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Abstract

The anatomy of shale is complicated because lithological heterogeneities are present

at a very wide range of scales. Both the mineral and pore space contributions to the

net seismic anisotropy of a shale are still subjects for research because of the extreme

range of scales involved. There is no microscope of any form that allows all the

details of shale to be studied first hand. This research takes what can be determined

by microscopes and other available data, such as elastic properties, and develops a

quantitative approach to understanding the seismic anisotropy of shale caused by

the alignment of clay minerals and pores. In other words, when do the clay platelets

dominate the anisotropy and when does the porosity play a role? This question

is of interest for exploration purposes because the presence of cracks enhances the

permeability. The answer depends upon the saturation of the pores. When the pores

are water-filled, the mineral alignment dominates the anisotropy of the shale. When

the pores are gas-filled, the pore alignment dominates the anisotropy produced by

the mineral alignment to give a new signature to the shale anisotropy. This new

signature includes a dramatic change in the S-wave anisotropy where a singularity

point (a point where the two S-waves have the same velocity) is created giving a

tell-tale signature of the gas.

xiv



The theoretical understanding of the effective media modeling is used to model

Barnett Shale, which is one of the largest natural gas play in the World. After the

estimation of mineralogical assemblage using FTIR- and XRD techniques, forward

modeling is used to calculate the elastic properties of the Barnett Shale facies. In

order to extract the information about the microstructure of shale, the mineralogy-

based elastic constants are matched against laboratory-measured elastic constants

using inverse modeling by applying a minimization function.

Upscaling of heterogeneous elastic media requirs accounting for elastic scattering

and interaction among various elements of the heterogeneous media. Upscaling

method based on pair correlation function approximation provides more accurate

upscaling estimate of velocities at surface seismic exploration scales than Backus

and simple averaging. The differences in the results are attributed to the energy loss

due to elastic scattering.

xv



Chapter 1

Introduction to the Dissertation

It is a well known fact that the earth’s crust is heterogeneous, and that the hetero-

geneities are present at various scales. Seismic wave propagation through subsurface

rocks is one of the most effective means to detect the presence of heterogeneity in

the earth’s crust. The relatively shallow earth’s crust is of prime importance to the

exploration geophysicist because of the presence of hydrocarbons and other minerals

resources. One of the most apparent causes of heterogeneity in hydrocarbon reser-

voirs is the presence of fractures. Sometimes, these fractures can occur in more than

one set. The presence of aligned fractures is not only responsible for making the

medium heterogeneous, but also anisotropic. Traditionally, fractures have been gen-

erally natural, either open or filled. However, fractures can be created artificially to

enhance permeability in unconventional types of reservoirs. This dissertation deals

with the very small scale natural fractures in shale.
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1.1 Shale

Shale comprises almost 75% of the clastic fill of sedimentary basins (Jones and Wang,

1981). Shale is defined as a fine-grained detrital sedimentary rock, formed by the

consolidation of clay, silt, or mud (O’Brian and Slatt, 1990). The term ”shale” is used

for the smallest grain size in the classification of sedimentary rocks. Throughout this

dissertation, shale is considered as an aggregate of clay-sized particles, smaller than

0.004mm (4µm). Shale is commonly composed of a mixture of clay minerals, quartz,

feldspars, carbonate particles, organic material and small amounts of other minerals.

The clay minerals, such as illite, smectite, kaolinite and chlorite are generally aligned,

which is often suggested as a cause of shale anisotropy. The anisotropy in shale is

not only due to clay platelets alignment, but also due to aligned cracks (Schoenberg

and Sayers, 1995; Sayers, 2005) as can be observed in Figure 1.2. A crack is defined

in this dissertation as an ellipsoidal open space having a non-unity aspect ratio1.

The main causes of anisotropy in shale considered in this dissertation include:

1. clay minerals alignment,

2. alignment of cracks,

3. aspect ratio of the cracks,

4. friability factor, and

5. contrast between host matrix and crack-filling materials.

It has been assumed that besides clay minerals, all other silty minerals are present

in polycrystalline form; hence, they can be considered macroscopically, fulfilling

1“The ratio of shorter to longer axes for an ellipse or ellipsoid” by: Sheriff (2002)

2



A

S

S

B

Figure 1.1: SEM photograph showing clay minerals alignment and aligned cracks in
shale. The alignment of the clay minerals is modified around silt minerals (S). The
blue arrows are pointing to small pores, but most of the cracks are along bedding, and
also between the clay platelets. The cavities A and B are created due to dislocation
of a silt size grain and dissolved organic matter respectively.

the condition of isotropy because the grains are randomly distributed and oriented

(Kriessman et al., 1958).

