is a 

sub-class of the Composite widget class. Shell widgets provide an interface between the 

window manager and other widgets. The responsibilities of the Shell widget class include 

handling the window manager protocol for the application and setting the resources 

required by the window manager. Since the function of interacting with the window 

manager is very complex, a number of different Shell widget classes are provided. The 

Override Shell widget class is derived from the Shell widget class and provides a 

J. 
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temporary window that completely bypasses interaction with the window manager. The 

Menu Shell widget class is derived from the Override widget class and was introduced by 

Motif to handle the special interface requirements of the OSF/Motif architecture. The 

WMShell widget class is sub-classed from the Shell widget class. It is a set of simple 

wire bed-frame widgets that have no special attributes. The Vendor Shell widget class, 

which is sub-classed from the WMShell widget class, provided features that vendors of 

window managers can use to define their own attributes that are specific to their own 

window managers. The Transient Shell widget class is used by Xt Intrinsics to create 

dialog boxes. The Transient Shell widgets may not be iconified separately by the window 

manager. They behave in such a way that if an application is iconified, all the child 

widgets of the application that belong to the Transient Shell widget class are 

automatically iconified by the window manager. The Dialog Shell widget class is 

sub-classed from the Transient Shell widget class and was created by OSF /Motif. The 

functions of the TopLevel Shell widget class and the Application Shell widget class 

provide various applications with their top-level windows [Nye 90] [Young 90] [Heller 

91]. 

3.2.3 MotifAtlP Application Framework 

There are two main approaches to reducing the amount of code a programmer 

must write to complete an application.The first and the traditional approach is providing 

collections of functions or classes that implement common components needed by many 

programs. The Motif System is an example of a toolkit based upon this approach. When 

writing programs in Motif, programmers can choose from a collection of off-the-shelf 
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user interface components. Without the toolkit, programmers would have to develop 

buttons, scrollbars, and so on for each new application. The Toolkit approach is very 

effective and is a widely-used form of reusing software. 

Another approach to code reduction in writing programs is to concentrate less on 

the individual components needed by various applications, and instead focus on the 

structure and control flow within a particular type of application. In this approach the 

programmer does not need to define the architecture of each new application anew. This 

approach is used by application frameworks and provides a way to capture the 

organizational characteristics common to many applications. [Young 92]. 

Similar to a toolkit, an application framework is a library that provides various 

components needed by a number of programs. Moreover, an application framework also 

defines most of the connections between these components, and also defines the overall 

control structure of applications built on the framework. Most application frameworks 

provide an Application class, which captures the essential behavior of all applications 

built from the framework. Programmers write new applications by deriving a new 

subclass of Application that handles application-specific details. 

When using an application framework, there is the concept of a genenc 

application. The generic application is the simplest possible program that can be written 

using the framework, and can be usually written by creating an instance of the 

Application class, or by declaring and instantiating a trivial subclass. The generic 

application, though not serving any useful purpose, follows all rules and conventions 

supported by the framework. The important point to note is that the generic application 
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defines the flow of control used by all similar applications. The application framework 

has the responsibility to connect the various components of a program, thus relieving the 

programmer of this responsibility. In creating a new application, only those parts of the 

program that are unique need to be implemented. The application-specific behavior of a 

new program can be provided by adding a few new components, defining a few methods, 

or by deriving new classes from those provided by the framework. So, in other words, 

writing an application using a framework is similar to deriving a new class from an 

existing class. In both instances, a new entity is created by specifying only how the new 

entity is different from the existing one [Young 92]. 

The MotifApp framework, as described by Young [Young 92], describes a simple 

application framework that encapsulates a structure that can be useful to applications 

based on X and Motif. This framework captures many characteristics of typical Motif 

applications. The MotifApp framework does not capture all the elements common to all 

Motif applications. Instead, it implements a basic architecture which can be enhanced and 

expanded with additional classes to form a more powerful framework, if desired. 
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CHAPTER IV 

SOFTWARE ARCI-llTECTURE AND DETAILED DESIGN 

In this chapter, the specification, architecture, and user interface of the software 

tool Prograph is described. The evaluation of the Prograph deadlock representation and 

analysis tool is discussed in the next chapter. 

4.1 Description 

The deadlock analysis tool Prograph enables the user to draw a Process-Resource 

graph using the tool, and analyze the graph for the presence of deadlocks, safe states, 

unsafe states, etc. A Process-Resource graph consists of a set of process nodes, a set of 

resource nodes, and the allocation/request/producer edges joining them. The Prograph 

software tool provides support for drawing these graph entities. The tool's display is 

divided into two main parts: a scrollable drawing area, which is used to draw the graph, 

and a palette of buttons depicting the various graph entities together with the various 

actions that can be applied to those entities. 

A specific graph node can be drawn by selecting the appropriate button from the 

palette and clicking the mouse on the drawing area. Edges are drawn by selecting the 

Edge button from the palette and going to the drawing area and connecting a process 

node to a resource node, or vice versa. The connection is drawn by clicking on the node 

22 
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from which the edge is to be started and terminating the edge by clicking again on the 

destination node. The tool also allows a user to move a node about the drawing area. 

The palette also provides various buttons for editing a graph. This includes 

deleting a graph entity, editing the specifications of a graph entity, etc. The specifications 

of a graph entity include its name, the number of resources (if it is a resource node), etc. 

The palette also contains an undo option which enables the user to undo the previously 

executed operation. 

Once a graph is drawn on the screen, the Prograph software tool can analyze the 

graph for the presence of deadlocks, safe states, unsafe states, etc. Other features of the 

tool include saving a graph and other standard file manipulation operations. 

4.2 User Interface 

The user interface of Prograph is shown in Figure 5. The user interface is divided 

into three main regions. 

• Region 1 of Prograph's interface is the canvas on which a user draws a model. The 

drawing area is a scrollable viewport into a larger virtual drawing space. The scrollbars 

can be used to pan the other parts of the drawing area that are not visible on the 

physical drawing surface. The drawing area also has a title bar at the top displaying the 

current filename . 
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• Region 2 of Prograph's interface is the Palette containing a number of buttons to set 

the operating mode of Prograph and also to perform various actions. The buttons for 

mode setting are "Pointer", "Process", "Serial Resource", "Consumable Resource", and 

"Edge". The other items in the Palette for performing various actions are: "Edit 

Specification", "Delete", and "Undo". There are a number of additional buttons for the 

purposes of analysis. These include: "Analyze", "Analyze Process", "Show Results", 

"Previous State", and "Next State". 

• Region 3 of Prograph's interface is the menu bar. The menu bar has only one item: the 

"File" Menu. The "File" menu contains the menu items - "Open", "Close", "Save", 

"SaveAs", and "Exit". 

4.3 Software Architecture 

Prograph is designed based upon the model-view-controller paradigm [Barkakati 

93]. In this paradigm, the users of a program interact with the various controllers. The 

controllers in tum send messages to the model. The model is the central part of the 

program. It usually represents the main data structures and the associated code that enable 

the program to deal with its problem domain. Any changes to the model are displayed in 

the multiple views. A generic architecture of a model-view-controller based program is 

shown in Figure 6. 

The software architecture of Prograph is based upon the model-view-controller 

paradigm. Prograph was designed using an object-oriented approach and was 

implemented in the C++ language [Stroustrup 91]. 
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Figure 6. Model-View-Controller architecture (Source [Barkakati 93]) 

As depicted in Figure 7, Pro graph consists of the following architectural elements and 

assumptions. 

1. The view and the controller were combined together as a single module in Prograph. 
This layer deals with handling all mouse and keyboard input and hiding any system 
dependencies (X-Windows, MS-Windows, etc.). This layer also deals with screen 
graphics in a system-independent fashion. 

2. An additional layer was placed between the controller and the model. This layer 
consists of a set of Command objects. Command objects encapsulate knowledge of 
dealing with certain sequences of user actions. In other words, they execute actions 
(commands) requested by the user (Moving a graph entity, drawing an edge, etc.). 

3. The model of Prograph is a module that handles all aspects of internally storing and 
manipulating a directed graph. 

4. The model layer of Prograph internally consists of a set of shape objects 
corresponding to various graph entities. The various shape objects embody the 
representation and behavior of the various items found in a directed graph. 

5. A module exists to analyze a graph for deadlocks, safe/unsafe states, etc. 
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6. A set of dialog classes to represent the various kinds of dialogs required by an 
application. 

Display Screen Mouse/Keyboard 

Prograph View-Controller 

Update Displ ay 

Prograph Model 

• • • 

Figure 7. Software Architecture ofPrograph 

All the major class names in Pro graph are prefixed with the letter 'T'. This was done to 

differentiate the classes in Prograph from the classes in the application framework that 

was used to build Prograph. The particular choice of the letter 'T' does not have any 

significance. The following six subsections describe six main classes comprising 

Pro graph. 

4.3.1 Prograph View~ 

The controller and the view modules in the model-view-controller design are 

packaged together into one class called TPrograph View. This class serves as a wrapper 

around the system-dependent input/output library calls so as to make the library portable 
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across implementations. As seen in the architecture (Figure 7), events arriving at the 

TPrograph View object (the Prograph View-Controller) are redirected to the Command 

Objects, which in turn cause changes to the Prograph model. The Prograph model reflects 

all changes to the TPrograph View object. 

4.3.2 ~Classes 

The Shape classes handle the display and behavior of the various graph entities 

(See Figure 8 for an illustration of the Shape class hierarchy). Basically, a 

Process-Resource graph consists of three different types of graph objects: Process objects, 

Resource objects, and Edge objects. All these shapes are compound objects, which are in 

turn composed of simpler shapes. A Process shape is composed of a Circle object and a 

Text object. The Text object displays the name of the process, and is placed at the center 

of the Circle. A Resource shape is composed of a Square shape, and three Text objects 

that represent the type of the Resource, the name of the Resource, and the number of units 

of the Resource, respectively. An Edge object is composed of a Polyline and an 

Arrowhead. 

The compound shapes (i.e., Process, Resource, and Edge) are classified as Graph 

shapes since they are shapes occurring as basic graph entities. The Circle, Square, 

Polyline, and Arrow shapes are classified as Pure shapes. Both Graph shapes and Pure 

shapes are obviously in the general category of shapes. Thus we have an inheritance 

hierarchy (Figure 8) with the top class being named as TShape having sub-classes 

TGraphShape and TPureShape. TGraphShape has the sub-classes TProcess, TResource, 
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and TEdge, while TPureShape has the sub-classes TCircle, TSquare, TPolyline, and 

TArrow. The TText object is classified as a subclass of TShape. 

Figure 8. Shape class hierarchy 

When an object in the graph is selected, it is distinguished from other objects by 

the presence of a number of solid squares placed at the boundaries of the object. These set 

of squares are called the Hilite object and they are represented by the THilite class which 

is classified as a subclass of TShape. 

4.3.3 Command Classes 

The Command objects are responsible for responding to the mouse and keyboard 

input from the user, and manipulating the shape objects accordingly. From the 

specifications, a number of commands can be readily identified, they include creating a 

new process or resource, moving an object (process or resource), drawing an edge 

connecting a process and a resource, deleting an object, etc. Each of these commands 

consists of a series of mouse events having a specific start event and a set of end events . 
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Corresponding to each command, we have a Command object. Thus we have the 

corresponding set of classes TMoveCommand, TNewProcessCommand, 

TNewResourceCommand, TEdgeCommand, TDeleteCommand, etc. (Figure 9). 

TMoveCommand 

Figure 9. Command class hierarchy 

A Command object is created usually on a specific mouse click or a keyboard 

press (in the case of the delete command). The TPrograph View object (responsible for 

input/output) decides which Command object to create depending upon the mode the 

program is in. Once a Command object is created, all further input events are sent to that 

Command object. The Command object performs the required user action. A Command 

object terminates upon a specific event (e.g., a mouse-up event in the case where the user 

is moving a shape object). Internally, each Command object behaves as a finite state 

automaton. Each user input event (mouse-down, mouse-up, mouse-move, key-press, etc.) 
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results in the Command object's internal automaton making a transition to a different 

state. A Command object is terminated when a series of user input events results in a final 

state of the automaton. 

The Command class inheritance hierarchy (as depicted in Figure 9) was designed 

to abstract properties common to all command classes. The class TCommand is the root 

class of the hierarchy. Its direct descendants are TMoveCommand, TDeleteCommand, 

and TEdgeCommand. When creating a new node, once the node is created and placed in 

the viewing area, every successive user event is similar to that encountered when moving 

an object (a user can create a new process or resource by clicking on the viewing area, 

and in the same sequence, before releasing the mouse, the user can move the 

newly-created object to any position on the screen). So the TNewNodeCommand class 

was made a sub-class of the TMoveCommand class, and the TN ewProcessCommand 

class along with the TNewResourceCommand class were made sub-classes of the 

TNewNodeCommand class. 

4.3.4 Pro~raph Model~ 

In Prograph terminology, any Process-Resource graph is internally represented as 

what is called a Prograph Model. So, in effect a Prograph model is a set of process 

objects, resource objects, and edge objects. A Prograph model created by a user can be 

saved in a file, a previously saved model can be read from a file, and of course a Pro graph 

model can be analyzed. 
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4.3.5 Pro2raph Analyzer~ 

The analysis functionality of Prograph is encapsulated in the TPrographAnalyzer 

object. The input to the analysis phase is a Prograph model. The output is a list of 

Pro graph models which is the set of reduction sequences of the input model (each state in 

the reduction sequence is represented by a separate model in the list.). If the input 

Prograph model is not reducible, the resulting list will contain just the input model. 

Besides the reduction sequence, the analyzer also generates a report of the results of the 

analysis. 

