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PREFACE

Fully differential topologies offer good performance in signal processing due to the

cancellation ofcommon mode signals such as clock feedthrough and power supply noises etc.

This work specifically aimed at developing fully differential high performance amplifiers to

be used in high frequency, high resolution Analog to Digital Converters. Combining a novel

circuit design approach with the extension of previously reported circuit design techniques

has resulted in high performance amplifiers with unprecented figures of merit Simplification

ofexisting circuit analysis techniques has been another accomplishment of this work. Major

perfoffilaIlce gain has come from technology advancement but it must be properly exploited

with appropriate circuit design methods as documented in this thesis.

I wish to express my sincere appreciation to my major advisor, Dr. Chriswell

Hutchens for his intelligent supervision, constructive guidance and sporting attitude. My

appreciation extends to my other committee members Dr. R. Ramakumar and Dr. L.G.

Johnson. I sincerely thank the Naval Ocean Surveillance Command (NOSC), San Diego for

providing financial support to this project and excellent work experience.

I also would like to express my gratitude to my colleagues at Oklahoma State

University and myoId EE and TX pals from ITT Delhi for fond memories.

Finally, I would like to thank the Department of Electrical and Computer

Engineering for providing me this opportunity to conduct valuable research.

ill



TABLE OF CONTENTS

Page

IN'TRODUCTION 1

CHARACTERISTICS OF SHORT CHANNEL TFSOI DEVICES. . . . .. . 3

2.1 Threshold Voltage Analysis 3
2.2 Short Channel Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ..7

2.2.1 Charge Sharing . . . . . . . . .. 7
2.2.2 Drain Induced Conductivity Enhancement 10
2.2.3 Carrier Velocity Field Model 11

2.3 Back Surface Charge Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12
2.4 Triode Region Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13
2.5 Saturation Region Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 13

2.5.1 Saturated Drain Current 14
2.5.2 Channel Length Modulation 14

2.6 Impact Ionization Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

DESIGN TECHNIQUES FOR FULLY DIFFERENTIAL AMPLIFIERS WITH
INHERENT COMMON MODE REDUCTION 19

3.1 Gain Boosting 20
3.2 Cross Coupled Active Loads 24
3.3 Common Mode Gain Reduction and Tail Impedance Boosting 29
3.4 Power Supply Ripple Gain Analysis. . . . . . . . . . . . . . . . . . . . . . . .. .. 32
3.5 Thermal Noise 37
3.6 A Fully Differential Differential Only Boosted Amplifier 38

A MICROWAVE BANDWIDTH, HIGH DC GAIN' AMPLIFIER 47

4.1 Amplifier Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 48
4.2 Recursive Differential Only Folded Cascode Boosting 48
4.3 Circuit Topology and Projected Performance 50

4.3.1 DC Behavior 51
4.3.2 AC Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52

4.4 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 53

iv



4.5 Testing Approach 55
4.5.1 Open Loop Gain Measurement. . . . . . . . . . . . . . . . . . . . . . . .. 56
4.5.2 Unity Gain Frequency Measurement 57
4.5.3 S-Parameter Testing 59
4.5.4 Tests for Lower Level Cells 59

5. A LOW POWER DYNAMICALLY BIASED GAIN BOOSTED AMPLIFIER ... 60

5.1 Amplifier Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ..61
5.2 Amplifier Design Approach and Architecture. . . . . . . . . . . . . . . .. . ... 61

5.2.1 The Dynamic Current Adjust Circuit. . . . . . . . . . . . . . . . . . . . . .. 62
5.2.2 The Main Amplifier Circuit 65

5.3 Layout Considerations 67
5.4 Testing Approach 68

5.4.1 Open Loop Gain Measurement 68
5.4.2 Unity Gain Frequency Measurement 69
5.4.3 Tests for Lower Level Cells 71

6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 72

REFERENCES 75

APPENDIX A TESTING RESULTS 80

v



Figure

LIST OF FIGURES

Page

2.1 Cross Sectional View of a generic n-channel SOl NMOSFET . . . . . . . . . . . . .4

2.2 A Simple Charge Sharing Model for Thin Film SOl MOSFET . . . . . . . . .. 7

2.3 Schematic Cross Section Along the Length of the Channel 15

2.4 Output and Input Characteristics of a Short Channel SOl NMOS 18

3.1 (a) Principle of Gain Boosting 20

3.1(b) Recursive Gain Boosting 20

3.2 Equivalent Circuit of the Boosted Cascade Amplifier 21

3.3 A Cross Coupled Current Mirror 24

3.4 Equivalent Circuit of the Cross Coupled Current Mirror. . . . . . . . . . . . . . . .. 25

3.5 Concept of Cross Coupled Differential Amplifiers 27

3.6 A Differential Only Boosted Impedance Stack 28

3.7 A Fully Differential Folded Cascade Amplifier 29

3.8 Common Mode HalfCircuit for~ Calculation 30

3.9 Equivalent Circuit for ~m Calculation 30

3.10(a) Transistor Circuit for PSRG Analysis 32

3.10(b) Equivalent Circuit 32

vi



3.11 The Lu Wu Amplifier with Cross Coupled Loads. . . . . . . . . . . . . . . . . . . . .. 33

3.12 Simplified Half Circuit for PSRG Calculations for Lu Wu Amplifier. . . . . . .. .. 34

3.13 PSRG Response of the Lu Wu Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.14 The Modified Lu Wu used as Nch Boosting Amplifier 39

3.15 The Fully Differential Differential Only Boosted Amplifier. . . . . . . . . . . . . .. 40

3.16 Comparison of the DC Response of Lu Wu and Boosted Amplifier 41

3.17 Open Loop Frequency Response of the Boosted Amplifier 42

3.18 Closed Loop Unity Gain Transient Response of the Boosted Amplfier 43

3.19 Simplified Half Circuit for Boosted Amplifier PSRG Analysis. . . . . . . . . . .. 44

3.20 PSRG Response of the Boosted Amplifier. . . . . . . . . . . . . . . . . . . . . . . . .. 46

4.1 Recursive Differential Only Folded Cascode Boosting 49

4.2 Schematic of the High Performance Amplifer 50

4.3 Open Loop AC Response of the High Performance Amplifier 52

4.4 AYOL Frame for the High Petfonnance Amplifier 56

4.5 UGBP Frame for the High Performance Amplifier 57

4.6 Unity Gain Transient Response of the High Petformance Amplifier 58

5.1 The Low Power Amplifier 61

5.2 The Dynamic Current Adjust Circuit 62

5.3 DC Response of the Dynamic Current Adjust Circuit 64

vii



5.4 Main Amplifier 66

5.5 An Interdigitized Multi Common Centriod Transistor Pair 67

5.6 AVOL Frame for the Low Power Amplifier 68

5.7 UGBP Frame for the Low Power Amplifier 69

5.8 Transient Response of the Variable Bandwidth Low Power Amplifier 70

V111



SOl

ADC

PSRG

~

CMRR

PSRR

NOMENCLATURE

Silicon on Insulator

Unity Gain Frequency

Effective Channel Length of the Transistor

Transistor Self Gain

Transistor transconductance

Transistor output resistance (unless noted otherwise)

Gate to Source Capacitance of the Transistor

Gate to Drain Capacitance of the Transistor

Analog to Digital Converter

Power Supply Ripple Gain

DC Gain

Drain Resistance of the transistor

Source Resistance of the transistor

Drain Power Supply Voltage

Source Power Supply Voltage

Common Mode Rejection Ratio

Power Supply Rejection F..atio

ix



GBP

SOISPICE

GSPS

KSPS

UGBP

Vos

WIL

Gain Bandwidth Product

A Circuit Simulator for SOl Circuits

Giga Samples Per Second

Kilo Samples Per Second

Gate Resistance

Gate Capacitance

Open Loop DC Gain

Unity Gain Bandwidth Product

Offset Voltage

Width to Length Ratio for the Transistor

Bias Voltages

Gate to Source Voltage for the Transistor

Drain to Source Voltage for the Transistor

x



CHAPTERl

INTRODUCTION

Recent advances in the fabrication technology of thin film short channel Silicon on

Insulator (SOl) devices, prompted by the fundamental advantages of dielectric isolation

along with very high frequency unity gain frequencies have stimulated an interest in the

development of high perfonnance CMOS circuits which can operate in the microwave range.

These devices with Leff = O.25fllTl, typically have an fT in excess of 30 GHz. These SOl

MOSFETs are different from conventional bulk MOSFETs because the body is thin and

floating, and the underlying (substrate) oxide is thin enough to enable an effective back gate.

These differences make SOl device behave in a different way which calls for a different

design approach. The most important being the "kink" effect which occurs at high drain to

source voltages, VDS. Also, due to a very short channel length the intrinsic self gain of the

transistor, Il, of the transistor is very small (of the order of 20-25dB only) as compared to

40-50dB in a long channel bulk: MOSFET. This calls for use of gain enhancement

techniques in the deign of short channel MOS circuits. The "kink" effect suppression calls

1



"" ,.. " " " , .

