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CHAPTER I

INTRODUCTION

The mid-continent region of the United States is well known for petroleum

hydrocarbon production. Until development of vast oil and natural gas fields in

Alaska and the offshore areas of California and Texas) the mid-continent region

produced the majority of domestic petroleum consumed in the United States. Early

exploration efforts and field development were associated with surface topographic

features which provided early geologists an indication that shallow structural traps may

be present beneath the surface features. One of these surface features was the Cement

Anticline located in Caddo County, Oklahoma. Exploratory drilling on the Cement

Anticline led to the discovery of the Cement field in 1917 and exploration and

development drilling have been extensive since its discovery. In the early 1970s,

portions of the Cement field were unitized for secondary recovery operations

consisting of waterfloods.

Oilfield operations use large and varied amounts of chemicals during drilling,

completion, and workover activities. These chemicals are beneficial to the oil

operators in performing their tasks, but when improperly stored, handled, or disposed

of, can be sources of contamination to ground-water resources. Additionally, by­

products of oil production, specifically produced formation water, can provide sources
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of contamination to the environment. The produced oil itself can contaminate ground-

water supplies through spillage during production, storage, or transportation activities.

The oil industry, especially in the early to mid 1900s, was not highly regulated

and many operational practices had a severe impact on ground-water contamination.

Chief among th~se practices were the surface disposal of produced formation water,

the lack of protection of potable ground-water aquifers through the deficient use of

surface casing, and the techniques used to abandoned wells. Even today the

exploration and development activities of the oil industry are exempt from many

environmental laws, and i_n fact are exempt from the definition of hazardous waste in

the Resource Conservation and Recovery Act (RCRA).

The town of Cyril, Oklahoma is located in the southeastern portion of Caddo

County approximately four miles south of the Cement field. Historically, the town has

used ground water from the Rush Springs Sandstone as its domestic water supply. In

1947, chloride contamination was detected in the town's water supply well and the

next year the well was abandoned. From 1948 through 1985, twelve additional wells

were drilled; the wells were drilled successively further from the Cement field and

deeper, to avoid the chloride contamination in 'the Rush Springs aquifer. By 1991, all

of the Cyril water supply wells had been abandoned and the town had been connected

to a Rural Water District line.

The purpose of this investigation was threefold: to characterize the geology,

hydrogeology, and ground-water geochemistry of the Rush Springs Sandstone aquifer

and deeper aquifers; to determine the types of chemicals attributable to oilfield

operations and the migration pathways which may impact the environment; and to



3

determine which source and migration pathway of chloride contamination was

responsible for abandonment of the Cyril well field.

The study area for the investigation is in Section 1, Township 5 North, Range

10 West and Section 6, Township 5 North, Range 9 West (Figure 1). Approximately

260 completion cards and 140 borehole geophysical logs were reviewed and evaluated

to determine well construction details and subsurface stratigraphy of the exploration

and development wells located in the study area. A total of 115 published ground­

water chemical analyses were evaluated to determine the geochemistry of the

subsurface aquifers.

Computer models used in this investigation include WATEVAL and the USGS

Solute Transport Model. WATEVAL, developed by Hounslow and Goff (1991),

performs a sequence of analytical checks and comparisons to indicate the overall

quality of the entered analysis. Various ion ratios are calculated to suggest possible

source rocks through which ground water may infiltrate or flow. WATEVAL also

presents information in two graphical formats, the Piper plot and the Stiff diagram.

Possible source rocks are suggested on the Piper plot and Stiff diagrams. The Piper

plot can be used to indicate various geochemical reactions such as mixing, ion

exchange, precipitation, and dissolution. The USGS Solute Transport Model,

developed by Konikow and Bredehoeft (1978) was used to calculate the concentrations

of chloride in the Rush SpringslMarlow aquifers at specific places and times. The

model is a two-dimensional Fortran code which solves flow equations using a finite­

difference method and uses the method of characteristics to solve solute-transport

equations.
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CHAPTER II

GEOLOGY

Surface Geology

Permian rocks outcropping in the study area consist primarily of the Rush

Springs Sandstone of the Whitehorse Group and the Cloud Chief Formation (Figure 2).

Tanaka and Davis (1963) note that the Whitehorse Group crops out in about eighty

percent of Caddo County with the remainder covered by outliers of the overlying

Cloud Chief Formation.

Rush Springs Sandstone

In the Cement area, the Rush Springs Sandstone outcrops typically consist of

friable, reddish brown, cross-bedded to tabular, subangular to subrounded, fine- to

very-fine silty sandstone. Lilburn (1981) described the Rush Springs Sandstone as

normally red and friable but on outcrop over the Cement Anticline, it is buff to white

and highly cemented. The cement is mostly calcium carbonate but some pyrite is

present as small nodules. The thickness of the Rush Springs Sandstone outcrops in the

Cement-Chickasha area range from 130 to 300 feet (Al-Shaieb, 1988).
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Cloud Chief Formation

The Cloud Chief Formation outcrops in the study area are interbedded layers of

gypsum and red shale approximately 30 feet thick; typically they are outliers overlying

the Rush Springs Sandstone. Rarlton (1960) reported that only the basal member of

the Cloud Chief was exposed at Cement and consisted of ten feet of white and pink

gypsum. This gypsum bed is known locally as the "Cyril Gypsum."

Soils

The soils in the study area are predominantly the Cobb and Grant soils, and the

Reinach soils. The soils south of the study area (Section 7, Township 5 North, Range

10 West and Section 12, Township 5 North, Range 9 West) are predominantly the

Norge, Acme-Gypsum Outcrop, and Woodward-Quinlan Complex soils. The areal

distribution of the soils is shown on Figure 3. The following soil descriptions are

taken from the Soil Survey of Caddo County, Oklahoma (USDA, 1993).

Acme-Gypsum Outcrop Complex

The Acme-Gypsum Outcrop Complex consists chiefly of Acme silt loam, on

side slopes below the crests of hills, and of gypsum outcrops on hilltops and sides of

hills. The Acme makes up 50 to 70 percent of the complex and the gypsum, from 15

to 35 percent. The remaining 5 to 20 percent consists of a soil similar to the Acme

but with gypsum at depths between 20 and 36 inches. In a representative profile, the

surface layer is dark brown, mildly alkaline, silt loam to a depth of 8 inches, and
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brown, calcareous, silt loam that is moderately alkaline to a depth of 15 inches with

white crystalline gypsum below. The Acme soils are the only soils mapped in Caddo

County that formed in material weathered from gypsum. The Acme soils have a rated

permeability of 0.63 to 2.0 inches per hour.

Cobb Series

The Cobb Series consists of moderately deep, very gently sloping to sloping

soils on uplands. In a representative profile, the surface layer is reddish brown, fine

sandy loam about 8 inche~ thick. Below this is a sandy clay loam, about 33 inches

thick that is reddish brown in the upper part and red in the lower part. The underlying

material is reddish sandstone. These soils are well drained and moderately permeable

with rated permeabilities of 0.63 to 2.0 inches per hour.

Grant Series

The Grant Series consists of deep, very gently sloping to sloping soils on

uplands. These soils formed in loamy material from red beds under a cover of mid

and tall grasses. The depth to sandstone or siltstone below this series is more than 40

inches. In a representative profile, the surface layer is brown, mildly alkaline, loam

approximately 9 inches thick. The next layer, at a depth of between 9 and 19 inches,

is reddish brown, mildly alkaline loam. Between a depth of 19 and 44 inches is a

yellowish red, moderately alkaline, silt loam that grades to loam. Yellowish red,

calcareous loam that contains a few hard concretions of calcium carbonate is between

depths of 44 and 66 inches. The Grant soils are well-drained and moderately
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permeable.

Norge Series

The Norge Series consists of deep, very gently sloping to gently sloping soils

on uplands. These soils formed in material weathered from alkaline loamy red beds.

In a representative profile, the surface layer consists of reddish brown silt loam about

8 inches thick. The next layer, between 8 and 36 inches, is reddish brown silty clay

loam that has prismatic and subangular blocky structure. Below, from 36 to 46 inches

is neutral, red silty clay loam that has subangular blocky structure. These layers are

underlain, at depths of between 46 and 74 inches, by red silty clay loam that has

subangular blocky structure and contains few soft spots and hard concretions of

calcium carbonate. The Norge soils are well-drained with moderately slow

permeability.

Reinach Series

The Reinach Series consists of deep, nearly level or very gently sloping soils

on terraces or uplands. These soils formed in alkaline, loamy sediment laid down by

wind and water. In a representative profile, the surface layer is reddish brown silt

loam about 32 inches thick. At depths between 32 and 62 inches is reddish brown,

calcareous loam. Next is yellowish red, very fine sandy loam that is calcareous and

extends to a depth of 72 inches. The Reinach soils are well-drained and moderately

permeable.
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Quinlan-Woodward Complex

The Quinlan-Woodward complex consists of shallow and moderately deep,

sloping to strongly sloping soils on uplands. Quinlan series soils formed in material

weathered from calcareous sandstone or siltstone. Quinlan soils are well-drained and

permeability is moderately rapid.

Woodward-Quinlan Complex

The Woodward-Quinlan complex consists of gently sloping soils on uplands.

The Woodward series soils formed in materials weathered from calcareous sandstone

and siltstone. Woodward soils are well-drained and moderately permeable.

Subsurface Stratigraphy

The subsurface geologic formations of interest in the study area are Permian; in

ascending order they are the EI Reno Group, Whitehorse Group, and Cloud Chief

Formation. A generalized geologic column of the rocks discussed in this section is

provided on Figure 4.

£1 Reno Group

The El Reno Group, named by Schweer, in Brown (1937), is defined by Davis

(1955) as including Permian strata from the top of the Hennessey Shale to the base of

the Marlow Formation; in ascending order, the group includes the Duncan Sandstone,

Chickasha Formation, Blaine Formation, and Dog Creek Shale.
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Duncan Sandstone. The first reference to the Duncan Sandstone was made by

Wegeman (1915), who described a series of scarp-forming sandstones and interbedded

shale about 40 feet thick in his study of the Duncan gas field. Gould (1924) quoted

Wegemen's description of the scarp-forming sandstones, and noted that the formation

ranged up to 250 feet thick and consisted in most places of two ledges of white or

buff sandstone separated by shale. Gould assigned the Duncan Sandstone to a position

between the Lower Enid Formation (Hennessey Shale) and the Chickasha Formation.

Davis (1955) indicated that the base of the Duncan is considered to be unconformable

with the underlying Hennessey Shale. The contact of the Duncan with the overlying

Cllickasha in Grady County is considered to be conformable, and probably is

gradational. Self (1966) found no evidence of a major unconformity at the base or the

top of the Duncan, but there is evidence (stream channeling) of minor disconformities

in the unit.

Self (1966) reported that the Duncan Sandstone varies significantly both

laterally and vertically. Laterally, the Duncan changes color from gray-green near

Duncan, Oklahoma to buff around the nose of the Anadarko Basin to reddish orange

further north. Bedding planes are uneven, and there is some lenticular cross-bedding.

rfhe Duncan is typically a fine- to very fine-grained sandstone, moderately well to

llloderately sorted, orthoquartzitic with dolomite cement. The sandstone becomes finer

to the north or west from the nose of the Anadarko Basin. The channel-form and

lenticular sandstones are the coarser materials in the Duncan, and the Duncan

Sandstone typically becomes coarser higher in the section, eventually becoming

conglomeratic, cherty, and containing clay galls near the top of the unit.
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Davis (1955) described the Duncan Sandstone in Grady and northern Stephens

Counties, Oklahoma as mostly sandstone, with minor amounts of interbedded shales

and intraformational siltstone conglomerates. The sandstones at the southeastern end

of the Anadarko Basin, in northeastern Stephens County, range from nearly white to

light buff and are coarse-grained. Northward across Grady County the sandstones

become red and progressively finer. The proportion of sandstone differs greatly from

place to place and generally decreases northward.

Harlton (1960) found the Duncan to range in thickness from 300 to 375 feet at

the Cement Field in Caddo County, Oklahoma. Harlton characterized the Duncan as

very fine- to fine- to medium fine-grained, dolomitic sandstone grading into sandy

dolomite. Intercalated thin streaks of pale green shale are in the lower 100 to 130

feet. The varying amounts of the dolomitic bonding material in the Duncan Sandstone

are characteristically manifested by alternating sharp resistivity peaks of electric logs;

therefore the dolomitic material easily differentiates this formation in its entirety over a

wide area. Lilburn (1981) reported a thickness of the Duncan Sandstone at the

Cement Field of 250 feet and noted that disseminated pyrite and calcareous cement

were common. Based on the author's electric log correlations in the study area, the

Duncan Sandstone is believed to be approximately 200 feet thick.

Chickasha Formation. The first reference to the Chickasha Formation was by

Gould (1924). Gould described the Chickasha Formation as a series of sandstones and

shales. Near the southern end of the Anadarko Basin, the Chickasha Formation is

composed of about 175 feet of variegated sandstones and shales. On account of the

predominating color of the rocks, the local name, "purple sandstone", has been used
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for this formation by geologists of the region. Gould quoted Becker (1927) for the

description of the Chicksha in which three divisions were recognized: 1) An upper

purple sandstone member 70 to 80 feet thick, the upper 30 feet of which consist

chiefly of loose pink sand in which occur numerous thin lenses of purple "mudstone

conglomerate~" the lower portion consists of 40 to 50 feet of "heavy purple mudstone

conglomerate" beds separated by thin strata of pink sand; 2) A middle pink sand

member consisting of 50 feet of uncemented pink sand. Occasionally this sand shows

cementation on both upper and lower contacts, but the lithologic characteristics are

the same as of the pink sand, and not similar in texture or color to the "mudstone

conglomerates."; and, 3) A lower purple sandstone member chiefly composed of

"mudstone conglomerate," 50 feet thick, more distinctly stratified than any other

portion of the "Purple Series." Gould's Chickasha Formation includes beds above the

Duncan Sandstone and below the Blaine Formation. However, on the south side of

the Anadarko Basin, on account of the absence in this region of the identifying rock

gypsum in the next higher formation, the Blaine, it is not everywhere possible to

separate these two formations. Sawyer (1929; 1930) recognized that the Blaine

Formation and the Dog Creek Shale are absent at the type locality of the Chickasha

Formation, and that the upper limit of the Chickasha, therefore, is the Marlow

Formation.

Based on a study of electric logs, Davis (1955) found the thickness of the

Chickasha to range from 395 to 580 feet. Davis described the Chickasha as being

composed of a heterogeneous mixture of sandstones, shales, siltstones, and siltstone

conglomerates cemented primarily by iron oxide, although in places the cement is
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calcium carbonate or gypsum. Sand grains range from coarse to fine, decreasing in

size northwestward from Stephens County. Many of the siltstone conglomerates are

highly cross-bedded. Approximately the lower third of the Chickasha Formation

contains many layers of fine-grained soft sandstone interbedded with shale.

At the Cement Field, Rariton (1960) found the Chickasha Formation to range

in thickness from 200 to 300 feet and to be characterized by maroon gypsiferous

mudstone containing coarse to very coarse sandstone grains and intercalated maroon

shale. Interlayers of fine to medium fine sandstone occur at intervals. Lilburn (1981)

reported that the sandston_es and shales in the Cement Field area commonly contain

carbonate cements and pyrite and are variegated. Where the Chickasha Formation

grades into the Dog Creek Shale and the Blaine Formation north of the Cement Field,

the section consists of red, blocky, silty shales, interbedded with fine-grained

gypsiferous sandstones and locally pure gypsum.

Olmstead (1975) noted that the Chickasha Formation is distinguished from the

Duncan Sandstone by its purple color and shaly characteristics. Northward and

westward along the flanks of the Anadarko Basin, the Chickasha Formation is laterally

gradational into brick red gypsiferous shales and siltstones.

The thickness of the Chickasha Formation in the study area is approximately

200 feet based on the author's electric log interpretation.

Blaine Formation - Dog Creek Shale Undifferentiated. There is some question

as to whether the Blaine Formation and/or the Dog Creek Shale is present in the study

area. Lilburn (1981) and Rarlton (1960), in their studies at the Cement Field, did not

recognize the presence of the Dog Creek Shale or Blaine Formation and indicated that
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the Chickasha Formation was overlain by the Marlow Formation of the Whitehorse

Group. Davis (1955) was unable to differentiate between the Dog Creek Shale and

Blaine Formation in Grady and Stephens Counties and so described the interval as

Blaine Formation - Dog Creek Shale Undifferentiated. This interpretation was

followed by Allen (1980) and Olmstead (1975). Tanaka and Davis (1963) described

the section as consisting of the Duncan Sandstone, Flowerpot Shale, Blaine Formation

and Dog Creek Shale although their study was directed somewhat more to the west

than this study. Nelson (1983) described the Chickasha Formation as grading laterally

into the Flowerpot Shale, Blaine Formation, and Dog Creek. Based on electric log

evaluations in the study area, the author believes that the Dog Creek Shale is present

at the Cement Field and unconformably overlies the Chickasha Formation. The

thickness of the Dog Creek shale in the study area is approximately 95 feet.

Whitehorse Group

The Red Bluff Sandstone (Whitehorse Group) was first proposed by Cragin

(1896) in Comanche County, western Kansas. Because the name "Red Bluff" was

preoccupied, Gould (1905) established the name Whitehorse Sandstone for beds

between the Dog Creek Shale and Day Creek Dolomite. The Whitehorse Sandstone

was described in the Cement-Cyril area by both Clapp (1920) and Reeves (1921). The

Whitehorse Sandstone was established as a formation by Gould (1924), who defined

the lower boundary at the top of the Dog Creek Shale. The Marlow Formation was

described by Sawyer (1924) as a lithologic unit between the Whitehorse Sandstone and

the Dog Creek Shale. The Marlow Formation was given member status by Sawyer
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(1929) who also changed the name Whitehorse Sandstone to the Rush Springs

Sandstone Member and placed them both in the Whitehorse Formation. The

Whitehorse Formation was elevated to group rank by Green (1936) and the Rush

Springs Sandstone and Marlow Formation were raised to formation rank. The Cloud

Chief Formation was considered by Green to be the uppermost formation of the

Whitehorse Group. The Whitehorse Group was defined by Davis (1955) as all

Permian beds above the EI Reno Group and below the Cloud Chief Formation. Davis

divided the Whitehorse Group into the Marlow Formation below and the Rush Springs

Sandstone above.

Marlow Formation. The initial reference to the Marlow Formation was by

Sawyer (1924). Sawyer noted that the Marlow Formation is located above the Duncan

Sandstone and consists of brick-red shales and even-bedded brick-red sandstones with

bands of fine white gypsum. The entire formation was described as gypsiferous by

Sawyer, with a I-foot layer of almost pure gypsum at the top of the formation.

Evans (1931) described two persistent dolomite beds at the top of the Marlow

Formation which were designated the Upper Relay Creek and Lower Relay Creek

dolomites. The two dolomites are separated by 25 feet of red sandstone and shale.