4.3.6 Dialo~ Classes 

The dialog objects are wrappers for the various types of dialogs required for 

Prograph. A number of common elements were observed when constructing the various 

dialog classes, so most of these elements were abstracted and formed into a hierarchy 

(Figure 1 0). 

The TDialog class is at the top of the dialog inheritance hierarchy. Two major 

subcategories of dialogs were identified: Predefined Motif dialogs and user-defined 

Custom dialogs. This resulted in two sub-classes of the TDialog class: TMotifDialog and 

TCustomDialog. The dialogs already available in Motif were made as individual classes, 

and were made sub-classes of the TMotifDialog class: TGetFileDialog, TQuestionDialog, 

and TGeneralPurposeDialog. The various custom dialogs which were created, were made 

sub-classes of TCustomDialog. These include the classes T AnalysisResultsDialog and 

the TProcessTextDialog. 

... . . .l 
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TGeneraiPurposeDialog 

Figure 10. Dialog class hierarchy 

The TEditProcessAndEdgeSpecDialog and TEditResourceSpecDialog were 

created as sub-classes ofTEditSpecDialog which in turn is a subclass ofTCustomDialog. 

4.4 Design of the Prograph View Class 

As described earlier, the TPrograph View class serves as the input/output layer of 

Prograph. This class provides a system-independent interface for input and output. This 

class gets all the mouse and keyboard events and presents them to the other modules in a 

multi platform portable format. The TPrograph View class also provides a graphical 

drawing library that is called by the model layer. In the current X-Window 

implementation of Prograph, the graphical library hides various X Windows dependent 

information. The TPrograph View object is also responsible for creating the various 
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Command objects in response to various mouse and keyboard events. After each 

command finishes executing, they are immediately deleted. 

4.4.1 Invokin~ Command objects 

The decision as to when to create a Command object and which Command object 

to create, is made by the TPrograph View object depending upon the mode the user is in. 

There are five different modes: "Pointer" mode, "Edge" mode, "Process" mode, "Serial 

Resource" mode, and "Consumable Resource" mode. In the "Pointer" mode, the user can 

select objects on the drawing area and move them around. In the "Process" mode, 

clicking on the drawing area results in the creation of a new process. In the "Serial 

Resource" mode or the "Consumable Resource" mode, the user can create a serial 

resource or a consumable resource, respectively. The "Edge" mode enables the user to 

draw an edge connecting either a process to a resource or vice versa. The five mode 

buttons (counting the resource modes as two) are handled by a separate view object called 

the TPalette View object. At any given time, Prograph will be in any one of the modes. 

The current mode will be shown highlighted. Whenever the user changes any of the 

modes, the TPalette View object sends a message to the TPrograph View object. The 

TPrograph View object has an internal variable storing the mode which is currently active. 

When Prograph start up, the default mode is the "Pointer" mode. 

Consider the case where the program is in the "Pointer" mode. On a mouse click, 

the TPrograph View object first tries to find out if the mouse has hit on any of the shapes 

on the screen. For this a message is sent to the TPrographModel object requesting a hit 

check. If the TPrographModel object returns with no hit, the mouse click is ignored and 

l 
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the TPrograph View object continues to wait for another click. If a hit has occurred on a 

shape, then it means that the user wants either to select the shape or move the shape. Both 

operations are handled by the TMoveCommand object. So a new TMoveCommand 

object is created and the mouse click (down) event is sent to the TMoveCommand object. 

All further mouse events are sent to the new Command object. In fact, once a new 

Command object is created, all mouse and keyboard events are sent to it. A Command 

object, after it has dealt with all the required mouse events, will specifically inform the 

TPrograph View object (by a return value) whether it has finished its processing. The 

TMoveCommand object finishes its processing on a mouse-up event. Note that 

mouse-move events could have occurred in between the starting mouse-down and the 

mouse-up, but the TPrograph View object never has to bother about this, it simply has to 

route them to the Command object until the Command object indicates it does not want 

any more mouse events. After the mouse-up event, the TMoveCommand object sends an 

event complete message (signifying termination of the user action) back to the 

TPrograph View object, and the Command object is destroyed. The TPrograph View 

object goes back and waits for the next mouse down and the whole process is repeated. 

This goes on till the user exits Prograph. 

To be precise the Command object is not destroyed immediately. Instead, it is 

stored separately as the previous command. This is essential to support undo, since only 

the specific Command object will have the necessary knowledge to undo what it has 

done. 
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If the user is in the "Process" mode (on a mouse-down event anywhere in the 

drawing area), a new TNewProcessCommand object is created. The 

TNewProcessCommand object will create a new process shape. The same sequence of 

steps as above is followed. In this case also, the Command object terminates on the next 

mouse-up event. Likewise, if the user is in either the "Serial Resource" mode or the 

"Consumable Resource" mode, a new TNewResourceCommand object is created. This 

will result in a new resource shape. 

As compared to the other modes, event handling in the case of the "Edge" mode is 

more complicated. A new TEdgeCommand object is created only if a mouse-down occurs 

with the mouse being within a process or a resource. As before, the TPrographView 

object has to request the TPrographModel object to check for a hit. Unlike the previous 

Command objects, a TEdgeCommand object need not terminate on a mouse-up event. 

This is because the user can draw a multi-line (also called a polyline) edge, which will 

have multiple end points. This will involve a lot of mouse clicks within the drawing area. 

However, this is the responsibility of the TEdgeCommand object and the TPrograph View 

object need not concern itself with the different possibilities. All that the TPrograph View 

object has to do, is redirect all further mouse and keyboard events to the TEdgeCommand 

object. When the user finishes drawing the edge (after the user clicks on a destination 

shape), the TEdgeCommand object will return an event complete message back to the 

TPrograph View object. 



4.4.2 Hit Testin~ a Line 

Normally, hit testing is done by the TPrographModel which sends the coordinates 

where the mouse hits the drawing area to each of the individual shapes that make up the 

graph. In the case of a process or a resource, which are depicted as a circle or a square, 

respectively, hit testing is simply done by checking whether the mouse coordinates fall 

within the inscribing rectangle of the object. This check can be done by a simple 

coordinate comparison. 

However, in the case of a line (or a polyline), this is not possible. Another 

approach to hit testing is required. The hit testing algorithm used in Prograph is by 

DiLascia [DiLascia 92]. When the user clicks on a shape, a tolerance of a couple of pixels 

on either side is given. The mouse click need only be a couple of pixels (usually 2 or 3) 

near the shape on each side. The main resource used by this algorithm is a simple 

drawable pixmap of size twice the tolerance on each side. In our present implementation, 

the algorithm uses a 5x5 pixmap. The algorithm for hit testing is as follows. 

1. Translate the line to a coordinate system with the mouse click spot as the origin. 

2. Draw the line with the new coordinate system on the pixmap with a new width 
equaling twice the number of tolerance pixels. 

3. Check if any of the pixels in the pixmap is set. If so, the mouse click has hit the 
polyline. If no pixels are set, then there is no hit. The significance of testing the 
pixmap is that, if there is a hit, part of the wider line will pass through the pixmap, 
since the pixmap can be considered to be a magnified view of the area surrounding 
the mouse click spot. Obviously, the thicker the line, the more tolerance is obtained. 
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4.5 Design of Shape Classes 

4.5.1 !Shape class 

The !Shape class is an abstract class that embodies behavior common to all 

shapes. If one examines the functionality of each shape, a couple of things immediately 

come to mind. 

1. Each shape should be able to draw and erase itself. Thus the draw function is 
implemented as a pure virtual function to be handled by the appropriate actual shape 
subclass (say the !Circle shape class). 

2. A shape should be able to determine whether a mouse click has hit on it. This is 
called the hit test. Hit testing is quite easy for rectangular shapes Gust check whether 
the mouse coordinates lie inside the shape region) and a generic hit testing member 
function is implemented in the abstract !Shape class. However, in the case of a 
!Polyline shape, checking for a hit is more complicated and hence the hit test 
function is set as a simple virtual function in case a sub-class down the inheritance 
hierarchy wishes to override the default hit test. 

3. A shape should be able to determine the extent of the area occupied by itself on the 
viewing surface. This is used by the hit test member function, as well as by the edge 
drawing command. 

4.5.2 TPureShape ~ 

The TPureShape class is an abstract sub-class of the !Shape class. The 

TPureShape class abstracts behavior generic to the "Pure Shapes": Circle, Square, 

Polyline, and Arrow. A pure shape is the defining shape of all the compound shapes 

(otherwise called Graph Shapes). For instance, the Circle is the defining shape of the 

Process shape, the Square is the defining shape of the Resource shape, and the Polyline is 

the defining shape of an Edge shape. 

A common operation in Prograph is dragging a shape on the drawing area. When 

a shape (specifically a Graph Shape) is dragged, an outline of the shape follows the 
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mouse. The outline is also referred to as the ghost of the shape. Once the outline is 

dragged and placed at a specific point, the original shape is erased from its previous 

position and placed at the new position. The outline shape for all the Graph Shapes is 

their defining Pure Shape. So, in order to support the dragging operations, all Pure Shapes 

should be able to change their line drawing styles (from solid to dash-dot-dash). To 

support this, the TPureShape class has member functions to change the line drawing 

style. The outline dragging of a shape is accomplished by the use of the XOR drawing 

mode, where the outline is successively XOR'ed to follow the mouse, thus resulting in a 

drag effect. So a mode setting member function is available in the TPureShape class. The 

mode of a Pure Shape is set depending upon whether the shape is being dragged or 

simply is being drawn in solid mode. A translate member function is also needed as part 

of the TPureShape class. The translate member function is responsible for translating the 

coordinates of the shape to follow the mouse coordinates. 

Another important operation supported by the TPureShape class is the concept of 

cloning. When an outline shape is created for dragging, it is actually a copy (clone) of the 

original Pure Shape member of the to-be-dragged Graph Shape. Cloning an outline shape 

is referred to as cloning a ghost shape. The other type of cloning is the normal cloning or 

copy of a Pure Shape. A normal clone is required when a copy of an entire graph model is 

to be generated during the analysis of a graph. The graph clone is used as one of the 

successive states in a reduction sequence. 
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4.5.3 TGraphShape ~ 

The TGraphShape class, which is a sub-class of TShape, is an abstract super-class 

of the compound shapes TProcess, TResource, and TEdge. One of the elements common 

to all graph shapes is their name. The name member of a graph shape is implemented as 

an instance of the TText object. The TGraphShape class supports member functions to set 

or retrieve a Graph Shape's name. Each type of Graph Shape is distinguished by its 

distinctive Pure Shape main components. The TProcess graph shape has the TCircle Pure 

Shape as its main component. The TResource graph shape has a TSquare Pure Shape 

main component. Likewise, the TEdge graph shape has a TPolyline Pure Shape as its 

main component. Hence the TGraphShape class has a member variable to hold the 

appropriate Pure Shape component. This member variable is called the main shape 

variable. 

Earlier it was explained that, when a Graph Shape is being dragged, it is actually a 

clone (a ghost clone) of its main component that is being dragged. At the end of the 

dragging, the Graph Shape is redrawn at the new position. This is actually accomplished 

by cloning a normal version of the ghost clone and replacing the original main 

component of the Graph Shape by the latest clone. Thus, a replace main shape member 

function is also an integral part of the TGraphShape class. When this replacement is done, 

the position of the Graph Shape is automatically updated to its new position, since the 

new clone would already be at that new position. The TGraphShape class also supports a 

cloning operation of its own. This cloning is used in the analysis procedure to generate 

copies of the Graph Shape for duplicating an entire graph. 
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The TGraphShape class supports a hit test member function which is the actual hit 

test called when a user clicks on a shape in the drawing area. A Graph Shape does a hit 

test by simply asking its Pure Shape main component to perform the hit checking, since 

the Pure Shape is the dominating component of a Graph Shape. This might not sound like 

a complete hit test since, in the case of a TEdge object, we will be performing the hit test 

only on the TPolyline component and not on the TArrow component. The hit test 

however, is complete for a TProcess object or a TResource object, since the Pure Shape 

main component completely encloses the Graph Shape's other components. 

4.5.4 THilite ~ 

A hilite is the set of solid squares that appear at the boundaries of a shape when it 

is selected (usually by clicking the mouse on a shape). The THilite object is composed of 

a set of TSquare objects. Every time the user creates a new shape or selects a shape, a 

new THilite object is created (the previous one, if any, is destroyed). A new THilite 

object on creation asks the shape to be hilited, for a set of boundary points on which 

hilites should appear. This function is implemented by the TPureShape class and its 

sub-classes. A generic "get hilite positions" function is implemented in the TPureShape 

class. This function is used by the TCircle and TSquare sub-classes, and returns eight 

boundary points namely the northwest, north, northeast, west, east, southwest, south, and 

southeast corners of the Pure shape. This function is a virtual function and is overridden 

in the TPolyline class, since a Polyline has no concept of specific corners. The TPolyline 

class returns the end points of all its lines as the set of hilite positions. 
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A THilite object checks for a mouse click hit on itself, by interrogating each of its 

component TSquare objects for hit testing. 

4.5.5 TText ~ 

The TText class is responsible for representing all the different sorts of labels that 

appear on different Graph Shapes. These labels include the name of the Graph Shapes, 

the number of units of the TResource shape, and the type of the TResource shape. These 

labels appear at the top of the respective instances for each type of shape. In the current 

implementation of Prograph, a TText object can appear only in one of three different 

positions on a Graph Shape: at the center line of the shape, at the midpoint of the upper 

half of the shape, or at the midpoint of the lower half. The center position is used as the 

location for the name of the shape. The upper midpoint is used for the position of the type 

of a TResource object, and the lower midpoint is used as the position for the number of 

units of a TResource object. 

