
TOWARDS A GRAPHICAL DEADLOCK ANALYSIS TOOL

By

BOBBY STEPHEN KOSHY

Bachelor of Technology (Honors)

Regional Engineering College

Calicut, India

1992

Submitted to the faculty ofthe
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
December 1995

I

I

.._ - - l

TOWARDS A GRAPHICAL DEADLOCK ANALYSIS TOOL

Thesis Approved:

c:~::>

('v'\ o-v.s \ly- ~ Ovt"' o"

I
7/ u '-JV

/c;X. z:. 1/e---< . ---1
7

Qhr571ACI/W c.~
Dean of the Graduate College

11

~

PREFACE

The purpose of this thesis was to implement a graphical tool to model and analyze

operating system deadlocks using Process-Resource graphs. The topics covered as

background and context for the implementation in this work consist of introductions to:

(1) operating system deadlocks, including algorithms for their detection and analysis; (2)

graph drawing algorithms, graph editors, and graph browsers; (3) the Sequent S/81

computer system including its architecture and operating systems; (4) the X Window

System including its definition, fundamental components, client/server interaction, and

software layers; (5) the OSF/Motif toolkit including its architecture, widget set, and

programming structure; and (6) the MotifApp application framework.

The programming part of this work consisted of the design and implementation of

the modeling and analysis tool referred to as Prograph including its class hierarchy, data

structures, widget hierarchy, and interface objects. The Prograph program, coded in the

C++ language, has about 15,000 lines of code with 3 major class hierarchies, 56 classes,

and 394 member and non-member functions. The Prograph program enables users to

model operating system Process-Resource graphs rapidly, analyze the graphs, and then

view the different stages of the deadlock analysis. The deadlock representation and

analysis tool Prograph was prototypically evaluated by the students in the graduate level

111

........_

Operating Systems II class as well as a number of graduate students at the Computer

Science Department of Oklahoma State University. The feedback obtained from the users

of the Prograph program indicated that it was functional and useful for modeling and

analyzing Process-Resource graphs.

IV

ACKNOWLEDGMENTS

I wish to express my appreciation and gratitude to my major professor Dr. Mansur

H. Samadzadeh. During the course of my graduate studies, his advice, intelligent

guidance, assistance, and constructive criticism have been a constant source of inspiration

and motivation for me. I also wish to thank Drs. Blayne E. Mayfield and George E.

Hedrick for serving on my graduate committee.

Additionally, I wish to thank Dr. Glenn 0. Brown at the Department of

Biosystems and Agricultural Engineering, Oklahoma State University, for his support

through employing me as a Graduate Research Assistant. Also, I appreciate the

encouragement given to me by Dr. Marvin Stone of the same department.

Finally, I would like to express my sincere gratitude to my parents, T. K. Koshy

and Mary Koshy, for their continued support and encouragement, without which this

endeavor would not have been successful.

v

.-......_ ~-="· "~~~·""'-,·"""· '==~~~=~,~-~~~~~ l

~-

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. LITERATURE REVIEW . 3

2.1 Operating System Deadlocks . 3

2.1.1 Conditions for Deadlock . 3

2.1.2 Deadlock Modeling . 4

2.1.3 Deadlock Detection and Recovery . 5

2.1.3.1 Detection with One Resource ofEach Type 5

2.1.3.2 Detection with Multiple Resources ofEach Type 6

2.2 Drawing Directed Graphs . 7

2.2.1 Graph Drawing Algorithms . 7

2.2.2 Graph Editors and Graph Browsers . 9

III. IMPLEMENTATION ISSUES .. 11

3.1 Implementation Platform . 11

3 .1.1 Sequent Symmetry S/81 . 11

3.2 Implementation Environment . 12

3.2.1 X Window System .. 12

3.2.2 OSF/MotifToolkit .. 14

3 .2.3 MotifApp Application Framework . 19

IV. SOFTWARE ARCHITECTURE AND DETAILED DESIGN 22

4.1 Description ... 22

4.2 User Interface .. 23

4.3 Software Architecture .. 25

4.3.1 Prograph View Class .. 27

4.3.2 Shape Classes ... 28

Vl

--- ~~.

..........__

Chapter Page

4.3.3 Command Classes .. 29

4.3.4 Prograph Model Class ... 31

4.3.5 Prograph Analyzer Class 32

4.3.6 Dialog Classes .. 32

4.4 Design of the Prograph View Class 33

4.4.1 Invoking Command objects . 34

4.4.2 Hit Testing a Line ... 37

4.5 Design of Shape Classes .. 38

4.5.1 TShape class .. 38

4.5.2 TPureShape class ... 38

4.5.3 TGraphShape Class ... 40

4.5.4 THilite Class .. 41

4.5.5 TText class ... 42

4.6 Design of Command Classes ... 42

4.6.1 Event Handling Using Finite State Automata 43

4.6.2 AutoScrolling . 45

4.6.3 TNewNodeCommand Class and Its Subclasses 47

4.6.4 Aborting a Command . 48

4.6.5 Implementing Undo . 48

4. 7 Design of Pro graph Model Class . 50

4.8 Design ofPrograph Analyzer Class 54

4.8.1 Main Algorithm . 54

4.8.2 Reducing a State by a Process . 55

4.8.3 Generating a New Intermediate Model 57

4.9 Prograph Module Listing ... 57

V. EVALUATION OF THE TOOL .. 60

5.1 User Evaluation .. 60

5.2 Sample Systems Modeled by Prograph 61

VI. SUMMARY AND FUTURE WORK .. 67

6.1 Summary . 67

6.2 Future Work ... 68

Vll

l

......._

Chapter Page

REFERENCES . 70

APPENDICES .. 73

APPENDIXA-GLOSSARY ANDTRADEMARKINFORMATION 74

APPENDIX B - USER GUIDE FOR PROGRAPH . 78

APPENDIX C- SYSTEM ADMINISTRATOR GUIDE FOR
PROGRAPH ... 87

APPENDIX D - SAMPLE PROGRAM LISTINGS . 89

vm

LIST OF FIGURES

Figure Page

1. Representing Process-Resource states graphically . 4

2. Layers in the X Window System . 13

3. Architecture of OSF /Motif . 15

4. A class inheritance hierarchy for the Motif widget set 18

5. The Prograph User Interface ... 24

6. Model-View-Controller architecture . 26

7. Software Architecture ofPrograph .. 27

8. Shape class hierarchy . 29

9. Command class hierarchy ... 30

10. Dialog class hierarchy . 33

11. A Sample Process-Resource Graph ... 62

12. Step 1 in the reduction sequence for Figure 11 63

13. Step 2 in the reduction sequence for Figure 11 64

14. The final state of the reduction sequence for Figure 11 65

15. Another Sample Process-Resource Graph 66

IX

...........___

X

1717 · ~JqtU uomsmul ~Jdurns ·1

Stl1S:V l .10 lSI1

......

CHAPTER I

INTRODUCTION

One of the tasks of an operating system is to manage the allocation of resources

among cooperating and competing processes. An operating system has to manage the

"fair" allocation of resources. During this process, unless the dynamic situation is

properly managed, there is a possibility of things going awry and resulting in scenarios

that can lead to deadlock and starvation. A process is said to be in a state of deadlock if it

is waiting for a particular event that is not going to happen. One such possible event

might be acquiring control of a certain resource.

An operating system designer needs to consider these aspects, among other things,

when building an operating system. A method by which this can be achieved is to build a

model of the system before it is actually constructed, and analyze the model for

deadlocks. Also, even after the system is constructed, the designer might want to analyze

the system dynamically for the presence of deadlocks. One of the means to achieve this is

to take occasional snapshots of the state of the running operating system, and analyze the

state in order to determine the behavior of the system from the point of view of

deadlocks.

Analyzing a system's behavior requires the use of an analysis tool. The tool can

construct models of the system states and has the capability to present the states

1

..J...

2

graphically for convenient analysis. In the educational field, such a tool can be useful in

helping grasp the concept of deadlocks, as well as their detection and recovery from

deadlocks.

The objective of this thesis was to develop a graphical tool to aid in the study and

analysis of operating system deadlocks through capturing and representing the associated

resource graphs. The tool was implemented using the Motif Toolkit on a Sequent S/81

computer running the DYNIX/ptx operating system. Chapter II of this thesis provides a

review of the literature on modeling process-resource graphs and analyzing them for

deadlocks. Chapter III provides a discussion on the implementation platform and

environment. Chapter IV takes a look at the software architecture and detailed design of

the software tool that was developed as part of this thesis. The testing and evaluation of

the software tool developed are discussed in Chapter V. This thesis ends with Chapter VI

that provides a summary, the conclusions drawn from the study, and some suggestions for

future work.

J..

CHAPTER II

LITERATURE REVIEW

2.1 Operating System Deadlocks

According to Isloor and Marsland [Isloor and Marsland 80], deadlocks arise when

members of a group of processes which hold resources are blocked indefinitely from

access to resources held by other processes within the same group of processes. When no

member of the group will relinquish control over its resources until after it has completed

its current resource acquisition, deadlock is inevitable and can be broken only by the

involvement of some external agent.

A set of processes becomes deadlocked essentially as a consequence of exclusive

access and circular wait. The simplest illustration of these conditions involves only two

processes, each requesting exclusive access to the resource held by the other. The result is

a circular wait which cannot be broken until one of the processes releases its resources or

cancels its request.

2.1.1 Conditions fur Deadlock

Coffman et al. showed that four conditions must hold for a deadlock to exist

[Coffman et al. 71].

1. Mutual Exclusion: Each resource is either currently assigned to exactly one process or
is available.

2. Hold and Wait: Processes currently holding resources granted earlier can request new
resources.

3

I

=~

......

4

3. No Preemption: Resources previously granted cannot be forcibly taken away from a
process; they must be explicitly released by the process holding them.

4. Circular Wait: There must be a circular chain of two or more processes, each of which
is waiting for a resource held by the next member of the chain.

2 .1.2 Deadlock Modelin~

Holt showed how these four conditions can be modeled using directed graphs

[Holt 72]. The graphs have two kinds of nodes: processes, shown as circles, and

resources, shown as squares. An arc from a resource node (square) to a process node

(circle) means that the resource previously has been requested by, has been granted to,

and is currently being held by that process. An arc from a process to a resource means

that the process is currently blocked waiting for that resource. Figure 1 illustrates an

example.

Resource R1

0 0

Process P1

Resource R2 Resource R3

0

0

Process P2

0

0

Figure 1. Representing Process-Resource states graphically

I

I

-~~~-- -~-~--L

...

5

2.1.3 Deadlock Detection and Recovery

Since this thesis deals with detecting deadlocks using resource graphs, this section

takes a look at the different mechanisms available by which deadlocks can be detected,

and how deadlock situations can be removed or recovered from.

2.1.3.1 Detection with~ Resource Qf&cll ~

In the case of a system in which only one resource of each type exists, deadlocks

can be detected by testing for the existence of cycles in the corresponding resource graph.

If the graph contains one or more cycles, deadlock exists. Any process that is part of a

cycle is deadlocked. If no cycles exist, the system is not deadlocked. Tanenbaum gives a

simple algorithm [Tanenbaum 92] that inspects a graph and terminates either when it has

found a cycle or when it has shown that none exists. It uses one data structure called L for

a list of nodes. To avoid repeated visiting of the nodes, arcs are marked to indicate that

they have already been inspected. The algorithm is given below.

1. For each node N in the graph, perform the following 5 steps with N as the starting
node.

2. Initialize L to the empty list and designate all the arcs as unmarked.

3. Add the current node to the end of L and check to see if the node now appears in L
two times. If it does, the graph contains a cycle (listed in L) and the algorithm
terminates.

4. From the given node, see it there are any unmarked outgoing arcs. If so, go to Step 5;
if not, go to Step 6.

5. Pick an unmarked outgoing arc at random and mark it. Then follow it to the new
current node and go to Step 3.

6. We have now reached the end of this path. Go back to the previous node, that is, the
node that was current just before this one, make that one as the current node, and go

·-~~-----~-··- -~----

.J..

6

to Step 3. If this node is the initial node, the graph does not contain any cycles and the
algorithm terminates.

In the worst case this algorithm has complexity O(n!).

2.1.3 .2 Detection with Multiple Resources of Eacl1 ~

Habermann describes an algorithm [Habermann 69] which handles the case when

multiple copies of some of the resources exist. This is a matrix-based algorithm for

detecting deadlocks among n processes P 1 through P n· Let the number of resource classes

or types be m, with Ei resources of class i, 1 <= i <= m. E is the existing resource vector.

It gives the total number of instances of each resource type.

At any given time, some of the resources are assigned and are not available. Let A

be the available resource vector, with Ai giving the number of instances of resource i, 1

<= i <= m, that are currently available (i.e., unassigned). There are two additional arrays:

C, the current allocation matrix, and R, the current request matrix. The ith row of C

indicates how many instances of each resource class is currently being held by process Pi.

Thus Cij is the number of instances of resource j that are held by process i. Similarly, R;j

is the number of instances of resource j that process Pi wants.

An important invariant holds for these four arrays. Every resource is either

allocated or is available, i.e., if we add up all the instances of resource j that have been

allocated, and add to it all the instances of the same resource that are available, the result

is the number of instances of that resource class that exist in the system.

The deadlock detection algorithm [Habermann 69] is based on comparing vectors.

Let us first define the relation A <= B on two vectors A and B to mean that each

L

7

component of A is less than or equal to the corresponding element of B. Thus, A<= B

holds if and only if Ai <= Bi for 0 <= i <= m.

Each process is initially said to be unmarked. As the algorithm progresses,

processes will be marked, indicating that they are able to complete and are thus not

deadlocked. When the algorithm terminates, the unmarked processes are known to be

deadlocked.

The deadlock detection algorithm [Habermann 69] can now be given as follows.

1. Look for an unmarked process Pi, for which the ith row ofR is less than A.

2. If such a process if found, add the ith row of C to A, mark the process, and go back to
Step 1.

3. If no such process exists, the algorithm terminates.

When the algorithm finishes, all the unmarked processes, if any, are deadlocked.

The complexity of the deadlock detection algorithm is O(n2
).

2.2 Drawing Directed Graphs

2.2.1 .GraJili Drawin~ Al~orithms

It is not easy to conceptually grasp the overall structure of a digraph unless

vertices are laid out in some regular form (e.g., clustered layout) and unless edges are

drawn in such a form that paths can be readily traced visually. A number of researchers

have tackled this problem [Warfield 77] [Sugiyama et al. 81] [Tamassia et al. 88]

[Gansner et al. 93] and have come up with ways for the aesthetic display of graphs. Some

of the aesthetic principles involved in displaying a graph are:

I
__..J.._

8

1. Expose the hierarchical structure in the graph. If possible, edges should be aimed in
the same general direction. This helps in finding directed paths and highlights source
and sink nodes.

2. Try to avoid visual anomalies that do not convey information about the underlying
graph. Some examples include edge crossings and sharp bends.

3. As far as possible, an attempt should be made to keep edges short. This makes it
easier to find related nodes.

Sugiyama and his colleagues [Sugiyama et al. 81] proposed an algorithm for

drawing directed graphs. The algorithm has three basic steps as mentioned below.

1. Preprocessing: The first step in the algorithm is to topologically sort the graph with a
view towards assigning levels to all nodes. Cycles are eliminated in this step by
temporarily reversing edges that cause cycles. To guarantee that each edge spans only
one level, dummy nodes are introduced at all intermediate levels for long edges
(edges that cross several levels).

2. Barycentric ordering: This step attempts to reduces the edge crossings between pairs
of nodes on each level. This involves rearranging the nodes at each level. The
ordering of the nodes in the top level is fixed. The position of nodes in the next level
is determined based upon its barycentre which is the average position of the
successors. This downward pass is continued and then a similar upward pass is done.
This iteration is done a number of times, until no more improvement in the edge
crossings is obtained.

3. Fine tuning: This step is responsible for fixing the final x and y coordinates for each
node. The y coordinate of each node is the product of the vertical spacing factor and
the level number of each node. Determining the x coordinates involves a number of
downward-upward iterations. The x coordinates of the nodes in the top level are set
initially, so that they are spread apart by the horizontal spacing factor. Then the nodes
in the next level are placed based upon the following order. Dummy nodes are placed
first followed by nodes with the largest number of incoming and outgoing edges. The
x coordinate of each node is calculated as the average position of its predecessors and
successors. Each node is placed as close as possible to its desired position without
shifting previously placed nodes or changing the relative order of the nodes. Since a
dummy node will always have exactly one predecessor and successor, it will always
request to be placed at the same x coordinate as its predecessor or successor. Dummy
nodes are positioned first to align them and this straightens 'long' edges. Finally the
original directions of edges, which were temporarily reversed to accommodate cycles,
are restored.

____ L

~

9

A faster algorithm for drawing directed graphs was proposed by Gansner et al.

[Gansner et al. 93]. They describe a four-pass algorithm for drawing directed graphs. The

first pass finds an optimal rank assignment using a network simplex algorithm. The

second pass sets the vertex order within ranks by an iterative heuristic algorithm

incorporating a novel weight function and local transpositions to reduce crossings. The

third pass finds optimal coordinates for nodes by constructing and ranking an auxiliary

graph. The fourth pass makes splines to draw the edges.

2.2.2 Qnu;ili Editors and Qnu;ili Browsers

A number of papers having been published detailing various editors for displaying

and editing graphs. Paulisch and Tichy [Paulisch and Tichy 90] discuss the

implementation of EDGE: an extensible editor kernel for the direct and visual

manipulation of graphs. According to the authors, EDGE was designed to solve a number

of potential problems faced by any graph editor. Two such problems are mentioned

below.

1. Automatic Graph Layout: They discuss how their implementation can integrate
application-specific layout requirements, individual preferences, and layout stability
with automatic layout algorithms.