2

for a low voltage operation and fmally high frequency operation is possible if the additional

parasitics in the circuit are kept to a minimum. This is accomplished by elimination of the

common mode feedback circuitry in the fully differential opamp configurations. A very

important advantage of these devices is the elimination of junction capacitances at the source

and drain of the transistor because there is no semi-conducting substrate. Thus, this work

aims at developing high performance amplifiers which make use of the advantages of these

devices and at the same time using novel design approaches to overcome the problems faced

by short channel MOS design. New circuit design techniques preserve the advantages of the

previously reported works and eliminate the disadvantages to give an opamp with a very

high differential mode gain and a very low common mode gain and a very high unity gain

frequency and low power supply ripple gain. These amplifiers drive large loads due to low

noise floor required by the NO conversion applications for which they are designed. Also,

dynamic biasing and subthreshold operation techniques are used to develop an amplifier with

a very low quiescent power dissipation. Some previously published analyses has been

presented in a simplified form and important issues are brought to the attention of the

interested reader. To ensure best matching in the fabricated devices and ensure high

frequency operation, the layout techniques used form an important part of this work.

The rest of this thesis is organized as follows: In chapter 2, characteristics of thin

f11m short channel devices are presented. In chapter 3, various design techniques developed

and used for design of high performance amplifiers are discussed. Chapters 4 and 5 describe

the architecture and performance of the amplifiers. Finally, Chapter 6 discusses the

accomplishments of this work and makes suggestions for future research.



CHAPTER 2

CHARACTERISTICS OF SHORT CHANNEL THIN FILM SOl DEVICES

In this chapter, the unique characteristics of ShOlt channel thin film, fully depleted

SOl devices are presented and analyzed briefly. These characteristics include the charge

coupling between the front and the back gate of the SOl MOSFET and it's impact on

threshold voltage. FUI1her, effects of small geometry on device perlormance such as drain

induced conductivity enhancement, charge sharing, back surface charge modulation etc. are

presented. Then the very important "kink" feature of thin film SOl devices is discussed, and

using a charge based representation, I-V characteristics are derived for a SOl MOSFET. This

chapter is just a brief overview of the detailed analysis carried out in [1] through [7].

2.1 Threshold voltage analysis

Fig. 2.1 shows a thin film SOl MOSFET. Because SOl films are thin, the electrical

properties of MOSFET's fabricated in them are typically influenced by the charge coupling

between the front and back gates. The (front gate) threshold voltage differs considerably

from that of its bulk counterpart and depends on the bias and the properties of the back gate.

3
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Fig 2.1 Cross sectional view of a generic n-channel Sal MOSFET

The front 'Psf and the back 'Psb surface potentials are the band bending potentials from a

hypothetical neutral film body to the respective surface. The electrostatic potential at this

point, if the source is grounded, is just the built in potential of the source body film junction.

Thus, we can write

VGf = 'P.if + 'Pof + ~MS

and

(1)

(2)
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where YGf and YGb are the front and back gate voltages, 'Pof and 'Pob are the potential drops

across the front and back gate oxides, and <l>fMs and <l>fMS are the front and back gate body

work function differences. Solving the Poisson's equation across the film and applying

Gauss's Law to the front and back surlaces the following expressions can be derived.

(3)

where yfFB = epfMS - Qf/Cof is the front gate (bulk: MOSFET) flatband voltage, Cb= ej4, is

the depletion capacitance, and Q, = -qNAt., is the depletion region area charge density.

Similarly,

(4)

where yfFB = 'Pf
MS - QJCob is the back gate (bulk MOSFET) flatband voltage. Q;f and Q;b

are the charges associated with front and back gate oxides. Equations (3) and (4) are the key

relations that describe the charge coupling between the front and the back gates when the

film body is completely depleted. Combining them leads to the description of the (front

gate) threshold voltage in terms of the back gate bias YGb and device parameters.

When the back surface is depleted, 'Psbis strongly dependent on VGb ; its value ranges

from about zero to 2<1>B between the onset of accumulation and inversion respectively. The

values of VGb ( y AGb and yIGtJ corresponding to this onset when the front surface is inverted

( 'Psf '*' 2 <l>B ) are defined as :



2~ -~
B 2C

ob

6

(5)

The dependence of YTf on YGb for y A
Gb < YGb < yIGb is obtained as in [1]:

where,

I f Qb
V1J = Vnl + 2~B - --

2eo/

(6)

(7a)

(7b)

(8)

(9)

decreases linearly with YGb from yATf to yITf ( a decrease of 2epB(C';Cof) ).
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2. 2 Short Channel Effects

2.2.1 Charge Sharing

The (front channel) threshold voltage VTf , defined for low drain voltage - source

voltage VDS' is reduced in short channel MOSFET's because some of the depletion charge

under the gate is shared by the source and the drain. In the sal devices this sharing is

influenced by the coupling between the front and back gates.

In strong inversion, the ftIm is assumed to be completely depleted, except for sheets

of surface charge, <lID and <lbO , at the front and front and back gate surfaces respectively.

( The subscripts f and b refer to the front and back surtaces respectively, and the subscript

orefers to the solution for VDS =0). The potential of the front surlace 'PsID is approximately

constant between the source and the drain and is given by 'PI DC 2<I>B' where <I>B is the Fermi

potential of the neutral film, to which all the potentials are referenced.)

The depletion charge may be regionally divided into three portions as shown in Fig.

2.2 , associated with the gate, source and drain.
V OfS

fro nt 0 x id e

n depleted film
n+

CD , CD , CD

.. ..
d bur i ed 0 x ide

I V ObS

Fig. 2.2 A simple charge sharing model for thin film sal MOSFET. The
portions 1, 2 and 3 "controlled" by the gates, source and drain.
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The portion 1, which is controlled by the front and back gates, is defined approximately by

a trapezoid, and hence the depletion charge per unit area controlled by the gates is

Q N t (1 d) A Qb(l _ d)
b(eJI) = - q A b - L W L (10)

where tb is the film thickness and L is the channel length of the MOSFET. The one

dimensional Poisson's equation can be then solved to give:

(11)

and

(12)

where Cb =€s / t., , COf =€ox / tof , and COb =€ox / tob are the front and back (buried) oxide

capacitances per unit area, and yfFB and yfFB are the front- and back gate flatband voltages.

( The quantities tofand tob are the thicknesses of the front and back oxides.)

To characterize YTf' the distance d must be analytically approximated. This is done

by following analysis to account for the two dimensional electric field near the back sutface

in portions 2 and 3. The effective lateral component of the electric field, Eb(eft) , at the back

interlace is approximated as



E b(eff) •

b b
qNA(Ybi - 'P,~ Eox VGbS - VMJ - 1p ,bO Eox Y bi - Y GbS + Vn
----- + fa.- + f. - ------

2E, E, tob P E" tob

(13)

9

where the frrst term is due to the depletion charge and the second and tllird terms are due to

fringing fields from portion 1 and the source to the back gate. fa and fp , are empirical

factors between 0 and 1 and can be obtained by curve fitting the VTf data.

Now,

(14)

When the back gate is biased to accumulate the back surface, Oe.x> > 0 and 'Psbo=VBS'

the body to source voltage. Then in strong inversion, with 'PsfO = 'PI , combining (10)

through (14) yields

QcftJ = - Col (VGj8 - VTf) (15)

where VTf depends on L as well as VBS and VGbS as derived earlier. The back surface

accumulation charge <lbO is also simultaneously defined by (10) through (14).

When VGbS is set to deplete the back surface, <lbO =0 and 'PsbO > VBS is unknown.

In this case (10) through (14) give a polynomial equation which must be solved to determine

'PsbO ' which when inserted into (11), defmes <lro and VTf • In the model, 'PsbO is determined

by a simple iterative scheme: (i) assuming no charge sharing, calculate lfsbO from (12); (ii)

use that value successively in (13), (14) and (10) to determine Qb(eff) ; (iii) use (12) to
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determine a modified value for 'PsbO • Steps (i), (ii) and (iii) are repeated until the solution

converges, which in fact, occurs only in few iterations [6].

2.2.2 Drain Induced Conductivity Enhancement

When a large (positive) drain voltage VDS' is applied to a short N channel MOSFET,

the channel charge is modulated indirectly through the two dimensional electric field in the

fIlm, as well as directly through the induced gradient in the sutface potential Wsf along the

channel. In [2], the charge at the source end of the channel is expressed as

(16a)

(16b)

where p=1 or 1 + Ct/(Cb+COb)' depending upon whether the back surface is accumulated

or depleted. COb = ejtb is defined as the body capacitance, and VT(eft) is defined as an

effective threshold voltage. For a given drain bias, the difference between VTF and VT(eft) is

a measure of the modulation of the charge at source due to the two dimensional electric field

in the fIlm i.e. due to DICE. We note, therefore, from (16) that the characterization of the

channel charge and hence the device conductance deviate from the gradual channel

approximation as pincreases, or as back surface goes from accumulation to depletion. Also,

it is obvious from (16) that two dimensional DICE effect is diminished as tb decreases.