4.6 Design of Command Classes 

The Command objects are responsible for actually responding to user input events 

and performing the appropriate action. As explained earlier, the Command objects are 

created and destroyed by the input/output layer (the TPrograph View object). A Command 

object is created in response to a specific user action, say dragging an object. Once a 

Command object is created, it has total control of the mouse and keyboard. After 

performing its job, the Command object decides to terminate upon a predetermined input 

event (say a mouse-up event). The TPrographView object creates a Command object on 
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each user action and, once the action is complete, the Command object is deleted. Some 

of the common user actions are moving a Shape Object, drawing an edge, connecting a 

process object and a resource object, deleting an object, etc. 

The decision of what Command object to create and when to create it are made by 

the TPrograph View object. This decision depends upon various factors including the 

drawing mode which the user is in (e.g., "Pointer" mode, "Edge" mode, etc.). As 

mentioned above, once a Command object is created, only the Command object can 

decide when it is time for the user action to end and return mouse and keyboard control 

back to the TPrograph View object. 

4.6.1 ~Handlim~~~~Automata 

Once a Command object starts up, it will be getting a continuos stream of 

different input events such as mouse-down events, mouse-move events, and mouse-up 

events. On each input event, the Command object has to perform some action. The action 

to be performed depends upon the set of all previous events received. In other words, a 

Command object has to change its state upon receipt of an input event. This behavior is 

ideally modeled by means of a finite state automaton. Each input event causes the 

Command object to change its state. The state change is dependent upon the previous 

state and the current input event. A number of different finite state automata were 

designed for the various kinds of user actions. A finite state automaton is implemented in 

actual practice using a transition table. Each element of the table has three entries. One 

entry for the current state, one entry for an input event, and one entry for the next state. 
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All Command objects on creation start in a special state called the Start State. 

Upon receiving an event, a dispatch routine looks up the next state from the transition 

table and executes code corresponding to that state. Since the dispatch routine is generic 

to all Command objects, the routine is placed in the root class of the hierarchy 

TCommand. 

To get a feel of how an actual Command works using a finite state automaton, a 

simplified example of a subset of the TMoveCommand object is explained here. The 

TMoveCommand object is created by the TPrograph View object when a user starts 

moving a shape object. In this example, assume for simplicity that the user can drag the 

shape only within the boundaries of the drawing area. Three different input events are 

possible. The user initiates the move with a mouse-down event. Then successive 

mouse-move events are generated when the user drags the shape object. Finally, the user 

places the shape object at a specific position by releasing the mouse, resulting in a 

mouse-up event being sent to the TMoveCommand object. In this example, the transition 

table for the TMoveCommand object is quite simple and an outline is given in TABLE I. 

TABLE I. SAMPLE TRANSITION TABLE 

Current State Input Event Next State 

Start state Mouse-Down Mouse-Down state 

Mouse-Down State Mouse-Move Mouse-Move state 

Mouse-Move state Mouse-Move Mouse-Move State 

Mouse-Move State Mouse-Up Mouse-Up State 
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A better picture can be obtained by a transition graph representation of the table. 

Once the dispatch function finds out the next state, it calls a routine to execute the code 

for the next state. In the case of the TMoveCommand object, the code for the 

"mouse-down state" will create a ghost of the to-be-dragged shape and sets up various 

internal variables to prepare for dragging. On each successive mouse-move event, the 

code for the mouse-move state is executed. This code is responsible for generating the 

drag effect, i.e., erasing the previous outline of the ghost (by an XOR draw) and drawing 

a new outline at the new mouse position. Finally when the mouse-up event occurs, the 

code for the mouse-up state erases the last drawn outline ghost, and replaces the main 

component of the original shape with a normal clone of the ghost, resulting in the 

position of the original shape to be updated to the new position. 

The actual implementation is far more complicated than the above explanation. In 

the middle of a Command, the mouse can leave the drawing area resulting in mouse-enter 

and mouse-leave events. Mouse-down and mouse-up events have to be distinguished as 

to whether they are coming from inside or outside the drawing area. During a 

mouse-move, the mouse buttons can be either depressed or undepressed leading to 

different kinds of mouse-move events and coupled with mouse-moves outside and inside 

complexity is increased further. 

4.6.2 AutoScrollin~ 

A significant feature implemented as part of Prograph is a concept called 

AutoScrolling. Typically, autoscrolling is useful when drawing an edge between a 

process and a resource which are far apart, such that they are not visible on the screen at 
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the same time. With autoscrolling, after the user clicks on the source node and drags the 

mouse towards the destination node, if the mouse leaves the boundary of the drawing 

area, the drawing area will scroll towards the direction of the mouse movement. Hence 

the source node will scroll off the screen and the destination node will scroll onto the 

screen, enabling the user to click the destination node and thus ending the edge drawing. 

Autoscrolling is not only useful for drawing edges, it is also useful in case a user wants 

to move a shape to a part of the drawing area not currently visible on the screen. Without 

autoscrolling, the user would have to do it in a series of steps, at each step using the 

vertical or horizontal scroll bars. In autoscrolling, the screen will start to scroll 

automatically immediately after the mouse leaves the drawing area. The scrolling will 

continue till the end of the virtual drawing area is reached. When the screen is being 

autoscrolled, the object being moved (an edge or a node shape), will appear under the 

mouse. If the mouse is off the edge of the drawing area, then obviously the object may 

not be visible. For scrolling to work, it is simply enough that the mouse be outside the 

drawing area boundary, the mouse need not be physically moving. 

Since the mouse need not be moving for autoscrolling to work, there had to be a 

way for the program to periodically receive events once the mouse was outside the 

drawing area. This problem was solved by making use of the timer facility in X 

Windows. Autoscrolling was implemented as follows. 

1. When the mouse leaves the boundary of the drawing area, a mouse-leave event is 
received. On receipt of this event, the Command object starts a timer to send timing 
signals at regular intervals. 

2. For each timer signal received, the Command object scrolls the screen towards the 
direction the mouse is currently at. 
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3. If the mouse happens to also move outside the drawing area boundary, then the 
Command objects will receive additional mouse-move events. These events are 
processed the same way as if the object is inside the drawing area. 

4. When the mouse reenters the drawing area, the Command object will receive a 
mouse-enter event. The event handler for the mouse-enter event will stop the timer 
thus ending the scrolling. 

4.6.3 TNewNodeCommand ~and Its. Subclasses 

The TNewNodeCommand class abstracts behavior pertaining to creating a new 

process or resource shape on the screen. To create a new shape, the user selects the 

appropriate palette button and moves the mouse onto the drawing area and clicks, 

resulting in the appearance of the specified shape. The shape will actually appear on the 

drawing area during the mouse-down event. In the same action and before releasing the 

mouse button, the user can move the newly-created shape around on the screen and place 

it at an appropriate place by releasing the mouse button (thus resulting in the final 

mouse-up event to the Command object). 

From the above description of the creation of a new node (shape), the only 

difference from the TMoveCommand object is in the reaction to the initial mouse-down 

event. While the TMoveCommand object hilited the clicked-upon-object on a 

mouse-down, the TNewNodeCommand object created a new object on a mouse-down. 

The remaining part of the automaton is the same for both classes. Hence the same 

automaton could be used for both classes. So it was decided to make the 

TNewNodeCommand class as a subclass of the TMoveCommand class. The 

mouse-down event handling member function is overridden by the TNewNodeCommand 

class. 
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The TNewNodeCommand class is only an abstract class. The actual Command 

objects that create the shapes on the drawing area are instances of either the 

TNewProcessCommand class or the TNewResourceCommand class. Both these classes 

are sub-classes of the TNewNodeCommand class. These new classes only needed to 

provide a new constructor. In the constructor for each class, the appropriate shape 

(process or resource) is created. After that, the remaining events are handled appropriately 

by member functions higher up the hierarchy (i.e., member functions in 

TNewNodeCommand and TMoveCommand). 

4.6.4 Abortin~ .a Command 

A command can be aborted at any time by using the "Esc" key. When the Esc key 

1s pressed, a special event handler is called. This event handler is responsible for 

reversing any action done up to that point by the command. The abort event handler has 

to be implemented separately by each command class. 

4.6.5 Implementin~ l1ruk! 

The undo facility enables the user to reverse the effect of the previous user action. 

Prograph currently supports one level of undo. When a user does an undo, the system 

reverts back to the state it was in, prior to the previous command. If the user does an undo 

again, the system reverses the effect of the undo. So the undo can also act as sort of a 

toggle between two consecutive system states. In the current implementation, the second 

undo is called a "reverse undo". 

To support an undo, some changes had to be made in the Command object 

creation and deletion layer. Without undo, once a Command object finishes, it was 
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immediately deleted. For undo support, a Command object on completion is not 

immediately deleted, instead it is saved in a previous-command variable. The 

previous-command variable is updated each time a new command terminates execution. 

Each Command object has an undo member function. When the user does an undo, the 

undo member function of the previous Command object is called. If the user successively 

does undo operations (for whatever reason!), the undo member function in turn maintains 

a Boolean variable that calls the reverse undo function each alternate time it is called. 

Implementing the undo member function for a Command object is dependent upon what 

that Command object does. 

Consider the case of a TMoveCommand object. This command moves an object 

from one position to another. As explained in the section on the Shape hierarchy (Section 

4.5), an object is moved from one place to another by replacing its main shape component 

(a TPureShape) by a new TPureShape (specifically a TCircle or a TSquare) positioned at 

the destination position. To support undo, the TMoveCommand object, before replacing 

the main shape, saves the old main shape internally. When the user does an undo, the 

TMoveCommand object simply replaces the new main shape with the saved old main 

shape resulting in the effect of the shape jumping back to its old position. During the 

undo, the TMoveCommand object saves the new main shape internally, so that when the 

user does an undo again, the old main shape can be replaced again by the new main 

shape. 

In the case of the TNewNodeCommand object (specifically, a 

TNewProcessCommand or a TNewResourceCommand), the Command object saves a 
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pointer to the newly-created object internally. When the user does an undo, the Command 

object asks the TPrographModel object (which represents the graph structure) to remove 

the newly-created node. For a reverse undo, the TNewNodeCommand object adds the 

removed new node back into the TPrographModel object. The same logic applies to the 

TEdgeCommand object, which is responsible for drawing an edge. 

The TDeleteCommand object works in the reverse way when compared to the 

TNewNodeCommand and TEdgeCommand objects. When a shape is deleted, the 

TDeleteCommand object saves the deleted object internally. When the user does an undo, 

the deleted object is added back into the TPrographModel object. For another undo, the 

object is again removed from the TPrographModel. 

4.7 Design ofPrograph Model Class 

The TPrographModel class is responsible for the internal representation of a 

Process-Resource graph. The class has member functions for adding a new node to the 

graph, removing a node from the graph, and adding and removing edges. The class is also 

responsible for reading and writing an instance of itself from a file. The class also has 

support for generating unique names for processes, resources, and edges. 

A digraph is normally represented by a matrix. The value of the (i, j)th entry of a 

matrix denotes the number of edges from node i to node j in the graph, where each node 

has been assigned a specific number. A Process-Resource graph is a special form of a 

digraph (a bi-partite graph), in which edges are permitted only from a process to a 

resource or from a resource to a process. This fact leads to a design where the process 
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entries are considered to be along the rows of the matrix and the resource entries are 

considered to be along the columns of the matrix. An element of the matrix, say (i, j), is 

implemented as a list whose members are the set of edges between process i and resource 

j. In fact the matrix is implemented by the TEdgeListMatrix class. This class is designed 

to encapsulate all operations pertaining to the matrix. Each element of the matrix (i.e., a 

list) is implemented as a list class, in this case the TGraphShapeList class., which, as the 

name implies, implements a list consisting of Graph Shape objects. Also, all the 

processes in the graph were put on a separate list, likewise for the resources. The edges in 

the graph, besides being a member of a matrix element, were also put on a duplicate list, 

for ease of access for certain operations. Despite the extra storage, there is no change in 

the order of the space complexity. 

When a new node is added to the graph, it has to be added either to the process list 

or to the resource list, depending upon whether it is a process or a resources. Also, when 

the node is added, either the number of rows or the number of columns of the matrix has 

to be increased. So the TPrographModel object sends a request to the TEdgeListMatrix 

object to add an additional row or column to the matrix. All the elements (which are lists) 

of the additional row or column are set to empty lists. Obviously some particular 

situations have to taken are of, such as when there are only processes in the graph and no 

resources, and vice versa. In such cases, the internal matrix is not created by the 

TEdgeListMatrix object. It comes into existence only when there is at least one process or 

one resource. 
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When a node has to be removed from the graph, all the edges associated with that 

node also have to be removed. These edges are not immediately deleted, instead they are 

put on a separate list and returned to the Command object that does the deletion (the 

TDeleteCommand object). The TDeleteCommand object will store this list in case the 

user decides to do an undo. To remove a node, it is first removed from either the process 

list or the resource list. Then the row (or column) in the matrix associated with that node 

is removed. This operation is done by the TEdgeListMatrix object. Finally, the removed 

node is returned back to the TDeleteCommand object for possible undo later on. The 

actual deletion of the memory occupied by the node and the corresponding edges is done 

in the destructor of the TDeleteCommand object after the user executes a new command, 

and the previous TDeleteCommand object is no longer needed. So in effect the actual 

node removal is a staggered removal. 

When an edge is added to the graph, it is added to the appropriate matrix entry 

corresponding to the source and destination nodes of the edge. The edge shape is also 

added to the separate list of edges. The removal of an edge is the exact reverse process 

and the edge is returned to the TDeleteCommand object for supporting undo. One 

important fact to be taken care of when adding an edge is whether the edge is permitted to 

be added. This occurs if for example an assignment edge is drawn from a resource having 

no more resource units. So, before the edge drawing is finalized, the TPrographModel 

object asks the source node for permission. If permission is denied, the TPrographModel 

object aborts the operation and returns, and in turn the TEdgeCommand object, which is 

responsible for drawing the edge, also aborts. Similarly, when removing an edge, the 
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TPrographModel object sends the message to the source node, which might want to 

increase its number of resource units. 