Evans suggested that the top of the Marlow Formation should be the top of his Upper

Relay Creek dolomite and that the base should be the top of the Dog Creek Shale.

Fay (1962) revised the Upper and Lower Relay Creek dolomites and classified the

Upper Relay Creek dolomite as the Emanuel Dolomite Bed, and the Lower Relay

Creek dolomite as the Relay Creek Dolomite Bed.

Green (1936) described the base of the Marlow as definitely an overlapping
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contact with the evidence of the unconformity more easily recognized along the south

side of the (Anadarko) basin than on the north side. Brown (1937) also provided

evidence for the unconformity by noting that structural contours on beds of the

Marlow strike west-northwest which is in contrast to the strike of the Blaine-Chickasha

contact, which is north-south.

Davis (1955) described the Marlow Formation in Grady and northern Stephens

Counties as even-bedded fine-grained silty sandstones and shales that are

predominantly reddish brown. Davis also described the entire formation as gypsiferous

with satin spar occurring at random. Tanaka and Davis (1963) described the Marlow

Fprmation in Caddo County as consisting mostly of even-bedded brick-red sandy

shale, generally gypsiferous, with some very fine sand and silt loosely cemented with

iron oxide and calcite.

O'Brien (1963) reported that the Marlow Formation was generally moderate

reddish brown varying to reddish tan and composed of approximately equal amounts

of even-bedded sandstones, shales, and siltstones. The sandstone members consist of

fine-grained sands with varying amounts of silt and clay. Each grain is coated with

. -

iron oxide, a condition which gives the formation its gross color. Cementing agents in

the Marlow Formation vary from gypsum, calcite, and iron oxide to smaller amounts

of clay in conjunction with the former three. The degree of cementation varies from

weakly (clay and iron oxide) to well indurated (calcite and gypsum). Calcite is the

predominant cementing agent in the upper half of the formation with gypsum

predominant in the lower half.

Thickness of the Marlow Formation has been reported to range from 105 feet
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(Brown, 1937) to 130 feet (Davis, 1955). Based on the author's review of electric

logs, the thickness of the Marlow Formation in the study area is approximately 145

feet.

Rush Springs Sandstone. The first reference to the Rush Springs Sandstone

was by Sawyer (1929; 1930) who described a red cross-bedded sandstone with little

or no shale or gypsum. What was to eventually be named the Rush Springs Sandstone

was described initially by Reeves (1921) as the Whitehorse. Reeves described a

friable reddish brown, cross-bedded to regular-bedded sandstone which weathers

rapidly.

Davis (1955) reported that in Grady and northern Stephens Counties, the Rush

Springs Sandstone is an even to highly cross-bedded, light-brown, soft, silty sandstone.

The grains were described as subangular to subround, ranging in size from silt to

coarse sand (average fine sand). Very coarse, frosted, almost perfectly spherical grains

are common, most abundant in the lower part of the formation. The remainder of the

grains are smooth and covered with stain of iron oxide. The entire Rush Springs

Sandstone is remarkable in its homogeneity.

Tanaka and Davis (1963) described the Rush Springs Sandstone in Caddo

County as an even-bedded to highly cross-bedded, reddish brown, very fine silty

sandstone with a few calcareous beds in the upper part, but more common in the lower

part of the formation. The calcareous beds range in thickness from 0.5 to 1.0 feet.

Sand grains are subangular to subround and are loosely cemented with iron oxide and

calcite. Loose sand may represent sandy beds from which calcium has been leached

by movement of ground water. RarItan (1960) noted that the Rush Springs Sandstone
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is white on top of the Cement anticline, but elsewhere it is deep red. Lilburn (1981)

reported that normally the Rush Springs is red friable sandstone, but on outcrop over

the Cement anticline, it is buff to white, highly cemented sandstone. The cement is

mostly calcium carbonate but some pyrite is in nodules I-inch across.

Johnson, et aI. (1990) described the Rush Springs Sandstone as poorly

cemented, reddish brown, fine-grained sandstone that is locally silty or argillaceous,

containing some layers of red-brown shale. The formation is evenly bedded to highly

cross-bedded, with large-scale trough cross-bedding. The Rush Springs Sandstone

contains several thin but persistent beds of gypsum/anhydrite and dolomite. Johnson,

et aI. reported that the gypsum beds are typically 4 inches to 10 feet thick, and

dolomite beds are 1 inch to 1 foot thick. The sand is loosely cemented with dolomite

or calcite in places, but the predominant cement in the subsurface is gypsum. The

majority of the formation has little or no cement.

Donovan (1974), in discussing the Rush Springs Sandstone in the Cement

region, described the Rush Springs Sandstone as predominantly reddish brown, friable,

very fine-grained, clayey, quartz sandstone. The sand grains are subangular to

subrounded and loosely bonded by hematite. The dominant detrital materials are

quartz, chert, orthoclase, plagioclase, microcline, and composite rock fragments. As

much as 80% of the sandstone consists of clear and frosted subrounded to subangular

quartz grains. Feldspar content of the rock ranges from 4 to 130/0 and both fresh and

highly altered types are present. Orthoclase is the most common feldspar (as much as

10%). Fresh plagioclase is estimated to have a composition near oligoclase. The clay

content is as much as 17% and is mostly illite, although some chlorite may be present.
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Hematite rims quartz grains as a cement and also forms mottled stain on quartz grains.

The hematite content appears highly variable and the rocks lightest in color have the

least amount of hematite. In crestal areas, the Rush Springs Sandstone is cemented by

secondary intergranular, fine to coarse sparry calcite and small amounts of euhedral to

anhedral dolomite.

Lilburn (1981) described massive pink gypsum in the upper part of the Rush

Springs Sandstone, called the "Weatherford Gypsum." This gypsum bed is reported by

Lilburn to range in thickness from 1 to 40 feet. The Weatherford Gypsum is separated

from the overlying Cloud Chief Gypsum by 10 to 15 feet of dolomitic sandstone and

siltstone.

Thickness of the Rush Springs Sandstone has been reported to range from 136

feet (Davis 1955) to 300 feet (Green 1936). Based on the author's review of electric

logs, the thickness of the Rush Springs Sandstone in the study area is approximately

220 feet.

Cloud Chief Formation

The Cloud Chief Formation unconformably overlies the Rush Springs

Sandstone. The first reference to the Cloud Chief Formation was by Gould (1924)

who described the Cloud Chief as chiefly a red clay shale, interstratified at several

horizons with red sandstone and gypsums. Davis (1955) described the Cloud Chief of

Grady County as irregular, impure gypsum beds interbedded with gypsiferous shales.

Tanaka and Davis (1963) reported that in Caddo County, the Cloud Chief is largely

gypsum and includes the Weatherford Member at its base. The Weatherford Member
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is a dolomite in most places but may be dolomitic shale, anhydrite, or gypsum.

O'Brien (1963) described the Cloud Chief in east-central Caddo County as composed

of the Weatherford Dolomite phasing southward into a massive gypsum, overlain by

undifferentiated sandstones, shales, and siltstones. O'Brien noted a massive bed of

laminated microcrystalline gypsum, 25 feet thick, in Township 7 North, Range 11

West which appeared to overlie directly the Rush Springs Sandstone. The massive

gypsum could be traced south to Cyril, where it is called the Cyril Gypsum. O'Brien

found no evidence to suggest an unconformity with the Rush Springs Sandstone in the

area of his report.

Rariton (1960) noted that at the Cement field, only the basal member

(Weatherford Member) of the Cloud Chief Formation is exposed and is represented by

exposures of about 10 feet of white and pink gypsum. Toward the crest of the Cement

Anticline, the gypsum grades into closely intermixed gypsum and dolomite and at the

crest it is dolomite. Rarlton refers to this gypsum as the Cyril Gypsum. Donovan

(1974) called the basal gypsum the Cyril Gypsum Member and described a thickness

of about 40 feet on the southwest flank of the Cement structure in the area of Cyril.

Allen (1980) described the basal portion of the Cloud Chief Formation as the

Moccasin Creek Gypsum Member and gives a thickness of 85 feet. Allen reported

that the Moccasin Creek Gypsum Member is the only representative of the Cloud

Chief Formation present within the Cement area. Lilburn (1981), in discussing the

Cloud Chief Formation at the Cement field, reported that only a small portion of the

gypsum has been preserved. Lilburn also refers to this gypsum as the Moccasin Creek

Gypsum Member, characterized by massive pink to white layers which contain a few
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sandstone layers. Toward the crest of the Cement Anticline, the gypsum grades into

mixed gypsum and carbonate and at the top of the "Keechie Hills", the CaSO4 of the

gypsum has been completely replaced by CaC03. The result of the substitution is a

resistive limestone with perfectly preserved gypsum crystal outlines.

Depositional Environments

The Permian red beds of southern Oklahoma were deposited in a variety of

marine, marginal marine, and fluvio-deltaic environments (Davis 1955) as indicated on

Figure 5. The Permian Period was one of quiescence with the basin gradually filled

with clastic sediments brought in from many directions (O'Brien 1963). Olmstead

(1975) reported that the detrital materials in the Permian formations were derived

primarily from the Ouachita Mountains in northern Texas and southern Oklahoma

(Figure 6).

During the Early Permian, the Tussey delta was forming north of the Arbuckle

Mountains (Green, 1937). Detrital materials from the Arbuckle and Ouachita

Mountains were transported by northwestward-flowing streams into the Anadarko

Basin. Deposition of the Duncan Sandstone and Chickasha Formation are believed by

Fay (1964) to have occurred at the mouth of a large northwestward-flowing river. Self

(1966) concluded that the Duncan Sandstone was formed in a delta consisting of a

supratidal flat that was flooded by both streams during flood stage and by the sea

during storms, followed by arid or semi-arid conditions. The wedge shape of the

entire Duncan Sandstone/Chickasha Formation indicates a rapid outbuilding of sand.

The discharge of the streams varied widely, perhaps seasonally, and the stream
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channels suggest distributaries in a delta system. MacLachlan (1967) concluded that

basinward equivalents of the Duncan Sandstone and Chickasha Formation contain

evaporitic and some dolomitic deposits indicative of a restricted, shallow-marine

environment.

Towards the end of Chickasha time, a transgressing sea inundated the slowly

subsiding Tussey delta and a period of shallow-water, brackish-marine deposition

ensued (Fay, 1964). The Dog Creek Shale was deposited during this period of shallow

and extensive Permian seas. O'Brien (1963) reported that by early Marlow time, the

Permian seas began a long period of advance and retreat. During periods of

regression, a super-saline condition would be formed by the restriction of shallow

marine seas, causing evaporites and minor amounts of carbonates to be deposited.

Coarser clastics began to be brought into the area, possibly by minor uplifting and

consequential increase in stream competence to the east. From these cyclical

conditions and increase in sand-sized materials, the upper part of the Dog Creek Shale

and the Marlow Formation were deposited.

As Marlow time progressed, the continued transportation of coarse material and

shallow unrestricted seas caused the deposition of increased amounts of sand (O'Brien,

1963). Shallow, warm, marine seas encouraged flocculation of calcium carbonate

which became deposited with the sands. During middle Marlow time, an offshore bar

(Verden Lentil) was deposited by longshore currents indicating high energy deposition

in a shallow sea. By Relay Creek time, sand was the major constituent being

deposited in the Marlow Formation. The rapid deposition resulted in the basin

becoming shallow and restricted causing deposition of carbonates with local deposition
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of evaporites (Relay Creek and Emanuel Dolomite). By the end of Marlow time,

encroaching seas brought in quantities of sand that became intebedded with sands of

continental origin (O'Brien, 1963).

Davis (1955) described the Rush Springs Sandstone as probably having been

deposited in a shallow-marine bay, with sediment apparently having been supplied by

the newly uplifted Ouachita Mountains. Sands probably were deposited along the

eastern side of a shallow embayment that was at times cut off, or severely restricted,

from the main Permian sea. Tanaka and Davis (1963) noted that westward from

Caddo County, the sandstones grade laterally into anhydrite and gypsum and

gypsiferous silty clay in what must have been a dessication basin in western Oklahoma

during the time of Rush Springs Sandstone deposition. Lilburn (1981) reported that

the Rush Springs Sandstones were exposed periodically by sea-level fluctuations and

were reworked into eolian dunes. MacLachlan (1967) concluded that the dunes were

probably coastal in origin and O'Brien (1963) believed that some of the sands may

have formed strandline deposits. Allen (1980) concluded that coastal plain playa lakes

or brackish backshore lagoons were represented by the siltstones and shales within the

formation, while gypsum and dolomite beds may be coastal sabkha deposits. By the

end of Rush Springs time, the quantity of coarse clastics decreased, possibly due to a

gradual decrease in competence of the source streams (O'Brien, 1963).

In late Rush Springs and early Cloud Chief time, the seas again became

shallow, warm, and partially restricted leading to the deposition of carbonates along

the flank of the basin and the deposition of massive gypsum beds as seas became more

restricted (O'Brien, 1963). Olmstead (1975) concluded that Cloud Chief deposition
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took place in a semi-enclosed arm of the sea which had periodic influxes of sulfate­

rich waters. Deposition of the Weatherford Member occurred during this period.

Following deposition of the gypsum, a relatively short period of deeper water and

unrestricted sea occurred leading to the deposition of sands, silts, and shales. The

basin again became partially filled causing local restrictions and thereby creating

favorable conditions for additional gypsum deposition (O'Brien, 1963).

Structure

The Cement area is located near the southwestern end of the Anadarko basin, a

large asymmetrical syncline approximately 40,000 feet thicks. The Anadarko basin

was named by Gould (1924)~ its axis passes to the east of the Cement area in a

southeast-to-northwest direction. Ham, Denison, and Merritt (1964) included the

Anadarko basin in the Southern Oklahoma geosyncline which received sediments

derived from the Paleozoic rocks that were folded during Pennsylvanian time. Two

episodes of Pennsyvanian deformation, the Wichita and Arbuckle orogenies, were

responsible for the tectonic setting in the Cement area (Olmstead, 1975). By early

Permian, most tectonic activity in the area had ceased except for the minor folding of

Permian units over older Pennsylvanian structures (Lilburn, 1981).

The dominant structural feature in the study area is the Cement Anticline,

approximately 11 miles in length and 2 miles in width. The axis of the Cement

anticline trends approximately west by northwest (N700W), subparallel to the axis of

the Anadarko basin. The crest of the anticline is expessed at the surface as a series of

topographic highs, referred to in the past as the Keeche Hills (Reeves, 1921) and more
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recently as the West and East Cement Domes (Lilburn, 1981). The Permian section

unconformably overlies faulted and tightly folded structures ranging in age from

Pennsylvanian to Mississippian. Herrman (1961) concluded that the deformation at the

Cement structure commenced in Early Pennsylvanian, because Pennsylvanian rocks

show evidence of thinning over the crest of the structure, indicating continued

structural growth. The faulting appears to be pre-Permian as the faults are truncated

by the unconformity at the top of the Pennsylvanian (Lilburn, 1981). The Permian

beds are gently folded into a slightly asymmetrical anticline that has increasing

asymmetry with depth. ~nor structural deformation in post-Cloud Chief Formation

time produced a gentle, near-symmetric upfold in the Permian units (Allen, 1980).
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CHAPTER ill

GROUND-WATER RESOURCES

Hydrologic Characteristics

The hydrologic properties of geologic formations are those properties which

determine the volume of ground water stored in the formation, the volume of ground

water the formation can yield, and the rate at which ground water can flow through the

subsurface.

The volume of ground water that saturated rocks can store is determined by the

rocks porosity. Porosity is defined as the ratio of void space in the rock to the total

volume of the rock and is expressed as a percentage or decimal fraction. Primary

porosity is developed at the time of deposition of the rock material and consists of the

open spaces between the grains of the rock. The extent of primary porosity is

generally determined by the degree of sorting (i.e. the range of grain size in the rock)

and the shape and arrangement of the individual grains. Secondary porosity occurs

subsequent to deposition and typically consists of fractures and void spaces caused by

the dissolution of the rock by ground-water movement.

Although the total volume of water stored in the rock is determined by its

porosity, the amount of water available for withdrawal is determined by its specific

yield. Specific yield is defined as the volume of water in a unit volume of saturated
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rock that will drain from the rock by gravity. The volume of water retained in the

rock is called specific retention and is caused by the capillary attraction between the

water in the void spaces and the rock grains. Specific retention generally increases as

grain size and sorting decrease. The volume of water that saturated rock materials will

release from or take into storage per unit surface area of the aquifer per unit change in

head is referred to as storativity. In water table (unconfined) aquifers, the storativity is

approximately equal to specific yield and the water is released from the aquifer due to

gravity drainage and dewatering of the aquifer. The storativity in confined aquifers is

significantly smaller than in unconfined aquifers as the water released from storage is

due to the expansion of the water and the compaction of the aquifer, both of which are

minimal when compared to gravity drainage and aquifer dewatering.

The ability of ground water to flow through an aquifer is determined by the

product of the hydraulic conductivity of the aquifer materials and the saturated

thickness of the aquifer. This product is known as the aquifer transmissivity.

Hydraulic conductivity is defined as the volume of water that will flow through a unit

area of the aquifer under a unit change in the hydraulic gradient perpendicular to the

direction of flow. Hydraulic conductivity is related to grain size, sorting, cementation,

secondary openings, and the viscosity of the aquifer fluid. Transmissivity is the rate at

which water will flow through a unit width of the aquifer under a unit hydraulic

gradient. The hydraulic gradient is the slope of the water table or potentiometric

surface and is the driving force that causes ground water to flow along lines of

decreasing total hydraulic head. Hydraulic head is represented by the water level in

water wells, ground-water monitoring wells, or piezometers and is usually measured in
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feet above mean sea level.

Recharge

Recharge is the addition of water to the ground-water system. Recharge may

consist of infiltration from precipitation events, infiltration due to irrigation, inter­

aquifer leakage, seepage from surface water bodies, or underflow from adjacent areas.

Tanaka and Davis (1963) determined annual recharge in the Cobb Creek basin

in Caddo County during a four year period from 1953 through 1956. Annual recharge

during this period ranged from a high of 3.5 inches per year during 1953 to a low of

1.5 inches per year during 1956 with an average over the four year period of 2.4

inches per year. Tanaka and Davis noted however, that 1954 and 1956 were unusually

dry years and that a recharge rate of 2.8 inches would be a more likely average over a

protracted period of time. Tanaka and Davis reported that the recharge rate is

approximately equal to 10% of annual precipitation which averages about 28.1 inches

per year in the Caddo County area. Davis (1950) reported an annual recharge rate of

0.93 inches per year in the Pond Creek basin in Caddo County, which Davis

determined to be approximately 30/0 of average annual precipitation.

Powell (1992) calculated recharge rates to the Rush Springs aquifer in the Cyril

area using the computer program RECHARGE (Pettyjohn and Henning, 1978).