2. Graph Abstraction: How can users deal with large graphs containing hundreds of
nodes and edges, and thousands of edge crossings? EDGE solves this by using
subgraph abstractions and a clustering technique developed by the authors called edge
concentration.

Vlissides and Linton [Vlissides and Linton 90] discuss a framework called

Unidraw for creating graphical editors in various domains such as technical and artistic

drawing, music composition, and circuit design. The Unidraw architecture simplifies the

construction of these editors by providing programming abstractions that are common

1
----~--

............__

10

across domains. Other research efforts on directed graph editors include the work done by

Gansner et al. [Gansner et al. 88] and by Rowe et al. [Rowe et al. 87].

l

..

CHAPTER III

IMPLEMENTATION ISSUES

3.1 Implementation Platform

3 .1.1 Seqyent Syrometzy .sLll

The Sequent Symmetry S/81, Sequent Computer System, Inc. is a mainframe

class computer system with a multiprocessor architecture. The multiprocessing and

shared memory architecture consists of the following elements [Sequent 90]:

• A parallel architecture that utilizes multiple industry-standard microprocessors.

• Either the DYNIX v3.0 operating system or the DYNIX/ptx operating system, both

UNIX system ports.

• A standard set of network interfaces such as Ethernet, SCSI, VMEbus, and

MULTIBUS.

The Sequent Symmetry S/81 's operating system has been engineered to

incorporate features that support the underlying parallel architecture. In addition to this,

software that has been written for the UNIX operating system can run on the Sequent

Symmetry S/81 with little or no modification. In the case of multi-user applications, the

operating system of the Sequent Symmetry S/81 automatically distributes the tasks to

multiple processors in an attempt to reduce response time and increase system throughput

[Sequent 90].

11

·--c~--- ~--~l

12

The DYNIX v3.0 operating system supports the two major command sets of

UNIX, namely, the Berkeley UNIX and UNIX System V. On the other hand, the

DYNIX/ptx operating system is compatible with AT&T System V v3.2 only [Sequent

90].

3.2 Implementation Environment

3 .2.1 X Window System

The graphical user interface (GUI) for the deadlock analysis tool developed for

this research was implemented on top of the X Window System software environment. X

supports a device independent graphics system that permits software developers to

engineer portable GUis [Young 90]. The only requirement for complete portability is that

the X protocol should be supported by the hardware platforms to which the software is to

be ported. The interaction between a client and server is defined by the X protocol. The X

Window System follows a client-server architecture. An application acts as a client and

the responsibility for all input and output devices is with the server [Young 90].

An application interacts with the X Window System by means of the X library.

One of the libraries, which provide access to the device independent graphics of X and

interface routines through C language functions, is Xlib [Johnson 90] [Barkakati 91]

[Keller 90]. Since Xlib is very low level, programmers often have to deal with a lot of

complexity in writing programs using Xlib. Hence programs are written at a layer above

the Xlib library. These are the Toolkit libraries. Toolkits are easier to use than Xlib for I

I

I developing GUis. The standard toolkit for the X Window System is the X Toolkit. It

. I

l --- -·- ···-· ·--J

13

consists of two modules: Xt Intrinsics, which is the layer that directly interacts with the X

Window System, and the widgets, which are a set of user interface building blocks

[Johnson 90]. Many popular widget sets are supported by Xt Intrinsics. The Motif widget

set by the Open Software Foundation (OSF) is one of the more popular widget sets. The

Motif widget set supplies GUI components such as windows, menus, buttons, scroll bars,

icons, and bitmaps. The relationship among the various layers in the X Window System

is shown in Figure 2.

User

Window Manager

Client

Motif Widgets

Xt lntrinsics

X Window System

Operating System and Network

Hardware Platform

Figure 2. Layers in the X Window System (Source: [Barkakati 91])

i

..... -~1

14

3.2.2 OSF/MotifToolkit

The OSF/Motif Toolkit is a set of functions and procedures that provides quick

and easy access to the lower layers of the X Window System. The OSF/Motif Toolkit

was designed by the Open Software Foundation (OSF) and is based on the X Toolkit

Intrinsics (Xt). OSF/Motifprovides a number of user-interface objects known as widgets.

These widgets are accessed and manipulated through the various functions and

procedures provided by the OSF/Motif library. OSF/Motif is a specification rather than

an implementation, making it entirely implementation independent [Heller 91].

The complete architecture of the OSF/Motif Toolkit consists of a number of

important modules that are shown in Figure 3 [Berlage 91]. The hardware independent

nature of the X Window System is due to the fact that it is built at the lowermost layer of

the application hierarchy and hence applications are shielded from any system-dependent

input/output variations. The primary window functions such as resizing, closing, moving

and iconizing are managed by the Motif Window Manager (MWM). In achieving its

tasks, the Motif Window Manager follows the Inter-Client Communication Conventions

(ICCC) that enable it to manage X applications developed using different toolkits

[Berlage 91]. The Motif Window manager is also responsible for other functions such as

maintaining the stacking order of the overlapping windows and controlling the input

focus to determine which application window should receive input [Berlage 91].

A Motif user interface can also be developed by using a specification language

called the User Interface Language (UIL). Once the specifications of the required user

interface are written, the UIL compiler translates the presentation details and loads it into

__l

15

memory at run time. Using the UIL language approach is just another alternative to

designing a Motif user interface, in other words it is not necessary for a Motif application

to use it [Berlage 91] .

.---

Motif
Window
manager

Library

Application

Motif
Toolkit

Library

X Display

Legend

U.I.L.: User Interface Language

U.I.L.

, r

U.I.L. --!- Compiler

Figure 3. Architecture of OSF /Motif (Source: [Berlage 91])

Motif

X
Window
System

I
---- -- ~-__j.

I

I

l

16

The most important part of the OSF/Motif architecture, as shown in Figure 3, is

the Motif Toolkit which provides the set of user interface widgets. The common

user-interface objects such as push buttons, menus, labels, dialog boxes, scroll bars, and

text entry or display areas are provided by the Motif Toolkit. In addition, there are

widgets, known as manager widgets, that perform the function of controlling the layout of

the other user interface widgets. A widget operates, to a large extent, independently of the

application. A widget's actions are determined by the events dispatched to it by the Xt

Intrinsics. A push button, for example, knows how to draw itself, how to highlight itself,

and how to respond to a mouse click (or any other user-defined action) by executing an

application procedure [Nye 90] [Heller 91].

A class inheritance hierarchy of the Motif widget set is shown in Figure 4. In that

inheritance hierarchy, some of the classes are defined by the Xt Intrinsics. These include

some of the base classes. Their behavior can be inherited by widgets that are derived

directly from the base classes defined in Xt Intrinsics. The Xt Intrinsics classes also

provide a common behavior for all widget classes based upon them.

The Core widget class of Xt Intrinsics is the root of the widget class hierarchy. It

is the super-class for all widget classes derived from it, and it provides a set of common

resources such as size and position which are inherited by all the other classes.

The highest level Motif widget class is the Primitive widget class. It is derived

from the Core widget class. Besides inheriting some of its resources from the Core widget

class, it also adds some of its own resources such as control of the three-dimensional

shadows. The Label widget class is derived from the Primitive widget class. It inherits

I

i
I

1
--~ --~--

....1..

17

some resources from the Primitive widget class and adds some features of its own. These

include the ability to display a pixmap or a string of text, as well as mechanisms for

positioning of a string and displaying the string in a variety of fonts. The sub-classes of

the Label widget class are the Push Button class, the Drawn Button class, the Toggle

Button class, and the Cascade Button class. These classes, besides inheriting the features

of the Label widget class, add features that are necessary to support their unique behavior.

The Composite widget class is again an Xt Intrinsics widget class that is

sub-classed from the Core widget class. It adds features that provide it with the capability

to manage its geometry. The Constraint widget class is also an Xt Intrinsics widget class

that is derived from the Composite widget class. It supports the facility to manage the

position and size of the widget. The Manger widget class is provided by Motif and is

sub-classed from the Constraint widget class. The Manager widget class is the super-class

for all the widgets that manage the geometry of their children such as the Row Column

widget class, the Drawing Area widget class, the Scale widget class and the Bulletin

Board widget class [Nye 90].

The Shell widget class is yet another Xt Intrinsics widget class, which is a

sub-class of the Composite widget class. Shell widgets provide an interface between the

window manager and other widgets. The responsibilities of the Shell widget class include

handling the window manager protocol for the application and setting the resources

required by the window manager. Since the function of interacting with the window

manager is very complex, a number of different Shell widget classes are provided. The

Override Shell widget class is derived from the Shell widget class and provides a

J.

g!

~
-
,

~

~-
--
-~
--
-~

~~
1.

:~
:1

--

-
~
~
-
-
,

__ =
r_

_
-

-

~~
~o
mm
m-
mm
d

c=
_

 -
_I

,_-

-_
l
_

_
_

_

P
us

h
·-

-.

•

F
ig

ur
e

4.
 A

 c
la

ss
 i

nh
er

ita
nc

e
hi

er
ar

ch
y

fo
r

th
e

M
o

tif
 w

id
ge

t
se

t
(S

ou
rc

e:
 [

N
ye

 9
0]

)
-00

-l._

19

temporary window that completely bypasses interaction with the window manager. The

Menu Shell widget class is derived from the Override widget class and was introduced by

Motif to handle the special interface requirements of the OSF/Motif architecture. The

WMShell widget class is sub-classed from the Shell widget class. It is a set of simple

wire bed-frame widgets that have no special attributes. The Vendor Shell widget class,

which is sub-classed from the WMShell widget class, provided features that vendors of

window managers can use to define their own attributes that are specific to their own

window managers. The Transient Shell widget class is used by Xt Intrinsics to create

dialog boxes. The Transient Shell widgets may not be iconified separately by the window

manager. They behave in such a way that if an application is iconified, all the child

widgets of the application that belong to the Transient Shell widget class are

automatically iconified by the window manager. The Dialog Shell widget class is

sub-classed from the Transient Shell widget class and was created by OSF /Motif. The

functions of the TopLevel Shell widget class and the Application Shell widget class

provide various applications with their top-level windows [Nye 90] [Young 90] [Heller

91].

3.2.3 MotifAtlP Application Framework

There are two main approaches to reducing the amount of code a programmer

must write to complete an application.The first and the traditional approach is providing

collections of functions or classes that implement common components needed by many

programs. The Motif System is an example of a toolkit based upon this approach. When

writing programs in Motif, programmers can choose from a collection of off-the-shelf

=
______ l

20

user interface components. Without the toolkit, programmers would have to develop

buttons, scrollbars, and so on for each new application. The Toolkit approach is very

effective and is a widely-used form of reusing software.

Another approach to code reduction in writing programs is to concentrate less on

the individual components needed by various applications, and instead focus on the

structure and control flow within a particular type of application. In this approach the

programmer does not need to define the architecture of each new application anew. This

approach is used by application frameworks and provides a way to capture the

organizational characteristics common to many applications. [Young 92].

Similar to a toolkit, an application framework is a library that provides various

components needed by a number of programs. Moreover, an application framework also

defines most of the connections between these components, and also defines the overall

control structure of applications built on the framework. Most application frameworks

provide an Application class, which captures the essential behavior of all applications

built from the framework. Programmers write new applications by deriving a new

subclass of Application that handles application-specific details.

When using an application framework, there is the concept of a genenc

application. The generic application is the simplest possible program that can be written

using the framework, and can be usually written by creating an instance of the

Application class, or by declaring and instantiating a trivial subclass. The generic

application, though not serving any useful purpose, follows all rules and conventions

supported by the framework. The important point to note is that the generic application

-~~l

11111111111.

21

defines the flow of control used by all similar applications. The application framework

has the responsibility to connect the various components of a program, thus relieving the

programmer of this responsibility. In creating a new application, only those parts of the

program that are unique need to be implemented. The application-specific behavior of a

new program can be provided by adding a few new components, defining a few methods,

or by deriving new classes from those provided by the framework. So, in other words,

writing an application using a framework is similar to deriving a new class from an

existing class. In both instances, a new entity is created by specifying only how the new

entity is different from the existing one [Young 92].

The MotifApp framework, as described by Young [Young 92], describes a simple

application framework that encapsulates a structure that can be useful to applications

based on X and Motif. This framework captures many characteristics of typical Motif

applications. The MotifApp framework does not capture all the elements common to all

Motif applications. Instead, it implements a basic architecture which can be enhanced and

expanded with additional classes to form a more powerful framework, if desired.

L

CHAPTER IV

SOFTWARE ARCI-llTECTURE AND DETAILED DESIGN

In this chapter, the specification, architecture, and user interface of the software

tool Prograph is described. The evaluation of the Prograph deadlock representation and

analysis tool is discussed in the next chapter.

4.1 Description

The deadlock analysis tool Prograph enables the user to draw a Process-Resource

graph using the tool, and analyze the graph for the presence of deadlocks, safe states,

unsafe states, etc. A Process-Resource graph consists of a set of process nodes, a set of

resource nodes, and the allocation/request/producer edges joining them. The Prograph

software tool provides support for drawing these graph entities. The tool's display is

divided into two main parts: a scrollable drawing area, which is used to draw the graph,

and a palette of buttons depicting the various graph entities together with the various

actions that can be applied to those entities.

A specific graph node can be drawn by selecting the appropriate button from the

palette and clicking the mouse on the drawing area. Edges are drawn by selecting the

Edge button from the palette and going to the drawing area and connecting a process

node to a resource node, or vice versa. The connection is drawn by clicking on the node

22

• -··· -· __ • uu . L

23

from which the edge is to be started and terminating the edge by clicking again on the

destination node. The tool also allows a user to move a node about the drawing area.

The palette also provides various buttons for editing a graph. This includes

deleting a graph entity, editing the specifications of a graph entity, etc. The specifications

of a graph entity include its name, the number of resources (if it is a resource node), etc.

The palette also contains an undo option which enables the user to undo the previously

executed operation.

Once a graph is drawn on the screen, the Prograph software tool can analyze the

graph for the presence of deadlocks, safe states, unsafe states, etc. Other features of the

tool include saving a graph and other standard file manipulation operations.

4.2 User Interface

The user interface of Prograph is shown in Figure 5. The user interface is divided

into three main regions.

• Region 1 of Prograph's interface is the canvas on which a user draws a model. The

drawing area is a scrollable viewport into a larger virtual drawing space. The scrollbars

can be used to pan the other parts of the drawing area that are not visible on the

physical drawing surface. The drawing area also has a title bar at the top displaying the

current filename .

.. I

l

1

"'Tl
ce· c
m 0'1

-i
::r
(1)

-u
a (Q

03 "C
::r
c en (1)
..,

vz

• Region 2 of Prograph's interface is the Palette containing a number of buttons to set

the operating mode of Prograph and also to perform various actions. The buttons for

mode setting are "Pointer", "Process", "Serial Resource", "Consumable Resource", and

"Edge". The other items in the Palette for performing various actions are: "Edit

Specification", "Delete", and "Undo". There are a number of additional buttons for the

purposes of analysis. These include: "Analyze", "Analyze Process", "Show Results",

"Previous State", and "Next State".

• Region 3 of Prograph's interface is the menu bar. The menu bar has only one item: the

"File" Menu. The "File" menu contains the menu items - "Open", "Close", "Save",

"SaveAs", and "Exit".

4.3 Software Architecture

Prograph is designed based upon the model-view-controller paradigm [Barkakati

93]. In this paradigm, the users of a program interact with the various controllers. The

controllers in tum send messages to the model. The model is the central part of the

program. It usually represents the main data structures and the associated code that enable

the program to deal with its problem domain. Any changes to the model are displayed in

the multiple views. A generic architecture of a model-view-controller based program is

shown in Figure 6.

The software architecture of Prograph is based upon the model-view-controller

paradigm. Prograph was designed using an object-oriented approach and was

implemented in the C++ language [Stroustrup 91].

L

User Input

View-Controller Pair

Controller
Accepts User Input

Model

Maintains application
specific information

Broadcasts messages
to View-Controller Pair

26

To display

Messages

Figure 6. Model-View-Controller architecture (Source [Barkakati 93])

As depicted in Figure 7, Pro graph consists of the following architectural elements and

assumptions.

1. The view and the controller were combined together as a single module in Prograph.
This layer deals with handling all mouse and keyboard input and hiding any system
dependencies (X-Windows, MS-Windows, etc.). This layer also deals with screen
graphics in a system-independent fashion.

2. An additional layer was placed between the controller and the model. This layer
consists of a set of Command objects. Command objects encapsulate knowledge of
dealing with certain sequences of user actions. In other words, they execute actions
(commands) requested by the user (Moving a graph entity, drawing an edge, etc.).

3. The model of Prograph is a module that handles all aspects of internally storing and
manipulating a directed graph.

4. The model layer of Prograph internally consists of a set of shape objects
corresponding to various graph entities. The various shape objects embody the
representation and behavior of the various items found in a directed graph.

5. A module exists to analyze a graph for deadlocks, safe/unsafe states, etc.

L

6. A set of dialog classes to represent the various kinds of dialogs required by an
application.

Display Screen Mouse/Keyboard

Prograph View-Controller

Update Displ ay

Prograph Model

• • •

Figure 7. Software Architecture ofPrograph

All the major class names in Pro graph are prefixed with the letter 'T'. This was done to

differentiate the classes in Prograph from the classes in the application framework that

was used to build Prograph. The particular choice of the letter 'T' does not have any

significance. The following six subsections describe six main classes comprising

Pro graph.

4.3.1 Prograph View~

The controller and the view modules in the model-view-controller design are

packaged together into one class called TPrograph View. This class serves as a wrapper

around the system-dependent input/output library calls so as to make the library portable

======----~~~~~~~E .. ~ .. ~.E.~ ··-----~

across implementations. As seen in the architecture (Figure 7), events arriving at the

TPrograph View object (the Prograph View-Controller) are redirected to the Command

Objects, which in turn cause changes to the Prograph model. The Prograph model reflects

all changes to the TPrograph View object.