After a user moves a node from one position to another, all the edges associated 

with that node have to be redrawn to reflect the new position of the node. This is initiated 

by the TMoveCommand object. After a move, the Command object sends a replace node 

main shape request to the TPrographModel object. After the main shape of the moved 

node is replaced (thus resulting in the movement of the node), all the edges associated 

with that node are found, and the requisite end point of each of those edges is changed to 

reflect the new node position. Finally, the whole graph is updated. 

The TPrographModel object also stores the current hilite object. Whenever a new 

shape is created, or clicked upon, or moved, that shape has to be hilited and the previous 

hilited shape, if any, has to be unhilited. All such hilite requests are handled by the 

TPrographModel object. This object is responsible for deleting the old hilite object and 

creating a new hilite object for the requested shape. 

For generating unique names, the TPrographModel object traverses the current list 

of nodes and edges, and assigns a name with the next free sequential number with the 

appropriate string appended. Process names start with the letter "p", and resource names 

and edge names start with "r" and "e", respectively. When a user clicks on the drawing 

area, the input/output layer (which is the TPrographView class) requests the 

TPrographModel object to do a hit test on all the nodes and edges on the graph. The 

TPrographModel object in turn traverses its internal node and edge lists and asks the node 

or edge to perform the requested hit test. 
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4.8 Design of Pro graph Analyzer Class 

The TPrographAnalyzer class is responsible for analyzing a model and generating 

a list of models (if the state of the original model is safe) or the single original model (if 

the state of the original model is unsafe). Pro graph supports two types of analyses. 

1. A general analysis that tries to find out if there is any way of reducing the state 
represented by the model. 

2. A process-specific analysis that is almost the same as the first type except that the 
~alysis starts with a specific process. 

After the analysis, the analyzer returns a list of models as explained above, as well 

as a small report containing the results of the analysis. The report is immediately 

displayed in a dialog box on the screen. 

4.8.1 Main Al2orithm 

The analysis is done using an exhaustive search strategy, as described below. 

1. Initialize all the internal variables and matrices required for the analysis. 

2. Assign each process (in the set of processes of the graph to be analyzed) a sequential 
number. Generate all possible permutations of processes. E.g., ifthere are 3 processes 
- 1, 2, and 3, then the permutations generated are 1-2-3, 1-3-2,2-1-3,2-3-1, 3-1-2, and 
3-2-1. 

3. Analyze each permutation. Specifically, check to see if reducing the initial state by 
the process list specified by a permutation results in a state where all processes in that 
combination are reducible. 

4. If a permutation that can be reduced is found, generate a new state diagram (model) 
for reduction by each process. Also generate a report of the results of the analysis. 

5. Finally, return back the list of models as well as the report. 
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The complexity of this algorithm is O(n!). This can be improved by the use of 

heuristics to speed up the generation of the permutations, and can be done as part of 

future work. 

For analysis based on a specific process, the only difference from the above 

scheme is in the generation of the permutations. For instance, if we want to reduce by 

process 2, the permutations that are analyzed are 2-1-3 and 2-3-1. 

To analyze a permutation, each process in that permutation, is taken and the state 

of the model is reduced by that process, if possible. If the whole permutation is reducible, 

the main algorithm stops and the list of models is generated. If not, the algorithm 

proceeds to the next permutation until all permutations are analyzed. 

4.8.2 Reducin~ a~~ a Process 

Before explaining the algorithm, data structures used by the analyzer are 

described. Three matrices and two vectors are required by the analyzer. The matrices are 

the request matrix, the allocation matrix, and the producer matrix. Each matrix entry 

denotes a connection between a process and a resource. Processes are considered to be 

along the rows of the matrix and resources along the columns. The two vectors are the 

available resource vector and the total resource vector. 

The request matrix stores information about the requests that each process has 

made for each of the resources. A specific row of the request matrix represents the request 

vector of a particular process, and the value of the (i, j)th entry in the matrix represents the 

number of requests process i has made for resource j. Similarly, the allocation matrix 

stores information about the number of resources of each resource type allocated to each 
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process. The (i, j)th entry of the allocation matrix represents the number of units of 

resource j assigned to process i. The producer matrix is a binary matrix that serves to 

denote which of the processes are producers of which of the resources (consumable 

resources to be specific). An entry (i, j) in the producer matrix denotes whether a process 

i is the producer of a resource j. 

The available resource vector stores the number of units of all resources that are 

free. The total resource vector stores the total number of units of each resource. All the 

matrices and vectors are initialized before the start of the analysis. The algorithm to 

reduce a state by a particular process is given below. 

1. Use the request matrix and check if the request row vector of that process is less than 
the available resource vector. If so, continue, else return. 

2. Now we have to take steps to change the system state to reflect reduction by that 
process. Add the allocation vector of the process (from the allocation matrix) to the 
available resources vector. Check if the process is a producer of any of the resources. 
If it is, set the number of available units of that resource to infinity (i.e., w). 

This algorithm mainly performs a set of vector comparisons and additions, and 

hence the time complexity of the algorithm is O(n). The space complexity of the 

algorithm is O(mn), where m is the number of processes and n is the number of resources. 

Duplicate copies of all the three matrices and two vectors are kept separately, 

since after each combination is analyzed, these matrices and vectors would have been 

modified. Before the analysis of the next permutation, the original state has to be 

restored. 
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4.8.3 Generatin2 a New Intermediate Model 

Once a combination is found to be reducible, the analyzer restores the original 

state and repeats the whole reduction process again; this time, after reducing by each 

process, an intermediate graph (model) is generated. Generating a new graph involves 

duplicating the entire graph, leaving out edges associated with processes that have been 

reduced. If there are m processes, n resources and p edges, then the complexity of 

duplicating the process and resource nodes in the graph is O(m + n). The complexity of 

finding edges that are to be copied to the new graph is O(mp ). 

The intermediate states' graphs differ from the pre-reduction graph only in the 

number of edges and the number of resource units of each resource. The positioning and 

the number of all the other processes and resources remain the same. In generating a new 

graph, all the nodes in the previous graph are cloned and added to the new graph. Now we 

have to add only the edges that were not connected to any of the processes freed in this 

stage or any of the preceding stages. For example, assume the permutation to be reduced 

is 2-1-3 and we have already generated the graph state for reduction by process 2, and we 

are now reducing by process 1. In this case, the freed processes are 2 and 1, so the edges 

connected to processes 2 and 1 are not added to the new intermediate graph. 

4.9 Prograph Module Listing 

The program listing of Prograph consists of 20 C++ source files and 22 header 

files. The 20 source modules are listed below. 
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• PrographApp.C: This module is the startup module. The module is responsible for 
instantiating sub-classes of the MotifApp application framework's Application and 
Main Window classes. 

• PrographWindow.C: This module contains code to initialize and setup the main 
window of Pro graph. It also creates the palette, the drawing area, and the menu items. 

• PaletteView.C: This source code file contains code to setup the different buttons found 
on the palette of Pro graph. The palette is initialized to the "Pointer" button. 

• Prograph View.C: This source file implements the "View" member functions of the 
TPrograph View object. Besides that, this file also contains member functions to 
initialize the drawing area. 

• ViewMain.C: This source file implements the "Controller" member functions of the 
TPrograph View object. All the Command objects are created and handled in this file. 

• Shape.C: This module implements the member functions of the TShape class, as well 
as the THilite and TText classes. 

• PureShape.C: This module implements the member functions of the TPureShape class 
and its sub-classes namely, TCircle, TSquare, TPolyline, and TArrow. 

• GraphShape.C: This module implements the member functions of the TGraphShape 
class and its sub-classes namely, TProcess, TResource, and TEdge. 

• Command.C: This module implements the member functions of the TCommand class. 

• MoveCommand.C: This module implements the member functions of the 
TMoveCommand class. 

• NewNodeCommand.C: This module implements the member functions of the 
TNewNodeCommand class, the TNewProcessCommand class and the 
TNewResourceCommand class. 

• EdgeCommand.C: This module implements the member functions of the 
TEdgeCommand class. 

• PrographModel.C: The TPrographModel object's member functions are implemented 
in this class. 

• PrographAnalyzer.C: This module is the analysis module and is responsible for 
implementing the member functions of the TPrographAnalyzer class. 

I. 
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• Document.C: The TDocument object's member functions are implemented in this 
class. 

• Dialog.C: This module implements the member functions of the TDialog class, which 
is the root class of the Dialog class hierarchy. 

• MotifDialog.C: This module implements the member functions of the TMotifDialog 
class and its sub-classes namely, TGetFileDialog, TGeneralPurposeDialog, and 
TQuestionDialog. 

• CustomDialog.C: This module implements the member functions of the 
TCustomDialog class and that of two of its sub-classes: TAnalysisResultsDialog and 
TProcessTextDialog. 

• SpecDialog.C: This module implements the member functions of the TEditSpecDialog 
and its sub-classes TEditResourceSpecDialog and TEditProcessAndEdgeSpecDialog. 

• Rectangle.C: This module implements the member functions of the TRectangle class. 



CHAPTER V 

EVALUATION OF THE TOOL 

5.1 User Evaluation 

The testing and evaluation of the software tool Pro graph, developed as part of this 

thesis, are discussed in this chapter along with some comments on the drawbacks of this 

tool and suggestions for its improvement based on the experience gathered in using the 

tool. About 25 students of the graduate-level Operating Systems II class of Spring 1995 

used Prograph for a class assignment to design two Process-Resource graphs and analyze 

them for the presence of deadlocks. 

Useful feedback was received during the evaluation process. The feedback was 

used to improve the tool. One deficiency of the tool was the lack of an on-line help 

system. Instead of an on-line help, the users were supplied with a hard copy of the 

README file for Prograph. It was observed that very few of the participants/users were 

utilizing the README file, and instead most of them were going ahead and directly 

experimenting with the tool. Also, it was felt that a live demonstration could prove useful 

for the effective use of the tool. Another observed problem was that if the tool was run 

without the presence of a window manager, the title of the current file being manipulated 

would not be visible. This created some confusion in the minds of the users about where 

60 

- -,_~----- " -.,---~~. 



61 

in the program they were, since they could not distinguish between a model they drew 

and the analysis file generated by Prograph. 

Also some users did not effectively use the multiple line edge drawing feature of 

Prograph. From the answer files to the design assignment problem, and based on 

observing the peculiar shapes of the edges, it was obvious that some users were unaware 

of the existence of such a facility. Another problem was that the contents of the file 

dialog boxes are not updated immediately after the user saves a file. The workaround 

currently used, is to click on the "Filter" button of the file dialog box, to refresh its 

contents. 

5.2 Sample Systems Modeled by Prograph 

As a limited experiment in the usability of Prograph, a number of different 

Process-Resource graphs were modeled, including the assignment problems given to the 

students of the graduate-level Operating Systems II course in Spring 1995. One of the 

systems is described by Nutt [Nutt 92] in Figure 5.8 of his book. The graph is shown in 

Figure 11 and contains only serial resources. There are three process and three resources 

in the graph. Figures 12 to 14 depict the various stages in the reduction sequence of the 

graph. This reduction sequence is obtained as a result of the analysis of the graph. 

Another graph modeled by the tool is shown in Figure 15. The graph represents a 

Process-Resource model having both serial and consumable resources and is described in 

Figure 5.13 in [Nutt 92]. 

----- ________ l 
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CHAPTER VI 

SUMMARY AND FUTURE WORK 

6.1 Summary 

The importance of modeling Process-Resource graphs for deadlock analysis and 

the main objective of this thesis were discussed in Chapter I. Chapter II presented a 

survey of the current literature on Process-Resource graphs and deadlock analysis . This 

chapter presented an introduction to deadlocks and their detection. Also, the methods by 

which an operating system Process-Resource graph can be modeled were generally 

discussed in that chapter. Chapter II also contained a discussion of a number of different 

algorithms used for analyzing and detecting deadlocks. The various implementation 

issues of the software tool developed as part of this thesis, called Prograph, were 

discussed in Chapter III. The implementation platform and run-time environment, 

including an introduction to the Sequent Symmetry S/81, the X Window System, and the 

OSF /Motif widget set, were discussed in the various sections of Chapter III. Chapter IV 

of the thesis dealt with the software architecture and the detailed design of Prograph. 

Also, a description of the various parts of the user interface was presented in that chapter. 

Chapter V contained the results of the initial testing and evaluation of Pro graph. 
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The main objective of this thesis was the development of a graphical software tool 

that can aid in building a Process-Resource model of the dynamic state of an operating 

system, analyze the graph for safe/unsafe states, and detect the presence of deadlocks. 

This tool can be used to design and construct Process-Resource system states of 

virtually any size and complexity. The graphical user interface was implemented using 

the OSF/Motifwidget set (see Chapter III for a discussion ofthe X Window System and 

the Motif Toolkit). This tool was used to design graphs of reasonable size and complexity 

in an academic environment. 

A disadvantage of the tool is that, it is currently dependent on the Motif user 

interface. Also the algorithm used for deadlock analysis has an exponential time 

complexity and hence cannot be practically used to analyze large graphs. 

6.2 Future Work 

The improvement mentioned below should be incorporated into the future 

versions of Pro graph. 

• Automatic repositioning of the nodes and edges is not implemented currently. This 
feature can be helpful when designing large graphs, when it becomes difficult to 
control the web of edges traveling criss-cross across the graph. 

• An on-line help system can be implemented in a future release of the tool. 

• The analysis algorithm which has O(n!) complexity, can be made more efficient by 
incorporating heuristic searching. 

• The cut, copy, and paste options can be implemented to provide additional flexibility 
in designing Process-Resource graphs. 