Stream flow data from the Little Washita River were used representing the period from

1952 through 1985. Regional ground-water recharge rates were reported to range from

a low of 0.23 inches per year in 1971 to a high of 2.5 inches per year in 1960. The

mean regional recharge rate for the period from 1952 through 1985 was reported to be
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1.1 inches per year.

Powell also calculated local recharge rates for the Cyril area using the Darcy

equation Q = KIA. Powell assumed that if the water table remains nearly constant

with the area, then the volume of water that flows through a cross-section of the

aquifer should equal the volume of water infiltrating to the saturated zone. The

calculated recharge rates ranged from 1.9 inches per year to 3.6 inches per year which

Powell reported to fall within the same order of magnitude as the recharge rates

determined using the RECHARGE computer program.

Johnson, et al (1990) reported recharge rates to the Rush Springs-Marlow

aquifer to be 10% of annual precipitation. Based on reported average annual

precipitation values in their report, recharge rates ranged from 2.36 inches per year to

3.15 inches per year.

Discharge

Discharge is the removal of water from the aquifer system and can generally be

attributed to natural discharge and artificial discharge.

Natural Discharge

Natural discharge occurs through flow of ground water to streams and springs,

transpiration by plants, evaporation, underflow into adj acent areas, and through inter­

aquifer leakage. Natural discharge by transpiration and evaporation are generally quite

small, except in areas where the water table surface in close to the ground surface.

However, transpiration and evaporation are significant processes in reducing the
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amount of precipitation that infiltrates into the aquifer, regardless of the depth to the

water table. Tanaka and Davis (1963) estimated evaporation and transpiration to

account for 80% of the total water which entered the Cobb Creek basin and projected

this value over their entire project area. Underflow into adjacent areas and inter­

aquifer leakage may be significant sources of natural discharge, but are hard to

quantify.

Ground-water discharge to streams can be calculated by relating stream base

flow to the average water level in wells constructed in the aquifer which discharges

into the stream. Tanaka and Davis (1963) calculated the ground-water discharge from

the Rush Springs aquifer into Cobb Creek for the period from 1953 through 1957 to

average 15,000 acre-feet per year.

Artificial Discharge

Artificial discharge occurs primarily through ground-water withdrawals by

irrigation wells. Additional sources of artificial discharge are public water supply

systems, industrial use, and private water well use. Tanaka and Davis (1963)

summarized the pumpage in" the Caddo County area by use of the water and calculated

a total average use during the period from 1956 through 1960 of 30,600 acre-feet per

year.

Aquifer Coefficients

The determination of an aquifers transmissivity and storativity can be estimated

through the performance of controlled aquifer pumping tests. If saturated thickness
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(m) values can be determined for the aquifer, then using transmissivity (T) values

obtained from aquifer tests, hydraulic conductivity (K) values may be estimated using

the relationship K = T -;- ffi. Combined with effective porosity (n) values for the

aquifer and the hydraulic gradient (I) of the aquifer's water table or potentiometric

surface, interstitial ground-water flow velocity (v) values can be calculated using the

formula v = K I + 7.48 n. These aquifer coefficients can be used to estimate yield to

wells constructed in the aquifer and for contaminant transport modeling. Aquifer

coefficients for the Duncan Sandstone, Chickasha Formation, Marlow Formation, and

Rush Springs Sandstone are summarized on Table 1.

Duncan Sandstone

Davis (1955) described two aquifer tests in the Duncan Sandstone in Grady

County, Oklahoma. The first test was performed at the Oklahoma Natural Gas

Company booster station in Section 14, Township 5 North, Range 8 West on March

28 and 29, 1946. The Duncan Sandstone at this location was described as consisting

of 34 feet of sandstone and 18 feet of interbedded shale. The aquifer was reported to

be confined. Drawdown and recovery curves were analyzed using the Theis non­

equilibrium equation. Average values for transmissivity and storativity were reported

to he 500 gallons per day per foot (gpd/ft) and 4.6 x 10-4
, respectively.

The second test was performed at the Consolidated Gas Utilities Company

booster station in Section 22, Township 5 North, Range 8 West (approximately one

mile southwest of the first test). The aquifer was reported to be 34 feet thick

consisting of 8 feet of gypsiferous sandstone and 26 feet of fine-grained sandstone.



TABLE 1

AQUIFER COEFFICIENTS
Caddo and Grady Counties, Oklahoma

Range of Range of Range ofHydraulic
Ag~ifer Tran~missivity (gpd/ft.sq.) Storativity Conductivity (gpd/ft) Source

Duncan Sandstone
Chickasha Formation (1)

Marlow Formation (2)

Rush Springs Sandstone (3)

Rush Springs Sandstone (4)

500 to 1,300

200 to 20,000

6 to 600

11,000 to 14,000

353 to 1,664

4.6E-04 to 1.0E-04

1.0E-04

0.20

0.01 to 0.1

I.5E-04 to 3.8E-03

9.6 to 38

1 to 100

0.3 to 30

6.4 to 23

a

b
b,c
c
d

(1) Storativity and hydraulic conductivity based on lithology. Transmissivity based on saturated thickness of200 feet.
(2) Storativity based on lithology. Transmissivity based on saturated thickness of20 feet.
(3) Hydraulic conductivity not calculated due to lack ofinfonnation on saturated thickness.
(4) Calculated from aquifer tests in the study area evaluated by the author.

Source:

a = Davis (1955)

b = Fetter (1988)

c = Tanaka and Davis (1963)

d = Pettyjohn (1992)

w
-...J
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The aquifer was reported to be confined at this location. Drawdown and recovery

curves were analyzed in a recovery well using the Theis non-equilibrium equation.

Values for transmissivity and storativity were reported to be 1,300 gpdlft and

1.0 x 10-4
, respectively.

Chickasha Formation

No aquifer tests were reported in the Chickasha Formation in the literature.

Values of hydraulic conductivity are estimated range from 1 to 100 gallons per day per

foot squared (gpd/ff) based on a lithology consisting of silty sands to clean sand

(Fetter, 1988). Assuming a saturated thickness of 200 feet, transmissivity could be

expected to range from 200 to 20,000 gpd/ft. The Chickasha Formation is a confined

aquifer and storativity can be expected to be approximately 1.0 x 10-4
.

Marlow Formation

No aquifer tests were reported in the Marlow Formation in the literature.

Tanaka and Davis (1963) reported hydraulic conductivity values ranging from 0.3 to

30 gpd/ft2 with an average of 12 gpd/ft2 according to analyses performed at the United

States Geological Survey (USGS) Hydrologic Laboratory. Based on an aggregate

thickness of permeable beds of 20 feet in a borehole geophysical log of a well in the

northwest quarter of Section 23, Township 10 North, Range 12 West, a value for

transmissivity in the Marlow Formation was calculated at 240 gpd/ft.
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Rush Springs Sandstone

Davis (1955) reported on the results of an aquifer test in the Rush Springs

Sandstone in Grady County, Oklahoma. The test was performed on a water well

owned by the Magnolia Petroleum Company located in Section 3, Township 4 North,

Range 7 West. The water well penetrated the entire thickness of the Rush Springs

Sandstone which was reported to be 122 feet of homogeneous, fine-grained sandstone.

Static water level prior to testing was measured at 50 feet below ground surface. The

saturated thickness of the Rush Springs aquifer was determined to be 72 feet (122 feet

less 50 feet). Recovery data was analyzed using the Theis equation and transmissivity

was calculated to be 13,000 gpd/ft. Storativity was not determined as the Rush

Springs was reported to exist under unconfined conditions at the location. Davis

estimated the storativity to be 0.10

Tanaka and Davis (1963) reported porosity ranges of 0.24 to 0.43 (average

0.32), specific yield ranges of 0.13 to 0.38 (average 0.25), and permeability ranges of

0.3 gpd/ff to 100 gpd/ff (average 30 gpd/ff). The reported values were based on

laboratory analyses of 27 samples from the Rush Springs Sandstone and the upper part

of the Marlow Formation in Caddo County. Four samples of the Rush Springs

Sandstone were analyzed for particle size. The particle size analyses indicated that

generally, the Rush Springs Sandstone is composed of very fine to fine sand, with silt

and clay size particles averaging a little more than 20 percent of the total. Two

samples of the Marlow Formation were analyzed and found to contain a higher

percentage of silt and clay materials than the Rush Springs Sandstone.
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Tanaka and Davis (1963) described two aquifer tests in the Rush Springs

Sandstone in Caddo County, Oklahoma. The first aquifer test was conducted on a

well located in Section 23, Township 10 North, Range 12 West, on the C.E. Smith

farm near Sickles in Caddo County. The test was performed during April 1956.

Transmissivity and storativity values were calculated by the Theis non-equilibrium

formula, the Thiem formula, and the Jacob modified non-equilibrium formula.

Transmissivity was reported to range from 11,000 gpd/ft to 14,000 gpd/ft and

storativity ranged from 0.01 to 0.03 and averaged 0.02. The second test was

conducted on a well in Section 2, Township 10 North, Range 13 West, four miles

north of Eakley in Caddo County. The test was performed during March 1959.

Transmissivity was calculated from recovery data using the Jacob modified non­

equilibrium formula. Transmissivity was determined to be 13,000 gpd/ft.

Two aquifer test were performed in the study area in the Spring of 1991. One

test was performed in the northwest quarter of Section 6, Township 5 North, Range 9

West. The pumped well, W-PW, was constructed to a depth of 119 feet below ground

surface with 2-inch casing and a manufactured well screen 20-feet in length installed

at the boring termination depth. The Rush Springs Sandstone was described on the

boring log from W-PW as a red to brown to tan sandstone with a thickness of

approximately 110 feet. Static water level prior to the test was measured at 49 feet

below ground surface. Saturated thickness was determined to be 61 feet (110 feet less

49 feet). One observation well, W-6, located 67.4 feet from the pumped well, was

constructed to a depth of 119 feet below ground surface with 2-inch casing and a

manufactured well screen 20-feet in length installed at the boring termination depth.
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The Rush Springs Sandstone was described on the boring log from W -6 as 115 feet of

red to gray to tan sandstone with some interbedded shales. Static water level prior to

the test was measured at 36 feet below ground surface. The saturated thickness was

determined to be 79 feet (115 feet less 36 feet). Well W-PW was pumped for 240

minutes at a discharge rate of 13.5 gallons per minute. Drawdown was measured in

both the pumped well and the observation well. The drawdown data was corrected for

unconfined aquifer conditions and plotted on 3 x 5 cycle logarithmic graph paper. The

resultant drawdown curves were analyzed using the Theis non-equilibrium equation.

Transmissivity was calculated to be 573 gpd/ft in the pumped well (W-PW) and 1,664

gpd/ft in the observation well (W-6). Using the calculated saturated thickness values

for W-PW and W-6, hydraulic conductivity values were determined to be 9.4 gpd/ft2

and 21 gpd/ff, respectively. Storativity in observation well W-6 was calculated to be

1.5 x 10-4
• However the test was not run for a sufficient period of time to allow the

cone of depression to reach equilibrium, so the calculated storativity will not reflect

the storativity of the aquifer at equilibrium. Boring logs/well construction diagrams,

test data, drawdown curves, and calculations are included in Appendix A.

The second test was performed in the southeast quarter of Section 1, Township

5 North, Range 10 West approximately 1/2 mile southwest of the first test. The

pumped well, D-5PW, was constructed to a depth of 106 feet below ground surface

with 2-inch casing and a manufactured well screen 30-feet in length installed at the

boring termination depth. The Rush Springs Sandstone was described on the boring

log from D-5PW as a 101 feet of soft weathered sandstone with some clay in the

ower part. Static water level prior to the test was measured at 46 feet below ground
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surface. Saturated thickness was determined to be 55 feet (101 feet less 46 feet). One

observation well, D-2, located 60.5 feet from the pumped well, was constructed to a

depth of 99 feet below ground surface with 2-inch casing and a manufactured well

screen 20-feet in length installed at the boring termination depth. The Rush Springs

Sandstone was described on the boring log from D-2 as 96 feet of light to dark brown

to gray sandstone. Static water level prior to the test was measured at 48 feet below

ground surface. The saturated thickness was determined to be 48 feet (96 feet less 48

feet). Well D-5PW was pumped for 240 minutes at a discharge rate of 12 gallons per

minute. Drawdown was measured in both the pumped well and the observation well.

The drawdown data was corrected for unconfined aquifer conditions and plotted on 3 x

5 cycle logarithmic graph paper. The resultant drawdown curves were analyzed using

the Theis non-equilibrium equation. Transmissivity was calculated to be 353 gpdlft in

the pumped well (D-5PW) and 1,100 gpdlft in the observation well (D-2). Using the

calculated saturated thickness values for W-PW and W-6, hydraulic conductivity

values were determined to be 6.4 gpdlft2 and 23 gpd/ft2, respectively. Storativity in

observation well D-2 was calculated to be 3.8 x 10.3• However the test was not run

for a sufficient period of time to allow the cone of depression to reach equilibrium, so

the calculated storativity will not reflect the storativity of the aquifer at equilibrium.

Boring logs/well construction diagrams, test data, drawdown curves, and calculations

are included in Appendix A.
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CHAPTER IV

GEOCHEMISTRY

Ground-water contains minerals dissolved from subsurface soils and rocks

through which infiltration occurs and ground water flows. The concentrations of

dissolved minerals in the ground water are a function of the mineral composition of

the soil and the rock materials through which the water has passed, the physiochemical

environment of the unsaturated and saturated zones, and the residence time of the

ground water in the aquifer system.

The natural occurrance of minerals in the ground water may be exacerbated by

the activities of man such as disposal of sewage and industrial waste, either directly

through injection or through leachate, industrial activities, and the effect of agricultural

operations. In the study area, ground water chemistry has been affected by oil field

operations and secondary recovery at the Cement field.

A total of 115 ground-water chemical analyses were evaluated using the

computer program WATEVAL (Hounslow and Goff, 1991). The chemical analyses

were comprised of 19 analyses from the Duncan Sandstone, 13 analyses from the

Chickasha Formation, 1 analyses from the Marlow Formation, and 82 analyses from

the Rush Springs Sandstone.

WATEVAL performs a sequence of analytical checks and comparisons to
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indicate the overall quality of the entered analysis. Various ion ratios are calculated to

suggest possible source rocks through which the ground water may infiltrate or flow.

Figure 7 illustrates the logic of water quality interpretation using simplified mass

balance.

WATEVAL also presents information in two graphical formats, the Piper plot

and the Stiff diagram. The Piper plots consist of two triangular diagrams and one

diamond shaped diagram. The percentages of cations (sodium plus potassium,

calcium, and magnesium) and the percentages of anions (chloride, bicarbonate, and

sulfate) are plotted on th~ left triangle and right triangle, respectively. The percentages

of the cations and anions are cross-plotted on the diamond diagram which can be used

to determine water types. Possible source rocks and various geochemical reactions

such as mi~~.!!~, i~n exch~ge, precipitation, and dissolution can be indicated on the

triangular diagrams. Figure 8 indicates typical Piper plots for source rocks on the

triangular diagrams and Figure 9 indicates the water type regions on the diamond

diagram.

In the Stiff diagrams, milliequivalents per liter (meq/l) concentrations of anions

and cations are plotted on the left and right sides, respectively, of a zero concentration

index line. The shape of the resultant diagram can suggest possible source rock types

and the overall size of the pattern is approximately equivalent to the total ionic content

(dissolved solids). Figure 10 shows a Stiff diagram with typical source rock plots.
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Figure 7. Weathering flowchart (after Hounslow, 1991)
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Duncan Sandstone

Davis (1955) reported that water quality in the Duncan Sandstone is variable in

Grady and northern Stephens counties. Ground water was described as potable in

some areas, but too highly nlineralized, even for stock use, in other areas. Tanaka and

Davis (1963) described the: ground water ill the Duncan Sandstone in Caddo county as

being high in dissolved solids and relatively high in sulfate. In a report prepared by

Bechtel Environmental (1991) at the Oklahoma Refining Company Site at Cyril, the

Duncan Sandstone was described as having potential for use as a drinking water

supply, but is not in the Cyril area beca.use sulfate concentrations are relatively high.

Nineteen chemical analyses from the Duncan Sandstone were evaluated using

WATEVAL. The analyses were taken from Davis (1955), Tanaka and Davis (1963),

Stanley Engineering (1986), and the Oklahoma State Department of Health. The

analyses are shown on Table 2. One analyses, D8, was incomplete and not used in the

assessment of the Duncan Sandstone.

Figure 11 is a Piper plot of the analyses. The Piper plot indicates three

distinctive water types; temporary hardness (bicarbonate), permanent hardness, and

saline. The analyses plotting as bicarbonate generally have lower concentrations of

sulfate and occur in wells with depths of 300 feet or less. The permanent hardness

and saline water types have sulfate concentrations an order of magnitude greater than

the bicarbonate waters and generally occur in wells with depths greater than 300 feet.

The permanent hardness waters are differentiated from the saline waters primarily by

significantly higher concentrations of calcium. Several analyses plot in an



TABLE 2

DUNCAN SANDSTONE WATER QUALITY ANALYSES

1.0. Location Depth Temp. Si02 Ca Mg Na+K HC03 C03 S04 CI F N03 TOS Hard Cond. pH Source

Dl 4-3N-5W 91 63 NR 33 54 48 238 7 27 108 0.1 28 570 304 979 NR a
02 8-3N-5W 250 68 NR 12 36 37 236 9 11 26 NR 1.7 264 178 462 NR a
03 18-5N-5W 300+ J4 NR 29 40 29 286 8 35 8.8 NR ~.2 310 237 510 NR a
04 20-5N-5W 72 64 NR 38 67 56 207 14 15 64 NR 240 664 370 110 NR a
05 12-9N-5W 49 NR NR 19 41 52 151 20 26 34 0 120 338 216 710 NR a
06 14-5N-8W 379 65 NR 52 11 181 202 10 322 36 NR NR 717 175 NR NR a
D7 14-5N-8W 392 63 18 62 14 171 250 0 307 36 0.2 NR 758 212 1100 NR a
D8 22-5N-8W 420 NR NR NR NR NR 274 NR NR 40 NR NR NR 193 NR NR a
D9 18-5N-9W 1010 NR 18 87 41 183 236 0 504 44 0.4 0.7 1000 384 1420 7.9 b
DIO 18-5N-9W 944 NR NR 1650 NR NR 109.7 NR 1363 10 NR NR 314S 2740 2420 7.3 c

~DII 18-5N-9W 923 NR NR 1536 NR NR 158.5 NR 576 50 NR NR '2312 620 1650 7.5 c
012 18-5N-9W 1025 NR NR 98.8 34.~ :::,~++:::,,<: p~.6 NR 373 30 NR NR ' s1s 388 1250 7.7 c
013 18-5N-9W 979 NR NR 64.2 '::2~_.t ,:,:r::~~:~~::::::.::.:::: ~+?,:::: NR 249 30 NR NR :::,:?~g, 280 1000 7.7 c
014 18-5N-9W NR NR NR 60.8 :,26.3 ",::,,:~~+3:,C<'" 2$6: NR 300 40 NR NR ':-'>183: 260 2300 7.3 c

~"

.j)15 13-5N-IOW 1000 NR NR 190 29 ~41 263.4 NR 396 193 NR NR 965 437 1304 7.5 d
D16 24-5N-I0W 962 NR NR 60 20/7.- 142 284.1 NR 246 39 NR NR 714 235 NR 8 d
017 24-5N-I0W 854 NR NR 64.2 45.6 <::/4l~3,::,',.::, 280.4.> NR 191 40 NR NR ',665 348 1000 7.6 c
018 33-6N-7W 300 72 NR 98 36 279 180 0 640 130 NR 22 1330 392 1800 NR a
D19 36-9N-IIW 67 NR NR 182 72 28 168 0 547 50 0.7 40 1220 750 1600 NR b

Source: Note: Temperatures (Temp.) measured in degrees Farenheit
a - Davis (1955) Specific conductance (Cond.) measured in micro-mhos at 25 degrees Celsius
b - Tanaka & Davis (1963) Dissolved solids (TDS~ reported as residue on evaporation at 180 degrees Celsius
c - Stevens Engineering (xxxx) Concentrations are reported in p-~~J>Crmillion

d - Oklahoma ??1 NR = Not Reported

Concentrations calculated by WATEVAL from other analysis parameters

Vl
0
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intermediate position between the three main water types. Three of these analyses,

D12 through D14, may not represent the actual chemical composition of the ground

water as magnesium was calculated from calcium and total hardness, sodium plus

potassium was calculated by difference, and bicarbonate was calculated from

alkalinity.