4.3.2 ~Classes

The Shape classes handle the display and behavior of the various graph entities

(See Figure 8 for an illustration of the Shape class hierarchy). Basically, a

Process-Resource graph consists of three different types of graph objects: Process objects,

Resource objects, and Edge objects. All these shapes are compound objects, which are in

turn composed of simpler shapes. A Process shape is composed of a Circle object and a

Text object. The Text object displays the name of the process, and is placed at the center

of the Circle. A Resource shape is composed of a Square shape, and three Text objects

that represent the type of the Resource, the name of the Resource, and the number of units

of the Resource, respectively. An Edge object is composed of a Polyline and an

Arrowhead.

The compound shapes (i.e., Process, Resource, and Edge) are classified as Graph

shapes since they are shapes occurring as basic graph entities. The Circle, Square,

Polyline, and Arrow shapes are classified as Pure shapes. Both Graph shapes and Pure

shapes are obviously in the general category of shapes. Thus we have an inheritance

hierarchy (Figure 8) with the top class being named as TShape having sub-classes

TGraphShape and TPureShape. TGraphShape has the sub-classes TProcess, TResource,

eft n•---~~

29

and TEdge, while TPureShape has the sub-classes TCircle, TSquare, TPolyline, and

TArrow. The TText object is classified as a subclass of TShape.

Figure 8. Shape class hierarchy

When an object in the graph is selected, it is distinguished from other objects by

the presence of a number of solid squares placed at the boundaries of the object. These set

of squares are called the Hilite object and they are represented by the THilite class which

is classified as a subclass of TShape.

4.3.3 Command Classes

The Command objects are responsible for responding to the mouse and keyboard

input from the user, and manipulating the shape objects accordingly. From the

specifications, a number of commands can be readily identified, they include creating a

new process or resource, moving an object (process or resource), drawing an edge

connecting a process and a resource, deleting an object, etc. Each of these commands

consists of a series of mouse events having a specific start event and a set of end events .

.- "--- ~- -~----~ -· - -------- ~

•

30

Corresponding to each command, we have a Command object. Thus we have the

corresponding set of classes TMoveCommand, TNewProcessCommand,

TNewResourceCommand, TEdgeCommand, TDeleteCommand, etc. (Figure 9).

TMoveCommand

Figure 9. Command class hierarchy

A Command object is created usually on a specific mouse click or a keyboard

press (in the case of the delete command). The TPrograph View object (responsible for

input/output) decides which Command object to create depending upon the mode the

program is in. Once a Command object is created, all further input events are sent to that

Command object. The Command object performs the required user action. A Command

object terminates upon a specific event (e.g., a mouse-up event in the case where the user

is moving a shape object). Internally, each Command object behaves as a finite state

automaton. Each user input event (mouse-down, mouse-up, mouse-move, key-press, etc.)

~~-~

l

31

results in the Command object's internal automaton making a transition to a different

state. A Command object is terminated when a series of user input events results in a final

state of the automaton.

The Command class inheritance hierarchy (as depicted in Figure 9) was designed

to abstract properties common to all command classes. The class TCommand is the root

class of the hierarchy. Its direct descendants are TMoveCommand, TDeleteCommand,

and TEdgeCommand. When creating a new node, once the node is created and placed in

the viewing area, every successive user event is similar to that encountered when moving

an object (a user can create a new process or resource by clicking on the viewing area,

and in the same sequence, before releasing the mouse, the user can move the

newly-created object to any position on the screen). So the TNewNodeCommand class

was made a sub-class of the TMoveCommand class, and the TN ewProcessCommand

class along with the TNewResourceCommand class were made sub-classes of the

TNewNodeCommand class.

4.3.4 Pro~raph Model~

In Prograph terminology, any Process-Resource graph is internally represented as

what is called a Prograph Model. So, in effect a Prograph model is a set of process

objects, resource objects, and edge objects. A Prograph model created by a user can be

saved in a file, a previously saved model can be read from a file, and of course a Pro graph

model can be analyzed.

---~-~~. ~--- ... --=~

32

4.3.5 Pro2raph Analyzer~

The analysis functionality of Prograph is encapsulated in the TPrographAnalyzer

object. The input to the analysis phase is a Prograph model. The output is a list of

Pro graph models which is the set of reduction sequences of the input model (each state in

the reduction sequence is represented by a separate model in the list.). If the input

Prograph model is not reducible, the resulting list will contain just the input model.

Besides the reduction sequence, the analyzer also generates a report of the results of the

analysis.

4.3.6 Dialo~ Classes

The dialog objects are wrappers for the various types of dialogs required for

Prograph. A number of common elements were observed when constructing the various

dialog classes, so most of these elements were abstracted and formed into a hierarchy

(Figure 1 0).

The TDialog class is at the top of the dialog inheritance hierarchy. Two major

subcategories of dialogs were identified: Predefined Motif dialogs and user-defined

Custom dialogs. This resulted in two sub-classes of the TDialog class: TMotifDialog and

TCustomDialog. The dialogs already available in Motif were made as individual classes,

and were made sub-classes of the TMotifDialog class: TGetFileDialog, TQuestionDialog,

and TGeneralPurposeDialog. The various custom dialogs which were created, were made

sub-classes of TCustomDialog. These include the classes T AnalysisResultsDialog and

the TProcessTextDialog.

... . . .l
-·--=--~-

33

TGeneraiPurposeDialog

Figure 10. Dialog class hierarchy

The TEditProcessAndEdgeSpecDialog and TEditResourceSpecDialog were

created as sub-classes ofTEditSpecDialog which in turn is a subclass ofTCustomDialog.

4.4 Design of the Prograph View Class

As described earlier, the TPrograph View class serves as the input/output layer of

Prograph. This class provides a system-independent interface for input and output. This

class gets all the mouse and keyboard events and presents them to the other modules in a

multi platform portable format. The TPrograph View class also provides a graphical

drawing library that is called by the model layer. In the current X-Window

implementation of Prograph, the graphical library hides various X Windows dependent

information. The TPrograph View object is also responsible for creating the various

. _----=-.J._

34

Command objects in response to various mouse and keyboard events. After each

command finishes executing, they are immediately deleted.

4.4.1 Invokin~ Command objects

The decision as to when to create a Command object and which Command object

to create, is made by the TPrograph View object depending upon the mode the user is in.

There are five different modes: "Pointer" mode, "Edge" mode, "Process" mode, "Serial

Resource" mode, and "Consumable Resource" mode. In the "Pointer" mode, the user can

select objects on the drawing area and move them around. In the "Process" mode,

clicking on the drawing area results in the creation of a new process. In the "Serial

Resource" mode or the "Consumable Resource" mode, the user can create a serial

resource or a consumable resource, respectively. The "Edge" mode enables the user to

draw an edge connecting either a process to a resource or vice versa. The five mode

buttons (counting the resource modes as two) are handled by a separate view object called

the TPalette View object. At any given time, Prograph will be in any one of the modes.

The current mode will be shown highlighted. Whenever the user changes any of the

modes, the TPalette View object sends a message to the TPrograph View object. The

TPrograph View object has an internal variable storing the mode which is currently active.

When Prograph start up, the default mode is the "Pointer" mode.

Consider the case where the program is in the "Pointer" mode. On a mouse click,

the TPrograph View object first tries to find out if the mouse has hit on any of the shapes

on the screen. For this a message is sent to the TPrographModel object requesting a hit

check. If the TPrographModel object returns with no hit, the mouse click is ignored and

l
~-~--~ «><~• ·-· ·-=--~-~----- -----

35

the TPrograph View object continues to wait for another click. If a hit has occurred on a

shape, then it means that the user wants either to select the shape or move the shape. Both

operations are handled by the TMoveCommand object. So a new TMoveCommand

object is created and the mouse click (down) event is sent to the TMoveCommand object.

All further mouse events are sent to the new Command object. In fact, once a new

Command object is created, all mouse and keyboard events are sent to it. A Command

object, after it has dealt with all the required mouse events, will specifically inform the

TPrograph View object (by a return value) whether it has finished its processing. The

TMoveCommand object finishes its processing on a mouse-up event. Note that

mouse-move events could have occurred in between the starting mouse-down and the

mouse-up, but the TPrograph View object never has to bother about this, it simply has to

route them to the Command object until the Command object indicates it does not want

any more mouse events. After the mouse-up event, the TMoveCommand object sends an

event complete message (signifying termination of the user action) back to the

TPrograph View object, and the Command object is destroyed. The TPrograph View

object goes back and waits for the next mouse down and the whole process is repeated.

This goes on till the user exits Prograph.

To be precise the Command object is not destroyed immediately. Instead, it is

stored separately as the previous command. This is essential to support undo, since only

the specific Command object will have the necessary knowledge to undo what it has

done.

,~ __ .,.

36

If the user is in the "Process" mode (on a mouse-down event anywhere in the

drawing area), a new TNewProcessCommand object is created. The

TNewProcessCommand object will create a new process shape. The same sequence of

steps as above is followed. In this case also, the Command object terminates on the next

mouse-up event. Likewise, if the user is in either the "Serial Resource" mode or the

"Consumable Resource" mode, a new TNewResourceCommand object is created. This

will result in a new resource shape.

As compared to the other modes, event handling in the case of the "Edge" mode is

more complicated. A new TEdgeCommand object is created only if a mouse-down occurs

with the mouse being within a process or a resource. As before, the TPrographView

object has to request the TPrographModel object to check for a hit. Unlike the previous

Command objects, a TEdgeCommand object need not terminate on a mouse-up event.

This is because the user can draw a multi-line (also called a polyline) edge, which will

have multiple end points. This will involve a lot of mouse clicks within the drawing area.

However, this is the responsibility of the TEdgeCommand object and the TPrograph View

object need not concern itself with the different possibilities. All that the TPrograph View

object has to do, is redirect all further mouse and keyboard events to the TEdgeCommand

object. When the user finishes drawing the edge (after the user clicks on a destination

shape), the TEdgeCommand object will return an event complete message back to the

TPrograph View object.

4.4.2 Hit Testin~ a Line

Normally, hit testing is done by the TPrographModel which sends the coordinates

where the mouse hits the drawing area to each of the individual shapes that make up the

graph. In the case of a process or a resource, which are depicted as a circle or a square,

respectively, hit testing is simply done by checking whether the mouse coordinates fall

within the inscribing rectangle of the object. This check can be done by a simple

coordinate comparison.

However, in the case of a line (or a polyline), this is not possible. Another

approach to hit testing is required. The hit testing algorithm used in Prograph is by

DiLascia [DiLascia 92]. When the user clicks on a shape, a tolerance of a couple of pixels

on either side is given. The mouse click need only be a couple of pixels (usually 2 or 3)

near the shape on each side. The main resource used by this algorithm is a simple

drawable pixmap of size twice the tolerance on each side. In our present implementation,

the algorithm uses a 5x5 pixmap. The algorithm for hit testing is as follows.

1. Translate the line to a coordinate system with the mouse click spot as the origin.

2. Draw the line with the new coordinate system on the pixmap with a new width
equaling twice the number of tolerance pixels.

3. Check if any of the pixels in the pixmap is set. If so, the mouse click has hit the
polyline. If no pixels are set, then there is no hit. The significance of testing the
pixmap is that, if there is a hit, part of the wider line will pass through the pixmap,
since the pixmap can be considered to be a magnified view of the area surrounding
the mouse click spot. Obviously, the thicker the line, the more tolerance is obtained.

_),.

38

4.5 Design of Shape Classes

4.5.1 !Shape class

The !Shape class is an abstract class that embodies behavior common to all

shapes. If one examines the functionality of each shape, a couple of things immediately

come to mind.

1. Each shape should be able to draw and erase itself. Thus the draw function is
implemented as a pure virtual function to be handled by the appropriate actual shape
subclass (say the !Circle shape class).

2. A shape should be able to determine whether a mouse click has hit on it. This is
called the hit test. Hit testing is quite easy for rectangular shapes Gust check whether
the mouse coordinates lie inside the shape region) and a generic hit testing member
function is implemented in the abstract !Shape class. However, in the case of a
!Polyline shape, checking for a hit is more complicated and hence the hit test
function is set as a simple virtual function in case a sub-class down the inheritance
hierarchy wishes to override the default hit test.

3. A shape should be able to determine the extent of the area occupied by itself on the
viewing surface. This is used by the hit test member function, as well as by the edge
drawing command.

4.5.2 TPureShape ~

The TPureShape class is an abstract sub-class of the !Shape class. The

TPureShape class abstracts behavior generic to the "Pure Shapes": Circle, Square,

Polyline, and Arrow. A pure shape is the defining shape of all the compound shapes

(otherwise called Graph Shapes). For instance, the Circle is the defining shape of the

Process shape, the Square is the defining shape of the Resource shape, and the Polyline is

the defining shape of an Edge shape.

A common operation in Prograph is dragging a shape on the drawing area. When

a shape (specifically a Graph Shape) is dragged, an outline of the shape follows the

-~~-1.,

39

mouse. The outline is also referred to as the ghost of the shape. Once the outline is

dragged and placed at a specific point, the original shape is erased from its previous

position and placed at the new position. The outline shape for all the Graph Shapes is

their defining Pure Shape. So, in order to support the dragging operations, all Pure Shapes

should be able to change their line drawing styles (from solid to dash-dot-dash). To

support this, the TPureShape class has member functions to change the line drawing

style. The outline dragging of a shape is accomplished by the use of the XOR drawing

mode, where the outline is successively XOR'ed to follow the mouse, thus resulting in a

drag effect. So a mode setting member function is available in the TPureShape class. The

mode of a Pure Shape is set depending upon whether the shape is being dragged or

simply is being drawn in solid mode. A translate member function is also needed as part

of the TPureShape class. The translate member function is responsible for translating the

coordinates of the shape to follow the mouse coordinates.

Another important operation supported by the TPureShape class is the concept of

cloning. When an outline shape is created for dragging, it is actually a copy (clone) of the

original Pure Shape member of the to-be-dragged Graph Shape. Cloning an outline shape

is referred to as cloning a ghost shape. The other type of cloning is the normal cloning or

copy of a Pure Shape. A normal clone is required when a copy of an entire graph model is

to be generated during the analysis of a graph. The graph clone is used as one of the

successive states in a reduction sequence.

I..

40

4.5.3 TGraphShape ~

The TGraphShape class, which is a sub-class of TShape, is an abstract super-class

of the compound shapes TProcess, TResource, and TEdge. One of the elements common

to all graph shapes is their name. The name member of a graph shape is implemented as

an instance of the TText object. The TGraphShape class supports member functions to set

or retrieve a Graph Shape's name. Each type of Graph Shape is distinguished by its

distinctive Pure Shape main components. The TProcess graph shape has the TCircle Pure

Shape as its main component. The TResource graph shape has a TSquare Pure Shape

main component. Likewise, the TEdge graph shape has a TPolyline Pure Shape as its

main component. Hence the TGraphShape class has a member variable to hold the

appropriate Pure Shape component. This member variable is called the main shape

variable.

Earlier it was explained that, when a Graph Shape is being dragged, it is actually a

clone (a ghost clone) of its main component that is being dragged. At the end of the

dragging, the Graph Shape is redrawn at the new position. This is actually accomplished

by cloning a normal version of the ghost clone and replacing the original main

component of the Graph Shape by the latest clone. Thus, a replace main shape member

function is also an integral part of the TGraphShape class. When this replacement is done,

the position of the Graph Shape is automatically updated to its new position, since the

new clone would already be at that new position. The TGraphShape class also supports a

cloning operation of its own. This cloning is used in the analysis procedure to generate

copies of the Graph Shape for duplicating an entire graph.

-------=~

41

The TGraphShape class supports a hit test member function which is the actual hit

test called when a user clicks on a shape in the drawing area. A Graph Shape does a hit

test by simply asking its Pure Shape main component to perform the hit checking, since

the Pure Shape is the dominating component of a Graph Shape. This might not sound like

a complete hit test since, in the case of a TEdge object, we will be performing the hit test

only on the TPolyline component and not on the TArrow component. The hit test

however, is complete for a TProcess object or a TResource object, since the Pure Shape

main component completely encloses the Graph Shape's other components.

4.5.4 THilite ~

A hilite is the set of solid squares that appear at the boundaries of a shape when it

is selected (usually by clicking the mouse on a shape). The THilite object is composed of

a set of TSquare objects. Every time the user creates a new shape or selects a shape, a

new THilite object is created (the previous one, if any, is destroyed). A new THilite

object on creation asks the shape to be hilited, for a set of boundary points on which

hilites should appear. This function is implemented by the TPureShape class and its

sub-classes. A generic "get hilite positions" function is implemented in the TPureShape

class. This function is used by the TCircle and TSquare sub-classes, and returns eight

boundary points namely the northwest, north, northeast, west, east, southwest, south, and

southeast corners of the Pure shape. This function is a virtual function and is overridden

in the TPolyline class, since a Polyline has no concept of specific corners. The TPolyline

class returns the end points of all its lines as the set of hilite positions.

-~

42

A THilite object checks for a mouse click hit on itself, by interrogating each of its

component TSquare objects for hit testing.

4.5.5 TText ~

The TText class is responsible for representing all the different sorts of labels that

appear on different Graph Shapes. These labels include the name of the Graph Shapes,

the number of units of the TResource shape, and the type of the TResource shape. These

labels appear at the top of the respective instances for each type of shape. In the current

implementation of Prograph, a TText object can appear only in one of three different

positions on a Graph Shape: at the center line of the shape, at the midpoint of the upper

half of the shape, or at the midpoint of the lower half. The center position is used as the

location for the name of the shape. The upper midpoint is used for the position of the type

of a TResource object, and the lower midpoint is used as the position for the number of

units of a TResource object.