• Currently, Prograph does not support the resizing of objects. This can be implemented 
in a future version of the tool. 
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• A grid background can be shown as a backdrop behind the drawing area, to assist in 
the placement of nodes. 

• Related to the above item, support can be added to the tool for a snap effect, where 
nodes once moved should be allowed to be placed at discrete positions at 
predetermined and equidistant locations in the graph. 

• Support can be added for aligning a group of nodes in various positions (e.g., center 
aligned). 

• The tool can be extended to provide support for hierarchical Process-Resource graphs. 

• Prograph can be redesigned to act as a tool to assist in situations requiring deadlock 
prevention. Similarly this concept can be used to provide support in environments 
requiring a deadlock avoidance approach or a deadlock detection and recovery 
approach. 

• An extensive evaluation of the tool needs to be done, to ensure the robustness of the 
tool under stress conditions. 
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APPENDIX A 

GLOSSARY AND TRADEMARK INFORMATION 

GLOSSARY 

accelerator: Single keystrokes that are the equivalent of certain application 
functionalities, most commonly associated with menu selections. 

application window: The window where an application resides with its complete 
user-interface. 

background: The area on which a widget resides. 

background color: The color from which all widgets generate their top and bottom 
shadows and their select color, and against which labels and bitmaps are created 
with the foreground color. 

bitmap: An image created using only the foreground and background colors of the 
screen. 

button: Either a physical button on the mouse or a widget that simulates a real button on 
the screen. 

callback: A function or a procedure that is to be executed when a specific event occurs 
within a widget that is in a particular state. 

class: A common description for a set of similar objects with the same structure but 
different attribute values. Each class has unique characteristics and any number of 
instances of the class may be created. 

class hierarchy: A logical ordering of classes, in which each class lower in the hierarchy 
(sub-class) is a specialization of the class directly above it (super-class). 
Sub-classes may inherit, add, delete, or modify the attributes. 

click: Pressing and immediately releasing a mouse button without moving the mouse in 
between. 

74 



75 

client-server model: A server process in a client-server model provides some services to 
the other processes. These other processes are known as clients. In the X Window 
System, the server controls all input and output devices. An application is a client 
process that utilizes the services provided by the server. 

composite widget: A widget that contains one or more widgets as its children, and 
controls their geometry. 

Deadlock: A process in a multiprogramming system is said to be in a state of deadlock 
(or deadlocked) if it is waiting for a particular event that will not occur. 

dialog box: A collection of widgets that are displayed by an application in response to an 
event when detailed information needs to be provided to the user or when input 
needs to be obtained from the user. 

Directed Graph: A directed graph (or a digraph) G consists of a set of vertices V = {v1 , 

v2 , ••• , vn}, a set of edges E = {e1 , e2 , ••• , en}, and a mapping that maps every 
~dge in E onto some ordered pair of vertices (vi, vj) in V. 

event: A message from the X server to an application. 

event handler: A procedure that is executed in response to one or more predefined events 
for a widget. 

geometry management: The process of automatic negotiation of the size and relative 
position of all child widgets. 

graphical user interface (GUI): A visual representation of some ofthe functionality of a 
system that can be manipulated in a friendly, easy-to-use, and non-programmatic 
manner. 

graphics context (GC): A data structure that contains various information necessary for 
drawing graphic objects on a window such as the foreground pixel, the 
background pixel, line width, line style, and clipping region. A graphics context is 
applicable only to drawables that have the same depth and root window as the 
graphics context. 

GUI: See graphical user interface. 

icon: A graphical symbol of an object or an action. Selecting an icon typically results in 
either selecting the object or performing the action. 

inheritance: A mechanism that makes use of the characteristics of a super-class in a 
sub-class without the need for duplication. 
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inter-client communication conventions (ICCC): A set of protocols that govern the 
interaction among the clients as well as between a client and the window manager. 

intrinsics: The base library of functions on which the Motif widget set has been built. It 
implements the fundamental procedures for building new widget classes. 

MULTIBUS: An industry standard for buses that may be used to connect a variety of 
peripheral devices. 

pixel: A single identifiable point on the screen or in a pixmap. A pixel may have different 
color values, or may be white or black in the case of a monochrome monitor. 

pixel values: An n-bit value, where n is the number of bit planes in a window or a 
pixmap. In other words, n is the depth of the pixmap or window. In the case of a 
window, it indexes a colormap to derive the actual color to be made visible. 

pixmap: A three-dimensional array of bits that can be considered as a two dimensional 
array of pixels. The value of each pixel can range from 0 to 2n·I, where n is the 
depth of the pixmap. Alternately, a pixmap may be viewed as a stack of n 
bitmaps. 

pointer: A synonym for the mouse cursor. 

Resource: A component managed by an operating system for which there is competition 
among different processes. 

server (X Window System): It offers the basic windowing mechanism. It is responsible 
for handling inter-process communication connection between clients, graphic 
requests, and demultiplexes and screens. It is also responsible for multiplexing 
input back to the appropriate clients. 

Starvation: A condition in which a process in a multiprogramming system waits for a 
resource for an unbounded period of time. 

toolkit: A low-level library of objects and functions that are available for use to the 
application programmer and upon which the intrinsics are built. 

widget: A user interface mechanism comprising data structures and the associated 
procedures that can be displayed in different ways such as menus, dialog boxes, or 
windows. 

window: A rectangular area on the screen that belongs to a particular application. 
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window manager: The program that manages the display of windows and their 
manipulation on the screen. 

X: A networked, portable, and transparent windowing system. 

X client: An application program that makes use of the services of the X server for input 
and output. 

Xm: The prefix for any value assigned to a widget resource. This convention 
differentiates the X Window system and the Motif widget set values from values 
assigned to other variables in the source code. 

XmN: The prefix for any resource attribute whose value needs to be specified. 

X protocol: The protocol by which X clients communicate with the X server. 

X server: A set of C language routines that exclusively control the display hardware and 
service client requests. 

Xt Intrinsics: A synonym for X toolkit intrinsics. 

X toolkit intrinsics: A library of functions, procedures, and data structures built on top of 
Xlib that makes application programming much easier compared to working with 
Xlib functions. 

X Window System: A network-transparent and hardware-independent base layer that 
provides services to graphical user interfaces. 

TRADEMARK INFORMATION 

DEC is a registered trademark of Digital Equipment Corporation. 

DYNIX, DYNIX/ptx, Sequent S/81, and Symmetry are registered trademarks of Sequent 
Computer Systems, Inc. 

Motif, OSF, and OSF/Motifare registered trademarks ofthe Open Software Foundation. 

The X Window System is a registered trademark of the Massachusetts Institute of 
Technology. 

UNIX is a registered trademark of AT&T. 

~ 



APPENDIXB 

USER GUIDE FOR PROGRAPH 

1. General Overview 

This is a step-by-step explanation of how to use Prograph to model and analyze a 
Process-Resource graph. Start up Prograph by typing /p/koshy/Prograph/Prograph or the 
path name for the new location of Prograph. When the program loads up, the initial 
Pro graph screen appears (See Figure on the following page). In the center of the screen is 
the drawing area. On the top left hand comer is the menu bar containing the File menu, 
which contains the menu items: New, Open, Save, Save As, Close, and Quit. The use of 
these menu items should be obvious if you have previous experience with any graphical 
drawing or editing package. You will also notice scroll bars along the edge of the drawing 
area. On the left end of the screen is a toolbar containing a number of buttons organized 
into three sets. 

Set1: [Pointer] [Edge] [Process] [Serial Resource] [Consumable Resource] 
Set2: [Edit Specification] [Delete] [Undo] 
Set3: [Analyze] [Analyze Process] [Show Results] [Previous State] [Next State] 

The interface to Pro graph is a point and click interface. You can select objects in 
the drawing area by clicking on them, move them about by dragging them, etc. Another 
feature of the tool is the auto-scrolling facility. In the middle of a drawing or dragging 
operation, if you chance to move the pointer out of the drawing area, the drawing area 
will automatically scroll to provide a virtual screen effect. The scrolling will continue 
until you reach the edge of the virtual drawing area, which is currently set to about four 
times the size of the physical drawing area. Of course, you can also use the scroll bars, 
but the auto-scrolling facility comes in handy if you want to scroll in the middle of a 
drawing or dragging operation. 

The rest of this User Guide explains how to proceed to analyze a 
Process-Resource graph. 

2. Step 1: Describe the Problem on the Screen 

In the first stage you will need to construct a graphical representation of the 
problem. For this, you will be using the buttons in Setl and Set2. 
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Set I is known as the "mode" set. One of the items in Setl will be highlighted at 
all times. If you click on another item in Setl, the previous item's highlight will disappear 
and the new item will be highlighted. The highlighted item denotes the current mode you 
are in. One common problem while constructing a model on the screen, is forgetting 
which mode you are in. When in doubt, switch to the [Pointer] mode. 

The [Pointer] mode is used for selecting, dragging, and just about all other editing 
operations. When you select an object by clicking on it, the object will be highlighted by 
the presence of 8 hilite handles on its comers, except for Edge objects which will have 
hilites for each endpoint of each segment of the edge. 

If you switch to the [Process] mode, any time you click in the drawing area, you 
will be getting a new process object. Each process object will be displayed with its 
default name in the center of the object. In the [Serial Resource] or the [Consumable 
Resource] mode clicking at a point on the screen will give you a new serial or 
consumable resource object, respectively. When created, a new serial resource or 
consumable resource object is set by default to contain one resource unit. Each resource 
object will have 3 items displayed on it. On the top is either an *SR* denoting a Serial 
Resource or a *CR"' denoting a Consumable Resource. At the center of the object is its 
default name. At the bottom of the object is the number of available units in the object. 
When using any of the three modes [Process], [Serial Resource], or [Consumable 
Resource] in generating a new object, you can move the object to an appropriate place in 
the same operation (before releasing the mouse button). A newly-created object will 
appear hilited. 

The [Edge] drawing mode enables you to draw edges from a process object to a 
resource object or vice versa. Once you have switched to the [Edge] drawing mode, you 
can start drawing edges. To draw an object from, say, process p 1 to resource r I, click the 
mouse on pI and move the mouse outside p 1, at this stage you can decide to directly 
connect to r I or have a few temporary intermediate points. Clicking anywhere on the 
drawing area will set the line at that point, Finally, click on rl to finish the line drawing 
(actually, the whole operation is straightforward and works similarly to line-drawing 
operations in some of the commercial packages). When an edge is drawn from or to an 
object, the edge will have an affmity towards the center of the object. In the example 
above, when you enter ri, the edge will be captured temporarily by ri, and ri will release 
the edge when you move outside of rl. Note that you cannot draw an edge from a process 
to a process or from a resource to a resource. 

There are three types of edges: Request edges, Assignment edges, and Producer 
edges. When an edge is drawn from a process to a resource, it is a request edge. When an 
edge is drawn from a serial resource to a process, it is an assignment edge. When you 
draw an edge from a consumable resource to a process, you are denoting that the process 
is a producer of that consumable resource, and hence the edge is called a producer edge. 
If you try to draw an assignment edge from a serial resource containing no available 
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resource units, the edge drawing operating will abort on completion, and a message box 
will popup. To prevent this, you will have to increase the number of resource units ofthat 
resource type, and we will discuss how to do it in the next section. 

Set2 buttons contain the edit set. It contains various items useful for editing a 
graph. The items in Set2 are [Edit Specification], [Delete], and [Undo]. 

Using [Edit Specification] you can edit the various properties of an object. The 
only property of a process or an edge is its name. For a resource, the additional properties 
are its type and the number of units it holds. To edit an object's specification, it has to be 
hilited. This can be done by switching to the [Pointer] mode and clicking on the object. 
Once there is a hilited object, clicking on [Edit Specification] will popup a specification 
dialog box. For a process or an edge, the only item on the dialog box will be a name text 
entry box. The edit specification dialog box for a process or an edge is shown in the • 
figure on the following page. 

In the case of an edit specification dialog box for a resource, there will be a label 
denoting the type of the resource. Also, there will be a text entry box to enter the number 
of units. The edit specification dialog box for a resource is shown in the figure on the 
following pages. Consider the case of a serial resource. When a serial resource is created, 
it starts up with 1 unit. Suppose the unit is assigned to a process (by way of drawing an 
assignment edge), the unit count reduces by one and the resource display will show 0 
available units. This 0 is the number of available units, while the number of total units of 
the resource is still 1. So the number of total units is the number of units assigned to a 
resource, while the available units is that which is remaining. In the case of a consumable 
resource, the number of available units is the same as the number of total units, since 
once a consumable resource unit is assigned to a process, it is gone forever. 

When the edit specification dialog for a resource pops up, beside the entry area for 
the number ofunits, you will notice two toggle buttons, one labeled {Total Units} and the 
other one labeled {Available Units}. By default when popping up, the toggle is on 
{Available Units} and the number displayed on the Units entry area is the number of 
available units for that resource. Clicking on the {Total Units} will result in the total 
number of units held by the resource being displayed in the Units entry area. 

It is preferable to edit the number of units with the toggle on {Available Units}. 
When you increase the number of available units, the number of total units also increases 
by the same amount. Decreasing the number of available units likewise decreases the 
number of total units. You cannot decrease the number of available units below zero. The 
changes can immediately be observed by toggling to {Total Units}. If you prefer to edit 
the number of total units (i.e., the toggle is on {Total Units}), increasing it will increase 
the number of available units by the same amount. When decreasing the number of total 
units, you can only decrease it so that the corresponding decrease in the number of 
available units will not make the number of available units less than zero. If you enter an 
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incorrect value for the available units and toggle to {Total Units}, the toggle will remain 
in the {Available Units}, and vice versa. 