The bicarbonate waters typically had NalCI ratios greater than 1 indicating a

Na source other than halite. The NaiCI ratio could be indicative of natural softening.

CaiSO4 ratios were greater than 1 indicating a Ca source other than gypsum. The

Ca/S04 ratios indicate silicate weathering or possible calcite or dolomite dissolution.

CalMg ratios ranged from 0.69 to 0.83 indicating a Mg source other than dolomite.

The Mg source may be due to the weathering of shale. The plot of the analyses on a

Piper diagram fell in the area typical for dolomitic rock types and the shape of the

plots on a Stiff diagram (Figure 12) were similar to that of a dolomitic source rock.

The saline waters had Na/CI ratios significantly greater than 1 and Ca/S04 ratios of

less than 1. These ratios and the Si02/non-halite Na ratio suggest that the saline

waters may be undergoing natural softening (ion exchange). Two of the analyses

reported Si02 and both evaluations indicated carbonate weathering. The Si02

concentration was significantly less than the non-halite Na in both analyses, also

indicating carbonate weathering. CalMg ratios ranged from 0.26 to 0.44 indicating

dissolution of limestone to dolomitic limestone. The high CalMg ratios may be

indicating the dissolution of calcite cement and dolomitic sandstones. The plot of the

analyses on a Piper diagram are typical of ground waters with a shale source rock.

The shapes of the analyses on the Stiff diagram (Figure 12) were more typical of a
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gypsum source rock, although the sodium concentrations were higher than would

normally be expected. It is likely that the source rock for the aquifer is probably

gypsiferous in nature and that cation exchange has increased the sodium and decreased

the calcium concentrations in the water as evidenced on the Piper and Stiff diagrams.

Chickasha Formation

Davis (1955) described the water from the Chickasha Formation in Grady and

northern Stephens Counties to be generally suitable for human and stock use, but in

some areas it is too highly mineralized even for stock. Thirteen analyses reported by

Davis (1955) were entered into WATEVAL. The analyses are shown on Table 3.

One sample was partially reported and two samples were suspected of being in error

due to Na/CI ratios of less than 1 and IDS concentrations of less than 500 mg/l.

Figure 13 shows the analyses from the Chickasha Formation plotted on a Piper

diagram. The analyses generally plot in the area of temporary hardness (bicarbonate)

on the diamond diagram. The plot of the analyses on the triangular diagrams fell into

the areas of dolomite and shale. The shapes of the analyses on plotted on Stiff

diagrams are shown on Figure 14 and appear similar to the shape of typical

dolomites.

Overall, the analyses exhibited Na/Cl ratios of greater than 1 indicating a

source of Na other than halite and suggesting that natural softening may be occuring.

Ten of the analyses had Ca/S04 ratios greater than 1 indicating a source of Ca other

than gypsum, possibly the dissolution of calcite or dolomite. Two samples had

Ca/S04 ratios less than 1 indicating natural softening or the precipitation of calcite or



TABLE 3

CmCKASHA FORMAnON WATER QUALITY ANALYSES

I.D. Location Depth Temp. Si02 Ca Mg Na+K RC03 C03 S04 CI F N03 TOS Hard. Condo Source

Cl 16-6N-5W 80 68 NR 50 45 8.7 240 12 29 38 NR 36 386 310 625 a
C2 34-6N-7W 80 68 NR 84 104 40 303 0 55 103 NR 340 1060 637 1370 a
C3 4-7N-5W 32 NR NR 20 40 68 321 11 20 41 0.3 2 :<-524-<-- 214 785 a
C4 16-7N-6W 105 NR NR 26 61 7.4 292 17 14 17 NR 32 407 316 789 a
C5 27-7N-6W 185 NR NR 93 61 51 480 63 60 22 0 1.5 648 403 965 a
C6 32-7N-6W 200 70 NR 46 54 79 306 15 161 40 NR 11 598 337 904 a
C7 9-8N-5W 38 NR NR NR NR NR 154 0 16 9 NR 60 NR 291 NR a
C8 25-8N-5W 70 60 NR 99 59 49 456 0 69 50 0 100 618 490 1010 a
C9 31-8N-5W Spring NR NR 58 54 31 474 0 19 17 0 1.5 396 366 724 a

CI0 22-8N-6W 60 NR NR 10 21 88 219 42 19 21 0.3 3 284 111 545 a
CII 23-8N-7W 40 NR NR 21 22 56 217 14 39 13 0.2 6 252 143 616 a
C12 16-9N-6W 27 NR NR 34 14 25 159 9 15 17 0.2 15 317 142 534 a
C13 22-9N-7W 42 NR NR 469 116 779 72 0 2030 825 0.5 5 4440 1650 5450 a

Source: Note: Temperatures (Temp.) measured in degrees Farenheit
a - Davis (1955) Specific conductance (Cond.) measured in micro-mhos at 25 degrees Celsius

Dissolved solids (TDS) reported as residue on evaporation at 180 degrees Celsius
Concentrations are reported in parts per million
NR = Not Reported

Concentration calculated by WATEVAL from other analysis parameters

t.Il
t.Il
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gypsum. No silica was reported in any of the samples. CafMg ratios ranged from

0.29 to 0.78. Four samples had ratios of less than 0.61, one sample had a ratio of

0.61, and the remaining samples had ratios greater than 0.61. A ratio of 0.61 would

indicate the dissolution of dolomite with the lower ratios indicating the dissolution of

limestone. The higher ratios indicate a source of Mg other than dolomite.

The red color of the sediments in the Chickasha Formation and the presence of

iron oxide as a cementing agent may indicate that ferromagnesian minerals were

deposited in significant amounts in the sediments (Hounslow, 1992). This could be

supported by the Ca/Mg ~atios which indicate a source of Mg other than dolomite.

Marlow Formation

In its report on ground water in Oklahoma, the Oklahoma Water Resources

Board (1965) described ground water in the Marlow Formation as being hard and high

in total solids and sulfates due to disseminated gypsum. Davis (1950) described

ground water from the Marlow Formation in the Pond Creek basin in Caddo County as

generally hard and high in calcium, magnesium, and sodium sulfates, but free from

magnesium bicarbonate. The Marlow Formation in northern Stephens and Grady

Counties was described by Davis (1955) as yielding ground water that is extremely

hard and high in sulfate. Tanaka and Davis (1963) reported that the ground water in

the Marlow Formation in Caddo County contains much disseminated gypsum and as a

result the water is harder and has a higher sulfate and dissolved solids concentration

than does water from the Rush Springs Sandstone.

One chemical analysis from the Marlow Formation in Caddo County was
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reported by Tanaka and Davis (1963). The analysis, Ml, is shown on Table 4. Figure

15 shows a Piper diagram and a Stiff diagram for the analysis. On the Piper plot, the

analysis plots in the area of temporary hardness (bicarbonate waters) on the diamond

diagram and in the area typical of limestone to dolomite source rocks on the triangular

diagrams. The shape of the analysis on the Stiff diagram suggests a dolomitic

limestone source rock.

The analysis had a NalCI ratio of greater than 1 indicating a source of Na other

than halite. The CalS04 ratio was also greater than 1 indicating a Ca source other

than gypsum. The Ca/Mg ratio was calculated at 0.25, suggesting the dissolution of

limestone. The evaluation of the WATEVAL output indicate that ion exchange

(natural softening) is probably taking place in the aquifer as evidenced by the excess

Na concentrations. Typically, when natural softening occurs, the CalS04 ratio is less

than 1, however, the dissolution of limestone or dolomite may be providing sufficient

Ca to create a CalS04 ratio of greater than 1. Tanaka and Davis (1963) reported that

this analysis shows a close similarity to water from the Rush Springs Sandstone and is

probably not typical of most of the water in the Marlow.

Rush Springs Sandstone

Tanaka and Davis (1963) described the ground water from the Rush Springs

Sandstone as hard but low in dissolved solids and generally suitable for municipal and

irrigation uses. Depending on the degree of hardness, the water may require

treatment for removal of hardness-causing cations for some industrial uses. Chemical

analyses of 42 samples collected from wells and springs in the Rush Springs



TABLE 4

RUSH SPRINGS SANDSTONE AND MARLOW FORMAnON WATER QUALITY ANALYSES

I.D. Location Depth Temp. Si02 Ca Mg Na+K HC03 C03 S04 CI F N03 TOS Hard Cond pH Source

Rl 16-3N-7W 60 61.5 66 24 24 360 0 3 9 5 335 263 a
R2 17-3N-7W 70 61 55 19 57 344 0 13 17 25 378 216 a
R3 26-3N-7W 200 61 62 27 40 155 0 14 109 0.2 70 429 266 706 a
R4 26-3N-7W 200 61 148 15 114 0.6 70 263 674 a
R5 2-3N-8W 100 60.5 68 44 44 192 0 21 43 255 704 350 a
R6 3-3N-8W 53 60 78 78 28 326 0 68 61 189 748 515 a
R7 4-3N-8W 40 68 37 49 163 0 13 64 236 694 322 a
R8 9-3N-8W 95 60.5 83 15 17 160 0 60 32 84 487 268 a
R9 15-3N-8W 45 114 0 68 102 352 596 a
RIO 3-4N-7W 122 60 87 14 12 257 0' 53 23 4 365 274 560 a
Rl1 5-4N-7W 21 59 90 10 6.2 278 0 24 12 11 344 266 a
R12 9-4N-7W 97 59 61 7.5 34 250 0 15 8 30 329 183 a
RI3 16-4N-7W 41 60 29 14 21 74 0 14 53 33 305 130 a
RI4 29-4N-7W 20 100 46 3.2 207 0 176 54 21 603 438 a
RI5 29-4N-7W 25 88 19 17 229 0 95 26 14 463 298 625 a
RI6 10-4N-8W 100 62 48 12 70 196 0 14 12 223 476 170 a
R17 14-4N-8W 105 68 16 20 276 0 12 18 19 342 236 a
RI8 15-4N-8W 18 60.5 57 29 29 248 0 95 10 9 420 262 a
R19 17-4N-8W 50 62 299 57 78 192 0 449 183 330 1490 980 a
R20 20-4N-8W 80 61 279 13 110 118 0 591 183 24 1260 750 a
R21 23-4N-8W 40 60 364 33 22 198 0 876 9 5.5 1400 1040 a
R22 23-4N-8W 60 59.5 100 17 1.6 199 0 140 5 9.6 436 320 a
R23 23-4N-8W 60 60 37 22 59 312 0 31 7 17 327 183 a
R24 23-4N-8W 31 60.5 144 20 163 137 0 532 43 86 1060 442 a
R25 25-4N-8W 14 60.5 10 8.1 18 96 0 10 4 2 115 58 a
R26 26-4N-8W 60 59 68 28 94 288 0 221 8 1 558 274 a
R27 27-4N-8W 40 61 64 17 15 203 0 46 9 43 367 230 a
R28 28-4N-8W Spring 61.5 274 20 9.7 238 0 536 8 28 993 766 a 0\

0



TABLE 4 (Continued)

1.0. Location Depth Temp. Si02 Ca Mg Na+K HC03 C03 804 CI F N03 TOS Hard Cood pH Source

R29 28-4N-8W 33 61 63 30 62 150 0 60 36 211 638 280 a
RJO 29-4N-8W 46 61.5 215 22 9.2 254 0 385 10 30 874 627 a
RJl 33-4N-8W 53 82 20 23 224 0 224 34 0.1 5 456 286 584 a
R32 33-4N-8W 148 304 20 46 90 0 777 40 0.4 1 1640 840 1660 a
R33 33-4N-8W 252 541 31 144 99 0 1570 52 0.4 0.2 1480 2200 a
R34 36-4N-8W 72 60 58 22 19 278 0 12 6 33 306 235 a
R35 33-5N-7W 92 61 77 6.6 6.2 220 0 14 8 33 332 219 a
R36 18-6N-8W 80 36 15 17 113 0 64 13 14 264 152 375 a
R37 9-9N-8W 36 122 37 16 49 9 393 18 0.4 2 796 456 1060 a
R38 34-10N-8W 34 34 13 11 105 8 26 14 0.2 20 215 138 422 a
R39 3-5N-9W 200 22 62 6.2 4 122 0 28 28 0 20 236 180 388 7.7 b
R40 3-5N-9W 22 385 80 396 264 0 201 1160 0 65 3160 1290 4290 7.1 b

R41 35-5N-9W 300 54 12 39 212 0 41 20 30 310 184 490 b

R42 1-5N-IOW 140 22 92 17 15 272 0 78 II 0.3 16 407 300 610 8.1 b
R43 1-5N-I0W 170 24 100 12 16 274 0 7 37 0 60 399 29~ 640 7.3 b

R44 2-5N-I0W 175 16 141 33 12 258 0 261 15 0 7.2 646 488 890 7.3 b

R45 10-7N-I0W 80 605 83 28 159 0 1690 14 0.4 2 2700 1850 2630 b
R46 30-7N-lIW 246 6.6 39 216 0 476 8 0.3 50 986 64 1200 b
R47 2-7N-12W 37 7.7 16 132 10 3 50 186 124 310 7.7 b

R48 2-7N-12W 24 74 8.5 14 189 0 79 7 0.3 7 318 220 477 7.5 b
R49 5-7N-12W 32 12 4.4 38 107 0 16 6 20 174 48 237 b
R50 34-7N-12W 57 21 0.3 49 158 0 12 10 0 4 154 54 222 b

R51 4-8N-IOW 57 51 17 218 0 190 7 0.6 0.5 555 352 849 b

R52 5-8N-12W 250 24 12 2 99 0 10 14 0 4 192 109 296 b

R53 5-8N-12W 348 63 24 12 2.4 99 0 9.9 14 4 192 109 192 c
R54 11-8N-12W 200 66 9.2 8 236 0 7 16 203 7.7 b

R55 12-8N-12W 35 15 216 0 15 11 7.1 b
R56 I3-8N-12W 120 36 15 216 0 12 II 7.2 b

R57 14-8N-12W 200 86 12 418 0 32 11 0 7.5 b

R58 1-8N-13W 40 62 27 13 29 110 0 16 11 0 75 273 121 393 b,c 0'.
~



TABLE 4 (Continued)

I.D. Location Depth Temp. Si02 Ca Mg Na+K HC03 C03 S04 CI F N03 TOS Hard Cond pH Source

R59 1-8N-13W 250 448 45 29 0 1270 36 0 2020 1310 2110 b
R60 4-9N-IOW 57 40 19 25 196 10 23 10 0.2 20 287 170 515 b
R61 16-9N-I0W 85 66 27 32 280 13 9 8 0.2 90 343 276 626 b
R62 1-9N-12W 80 61 17 7.6 16 72 0 12 12 0.2 25 144 74 204 b,c
R63 12-9N-12W 90 47 18 16 206 12 9 10 0.4 15 202 191 389 b
R64 16-9N-12W 90 59.5 47 18 16 206 12 8.7 10 0.4 15 202 191 389 C

R65 19-9N-12W 62 60 20 10 13 99 0 10 14 0 10 145 91 217 b,c
R66 24-9N-12W 120 61 36 16 108 316 0 21 49 0 50 448 157 742 b,c
R67 3-9N-13W 59.5 47 8.7 47 239 0 12 9 0.4 40 296 153 455 b,c
R68 28-9N-13W 335 60 54 13 15 188 0 20 9 40 282 188 407 b,c
R69 5-ION-IIW 12 7.3 8 75 10 3 0.4 0 79 60 149 b
R70 32-ION-IIW 225 47 9.4 14 210 0 4 8 1.3 220 156 356 7.0 b
R71 33-ION-IIW 53 2.9 21 170 0 38 6 8.5 270 144 414 8.0 b
R72 23-ION-12W 288 30 48 7.3 II 185 0 13 5 0 1.2 204 150 325 7.4 b
R73 31-ION-12W 67 60 57 19 21 260 0 16 25 0.1 I 280 22\ 477 b,c
R74 4-10N-13W 59.5 37 5.2 16 145 0 7.8 14 0 3 156 114 268 b,c
R75 3-1IN-IIW 59 13 31 249 II 8 14 0.2 3 262 200 455 b
R76 22-IIN-IIW 48 13 20 172 10 II 16 30 244 173 383 b
R77 22-IIN-IIW 280 64 18 16 304 0 6 7 4.5 286 234 489 b
R78 3-IIN-12W 110 61 73 9.2 22 210 18 5.7 14 50 290 220 465 b,c
R79 31-12N-IIW 155 45 9 50 289 0 4 12 0 0 252 149 447 b
R80 34-12N-IIW 225 240 17 35 20 580 b
R81 4-12N-13W 150 24 54 13 26 266 0 9 8 0 1.9 259 188 476 7.6 b
R82 33-12N-13W 80 60.5 70 8 39 326 0 5.8 II 5 339 208 554 b,c

0\
N



TABLE 4 (Continued)

LD. Location Depth Temp. Si02 Ca Mg Na+K HC03 C03 S04 CI F N03 TOS Hard Cond pH Source

R59 1-8N-13W 250 448 45 29 0 1270 36 0 2020 1310 2110 b
R60 4-9N-I0W 57 40 19 25 196 10 23 10 0.2 20 287 170 515 b
R61 16-9N-IOW 85 66 27 32 280 13 9 8 0.2 90 343 276 626 b
R62 1-9N-12W 80 61 17 7.6 16 72 0 12 12 0.2 25 144 74 204 b,c
R63 12-9N-12W 90 47 18 16 206 12 9 10 0.4 15 202 191 389 b
R64 16-9N-12W 90 59.5 47 18 16 206 12 8.7 10 0.4 15 202 191 389 c
R65 19-9N-12W 62 60 20 10 13 99 0 10 14 0 10 145 91 217 b,c
R66 24-9N-12W 120 61 36 16 108 316 0 21 49 0 50 448 157 742 b,c
R67 3-9N-13W 59.5 47 8.7 47 239 0 12 9 0.4 40 296 153 455 b,c
R68 28-9N-13W 335 60 54 13 15 188 0 20 9 40 282 188 407 b,c
R69 5-ION-IIW 12 7.3 8 75 10 3 0.4 0 79 60 149 b
R70 32-10N-IIW 225 47 9.4 14 210 0 4 8 1.3 220 156 356 7.0 b
R71 33-10N-IIW 53 2.9 21 170 0 38 6 8.5 270 144 414 8.0 b
R72 23-10N-12W 288 30 48 7.3 II 185 0 13 5 0 1.2 204 150 325 7.4 b
R73 31-ION-12W 67 60 57 19 21 260 0 16 25 0.1 1 280 22\ 477 b,c
R74 4-10N-13W 59.5 37 5.2 16 145 0 7.8 14 0 3 156 114 268 b,c
R75 3-IIN-IIW 59 13 31 249 II 8 14 0.2 3 262 200 455 b
R76 22-11N-IIW 48 13 20 172 10 11 16 30 244 173 383 b
R77 22-11N-IIW 280 64 18 16 304 0 6 7 4.5 286 234 489 b
R78 3-IIN-12W 110 61 73 9.2 22 210 18 5.7 14 50 290 220 465 b,c
R79 31-12N-IIW ISS 45 9 50 289 0 4 12 0 0 252 149 447 b
R80 34-12N-IIW 225 240 17 35 20 580 b
R81 4-12N-13W 150 24 54 13 26 266 0 9 8 0 1.9 259 188 476 7.6 b
R82 33-12N-13W 80 60.5 70 8 39 326 0 5.8 II 5 339 208 554 b,c

0\
tv



LD. Location

TABLE 4 (Continued)

Depth Temp. Si02 Ca Mg Na+K HC03 C03 S04 CI F N03 TDS Hard Cond pH Source

Ml 24-9N-12W 29 92 19 14 370 4 21 0.4 o 423 308 724 b

Source:
a - Davis (1955)
b - Tanaka & Davis (1963)
c - Davis (1950)

Note: Temperatures measured in degrees Farenheit
Specific conductance measured in micro-mhos at 24 degrees Celsius
Dissolved solids reported as residue on evaporation at 180 degrees Celsius
Concentrations are reported in parts per million

0\w
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Sandstone in Caddo County indicate the quality of water is suitable for irrigation and

domestic use.