4.6 Design of Command Classes

The Command objects are responsible for actually responding to user input events

and performing the appropriate action. As explained earlier, the Command objects are

created and destroyed by the input/output layer (the TPrograph View object). A Command

object is created in response to a specific user action, say dragging an object. Once a

Command object is created, it has total control of the mouse and keyboard. After

performing its job, the Command object decides to terminate upon a predetermined input

event (say a mouse-up event). The TPrographView object creates a Command object on

_______],

43

each user action and, once the action is complete, the Command object is deleted. Some

of the common user actions are moving a Shape Object, drawing an edge, connecting a

process object and a resource object, deleting an object, etc.

The decision of what Command object to create and when to create it are made by

the TPrograph View object. This decision depends upon various factors including the

drawing mode which the user is in (e.g., "Pointer" mode, "Edge" mode, etc.). As

mentioned above, once a Command object is created, only the Command object can

decide when it is time for the user action to end and return mouse and keyboard control

back to the TPrograph View object.

4.6.1 ~Handlim~~~~Automata

Once a Command object starts up, it will be getting a continuos stream of

different input events such as mouse-down events, mouse-move events, and mouse-up

events. On each input event, the Command object has to perform some action. The action

to be performed depends upon the set of all previous events received. In other words, a

Command object has to change its state upon receipt of an input event. This behavior is

ideally modeled by means of a finite state automaton. Each input event causes the

Command object to change its state. The state change is dependent upon the previous

state and the current input event. A number of different finite state automata were

designed for the various kinds of user actions. A finite state automaton is implemented in

actual practice using a transition table. Each element of the table has three entries. One

entry for the current state, one entry for an input event, and one entry for the next state.

. .. _______ L

44

All Command objects on creation start in a special state called the Start State.

Upon receiving an event, a dispatch routine looks up the next state from the transition

table and executes code corresponding to that state. Since the dispatch routine is generic

to all Command objects, the routine is placed in the root class of the hierarchy

TCommand.

To get a feel of how an actual Command works using a finite state automaton, a

simplified example of a subset of the TMoveCommand object is explained here. The

TMoveCommand object is created by the TPrograph View object when a user starts

moving a shape object. In this example, assume for simplicity that the user can drag the

shape only within the boundaries of the drawing area. Three different input events are

possible. The user initiates the move with a mouse-down event. Then successive

mouse-move events are generated when the user drags the shape object. Finally, the user

places the shape object at a specific position by releasing the mouse, resulting in a

mouse-up event being sent to the TMoveCommand object. In this example, the transition

table for the TMoveCommand object is quite simple and an outline is given in TABLE I.

TABLE I. SAMPLE TRANSITION TABLE

Current State Input Event Next State

Start state Mouse-Down Mouse-Down state

Mouse-Down State Mouse-Move Mouse-Move state

Mouse-Move state Mouse-Move Mouse-Move State

Mouse-Move State Mouse-Up Mouse-Up State

____ L

45

A better picture can be obtained by a transition graph representation of the table.

Once the dispatch function finds out the next state, it calls a routine to execute the code

for the next state. In the case of the TMoveCommand object, the code for the

"mouse-down state" will create a ghost of the to-be-dragged shape and sets up various

internal variables to prepare for dragging. On each successive mouse-move event, the

code for the mouse-move state is executed. This code is responsible for generating the

drag effect, i.e., erasing the previous outline of the ghost (by an XOR draw) and drawing

a new outline at the new mouse position. Finally when the mouse-up event occurs, the

code for the mouse-up state erases the last drawn outline ghost, and replaces the main

component of the original shape with a normal clone of the ghost, resulting in the

position of the original shape to be updated to the new position.

The actual implementation is far more complicated than the above explanation. In

the middle of a Command, the mouse can leave the drawing area resulting in mouse-enter

and mouse-leave events. Mouse-down and mouse-up events have to be distinguished as

to whether they are coming from inside or outside the drawing area. During a

mouse-move, the mouse buttons can be either depressed or undepressed leading to

different kinds of mouse-move events and coupled with mouse-moves outside and inside

complexity is increased further.

4.6.2 AutoScrollin~

A significant feature implemented as part of Prograph is a concept called

AutoScrolling. Typically, autoscrolling is useful when drawing an edge between a

process and a resource which are far apart, such that they are not visible on the screen at

--··- -·-- .. --~-L

46

the same time. With autoscrolling, after the user clicks on the source node and drags the

mouse towards the destination node, if the mouse leaves the boundary of the drawing

area, the drawing area will scroll towards the direction of the mouse movement. Hence

the source node will scroll off the screen and the destination node will scroll onto the

screen, enabling the user to click the destination node and thus ending the edge drawing.

Autoscrolling is not only useful for drawing edges, it is also useful in case a user wants

to move a shape to a part of the drawing area not currently visible on the screen. Without

autoscrolling, the user would have to do it in a series of steps, at each step using the

vertical or horizontal scroll bars. In autoscrolling, the screen will start to scroll

automatically immediately after the mouse leaves the drawing area. The scrolling will

continue till the end of the virtual drawing area is reached. When the screen is being

autoscrolled, the object being moved (an edge or a node shape), will appear under the

mouse. If the mouse is off the edge of the drawing area, then obviously the object may

not be visible. For scrolling to work, it is simply enough that the mouse be outside the

drawing area boundary, the mouse need not be physically moving.

Since the mouse need not be moving for autoscrolling to work, there had to be a

way for the program to periodically receive events once the mouse was outside the

drawing area. This problem was solved by making use of the timer facility in X

Windows. Autoscrolling was implemented as follows.

1. When the mouse leaves the boundary of the drawing area, a mouse-leave event is
received. On receipt of this event, the Command object starts a timer to send timing
signals at regular intervals.

2. For each timer signal received, the Command object scrolls the screen towards the
direction the mouse is currently at.

!\!!!!!!!!!:~~~~~~~~~~~=~~~~========~===~~=~==-.. c_~--~---L

47

3. If the mouse happens to also move outside the drawing area boundary, then the
Command objects will receive additional mouse-move events. These events are
processed the same way as if the object is inside the drawing area.

4. When the mouse reenters the drawing area, the Command object will receive a
mouse-enter event. The event handler for the mouse-enter event will stop the timer
thus ending the scrolling.

4.6.3 TNewNodeCommand ~and Its. Subclasses

The TNewNodeCommand class abstracts behavior pertaining to creating a new

process or resource shape on the screen. To create a new shape, the user selects the

appropriate palette button and moves the mouse onto the drawing area and clicks,

resulting in the appearance of the specified shape. The shape will actually appear on the

drawing area during the mouse-down event. In the same action and before releasing the

mouse button, the user can move the newly-created shape around on the screen and place

it at an appropriate place by releasing the mouse button (thus resulting in the final

mouse-up event to the Command object).

From the above description of the creation of a new node (shape), the only

difference from the TMoveCommand object is in the reaction to the initial mouse-down

event. While the TMoveCommand object hilited the clicked-upon-object on a

mouse-down, the TNewNodeCommand object created a new object on a mouse-down.

The remaining part of the automaton is the same for both classes. Hence the same

automaton could be used for both classes. So it was decided to make the

TNewNodeCommand class as a subclass of the TMoveCommand class. The

mouse-down event handling member function is overridden by the TNewNodeCommand

class.

----~L

48

The TNewNodeCommand class is only an abstract class. The actual Command

objects that create the shapes on the drawing area are instances of either the

TNewProcessCommand class or the TNewResourceCommand class. Both these classes

are sub-classes of the TNewNodeCommand class. These new classes only needed to

provide a new constructor. In the constructor for each class, the appropriate shape

(process or resource) is created. After that, the remaining events are handled appropriately

by member functions higher up the hierarchy (i.e., member functions in

TNewNodeCommand and TMoveCommand).

4.6.4 Abortin~ .a Command

A command can be aborted at any time by using the "Esc" key. When the Esc key

1s pressed, a special event handler is called. This event handler is responsible for

reversing any action done up to that point by the command. The abort event handler has

to be implemented separately by each command class.

4.6.5 Implementin~ l1ruk!

The undo facility enables the user to reverse the effect of the previous user action.

Prograph currently supports one level of undo. When a user does an undo, the system

reverts back to the state it was in, prior to the previous command. If the user does an undo

again, the system reverses the effect of the undo. So the undo can also act as sort of a

toggle between two consecutive system states. In the current implementation, the second

undo is called a "reverse undo".

To support an undo, some changes had to be made in the Command object

creation and deletion layer. Without undo, once a Command object finishes, it was

_L

49

immediately deleted. For undo support, a Command object on completion is not

immediately deleted, instead it is saved in a previous-command variable. The

previous-command variable is updated each time a new command terminates execution.

Each Command object has an undo member function. When the user does an undo, the

undo member function of the previous Command object is called. If the user successively

does undo operations (for whatever reason!), the undo member function in turn maintains

a Boolean variable that calls the reverse undo function each alternate time it is called.

Implementing the undo member function for a Command object is dependent upon what

that Command object does.

Consider the case of a TMoveCommand object. This command moves an object

from one position to another. As explained in the section on the Shape hierarchy (Section

4.5), an object is moved from one place to another by replacing its main shape component

(a TPureShape) by a new TPureShape (specifically a TCircle or a TSquare) positioned at

the destination position. To support undo, the TMoveCommand object, before replacing

the main shape, saves the old main shape internally. When the user does an undo, the

TMoveCommand object simply replaces the new main shape with the saved old main

shape resulting in the effect of the shape jumping back to its old position. During the

undo, the TMoveCommand object saves the new main shape internally, so that when the

user does an undo again, the old main shape can be replaced again by the new main

shape.

In the case of the TNewNodeCommand object (specifically, a

TNewProcessCommand or a TNewResourceCommand), the Command object saves a

------~L

50

pointer to the newly-created object internally. When the user does an undo, the Command

object asks the TPrographModel object (which represents the graph structure) to remove

the newly-created node. For a reverse undo, the TNewNodeCommand object adds the

removed new node back into the TPrographModel object. The same logic applies to the

TEdgeCommand object, which is responsible for drawing an edge.

The TDeleteCommand object works in the reverse way when compared to the

TNewNodeCommand and TEdgeCommand objects. When a shape is deleted, the

TDeleteCommand object saves the deleted object internally. When the user does an undo,

the deleted object is added back into the TPrographModel object. For another undo, the

object is again removed from the TPrographModel.

4.7 Design ofPrograph Model Class

The TPrographModel class is responsible for the internal representation of a

Process-Resource graph. The class has member functions for adding a new node to the

graph, removing a node from the graph, and adding and removing edges. The class is also

responsible for reading and writing an instance of itself from a file. The class also has

support for generating unique names for processes, resources, and edges.

A digraph is normally represented by a matrix. The value of the (i, j)th entry of a

matrix denotes the number of edges from node i to node j in the graph, where each node

has been assigned a specific number. A Process-Resource graph is a special form of a

digraph (a bi-partite graph), in which edges are permitted only from a process to a

resource or from a resource to a process. This fact leads to a design where the process

L

51

entries are considered to be along the rows of the matrix and the resource entries are

considered to be along the columns of the matrix. An element of the matrix, say (i, j), is

implemented as a list whose members are the set of edges between process i and resource

j. In fact the matrix is implemented by the TEdgeListMatrix class. This class is designed

to encapsulate all operations pertaining to the matrix. Each element of the matrix (i.e., a

list) is implemented as a list class, in this case the TGraphShapeList class., which, as the

name implies, implements a list consisting of Graph Shape objects. Also, all the

processes in the graph were put on a separate list, likewise for the resources. The edges in

the graph, besides being a member of a matrix element, were also put on a duplicate list,

for ease of access for certain operations. Despite the extra storage, there is no change in

the order of the space complexity.

When a new node is added to the graph, it has to be added either to the process list

or to the resource list, depending upon whether it is a process or a resources. Also, when

the node is added, either the number of rows or the number of columns of the matrix has

to be increased. So the TPrographModel object sends a request to the TEdgeListMatrix

object to add an additional row or column to the matrix. All the elements (which are lists)

of the additional row or column are set to empty lists. Obviously some particular

situations have to taken are of, such as when there are only processes in the graph and no

resources, and vice versa. In such cases, the internal matrix is not created by the

TEdgeListMatrix object. It comes into existence only when there is at least one process or

one resource.

=====··~---'-

52

When a node has to be removed from the graph, all the edges associated with that

node also have to be removed. These edges are not immediately deleted, instead they are

put on a separate list and returned to the Command object that does the deletion (the

TDeleteCommand object). The TDeleteCommand object will store this list in case the

user decides to do an undo. To remove a node, it is first removed from either the process

list or the resource list. Then the row (or column) in the matrix associated with that node

is removed. This operation is done by the TEdgeListMatrix object. Finally, the removed

node is returned back to the TDeleteCommand object for possible undo later on. The

actual deletion of the memory occupied by the node and the corresponding edges is done

in the destructor of the TDeleteCommand object after the user executes a new command,

and the previous TDeleteCommand object is no longer needed. So in effect the actual

node removal is a staggered removal.

When an edge is added to the graph, it is added to the appropriate matrix entry

corresponding to the source and destination nodes of the edge. The edge shape is also

added to the separate list of edges. The removal of an edge is the exact reverse process

and the edge is returned to the TDeleteCommand object for supporting undo. One

important fact to be taken care of when adding an edge is whether the edge is permitted to

be added. This occurs if for example an assignment edge is drawn from a resource having

no more resource units. So, before the edge drawing is finalized, the TPrographModel

object asks the source node for permission. If permission is denied, the TPrographModel

object aborts the operation and returns, and in turn the TEdgeCommand object, which is

responsible for drawing the edge, also aborts. Similarly, when removing an edge, the

______ -.1..,

53

TPrographModel object sends the message to the source node, which might want to

increase its number of resource units.

After a user moves a node from one position to another, all the edges associated

with that node have to be redrawn to reflect the new position of the node. This is initiated

by the TMoveCommand object. After a move, the Command object sends a replace node

main shape request to the TPrographModel object. After the main shape of the moved

node is replaced (thus resulting in the movement of the node), all the edges associated

with that node are found, and the requisite end point of each of those edges is changed to

reflect the new node position. Finally, the whole graph is updated.

The TPrographModel object also stores the current hilite object. Whenever a new

shape is created, or clicked upon, or moved, that shape has to be hilited and the previous

hilited shape, if any, has to be unhilited. All such hilite requests are handled by the

TPrographModel object. This object is responsible for deleting the old hilite object and

creating a new hilite object for the requested shape.

For generating unique names, the TPrographModel object traverses the current list

of nodes and edges, and assigns a name with the next free sequential number with the

appropriate string appended. Process names start with the letter "p", and resource names

and edge names start with "r" and "e", respectively. When a user clicks on the drawing

area, the input/output layer (which is the TPrographView class) requests the

TPrographModel object to do a hit test on all the nodes and edges on the graph. The

TPrographModel object in turn traverses its internal node and edge lists and asks the node

or edge to perform the requested hit test.

"""--~~--~L

54

4.8 Design of Pro graph Analyzer Class

The TPrographAnalyzer class is responsible for analyzing a model and generating

a list of models (if the state of the original model is safe) or the single original model (if

the state of the original model is unsafe). Pro graph supports two types of analyses.

1. A general analysis that tries to find out if there is any way of reducing the state
represented by the model.

2. A process-specific analysis that is almost the same as the first type except that the
~alysis starts with a specific process.

After the analysis, the analyzer returns a list of models as explained above, as well

as a small report containing the results of the analysis. The report is immediately

displayed in a dialog box on the screen.

4.8.1 Main Al2orithm

The analysis is done using an exhaustive search strategy, as described below.

1. Initialize all the internal variables and matrices required for the analysis.

2. Assign each process (in the set of processes of the graph to be analyzed) a sequential
number. Generate all possible permutations of processes. E.g., ifthere are 3 processes
- 1, 2, and 3, then the permutations generated are 1-2-3, 1-3-2,2-1-3,2-3-1, 3-1-2, and
3-2-1.

3. Analyze each permutation. Specifically, check to see if reducing the initial state by
the process list specified by a permutation results in a state where all processes in that
combination are reducible.

4. If a permutation that can be reduced is found, generate a new state diagram (model)
for reduction by each process. Also generate a report of the results of the analysis.

5. Finally, return back the list of models as well as the report.

- m-•- " -,-..,..-c=- -~~

55

The complexity of this algorithm is O(n!). This can be improved by the use of

heuristics to speed up the generation of the permutations, and can be done as part of

future work.

For analysis based on a specific process, the only difference from the above

scheme is in the generation of the permutations. For instance, if we want to reduce by

process 2, the permutations that are analyzed are 2-1-3 and 2-3-1.

To analyze a permutation, each process in that permutation, is taken and the state

of the model is reduced by that process, if possible. If the whole permutation is reducible,

the main algorithm stops and the list of models is generated. If not, the algorithm

proceeds to the next permutation until all permutations are analyzed.

4.8.2 Reducin~ a~~ a Process

Before explaining the algorithm, data structures used by the analyzer are

described. Three matrices and two vectors are required by the analyzer. The matrices are

the request matrix, the allocation matrix, and the producer matrix. Each matrix entry

denotes a connection between a process and a resource. Processes are considered to be

along the rows of the matrix and resources along the columns. The two vectors are the

available resource vector and the total resource vector.

The request matrix stores information about the requests that each process has

made for each of the resources. A specific row of the request matrix represents the request

vector of a particular process, and the value of the (i, j)th entry in the matrix represents the

number of requests process i has made for resource j. Similarly, the allocation matrix

stores information about the number of resources of each resource type allocated to each

L

process. The (i, j)th entry of the allocation matrix represents the number of units of

resource j assigned to process i. The producer matrix is a binary matrix that serves to

denote which of the processes are producers of which of the resources (consumable

resources to be specific). An entry (i, j) in the producer matrix denotes whether a process

i is the producer of a resource j.

The available resource vector stores the number of units of all resources that are

free. The total resource vector stores the total number of units of each resource. All the

matrices and vectors are initialized before the start of the analysis. The algorithm to

reduce a state by a particular process is given below.