If the discussion in the previous paragraphs seem confusing to you, then the 
easiest way to approach the editing is to edit the specification of the resources before 
starting to draw any edges. In other words, after placing all the resources on the screen, 
simply set the number of available units of each resource to that mentioned in the 
problem statement. 

Clicking the [Delete] key will delete the currently hili ted object. The [Undo] key 
will undo the previously completed operation. For example, you can undo deletion of 
objects, movement of objects, drawing new objects, etc. One thing to note is that 
selecting an object is also considered an operation; so, if you delete an object and then 
select another object, the undo command will not undelete the deleted object, since the 
deletion operation would have become the previous to previous operation. 

3. Step 2: Analyze the Problem 

Ok, by now you must have a model on the screen exactly representing the 
problem statement, recheck to make sure the figure meets all the specifications and all the 
assignment, and the request and producer edges (if any) are correctly in place. If you 
haven't saved the file by now, save it under an appropriate name. This brings us to the 
buttons in Set3. 

Set3 is the analysis set, it consists of various items for analysis. After a model is 
drawn or displayed on the drawing area, selecting the [Analyze] button will analyze the 
model state to see if it is safe or deadlocked. After the analysis, a dialog box pops up, 
displaying the results. The Analysis Results dialog box is shown on the following page. 
Clicking OK on the dialog box, will load up the Results file (the file currently on the 
screen, which is the model you had drawn, will be closed; if you haven't saved that file, 
the system will prompt you to do so). The Results file is now loaded up on the screen. It 
will be assigned an automatically generated unique file name. The Results file will not be 
automatically saved, you will have to save it explicitly if necessary. 

If the analysis of the model resulted in a safe state, then the analysis dialog box 
which you saw earlier would have mentioned a reduction sequence. The Results file 
contains the reduction sequence. The first figure which you see in the Results file is the 
start state, Clicking on the [Next State] button, will take you to the next state obtained by 
reducing the first process in the reduction sequence. When you do so, you may observe 
that some of the edges have disappeared, the number of resource units updated, etc. These 
changes correspond to the fact that the first process' requested resources have been 
assigned and it has released any resources it was holding, or it has generated an infinite 
number of units if it is the producer of a consumable resource. In Pro graph, following the 
classical deadlock analysis conventions, infinity is represented by the symbol w . 
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Continue stepping through the reduction sequence by clicking the [Next State] 
button each time. If at any point you want to go back, click on the [Previous State] 
button. So you can step back and forth through the Results file. Clicking on the [Show 
Results] button will popup a dialog box, which will show you the analysis information 
pertaining to the Results file (this is the same information you saw earlier). 

Save the Results file using an appropriate file name by using the Save As menu 
item (or you can use the automatically-generated filename itself, if you wish). If you want 
to do additional analysis on the model, first close the Results file and then open the 
previously-saved model file and proceed. 

The [Analyze Process] is similar to [Analyze] except that the analysis starts with a 
particular process which you specify. When you select [Analyze Process], you will be 
asked to specify a process to reduce by. The system will analyze whether that process is 
safe or deadlocked. The same dialog box will popup as before. You can click OK if you 
wish to see the Results file. 

After an analysis, if the state is deadlocked, the Results file will contain a single 
model. In that case, clicking on [Next State] or [Previous State] will simply redisplay that 
one model. 

4. Aborting a Drawing Operation 

You can abort a drawing operation at any time by pressing the Esc key. This 
might be useful when doing edge drawing . 

---.-~~ 
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APPENDIXC 

SYSTEM ADMINISTRATOR GUIDE FOR PROGRAPH 

1. Maintenance 

Most of the configurable parameters of Prograph are stored in the header file 
"Types.h". 

The title of the Program is currently "Prograph". This string is appended to the 
name of all files shown at the title bar on top of the user interface. The title can be 
changed by redefining the string variable PROGRAPH _TITLE. 

The maximum number of points allowed in a Polyline is set currently to 100. This 
can be changed by redefining the variable MAX_POINTS. Also, the length of an arrow 
for an edge is set by default to 10 pixels and the half width of the arrow is set at 4 pixels. 
These are defined in the variables ARROW _LENGTH and ARROW _HALF_ WIDTH, 
respectively, and can be changed as required. 

The maximum length of a file name is currently set at 100 characters. This can be 
changed by redefining the variable MAX_FILE_NAME. Similarly, it is expected that the 
report string of an analysis will be no longer than 4000 characters. This limit can be 
changed by modifying the variable MAX_ ANAL YSIS_RESULTS_STR_LENGTH. The 
font for displaying the various labels on a node can be changed by redefining the variable 
FONT NAME. 

When a user clicks on a line, a tolerance of a few pixels is allowed. The default 
value of the tolerance level is 3 pixels on either side, or a total width of 6 pixels. This is 
defined in the variable HIT LINE WIDTH. - -

Currently, the virtual drawing area is divided into a 30 rows and 30 columns, each 
row or column being 50 pixels high and 50 pixels wide, respectively. A row or a column 
represents the minimum amount that the screen will scroll due to a scroll event. The 
NUM_CELL_ROWS variable holds the number of rows, and the 
NUM_CELL_COLUMNS variable holds the number of columns. The height of a row is 
defined in CELL_HEIGHT, and the width of a column is defined in CELL_ WIDTH. 
Changing these parameters will result in the changing of the virtual screen area as well as 
the scrolling parameters. 
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When a new node is created, the size of the node is set by default to 50 pixels. 
This can be changed by redefining the variable DEFAULT_NODE_SIZE. 

When a shape is clicked, a number of handles appear on the comers or end points 
of the shape. The default size of the square handles is 5 pixels. This size can be changed 
by modifying the variable HANDLE_ SIZE. 

The text that appears on a resource shape, to depict whether it is a serial resource 
or a consumable resource, is currently "*SR*" or "*CR*", respectively. These can be 
changed by redefining the variables SERIAL_RESOURCE_TEXT for serial resources 
and the variable CONSUMABLE RESOURCE TEXT for consumable resources. - -

The prefix of all automatically generated result files is currently set to "Res". This 
can be modified by redefining the variable RESULT_ PREFIX. 

2. Options 

Prograph is a software tool based on the Motif widget set. As mentioned earlier, 
the Motif widget set is built upon the X Toolkit. Hence, Prograph accepts all the standard 
X Toolkit command line options [Young 90]. The more popular options accepted by 
applications written using the X Toolkit are briefly described below. 

-bg color 

-display display 

-fg color 

-lCOlllC 

-rv 

-title string 

This option can be used to change the background color of an 
application window. The default background color is white. 

This option is used to define the X server to which an application 
is to be connected. 

This option can be used to change the foreground color of an 
application window. The default foreground color is black. 

This option ensures that Prograph is started by the window 
manager as an icon rather than as a normal window 

This option is used to swap the background and foreground 
colors of an application. 

This option sets the title of an application window. This option 
may be ignored by the window manager. The default window 
title is the string specified after the -e command line option. If 
none is specified, the application name is used. 

~~---~~ ~~-~--~~= ........ 
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APPENDIXD 

SAMPLE PROGRAM LISTINGS 

Due to space constraints the entire code listing could not be included in the 

appendix. Only the code for the Analyzer module is listed in this appendix. The Analyzer 

module contains the algorithms for analyzing a graph for deadlock, and hence was 

considered the most important module of the entire program. The module has two files: a 

header file, PrographAnalyzer.h and a source file, PrographAnalyzer.C. The listing is 

given below. 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II 
II Pro graph An a 1 y z e r . h 

II -----------------------------------
11 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II 
II Header file for the Analyzer module 
II 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

#ifndef PROGRAPHANALYZER_H 
#define PROGRAPHANALYZER_H 

II Forward reference 
II 
class TPrographView; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II class TPrographAnalyzer 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II 
class TPrographAnalyzer 

private: 

TPrographView *_theView; 

TGraphShapeList *_processList; 
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TGraphShapeList *_resourceList; 
TGraphShapeList *_edgeList; 

int _numProcesses; 
int _numResources; 
int _numEdges; 

int ** allocMatrix; -
int **_requestMatrix; 
int **_producerMatrix; 

int * - avail Vector; 

int * - total Vector; 

II For producer process of consumable resources 

II Vector containing the number of units of 
II each resource that are available 
II Vector containing the total number of units 
II of each resource available 

ResourceType *_typeVector; II Vector holding the types of the various 
II resources 

II Duplicate matrices and vectors 
int **_orgAllocMatrix; 
int **_orgRequestMatrix; 
int **_orgProducerMatrix; 
int *_orgAvailVector; 
int *_orgTotalVector; 

II Functions private to the Analyzer 
II 
void initializeinternalState(TPrographModel *aModel}; 

void restoreOriginal(}; 
BOOL isCombinationReducible(int *comb, int setSize}; 
void reduceCombination(int *comb, int setSize, 

TGraphShapeList *freedProcessList, TPrographModelList *modelList}; 
ReduceByProcessType reduceByProcess(int process, int *tempAvailVector}; 

void generateAnalysisResults(BOOL thereisACannotReduce, 
TGraphShapeList *freedProcessList, char *analysisResultsStr}; 

TPrographModel *generatePrographModel(TGraphShapeList *freedProcessList}; 
void addAllEdgesToModelExcept(TGraphShapeList *freedProcessList, 

TPrographModel *newModel, TGraphShapeList *newProcessList, 
TGraphShapeList *newResourceList}; 

BOOL isLessThanOrEqualTo(int *lhsVector, int *rhsVector, int size}; 
void addVector(int *vector, int *vectorToBeAdded, int size}; 
void subtractVector(int *vector, int *vectorToBeSubtracted, int size}; 
void addProducerVector(int *vector, int *producerVector, int size}; 

ResourceType *allocateResourceTypeVector(int size}; 

II Function for debugging 
void printinternalState(}; 

public: 

} ; 

TPrographAnalyzer(TPrographView *theView}; 
-TPrographAnalyzer(}; 

TPrographModelList *analyze(TPrographModel *aModel, ReduceType reduceType, 
TGraphShape *startProcess =NULL}; 

#endif 

90 
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11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II 
II Pro graph An a 1 y z e r . C 

II -----------------------------------
11 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II 
II Source file for the Analyzer module 
II 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

#include <Stdio.h> 
#include <stdlib.h> 
#include <assert.h> 

#include "Types.h" 
#include "Point.h" 
#include "Rectangle.h" 

#include "Shape.h" 
#include "PureShape.h" 
#include "GraphShape.h" 
#include "PrographModel.h" 
#include "PrographAnalyzer.h" 

#include "Command.h" 
#include "Movecommand.h" 
#include "NewNodeCommand.h" 
#include "Sizecommand.h" 
#include "EdgeCommand.h" 

#include "PrographView.h" 
#include "PaletteView.h" 
#include "Document.h" 
#include "PrographWindow.h" 

II Other useful functions 
II 
int **generateAllCombinations(int setSize, int &numCombs); 
int **generateSpecialCombinations(int specialNumber, int setSize, 

int &specialNumCombs) ; 
void generateCombinations(int numCombs, int setSize, int **combs); 
BOOL isCombination(int setSize, int *perm); 
void incrementPermutation(int setSize, int *perm); 
int power(int x, int y); 
int factorial(int x); 

BOOL isZeroVector(int *vector, int size); 
void setToZero(int *vector, int size); 
int **allocateintegerMatrix(int numRows, int numColumns); 
void freeintegerMatrix(int **matrix, int numRows); 
int *allocateintegerVector(int size); 

void copyMatrix(int **srcMatrix, int **destMatrix, int numRows, int numColumns); 
void copyVector(int *srcVector, int *destVector, int size); 
void printMatrix(int **matrix, int numRows, int numColumns); 
void printVector(int *vector, int size); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II Member functions for class TPrographAnalyzer 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II T Pro graph An a 1 y z e r 
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II 
II Description: 
II 
II Constructor for the TPrographAnalyzer object. Initializes the view 
II 
TPrographAnalyzer::TPrographAnalyzer(TPrographView *theView} 
{ 

theView = theView; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II -T Pro graph An a 1 y z e r 
II 
II Description: 
II 
II 
II 
II 

Destructor for the TPrographAnalyzer object. Here we free the matrices 
and vectors used for the analysis. 

TPrographAnalyzer::-TPrographAnalyzer(} 
{ 

freeintegerMatrix(_allocMatrix, _numProcesses}; 
freeintegerMatrix(_requestMatrix, _numProcesses}; 
freeintegerMatrix(_producerMatrix, _numProcesses}; 
free (_availVector}; 
free (_totalVector}; 
free (_typeVector}; 

II Free duplicate matrices 
freeintegerMatrix(_orgAllocMatrix, _numProcesses}; 
freeintegerMatrix(_orgRequestMatrix, _numProcesses}; 
freeintegerMatrix(_orgProducerMatrix, _numProcesses}; 
free (_orgAvailVector}; 
free (_orgTotalVector}; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II an a l y z e 
II 
II Description: 
II 
II 
II 
II 
II 
II 

The member function which is called externally for analyzing a model. 
A TPrographModel object is passed as an argument. The function after the 
analysis returns a list of models representing the successive states of 
the reduction sequence. 