Eighty-two chemical analyses from the Rush Springs Sandstone were evalutated

using WATEVAL. The analyses were taken from Davis (1950), Davis (1955), and

Tanaka and Davis (1963). The analyses are shown on Table 4. Three analyses were

incomplete as cation concentrations were not reported. Three additional analyses were

incomplete as to a lack of reported Na + K concentrations. In these three analyses,

concentrations for Na + K were calculated as the difference in meqn between the

reported cation and anion_ concentrations. One sample did not report bicarbonate, and

when an attempt was made to calculate bicarbonate from hardness, the anion/cation

balance indicated that the analyses was probably in error.

Figures 16 and 17 are Piper plots of analyses R1 through R50 and R51 through

R82, respectively, from the Rush Springs Sandstone. On the diamond portion

of the diagram, the analyses generally plot in the area of bicarbonate waters

(temporary hardness) with a lesser number of analyses plotting in the area of sulfate

waters (permanent hardness). The plot of the analyses on the triangular diagrams fell

primarily into the areas of limestones and gypsum. Stiff diagrams of all analyses are

included in Appendix B. The shapes of the analyses on the Stiff diagrams range from

brines to gypsum to limestone. The vast majority of the Rush Springs Sandstone

analyses, when plotted on a Stiff diagram, have shapes indicating a limestone source

rock.

Based on the results of the WATEVAL evaluation, six samples calculated as

brines (NaiCI ratios less than 1 and TDS greater than 500 mgn), and ten samples
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calculated as probably in error (NaiCI ratios less than 1 and TDS less than 500 mg/l).

Five of the six brine samples and all of the samples reported as probably in error

exhibited ion exchange (Na/CI ratios greater than 1 and Ca/S04 ratios less than 1).

Nine samples indicated reverse ion exchange (Na/CI ratios less than 1 and Ca/S04

ratios greater than 1) and six of these samples had shapes indicating a gypsum source

rock on the Stiff diagrams. The other three samples exhibiting reverse ion exchange

had shapes typical of limestones on the Stiff diagrams. Seven of the analyses reported

concentrations of Si02) and of these analyses, five indicated carbonate weathering and

two indicated silicate weathering. Of the five samples indicating carbonate

weathering, three of the samples had had a negative value for non-halite due to the

sodium versus halite concentrations described above. Of the other two samples, one

sample had a silica concentration greater than the non-halite sodium, but less than two

times the non-halite sodium, which indicated that weathering of sodium feldspars may

be occurring. The other sample had a silica concentration greater than two times the

non-halite concentration which indicated that the source rock may contain

ferromagnesium minerals. The ratio of magnesium to calcium ranged from 0.02 to

0.62 which indicated that limestone dissolution was occurring. Fifty-four samples had

NaiCI ratios and CalS04 ratios greater than 1, indicating a Na source other than halite

and a Ca source other than gypsum.

Based upon the results of the WATEVAL analyses, the water in the Rush

Springs aquifer has undergone carbonate weathering, most likely due to the dissolution

of gypsum and dolomite from infiltration of precipitation through the Moccasin Creek

Gypsum Bed of the Cloud Chief Formation, as well as infiltration through the
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Weatherford Gypsum Bed of the Rush Springs which may contain gypsum and

dolomite. Dissolution of the overlying dolomite and the calcite cement in the

sandstones of the Rush Springs would provide calcium concentrations greater than

those expected just from the dissolution of gypsum. It is likely that there is sufficient

calcium to participate in ion exchange (natural softening) with the sodium, thereby

increasing the concentrations of sodium, while still maintaining a sufficient

concentration of calcium which exceeds that of sulfate.
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CHAPTER V

CEMENT FIELD

History

Oil and natural gas was discovered in 1916 in a well drilled approximately

three miles east of the town of Cement (Clapp 1920). The Oklahoma Star

Kunsemuller well, located in Section 22, Township 6 North, Range 9 West, is

generally acknowledged as the discovery well for the Cement field. The Kunsemuller

well, drilled in 1917, led to a period of active development in the field and by early

1920, twenty-six wells had been completed in the field with thirty-six wells actively

drilling (Reeves, 1921).

Hermann (1961) reported that development of oil and gas production in the

Cement field took place in approximately ten year cycles. These cycles are

represented by drilling activities in 1912 to 1922, 1930, 1936 to 1945, and 1947 to

1950. Drilling for shallow Permian production continued into the early sixties.

In the 1970's and 1980's, activity in the Cement field included unitization and

operations for secondary recovery and drilling for deeper, lower Pennsylvanian natural

gas reservoirs (AI Shaieb, 1988). Al Shaieb also noted that by the late 1980's,

approximately 1,900 wells had been drilled in the Cement field in twenty-six

differerent reservoirs delineated in the Permian and Pennsylvanian. In 1991, the
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Cement field produced approximately 1.2 million barrels of oil from an estimated 843

producing wells. Cumulative production through 1991 was approximately 134.8

million barrels of oil with estimated remaining reserves of 7.8 million barrels of oil

(Beck, 1992).

In the study area, portions of the Cement field have been unitized to allow for

the development of secondary recovery operations. The West Cement Unit, operated

by Mobil Oil Corporation, is located primarily in Sections 35 and 36, Township 6

North, Range 10 West and consists of approximately 1,120 acres. Production is from

the lower Permian (Fortuna Sandstone, Noble Olson Sandstone, and Basal Permian)

and upper Pennsylvanian (Rowe Sandstone and Niles Sandstone). The dominant

lithology is sandstone at an average depth of 2,400 feet. The reservoirs were created

by anticlinal structures and initial production occurred via solution gas drive and water

drive. Secondary recovery is presently accomplished using water injection.

The Cement I Unit, also operated by Mobil Oil Corporation, is located in

Section 1, Township 5 North, Range 10 West, and Sections 5, 6, 7, and 8, Township 5

North, Range 9 West and consists of approximately 1,230 acres. Producing formations

are the lower Permian Fortuna and Noble Olson Sandstones. The dominant lithology

is sandstone at an average depth of 2,000 feet. The reservoirs were created by lateral

pinchout of channel sandstones. Initial production occurred via solution gas drive.

Secondary recovery is presently accomplished using water injection.
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Operations

Drilling and completion information was obtained on 248 wells in the West

Cement and Cement I Units. The information was archived on completion cards and

scout tickets located at the geological libraries in Oklahoma City and Tulsa,

Oklahoma. The information reviewed consisted of: dates of drilling and completion;

surface casing size, depth, and cement volumes; production casing size, depth, and

cement volumes; completion procedures; and formation treatment data. Although not

all well data in the West Cement and Cement I Units was available for the study, the

-
248 reviewed wells should be representative of the typical wells drilled in the Cement

field.

D1illing

Well depths fall into three depth categories: wells drilled to approximately

3,000 feet to explore for the lower Permian Fortuna and Noble Olson Sandstones;

wells drilled to approximately 5,000 to 7,000 feet to tap the upper Pennsylvanian

Rowe, Niles, Wade, Medrano, and Marchand Sands; and wells drilled below 10,000

feet exploring for lower Pennsylvanian natural gas reservoirs.

Typically, surface casing was set to control cavings and washouts of poorly

consolidated near surface formations and to prevent contamination of fresh-water sands

by drilling muds, oil, ash, or salt-water (Braunlich, 1975). Surface casing size ranged

from 8 5/8-inch to 10 3/4-inch in diameter. The depth to which surface casing was set

ranged from 0 feet (no surface casing) to 300 feet in the deeper wells. The surface
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casing was typically cemented in place with anywhere from 50 to 350 sacks of

cement. After the surface casing was set, the well was drilled to it's total depth and

electric logging was performed in the open borehole. If oil or gas was detected in the

well cuttings, or indicated on the electric logs, then production casing was installed to

the total well depth and cemented in place. Production casing separates the producing

zone from undesireable fluids (saltwater) and acts as a workshaft to the producting

zone (Braunlich, 1975). If the well had no indication of recoverable hydrocarbons, the

well was plugged and abandoned.

Completion

Production. After production casing was set, the well was perforated by

shooting holes in the production casing with a wireline perforating tool. The

perforating tool shoots holes through the casing and cement, out into the productive

formation creating a channel through which hydrocarbons can migrate into the casing.

The well may then produce oil or gas naturally, may produce oil and gas only after the

formation is artificially stimulated by acidization or hydraulic fracturing, or in some

cases, the perforated zone may not produce at all. If the zone is detemined to be non­

productive, then other zones of interest would be tested in a similar manner. When all

potential zones had been tested, the well was either placed in production or plugged

and abandoned.

Plugging. When a well was detemined to be non-productive prior to running

production casing, the well was plugged and abandoned. Plugging techniques were

probably very primitive in the early years of the development of the field and plugging
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operations may have been no more involved that filling the borehole with drilling mud

and placing a wooden or cement plug at the surface. In later years, as oilfield

operations became more regulated, plugging operations became more stringent.

Plugging operations subsequent to running production casing in the early years

of the Cement field may have been similar to the plugging operations prior to setting

casing. If possible, the production casing would be retrieved from the hole and the

plugging would be completed. In later years, plugging requirements provided for

sealing off all productive zones with cement plugs, filling the non-productive intervals

in the borehole with mud of specific properties, and placing a cement plug across the

base of the surface casing and at the ground surface. A welded plate would then be

installed at the wellhead with a record of the well number and plugging date affixed to

the welded plate.

Secondary Recovery. The first phase of production from an oil or gas field is

typically referred to as primary recovery. During primary recovery, the natural forces

which control the reservoir drive mechanisms are allowed to proceed until the rates of

production have declined to some lower economic limit. The primary recovery phase

generally recovers only a small percentage of the original oil in place. An Original

Oil in Place (OOIP) study for the Cement I Unit, prepared by Mobil Oil Company,

indicated cumulative primary recovery from the unit was 11% of the OOIP. At that

point in time the oil or gas field is evaluated to determine the feasibilty for secondary

recovery operations. A unitization study prepared by Mobil in 1969 predicted

secondary recovery of 11.6% of the OOIP. The Cement I area was unitized in

September of 1970 and secondary recovery operations consisting of a waterflood were
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commenced.

The waterflood activities consisted of converting existing wellbores into water

injection wells (WIW) and pumping produced formation water and make-up water into

the injection wells to "flood" the producing zones. The result of the recovery method

is to drive oil in the reservoir towards production wells thereby maximizing the

recovery of oil remaining in the reservoir after the primary recovery has been

accomplished. Due to the age and condition of the wellbores converted to injection

wells, the potential for failure of the injection system is significant. Problems

associated with these failures can typically be attributed to casing failures. Casing

failures can result in discharge of injection fluids outside of the intended receiving

reservoir directly into fresh-water zones. Injection fluids may also migrate into fresh­

water zones through the annular space between the borehole and the casing where

cement has deteriorated or is non-existant or where fresh-water aquifers have not been

adequately protected by surface casing.
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CHAPTER VI

CYRIL MUNICIPAL WELL FIELD

The town of Cyril has historically used ground water withdrawn from the Rush

Springs Sandstone aquifer for its public water supply. Table 5 summarizes water

usage for the town of Cyril for the years from 1975 to 1992. Average daily water

consumption during this period is calculated to be 170,000 gpd. The town of Cyril

has a population of approximately 1,500 people, so the average daily consumption, per

capita, is 113 gpd. The average continuous well production to provide this quantity of

water is calculated to be 118 gpm. Tables 6 and 7 depict reported water well

production in gallons per year and gallons per day, respectively.

The initial development of the Cyril water well field occurred in Section 1,

Township 5 North, Range lOWest, where a total of eight wells were reportedly

constructed. The earliest known public water supply wells were identified as AB, AB­

1 and AB-2. Two drillers logs on water wells were found at the Oklahoma City

geological library. One well was completed in 1929 to a total depth of 850 feet bgs

and the other well was completed in 1937 to a total depth of 861 feet bgs. No well

construction details were reported for the first well. The second well had surface

casing (10-inch) set at 570 feet bgs and grouted with 40 sacks of cement. A liner (8

1/4-inch) was set at total depth and extended 17 feet up into the surface casing. The

liner was perforated from 705-810 feet and 825 to 861 feet bgs with galvanized cave



TABLE 5

WATER USE FOR THE TOWN OF CYRIL (X 1000 GALLONS)

YEAR JAN FEB MAR APR MAY ruN JUL AUG SEP OCT NOV DEC TOTAL
1975 NA NA NA NA NA NA NA NA NA NA NA NA 45,565
1976 NA NA NA NA NA NA NA NA NA NA NA NA 52,337
1977 NA NA NA NA NA NA NA NA NA NA NA NA 48,566
1978 NA NA NA NA NA NA NA NA NA NA NA NA 61,812
1979 NA NA NA NA NA NA NA NA NA NA NA NA 56,931
1980 NA NA NA NA NA NA NA NA NA NA NA NA 59,303
1981 NA NA NA NA NA NA NA NA NA NA NA NA 58,684
1982 4,528 5,234 5,110 5,151 5,931 6,788 8,707 7,757 6,109 5,484 5,028 5,508 71,335
1983 5,150 4,726 4,768 4,980 5,415 5,479 8,114 10,701 9,947 8,082 5,120 7,332 79,814
1984 8,037 5,377 5,918 6,336 7,771 7,985 9,225 8,914 6,221 4,508 4,308 4,426 79,026
1985 4,570 4,396 4,672 4,567 5,140 5,034 6,192 7,479 5,235 4,678 4,584 4,822 61,369
1986 4,824 4,441 5,788 5,170 5,224 5,050 7,559 6,226 4,394 4,612 4,444 4,569 62,301
1987 4,505 4,051 4,370 4,714 4,712 5,356 7,250 9,062 5,339 5,051 4,677 6,178 65,265
1988 5,011 5,198 5,375 5,197 5,993 6,943 7,996 7,786 6,546 5,165 4,579 5,672 71,461
1989 5,213 4,714 5,052 4,169 5,682 5,441 6,396 5,379 4,941 5,574 3,365 3,823 59,749
1990 4,595 4,562 5,197 4,692 5,087 5,976 5,592 5,417 5,699 5,554 5,410 4,844 62,625
1991 3,556 4,043 4,097 4,033 4,539 4,312 5,573 4,948 4,018 4,538 3,955 4,542 52,154
1992 5,034 4,163 4,333 NA NA NA NA NA NA NA NA NA NA

AVGa 5,002 4,628 4,971 4,901 5,549 5,836 7,260 7,367 5,845 5,325 4,547 5,172 61,665

AVGb 4,664 4,446 4,861 4,649 5,197 5,445 6,651 6,614 5,167 5,025 4,431 4,921 62,132

AVGa = average of all available data
AVGb = average of available data from 1985 through 1992

......,J
--.,J
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TABLE 6

CYRa WATER WELL PRODUCTION (GALLONS PER YEAR)

74-0477 76-0810 77-0544 81-0512 87.QS29

YEAR A-4 & A-5 1)..3 0-2 C-l C-3

1975 45,565,000
1976 52,337,000

1977 18,391,000 23,112,000 17,063,000

1978 7,907,000 16,298,000 37,607,000

1979 28,622,000 5,145,000 23,164,000
1980 30,736,000 23,146,000 5,421,000
1981 26,537,000 10,391,000 13,409,000 8,347,000

1982 18,301,000 973,000 14,629,000 37,462,000

1983 15,555,000 3,587,000 6,984,000 53,439,000

1984 14,155,000 994,000 8,700,000 54,912,000

1985 5,253,000 0 794,000 55,475,000

1986 6,298,000 0 1,377,000 54,898,000

1987 10,681,000 0 1,760,000 51,789,000 2,035,700

1988 13,234,000 0 646,000 55,581,000 2,000,000
1989 1,343,000 0 0 41,832,000 16,574,000

TABLE 7

CYRIL WATER WELL PRODUCTION (AVERAOE GALLONS PER MINlITE)

74-0477 76-0810 77-0544 81-0512 87-0529
YEAR A-4& A-5 0-3 0-2 C-l C-3
1975 87 NA NA NA NA
1976 100 NA NA NA NA
1977 35 44 32 NA NA
1978 15 31 72 NA NA
1979 54 10 44 NA NA
1980 58 44 10 NA NA
1981 50 20 26 16 NA
1982 35 2 28 71 NA
1983 30 7 13 102 NA
1984 27 2 17 104 NA
1985 10 NA 2 106 NA
1986 12 NA 3 104 NA
1987 20 NA 3 99 4

1988 2S NA 1 106 4

1989 3 NA NA 80 32
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catchers welded on the liner above each set of perforations. The identity of these two

drillers logs cannot be determined, although it is suspected that they are for two of the

three AB wells.