1. Use the request matrix and check if the request row vector of that process is less than
the available resource vector. If so, continue, else return.

2. Now we have to take steps to change the system state to reflect reduction by that
process. Add the allocation vector of the process (from the allocation matrix) to the
available resources vector. Check if the process is a producer of any of the resources.
If it is, set the number of available units of that resource to infinity (i.e., w).

This algorithm mainly performs a set of vector comparisons and additions, and

hence the time complexity of the algorithm is O(n). The space complexity of the

algorithm is O(mn), where m is the number of processes and n is the number of resources.

Duplicate copies of all the three matrices and two vectors are kept separately,

since after each combination is analyzed, these matrices and vectors would have been

modified. Before the analysis of the next permutation, the original state has to be

restored.

. L --- . ~" .. -- -~-~------ -~-~---

4.8.3 Generatin2 a New Intermediate Model

Once a combination is found to be reducible, the analyzer restores the original

state and repeats the whole reduction process again; this time, after reducing by each

process, an intermediate graph (model) is generated. Generating a new graph involves

duplicating the entire graph, leaving out edges associated with processes that have been

reduced. If there are m processes, n resources and p edges, then the complexity of

duplicating the process and resource nodes in the graph is O(m + n). The complexity of

finding edges that are to be copied to the new graph is O(mp).

The intermediate states' graphs differ from the pre-reduction graph only in the

number of edges and the number of resource units of each resource. The positioning and

the number of all the other processes and resources remain the same. In generating a new

graph, all the nodes in the previous graph are cloned and added to the new graph. Now we

have to add only the edges that were not connected to any of the processes freed in this

stage or any of the preceding stages. For example, assume the permutation to be reduced

is 2-1-3 and we have already generated the graph state for reduction by process 2, and we

are now reducing by process 1. In this case, the freed processes are 2 and 1, so the edges

connected to processes 2 and 1 are not added to the new intermediate graph.

4.9 Prograph Module Listing

The program listing of Prograph consists of 20 C++ source files and 22 header

files. The 20 source modules are listed below.

- .. ---. -. _l

58

• PrographApp.C: This module is the startup module. The module is responsible for
instantiating sub-classes of the MotifApp application framework's Application and
Main Window classes.

• PrographWindow.C: This module contains code to initialize and setup the main
window of Pro graph. It also creates the palette, the drawing area, and the menu items.

• PaletteView.C: This source code file contains code to setup the different buttons found
on the palette of Pro graph. The palette is initialized to the "Pointer" button.

• Prograph View.C: This source file implements the "View" member functions of the
TPrograph View object. Besides that, this file also contains member functions to
initialize the drawing area.

• ViewMain.C: This source file implements the "Controller" member functions of the
TPrograph View object. All the Command objects are created and handled in this file.

• Shape.C: This module implements the member functions of the TShape class, as well
as the THilite and TText classes.

• PureShape.C: This module implements the member functions of the TPureShape class
and its sub-classes namely, TCircle, TSquare, TPolyline, and TArrow.

• GraphShape.C: This module implements the member functions of the TGraphShape
class and its sub-classes namely, TProcess, TResource, and TEdge.

• Command.C: This module implements the member functions of the TCommand class.

• MoveCommand.C: This module implements the member functions of the
TMoveCommand class.

• NewNodeCommand.C: This module implements the member functions of the
TNewNodeCommand class, the TNewProcessCommand class and the
TNewResourceCommand class.

• EdgeCommand.C: This module implements the member functions of the
TEdgeCommand class.

• PrographModel.C: The TPrographModel object's member functions are implemented
in this class.

• PrographAnalyzer.C: This module is the analysis module and is responsible for
implementing the member functions of the TPrographAnalyzer class.

I.

59

• Document.C: The TDocument object's member functions are implemented in this
class.

• Dialog.C: This module implements the member functions of the TDialog class, which
is the root class of the Dialog class hierarchy.

• MotifDialog.C: This module implements the member functions of the TMotifDialog
class and its sub-classes namely, TGetFileDialog, TGeneralPurposeDialog, and
TQuestionDialog.

• CustomDialog.C: This module implements the member functions of the
TCustomDialog class and that of two of its sub-classes: TAnalysisResultsDialog and
TProcessTextDialog.

• SpecDialog.C: This module implements the member functions of the TEditSpecDialog
and its sub-classes TEditResourceSpecDialog and TEditProcessAndEdgeSpecDialog.

• Rectangle.C: This module implements the member functions of the TRectangle class.

CHAPTER V

EVALUATION OF THE TOOL

5.1 User Evaluation

The testing and evaluation of the software tool Pro graph, developed as part of this

thesis, are discussed in this chapter along with some comments on the drawbacks of this

tool and suggestions for its improvement based on the experience gathered in using the

tool. About 25 students of the graduate-level Operating Systems II class of Spring 1995

used Prograph for a class assignment to design two Process-Resource graphs and analyze

them for the presence of deadlocks.

Useful feedback was received during the evaluation process. The feedback was

used to improve the tool. One deficiency of the tool was the lack of an on-line help

system. Instead of an on-line help, the users were supplied with a hard copy of the

README file for Prograph. It was observed that very few of the participants/users were

utilizing the README file, and instead most of them were going ahead and directly

experimenting with the tool. Also, it was felt that a live demonstration could prove useful

for the effective use of the tool. Another observed problem was that if the tool was run

without the presence of a window manager, the title of the current file being manipulated

would not be visible. This created some confusion in the minds of the users about where

60

- -,_~----- " -.,---~~.

61

in the program they were, since they could not distinguish between a model they drew

and the analysis file generated by Prograph.

Also some users did not effectively use the multiple line edge drawing feature of

Prograph. From the answer files to the design assignment problem, and based on

observing the peculiar shapes of the edges, it was obvious that some users were unaware

of the existence of such a facility. Another problem was that the contents of the file

dialog boxes are not updated immediately after the user saves a file. The workaround

currently used, is to click on the "Filter" button of the file dialog box, to refresh its

contents.

5.2 Sample Systems Modeled by Prograph

As a limited experiment in the usability of Prograph, a number of different

Process-Resource graphs were modeled, including the assignment problems given to the

students of the graduate-level Operating Systems II course in Spring 1995. One of the

systems is described by Nutt [Nutt 92] in Figure 5.8 of his book. The graph is shown in

Figure 11 and contains only serial resources. There are three process and three resources

in the graph. Figures 12 to 14 depict the various stages in the reduction sequence of the

graph. This reduction sequence is obtained as a result of the analysis of the graph.

Another graph modeled by the tool is shown in Figure 15. The graph represents a

Process-Resource model having both serial and consumable resources and is described in

Figure 5.13 in [Nutt 92].

----- ________ l

-lEdge
I

(P
ro

ce
ss

(

!S
er

ia
l

R
es

oo
rc

e
I

IC
on

SI
JII

Ia
bl

e
R

es
ru

"C
el

[E
di

t
S

pe
ci

fi
ca

ti
on

 I
!D

el
et

e
I

!Un
do

I

[A
na

ly
ze

!A
na

ly
ze

 P
ro

ce
ss

(Sh
ow

 R
es

ul
ts

!P
re

vi
ou

s
S

ta
te

!N
ex

t
S

ta
te

Fi
gu

re
 1

1.
 A

 S
am

pl
e

P
ro

ce
ss

-R
es

ou
rc

e
G

ra
ph

 (
S

ou
rc

e
[N

ut
t

92
],

Fi
gu

re
 5

.8
)

0'
1

N

I I~

l:
li

ld
d

[
E
d
9
e
~
-
-

I
!P

ro
ce

ss

I
!S

er
ia

l
R

es
ou

rc
e

I
IC

on
s1

.10
1a

ble
 R

es
a<

rc
el

[Ec
:tlt.

 S
f.

>e
cl

£1
ca

t.
~J

!D
el

et
e

I
!Un

do
I

[1
\,

~i
~.

;
-
-
~
-
:
1

IA
na

l!j
Ze

 P
ro

ce
ss

I

!S
ho

w
 R

es
ul

ts

I
!P

re
vi

ou
s

S
ta

te

I
IN

ex
t

S
ta

te

l

8

Fi
gu

re
 1

2.
 S

te
p

1
in

 t
he

 r
ed

uc
tio

n
se

qu
en

ce
 f

or
 F

ig
ur

e
11

0

'\

w

'j i I !r-
--

U
lh

ll)
!l!

l _
_

_
_

 _

[Ed
98

. ~
~
-
~
=
=
:
J

!P
ro

ce
ss

I

lS
er

ta
l

R
es

a<
rc

e
I

lC
on

su
oa

bl
e

R
es

a<
rc

e
I

(f:
o:l

it.·
·s;

,.;e
trl

ca
tim

l
lD

el
et

e
I

llkl
do

I

(i
t,

;;
,i

~~

-]

lA
na

l!J
Ze

 P
ro

ce
ss

I

!Sh
ow

 R
es

u
It

s
I

!P
re

vi
ou

s
S

ta
te

I

!N
ex

t
S

ta
te

I

8
m

1 2 8

Fi
gu

re
 1

3.
 S

te
p

2
in

 t
he

 r
ed

uc
tio

n
se

qu
en

ce
 f

or
 F

ig
ur

e
11

"T1
U5'
r::
CD
~

~

-I
::T
(1)

:::t!
::::J
Q)

en
-Q)

-(1)

0

--::T
(1)

CD
c.
r::
u (5'
::::J
en (1)
.0
r:: (1)
::::J
(')
(1)

0' ..,

~9

0 B

B 0

OB

ur
um

wa
 ..

..
..

..
..

.

Jf:
dg

;,
]

!P
ro

ce
ss

I

!S
er

ia
l

R
es

oo
rc

e
I

Jc
on

s.
...

..,
le

 R
es

oo
rc

e I

!E
di

t
S

pe
ci

fi
ca

ti
on

 J

!D
el

et
e

I
!Un

do
I

l
i
h
!
i
~
-
-
=
=
:
1

!A
na

ly
ze

 P
ro

ce
ss

I

!S
ho

w
 R

es
ul

ts

I
!P

re
vi

ou
s

S
ta

te

I
IN

ex
t

S
ta

te

I

Fi
gu

re
 1

5.
 A

no
th

er
 S

am
pl

e
P

ro
ce

ss
-R

es
ou

rc
e

G
ra

ph
 (

S
ou

rc
e

[N
ut

t
92

),
 F

ig
ur

e
5.

13
)

0
\

0
\

CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Summary

The importance of modeling Process-Resource graphs for deadlock analysis and

the main objective of this thesis were discussed in Chapter I. Chapter II presented a

survey of the current literature on Process-Resource graphs and deadlock analysis . This

chapter presented an introduction to deadlocks and their detection. Also, the methods by

which an operating system Process-Resource graph can be modeled were generally

discussed in that chapter. Chapter II also contained a discussion of a number of different

algorithms used for analyzing and detecting deadlocks. The various implementation

issues of the software tool developed as part of this thesis, called Prograph, were

discussed in Chapter III. The implementation platform and run-time environment,

including an introduction to the Sequent Symmetry S/81, the X Window System, and the

OSF /Motif widget set, were discussed in the various sections of Chapter III. Chapter IV

of the thesis dealt with the software architecture and the detailed design of Prograph.

Also, a description of the various parts of the user interface was presented in that chapter.

Chapter V contained the results of the initial testing and evaluation of Pro graph.

67

68

The main objective of this thesis was the development of a graphical software tool

that can aid in building a Process-Resource model of the dynamic state of an operating

system, analyze the graph for safe/unsafe states, and detect the presence of deadlocks.

This tool can be used to design and construct Process-Resource system states of

virtually any size and complexity. The graphical user interface was implemented using

the OSF/Motifwidget set (see Chapter III for a discussion ofthe X Window System and

the Motif Toolkit). This tool was used to design graphs of reasonable size and complexity

in an academic environment.

A disadvantage of the tool is that, it is currently dependent on the Motif user

interface. Also the algorithm used for deadlock analysis has an exponential time

complexity and hence cannot be practically used to analyze large graphs.

6.2 Future Work

The improvement mentioned below should be incorporated into the future

versions of Pro graph.

• Automatic repositioning of the nodes and edges is not implemented currently. This
feature can be helpful when designing large graphs, when it becomes difficult to
control the web of edges traveling criss-cross across the graph.

• An on-line help system can be implemented in a future release of the tool.

• The analysis algorithm which has O(n!) complexity, can be made more efficient by
incorporating heuristic searching.

• The cut, copy, and paste options can be implemented to provide additional flexibility
in designing Process-Resource graphs.

• Currently, Prograph does not support the resizing of objects. This can be implemented
in a future version of the tool.

--~---L

69

• A grid background can be shown as a backdrop behind the drawing area, to assist in
the placement of nodes.

• Related to the above item, support can be added to the tool for a snap effect, where
nodes once moved should be allowed to be placed at discrete positions at
predetermined and equidistant locations in the graph.

• Support can be added for aligning a group of nodes in various positions (e.g., center
aligned).

• The tool can be extended to provide support for hierarchical Process-Resource graphs.

• Prograph can be redesigned to act as a tool to assist in situations requiring deadlock
prevention. Similarly this concept can be used to provide support in environments
requiring a deadlock avoidance approach or a deadlock detection and recovery
approach.

• An extensive evaluation of the tool needs to be done, to ensure the robustness of the
tool under stress conditions.

REFERENCES

[Barkakati 91] N. Barkakati, X Window System Programming, Macmillan Computer
Publishing, Carmel, IN, 1991.

[Barkakati 93] Nabjyoti Barkakati, Imaging and Animation for Windows, Sams
Publishing, Carmel, IN, 1993.

[Berlage 91] Thomas Berlage, OSF/Motif: Concepts and Programming, Addison-Wesley
Publishing Company, Reading, MA, 1991.

[Coffman et al. 71] E. G. Coffman, M. J. Elphick, and A. Shoshani, "System Deadlocks",
ACM Computing Surveys, Vol. 3, No.7, pp. 67-78, June 1971.

[Dannenberg 90] Roger B. Dannenberg, "A Structure for Efficient Update, Incremental
Redisplay and Undo in Graphical Editors", Software-Practice and Experience,
Vol. 20, No.2, pp. 109-132, February 1990.

[DiLascia 92] Paul DiLascia, Windows++: Writing Reusable Windows Code in C++,
Addison-Wesley Publishing Company, Reading, MA, 1992.

[Gansner et al. 88] E. R. Gansner, S. C. North, and K. P. Vo, "DAG- A Program that
Draws Directed Graphs", Software-Practice and Experience, Vol. 18, No. 11, pp.
1047-1062, November 1988.

[Gansner et al. 93] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo, "A Technique for Drawing Directed Graphs", IEEE
Transactions on Software Engineering, Vol. 19, No.3, pp. 214-230, March 1993.

[Habermann 69] A. N. Habermann, "Prevention of System Deadlocks", Communications
ofthe ACM, Vol. 12, No.7, July 1969.

[Heller 94a] Dan Heller, Motif Programming Manual, Volume 6A, O'Reilly & Associates,
Inc., 1994.

[Heller 94b] Dan Heller, Motif Reference Manual, Volume 6B, O'Reilly & Associates,
Inc., 1994.

[Holt 72] R. C. Holt, "Some Deadlock Properties of Computer Systems", ACM
Computing Surveys, Vol. 4, No.9, pp. 179-196, September 1972.

70

L

71

[Isloor and Marsland 80] Sreekaanth S. Isloor and T. Anthony Marsland, "The Deadlock
Problem: An Overview", IEEE Computer, Vol. 13, No. 11, pp. 58-78, November
1980.

[Johnson 90] E. F. Johnson and K. Richard, Advanced X Window Application
Programming, Advanced Computer Books, Management Information Source Inc.,
Portland, OR, 1990.

[Keller 90] B. J. Keller, A Practical Guide to X Window Programming, CRC Press Inc.,
Boca Raton, FL, 1990.

[Lippman 91] Stanley B. Lippman, C++ Primer, Second Edition, Addison-Wesley
Publishing Company, Reading, MA, 1991.

[Nutt 92] G. J. Nutt, Centralized and Distributed Operating Systems, Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[Nye 90] Adrian Nye, X Protocol Reference Manual for Version 11 of the X Window
System, O'Reilly and Associates Inc., Sebastapol, CA, 1990.

[Paulisch and Tichy 90] Frances N. Paulisch and Walter F. Tichy, "EDGE: An Extendible
Graph Editor", Software-Practice and Experience, Vol. 20(S1), pp. 63-88, June
1990.

[Rowe et al. 87] Lawrence A. Rowe, Michael Davis, Eli Messinger, and Carl Meyer, "A
Browser for Directed Graphs", Software-Practice and Experience, Vol. 17, No. 1,
pp. 61-76, June 1987.

[Sequent 90] DYNIX/ptx User's Guide, Sequent Computer, Inc., 1990.

[Stroustrup 91] Bjarne Stroustrup, The C++ Programming Language, Second Edition,
Addison-Wesley Publishing Company, Reading, MA, 1991.

[Sugiyama et al. 81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda, "Methods
for Visual Understanding of Hierarchical System Structures", IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 11, No.2, pp. 109-125, February 1981.

[Tamassia et al. 88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini,
"Automatic Graph Drawing and Readability of Diagrams", IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 18, No. 1, pp. 61-79, January 1988.

[Tanenbaum 92] AndrewS. Tanenbaum, Modern Operating Systems, Prentice Hall, Inc.
Englewood Cliffs, NJ, 1992.

... ------=='-

72

[Vlissides and Linton 90] John M. Vlissides and Mark A. Linton, "Unidraw: A
Framework for Building Domain-Specific Graphical Editors", ACM Transactions
on Information Systems, Vol. 8, No.3, pp. 237-268, July 1990.

[Warfield 77] J. N. Warfield, "Crossing Theory and Hierarchy Mapping", IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 7, No. 7, pp. 505-523, July
1977.