TPrographModelList * 
TPrographAnalyzer::analyze(TPrographModel *aModel, ReduceType reduceType, 

TGraphShape *startProcess} 

int comb; 
int process; 
int **combs; 
int numCombs; 
BOOL thereisACannotReduce; 
TGraphShapeList *freedProcessList; 
TPrographModel *newModel; 
TPrographModelList *modelList; 
char analysisResultsStr[MAX_ANALYSIS_RESULTS_STR_LENGTH]; 

initializeinternalState(aModel}; 
modelList =new TPrographModelList(_theView}; 
freedProcessList = new TGraphShapeList; 
II Generate the existing model 
II 
newModel = generatePrographModel(freedProcessList}; 
modelList->add(newModel}; 
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if (reduceType == REDUCE SPECIFIC) 
{ -

process= _processList->getindex(startProcess); 
combs= generateSpecialCombinations(process, _numProcesses, numCombs); 

else 

combs generateAllCombinations( numProcesses, numCombs); 

thereisACannotReduce = TRUE; 
for (comb = 0; comb < numCombs; comb++) 
{ 

restoreOriginal(); 

if (isCombinationReducible(combs[comb], numProcesses) 
{ - TRUE) 

restoreOriginal(); 
reduceCombination(combs[comb], _numProcesses, freedProcessList, 

modelList); 
thereisACannotReduce = FALSE; 
break; 

II Finishing touches 
II 
generateAnalysisResults(thereisACannotReduce, freedProcessList, 

analysisResultsStr) ; 
modelList->setAnalysisResults(analysisResultsStr); 
modelList->setChangesMade(); 

II We will have to popout each entry of the freedProcessList 
free (freedProcessList); 
freeintegerMatrix(combs, numCombs); 
return modelList; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II restore 0 rig in a 1 
II 
II Description: 
II 
II 
II 
II 
II 
II 

Restore the orignal values of the matrices 
is called before starting to analyze a new 
analysis of the previous combination would 
and vectors. 

and vectors. This function 
combination, since the 
have modified the matrices 

void 
TPrographAnalyzer::restoreOriginal() 
{ 

II Restore the original state 
copyMatrix(_orgAllocMatrix, _allocMatrix, _numProcesses, _numResources); 
copyMatrix(_orgRequestMatrix, _requestMatrix, _numProcesses, 

_numResources); 
copyMatrix(_orgProducerMatrix, _producerMatrix, _numProcesses, 

_numResources); 
copyVector(_orgAvailVector, _availVector, _numResources); 
copyVector(_orgTotalVector, _totalVector, _numResources); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II is Combination Red u c i b 1 e 
II 
II Description: 
II 

93 

,I 



...... 

II Check if a particular combination (Say 2-1-3, in the case of a system 
II containing 3 processes) is reducible. 
II 
BOOL 
TPrographAnalyzer::isCombinationReducible(int *comb, int setSize) 
{ 

int i, process; 
int *ternpAvailVector; 
ReduceByProcessType reduce; 

for (i = 0; i < setSize; i++) 
{ 

process = comb[i]; 
ternpAvailVector = allocateintegerVector(_nurnResources); 
reduce= reduceByProcess(process, ternpAvailVector); 

switch (reduce) 
{ 
case CAN_REDUCE: 

addVector(_availVector, ternpAvailVector, _nurnResources); 
break; 

case CANNOT REDUCE: 
free (ternpAvailVector); 
return FALSE; 

case NEED NOT REDUCE: 
break; 

free (ternpAvailVector) ; 

return TRUE; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II reduce Corn bin at ion 
II 
II Description: 
II 
II 
II 
II 
void 

Reduce the original state by a particular combination (Say 2-1-3). This is 
done after checking if the above combination is found to be reducible. 

TPrographAnalyzer::reduceCombination(int *comb, int setSize, 
TGraphShapeList *freedProcessList, TPrographModelList *rnodelList) 

int i, process; 
int *ternpAvailVector; 
ReduceByProcessType reduce; 
TGraphShape *processShape; 
TPrographModel *newModel; 

for (i = 0; i < setSize; i++) 
{ 

process = comb[i]; 
ternpAvailVector = allocateintegerVector(_nurnResources); 
reduce= reduceByProcess(process, ternpAvailVector); 
assert (reduce!= CANNOT_REDUCE); 

if (reduce == CAN REDUCE) 
{ -

addVector(_availVector, ternpAvailVector, _nurnResources); 
processShape = _processList->getShapeAtindex(process); 
freedProcessList->addToBack(processShape); 
newModel = generatePrographModel(freedProcessList); 
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modelList->add(newModel); 

free (tempAvailVector); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II reduce ByPro cess 
II 
II Description: 
II 
II 
II 
II 
II 
II 

Given a combination, this function reduces the orignal state of the graph 
by a particular process in the combination (passed as an argument) . 
So this function is repeatedly called by the reduceCombination function 
to reduce a complete combination. 

ReduceByProcessType 
TPrographAnalyzer::reduceByProcess(int process, int *tempAvailVector) 
{ 

int resource; 

II If the request matrix is less than the available matrix 
II then we can reduce by this process, if not return FALSE 
II 
if (isLessThanOrEqualTo(_requestMatrix[process], _availVector, 

_numResources) == FALSE) 

return CANNOT_REDUCE; 

II However now we have to check if the process is already 
II isolated from the rest of the graph (no edges, i.e., all matrix 
II rows of the process will be zeros). If so, then we dont need 
II to consider this process 
II 
if ((isZeroVector(_requestMatrix[process], _numResources)) && 

(isZeroVector(_allocMatrix[process], _numResources)) && 
(isZeroVector(_producerMatrix[process], _numResources))) 

return NEED_NOT_REDUCE; 

addVector(tempAvailVector, _allocMatrix[process], 
_numResources); 

II Now our aim is to free up as many processes's claims as we 
II can. So we will be continuing with the for loop. So the 
II next process down the line, will see a reduced _availVector 
II (due to the subtraction), if it can satisfy itself with that, 
II then that process also will be freed. We add the request 
II vector to the tempVector, so that it can be added later on 
II Note this whole process is a virtual operation 
II 
subtractVector(_availVector, _requestMatrix[process], 

_numResources); 

II To handle a consumable resource, say Rx, we set the 
II _requestMatrix[process] (Rx] too, because we should prevent that 
II entry being added to tempAvailVector (which will be added later 
II to _availVector). Note that this operation is done after 
II subtracting the _requestMatrix[process] vector from the 
II _availVector. I dont know whether this is an elegent solution 
II or not 
II Because a consumable resources unit will be gone after the allocation 
II 
for (resource = 0; resource < numResources; resource++) 
{ -

if (_typeVector[resource] RESOURCE_CONSUMABLE) 
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_requestMatrix[process] [resource] = 0; 

addVector(tempAvailVector, _requestMatrix[process], 
_numResources); 

addProducerVector(tempAvailVector, _producerMatrix[process], 
_numResources); 

setToZero(_allocMatrix[process], _numResources); 
setToZero(_requestMatrix[process], _numResources); 
setToZero(_producerMatrix[process], _numResources); 

II Since we can reduce by the process, return CAN_REDUCE 
II 
return CAN_REDUCE; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II gene r a t e Pro graph Mode 1 
II 
II Description: 
II 
II This routine uses the current internal state of the Analyzer object 
II to create a model 
II 
TPrographModel * 
TPrographAnalyzer::generatePrographModel(TGraphShapeList *freedProcessList) 
{ 

int process; 
int resource; 
TGraphShape *processShape; 
TGraphShape *resourceShape; 
TProcess *newProcessShape; 
TResource *newResourceShape; 
TGraphShapeList *newProcessList; 
TGraphShapeList *newResourceList; 
TPrographModel *newModel; 

newModel =new TPrographModel(_theView); 

newProcessList = new TGraphShapeList; 
newResourceList = new TGraphShapeList; 

II Add all the processes and resources to the model. 
II 
processShape = _processList->first(); 
while (processShape != NULL) 
{ 

newProcessShape = (TProcess *) processShape->clone(); 
newModel->addNode(newProcessShape); 

II We construct this so that when we add the edges we can send its new 
II source and destination shapes. Note - addToBack is very important 
II 
newProcessList->addToBack(newProcessShape); 
processShape = _processList->next(); 

resourceShape = _resourceList->first(); 
while (resourceShape != NULL) 
{ 

resource= _resourceList->getindex(resourceShape); 
newResourceShape = (TResource *) resourceShape->clone(); 
newResourceShape->initializeResourceCounts(); 
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II Now in the new model, we set the number of avaliable resources 
II to the total (in the case of SERIAL resources). Later on when we 
II add edges. this will automatically reduce 
II 
if ( typeVector[resource] == RESOURCE SERIAL) 
{ - -

} 
else 
{ 

newResourceShape->setNumTotalResources(_totalVector[resource], 
FALSE); II Dont refresh text display 

newResourceShape->setNumAvailableResources(_availVector[resource], 
FALSE); II Same explanation as above 

newModel->addNode(newResourceShape); 
newResourceList->addToBack(newResourceShape); 
resourceShape = _resourceList->next(); 

addAllEdgesToModelExcept(freedProcessList, newModel, newProcessList, 
newResourceList) ; 

II Clean up 
free(newResourceList); 
free(newProcessList); 

return newModel; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II generate An a 1 y sis Res u 1 t s 
II 
II Description: 
II 
II Generate a report of the results of the analysis. 
II 
void 
TPrographAnalyzer::generateAnalysisResults(BOOL thereisACannotReduce, 

TGraphShapeList *freedProcessList, char *analysisResultsStr) 

TGraphShape *process; 
char shapeName[MAX_STR_LENGTH]; 

II If the results of the analysis exceeds MAX_ANALYSIS ... STR_LENGTH 
II then the program will core dump. I am not expecting such a long 
II result. It can happen only if there are hundreds of nodes and edges in 
II the model to be analyzed 

strcpy(analysisResultsStr, ""); 

switch (thereisACannotReduce) 
{ 
case TRUE: 

strcat(analysisResultsStr, "The State is *DEADLOCKED* or *UNSAFE*"); 
break; 

case FALSE: 
strcat(analysisResultsStr, "The State is *SAFE*"); 
break; 

if (freedProcessList->size() != 0) 
{ 

strcat(analysisResultsStr, "\n\n"); 
strcat(analysisResultsStr, "Reduction Sequence"); 

process= freedProcessList->first(); 

97 



111111116. 

while (process != NULL) 
{ 

process->getShapeName(shapeName); 
strcat(analysisResultsStr, • - "); 
strcat(analysisResultsStr, shapeName); 
process= freedProcessList->next(); 

strcat(analysisResultsStr, "\n\n"); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II add A l lEdges ToM ode lEx c e p t 
II 
II Description: 
II 
II 
II 
II 
II 

This function is part of generating a new graph. To the new graph, this 
function adds the edges connected to all processes except those of the 
processes passed as an argument in the freedProcessList list. 

void 
TPrographAnalyzer::addAllEdgesToModelExcept( 

TGraphShapeList *freedProcessList, TPrographModel *newModel, 
TGraphShapeList *newProcessList, TGraphShapeList *newResourceList) 

int process; 
int resource; 
TEdge *edgeShape; 
TEdge *newEdgeShape; 
TGraphShape *newSourceShape; 
TGraphShape *newDestShape; 

II Construct the newEdgeList which will consist of only edges that 
II do not have any process in the freedProcessList as an end point shape 
II i.e., theoretically the freed processes are giving up the resources 
II allocated to them or giving up the resource requests they made, or 
II if the freed processes are producers, removing their producer edges 
II 
edgeShape = (TEdge *) _edgeList->first(); 
while (edgeShape != NULL) 
{ 

II If any of the end points of the edge are one among the freed 
II processes, then we should not add that edge to the new model, 
II hence we continue 
II 
if ((freedProcessList->isMember(edgeShape->source())) I I 

(freedProcessList->isMember(edgeShape->destination()))) 

edgeShape = (TEdge *) _edgeList->next(); 
continue; 

II Duplication 

II Find the clone shapes of the source and dest, so that we can 
II be up to date 
II 
if ((edgeShape->source())->shapeType() == SHAPE_PROCESS) 
{ 

process= _processList->getindex(edgeShape->source()); 
newSourceShape = newProcessList->getShapeAtindex(process); 
resource= _resourceList->getindex(edgeShape->destination()); 
newDestShape = newResourceList->getShapeAtindex(resource); 

else if ((edgeShape->source())->shapeType() ==SHAPE RESOURCE) 
{ -

resource= _resourceList->getindex(edgeShape->source()); 
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else 

newSourceShape = newResourceList->getShapeAtindex(resource); 
process= _processList->getindex(edgeShape->destination()); 
newDestShape = newProcessList->getShapeAtindex(process); 

assert (0); 

II Now clone the edge shape and add the clone to the 
II newModel 
II 
newEdgeShape = (TEdge *) edgeShape->clone(newSourceShape, newDestShape); 

II FALSE in the next statement signifies not to update the resource 
II shape numUnits *display* (of course the numUnits will be updated) 
II 
newModel->addEdge(newEdgeShape, newSourceShape, newDestShape, FALSE); 

edgeShape = (TEdge *) _edgeList->next(); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II in it i a 1 i zeIn tern a 1St ate 
II 
II Description: 
II 
II Initializes all the internal matrices and vectors. 
II 
void 
TPrographAnalyzer::initializeinternalState(TPrographModel *aModel) 
{ 

int edge; 
int process; 
int resource; 
TGraphShape *sourceShape; 
TGraphShape *destShape; 
TProcess *processShape; 
TResource *resourceShape; 
TEdge *edgeShape; 

_processList = aModel->processList(); 
_resourceList = aModel->resourceList(); 
_edgeList = aModel->edgeList(); 

_numProcesses = _processList->size(); 
_numResources = _resourceList->size(); 
_numEdges = _edgeList->size(); 

_allocMatrix = allocateintegerMatrix(_numProcesses, _numResources); 
_requestMatrix = allocateintegerMatrix(_numProcesses, _numResources); 
_producerMatrix = allocateintegerMatrix(_numProcesses, _numResources); 

_availVector = allocateintegerVector(_numResources); 
_totalVector = allocateintegerVector(_numResources); 
_typeVector = allocateResourceTypeVector(_numResources); 