Two replacement water supply wells were drilled in 1948 to replace AB-1 and

AB-2. These two water supply wells, identified as A-I and A-2, were constructed in

the Rush Springs Sandstone at depths of 110 feet bgs and 140 feet bgs, respectively.

No additional construction details were reported on either well.

In 1954, water supply wells A-3 and A-4 were added to the well field in

Section 1. Both wells w~re constructed in the Rush Springs Sandstone. Well A-3 was

drilled to a total depth of 110 feet bgs. No other construction details were reported.

Well A-4 (also identified as C-2 or #4 well in other reports) was drilled to a total

depth of 170 feet bgs. Surface casing was grouted in place at an unspecified depth.

Below the surface casing, the well was apparently constructed as an open borehole

well. Wilson (1986) reported that a pump was set at 150 feet bgs and the well was

pumped at a rate of 86 gpm (123,840 gpd). Water supply well A-5 was drilled in

1960 to a total depth of 180 feet bgs in the Rush Springs Sandstone. No additional

construction details were reported.

From 1975 through 1977, three deeper water supply wells were drilled to the

south of the existing well field. All three wells were constructed in the Duncan

Sandstone aquifer. Well D-l (Section 13, Township 5 North, Range 10 West) was

drilled in 1975 to a total depth of 1,000 feet bgs. Casing was set and grouted in place

from total depth to the ground surface. The casing was perforated over the following

intervals (in feet bgs): 738-750,790-800,860-870,878-888,908-913,920-925, and
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960-965. Well D-l was test pumped at a rate of 50 gpm (72,000 gpd) and temporarily

capped (Wilson, 1986). Water supply well D-3 (also identified as #3 well) was drilled

in 1976 at a location in Section 24, Township 5 North, Range lOWest. Well D-3 was

drilled to a total depth of 962 feet bgs and surface casing was set and grouted in place

from total depth to the ground surface. The casing was perforated over the following

intervals (in feet bgs): 711-721, 748-758, 800-830, 850-860, 890-900, and 914-924.

Wilson (1986) reported that a pump was set at 750 feet bgs and the well pumped at a

rate of 100 gpm (144,000 gpd). However, the ground water from the well reportedly

had high S04 concentrations and was therefore used only for emergency purposes.

Water supply well D-2 (also identified as #2 well) was drilled in 1977 in Section 24,

Township 5 North, Range lOWest, to a total depth of 854 feet bgs. Casing was set

and grouted in place from total depth to the ground surface. The casing was

reportedly perforated over the same interval as well D-3 (Wilson, 1986). Wilson also

reported that the pump was set at 734 feet bgs and pumped at a rate of 100 gpm

(144,000 gpd). Well D-2 also reportedly has high 804 concentrations leading to

complaints of taste and odor. Apparently, the ground water is satisfactory if it is

aerated.

Water supply well C-l (also identified as #1 well) was drilled in 1980 at a

location in Section 7, Township 5 North, Range 10 West to a total depth of 383 feet

bgs. Surface casing was set at 150 feet and grouted to the surface. Well C-1 was

apparently constructed as an open borehole well in the Rush Springs Sandstone and

Marlow Formations. The well was reportedly perforated from 184-210 feet bgs and

from 350-375 feet bgs, and was packed with pea gravel from total depth to the base of
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the surface casing (383 to ISO feet). Wilson (1986) reported that a pump was set at

210 feet and pumped at a rate of 140 gpm (201,600 gpd).

Water supply well C-3 (Section 12, Township 5 North, Range 10 West) was

drilled in 1985 to a total depth of 430 feet bgs. Surface casing was set at 200 feet and

grouted to the ground surface. Well C-3 was apparently constructed as an open

borehole well in the Rush Springs Sandstone and Marlow Formation. The well was

packed with pea gravel from total depth to the base of the surface casing (430 to 200

feet). Wilson (1986) reported that well C-3 pumped at a rate of 115 gpm (165,600

gpd).
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CHAPTER VII

GROUND-WATER CONTAMINATION

Analysis of ground-water samples collected from the Cyril water supply wells

indicate elevated levels of chloride and in some instances, calcium. Natural

concentrations of cloride in ground water are usually associated the presence of halite

(NaCl) in the subsurface. Hem (1989) reports that chloride is present in all natural

waters, but mostly the concentrations are low. Natural concentrations of calcium in

ground water in the study area are primarily due to the presence of gypsum

(CaS04*H20) and anhydrite (CaS04) and to a lesser extent limestone (CaC03) or

dolomite (CaMg(C03)2)' Assuming gypsum and/or anhydrite as a common source of

calcium, the equivalent concentration of calcium should be equal to or slightly higher

than the concentration of sulfate. Equivalent calcium concentrations significantly

greater than sulfate concentrations have been observed in the water-quality _analyses,

indicating a source of calcium other than gypsum or anyhydrite. Potential sources of

chloride and calcium concentrations due to oilfield operations and other, non-oilfield

operations, are summarized on Table 8

Contamination from Oilfield Operations

The potential for ground-water contamination due to oifield operations begins



TABLE 8

SOURCES OF CHLORIDE AND CALCIUM CONTAMINAnON

Source

Drilling Fluid

CompletionIWorkover Fluids

Produced Formation Water

Salt plains/springs

Construction

Highway construction

Constituent

calcium hydroxide
calcium chloride
calcium carbonate
calcium sulfate

calcium oxide

calcium magnesium silicate

calcium carbonate
calcium chloride

hydrochloric acid
calcite
potassium chloride

sodium chloride
calcium choride

sodium chloride

calcium carbonate
calcium chloride

calcium chloride

Use

bactericide, corrosion inhtbitor
density control, shale control
density control
flocculating agent, shale control
shale control
viscosifier

cement

accelerator, workover fluid
acidization treatment
fluid weighting
workover fluid

production by-product
production by-product

natural occurrance of halite

cement
accelerator

dust palliative, frost action preventative
skidding preventative, granular
stabilization

00
w
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when well is drilled, continues through completion activities and the productive life of

the well, and may existing for long periods of time after a well is plugged and

abandoned. The pathways for contamination during drilling, completion, and

production processes is through the introduction of liquids in the subsurface

environment through the borehole or well casing and through the use of unlined pits

for salt water (formation water) disposal during production operations.

Drilling Fluids

The primary purpose of drilling fluids are to transport drill cuttings to the

surface, control subsurface formation pressures, maintain borehole stability, protect

productive formations, protect against corrosion, and cool and lubricate the bit and

drill string (Simpson, 1975). The major types of drilling fluids are air or gas, clear

water or brine, water muds (clay-based or polymer), and oil muds.

Additives are often added to drilling fluids to control their rheological

properties. Common additives which could provide a source for chloride or calcium

contamination are: calcium hydroxides (bactericide, corrosion inhibitor), calcium

cloride (density controller, shale control), calcium carbonate (density controller),

calcium sulfate (flocculating agent, shale control), calcium oxide (shale control), and

calcium magnesium silicate (viscosifier).

Drilling mud may contaminate ground water if conductor casing or surface

casing strings have not been set deep enough to protect shallow ground-water aquifers

or if the casing has been improperly cemented to competent subsurface zones (Figure

18). Drilling mud may also contaminate ground water when drilling fluids lost in
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Conductor casing

Surface cosi ng

Ori II bit

aquifer

~"""'----Improperly sea I ed sur face
casing and or conductor casing

L i mesfone

Oi I sand

Limestone

Figure 18. Contaminant pathways through improperly sealed casing
(after Collins, 1975)
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Figure 19. Contaminant pathways through improperly plugged wells
(after Collins, 1975)
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deeper formations with high porosity and permeability during the drilling process can

come back up an improperly plugged and abandoned well as indicated on Figure 19

(Collins, 1975). Improper storage of drilling mud chemical additives at a drill site

could result in spillage which could leach to the water table and contribute to ground­

water contamination.

Completion and Well Workover Fluids

When a decision is made to complete an exploratory or development borehole

as a production well, generally the first step is to set production casing in the

borehole. The casing is installed by cementing the annular space between the outside

of the casing and the borehole. Typically, a "neat" cement consisting of Portland

cement (grout) and water is used but quite often chemical additives are required to

provide special properties to the cement slurry. Calcium chloride (20/0 - 4% weight

percent) was widely used as an accelerator to reduce the setting time for the cement.

Along with the calcium which is an intrinsic component of cement, the calcium

chloride could provide a source of calcium and chloride contamination.

After production casing is set and the desired production interval is perforated,

a well is quite often treated with acid to increase the permeability of the reservoir

rocks. The increase in permeability improves fluid flow and increases the recovery of

oil and gas. Acid also improves fluid injection in secondary oil recovery and disposal

operations (Collins, 1975). Hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric

acid, formic acid, and acetic acid are most often used. By-products of acid treatments

include soluble compounds such as calcium chloride.
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When a producing well experiences production problems or a decision is made

to abandon a producing zone to recomplete into another zone, well workover

operations are performed. Workover or completion fluids are used in the producing

well during the workover operations. Although in limited use today, calcite was often

used for weighting drilling fluids and as late as 1974, three-thousand tons of calcite

were sold for this purpose (Grantham and Sloan, 1975). The calcite weighted fluids

were most often used in workover or completion fluids for normally pressured

formations and depleted draw-down reservoirs. Today, most well workover fluids

consist of potassium choride waters (KCl), although in the past calcium chloride

waters were used as well workover fluids.

Produced Formation Water

The production of formation water in conjunction with oil production has been

a major cause of ground-water contamination in areas of intense petroleum exploration

and development. Pettyjohn (1971) notes that the water-bearing strata contaminated

by brines may remain unusable, depending on the degree of contamination and on

hydrologic conditions, for years, decades, or even millenia. The amount of formation

water produced from oil wells varies considerably with different wells and is

dependent upon the producing formation and the location, construction, and age of the

well (Collins, 1974). The majority of formation waters are sodium chloride and

calcium chloride brine and these constituents would be expected to be the chief

ground-water contaminants associated with produced formation water disposal.

Potential pathways for calcium and chloride contamination to the ground water are
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evaporation pits and injection wells (including salt water disposal wells and secondary

recovery waterflood wells).

Evaporation Pits. Disposal of formation water by letting it run over the ground

was a common practice in the early days of oil production. However, environmental

damage to surface waters, soils and vegetation, and animals was eventually evident

and this disposal method was abandoned. Unsealed surface pits, initially used to

contain drilling fluids, were often used as evaporation pits for the disposal of produced

formation water. The long-term practice of discharge to unlined pits stems from days

when there was very little regulation of oil exploration and development (Atkinson,

1986). Initial contamination of the subsurface environment probably occurred by the

direct infiltration of the disposal water to the unsaturated zone since the evaportion pit

would tend to act as an infiltration gallery. As the evaporative process proceeded,

large quantities of soluble salts were left at the bottom of the pits. The soluble salts

were then leached into the soil and eventually the water table during subsequent

precipitation and infiltration events. Collins (1974) reported that the Kansas State

Department of Health studied the soils beneath and near an old unsealed brine disposal

pond that had been abandoned for 10 years. Chemical analyses of core samples from

the soils beneath and adjacent to the pond indicated that about 1.4% of the original

soluble salt introduced into the disposal pond still remained to be leached out of the

soil in the pond area. This amount of soluble or leachable salt remaining in the area

indicates that the return of the subsurface water and soils to their pre-pollution level is

a very slow process and may take several decades.

Injection Wells. Most oil field brines today are returned to oil producing
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zones or deep saline aquifers through old production wells or water injection wells.

This is done either for the purpose of water flooding or secondary recovery

(reinjection of brine into the oil producing zone to increase reservoir yields), or just as

a disposal method (Atkinson, 1986). The greatest potential for contamination occurs

in the immediate vicinity of the wellbore, where the natural geologic structures relied

upon to contain the waste have been breached by well construction. Fryberger (1984)

notes that by far the greatest potential for pollution of potable ground water from

underground injection is related to the injection of oil field brines. Although the

resulting problem is not highly toxic, the potential problem is large. Miller (1980)

indicates the major concern of subsurface injection though wells is the potential

contamination of usable ground water by the following mechanisms;

• direct emplacement into potable zones;
• escape into a potable aquifer by wellbore failure;
• upward migration from receiving zone along outside of casing;
• leakage through inadequate confining beds;
• leakage through confining beds due to unplanned hydraulic fracturing;
• leakage through deep abandoned wells;
• displacement of saline water into a potable aquifer;
• injection into a salaquifer eventually classified as a potable water

source; and
• migration to potable water source in the same aquifer.

Atkinson (1986) reports that the acidic nature of the formation water corrodes

well casing and coupled with excessive injection pressures may rupture casing joints,

crack the cement seal, and move out into shallower potable water zones. Excessive

injection pressure can cause leaks at the wellhead allowing formation water to flow

across the surface. Injection may reverse the existing hydraulic gradient. Wells with

corroded casing or leaky wells which have been tranferring shallow fresh water
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downward into the deeper saline formations, will now transfer saline water upward to

the potable zones. Other wells in the vicinity of an injection well drilled to or through

a receiving formation, such as unplugged, abandoned oil and gas wells, can act as

conduits for the migration of fluid. Improper or incomplete cementing of casing or the

use of easily corrodable casing serves as another conduit for disposal fluid migration

where brine travels up the annular space between the casing and the borehole to

contaminate shallower zones.

Well Abandonment

Another significant pathway for calcium and chloride contamination to the

ground water is improper well abandonment. Improperly abandoned wells can provide

the conduit for the migration of injected fluids (or formation fluids) outside of the

intended injection zone. Atkinson (1986) indicates that the major problem of ground­

water contamination is the discharge of saline water from abandoned oil and gas wells

rather than the disposal of waste brine through injection or secondary recovery wells at

active petroleum recovery fields. Wells of all kinds near an injection well, either

producing or abandoned that penetrate the injection zone, have the potential to become

conduits for migration. Whether or not such wells will leak is a function of how the

wells were constructed or plugged, as well as the operating pressure of the injection

well and the pressure build-up of the receiving formation (Anzzolin and Graham,

1984).

Many older improperly plugged wells were just loaded with mud which

through time will settle out and allow channeling of saltwater through the borehole.
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The cement plugs in most older wells were determined to be inadequate. Top plugs

were usually a thin cap of cement and it was not uncommon for bottom plugs to be

absent. Although the plugging methods satisfied the then existing regulations, they

nevertheless provide flow paths for upward migration of reservoir fluids to shallower

freshwater zones (Fryberger, 1984). In a study of improperly abandoned wells in

central Oklahoma, Fairchild (1984) reviewed abandonment records for 8,524 plugged

and abandoned wells and found that 72% of the oil wells, 57% of the gas wells, and

77% of the dry holes were improperly plugged when evaluated against the plugging

regulations in effect at the time of their abandonment. When the same wells were

evaluated for plugging requirements against the 1980 regulations, 90% of the oil wells,

gas wells, and dry holes were improperly plugged.

Potential Contamination From Other Sources

The intensity of petroleum exploration, development, and production activities

in the study area has been significant over the years. This activity would logically

appear to have the most impact on contaminating the environment. However, other

sources of contamination may exist, although the likelihood of such sources having a

significant widespread impact are not considered to be great.

Powell (1992) notes that several salt plains occur in western Oklahoma which

are located several miles northwest of the study area. The distance from the study

area and the hydrogeological setting would preclude chlorides leached from salt plains

having local impact on ground-water quality. The location of a saltwater spring in

Section 36, Township 6 North, Range 10 West was described by NUS (1989) and
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suggests the possibility of halite (NaCI) occurrence in younger Permian rocks

immediately north of the study area. However, the spring is hydrogeologically

separated from the study area by the Cement Anticline (inferred ground-water divide).

As previously mentioned, calcium chloride is used as an accelerator to reduce

the setting times for cement. The mixture of 2% calcium chloride with portland

cement to make concrete results in a higher early strength and a safer, speedier curing

(Sloane, et aI, 1931). It has been discussed that cement used in oilfield operations

could serve as a source for calcium and chloride contamination. Construction

activities where concrete is used as either foundation materials, road materials, or

building materials could also be considered a potential source for contamination.

Although the concrete itself is not likely to create a source for ground-water

contamination, the inadvertant or planned disposal of waste calcium cloride could

provide such a source if it is exposed to precipitation and subsequent infiltration to the

ground water.

Calcium chloride has also been widely used in the past for highway

construction activities. Calcium chloride has variously been used as a dust palliative,

as an aid in the prevention of freezing of subgrades, as an aid to decreasing the

damage to gravel roads due to frost action, and in the treatment of sand and similar

materials used as skidding preventatives on icy pavements (Cuthbert, 1945). Calcium

chloride has also been used in the granular stabilization of roads wherein treatment

with calcium chloride effects a volume change and an increase in the density and

stability of graded road mixtures (Cuthbert, 1945).
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Contamination of the Cyril Municipal Well Field

The earliest known reports of contamination at the Cyril well field occurred in

1947 when the town of Cyril requested that the Oklahoma Planning and Resources

Board, Division of Water Resources (OWRD), investigate the cause for the increasing

chloride content in their municipal water wells. The OWRD reportedly concluded that

the source of the chloride contamination in the Cyril water supply wells was from

surface disposal pits used for saltwater evaporation in the West Cement Field. The

area of concern was identified as south of the "Keechie Hills" in Section 36, Township

6 North, Range 10 West and Section 31, Township 6 North, Range 9 West, as well as

Section 1, Township 5 North, Range lOWest, and Section 6, Township 5 North,

Range 9 West. Operators in the area of concern were requested to use means other

than surface evaporation to dispose of their saltwater. Additionally, the OWRD

requested that all disposal pits in the area of concern be abandoned and filled to above

surface.

In 1951, stock reportedly refused to drink water from a stream located

downgradient from surface disposal pits. Testing of the stream waters reportedly

yielded results ranging from "slightly salty" to "extremely salty". The surface disposal

pits were reportedly not adequate to dispose of the produced saltwater entirely by

evaporation. Considerable seepage was noted around the base of the pits and around

one of the pits, a salt crust existed and approximately three acres of vegetation had

been killed.

By 1948, the three initial Cyril water supply wells (AB, AB-I, and AB-2) had
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been abandoned due to chloride contamination (Hamburg, 1952; Wilson, 1986). By

1966, elevated chloride concentrations were detected in ground-water samples

collected from water supply wells A-I, A-2, A-3, A-4, and A-5. The drinking water

standard for chloride (250 mg/l) was exeeded in well A-I by 1970, in wells A-2 and

A-5 by 1973, in well A-3 by 1975, and in well A-4 by 1985. Historical chloride

concentrations for the Cyril water supply wells is summarized on Table 9. Water

supply wells A-I and A-2 were abandoned in 1978. Water supply wells A-3 and A-5

were abandoned in 1980 and 1985, respectively.