11

2.2.3 Carrier Velocity-Field model

In the saturation region of operation of a MOSFET, the drain current Ins(sat) and the

incremental drain conductance gns(sat) depend on the manner in which the carrier velocity

saturates. This velocity saturation and the channel length modulation it produces are

important in short channel devices because the channel charge that remains near the drain

in the saturation region is proportional to Ins(sat)' which varies inversely with L. For Sal

MOSFETs, there are additional dependences on the back surface charge condition and on

film thickness, t1,. Due to high transverse electric filed in the thin SOl film, as well as high

longitudinal electric field in the short channel, there can be considerable non linearity in the

carrier velocity and in the carrier velocity field characteristic. For an increasing longitudinal

field IEyl == d'Psf/dy in the channel, the velocity tends to saturate ( at Vsat ~ 107 cm/s ) [6].

A piece wise continuous model for velocity saturation is used.

v(v)
(17)

=vsat , if v(y) > Vsat

Thus, we have

(18)
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where fleff is the low-(longitudinal)-field mobility. This dependence along the channel is

modeled in terms of the average Ex(y) in the channel. eis an empirical constant. From VDS

= 0 solution and the DICE analysis, the average transverse field in tIle channel is expressed

as in [1]

Thus, we can write

Ilqr = 1 - B A 'P",(y)

(19)

(20)

where newly defined parameters Jl and B are bias dependent but spatially constant [1].

2.3 Back Surface Charge Modulation

In all the previous analysis, it has been assumed that back sutface charge condition

depends only on the applied biases VBS and VGbS. However, in general the back surface

charge condition is also dependent on L. It is possible with fIXed, VBS and VGbS for a back

surface accumulation layer present in a long channel sal MOSFET to be partially or

completely depleted away by a sufficient reduction in L. This depletion charge sharing

effect occurs exclusively in Sal MOSFETs and is discussed in greater detail in [2].

Similarly, any accumulation layer present as the back surface, for a given device, can be

partially or fully depleted away by a non zero VDS. This effect is present in long channel
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devices also but is more pronounced in short channel devices due to two dimensional field

distribution.

2.4 Triode Region Current

The steady state channel current is

IDS = - W Qc/Y) v(y) (21)

Using the models in section 2.2 and carrying out required mathematics the voltage

dependence of Ins is derived to be (as in [6])

2Coj (l + ex) L

where Jleff is defined as:

where fB is an empirical constant.

2.4 Saturation Region Current

(22)

(23)

In the saturation region operation of the MOSFET, a high longitudinal electric field
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occurs near the drain, causing the carrier velocity to saturate at Vsat• Thus, the channel

current can be expressed as

(24)

where Le ~ L due to channel length modulation. For long channel devices, it implies that

<Jef (L) ~ 0 , which is the basis for pinch off model for saturation characteristics.

2.4.1 Saturated drain Current

In the saturation region, the channel maybe divided into a portion (adjacent to the

source) in which the carrier velocity is field-dependent and another (near drain) in which tIle

velocity is saturated. At the boundary between the two portions, y =Le , we can define

VDS(efl) ~ 6 'Psf (LJ ( ~ VDS). At the onset of operation in the saturation region, Le=Land

VDS(eff) = VDS(sat) ,where VDS(sat) is the actual drain saturation voltage.

In the region 0 ~ y ~ Lewith Land Vns replaced by Leand Vns(seft) , (24) expresses

IDS(sat). This expression equated to (22) gives VDS(eft) as a function of Le • Then Ins(sat) is

fully characterized by (22) or (24) except for the description of Le which is derived in the

next section.

2.4.2 Channel Length Modulation

Channel length modulation, which is reflected by finite output conductance in the

saturation region, is quantitatively defined as Ld ~ L - Le ,the length of the portion of the
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channel in which the carrier velocity is saturated. In the region 0 ~ y ~ Lewith L and Vns

replaced by Le and Vns(eft)' (24) expresses Ins(sat). This expression equated to (22) gives

VnS(eft) as function of Le .

Source

x

y

Gaussian
Surface

I
I I
I I
I I
I I
I I
I I
I I

Drain

c •••
field dependent velocity saturated

velocity

Fig. 2.3 Schematic cross section along the length of the channel when the
sal MOSFET is in saturation, showing the field-dependent and saturated­
velocity regions.

Fig. 2.3 shows a cross section of the high field region near the drain of an SOl

MOSFET in saturation. Since, the carrier velocity in the region is saturated, the continuity

of current in steady state implies that <2ct(Y) is spatially constant in the region. To derive

a differential equation in tJ. 'Pst (y) , Gauss's law is applied to a narrow strip in the region as

shown in the figure:

(26)
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Following the quasi two-dimensional DICE analysis earlier and using the conditions that

aQro = 0 when the back swface is depleted or a 'Psb = 0 when the back surface is accumulated

a differential equation in a lYsf (y) is obtained which can be solved with the appropriate

boundary conditions to yield

L _ L !! L .. I sinh-1 [J!eff (VDS - VDS(eff»]
e d c 2v 1

sat c

where

(27)

2Co/ (1 + a)
(28)

The combination of (22), (24) and (27) gives a transcendental equation for Le that can be

solved numerically in a few iterations.

2.5 Impact Ionization Current

The flow of electrons through the high field region near drain which generates holes

that flow into the MOSFET body and electrons that flow out of drain. This generation

current for weak impact ionization can be expressed as

(28)

where the factor (M-1) is given by the integral of the field dependent ionization coefficient
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over the high field region:

(29)

The solution of above equation using the longitudinal electric field expressed as

(30)

yields

(
-~rJc )

1M - 1) .. ~ (V - v: ) e vns-vDS(Iff)
\: ~o DS DS(eJf)

(31)

The impact-ionization current when incorporated in the model physically accounts

for tlle floating body effects, for example the" kink effect", but only empirically simulates

the drain junction breakdown which may involve the parasitic bipolar transistor. Figures

2.4(a) and 2.4(b) show the input and output characteristics of an SOl MOSFET operating

in the velocity saturation region. Note the "kink" at large values of Vos. Thus, one of the

important considerations in the design of short channel SOl circuits is to keep Vos small so

as to avoid the onset of this "kink". Also, note the velocity saturation effects in the input

characteristics because current increases linearly with VGS instead of following the long

channel square law.
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To summarize, the operational model of the SOl MOSFET is described by the

equations (22) and (24) in the triode and saturation region of operation respectively.

3
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Fig. 2.4 Output and Input Characterisctics of a Short Channel SOl NMOS



CHAPTER 3

DESIGN TECHNIQUES FOR FULLY DIFFERENTIAL AMPLIFIERS WITH

INHERENT COMMON MODE REJECTION

This chapter describes the techniques used in the design of the amplifiers presented

in this thesis. Some previously published techniques such as gain enhancement and cross

coupled mirror loads are described briefly. These are used further to develop the novel

differential only boosting concept. Also, a simple transistor topology with a source resistance

is analyzed and is used to arrive at the tail boosting technique for reducing the common mode

gain. Then a simplified analysis of Power Supply Ripple Gain (PSRG) is presented which

brings out the superior power supply rejection perfonnance of the cross coupled mirror

amplifier. Finally, these techniques are applied to develop a differential only boosted fully

differential amplifier and the amplifier performance equations and results are presented.

19
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3.1 Gain Boosting

The principle of using negative feedback to improve the output impedance forms the heart

of the gain boosting technique as described by Bult and Gleen in [8]. It is a very innovative

extension of negative feedback principle used in cascoding which was developed by Hostica

et al [9]. It simply increases the cascoding effect of the cascoding transistor by addition of

a local feedback gain stage as shown in Fig 3.1(a).

Vref
+

A VB

(a) (b)
Fig. 3.1 (a) Principle of Gain Boosting (b) Recursive Gain Boosting

This increases the output impedance of the circuit by the gain of the local gain stage

Ava. In this manner the output impedance and gain can be increased by several orders of

magnitude as follows:

(1)

Therefore,

(2)
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If the additional gain stage is implemented as a cascade stage, this gain boosting

technique can in turn be applied to this boosting cascade stage. In this manner a recursive

implementation of gain boosting can be obtained as shown in fig. 3.1(b). This boosting stage

can also be implemented as a folded cascade and as shown later this results in novel

differential only boosting. Voltage gain in the boosted stages is limited by factors such as

leakage currents, avalanching, thermal feedback and area/geometry or scaling limitations.