[Wisskirchen 90] P. Wisskirchen , Object-Oriented Graphics, Springer Verlag, Berlin,
1990.

[Young 90] D. A. Young, The X Window System: Programming and Applications with
Xt, OSF/MotifEdition, Prentice Hall Inc., Englewood Cliffs, NJ, 1990.

[Young 92] Douglas A. Young, Object-Oriented Programming with C++ and
OSF!Motif, Prentice Hall Inc., Englewood Cliffs, NJ, 1992.

·--~.!.

£L

S3:JICIN3ddV

APPENDIX A

GLOSSARY AND TRADEMARK INFORMATION

GLOSSARY

accelerator: Single keystrokes that are the equivalent of certain application
functionalities, most commonly associated with menu selections.

application window: The window where an application resides with its complete
user-interface.

background: The area on which a widget resides.

background color: The color from which all widgets generate their top and bottom
shadows and their select color, and against which labels and bitmaps are created
with the foreground color.

bitmap: An image created using only the foreground and background colors of the
screen.

button: Either a physical button on the mouse or a widget that simulates a real button on
the screen.

callback: A function or a procedure that is to be executed when a specific event occurs
within a widget that is in a particular state.

class: A common description for a set of similar objects with the same structure but
different attribute values. Each class has unique characteristics and any number of
instances of the class may be created.

class hierarchy: A logical ordering of classes, in which each class lower in the hierarchy
(sub-class) is a specialization of the class directly above it (super-class).
Sub-classes may inherit, add, delete, or modify the attributes.

click: Pressing and immediately releasing a mouse button without moving the mouse in
between.

74

75

client-server model: A server process in a client-server model provides some services to
the other processes. These other processes are known as clients. In the X Window
System, the server controls all input and output devices. An application is a client
process that utilizes the services provided by the server.

composite widget: A widget that contains one or more widgets as its children, and
controls their geometry.

Deadlock: A process in a multiprogramming system is said to be in a state of deadlock
(or deadlocked) if it is waiting for a particular event that will not occur.

dialog box: A collection of widgets that are displayed by an application in response to an
event when detailed information needs to be provided to the user or when input
needs to be obtained from the user.

Directed Graph: A directed graph (or a digraph) G consists of a set of vertices V = {v1 ,

v2 , ••• , vn}, a set of edges E = {e1 , e2 , ••• , en}, and a mapping that maps every
~dge in E onto some ordered pair of vertices (vi, vj) in V.

event: A message from the X server to an application.

event handler: A procedure that is executed in response to one or more predefined events
for a widget.

geometry management: The process of automatic negotiation of the size and relative
position of all child widgets.

graphical user interface (GUI): A visual representation of some ofthe functionality of a
system that can be manipulated in a friendly, easy-to-use, and non-programmatic
manner.

graphics context (GC): A data structure that contains various information necessary for
drawing graphic objects on a window such as the foreground pixel, the
background pixel, line width, line style, and clipping region. A graphics context is
applicable only to drawables that have the same depth and root window as the
graphics context.

GUI: See graphical user interface.

icon: A graphical symbol of an object or an action. Selecting an icon typically results in
either selecting the object or performing the action.

inheritance: A mechanism that makes use of the characteristics of a super-class in a
sub-class without the need for duplication.

--,--o-----~

76

inter-client communication conventions (ICCC): A set of protocols that govern the
interaction among the clients as well as between a client and the window manager.

intrinsics: The base library of functions on which the Motif widget set has been built. It
implements the fundamental procedures for building new widget classes.

MULTIBUS: An industry standard for buses that may be used to connect a variety of
peripheral devices.

pixel: A single identifiable point on the screen or in a pixmap. A pixel may have different
color values, or may be white or black in the case of a monochrome monitor.

pixel values: An n-bit value, where n is the number of bit planes in a window or a
pixmap. In other words, n is the depth of the pixmap or window. In the case of a
window, it indexes a colormap to derive the actual color to be made visible.

pixmap: A three-dimensional array of bits that can be considered as a two dimensional
array of pixels. The value of each pixel can range from 0 to 2n·I, where n is the
depth of the pixmap. Alternately, a pixmap may be viewed as a stack of n
bitmaps.

pointer: A synonym for the mouse cursor.

Resource: A component managed by an operating system for which there is competition
among different processes.

server (X Window System): It offers the basic windowing mechanism. It is responsible
for handling inter-process communication connection between clients, graphic
requests, and demultiplexes and screens. It is also responsible for multiplexing
input back to the appropriate clients.

Starvation: A condition in which a process in a multiprogramming system waits for a
resource for an unbounded period of time.

toolkit: A low-level library of objects and functions that are available for use to the
application programmer and upon which the intrinsics are built.

widget: A user interface mechanism comprising data structures and the associated
procedures that can be displayed in different ways such as menus, dialog boxes, or
windows.

window: A rectangular area on the screen that belongs to a particular application.

"C ···---~.,..,

77

window manager: The program that manages the display of windows and their
manipulation on the screen.

X: A networked, portable, and transparent windowing system.

X client: An application program that makes use of the services of the X server for input
and output.

Xm: The prefix for any value assigned to a widget resource. This convention
differentiates the X Window system and the Motif widget set values from values
assigned to other variables in the source code.

XmN: The prefix for any resource attribute whose value needs to be specified.

X protocol: The protocol by which X clients communicate with the X server.

X server: A set of C language routines that exclusively control the display hardware and
service client requests.

Xt Intrinsics: A synonym for X toolkit intrinsics.

X toolkit intrinsics: A library of functions, procedures, and data structures built on top of
Xlib that makes application programming much easier compared to working with
Xlib functions.

X Window System: A network-transparent and hardware-independent base layer that
provides services to graphical user interfaces.

TRADEMARK INFORMATION

DEC is a registered trademark of Digital Equipment Corporation.

DYNIX, DYNIX/ptx, Sequent S/81, and Symmetry are registered trademarks of Sequent
Computer Systems, Inc.

Motif, OSF, and OSF/Motifare registered trademarks ofthe Open Software Foundation.

The X Window System is a registered trademark of the Massachusetts Institute of
Technology.

UNIX is a registered trademark of AT&T.

~

APPENDIXB

USER GUIDE FOR PROGRAPH

1. General Overview

This is a step-by-step explanation of how to use Prograph to model and analyze a
Process-Resource graph. Start up Prograph by typing /p/koshy/Prograph/Prograph or the
path name for the new location of Prograph. When the program loads up, the initial
Pro graph screen appears (See Figure on the following page). In the center of the screen is
the drawing area. On the top left hand comer is the menu bar containing the File menu,
which contains the menu items: New, Open, Save, Save As, Close, and Quit. The use of
these menu items should be obvious if you have previous experience with any graphical
drawing or editing package. You will also notice scroll bars along the edge of the drawing
area. On the left end of the screen is a toolbar containing a number of buttons organized
into three sets.

Set1: [Pointer] [Edge] [Process] [Serial Resource] [Consumable Resource]
Set2: [Edit Specification] [Delete] [Undo]
Set3: [Analyze] [Analyze Process] [Show Results] [Previous State] [Next State]

The interface to Pro graph is a point and click interface. You can select objects in
the drawing area by clicking on them, move them about by dragging them, etc. Another
feature of the tool is the auto-scrolling facility. In the middle of a drawing or dragging
operation, if you chance to move the pointer out of the drawing area, the drawing area
will automatically scroll to provide a virtual screen effect. The scrolling will continue
until you reach the edge of the virtual drawing area, which is currently set to about four
times the size of the physical drawing area. Of course, you can also use the scroll bars,
but the auto-scrolling facility comes in handy if you want to scroll in the middle of a
drawing or dragging operation.

The rest of this User Guide explains how to proceed to analyze a
Process-Resource graph.

2. Step 1: Describe the Problem on the Screen

In the first stage you will need to construct a graphical representation of the
problem. For this, you will be using the buttons in Setl and Set2.

78

____ l

6L

80

Set I is known as the "mode" set. One of the items in Setl will be highlighted at
all times. If you click on another item in Setl, the previous item's highlight will disappear
and the new item will be highlighted. The highlighted item denotes the current mode you
are in. One common problem while constructing a model on the screen, is forgetting
which mode you are in. When in doubt, switch to the [Pointer] mode.

The [Pointer] mode is used for selecting, dragging, and just about all other editing
operations. When you select an object by clicking on it, the object will be highlighted by
the presence of 8 hilite handles on its comers, except for Edge objects which will have
hilites for each endpoint of each segment of the edge.

If you switch to the [Process] mode, any time you click in the drawing area, you
will be getting a new process object. Each process object will be displayed with its
default name in the center of the object. In the [Serial Resource] or the [Consumable
Resource] mode clicking at a point on the screen will give you a new serial or
consumable resource object, respectively. When created, a new serial resource or
consumable resource object is set by default to contain one resource unit. Each resource
object will have 3 items displayed on it. On the top is either an *SR* denoting a Serial
Resource or a *CR"' denoting a Consumable Resource. At the center of the object is its
default name. At the bottom of the object is the number of available units in the object.
When using any of the three modes [Process], [Serial Resource], or [Consumable
Resource] in generating a new object, you can move the object to an appropriate place in
the same operation (before releasing the mouse button). A newly-created object will
appear hilited.

The [Edge] drawing mode enables you to draw edges from a process object to a
resource object or vice versa. Once you have switched to the [Edge] drawing mode, you
can start drawing edges. To draw an object from, say, process p 1 to resource r I, click the
mouse on pI and move the mouse outside p 1, at this stage you can decide to directly
connect to r I or have a few temporary intermediate points. Clicking anywhere on the
drawing area will set the line at that point, Finally, click on rl to finish the line drawing
(actually, the whole operation is straightforward and works similarly to line-drawing
operations in some of the commercial packages). When an edge is drawn from or to an
object, the edge will have an affmity towards the center of the object. In the example
above, when you enter ri, the edge will be captured temporarily by ri, and ri will release
the edge when you move outside of rl. Note that you cannot draw an edge from a process
to a process or from a resource to a resource.

There are three types of edges: Request edges, Assignment edges, and Producer
edges. When an edge is drawn from a process to a resource, it is a request edge. When an
edge is drawn from a serial resource to a process, it is an assignment edge. When you
draw an edge from a consumable resource to a process, you are denoting that the process
is a producer of that consumable resource, and hence the edge is called a producer edge.
If you try to draw an assignment edge from a serial resource containing no available

....

81

resource units, the edge drawing operating will abort on completion, and a message box
will popup. To prevent this, you will have to increase the number of resource units ofthat
resource type, and we will discuss how to do it in the next section.

Set2 buttons contain the edit set. It contains various items useful for editing a
graph. The items in Set2 are [Edit Specification], [Delete], and [Undo].

Using [Edit Specification] you can edit the various properties of an object. The
only property of a process or an edge is its name. For a resource, the additional properties
are its type and the number of units it holds. To edit an object's specification, it has to be
hilited. This can be done by switching to the [Pointer] mode and clicking on the object.
Once there is a hilited object, clicking on [Edit Specification] will popup a specification
dialog box. For a process or an edge, the only item on the dialog box will be a name text
entry box. The edit specification dialog box for a process or an edge is shown in the •
figure on the following page.

In the case of an edit specification dialog box for a resource, there will be a label
denoting the type of the resource. Also, there will be a text entry box to enter the number
of units. The edit specification dialog box for a resource is shown in the figure on the
following pages. Consider the case of a serial resource. When a serial resource is created,
it starts up with 1 unit. Suppose the unit is assigned to a process (by way of drawing an
assignment edge), the unit count reduces by one and the resource display will show 0
available units. This 0 is the number of available units, while the number of total units of
the resource is still 1. So the number of total units is the number of units assigned to a
resource, while the available units is that which is remaining. In the case of a consumable
resource, the number of available units is the same as the number of total units, since
once a consumable resource unit is assigned to a process, it is gone forever.

When the edit specification dialog for a resource pops up, beside the entry area for
the number ofunits, you will notice two toggle buttons, one labeled {Total Units} and the
other one labeled {Available Units}. By default when popping up, the toggle is on
{Available Units} and the number displayed on the Units entry area is the number of
available units for that resource. Clicking on the {Total Units} will result in the total
number of units held by the resource being displayed in the Units entry area.

It is preferable to edit the number of units with the toggle on {Available Units}.
When you increase the number of available units, the number of total units also increases
by the same amount. Decreasing the number of available units likewise decreases the
number of total units. You cannot decrease the number of available units below zero. The
changes can immediately be observed by toggling to {Total Units}. If you prefer to edit
the number of total units (i.e., the toggle is on {Total Units}), increasing it will increase
the number of available units by the same amount. When decreasing the number of total
units, you can only decrease it so that the corresponding decrease in the number of
available units will not make the number of available units less than zero. If you enter an

===·--__l

•

m c. ;::::;:
(/)

"C
(1)
(')

3i (')

a o· ::I

0
or
0

(C

OJ
0
X

0' ...,
Q)

""U
a
£ rn
rn
0 ...,
m c. (C
(1)

Z8

I I~

R
es

ou
rc

e
T~
pe
:

S
er

ia
l

O
bj

ec
t

N
am

e:
 I ~1

I

N
um

be
r

o
f

U
ni

ts
:

(1

m

I <

>
T

ot
al

 U
ni

ts

+
A

v
a
il

a
b

le
 U

ni
ts

I
I

OK

I
(

C
an

ce
l

I

E
di

t
S

pe
ci

fic
at

io
n

D
ia

lo
g

B
ox

 fo
r

a
R

es
ou

rc
e

0
0

\..

;..
)

•

84

incorrect value for the available units and toggle to {Total Units}, the toggle will remain
in the {Available Units}, and vice versa.

If the discussion in the previous paragraphs seem confusing to you, then the
easiest way to approach the editing is to edit the specification of the resources before
starting to draw any edges. In other words, after placing all the resources on the screen,
simply set the number of available units of each resource to that mentioned in the
problem statement.

Clicking the [Delete] key will delete the currently hili ted object. The [Undo] key
will undo the previously completed operation. For example, you can undo deletion of
objects, movement of objects, drawing new objects, etc. One thing to note is that
selecting an object is also considered an operation; so, if you delete an object and then
select another object, the undo command will not undelete the deleted object, since the
deletion operation would have become the previous to previous operation.

3. Step 2: Analyze the Problem

Ok, by now you must have a model on the screen exactly representing the
problem statement, recheck to make sure the figure meets all the specifications and all the
assignment, and the request and producer edges (if any) are correctly in place. If you
haven't saved the file by now, save it under an appropriate name. This brings us to the
buttons in Set3.

Set3 is the analysis set, it consists of various items for analysis. After a model is
drawn or displayed on the drawing area, selecting the [Analyze] button will analyze the
model state to see if it is safe or deadlocked. After the analysis, a dialog box pops up,
displaying the results. The Analysis Results dialog box is shown on the following page.
Clicking OK on the dialog box, will load up the Results file (the file currently on the
screen, which is the model you had drawn, will be closed; if you haven't saved that file,
the system will prompt you to do so). The Results file is now loaded up on the screen. It
will be assigned an automatically generated unique file name. The Results file will not be
automatically saved, you will have to save it explicitly if necessary.

If the analysis of the model resulted in a safe state, then the analysis dialog box
which you saw earlier would have mentioned a reduction sequence. The Results file
contains the reduction sequence. The first figure which you see in the Results file is the
start state, Clicking on the [Next State] button, will take you to the next state obtained by
reducing the first process in the reduction sequence. When you do so, you may observe
that some of the edges have disappeared, the number of resource units updated, etc. These
changes correspond to the fact that the first process' requested resources have been
assigned and it has released any resources it was holding, or it has generated an infinite
number of units if it is the producer of a consumable resource. In Pro graph, following the
classical deadlock analysis conventions, infinity is represented by the symbol w .

I I~

Th
e

S
ta

te
 i

s
*S

AF
E*

R
ed

uc
tio

n
Se

qu
en

ce

-
Pl

 -
P2

 -
P3

Il
ia

·
-
-
-
1

[
]
1

C
lic

k
on

 O
K

to
 v

ie
w

 t
he

 R
es

ul
ts

 f
il

e

C
lic

k
on

 C
an

ce
l

to
 r

et
ur

n
to

 t
he

 c
ur

re
nt

 F
il

e

r·m
••

......
. c~~

~
~
i
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

... ...
.... ,

A
na

ly
si

s
R

es
ul

ts
 D

ia
lo

g
B

ox

0
0

V

l

........l___

86

Continue stepping through the reduction sequence by clicking the [Next State]
button each time. If at any point you want to go back, click on the [Previous State]
button. So you can step back and forth through the Results file. Clicking on the [Show
Results] button will popup a dialog box, which will show you the analysis information
pertaining to the Results file (this is the same information you saw earlier).

Save the Results file using an appropriate file name by using the Save As menu
item (or you can use the automatically-generated filename itself, if you wish). If you want
to do additional analysis on the model, first close the Results file and then open the
previously-saved model file and proceed.

The [Analyze Process] is similar to [Analyze] except that the analysis starts with a
particular process which you specify. When you select [Analyze Process], you will be
asked to specify a process to reduce by. The system will analyze whether that process is
safe or deadlocked. The same dialog box will popup as before. You can click OK if you
wish to see the Results file.

After an analysis, if the state is deadlocked, the Results file will contain a single
model. In that case, clicking on [Next State] or [Previous State] will simply redisplay that
one model.

4. Aborting a Drawing Operation

You can abort a drawing operation at any time by pressing the Esc key. This
might be useful when doing edge drawing .

---.-~~

~

APPENDIXC

SYSTEM ADMINISTRATOR GUIDE FOR PROGRAPH

1. Maintenance

Most of the configurable parameters of Prograph are stored in the header file
"Types.h".

The title of the Program is currently "Prograph". This string is appended to the
name of all files shown at the title bar on top of the user interface. The title can be
changed by redefining the string variable PROGRAPH _TITLE.