Water supply well C-l had chloride levels of 124 mg/l within 5 years of its

construction and in just over 10 years, had chloride levels exceeding the drinking

water standards. Water supply wells C-l, A-4 (C-2), and C-3 were abandoned in late

fall 1990 or early spring 1991 when Cyril tied into the Rural Water District system

(Pettyjohn, 1991). The deeper water supply wells (D-l, D-2, and D-3) may also have

been abandoned at this time, although chloride contamination has not been a problem

in these wells.

As a result of the contamination of the Cyril water wells, hearings have been

held at the Oklahoma Corporation Commission (OCC) to determine the cause and

extent of the chloride contamination. As part of the ongoing contamination

assessment, numerous ground-water quality samples have been collected from the Cyril

water supply wells, private water wells, and monitoring wells installed as part of the

contamination assessment.



TABLE 9

mSTORICAL CHLORIDE CONCENTRATIONS TOWN OF CYRIL WATER SUPPLY WELLS

Sample Date AB AB-I AB-2 A-I A-2 A-3 A-4 (C-2) A-5 C-I C-3 D-l D-2 D-3
8123/51 11
8/16/56 37
2/24/64 44
2/6/65 38
2/18/66 178 132 72 46 164
5/10/66 198
7/21/66 210 150 38
5/27/70 588 204 217 54 217
6/19/70 592 202
2/25/71 680 209 246 67 221
3/7/72 768 276 273 70 210
3/1/73 230 468 90 260
8/9/73 890 369 304 76 191
5/13/74 1018 406 550 80 336
4/16/75 933 350 390 91 375
3/3/78 IS 23 39
10/6/78 105

10/10/80 12
2/20/85 454 124 103 14 20
6/12/89 560 220 20
8/16/89 688 968 400 226 24
12/14/89
6/12/90 262 40
2/6/91 3872 901
2/13/91 233 2790 5483 1440 939 260
3/12/91 158 115 371 833 986 58
7/17/91 162 152 528 801 1019

\0
0\
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CHAPTER vm

ASSESSMENT OF GROUND-WATER CONTAMINATION

Chloride contamination of the water supply wells for the town of Cyril as well

as numerous domestic water wells is well documented. The source of the chloride

contamination may have been the result of the surface disposal of producted formation

water (brine), the subsurface disposal of produced formation water, the injection of

produced formation water during secondary recovery operations, or a combination of

any or all of the above.

Computer Modeling

Two computer simulations were performed using the USGS Solute Transport

Model developed by Konikow and Bredehoeft (1978). The USGS Solute Transport

Model is a two-dimensional Fortran code for contaminant transport. Flow equations

are solved using a finite-difference method and the method of characteristics is used to

solve solute-transport equations. The purpose of the simulation model was to compute

the concentration of chloride in the Rush Springs/Marlow aquifers at specific places

and time.

The first simulation assumed that the only source of chloride contamination

was the surface disposal pits. The second simulation assumed that chloride



98

contamination was initially caused by surface disposal of brine, but was later

compounded by the injection of brine during secondary recovery operations. Disposal

of brine into the subsurface prior to secondary recovery may have occurred, but no salt

water disposal wells were identified in the vicinity of the Cyril water wells, so this

potential source was not simulated.

Finite-Difference Grid

The simulated area was divided into a finite-difference grid of uniformly

spaced squares (Figure 20). The grid contains 15 columns (x) and 20 rows (y). Each

cell of the grid is 330 feet by 330 feet. By convention, nodes are located at the

centers of the cells of the block-centered grid.

Aquifer Properties

Based on the reported and calculated aquifer coefficients discussed in Chapter

ill, the following aquifer properties were used as input for the computer simulation:

storativity (8) - 0.25; porosity (n) - 0.25; hydraulic conductivity (K) - 25 gpd/ft2
; and

saturated thickness (m) - 365 feet.

Constant head boundaries were used at the perimeter of the grid to represent

underflow or recharge sufficient to maintain a nearly constant water table elevation.

Water table elevation values were assigned to the grid nodes by overlaying the grid on

a water table elevation contour map for the study area (Figure 21).

Initial chloride concentrations of 15 mg/l were input as normal background

concentrations. This value was determined as a result of the evaluation of Rush
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Springs and Marlow water quality analyses described in Chapter IV. The chloride

concentration of disposed formation water was estimated to be 70,000 ppm based on

the average of 32 formation water samples in the Cement Field (Preston 1982).

Recharge and Discharge

Recharge from precipitation was estimated to be 2.5 inches per year. The

recharge from surface disposal of produced formation water was site specific and

recharge (injection) values were assigned to specific nodes which approximately

coincide with the location of the disposal pits. Recharge (injection) rates for the

disposal pits are summarized on Table 10. Surface disposal was assumed to be in

process at the initiation of the simulation (1940) and was discontinued in 1955. The

recharge from subsurface injection of formation water was also site specific and

injection values were assigned to specific nodes which approximately coincide with the

location of the injection wells. Injection rates for the subsurface injection wells are

summarized on Table 11. For the purpose of the simulation, subsurface injection was

commenced in 1970 and discontinued in 1990.

Discharge from the aquifer occurred through pumping of the Cyril water wells.

An average withdrawal rate of 120 gpm was used which was apportioned to the

number of wells actively pumping during the period of simulation. Pumping rates are

summarized on Table 12.
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TABLE 10

RECHARGE RATES FOR SURFACE DISPOSAL PITS

Grid Location Surface Area Seepage Rate Seepage Rate Concentration
x y (sq. ft.) (cu. fi./day) (cu. fi./sec.) (ppm)
2 3 4,800 1.92 2.20E-05 70,000
2 6 24,000 9.60 1.00E-04 70,000
3 2 3,200 1.28 1.50E-04 70,000
3 11 6,400 2.56 3.00E-05 70,000
4 8 3,200 1.28 1.50E-05 70,000
4 9 12,800 5.12 6.00E-05 70,000
4 11 3,200 1.28 1.50E-05 - 70,000
5 8 2,400 0.96 1.00E-05 70,000
6 5 33,600 13.44 1.60E-04 70,000
6 7 20,009 8.00 9.30E-05 70,000
6 11 9,600 3.84 4.40E-05 70,000
8 8 9,600 3.84 4.40E-05 70,000
8 11 6,800 2.72 3.10E-05 70,000
8 14 3,600 1.44 1.70E-05 70,000
9 8 6,400 2.56 3.00E-05 70,000
9 10 3,600 1.44 1.70E-05 70,000
9 13 10,200 4.08 4.70E-05 70,000
10 5 9,600 3.84 4.40E-05 70,000
12 7 9,600 3.84 4.40E-05 70,000
14 7 13,200 5.28 6.00E-05 70,000



TABLE 11

INJECTION RATES FOR SUBSURFACE INJECTION WELLS

WIW Grid Location Injection Rate Injection Rate Concentration
ill x y (gpd) ( Cll. fi./sec.) (ppm)

#8-4 5 1 42,000 6.644E-02 70,000
#25-7 6 5 44,394 7.023E-02 70,000
#37-3 6 10 67,200 1.063E-01 70,000
#51-1 6 15 29,400 4.651E-02 70,000
#53-1 9 13 37,800 5.980E-02 70,000
#58-3 14 7 46,200 7.309£-02 70,000

101

Injection Rate Injection Rate
WIW Grid Location at 5% of Actual at 5% ofActual Concentration

ill x y (gpd) (Cll. ft./sec.) (ppm)

#8-4 5 1 2,100 3.322E-03 70,000
#25-7 6 5 2,220 3.511E-03 70,000
#37-3 6 10 3,360 5.315E-03 70,000
#51-1 6 15 1,470 2.325E-03 70,000
#53-1 9 13 1,890 2.990E-03 70,000
#58-3 14 7 2,310 3.654E-03 70,000



TABLE 12

SIMULATED PUMPING RATES FOR CYRIL WATER SUPPLY WELLS

Grid Location Pumping Rate (gallons per minute)
Well ID x y 1940-1950 1950-1955 1955-1960 1960-1980 1980-1985 1985-1990

AB-I 4 7 60

AB-2 6 8 60

A-I 9 11 60 30
A-2 9 12 60 30
A-3 10 13 30

A-4 (C-2) 11 14 30 40 40

A-5 8 17 40
C-3 11 19 40 40

C-I 12 14 40

~

o
tv
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Calibration

Insufficient field data was available to accurately calibrate the hydraulic head

distribution calculated by the model over the period of simulation. The initial

hydraulic head distribution for the model was based on water table elevations

measured in selected monitoring wells and Cyril water supply wells in July 1991

(Figure 21), therefore this data could not be used for calibration purposes.

Chloride contamination values calculated by the model were generally

calibrated to reported chloride contamination values in the Cyril water supply wells.

An exact calibration was not achieved for the following reasons; the location of the

Cyril wells did not coincide with the nodes of the finite-difference grid and the dates

of the water-quality analyses did not necessarily coincide with the end of the simulated

pumping period.

Seven pumping periods were used in the first simulation: 1940 to 1950; 1950

to 1955; 1955 to 1960; 1960 to 1980; 1980 to 1985; 1985 to 1990; and 1990 to 1991.

The pumping periods were selected to facilitate the calibration of actual chloride

concentrations to modeled chloride concentrations and to allow variation in the

discharge from the Cyril water wells to reflect well abandonment and well

replacement. Surface disposal sources were turned off at the end of the second period

(1950 to 1955).

Eight pumping periods were used in the second simulation: 1940 to 1950;

1950 to 1955; 1955 to 1960; 1960 to 1970; 1970 to 1980; 1980 to 1985; 1985 to

1990; and 1990 to 1991. The pumping periods were selected for the same reasons as
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the first simulation, except that the period from 1970 to 1980 was added to allow for

the commencement of subsurface injection.

Contamination by Surface Disposal

In this simulation, the source of chloride contamination was restricted to the

surface disposal of produced formation water. Simulated chloride contamination at the

end of each pumping period is summarized on Table 13. A chloride isoconcentration

contour map of the simulated chloride concentration at the end of the sixth pumping

period (1990) is presented as Figure 22.

The most complete historical laboratory analytical data exists for Cyril water

supply wells A-I, A-2, and A-4 (C-2), therefore these wells were used for comparison

with the model results for the chloride contamination. Figures 23, 24" and 25 are

graphs of the actual chloride contamination versus the chloride contamination

simulated by the model. A correlation of modeled chloride contamination to actual

chloride contamination was not observed in wells A-I and A-2. In well A-4 (C-2), the

modeled chloride contaminations correlate reasonably well with the actual chloride

contamination, although the modeled values are lower.

Contamination by Subsurface Injection

In this simulation, the source of chloride contamination was the surface

disposal of produced formation water from 1940 to 1955 and the subsurface disposal

of formation water from 1970 to 1990. Six injection wells were selected as source

areas due to reported casing collapses, surface casing leaks, production casing leaks,
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TABLE 13

SIMULATED CHLORIDE CONCENTRATIONS FROM SURFACE DISPOSAL

Year AB AB-l AB-2 A-I A-2 A-3 A-4 A-5 C-l C-3

1945 14 145 316 22 21 16 15 15 15 15
1950 10 407 752 57 32 27 15 15 15 15
1955 9 411 827 1342 709 93 15 14 14 14
1960 8 431 840 1312 667 106 14 14 14 14
1965 7 451 1153 870 973 156 16 14 14 14
1970 6 425 1179 656 714 665 12 14 14 14
1975 5 487 1124 517 397 223 19 15 14 14
1980 4 492 1177 430 372 495 18 15 14 14
1985 5 329 1413 376 391 402 62 14 13 13
1990 6 222 1654 450 382 291 208 13 IS 13
1991 6 223 1640 382 382 290 207 13 16 13

TABLE 14

SIMULATED CHLORIDE CONCENTRATIONS FROM SURFACE
DISPOSAL AND SUBSURFACE INJECTION

Year AB AB-I AB-2 A-I A-2 A-3 A-4 A-5 C-l C-3

1945 14 145 316 22 21 16 15 15 15 15
1950 10 407 752 57 32 27 15 15 15 15
1955 9 411 827 1342 709 93 15 14 14 14
1960 8 431 840 1312 667 106 14 14 14 14
1965 7 451 1153 870 973 156 16 14 14 14
1970 6 424 1181 660 716 665 12 14 14 14
1975 5 487 1045 517 334 227 19 15 14 14
1980 5 493 1181 460 1005 1414 15 15 14 14
1985 6 330 1418 462 1094 2100 106 15 13 13
1990 7 222 1664 527 1157 3280 781 27 18 13
1991 7 85 1652 484 1175 3239 936 28 20 13
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and flows of water to the surface. The injection rate used for each well was 5% of the

injection rate reported in Oklahoma Corporation Commission Document MO 000962.

The sensitivity of the injection rate was determined through several iterations of the

simulation. It was found that execution of the model failed at injection rates of 10%

and greater. This failure is believed to have occurred due to the limitation of the

model to plot concentrations greater than five figures at individual nodes. The 5%

injection rate allowed the model to execute and provided concentrations in general

agreement with actual concentrations. Simulated chloride contamination at the end of

each pumping period is summarized on Table 14. A chloride isoconcentration contour

map of the simulated chloride concentration at the end of the seventh pumping period

(1990) is presented as Figure 26.

Cyril water supply wells A-I, A-2, and A-4 (C-2) were again used for

comparison with the model results for the chloride contamination. Figures 27, 28, and

29 are graphs of the actual chloride contamination versus the chloride contamination

from both simulations of the model. A correlation of modeled chloride contamination

to actual chloride contamination was not observed in wells A-I and A-2. However,

the chloride concentration in this simulation is closer to actual than the concentration

calculated in the first simulation. In well A-4 (C-2), the modeled chloride

contaminations again correlate reasonably well with the actual chloride contamination.

The chloride concentration in the second simulation is closer to actual than the

concentration calculated in the first simulation and the curve of the simulated

concentration data points is similar to the curve of the actual concentration data points.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

Summary

Four aquifer systems are present in the study area: the Duncan Sandstone, the

Chickasha Formation, the Marlow Formation, and the Rush Springs Sandstone. Of the

four identified aquifers, only the Chickasha Formation did not have water supply wells

constructed in the aquifer at the study area. The majority of the ground-water supply

in the study area was attributable to the Rush Springs Sandstone, an unconfined water

table aquifer.

The transmissivity of the Duncan Sandstone, a confined aquifer, ranged from

500 to 1,300 gpd/ft and storativity ranged from 1.0 x 10-4 to 4.6 X 10-4
. The range of

estimates of transmissivity for the Chickasha Formation, also a confined aquifer, were

200 to 2,000 gpd/ft and storativity was estimated to be 1.0 x 10-4
. In the Marlow

Formation, transmissivity was calculated to be 240 gpdlft. Storativity in the Marlow

Formation, which may be semi-confined to confined would be expected to range from

1.0 x 10-3 to 1.0 X 10-4
• The transmissivity of the Rush Springs Sandstone ranged

from approximately 350 to 13,000 gpd/ft, although in the study area a range of 350 to

1,600 gpd/ft would be more representative of the aquifer characteristics. Storativity

values are expected to be approximately equal to specific yield which has been
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reported to range from 0.13 to 0.38 with an average of 0.25.

Ground water in the Duncan Sandstone varies from potable to highly

mineralized with the water quality in Caddo County reported to be high in total

dissolved solids and sulfate. Three distinctive water types are present; temporary

hardness (bicarbonate waters), permanent hardness (sulfate waters), and saline. The

bicarbonate waters generally have lower sulfate concentrations and occur in wells

shallower than 300 feet. Higher sulfate concentrations generally occur in the

permanent hardness and saline water types in wells deeper than 300 feet. The source

rocks for the ground wate~ in the Duncan Sandstone are probably gypsiferous in nature

and cation exchange is likely occurring increasing sodium concentrations and

decreasing calcium concentrations.

Ground water in the Chickasha Formation may be suitable for human

consumption, although in some areas it is highly mineralized. Water types are

typically bicarbonate and source rock analyses indicate shales and dolomites. Natural

softening may be occurring in the aquifer. In the Marlow Formation, ground water

has been described as hard and high in total solids and sulfates due to disseminated

gypsum. Insufficient water quality analyses were available to quantify the ground­

water quality in the Marlow Formation.

Ground water in the Rush Springs Sandstone is suitable for both domestic and

agricultural use and serves as the principal source of ground water in the study areas

as well as in this area of southern Oklahoma. Water quality is generally low in

dissolved solids with varying degrees of hardness. Water types are generally

bicarbonate with some sulfate waters present. Source rock analyses are typical of
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gypsum and dolomite. Several analyses indicated brine sources (NalCl ratios greater

than 1 and IDS greater than 500) and may be indicative of contamination by oilfield

brines. Salt springs could also indicate brines, although generally a sodium source

other than halite was observed in the analyses. Ca/S04 ratios indicate a source of

calcium other than gypsum. Dissolution of calcite or dolomite could be a source of

additional calcium concentrations.

Chloride contamination of the Cyril water supply wells has been well­

documented and has resulted in the abandonment of the Cyril well field. Additionally,

anomalously elevated calcium concentrations were observed in several of the water

supply wells. Both calcium and chloride are associated with oilfield operations. In

the study area, operations in the Cement field commenced in 1916 and are ongoing at

the present time. By the late 1980's, approximately 1,900 wells had been drilled.

Secondary recovery via waterflooding was commenced in 1970. Calcium and/or

chloride contamination can be introduced to the ground water through the use of

drilling fluids during exploration or exploitation phases of reservoir development; the

use of completion or well workover fluids after the wells have been drilled; the

disposal or re-use of produced formation water (brines) either at the surface or through

subsurface injection; and through the improper abandonment of wells at the end of

their usefulness.

The earliest known reports of chloride contamination in the Cyril water supply

wells occurred in 1947. The cause of the contamination was postulated to be from the

use of surface evaporation pits for brine disposal. By 1948, three wells (AB, AB-l,

and AB-2) had been abandoned and by 1966, elevated chloride concentrations were
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detected in five new wells (A-I, A-2, A-3, A-4, and A-5). The drinking water

standard for chloride (250 mg/l) was exceeded in one of these wells in 1970, in two

more wells by 1973, in the fourth well by 1975, and in the last well (A-5) by 1985.

Generally, chloride contamination and calcium concentrations increased markedly in

the early 1970s and the Cyril well field was abandoned in the early 1990s.

Two contamination scenarios were simulated using the USGS Solute Transport

Model. In the first simulation, the source of ground-water contamination was

restricted to surface evaporation pits. The simulation was commenced in 1940, the

sources for the surface disposal were turned off in 1955, and the simulation was

terminated in 1991. The second simulation assumed that the source of ground-water

contamination was caused by a combination of surface disposal and injection of brines.