For understanding the high frequency behavior of the boosted amplifier, following

equivalent circuit of a composite cascode amplifier with a boosting transconductance amplifier

is analyzed (For example, NIl and M2 of fig. 3.1(b) forming the main amplifier and M3 as

the boosting transconductance amplifier. All transistors assumed to be identical)

r
----------------------AAIv----------- --------------------- v0

V·m

.- -xC 1'
T

xgmv1

Fig. 3.2 Equivalent Circuit of the Boosted Cascade Amplifier

In the above equivalent circuit, C is the C~ ( Cgd is assumed to be negligible)

and x is the factor by which the second stage is scaled down. It should be noted that Cdb and

CSb have not been used in the analysis as they are assumed to be negligible in a thin film

process. To maintain the same transistor self gain, 11, both the width and the current in the
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transconductor should be scaled. Assuming a square law device, which is an

oversimplification for short channel devices, the transconductance of the boosting amplifier

is scaled down by x only which results in a scaled bandwidth. Thus, we can write the

following equations for the analysis of this scaled stage:

At node VI' we have,

At node v2, we have

(4)

At node v0 , we can write

(5)

Assuming Jl=gmr» 1, we have the following transfer function

(6)

Solving for the poles of (6) we have,

2
(7)
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Also, from (3), (4) and (5) we can solve for the transfer function of the boosting amplifier as:

r(xg
m

- C)

(x + rC)
(8)

Solving for poles and zeroes of (8), we have,

(9)

Now, (6) through (9) provide us with vital information about pole zero placement to

obtain a single pole roll off and fast settling response.

In [8] it is discussed that the composite amplifier will have a single pole roll off as long

as W3dB of the boosting amplifier is greater than the W 3dB of the composite amplifier. This is

equivalent to the fact that wunity of the boosting amplifier be greater than W3dB of the main

amplifier. Thus, boosting stage need not be as fast as main stage.

Also, we note from (8), that there is a pole zero doublet at the unity gain frequency

of the boosting amplifier. Since, it is a well known fact that a doublet degrades the settling

behavior of amplifier due to a slow settling component [12], it should be fwther away from

bandwidth of the amplifier. Since, the composite amplifier would be used in a closed loop

configuration and maximum closed loop bandwidth is the unity gain frequency of the main

amplifier, we have, wunity of the boosting amplifier> wunity of the main amplifier. This now

implies
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(10)

Thus, the load capacitor decides the scaling factor and because of the double pole at

the non dominant pole location, scaling factor sllould be greater than C/CL to have a safe

phase margin. Fast settling response depends also on the phase margin and the relationship

between phase margin and minumum settling time has been discussed in [21]. It should be

noted that analysis carried out in this section is oversimplified because of the assumptions.

However, it gives a fair idea of the critical issues involved in the design of the boost amplifier.

3.2 Cross Coupled Active Loads

In this section, we analyze the difference in the common mode and differential mode

behavior of a cross coupled mirror and use it to develop the novel differential only boosted

impedance stack. Fig. 3.3 shows a cross coupled current Mirror. [10]

Va =Vern + Vdiff

2

MIA&B

Vb =Vern - Vdiff

2

M2A&B"---r----...II

Vss
Fig. 3.3 A Cross Coupled Current Mirror
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Using the conventional defmitions of differential and common mode signals:

(11)

(12)

Similar notation is used for differential and common mode currents. To understand

the difference in the common mode and differential mode behavior, we can analyze the

following equivalent circuit shown in Fig. 3.4. Of specific interest are the differential and

common mode impdedances of this circuit.

Va = Vern + Vdiff

2

Vb = Vern - Vdiff

2

Fig. 3.4 Equivalent Circuit for the Cross Coupled Current Mirror

Thus, we have



Vcm - VdiJf

r
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(13)

(14)

Therefore,

Hence, we see that,

(15)

(16)

VdiJf r
radiff =

idftf 2
(17)

vem 1
'oem = -- (18)

icm 2gm

Also, fOf a transconductance amplifier we have,

Av =gmeff· f oeff (19)
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where, gmeff is the effective output transconductance and rooff is the effective output

impedance. Thus,

A.vcm = gman· rocm (20)

From equation (20), we see that a low common mode impdance results in a low

common mvde gain and this forms the basis of design of fully differential amplifiers with

inherent common mode rejection. Also, we observe from equations (13) and (14), that

common mode signals need to be subtracted to give a low common mode impedance. This

powerful observation now leads to the concept of cross coupled differential amplifiers which

is presented in fig. 3.5 for illustrative purpose only. Va and Vb have earlier been defined in

equations (11) and (12 ).

2 2

Fig. 3.5 Concept of Cross Coupled Differential Amplifiers

From the schematic in the fig 3.5 it is clear that for common mode signals, there is no

gain at the gate of the cascode and this results in the output impedance of this stack being
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equal to that of a single transistor only. This absence of feedback now results in a reduction

of the common mode impdedance. Thus, we see that

(22)

(23)

Now, the concept of combining the two amplifiers into a single fully differential

amplifier is straight forward and this results in the novel differential only boosting

architecture. It is called so, because there is no boosting of the common mode gain and the

only the differential mode signal is boosted. Thus, we have a differential only boosted

impedance stack which is shown in Fig. 3.6. The differential and common mode impedances

of this stack are same as in equations (22) and (23) respectively.

Va =Vem + Vdiff

2 2

M2

Vss

Fig. 3.6 A Differential Only Boosted Impedance Stack



3.3 Common Mode Gain Reduction and Tail Impedance Boosting

Fig. 3.7 shows the schematic of a fully differential folded cascade amplifier.

29

M3

M2

Ml

M4
v·m-

V out:- V out-

Fig. 3.7 A Fully Differential Folded Cascade Amplifier
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We can draw the simplified common mode half circuit of this amplifier as shown in

fig. 3.8.

Fig. 3.8 Common Mode Half Circuit for Acm Calculation

For analysis, we can draw the equivalent circuit as shown in fig. 3.9

.--------.----..---....---.-.-.--------..-.----.---.------..-..=r..----..---.---.-----.-.-.-..---.....--.----------------------..--------....--.-...--

Fig. 3.9 Equivalent Circuit for J\m Calculation
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From the equivalent circuit of fig. 3.9, we can write following equations

gmJ
gmeJf =

gm.3 Rtail + 1

1
Rtail

(for (24)

( for small Ran)

Thus, we have

(25a)

(25b)

(26)

We have earlier described (see section 3.2, Fig 3.6), the technique used to design a load stack

with a low common mode impedance and a high differential mode impedance. Thus, to

reduce the common mode gain further, Ruw has to be increased. This task is readily

accomplished by boosting the tail impedance of the differential pair by using the gain boosting

principle of sec. 3.1. It is to be noted that this idea is also a novel connibution of this

research work since tail boosting has never been used to reduce common mode gain in fully

differential amplifiers before, to the best of author's knowledge. Now, the common mode

gain is limited by the gain limitation of the boosted cascades and the differential pair device

mismatch.
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3.4 Power Supply Ripple Gain Analysis

Now, we present a simplified analysis of power supply ripple gain wllich has been previously

presented in the literature in a rather complicated manner[20]. For this, the transistor circuit

of fig. 3.1C(a) is analyzed.

(a)

+ -TV:-
~ R

s

._ _ _._..__.._.._._..1

(b)

r

Fig. 3.10 (a) Transistor Circuit for PSRG Analysis. (b) Equivalent Circuit

We can now write following node equations for the equivalent circuit of fig.

3.10(b). Thus, we have, for nodes Vx and vo' respectively

=-+---
r

(27)

r

vo- g (v - v ) = -
m in % R

D

(28)
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From equations (27) and (28) we can solve for the transfer function as

(29)

A case of special interest is for Rxvery large compared to Rsi.e. R/Rs ~ 00. For

this particular case which is normally the situation, as we'll see later,

(30)

As an example, we can calculate PSRG for the Lu Wu amplifier [10] shown in fig. 3.11

- - --,
Cross I
Coupled
Loas I

MIOA&B I
I
I
I

M12A&BI
'-----+------+----"

________ J

I-­

I
I
I
I
I
I
I

M2

I~

I
I

CD
MB6

MB2 rN'--~-""""'-----'-------I"Ml

MBI

--------.,

I Bias String
I .----....----.-;.-----------.......---------,

I
I
I

_______ ..J

Fig. 3.11 The Lu Wu Amplifier with Cross Coupled Loads
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It is to be noted that ac ripple on the supply side makes it's way to the gates of the

cascode transistors through to the low impdedance path provided by the diode connected

transistors in the bias string which effectively act as "ShOlt circuit" to the power supply they

are connected to. Thus, nodes 1&2 are shorted to VDD and 3&4 are sholted to Vss. The

nodes marked VDD are excited when ripple is supplied through VDD side and nodes marked

Vss are excited when the ripple is supplied through Vss side. Thus, marked nodes can be

connected to the voltage source or ground depending on the supply they are connected to.