The maximum number of points allowed in a Polyline is set currently to 100. This
can be changed by redefining the variable MAX_POINTS. Also, the length of an arrow
for an edge is set by default to 10 pixels and the half width of the arrow is set at 4 pixels.
These are defined in the variables ARROW _LENGTH and ARROW _HALF_ WIDTH,
respectively, and can be changed as required.

The maximum length of a file name is currently set at 100 characters. This can be
changed by redefining the variable MAX_FILE_NAME. Similarly, it is expected that the
report string of an analysis will be no longer than 4000 characters. This limit can be
changed by modifying the variable MAX_ ANAL YSIS_RESULTS_STR_LENGTH. The
font for displaying the various labels on a node can be changed by redefining the variable
FONT NAME.

When a user clicks on a line, a tolerance of a few pixels is allowed. The default
value of the tolerance level is 3 pixels on either side, or a total width of 6 pixels. This is
defined in the variable HIT LINE WIDTH. - -

Currently, the virtual drawing area is divided into a 30 rows and 30 columns, each
row or column being 50 pixels high and 50 pixels wide, respectively. A row or a column
represents the minimum amount that the screen will scroll due to a scroll event. The
NUM_CELL_ROWS variable holds the number of rows, and the
NUM_CELL_COLUMNS variable holds the number of columns. The height of a row is
defined in CELL_HEIGHT, and the width of a column is defined in CELL_ WIDTH.
Changing these parameters will result in the changing of the virtual screen area as well as
the scrolling parameters.

87

•'

~~-~

l_

88

When a new node is created, the size of the node is set by default to 50 pixels.
This can be changed by redefining the variable DEFAULT_NODE_SIZE.

When a shape is clicked, a number of handles appear on the comers or end points
of the shape. The default size of the square handles is 5 pixels. This size can be changed
by modifying the variable HANDLE_ SIZE.

The text that appears on a resource shape, to depict whether it is a serial resource
or a consumable resource, is currently "*SR*" or "*CR*", respectively. These can be
changed by redefining the variables SERIAL_RESOURCE_TEXT for serial resources
and the variable CONSUMABLE RESOURCE TEXT for consumable resources. - -

The prefix of all automatically generated result files is currently set to "Res". This
can be modified by redefining the variable RESULT_ PREFIX.

2. Options

Prograph is a software tool based on the Motif widget set. As mentioned earlier,
the Motif widget set is built upon the X Toolkit. Hence, Prograph accepts all the standard
X Toolkit command line options [Young 90]. The more popular options accepted by
applications written using the X Toolkit are briefly described below.

-bg color

-display display

-fg color

-lCOlllC

-rv

-title string

This option can be used to change the background color of an
application window. The default background color is white.

This option is used to define the X server to which an application
is to be connected.

This option can be used to change the foreground color of an
application window. The default foreground color is black.

This option ensures that Prograph is started by the window
manager as an icon rather than as a normal window

This option is used to swap the background and foreground
colors of an application.

This option sets the title of an application window. This option
may be ignored by the window manager. The default window
title is the string specified after the -e command line option. If
none is specified, the application name is used.

~~---~~ ~~-~--~~=

i
I

............___.

APPENDIXD

SAMPLE PROGRAM LISTINGS

Due to space constraints the entire code listing could not be included in the

appendix. Only the code for the Analyzer module is listed in this appendix. The Analyzer

module contains the algorithms for analyzing a graph for deadlock, and hence was

considered the most important module of the entire program. The module has two files: a

header file, PrographAnalyzer.h and a source file, PrographAnalyzer.C. The listing is

given below.

11
II
II Pro graph An a 1 y z e r . h

II -----------------------------------
11
11

11
II
II Header file for the Analyzer module
II
11

#ifndef PROGRAPHANALYZER_H
#define PROGRAPHANALYZER_H

II Forward reference
II
class TPrographView;

11
II class TPrographAnalyzer

11
II
class TPrographAnalyzer

private:

TPrographView *_theView;

TGraphShapeList *_processList;

89

•

.....I..

'

......L__

TGraphShapeList *_resourceList;
TGraphShapeList *_edgeList;

int _numProcesses;
int _numResources;
int _numEdges;

int ** allocMatrix; -
int **_requestMatrix;
int **_producerMatrix;

int * - avail Vector;

int * - total Vector;

II For producer process of consumable resources

II Vector containing the number of units of
II each resource that are available
II Vector containing the total number of units
II of each resource available

ResourceType *_typeVector; II Vector holding the types of the various
II resources

II Duplicate matrices and vectors
int **_orgAllocMatrix;
int **_orgRequestMatrix;
int **_orgProducerMatrix;
int *_orgAvailVector;
int *_orgTotalVector;

II Functions private to the Analyzer
II
void initializeinternalState(TPrographModel *aModel};

void restoreOriginal(};
BOOL isCombinationReducible(int *comb, int setSize};
void reduceCombination(int *comb, int setSize,

TGraphShapeList *freedProcessList, TPrographModelList *modelList};
ReduceByProcessType reduceByProcess(int process, int *tempAvailVector};

void generateAnalysisResults(BOOL thereisACannotReduce,
TGraphShapeList *freedProcessList, char *analysisResultsStr};

TPrographModel *generatePrographModel(TGraphShapeList *freedProcessList};
void addAllEdgesToModelExcept(TGraphShapeList *freedProcessList,

TPrographModel *newModel, TGraphShapeList *newProcessList,
TGraphShapeList *newResourceList};

BOOL isLessThanOrEqualTo(int *lhsVector, int *rhsVector, int size};
void addVector(int *vector, int *vectorToBeAdded, int size};
void subtractVector(int *vector, int *vectorToBeSubtracted, int size};
void addProducerVector(int *vector, int *producerVector, int size};

ResourceType *allocateResourceTypeVector(int size};

II Function for debugging
void printinternalState(};

public:

} ;

TPrographAnalyzer(TPrographView *theView};
-TPrographAnalyzer(};

TPrographModelList *analyze(TPrographModel *aModel, ReduceType reduceType,
TGraphShape *startProcess =NULL};

#endif

90

...

11
II
II Pro graph An a 1 y z e r . C

II -----------------------------------
11
11

11
II
II Source file for the Analyzer module
II
11

#include <Stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "Types.h"
#include "Point.h"
#include "Rectangle.h"

#include "Shape.h"
#include "PureShape.h"
#include "GraphShape.h"
#include "PrographModel.h"
#include "PrographAnalyzer.h"

#include "Command.h"
#include "Movecommand.h"
#include "NewNodeCommand.h"
#include "Sizecommand.h"
#include "EdgeCommand.h"

#include "PrographView.h"
#include "PaletteView.h"
#include "Document.h"
#include "PrographWindow.h"

II Other useful functions
II
int **generateAllCombinations(int setSize, int &numCombs);
int **generateSpecialCombinations(int specialNumber, int setSize,

int &specialNumCombs) ;
void generateCombinations(int numCombs, int setSize, int **combs);
BOOL isCombination(int setSize, int *perm);
void incrementPermutation(int setSize, int *perm);
int power(int x, int y);
int factorial(int x);

BOOL isZeroVector(int *vector, int size);
void setToZero(int *vector, int size);
int **allocateintegerMatrix(int numRows, int numColumns);
void freeintegerMatrix(int **matrix, int numRows);
int *allocateintegerVector(int size);

void copyMatrix(int **srcMatrix, int **destMatrix, int numRows, int numColumns);
void copyVector(int *srcVector, int *destVector, int size);
void printMatrix(int **matrix, int numRows, int numColumns);
void printVector(int *vector, int size);

11
II Member functions for class TPrographAnalyzer
11

11
II T Pro graph An a 1 y z e r

91

II
II Description:
II
II Constructor for the TPrographAnalyzer object. Initializes the view
II
TPrographAnalyzer::TPrographAnalyzer(TPrographView *theView}
{

theView = theView;

11
II -T Pro graph An a 1 y z e r
II
II Description:
II
II
II
II

Destructor for the TPrographAnalyzer object. Here we free the matrices
and vectors used for the analysis.

TPrographAnalyzer::-TPrographAnalyzer(}
{

freeintegerMatrix(_allocMatrix, _numProcesses};
freeintegerMatrix(_requestMatrix, _numProcesses};
freeintegerMatrix(_producerMatrix, _numProcesses};
free (_availVector};
free (_totalVector};
free (_typeVector};

II Free duplicate matrices
freeintegerMatrix(_orgAllocMatrix, _numProcesses};
freeintegerMatrix(_orgRequestMatrix, _numProcesses};
freeintegerMatrix(_orgProducerMatrix, _numProcesses};
free (_orgAvailVector};
free (_orgTotalVector};

11
II an a l y z e
II
II Description:
II
II
II
II
II
II

The member function which is called externally for analyzing a model.
A TPrographModel object is passed as an argument. The function after the
analysis returns a list of models representing the successive states of
the reduction sequence.

TPrographModelList *
TPrographAnalyzer::analyze(TPrographModel *aModel, ReduceType reduceType,

TGraphShape *startProcess}

int comb;
int process;
int **combs;
int numCombs;
BOOL thereisACannotReduce;
TGraphShapeList *freedProcessList;
TPrographModel *newModel;
TPrographModelList *modelList;
char analysisResultsStr[MAX_ANALYSIS_RESULTS_STR_LENGTH];

initializeinternalState(aModel};
modelList =new TPrographModelList(_theView};
freedProcessList = new TGraphShapeList;
II Generate the existing model
II
newModel = generatePrographModel(freedProcessList};
modelList->add(newModel};

92

...

if (reduceType == REDUCE SPECIFIC)
{ -

process= _processList->getindex(startProcess);
combs= generateSpecialCombinations(process, _numProcesses, numCombs);

else

combs generateAllCombinations(numProcesses, numCombs);

thereisACannotReduce = TRUE;
for (comb = 0; comb < numCombs; comb++)
{

restoreOriginal();

if (isCombinationReducible(combs[comb], numProcesses)
{ - TRUE)

restoreOriginal();
reduceCombination(combs[comb], _numProcesses, freedProcessList,

modelList);
thereisACannotReduce = FALSE;
break;

II Finishing touches
II
generateAnalysisResults(thereisACannotReduce, freedProcessList,

analysisResultsStr) ;
modelList->setAnalysisResults(analysisResultsStr);
modelList->setChangesMade();

II We will have to popout each entry of the freedProcessList
free (freedProcessList);
freeintegerMatrix(combs, numCombs);
return modelList;

11
II restore 0 rig in a 1
II
II Description:
II
II
II
II
II
II

Restore the orignal values of the matrices
is called before starting to analyze a new
analysis of the previous combination would
and vectors.

and vectors. This function
combination, since the
have modified the matrices

void
TPrographAnalyzer::restoreOriginal()
{

II Restore the original state
copyMatrix(_orgAllocMatrix, _allocMatrix, _numProcesses, _numResources);
copyMatrix(_orgRequestMatrix, _requestMatrix, _numProcesses,

_numResources);
copyMatrix(_orgProducerMatrix, _producerMatrix, _numProcesses,

_numResources);
copyVector(_orgAvailVector, _availVector, _numResources);
copyVector(_orgTotalVector, _totalVector, _numResources);

11
II is Combination Red u c i b 1 e
II
II Description:
II

93

,I

......

II Check if a particular combination (Say 2-1-3, in the case of a system
II containing 3 processes) is reducible.
II
BOOL
TPrographAnalyzer::isCombinationReducible(int *comb, int setSize)
{

int i, process;
int *ternpAvailVector;
ReduceByProcessType reduce;

for (i = 0; i < setSize; i++)
{

process = comb[i];
ternpAvailVector = allocateintegerVector(_nurnResources);
reduce= reduceByProcess(process, ternpAvailVector);

switch (reduce)
{
case CAN_REDUCE:

addVector(_availVector, ternpAvailVector, _nurnResources);
break;

case CANNOT REDUCE:
free (ternpAvailVector);
return FALSE;

case NEED NOT REDUCE:
break;

free (ternpAvailVector) ;

return TRUE;

11
II reduce Corn bin at ion
II
II Description:
II
II
II
II
void

Reduce the original state by a particular combination (Say 2-1-3). This is
done after checking if the above combination is found to be reducible.

TPrographAnalyzer::reduceCombination(int *comb, int setSize,
TGraphShapeList *freedProcessList, TPrographModelList *rnodelList)

int i, process;
int *ternpAvailVector;
ReduceByProcessType reduce;
TGraphShape *processShape;
TPrographModel *newModel;

for (i = 0; i < setSize; i++)
{

process = comb[i];
ternpAvailVector = allocateintegerVector(_nurnResources);
reduce= reduceByProcess(process, ternpAvailVector);
assert (reduce!= CANNOT_REDUCE);

if (reduce == CAN REDUCE)
{ -

addVector(_availVector, ternpAvailVector, _nurnResources);
processShape = _processList->getShapeAtindex(process);
freedProcessList->addToBack(processShape);
newModel = generatePrographModel(freedProcessList);

94

.I

.....

modelList->add(newModel);

free (tempAvailVector);

11
II reduce ByPro cess
II
II Description:
II
II
II
II
II
II

Given a combination, this function reduces the orignal state of the graph
by a particular process in the combination (passed as an argument) .
So this function is repeatedly called by the reduceCombination function
to reduce a complete combination.

ReduceByProcessType
TPrographAnalyzer::reduceByProcess(int process, int *tempAvailVector)
{

int resource;

II If the request matrix is less than the available matrix
II then we can reduce by this process, if not return FALSE
II
if (isLessThanOrEqualTo(_requestMatrix[process], _availVector,

_numResources) == FALSE)

return CANNOT_REDUCE;

II However now we have to check if the process is already
II isolated from the rest of the graph (no edges, i.e., all matrix
II rows of the process will be zeros). If so, then we dont need
II to consider this process
II
if ((isZeroVector(_requestMatrix[process], _numResources)) &&

(isZeroVector(_allocMatrix[process], _numResources)) &&
(isZeroVector(_producerMatrix[process], _numResources)))

return NEED_NOT_REDUCE;

addVector(tempAvailVector, _allocMatrix[process],
_numResources);

II Now our aim is to free up as many processes's claims as we
II can. So we will be continuing with the for loop. So the
II next process down the line, will see a reduced _availVector
II (due to the subtraction), if it can satisfy itself with that,
II then that process also will be freed. We add the request
II vector to the tempVector, so that it can be added later on
II Note this whole process is a virtual operation
II
subtractVector(_availVector, _requestMatrix[process],

_numResources);

II To handle a consumable resource, say Rx, we set the
II _requestMatrix[process] (Rx] too, because we should prevent that
II entry being added to tempAvailVector (which will be added later
II to _availVector). Note that this operation is done after
II subtracting the _requestMatrix[process] vector from the
II _availVector. I dont know whether this is an elegent solution
II or not
II Because a consumable resources unit will be gone after the allocation
II
for (resource = 0; resource < numResources; resource++)
{ -

if (_typeVector[resource] RESOURCE_CONSUMABLE)

95

~

"~-- _--=:==::---=o-~c;=--1

............___

_requestMatrix[process] [resource] = 0;

addVector(tempAvailVector, _requestMatrix[process],
_numResources);

addProducerVector(tempAvailVector, _producerMatrix[process],
_numResources);

setToZero(_allocMatrix[process], _numResources);
setToZero(_requestMatrix[process], _numResources);
setToZero(_producerMatrix[process], _numResources);

II Since we can reduce by the process, return CAN_REDUCE
II
return CAN_REDUCE;

11
II gene r a t e Pro graph Mode 1
II
II Description:
II
II This routine uses the current internal state of the Analyzer object
II to create a model
II
TPrographModel *
TPrographAnalyzer::generatePrographModel(TGraphShapeList *freedProcessList)
{

int process;
int resource;
TGraphShape *processShape;
TGraphShape *resourceShape;
TProcess *newProcessShape;
TResource *newResourceShape;
TGraphShapeList *newProcessList;
TGraphShapeList *newResourceList;
TPrographModel *newModel;

newModel =new TPrographModel(_theView);

newProcessList = new TGraphShapeList;
newResourceList = new TGraphShapeList;

II Add all the processes and resources to the model.
II
processShape = _processList->first();
while (processShape != NULL)
{

newProcessShape = (TProcess *) processShape->clone();
newModel->addNode(newProcessShape);

II We construct this so that when we add the edges we can send its new
II source and destination shapes. Note - addToBack is very important
II
newProcessList->addToBack(newProcessShape);
processShape = _processList->next();

resourceShape = _resourceList->first();
while (resourceShape != NULL)
{

resource= _resourceList->getindex(resourceShape);
newResourceShape = (TResource *) resourceShape->clone();
newResourceShape->initializeResourceCounts();

96

1

.....