II Allocate duplicate matrices 
_orgAllocMatrix = allocateintegerMatrix(_numProcesses, _numResources); 
_orgRequestMatrix = allocateintegerMatrix(_numProcesses, _numResources); 
_orgProducerMatrix = allocateintegerMatrix(_numProcesses, _numResources); 

_orgAvailVector 
_orgTotalVector 

allocateintegerVector(_numResources); 
allocateintegerVector(_numResources); 

for (resource = 0; resource < numResources; resource++) 
{ -
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resourceShape = (TResource *) _resourceList->getShapeAtindex(resource); 
_availVector[resource) = resourceShape->getNumAvailableResources(); 
_totalVector[resource) = resourceShape->getNumTotalResources(); 
_typeVector[resource) = resourceShape->resourceType(); 

II Now fill the matrices and Vector 
for (edge = 0; edge < _numEdges; edge++) 

edgeShape = (TEdge *) _edgeList->getShapeAtindex(edge); 
sourceShape = edgeShape->source(); 
destShape = edgeShape->destination(); 

if (sourceShape->shapeType() SHAPE_ PROCESS) 
{ 

processShape = (TProcess *) sourceShape; 
resourceShape = (TResource *) destShape; 

process= _processList->getindex(processShape); 
resource= _resourceList->getindex(resourceShape); 
_requestMatrix[process) [resource)++; 

else if (sourceShape->shapeType() == SHAPE RESOURCE) 
{ -

resourceShape = (TResource *) sourceShape; 
processShape = (TProcess *) destShape; 

resource= _resourceList->getindex(resourceShape); 
process= _processList->getindex(processShape); 

switch ( typeVector[resource)) 
{ -

case RESOURCE SERIAL: 
_allocMatrix[process) [resource)++; 
break; 

case RESOURCE_CONSUMABLE: 
_producerMatrix[process) [resource)++; 
break; 

II Now save the original state in the duplicate matrices 
copyMatrix(_allocMatrix, _orgAllocMatrix, _numProcesses, _numResources); 
copyMatrix(_requestMatrix, _orgRequestMatrix, _numProcesses, _numResources); 
copyMatrix(_producerMatrix, _orgProducerMatrix, _numProcesses, 

_numResources) ; 
copyVector(_availVector, _orgAvailVector, _numResources); 
copyVector(_totalVector, _orgTotalVector, _numResources); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II add Vector 
II 
II Description: 
II 
II 
II 
II 
II 
void 

This function adds two vectors. Since the vectors can contain an 
INFINITE value as one of its elements, we have to take specifically 
take care of that. 

TPrographAnalyzer::addVector(int *vector, int *vectorToBeAdded, int size) 
{ 

int i; 

for (i 0; i < size; i++) 
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if ((vectorToBeAdded[iJ ==INFINITY) I I (vector[i] 
vector[i] = INFINITY; 

else 
vector [i] vector[i] + vectorToBeAdded[i]; 

INFINITY)) 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II subtract vector 
II 
II Description: 
II 
II 
II 
II 

Subtract two vectors, keeping in mind that the vectors can have INFINITY 
as one of its elements. 

void 
TPrographAnalyzer::subtractVector(int *vector, int *vectorToBeSubtracted, 

int size) 

int i; 

for (i = 0; i < size; i++) 
{ 

II The vectorToBeSubtracted will be a request vector 
II 
assert(vectorToBeSubtracted[i] !=INFINITY); 
if (vector[i] == INFINITY) 

else 
{ 

vector[i] = INFINITY; 

vector[i] = vector[i) - vectorToBeSubtracted[i]; 
assert (vector[i] >= 0); II Should not go negative. if it does 

II then there's a bug in the program 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II add Producer Vector 
II 
II Description: 
II 
II Called to add a vector in the producer matrix to a general resource 
II vector. 
II 
void 
TPrographAnalyzer::addProducerVector(int *vector, int *producerVector, int size) 
{ 

int i; 

II Each element of the producerVector denotes the number of producer edges 
II particular process might be having with a particular resource 
II If it is at least 1, then we set the resulting vector element to 
II INFINITY, denoting that the process released the resource, and thus 
II resulted in an INFINITE number of resources being placed in the resource 
II Note - this addition cannot be called an addition in the true sense of 
II the term 
II 
for (i = 0; i < size; i++) 
{ 

if (producerVector[i] > 0) 
vector[i] = INFINITY; 

else 
vector [i] vector[i]; 
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11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II isLes s Than 0 r E qua 1 To 
II 
II Description: 
II 
II Compare two vectors for<= 
II 
BOOL 
TPrographAnalyzer::isLessThanOrEqualTo(int *lhsVector, int *rhsVector, int size} 
{ 

int i; 

for (i = 0; i < size; i++) 
{ 

II lhsVector will be a request vector- No term of it cannot be infinity 
II 
assert (lhsVector[i] !=INFINITY}; 

if (rhsVector[i] == INFINITY} 
continue; 

if (lhsVector[i] > rhsVector[i]} 
return FALSE; 

II Of course rhs is greater 

II Aha!, lhs is greater, so NO!!! 

II If we reach here, then all lhs is less than or equal to all of rhs 
II 
return TRUE; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II a 1 1 ocate Resource Type Vector 
II 
II Description: 
II 
II Allocate memory for a Resource vector 
II 
ResourceType * 
TPrographAnalyzer::allocateResourceTypeVector(int size} 
{ 

ResourceType *newVector; 

newVector = (ResourceType *}malloc(size * sizeof(ResourceType}}; 
assert (newVector !=NULL}; 

return newVector; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II print Intern a 1St ate 
II 
II Description: 
II 
II Print the internal state of the analyzer (Used for debugging} 
II 
void 
TPrographAnalyzer::printinternalState(} 
{ 

printf("\n\n"}; 
printf("************************************************************\n"); 
printf ( "Num Processes = \d\n", _numProcesses}; 
printf ( "Num Resources = \d\n", nurnResources}; 
printf("Num Edges= 'l;d\n", _numEdges}; 

printf ("Allee matrix\n"} ; 
printMatrix(_allocMatrix, _numProcesses, _nurnResources}; 
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.1__ 

printf ("Request matrix\n") ; 
printMatrix(_requestMatrix, _numProcesses, _numResources); 

printf("Producer matrix\n"); 
printMatrix(_producerMatrix, _numProcesses, _numResources); 

printf ("Avail vector") ; 
printVector(_availVector, _numResources); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II Other miscellaneous functions 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II generate A 1 1 Combinations 
II 
II Description: 
II 
II 
II 
II 
II 
II 

Given a particular maximum value (denoted by setSize), generate all 
combinations possible for number below that value. 
Say for 3 processes in the system, the combinations generated are 
0-1-2, 0-2-1, 1-2-0, 1-0-2, 2-1-0, 2-0-1 

int ** 
generateAllCombinations(int setSize, int &numCombs) 
{ 

int **combs; 

numCombs = factorial(setSize); 
combs= allocateintegerMatrix(numCombs, setSize); 
generateCombinations(numCombs, setSize, combs); 
return combs; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II generateS p e cia 1 Combinations 
II 
II Description: 
II 
II 
II 
II 
II 

Generate combinations with a specific number as its first element. 
For a setSize of 3, and the initial element 2, the combinations 
generated are 2-0-1 and 2-1-0 

int ** 
generateSpecialCombinations(int specialNumber, int setSize, 

int &specialNumCombs) 

int i; 
int **combs; 
int **specialCombs; 
int numCombs; 
int combsFilled; 

II We generate the combinations having only the specialNumber as the 
II first element of the combination. This is to support reduction by a 
II particular process 

numCombs = factorial(setSize); 
specialNumCombs = numCombs I setSize; 
combs= allocateintegerMatrix(numCombs, setSize); 
specialCombs = allocateintegerMatrix(specialNumCombs, setSize); 

generateCombinations(numCombs, setSize, combs); 
combsFilled = 0; 
for (i = 0; i < numCombs; i++) 
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..... 

if {combs [i] [0] == specialNumber) 
{ 

copyVector{combs[i], specialCombs[combsFilled], setSize); 
combsFilled++; 

assert {specialNumCombs combsFilled) ; 

free {combs); 
return specialCombs; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II generate Combinations 
II 
II Description: 
II 
II The core routine to generate the combinations. 
II 
void 
generateCombinations{int numCombs, int setSize, int **combs) 
{ 

int i, j, maxPerms; 
int combsFilled; 
int *perm; 

perm= allocateintegerVector{setSize); 
maxPerms = power{setSize, setSize); 
combsFilled = O; 

for {i = 0; i < maxPerms; i++) 
{ 

incrementPermutation{setSize, perm); 
if {isCombination{setSize, perm) == TRUE) 
{ 

for {j = 0; j < setSize; j++) 
combs[combsFilled] [j] = perm[j]; 

combsFilled++; 

assert {numCombs 
free {perm) ; 

combsFilled); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II i s Comb in at i on 
II 
II Description: 
II 
II Check if whether a set of numbers is a combination {or is it a permutation) 
II 
BOOL 
isCombination{int setSize, int *perm) 
{ 

inti, j; 
int num; 

for {i = 0; i < setSize; i++) 

num = perm [i] ; 
for {j = 0; j < setSize; j++) 
{ 

if {i == j) 
continue; 
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if (perm[j] == num) 
return FALSE; 

return TRUE; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II increment Permutation 
II 
II Description: 
II 
II Increment the permutation and get the next permutation in the sequence 
II 
void 
incrementPermutation(int setSize, int *perm) 
{ 

int i; 

for (i = (setSize- 1); i >= 0; i--) 
{ 

if (perm[i] < (setSize - 1)) 
{ 

perm[i] = perm[i] + 1; 
return; 

perm[i] = O; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II power 
II 
II Description: 
II 
I I Find xAy 
II 
int 
power(int x, int y) 
{ 

int i, pow; 

pow = 1; 
for (i = 0; i < y; i++) 

pow = pow * x; 

return pow; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II factor i a 1 
II 
II Description: 
II 
II Find the factorial of a number 
II 
int 
factorial(int x) 
{ 

int fact; 

if (x == 0) 
return 1; 

fact= x * factorial(x- 1); 
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return fact; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II is Zero Vector 
II 
II Description: 

II 
II Ascertain if a vector consists of all zero elements 

II 
BOOL 
isZeroVector(int *vector, int size) 

{ 
int i; 

for (i = 0; i < size; i++) 
{ 

if (vector [i) ! = 0) 
return FALSE; 

II If we reach here then all the elements in the vector were zeros. i.e., 
II the condition check could not find any non zero element, so this 
II vector consists of all zeros 

II 
return TRUE; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II set ToZer o 
II 
II Description: 
II 
II Set all the elements of a vector to zero 

II 
void 
setToZero(int *vector, int size) 
{ 

int i; 

for (i = 0; i < size; i++) 
vector[i) = 0; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II a 1 1 ocate Integer Matrix 

II 
II Description: 
II 
II Allocate a matrix of integer elements 

II 
int ** 
allocateintegerMatrix(int numRows, int numColumns) 

{ 
inti, j; 
int **newMatrix; 

newMatrix = (int **) malloc(numRows * sizeof(int *)); 
assert (newMatrix !=NULL); 

for (i = 0; i < numRows; i++) 
{ 

newMatrix(i] = (int *) malloc(numColumns * sizeof(int)); 
assert (newMatrix[i) !=NULL); 

II Zero it out 
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for (i = 0; i < numRows; i++) 
for (j = 0; j < numColumns; j++) 

newMatrix[i) [j) = 0; 

return newMatrix; 

11111111111111111111111111111111111111111111111111111111111111111111111111////ll 
II free Integer Matrix 
II 
II Description: 
II 
II Free a matrix containing integer elements 
II 
void 
freeintegerMatrix(int **matrix, int numRows) 
{ 

int i; 

for (i = 0; i < numRows; i++) 
free (matrix[i1); 

free (matrix) ; 

lllllllllllll/111111111111111111111111111111111111111111111111111111111111111111 
II a 1 1 ocate Integer Vector 
II 
II Description: 
II 
II Allocate a vector of integer elements 
II 
int * 
allocateintegerVector(int size) 
{ 

int i; 
int *newVector; 

newVector = (int *)malloc(size * sizeof(int)); 
assert (newVector !=NULL); 

II Zero out the vector 
for (i = 0; i < size; i++) 

newVector[i1 = 0; 

return newVector; 

llllllllllllllllllllllllllll/llllllllllllllllll/11111111111111111111111111111111 
II copy Matrix 
II 
II Description: 
II 
II Copy function for a matrix 
II 
void 
copyMatrix(int **srcMatrix, int **destMatrix, int numRows, int numColumns) 
{ 

inti, j; 

for (i = 0; i < numRows; i++) 
for (j = 0; j < numColumns; j++) 

destMatrix [i) [j 1 = srcMatrix [i1 [j 1 ; 

lllllllllll/lllllllllllllllllllll/111111111111111111111111111111111111111111111/ 
II copy Vector 
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II 
II Description: 
II 
II Copy function for a vector 
II 
void 
copyVector(int *srcVector, int *destVector, int size) 
{ 

int i; 

for (i = 0; i < size; i++) 
destVector[i] = srcVector[i]; 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II print Matrix 
II 
II Description: 
II 
II Print out a matrix (for debugging) 
II 
void 
printMatrix(int **matrix, int numRows, int numColumns) 
{ 

int i, j; 

for (i = 0; i < numRows; i++) 
{ 

for (j = 0; j < numColumns; j++) 
printf("td\t", matrix[i] [j]); 

printf("\n"); 

printf ( "\n"); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 
II p r in tV e c tor 
II 
II Description: 
II 
II Print out a vector (for debugging) 
II 
void 
printVector(int *vector, int size) 
{ 

int i; 

printf("\n"); 
for (i = 0; i < size; i++) 

printf("td\t", vector[i]); 
printf("\n"); 
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