Also, biasing transistors M5 & M6 are equivalent to a simple resistor (equal to rDS) since the

gate and the source are connected to the same supply and this results in zero

transconductance current. Thus, M4 represents the differential pair, M2 is the cascode

transistor in the tail, M7 is the cascade transistor and the load resistance is 2/gm as calculated

in [10]. Thus, the simplified circuit looks like

~ :DD
1

1-..1 --
[------.VDDM4 M7

,

-----
Vout

Vss-.-J M2

2/gm

r

Vss

Fig. 3.12 Simplified Half Circuit for PSRG Calculations for the Lu Wu Amplifier
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For this circuit with the AC excitation on the Vnn side, we have

Rn z 2/gm

Rs z r

Rx Z J..I?r

:. Jleff Z 2/Jl2, using (29). Jleff is the effective gain.

Similarly, we can calculate PSRG on the Vss side. Since there are two paths for ac

ripple to get to the output, we can analyze the circuit using the superposition principle. For

ac excitation in the tail current cascode M2, we have

Rn Z 2/gm

Rs Z r

Rx = 00

:. Jleff Z 2/Jl2 ( using (29) )

For ac excitation only at the current sink: load resistor, we have

Rn Z Jlr

Rs Z 2/gm, fl = 0, r = 0 (.: there is no transistor on this side )

Rx = 00

:. fleff Z 1 (using (29))

Thus, we have Avss Z 2/Jl2 + 1 z 1

Note that, for simplicity, this analysis assumes the same value of transistor self gain,

Jl for both n and p transistors, same transconductance and output impdedance, which is rarely

the case for any actual process. However, this is much simpler (compared to the more
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accurate analysis technique followed in [20]) and easily followed for the purpose of hand

estimates. Capacitances can be added at proper nodes to the circuit to obtain a complete

PSRG frequency response. The results of this analysis show excellent agreement with

simulations shown in Fig. 3.13

/
·10

-20

-30

-40

-so

lOOMh10MhI.OMh10Kh 100Kh
Frequeacy

1.0Kh
-60 L....---------r-------,.---....,.-------r----~------II

10<11

Fig. 3.13 PSRG Response of the Lu Wu Amplifier

Also, with the results presented in this section, it is worthwhile stressing that it is the

low common mode gain that makes the circuit stable. A high CMRR which might be

misleading because of high differential gain only. That is why the circuit of Fig 3.8 cannot be

stable without the addition ofcommon mode feedback circuit to reduce common mode gain.

Also, consistent with this philosophy, high PSRR alone can be again misleading if the

differential gain is high. For example, a circuit with a common mode gain of 20dB and a

differential mode gain of 170dB will have a CMRR of 150dB but cannot be DC stable without

some kind of common mode feedback to reduce the common mode gain to less than 1.
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3.4 Thermal Noise

The thermal noise is generated from channel resistance due to random thermal motion

of carriers. The mean-square input-referred thermal noise is given by [15]:

Noise power (31)

where af is the noise bandwidth, K is the Boltzmann's constant and T is the absolute

temperature. Due to the random nature of thermal noise, it cannot be canceled by using any

of the offset reduction techniques. Hence the thermal noise must be kept below 1/2 LSB.

Taking the required signal to noise ratio into consideration, the constraints on gm and CL for

a given transistor or circuit can be determined according to the following equations:

(32)

where af equal to the gain bandwidth product or gJ21tCL , and CL is given by:



38

(33)

where (VFS/2D+1 )2 represent 1/2 LSB power with n being the total number of bits and VFS

being a full scale voltage of the ADC. K is the Boltzmann's constant. Note CL must be

scaled up to reflect the number of equivalent noise sources at the input. Thus, greater the

resolution of the NO converter, lower the required noise floor and thus, high resolution NO

converters must drive large capacitive loads.

3.5 A fully differential differential only boosted folded cascode amplifier with Inherent

Common Mode Rejection

In this section, the design techniques described in sections 3.1 through 3.3 are applied

to develop and analyze a differential only boosted amplifier. The simulation results show

excellent agreement with the predictions of the simplified analysis and success of differential

only boosting and tail boosting. The analyses include the ac response of the differential and

common mode gain, power supply ripple gain on both Vdd and V$ side. Also, the transient

step response of the amplifier is presented to confmn the single pole settling behaviour which

shows that the pole zero doublet is placed beyond the frequency of interest (GBP of the main

amplifier).

Fig. 3.13. shows the schematic of the boosting ampllifier used for boosting the n type

cascades. The p type boosting amplifier is simply the electrical complement of the n type i.e.
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NMOS's replaced by PMOS's and vice versa.

VDD

M6A&Br-----------f-----------e

M3
LYin­

M4

M2

Ml

Vout+

M9

MIl

M8A&B

Vout-

MIO

M12

Fig. 3.11

Vss

The Modified Lu Wu Amplifier used as Nch Boosting Amplifier

Petformance of this modified Lu Wu amplifier, which is again an original contribution of this

work, is summarized in following equations.

3) GBP = gml / CL

(34)

(35)

(36)



4) AVdd =1

40

(37)

(38)

Nate that for the complement version, AVdd and Avss will be simply interchanged

others perfonnance parameters remaining the same.

Now, combining all the design ideas presented so far, we apply them to develop the

fully differential differential only boosted amplifier which achieves very low common mode

gain without using extra common mode feedback circuits. Fig. 3.15 shows the schematic of

the amplifier.

V DD

r- Vbl

I M16
I M5 M

I
II

Vb2 1 r. - --,

I I INch
r-\ I boost

I IV in+ I Iamplifi
I

I \ I
I

\I
I V out-

I
IVb~ I - --, P ch

I M2
I Iboost.. I

I Iamplifier

I .,.
II

I I Ml

I ITail boost
_ J amplifier

Vss

Fig. 3.15 The Fully Differential Differential Only Boosted Amplifier
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The following expressions can be derived for the performance of this amplifier.

2

A vdfff ~ ( ...~-i
4

(39)

A :::: 2
vcm 113 (40)

(41)

Fig. 3.16 shows the DC response of the Lu Wu amplifier and this amplifier. Note the

clipping of the output voltage in the case of Lu Wu amplifier which occurs due to the series

connected "diodes" sinks as the Vos is limited by the current in that branch. Also, note that

the swing limitation has been eliminated by the use of a single cross coupling instead of

double as now VDS can increase while current remains constant.

4.QV,..-------------------------,

~". ". - - - - - - - - - - - -
Differeotial <Ally Boosted AmJiifier I I

, LuWuAm~«

2.0V

OV

-2.0V

6.0V4.0V20Vov
vio

-2.0V4.0V
4.0V L.-----r----...,.....---------r------,-----~----J

-6.OV

Fig. 3.16 Comparison of DC Response of the Differential Only Boosted Amplifier
and the Lu Wu Amplifier.
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Fig. 3.17 shows the AC response of the amplifier. As expected the differential gain of the

main amplifier is boosted by that of the additional boosting amplifier. Also, common mode

gain response is shown with and without tail boosting. The remarkable difference in the

common mode gain brings out the importance of tail boosting which is one of the key ideas

in this design.

200 ,..---------------------------........----

Phase Margin = \

Unity Gain Frequency = 60 MHz

~
Common Mode Gain (Without tail boosting)

Differential Gain

100

o-I--------------------------~=_t_o_____I

-100

~ommonMode Gain (With tail boosling)

lOOMh10Mb1.0Mh10Kh IOOKh
Frequency

1.0Kh

-200 '----------"T""--------..-----~---__..,r___---____r_---....&....----II

100h

Fig. 3.17 Open Loop Frequency Response of the Differential Only Boosted Amplifier

The transient response of the amplifier to a step input is shown in fig. 3.18, which

demonstrates the stability of the described architecture. Single pole settling behavior is

observed indicating that there are no slow settling components in the pass band of the

amplifier. Also, transient voltages at the gates of the cascade transistors are shown to bring

out the stability of the boosting amplifiers and their fast settling response.
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l.OV ,..---------------------------------,

I \

~
Output Voltage of the Ncb Amplifier

, ./ Output Voltage oftbe Pcb Amplifier
'\¥,,
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20V ,..-------------------------------,

OV

-2.0V
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;-(~.__.._.~ ~~ - /~_..__.\
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Fig. 3.18 Closed Loop Unity Gain Transient Response of the Boosted Amplifier

Now, following the analysis used in section 3.4, we can calculate the PSRG for the

differential only boosted amplifier. From equation (32) we see that the power supply ripple

makes it's way directly to the output from the supply to which cross coupled loads are

connected. It can be shown that same is the case for the modified Lu Wu amplifier (see fig.