The second simulation was also commenced in 1940, the sources for the surface

disposal were turned off in 1955, the sources for injection were turned on in 1970 and

turned off in 1990, and the simulation was terminated in 1991. Generally, the results

of the second simulation compared more favorably to actual chloride contamination in

the Cyril water wells than did the first simulation, although neither simulation

provided an exact match with the contaminated Cyril water supply wells.

Conclusions

Based on the evaluation of published ground-water quality analyses using the

computer program WATEVAL, the Duncan Sandstone, Chickasha Formation, Marlow

Formation, and Rush Springs Sandstone are capable of providing sources of ground
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water for agricultural use and, depending on the geochemistry of specific areas, for

domestic use. In the study area, water supply wells have been constructed in the

Duncan Sandstone, Marlow Formation, and Rush Springs Sandstone.

Chloride contamination at the Cyril well field was caused primarily through the

disposal of produced formation water. Possible secondary sources of chloride

contamination are the use of chloride-based well workover/completion fluids (CaCI2

and KCI) and the use of choride-based stimulation fluids (Hel). Computer modeling

results suggest that the abandonment of the Cyril well field was likely due to ground­

water contamination resulting from the combined sources of disposal of brines in

surface evaporation pits and injection of brines associated with secondary recovery

operations. However, the computer simulations did not provide results that correlated

directly with the observed contamination in the Cyril water supply wells.

Based on calcium/sulfate ratios greater than 1, sources of calcium other than

the dissolution of gypsum are common in the Rush Springs Sandstone. Of the

analyses reporting calcium and sulfate, 69 had calcium/sulfate rations greater than 1

and of these, 58 had ratios greater than 2. Only three of the analyses with ratios

greater than 2 were attributable to brines samples. Although these ratios would

indicate that the elevated calcium concentrations observed in the Cyril water wells

could be a result of natural processes, they do not explain the marked increase in

calcium concentrations observed in the early 19705. These increases in calcium

concentrations are likely to have been caused by the use of calcium chloride

completion/well workover fluids and/or the use of hydrochloric acid as a well

stimulation fluid (calcium chloride is a common soluble by-product of acid
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treatments).

The USGS Solute Transport Model can be used to model the flow and

transport of ground-water contaminants. Aquifer coefficients, fate and transport

parameters, and contaminant sources are easily handled by the program. Matrix entry

of recharge, saturated thickness, background chemical concentrations, permeability

(hydraulic conductivity), and potentiometric head distribution facilitate the

configuration of the aquifer and geochemical system to be modeled.

Problems were encountered in using the USGS Solute Transport Model. In

addition to the lack of calibration , the version of the model available to the author

was restricted to 25 rows and columns. The finite-difference grid needed to be large

enough to cover the study area which precluded a grid spacing small enough to allow

the cell nodes to coincide with the observation points (Cyril water supply wells). The

location of the nodes did not coincide with the location of the Cyril wells which may

partially explain the poor correlation between actual and simulated concentrations.

Additional columns and rows would allow a smaller grid to be embedded in a larger

grid and allow the cell nodes to be located in closer proximity to the observation

points.

The USGS Solute Transport Model is a two-dimensional model which did not

allow the sources attributable to the injection wells to be entered at a depth below

surface. The model treated the injections wells in the same manner as the surface

evaporation pits which undoubtably had an effect on the results of the second

simulation and may have resulted in simulated concentrations less than actual. The

use of a three-dimensional model could more accurately simulate the injection wells.
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Contaminant loading assumed that the source areas for the surface evaporation

pits were active throughout the specified pumping period and that the volume of

produced formation water placed in the pits was distributed equally. There was no

way to quantify which pits were actually being used or how much formation water

was actually placed in the pits. Variations to the assumed loading could have a

significant affect on the simulated chloride concentrations.

Ground-water withdrawal rates for the Cyril water supply wells were estimated

based on anticipated water requirements for the current population of Cyril. The

pumping rates required to provide the water supply were apportioned over the

potentially active wells during each pumping period in the simulation. Variations in

pumping rates could have an affect on the capture zones for the individual water

supply wells and the resulting simulated chloride concentrations.

Oilfield operations and secondary recovery have significant potential to impact

ground water. From a volumetric standpoint, the disposal or re-use of produced

formation water has the greatest potential for adverse impacts on ground-water quality.

Other oilfield operations, as well as non-oilfield sources, may have local impacts, but

are not expected to create widespread contamination. Major contaminant pathways are

through infiltration from surface sources, direct injection into the ground water via

absence of protective casing or the impairment of casing and/or annular cement, and

indirect migration of contamination through improperly abandoned boreholes.
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WELL W-PW

PROJECT ~M..;......O~B~I-=-L~~C~YR;.....;...I...;;;:;.L _

TOP OF CASING ELEVATION 1479.93

BOTTOM OF CASING ELEVATION 1360..3

TOT.AL DEPTI1 119.6

GROUND ELEVATION 1477.9

Tnr OF SCREEN ELEVATION 1390.3

TnT ~L LENGTH OF SCREEN 30'

- COORDINATES: NORTH 6842.05

EAST 9486 J2

CASING DIAMETER -.;.6_- _

DATE DRILLED APRIL 4. 1991

DRILLED BY EUBANK DRILUNG CO.
FAIRVIEW, OK.

LOGGED 8~ STREIT

STICK UP 1.9'

OTW: 49'

BENTONITE SEAL (2')

HO/oce 004031

C
E
M
E
N
T

G
R P
A A
V C
E K
L

CASING LOG

8ROVit J Sft.NDSTOtJE

CLAYEY SILT

RED SANDSTONE

TAN SANDSTONE

REO SHALE

_"'i.r;:.L~ LOG
---------------+--=~~~~--~---------I
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\;'i[LL W-6

NORTH __6_8_45_0_3_3__

EAST __9..4....2.....5.....7""-15~_

CASING DIAMETER _---2..----

-COORDINATES:

p('·n0~,1 OF CASING ELEVATION , 360..3

rnr OF CASING ELEVATION __'_47_9_._4_'_

\L DEPTH ' 19.1

l'"'.r 0 lH18 ELE'/ATlCN '_4_7_7_.7___ DATE DRILLED MAY 5, 1991

Tr"~ 0r SCREEtJ ELEVATION _'_3_8_0_.3__ DRILLED BY EUBANK DRtlUNG COo

I

FAIRVIEW, OK.
T'IL\L LENGTH OF SCREEN 2_0_'_-

I LOGGED BY: MAST
~ ----=~~~=========----J

HO/OCC 004030

G
R P
A A
V C
E K
L

900

T·\t·J ~,r\NDSTONE

i \~IiJI~li GrEY
SANDSTONE 2500

2500

RED BROWN SANDSTONE 2500

2500

- .
"j

/---- - sc
I__~I';.: ~L_L_O_G D_U_R_IN_G_O_R_IL_L_I~_JG--+-_--=C:..:...A~S..;.;.IN~G~L:..:;,O~G ~

i 1;1 ~l- .--- = ~E STICK UP 1.7'
I -- ~ ~ REDDISH BROWN 525

. In:
i

- _g SANDY LOAM 460

j-tl- + M

" I .- .' ~__ 3
3

2
7

°5 I~E
r~ GrEY ~ANOSTO~JE

~:~{_~1 D~~L BENTONITE SEAL (2')

'0=: 0-

-1 DTW: 36'
MAY 5, 1991

l --·f~

I')F_~
n =-t =

I .D~ - RED SHALEI __-..........-r

wAr£R- GREYISH 8Rowr~ 2100
~--+----IORIU SANDSTONE

GREYIRED SANDSTONE 2200
SEAMS

RED SANDSTONE W/ 1900
~~sSANDSTONE 1800

RED SANDSTONE W! 1850
THIN SHALE SEAMS

REDDISH GREY SHALE ~ ~~g
DRILLING WATER SC=1225



130

\ I ! ;_1_

f i-'C'JEc-r _~_1_0_B_rL__....;;;..C_Y__R.......;;;;fL~ _

1('r ('F CASING ELEVATION __1_49_S_._99__ COORDINATES: NORTH 8170.40

f ,rc)rvt OF Cf\SI~:G ELEVATIOH , 389.9

I' r·\L OEPTH 106.1

EAST 10 603 74

CASING DIAMETER 5;;;...·· _

STREIT

BENTONITE SEAL (4.8')

Ho/ace 004028

D1W: 46'
APRIL 15, 1991

G
R P
A A
V C
E K
L

LOGGED BY:

DATE DRILLED A;.....,P_R...;..;,.;IL=----4;...a.,._1.:...::9~9~1__

DRI LLE D BY __E_U_8_A_N_K_O_R_IL...;...L;;...\N_G~C;."",.;;;O...;..'__
FAIRVIEW, OK.

149 t.3

SOrT WEATHERED SANDSTONE

DRILLING WATER THICKENED
AT 10'-LARGE AMOUNT OF
FltJES 1~·J SANDSTONE

i,.:'LLE.C' FOX VACUU~t TRUCK­
Plr UIJUIO IS TOO THICK
SC= 160U
SC DISTILLED WATER = 45

BLUE CREY SHALE

SOME CLAY AT 96'

'Jf-JO EL['. ,".11(\( J

--I

~I ) __- 1 _

i
I! \

, I)r SCRF:Fl1 r I F'/t\T10N _t_t_'_9_.9__

I 1,) 'I. LENGTIl OF SCREEN 30_'__

I I I '_OG CASING LOG------ ---.------------t--..;.........,--......--~~------------I

I
, _4,' ,._-.-= 0 _- STICK UP 1,7'

~,,,rJUY CLAY =
1'1)-
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~ r\(~)J ECT _~~J1_0_B_IL~_C:....-Y_R_1 L~ _

LOGGED BY: MAST

EAST 10 632 13

CASfNG DIAMETER 2,,;..-.. _

DATE DRILLED APRIL 4. , 991

DRILLED BY EUBANK DRILLING CO.
FAIRVIEW. OK.

T 'r OF CASING ELEVATION 1497.78

ri'-\fTOM OF CASING ELEVATION 1398.0

-'\L DEPTH 99_._8 -

, 'UNO ELE'j;,rICN 1496.1

1 'P OF SCREEN ELEVATION 1418.0

r.\L LENGTH UF -:;CREEN 20'

_COORDINATES: NORTH __8_8_24_._0_8__

BENTONITE SEAL (2')

STICK UP 1.7'

OTW: 48.2'
MAY 5, 1991

HO/OCC OO~02S

G
R P
A A
V C
E K
L

4000

:p~( C"":t\NDSTONE

DRILLING WATER SC=1250

TAN SANDSTONE 9000

9500

8500

8250

I~f.'['r' SHALE 8000

7500

~'~ll.IGHf GROWN S;\JJOSTONE
3000

r)Arl< PROWN SANDSTONE 5600

I leI ~T gROWN SP..t,IDSTO~JE

-
.~-

-r=-­r-

'0 i __--.--~

SC
DURING DRILLING

nilY. 5,t\NOY RESIDUE 1200
-~_.. c;PEYISI t. OILY SANDSTONE

~(l_ :. - . fAN SANDSTONE 625
>----t:: . (~Rr:( ~~NOSTOt\IE

-~:~ - GRE(lSH WHITE SANDSTONE
., 1 _=_ - GRE'(lSH TAN SANDSTONE , 500

! TAN S;\.NDSTONE
1-

':/J:LL LOG
II~-



AQUIr:ER 'fEST Al' CYRIL, OK

PUlllped \Vcll \\'PW, ()bservation Well W-6
IJistance frolll \Vpv/ to W-6 = 67.4 ft

I)ischa .. ~c Rate = 1~.5 gplll; Saturated thickness = 60 ft

rilllC (Ill i" ) [)ra\vdo\vll, ft Time, min Drawdown, ft

() 0 0 0
I .27? 1 .05
2 9.10 2 .40
3 9.96 3 .70
4 10.29 4 .90
5 1 1.46 5 1.10
6 11.31 6 1.25
7 11.23 7 I .35
8 1 I . I 3 8 1.43
9 11. 10 9 1.50
] 0 10.94 10 1.55
1 5 10.98 1 5 1.75
20 1(). 98 20 1.80
30 I I .25 30 1.85
40 I 1.31 40 1.90
50 I I .31 50 1.95
fiO ] I .19 60 2.00
70 ] I.()() 70 2.00
80 1 1.06 80 2.00
90 1 1.06 90 2.03
too 1 1 .08 100 2.05
120 1 I . 13 120 2.05
150 1 1. I 7 150 2.05
180 1 I . I 9 180 2.10
210 1 t . 19 210 2.10
240 t 1.23 240 2.10
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AQUlrEI~ 'IT:S"r A'r CYRIL, OK

l'UIllped \Vcll IJ-5pw,_ Ohservation Well D-2
I)istance frorn D-5pw to D-2 = 60.5 ft

Discharge Rate = 12 gpm; Saturated thickness = 61 ft

133

-rilllC (r)lin) Dra\\'do\\'Il, ft Time, min Drawdown, ft

()

1
2
3
4
5
6
7
R
9
1()
1 5
2 ()
30
40
S ()

60
7 ()
8 ()
90
100
120
150
tHo
210
240

()

10.9H
15.33
18.0R
19.92
21.25
22.21
23.17
23.71
24.3 J

24.81
27.63
30.38
34.50
36.46
l<J.t14
40.96
42.33
43.67
44.42
45.23
46.75
50.04
52.90
54.29

154.46 t

o
1
2
3
4
5
6
7
8
9
I 0
15
20
30
40
50
60
70
80
90
100
120
150
180
210
240

o
o
.01
.02
.05
.05
.10
.10 I

.15 j
I

.15 I

.17 I

.20 I

.25

.35

.40

.55

.65

.70

.80

.95
1.00
1.20
1.40
1.65
1.80
1.95



AQUIfER TEST AT CYRIL, OKLAHOMA
Water-Table Conditions Drawdown Correction

WELL WPW WELL W-6 WELL D-5PW WELL D-2
-~~--------------- -~~~~------~-~~--~ ------------~~--~- ----~--------~--~-

Measured Corr MeAsured Corr Measured Corr MeAsured Corr
Time Drawdown Drawdown Drawdown Drawdown Drawdown Drawdown Drawdown Drawdown
(min) (ft) (ft) ( ft) (ft) (ft) (ft) (ft) (ft)

-------- ------- -------- --- ...---- ------- -_ ..._--- -_ ...---- -------

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.27 0.27 0.05 0.05 10.98 9.88 0.00 0.00
2 9.10 8.42 0.40 0.40 15.33 13.19 0.01 0.01
3 9.96 9.15 0.70 0.70 18.08 15.11 0.02 0.02
4 10.29 9.42 0.90 0.89 19.92 16.31 0.05 0.05
5 11.46 10.38 1.10 1.09 21.25 17.14 0.05 0.05
6 11.31 10.26 1.25 1.24 22.21 17.73 0.10 0.10
7 11.23 10.20 1.35 1.34 23.17 18.29 O. 10 0.10
8 11.13 10.11 1.43 1.42 23.71 18.60 0.15 0.15
9 11.10 10.09 1.50 1.49 24.31 18.94 0.15 0.15

10 10.94 9.96 1.55 1.53 24.81 19.21 0.17 0.17
15 10.98 9.99 1.75 1.73 27.63 20.69 0.20 0.20
20 10.98 9.99 1.80 1. 79 30.38 21.99 0.25 0.25
30 11.25 10.21 1.85 1.83 34.50 23.68 0.35 0.35
40 11.31 10.26 1.90 1.88 36.46 24.38 0.40 0.40
50 11.31 10.26 1.95 1.93 39.44 25.30 0.55 0.55
60 11.19 10.16 2.00 1.97 40.96 25.71 0.65 0.65
70 11.06 10.06 2.00 1.97 42.33 26.04 0.70 0.69
80 11.06 10.06 2.00 1.97 43.67 26.33 0.80 0.79
90 11.06 10.06 2.03 2.00 44.42 26.48 0.95 0.94

100 11.08 10.07 2.05 2.02 45.23 26.63 1.00 0.99
120 11.13 10. 11 2.05 2.02 46.75 26.88 1.20 1.19
150 11.17 10.15 2.05 2.02 50.04 27.28 1.40 1.38
180 11.19 10.16 2. 10 2.07 52.90 27.46 1.65 1.62
210 11.19 10.16 2.10 2.07 54.29 27.50 1.80 1.77
240 11.23 10.20 2. 10 2.07 54.46 27.50 1.95 1.91

m = 61 ft. m = 79 ft. m = 55 ft. m = 48 ft.

~

~

Correction For.ula: s[corr] = s[meas] - «s[.eas] * s[meas]) 12m> ~
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EVALVAnON OF AQUIFER TEST
at Cyril, Oklahoma

March 24, 1992

Well WPW (pumped well)

139

Q = 13.5 gpm

s = 2.7 feet

m = 61 feet

t = 0.48 minutes

W{u) = 1 (u) = 0.1

T = [114.6 III Q • W(u)] / s = [114.6 * 13.5 gpm • 1] / 2.7 feet = 573 gpd/ft

K = T / m = 573 gpd/ft / 61 feet = 9.4 gpd/ff

Well W-6 (obselVation weill

Q = 13.5 gpm

s = 0.93 feet

m = 79 feet

t = 11 minutes

W(u) = 1

r = 67.4 feet

(u) = 0.1

T = [114.6 * Q • W(u)] / s = [114.6 * 13.5 gpm * 1] / 0.93 feet = 1,664 gpdlft

S = [T • (u) * t] / [2693 * ~]

S = [1,664 gpd/ft • 0.1 * 11minutes] / [2693 * 67.42 feet] = 0.00015 = 1.5E-4

K = T / m = 1,664 gpd/ft / 79 feet = 21 gpdlff



EVALVAnON OF AQUIFER TEST
at Cyril, Oklahoma

MaRh 24, 1992

Well D-5PW (pumped weill

140

Q = 12 gpm

s = 9.9 feet
s (corr) = 3.9 feet

m = 55 feet

t = 1.62 minutes
t (corr) = 0.5 minutes

W{u) = 1 (u) = 0.1

T = [114.6 * Q * W(u)] / s = [114.6 * 12 gpm • 1] / 3.9 feet = 353 gpd/ft

K = Tim = 353 gpdlft 1 55 feet = 6.4 gpdfff

Well D-2 <obselVation weill

Q = 12 gpm

s = 1.25 feet

m = 48 feet

t = 340 minutes

W(u) = 1

r = 60.5 feet

(u) = 0.1

T = [114.6 * Q • W(u)] 1 s = [114.6 * 12gpm * 1] 11.25 feet = 1,100 gpdlft

S = [T * (u) * t] / [2693 • ~]

S = [1,100 gpd/ft • 0.1 • 340 minutes] / [2693 * 60.52 feet] = 0.0038 = 3.8E-3

K = T / m = 1,100 gpd/ft / 48 feet = 23 gpd/ff



APPENDIX B

STIFF DIAGRAMS OF RUSH SPRINGS SANDSTONE ANALYSES
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R21
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P.24
1000 100 10 1 1 10 100 1(00
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