II Now in the new model, we set the number of avaliable resources
II to the total (in the case of SERIAL resources). Later on when we
II add edges. this will automatically reduce
II
if (typeVector[resource] == RESOURCE SERIAL)
{ - -

}
else
{

newResourceShape->setNumTotalResources(_totalVector[resource],
FALSE); II Dont refresh text display

newResourceShape->setNumAvailableResources(_availVector[resource],
FALSE); II Same explanation as above

newModel->addNode(newResourceShape);
newResourceList->addToBack(newResourceShape);
resourceShape = _resourceList->next();

addAllEdgesToModelExcept(freedProcessList, newModel, newProcessList,
newResourceList) ;

II Clean up
free(newResourceList);
free(newProcessList);

return newModel;

11
II generate An a 1 y sis Res u 1 t s
II
II Description:
II
II Generate a report of the results of the analysis.
II
void
TPrographAnalyzer::generateAnalysisResults(BOOL thereisACannotReduce,

TGraphShapeList *freedProcessList, char *analysisResultsStr)

TGraphShape *process;
char shapeName[MAX_STR_LENGTH];

II If the results of the analysis exceeds MAX_ANALYSIS ... STR_LENGTH
II then the program will core dump. I am not expecting such a long
II result. It can happen only if there are hundreds of nodes and edges in
II the model to be analyzed

strcpy(analysisResultsStr, "");

switch (thereisACannotReduce)
{
case TRUE:

strcat(analysisResultsStr, "The State is *DEADLOCKED* or *UNSAFE*");
break;

case FALSE:
strcat(analysisResultsStr, "The State is *SAFE*");
break;

if (freedProcessList->size() != 0)
{

strcat(analysisResultsStr, "\n\n");
strcat(analysisResultsStr, "Reduction Sequence");

process= freedProcessList->first();

97

111111116.

while (process != NULL)
{

process->getShapeName(shapeName);
strcat(analysisResultsStr, • - ");
strcat(analysisResultsStr, shapeName);
process= freedProcessList->next();

strcat(analysisResultsStr, "\n\n");

11
II add A l lEdges ToM ode lEx c e p t
II
II Description:
II
II
II
II
II

This function is part of generating a new graph. To the new graph, this
function adds the edges connected to all processes except those of the
processes passed as an argument in the freedProcessList list.

void
TPrographAnalyzer::addAllEdgesToModelExcept(

TGraphShapeList *freedProcessList, TPrographModel *newModel,
TGraphShapeList *newProcessList, TGraphShapeList *newResourceList)

int process;
int resource;
TEdge *edgeShape;
TEdge *newEdgeShape;
TGraphShape *newSourceShape;
TGraphShape *newDestShape;

II Construct the newEdgeList which will consist of only edges that
II do not have any process in the freedProcessList as an end point shape
II i.e., theoretically the freed processes are giving up the resources
II allocated to them or giving up the resource requests they made, or
II if the freed processes are producers, removing their producer edges
II
edgeShape = (TEdge *) _edgeList->first();
while (edgeShape != NULL)
{

II If any of the end points of the edge are one among the freed
II processes, then we should not add that edge to the new model,
II hence we continue
II
if ((freedProcessList->isMember(edgeShape->source())) I I

(freedProcessList->isMember(edgeShape->destination())))

edgeShape = (TEdge *) _edgeList->next();
continue;

II Duplication

II Find the clone shapes of the source and dest, so that we can
II be up to date
II
if ((edgeShape->source())->shapeType() == SHAPE_PROCESS)
{

process= _processList->getindex(edgeShape->source());
newSourceShape = newProcessList->getShapeAtindex(process);
resource= _resourceList->getindex(edgeShape->destination());
newDestShape = newResourceList->getShapeAtindex(resource);

else if ((edgeShape->source())->shapeType() ==SHAPE RESOURCE)
{ -

resource= _resourceList->getindex(edgeShape->source());

98

l
I

111111111..

else

newSourceShape = newResourceList->getShapeAtindex(resource);
process= _processList->getindex(edgeShape->destination());
newDestShape = newProcessList->getShapeAtindex(process);

assert (0);

II Now clone the edge shape and add the clone to the
II newModel
II
newEdgeShape = (TEdge *) edgeShape->clone(newSourceShape, newDestShape);

II FALSE in the next statement signifies not to update the resource
II shape numUnits *display* (of course the numUnits will be updated)
II
newModel->addEdge(newEdgeShape, newSourceShape, newDestShape, FALSE);

edgeShape = (TEdge *) _edgeList->next();

11
II in it i a 1 i zeIn tern a 1St ate
II
II Description:
II
II Initializes all the internal matrices and vectors.
II
void
TPrographAnalyzer::initializeinternalState(TPrographModel *aModel)
{

int edge;
int process;
int resource;
TGraphShape *sourceShape;
TGraphShape *destShape;
TProcess *processShape;
TResource *resourceShape;
TEdge *edgeShape;

_processList = aModel->processList();
_resourceList = aModel->resourceList();
_edgeList = aModel->edgeList();

_numProcesses = _processList->size();
_numResources = _resourceList->size();
_numEdges = _edgeList->size();

_allocMatrix = allocateintegerMatrix(_numProcesses, _numResources);
_requestMatrix = allocateintegerMatrix(_numProcesses, _numResources);
_producerMatrix = allocateintegerMatrix(_numProcesses, _numResources);

_availVector = allocateintegerVector(_numResources);
_totalVector = allocateintegerVector(_numResources);
_typeVector = allocateResourceTypeVector(_numResources);

II Allocate duplicate matrices
_orgAllocMatrix = allocateintegerMatrix(_numProcesses, _numResources);
_orgRequestMatrix = allocateintegerMatrix(_numProcesses, _numResources);
_orgProducerMatrix = allocateintegerMatrix(_numProcesses, _numResources);

_orgAvailVector
_orgTotalVector

allocateintegerVector(_numResources);
allocateintegerVector(_numResources);

for (resource = 0; resource < numResources; resource++)
{ -

99

resourceShape = (TResource *) _resourceList->getShapeAtindex(resource);
_availVector[resource) = resourceShape->getNumAvailableResources();
_totalVector[resource) = resourceShape->getNumTotalResources();
_typeVector[resource) = resourceShape->resourceType();

II Now fill the matrices and Vector
for (edge = 0; edge < _numEdges; edge++)

edgeShape = (TEdge *) _edgeList->getShapeAtindex(edge);
sourceShape = edgeShape->source();
destShape = edgeShape->destination();

if (sourceShape->shapeType() SHAPE_ PROCESS)
{

processShape = (TProcess *) sourceShape;
resourceShape = (TResource *) destShape;

process= _processList->getindex(processShape);
resource= _resourceList->getindex(resourceShape);
_requestMatrix[process) [resource)++;

else if (sourceShape->shapeType() == SHAPE RESOURCE)
{ -

resourceShape = (TResource *) sourceShape;
processShape = (TProcess *) destShape;

resource= _resourceList->getindex(resourceShape);
process= _processList->getindex(processShape);

switch (typeVector[resource))
{ -

case RESOURCE SERIAL:
_allocMatrix[process) [resource)++;
break;

case RESOURCE_CONSUMABLE:
_producerMatrix[process) [resource)++;
break;

II Now save the original state in the duplicate matrices
copyMatrix(_allocMatrix, _orgAllocMatrix, _numProcesses, _numResources);
copyMatrix(_requestMatrix, _orgRequestMatrix, _numProcesses, _numResources);
copyMatrix(_producerMatrix, _orgProducerMatrix, _numProcesses,

_numResources) ;
copyVector(_availVector, _orgAvailVector, _numResources);
copyVector(_totalVector, _orgTotalVector, _numResources);

11
II add Vector
II
II Description:
II
II
II
II
II
void

This function adds two vectors. Since the vectors can contain an
INFINITE value as one of its elements, we have to take specifically
take care of that.

TPrographAnalyzer::addVector(int *vector, int *vectorToBeAdded, int size)
{

int i;

for (i 0; i < size; i++)

100

•I

....

if ((vectorToBeAdded[iJ ==INFINITY) I I (vector[i]
vector[i] = INFINITY;

else
vector [i] vector[i] + vectorToBeAdded[i];

INFINITY))

11
II subtract vector
II
II Description:
II
II
II
II

Subtract two vectors, keeping in mind that the vectors can have INFINITY
as one of its elements.

void
TPrographAnalyzer::subtractVector(int *vector, int *vectorToBeSubtracted,

int size)

int i;

for (i = 0; i < size; i++)
{

II The vectorToBeSubtracted will be a request vector
II
assert(vectorToBeSubtracted[i] !=INFINITY);
if (vector[i] == INFINITY)

else
{

vector[i] = INFINITY;

vector[i] = vector[i) - vectorToBeSubtracted[i];
assert (vector[i] >= 0); II Should not go negative. if it does

II then there's a bug in the program

11
II add Producer Vector
II
II Description:
II
II Called to add a vector in the producer matrix to a general resource
II vector.
II
void
TPrographAnalyzer::addProducerVector(int *vector, int *producerVector, int size)
{

int i;

II Each element of the producerVector denotes the number of producer edges
II particular process might be having with a particular resource
II If it is at least 1, then we set the resulting vector element to
II INFINITY, denoting that the process released the resource, and thus
II resulted in an INFINITE number of resources being placed in the resource
II Note - this addition cannot be called an addition in the true sense of
II the term
II
for (i = 0; i < size; i++)
{

if (producerVector[i] > 0)
vector[i] = INFINITY;

else
vector [i] vector[i];

101

11
II isLes s Than 0 r E qua 1 To
II
II Description:
II
II Compare two vectors for<=
II
BOOL
TPrographAnalyzer::isLessThanOrEqualTo(int *lhsVector, int *rhsVector, int size}
{

int i;

for (i = 0; i < size; i++)
{

II lhsVector will be a request vector- No term of it cannot be infinity
II
assert (lhsVector[i] !=INFINITY};

if (rhsVector[i] == INFINITY}
continue;

if (lhsVector[i] > rhsVector[i]}
return FALSE;

II Of course rhs is greater

II Aha!, lhs is greater, so NO!!!

II If we reach here, then all lhs is less than or equal to all of rhs
II
return TRUE;

11
II a 1 1 ocate Resource Type Vector
II
II Description:
II
II Allocate memory for a Resource vector
II
ResourceType *
TPrographAnalyzer::allocateResourceTypeVector(int size}
{

ResourceType *newVector;

newVector = (ResourceType *}malloc(size * sizeof(ResourceType}};
assert (newVector !=NULL};

return newVector;

11
II print Intern a 1St ate
II
II Description:
II
II Print the internal state of the analyzer (Used for debugging}
II
void
TPrographAnalyzer::printinternalState(}
{

printf("\n\n"};
printf("**\n");
printf ("Num Processes = \d\n", _numProcesses};
printf ("Num Resources = \d\n", nurnResources};
printf("Num Edges= 'l;d\n", _numEdges};

printf ("Allee matrix\n"} ;
printMatrix(_allocMatrix, _numProcesses, _nurnResources};

102

..

.1__

printf ("Request matrix\n") ;
printMatrix(_requestMatrix, _numProcesses, _numResources);

printf("Producer matrix\n");
printMatrix(_producerMatrix, _numProcesses, _numResources);

printf ("Avail vector") ;
printVector(_availVector, _numResources);

11
II Other miscellaneous functions

11

11
II generate A 1 1 Combinations
II
II Description:
II
II
II
II
II
II

Given a particular maximum value (denoted by setSize), generate all
combinations possible for number below that value.
Say for 3 processes in the system, the combinations generated are
0-1-2, 0-2-1, 1-2-0, 1-0-2, 2-1-0, 2-0-1

int **
generateAllCombinations(int setSize, int &numCombs)
{

int **combs;

numCombs = factorial(setSize);
combs= allocateintegerMatrix(numCombs, setSize);
generateCombinations(numCombs, setSize, combs);
return combs;

11
II generateS p e cia 1 Combinations
II
II Description:
II
II
II
II
II

Generate combinations with a specific number as its first element.
For a setSize of 3, and the initial element 2, the combinations
generated are 2-0-1 and 2-1-0

int **
generateSpecialCombinations(int specialNumber, int setSize,

int &specialNumCombs)

int i;
int **combs;
int **specialCombs;
int numCombs;
int combsFilled;

II We generate the combinations having only the specialNumber as the
II first element of the combination. This is to support reduction by a
II particular process

numCombs = factorial(setSize);
specialNumCombs = numCombs I setSize;
combs= allocateintegerMatrix(numCombs, setSize);
specialCombs = allocateintegerMatrix(specialNumCombs, setSize);

generateCombinations(numCombs, setSize, combs);
combsFilled = 0;
for (i = 0; i < numCombs; i++)

103

..

------··-

.....

if {combs [i] [0] == specialNumber)
{

copyVector{combs[i], specialCombs[combsFilled], setSize);
combsFilled++;

assert {specialNumCombs combsFilled) ;

free {combs);
return specialCombs;

11
II generate Combinations
II
II Description:
II
II The core routine to generate the combinations.
II
void
generateCombinations{int numCombs, int setSize, int **combs)
{

int i, j, maxPerms;
int combsFilled;
int *perm;

perm= allocateintegerVector{setSize);
maxPerms = power{setSize, setSize);
combsFilled = O;

for {i = 0; i < maxPerms; i++)
{

incrementPermutation{setSize, perm);
if {isCombination{setSize, perm) == TRUE)
{

for {j = 0; j < setSize; j++)
combs[combsFilled] [j] = perm[j];

combsFilled++;

assert {numCombs
free {perm) ;

combsFilled);

11
II i s Comb in at i on
II
II Description:
II
II Check if whether a set of numbers is a combination {or is it a permutation)
II
BOOL
isCombination{int setSize, int *perm)
{

inti, j;
int num;

for {i = 0; i < setSize; i++)

num = perm [i] ;
for {j = 0; j < setSize; j++)
{

if {i == j)
continue;

104

..

l_

if (perm[j] == num)
return FALSE;

return TRUE;

11
II increment Permutation
II
II Description:
II
II Increment the permutation and get the next permutation in the sequence
II
void
incrementPermutation(int setSize, int *perm)
{

int i;

for (i = (setSize- 1); i >= 0; i--)
{

if (perm[i] < (setSize - 1))
{

perm[i] = perm[i] + 1;
return;

perm[i] = O;

11
II power
II
II Description:
II
I I Find xAy
II
int
power(int x, int y)
{

int i, pow;

pow = 1;
for (i = 0; i < y; i++)

pow = pow * x;

return pow;

11
II factor i a 1
II
II Description:
II
II Find the factorial of a number
II
int
factorial(int x)
{

int fact;

if (x == 0)
return 1;

fact= x * factorial(x- 1);

105

..

return fact;

11
II is Zero Vector
II
II Description:

II
II Ascertain if a vector consists of all zero elements

II
BOOL
isZeroVector(int *vector, int size)

{
int i;

for (i = 0; i < size; i++)
{

if (vector [i) ! = 0)
return FALSE;

II If we reach here then all the elements in the vector were zeros. i.e.,
II the condition check could not find any non zero element, so this
II vector consists of all zeros

II
return TRUE;

11
II set ToZer o
II
II Description:
II
II Set all the elements of a vector to zero

II
void
setToZero(int *vector, int size)
{

int i;

for (i = 0; i < size; i++)
vector[i) = 0;

11
II a 1 1 ocate Integer Matrix

II
II Description:
II
II Allocate a matrix of integer elements

II
int **
allocateintegerMatrix(int numRows, int numColumns)

{
inti, j;
int **newMatrix;

newMatrix = (int **) malloc(numRows * sizeof(int *));
assert (newMatrix !=NULL);

for (i = 0; i < numRows; i++)
{

newMatrix(i] = (int *) malloc(numColumns * sizeof(int));
assert (newMatrix[i) !=NULL);

II Zero it out

106

for (i = 0; i < numRows; i++)
for (j = 0; j < numColumns; j++)

newMatrix[i) [j) = 0;

return newMatrix;

11////ll
II free Integer Matrix
II
II Description:
II
II Free a matrix containing integer elements
II
void
freeintegerMatrix(int **matrix, int numRows)
{

int i;

for (i = 0; i < numRows; i++)
free (matrix[i1);

free (matrix) ;

lllllllllllll/11
II a 1 1 ocate Integer Vector
II
II Description:
II
II Allocate a vector of integer elements
II
int *
allocateintegerVector(int size)
{

int i;
int *newVector;

newVector = (int *)malloc(size * sizeof(int));
assert (newVector !=NULL);

II Zero out the vector
for (i = 0; i < size; i++)

newVector[i1 = 0;

return newVector;

llllllllllllllllllllllllllll/llllllllllllllllll/11111111111111111111111111111111
II copy Matrix
II
II Description:
II
II Copy function for a matrix
II
void
copyMatrix(int **srcMatrix, int **destMatrix, int numRows, int numColumns)
{

inti, j;

for (i = 0; i < numRows; i++)
for (j = 0; j < numColumns; j++)

destMatrix [i) [j 1 = srcMatrix [i1 [j 1 ;

lllllllllll/lllllllllllllllllllll/111/
II copy Vector

107

..

-

II
II Description:
II
II Copy function for a vector
II
void
copyVector(int *srcVector, int *destVector, int size)
{

int i;

for (i = 0; i < size; i++)
destVector[i] = srcVector[i];

11
II print Matrix
II
II Description:
II
II Print out a matrix (for debugging)
II
void
printMatrix(int **matrix, int numRows, int numColumns)
{

int i, j;

for (i = 0; i < numRows; i++)
{

for (j = 0; j < numColumns; j++)
printf("td\t", matrix[i] [j]);

printf("\n");

printf ("\n");

11
II p r in tV e c tor
II
II Description:
II
II Print out a vector (for debugging)
II
void
printVector(int *vector, int size)
{

int i;

printf("\n");
for (i = 0; i < size; i++)

printf("td\t", vector[i]);
printf("\n");

108

VITA

Bobby Stephen Koshy

Candidate for the Degree of Master of Science

Thesis: TOWARDS A GRAPHICAL DEADLOCK ANALYSIS TOOL

Major Field: Computer Science

Biographical:

Personal Data: Born in Kolenchery, Kerala, India, October 6, 1970, son of
Thavalathil Kocheepen Koshy and Mary Koshy.

Education: Graduated from Christ College, Irinjalakuda, Kerala, India, in June
1988; received Bachelor of Technology (Honors) Degree in Computer
Engineering from Regional Engineering College, Calicut, Kerala, India, in
June 1992; completed the requirements for the Master of Science Degree
in Computer Science at the Computer Science Department at Oklahoma
State University in December 1995.

Professional Experience: Software Engineer, Wipro Infotech Ltd., Bangalore,
India, July 1992 to July 1993; Programmer, Department of Biosystems
and Agricultural Engineering, Oklahoma State University, September
1993 to December 1993; Graduate Research Assistant, Department of
Biosystems and Agricultural Engineering, Oklahoma State University,
January 1994 to August 1995.