3.14) which is used as the boosting amplifier. Thus, it is clear that the power supply ripple

makes it's way to the gate of the cascodes of the main amplifier. The tail boosting amplifier

also contributes to the PSRG. To understand the contribution of each block, we can analyze

the simplified half circuit for the boosted amplifier as shown in fig. 3.19
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r - - - - - - - VDD

Tail J
Boosting
Amplifier S r

Jl =1/2

r

--1:'-_.1 :.. M3

---------'I..., M2

r
I

................-- -.-..t..-.- -.-..- -..- _.__ _ _ _._.
L - - - - - - - V ss

Fig. 3.19 Simplifier Half Circuit for Boosted Amplifier PSRG Analysis

To further simplify the analysis, the contribution of the tail boosting amplifier is

analyzed first. It is obvious from fig. 3.19, that the tail boosting amplifier behaves in an

identical fashion for the ripple on both Vdd and Vss, sides as the circuit is symmetrical. So,

we can calculate Avxx (xx=dd or ss)for the tail boosting amplifier. Thus, at node Vxo

~=r

~ =00

:.~ = 1/2 ( using 29) (42)

Now, we can use superposition to calculate Avoo for the boosted amplifier. For

excitation only in the cascode device, M7,
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~=r

~ = ~3/r

Rn = ~. l/gm = r

:. Aveff = 1/~ ( from 29) Aveff being the effective AC gain.

For excitation in the cascade of the tail boosting amplifier,

~=r

~=oo

Rn=r

:. Aveff = 1/2Jl ( from 29 and using the fact that Avxx for boosting amplifier is 1/2 )

Thus, total Avnn for the boosted amplifier =3/Jl. Similarly, we can analyze Avss

for this amplifier using the superposition principle.

For excitation in the cascade of the tail boosting amplifier,

~=r

~ =00

Rn=r

:. Aveff = 1/211 ( from 29 and 42)

For excitation only in the cascade device, M9

~ = l/gm

~=oo

Rn = Jl r

:. Aveff ~ 1 ( from 29)

Thus, total Avss for the boosted amplifier = 1. We can summarize the PSRG
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perlormance of the boosted amplifier in following equations,

(43)

Avss =1. (44)

Fig. 3.20 shows the PSRG response for the differential only boosted amplifier.

From this analysis, we note that the PSRG depends on the common mode impedance of the

amplifier. The lower the common mode impedance, the lower the PSRG on the supply

opposite to which low impedance loads are connected to. This observation implies that cross

coupled amplifiers are best suited for single supply operation and the cross coupled side

should be connected to ground for best PSRG performance.

Gain (in dB)
10 ,---------------------------------,

AVa Response
01--__----------- __

-10

-20

AvciJ Response __
------------------------

looMh10Mh1.0Mh10Kh lOOKh
Frequency

1.0Kh
-30 '-------------r----~----____.__----_----___r__-------'

100h

Fig. 3.20 PSRG Response of the Boosted Amplifier



CHAPTER 4

A MICROWAVE BANDWIDTH, HIGH DC GAIN AMPLIFIER

This chapter describes the design and development of the first ever CMOS amplifier

projected to operate in microwave frequency range. The amplifier is intended to be used in

a 2.5 GSPS over sampled NO converter with a resolution of 16 bits. The required unity

gain frequency is 5 GHz with an open loop differential gain of about 96 dB. A fast and

accurate settling amplifier leads to contradictory demands of wide bandwidth and high DC

gain. Wide bandwidth calls for short channel devices biased at large current levels and high

gain requires long channel devices biased at low current levels. However, by using the

differential only boosting technique described in chapter 3, (section 3.3) this task has been

achieved in the new ffiM SOl 0.25J,1m process in which the devices have an fT in the range

of 25-40 GHz and self gains of about 20-25dB.

Since there are no simple design equations as yet for design of SOl circuits, the

design presented here is heavily simulation aided. Also, since SOISPICE does not converge

for gain boosting topologies, the architecture used has been validated with Pspice

simulations for level 2 sal MOSFET parameters. However, the simulator does converge

47
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for only one stage of the amplifier and that has been used to project the behavior for the

amplifier by changing the widths in the same deck and changing the loads accordingly.

4.1 Amplifier Specifications

To keep the thermal noise generated in the transistor cllannel below the required

level of 1/2 LSB of the NO converter (section 3.5, eqn 39) , this amplifier must drive a load

capacitor of 30pf. Thus, we can summarize the amplifier specifications as follows:

AVdiff = 96 dB (1)

GBP = 5 Ghz (2)

CL = 30pF (3)

Input referred noise = 5 IlV/JHz (4)

V0 (swing) =Within 1V of the supplies (5)

4.2 Recursive Differential Only Folded Cascode Boosting

To achieve a high DC gain this amplifier uses the novel concept of recursive

differential only folded cascade boosting which is a combination of the recursive cascade

gain boosting and differential only boosting schemes described in sections 3.1 and 3.2 as

shown in fig 4.1. In this implementation, the cascade transistors of the boosting amplifiers

are also boosted by boosting amplifiers. Note that this technique is extremely useful in fully

differential configurations where differential only boosting is more easily implemented. The
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lower levels of boosting amplifiers are scaled in accordance with the scaling principle

developed in section 3.1. Thus, returns in the DC gain are more than the required increase

in area as boosting amplifiers take lesser area at lower levels. Recursive differential only

folded cascode boosting, however, degrades the frequellcy response slightly but preserves

the low common mode gain response of the boosting amplifiers while boosting the

differential gain.

VIO+

r-

Fig. 4.1 Recursive Differential Only Folded Cascode Boosting
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4.3 Circuit Topology and Projected Performance

Fig. 4.2 shows the schematic of the high performance amplifier. The Nch and Pch

boost amplifiers are differential only boosted amplifiers (see fig. 3.15). Thus, the dc gain

acllieved by the amplifier is combined gain of six transistors corresponding to two levels of

boosting.

-jp ch

Iboost
.. Iamplifiel...-..-----,

..........,....~~~

M5

M2

I
I

V b2 1r-,
IVin+

I
I V b4 ,

Ml

:Tail boost
_ _ _ _ amplifier

Fig. 4.2 Schematic of the High Performance Amplifier
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The circuit operation is similar to that of the differential only boosted amplifier of

section 3.6 and the boosting stages can be analyzed separately with proper feedback

capacitors as in section 3.1. Special concerns in SOl circuit design are presented in the

following sections.

4.3.1 DC Behavior

To extract an effective transconductance (gmeff) of about one Siemen from a

transistor, it must conduct Current in miliamperes as well as require a large width to length

ratio. Wide devices with minimum channel length are used to maintain the practical

"overdrive" voltage (about 1.0 V) on the transistor is an additional constraint because short

channel devices cannot operate with large VDS. This is due to the avalanching problem

Wllich occurs at large VDS across the transistor. Thus, VDS, in addition to Vos, in these short

channel transistors has to be limited to about 1.5V or so otherwise the avalanche

multiplication results in the "kink effect" (see section 2.5) in the IDS Vos curves which

reduces the rDS drastically thereby reducing the intrinsic gain of the transistor. Also,

increasing Vos further doesn't increase gm but can result in tunneling through the thin gate

oxide in these devices. This means that amplifier must be operated with low voltage

supplies.

This amplifier preserves the advantage of large swing at the output due to single

cross coupling in the load transistors.



52

4.3.2 AC Behavior

This amplifier is designed to have a unity gain frequency of approximately 5 Ghz.

Fig. 4.3 shows the ac response of the main stage only. The dc gain of one stage as

simulated is 37 dB. This implies that the dc gain for double boosted amplifier will be 117

dB when measured differentially. The differentially measured bandwidth will also be twice

i.e. 6.5 GHz. From the simulation, the common mode gain for one stage is -25dB. By

boosting the tail impedance once, the common mode gain is further reduced to about -60dB

but then the differential pair mismatch places a practical limit on the common mode

performance.

40dB r==========================================================----------I

Diffemrential Mode Gain

Unity Gain Frequency
=3.25GHz

OdB - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Common Mode Gain

~
-30 dBL-------.------r------,-----.......-----~--_____,r___--__r-----L...----...;;:I

18Ckl r-----------------====---------------:-----,

/
Phase ResJX>nse

IOCkl

Od
100h 1.OKh 10Kh lOOKh 1.0Mb 10Mb lOOMI 1.0Gb 10Gh

Frequency

Fig. 4.3 Open Loop AC Response of the High Performance Amplifier
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From fig 4.3, we see that there is only one pole below the unity gain frequency. This point

might be somewhat misleading here since, this isn't the exact frequency response. The

single pole frequency response would be unaffected below the unity gain frequency with

addition of boosting amplifiers since the poles and zeroes of the boosting amplifiers are

designed to be beyond the unity gain frequency of the main amplifier. Also, phase response

would be altered by the addition of boosting amplifiers. But this simulation does give us a

fair idea of the non dominant pole location and thereby the phase margin.

Amplifier performance can be summarized by the following equations

J\diff = (Jl2J14)3

J\cm =2/Jl3

CMRR =Jl9/64

(0unity = gm I CL

(6)

(7)

(8)

(9)

4.4 Layout Considerations

Layout of a circuit which is operating in microwave range is a separate problem in

itself. A lot of care must be taken to ensure that circuit is not slowed down by the added

parasitics associated with the interconnects. The Following problems have to be addressed

in such a layout task.

The whole circuit size is dictated by wavelength constraint which implies that circuit

dimensions must be less than A/8, (A is the wavelength associated with the maximum

projected operating frequency) on each side to the setting up of a microwave resonator by
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the power bus or the ground ring. This problem is more severe in GHz range where

oscillations can result more readily because of a small wavelength involved. To minimize

this problem, wires are laid out in a ground-signal-ground fashion and are overlapped with

different level metal to provide a low impedance path for field lines termination. Also, to

provide a low impedance path for field termination a ground ring is put around the circuit.

The next problem faced is the source impdedance of the transistors. From analysis

in chapter 3 (section 3.4, equation 24), we have the following equation for a transistor with

a non neglectable source resistance, Rs

Thus, we see that greater the source resistance, lower the effective transconductance of the

transistor. This is known as "source degradation" in MOS circuits. This problem is most

severe in the differential pair of the main stage amplifier where required transconductance

is about IS. Thus, to satisfy the requirement gmRs « 1, ~ must be less than about 0.05

ohm for a 5% transconductance degradation. This forces the metal connections to the

sources of the equivalent transistors to be very wide.

The gate RC time constant is another problem which has to be tackled to make fast

circuits. To reduce the RC delay in the gate of the transistors, special poly to metal!

contacts are laid out on the gate of the transistors and they are connected by metal! to reduce

the series resistance of the gate, Rg such that RgCg » Wu of the amplifier. Also, on the
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process side, T-gates can be fabricated which further reduce the time constant of the gate.

To ensure matching in the transistor pairs, all the transistors have been laid out using

fingers of smaller transistors which helps avoid large variation of parameters among

different transistors by statistically averaging all the parameter variations in the units of a

single large transistor. For example, the differential pair in the high petformance amplifier

contains about 1000 fmgers. At this point in time, insufficient data is available to determine

the effects of global mismatch on the circuit performance. Also, laying out transistors in

fingers helps ease the RgCg constraint, since Rg ex W for wide transistors not laid out as

fingers.

4.5 Testing Approach

These wide bandwidth, high DC gain amplifiers have to be put in special

configurations on chip itself to measure the open loop gain and the frequency response of

the amplifier. Special high frequency probe cards have to be used for on chip testing. These

probe cards have pads laid out in ground-signal-ground fashion to provide low impedance

path for field lines tennination. The testing objectives are to measure the open loop gain of

the amplifiers, measure the GBP & settling time and characterize the transistors and test

circuits by s-parameter tests. Following sections describe the test structure and the

procedure to measure the performance of these amplifiers and other test cells such as the

boosting amplifiers.
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4.5.1 Open Loop Gain, Measurement

The opamp is placed in a unity gain feedback configuration using feedback

capacitors as shown in Fig. 4.4.
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Fig. 4.4 AVOL Frame for High Petformance Amplifier

For this configuration, the open loop gain of the amplifier is given as:

A VOL (10)

Thus, we see that a capacitive voltage divider is formed at the input of the amplifier which

amplifies the voltage at the input of the amplifier by a fixed capacitor ratio before it goes to

the output pad. The ratio of 100 was selected since there is a limit to the lowest value

capacitor that can be reliably fabricated. The inherent gate to source capacitance of the input

transistors dictates the size of this small capacitor. The measurement points must be

buffered to prevent the input impedance of the amplifier from degrading. Thus, the signal
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amplitude at the input of the amplifier is multiplied by a factor of 100 before it goes off

chip, thus, simplifying the measurement procedure. Also, the terminals of feedback

capacitors are connected by switched which are used to discharge the capacitors.

4.5.2 Unity Gain Frequency Measurement

For measurement of the unity gain frequency of the amplifier, again the amplifier is

put in a unity gain feedback configuration as shown in fig. 4.5.
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Fig. 4.5 UGBP Frame for High Petformance Amplifier

A step input is applied to the amplifier and the settling behavior of the opamp is

measured to calculate the gain bandwidth product of the amplifier. This arrangement serves

the dual purpose of measurement of Voffset and unity gain bandwidth of the amplifier.

Assuming single pole settling, following equation can be derived for the output response to
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a step input.

(11)

Using equation(6) , the time taken to settle with in a desired accuracy can give a

measure of the bandwidth of the amplifier. For example, to settle within 0.1 % of the final

value, the time taken is , t = 6.91/wu • In addition, the open loop gain (assuming perfectly

matched capacitors) detennines the accuracy to which output can settle. Fig. 4.7 shows the

unity gain transient response of the main stage of the high performance amplifier without

boosting. It is the not the exact response of total amplifier. However, it can give a fair idea

of the bandwidth of the amplifier with reduced settling accuracy because of the low DC gain

of a single stage without boosting.
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Fig. 4.7 Closed Loop Unity Gain Transient Response of the High Performance Amplifier
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4.5.3 S-Parameter Testing

Also, as a further test, high petformance opamp has been put in s-parameter frame which

can be used to measure the effective forward and reverse transconductance and input as well

as the output impedance in 1-10 GHz range. It is to be noted that for all these test structures

except AVOL measurements, high speed probe cards are required which can measure signal

frequencies in GHz range.

4.5.4 Tests for Lower Level Cells (Boosting Amplifiers)

The boosting amplifiers:

1) Nch level1 : N differential pait, single boosted amplifier. (Fig. 3.15)

2) N ch level2: N differential pair, modified Lu Wu amplifier (Fig. 3.14)

3) Pch level1 : P differential pair, single boosted amplifier (Fig. 3.15)

4) P ch level2 : P differential pair, modfied Lu Wu amplifier (Fig. 3.14)

have been connected in an open loop configuration on a dc test frame because the open loop

gain on these circuits is smaller than that of the main amplifier. So, specially configured

structures are not required. To determine the ac response of these boosting amplifiers are

again connected in a unity gain feedback configuration (as shown in fig. 4.6) and placed in

a high speed probe pad frame where settling response can to be measured to calculate the

bandwidth of these amplifiers as described in section 4.5.2
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Fig. 5.1 The Low Power Amplifier

5.1 Amplifier Specifications

To keep the thermal noise generated in the transistor channel below the required level

of 1/2 LSB of the NO converter ( see section 3.5), this amplifier must drive a load of 350pF.

Thus, we can summarize the amplifier specifications as follows:

~diff = 108dB

Wunity = 2 Mhz

CL =350pF

Input referred noise =1.25 JlV/.fHz

5.2 Amplifier Design Approach and Archtitecture

(1)

(2)

(3)

(4)

The main feature of this amplifier is the dynamic current adjust circuit which changes

the input bias current to the amplifier depending upon the input signal amplitude [22]. The

main amplifier is simply a differential only boosted amplifier which has been described in

section 3.6. Fig. 5.1 shows the block diagram for the low power amplifier.



62

5.2.1 The Dynamic Current Adjust Circuit
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Fig. 5.2 The Dynamic Current Adjust Circuit

The dynamic current adjust circuit of Fig 5.2 forms the he3.11 of the "low power"

amplifier. It monitors the signal amplitude at the input of the differential pair and when the

signal rises above a "dead band" of approximately 80mV, it increases the biasing current

supplied to the main amplifier. All devices in the current adjust circuit are very long channel

devices. This is due to the fact that the input quiescent bias current must be very small to

minimize overhead power consumption and an overdrive voltage of about 250mV is

required to ensure overdrive voltage matching which is very critical for subthreshold

operation.. This results in very small WIL ratios for these transistors. The detailed
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operation of this circuit is as follows. This circuit can be further divided into two blocks:

an absolute value sensing circuit and a bias circuit for the main amplifier. The absolute

value sensing circuit is simply a differential amplifier whose outputs act as biasing voltages

for current boost transistors M15 & M16 and a current summing node (CSN) which sums

the current from the current boost transistors M 15 & M 16 and the mirroring transistor M 17.

Thus, this circuit dynamically adjusts the bias current to the main amplifier depending on

the signal amplitude. Transistors Ml through M6 fonn the bias string for the absolute value

sensing circuit. These are very long channel devices as described previously. Transistor

M27 keeps the voltage variations matched in the legs of the differential pair and the output

transistors. Transistors MIl and M12 are the loads for the differential amplifier and these

initially are biased to operate in triode region so that the voltage at the output of the

amplifier is close to VDD and the current boost transistors MI5 & M16 are OFF. This means

that the current being supplied to the main amplifiier is just the quiescent bias current which

is mirrored by M 17. Transistors M 13 & M 14 form the differential pair. When the

differential signal at the input of this circuit rises above the "dead band" the differential pair

potentially switches all the current into one leg. The load transistor in that leg is then pulled

down into saturation. This lowers the output voltage of the differential amplifier which in

turn causes the corresponding current boosting transistor to conduct more current. The

current boosting transistor is designed to give a current boost of about 60dB with a 2l0mV

change in VGS along the subthreshold input transconductance slope which is about

70mV/decade. This change in VGSsupplies a boosted current which is summed at the CSN.

Transistors M2l through M24 mirror that current into the main amplifier by adjusting the
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bias voltages Vbi through Vb4 which control the bias current in the main amplifier. The

pulling down of the output voltage of the amplifier is accomplished as follows. Transistors

MIl & MI2 are identical but they are both made slightly narrower than required to mitTor

exactly twice the currel1t flowing in MID and wider than MID so that wIlen the current

flowing in these transistors is equal to MIO or less, they are pulled up into the triode region

of operation. Since, VGS is constant for these transistor and current is small, VDS must

decrease to maintain the reduced CUll-ent flow (see eqn 22, chapter 2). But wIlen the all the

current in the tail of the differential pair flows into a single transistor, the restriction on

VDS to be small no longer holds and VDS increases which brings the output voltage down for

the amplifier thus, increasing VGS for the boosting transistors. This in turn boosts the

current depending on the subthreshold I-V characteristic slope. The current from the

quiescent current mirror, MI7 and the current boosting transistors MI5 & M16 is summed

at the summing node to form the bias cun-ent for the main amplifier. Transistors M21

through M26 form a conventional cascode bias string for the main amplifier. In summary,

this design approach simply changes the input bias current to the main amplifier depending

on the absolute value of the input signal amplitude.

I
_Dead Band- I

V", 4-----------.-

_-----f

-120mV -80mV -40mV OV 40mV 80mV 120mV

Fig. 5.3 DC Response of the Dynamic Current Adjust Circuit
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Fig. 5.3 shows the dc transfer characteristics of the dynamic current adjusting

circuit. Notice the dead band extends to about 80mV and the bias voltages then adjust

according to the change in the bias current.

5.2.2 Main Amplifier Circuit

The main amplifier circuit is similar to the boosted amplifier presented in chapter 3.

One of the characteristics of this amplifier is the longer channel length on all the devices.

This is done to help ensure "overdrive matching" on all the devices. All the devices operate

in subthreshold region and this is done to achieve a very high dc gain. This amplifier is

projected to achieve a dc gain of 120dB. The bandwidth requirement on this amplifier are

not very stringent. The required bandwidth to achieve the desired settling time is about

2MHz which is easily attainable. But the load capacitance ,which is very large (about

350pF) to reduce the noise floor, is required due to very high desired Signal to Noise Ratio

(SNR). As described earlier the current increase in the differential pair increases the output

transconductance of the amplifier and achieves the required bandwidth when the signal

amplitude rises above the "dead band". Nch and Pch boost amplifiers are modified Lu Wu

amplifiers as shown in Fig 3.4. Single cross coupling as discussed in chapter 3, avoids

swing limitation. Typical DC and AC response of this architecture has already been

analyzed in chapter 3 and 4. Transient response is of special interest since the amplifier has

a variable bandwidth depending on the input signal amplitude but a detailed analysis of the

transient response is beyond the scope of this work. Fig. 5.4 shows the main amplifier.
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Amplifier performance can be summarized in following equations

~cm = (2/~)

CMRR =(~5/32)

(5)

(6)

(7)
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(8)

5.3 Layout Considerations

The most important consideration in this type of a circuit operating in subthreshold

region, is the paitwise device matching. Therefore, laying out matched devices is one of the

very important feature of this circuit, since, geometry and layout are the only options at the

designer's disposal. Transistors are laid out using fingers as described earlier in chapter 4

and further interdigitizing and multi common centroiding is used to ensure best matching

among critical transistor pairs. Fig. 5.5 shows a multi common centroid interdigitized

transistor pair layout with a common source.

Fig. 5.5 An Interdigitized Multi Common Centroid Transistor Pair
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5.4 Testing Approach

High DC gain amplifiers have to be put in special configurations on chip itself to

measure the open loop gain and the frequency response of the amplifier. Following sections

describe the test structures and tile procedures to measure the perlormance of the low power

amplifier and the lower level test cells such as the dynamic current adjust circuit and the

boosting amplifiers.

5.4.1 Open Loop Gain Measurement

The opamp is placed in a unity gain feedback configuration using feedback

capacitors as shown in Fig. 5.6.
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Fig. 5.6 AVOL Frame for Low Power Amplifier
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Tile analysis of this configuration has already been discussed in section 4.5.1

5.4.2 Unity Gain Frequency Measurement

For measurement of the unity gain frequency of the amplifier, the amplifier is again

put in a unity gain feedback configuration as shown in fig. 5.7.
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Fig. 5.7 UGBP Frame for the Low Power Amplifier

A step input is applied to the amplifier and the settling behavior of the opamp is

measured to calculate the gain bandwidth product of the amplifier. The relation between the

settling behavior and performance parameters has already been discussed in section 4.5.2

However, in this case the transient response is affected by variable bandwidth of the

amplifier. Note, the kink in the output response just when the bias voltages switch to boost
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the current in the main amplifier. As stated earlier, this variable bandwidth response is not

properly understood at present and needs a further detailed analysis. Fig. 5.8 shows the

unity gain transient response of the main stage of the low power amplifier(witllout boosting).

It is the not the exact response of total amplifier, however, it can give a fair idea of the

bandwidth of the amplifier with reduced settling accuracy because of the low DC gain of a

single stage without boosting.
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Fig. 5.8 Transient Response of the Variable Bandwidth Low Power Amplifier
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5.4.3 Tests for Lnwer Level Cells

The boosting amplifiers have been connected in an open loop configuration on a dc

test frame because the open loop gain on these circuits is smaller than that of the main

amplifier. So, specially configured structures are not required. For ac response of these

amplifier they are again connected in a unity gain feedback configuration (as shown in fig.

5.7) settling response has to be measured to calculate the bandwidth of these amplifiers as

described in section 4.5.2.

The dynamic current adjust circuit is simply connected a dc pad frame in which all
lit

the test outputs such as the output bias voltages Vbl ' Vb2' Vb3 and Vb4 are connected to the

pads. A dc sweep is applied to the input of the circuit and the output bias voltages are

observed and thus, the "dead band" can be calculated as shown in the dc response of this

circuit in fig. 5.3



CHAPTER 6

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

The work presented in this thesis holds great promise for future high performance

microwave CMOS circuits which will become a reality due of the advances in technology

and innovative design techniques. Most important, during the course of this project, the

focus was on developing blocks which would be used in a system later on. Therefore, the

most obvious direction to go from here is to use these blocks to build high performance

systems and verify the promises offered by this work. The most important application for

the amplifiers which have been presented in this work lie in the domain of switched

capacitor circuits. SC circuits such as AID converters and filters have wide ranging

applications in front end signal processing. A wide band, high DC gain amplifier which

employs a fully differential configuration is a critical building block of SC circuits. The

amplifiers presented here go a step further in combining many the advantages of the various

circuit techniques that have been developed so far with some novel contributions from the

authors. With this in mind these amplifiers have achieved very respectable perlormance

figures as far as DC gain, bandwidth and common mode gain. Simulations do indicate this

72
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performance but actual circuits on the chip are yet to be tested. One of the major concerns

is that technology also hasn't matured to guarantee performance as predicted by the models

used in the simulations. The process is still in the research stages and the design can

definitely be improved further which should result in a better petformance. For example,

in the modified Lu Wu amplifier which has been used as a differential only boosting

amplifier, there is a bandwidth reduction due to more load at the source of the cascode

transistor compared to the actual Lu Wu amplifier. This point has been made by the authors

and an alternate technique has been implemented which does not reduce the bandwidth.

Similarly, there is a vast ocean of knowledge which is required to make a folded cascode to

operate at f/2.2 with a 60° phase margin which is the ideal GBP for this amplifier. Boosting

introduces poles and zeroes and doublets and the actual effect of all the poles and zeroes

combined can be predicted by a simplified analysis but has not been analyzed in detail yet.

The analysis being very tedious would require a symbolic simulator and a very careful and

a knowledgeable analyst. As is the case all the time, the technology does promise a lot but

it will be limited by the laws of physics but only imagination limits the design. Future

performance gains will come more from the design approach rather than technological

advances. This trend is already visible in the microprocessor segment of the VLSI market

where reorganized chip architecture has resulted in much faster processors. Therefore,

efforts put in design will reap more dividends because it will be easier to implement them

in existing commercialized processes.

The authors have lately discovered literature which discussed cross coupling in one

or more different fashions [23], [24] and [25], but Lu Wu [10] are the only one who
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specifically point out the importance of cross coupling in reducing the common mode gain.

Cross coupling of the mirrors to eliminate common mode feedback has been one of the

essential component of the design presented in this thesis. Klass Bult [8] developed cascode

gain boosting which is the other key idea in this design. And Fossum et al. [1] through [6],

are to be commended for the frrst comprehensive analysis of short channel SOl MOSFETs

and contributing SOISPICE2.21. All these efforts have helped considerably in the

development of high petformance circuits presented in this thesis.
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