1.2 Dissertation Objective

Since the seismic method is the most commonly used geophysical method in hy-

drocarbon exploration, seismic wave propagation in fractured heterogeneous media

3



remains an interesting area of research, in spite of the fact that this topic has been

extensively studied. In this dissertation, the main focus will be to evaluate various

elements of the shale microstructure, such as clay mineral alignment, crack induced

porosity, friability, and the aspect ratio of the cracks that affect the wave propaga-

tion in fractured shale reservoirs. Attempts to isolate the effect of the many causes

of anisotropy reveal that the overall anisotropy exhibited by shale is controlled by its

microstructure. The fractures embedded in an isotropic and anisotropic host rocks

have a distinct signature on wave propagation. The disappearance of a singularity

point in the shear wave phase velocities when the gas-filled fractures are embedded

in isotropic host rocks, and its appearance in water saturated fractures is distinct.

Though the disappearance and appearance of a “singularity point”1 in shear waves

can be used to differentiate between the presence of gas or water in the fracture

system hosted in an isotropic matrix, the same can not be concluded when the host

rock is anisotropic. To my understanding this has never been reported before in the

literature.

In order to complement the theoretical investigation carried out in the first two

chapters, this dissertation will focuss on a particular shale of interest, the Barnett

Shale. What makes this shale interesting is that it is both a source rock as well as

a reservoir rock for gas. The prolific gas production from the Barnett Shale has led

to a worldwide consideration of the possibility for other potential prolific gas shales.

Data from a number of sources and ultrasonic measurements at room temperature

are used to study the factors that control the sonic velocity structure which includes

any alteration of the core samples as a result of their removal from in-situ conditions.

1A point where two shear wave velocities are equal (i.e., VS1 = VS2).
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Mineral assemblages of the rock samples belonging to nine different sedimen-

tary facies of the Barnett Shale are estimated through the X-ray diffraction method.

These mineral assemblages are used to determine the elastic constants via forward

modeling using a general singular approximation (GSA) method based on the effec-

tive medium theory (Bayuk and Chesnokov, 1997, 1999). These elastic constants are

further used to estimate the aspect ratio of the cracks, friability, crack induced poros-

ity, and the saturation properties and to compare these with the elastic constants

extracted from ultrasonic measurements on the samples in the laboratory.

Lastly, the emphasis will be to compare different methods for measurements,

such as those in the lab at ultrasonic frequencies, to measurements made at sonic,

crosswell and surface seismic frequencies. This is a very important topic if one wishes

to use ultrasonic measurements to predict field exploration velocities.

Two considerations are necessary for a complete understanding of the upscaling

of laboratory measurements. One of these is the “intrinsic attenuation” due to fluid

movement and the other is due to “elastic scattering” from the inhomogeneities

of a formation at different scales of measurement. The aim is to understand the

issue of upscaling due to the elastic scattering in a formation at different scales.

Measurements made in the laboratory on a Barnett Shale core, show strong signs of

heterogeneity indicating that the ultrasonic laboratory measurements require upscal-

ing to account for elastic scattering. The three different methods used for upscaling

the sonic frequency data to the surface seismic scales show a large variation in the

results because each one of them considers different causes for the attenuation.
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1.3 Literature Review

In sedimentary rocks, particularly in shale, the two main causes of seismic anisotropy

are: (i) clay minerals alignment; and (ii) alignment of the cracks/fractures. Both of

these causes are related to the burial history of the rock. A large number of theoret-

ical studies dealing with seismic wave propagation in the cracked media is reported

in the literature (Anderson et al., 1974; Hudson, 1980, 1981, 1986; Nishizawa, 1982;

Schoenberg and Douma, 1988; Cheng, 1981; Thomsen, 1995; Schoenberg and Sayers,

1995; Crampin, 1978; Crampin et al., 1980; Crampin, 1984; Crampin et al., 1986;

Sayers and Kachanov, 1995; Grechka, 2007). These studies can be classified into two

categories: the first category includes those models that deal with small concentra-

tion and smaller aspect ratio of the cracks (also called the flat crack model), and

other models that claim to be valid for the larger concentration and larger aspect

ratios of crack can be clubbed in the second category. Another classification can be

made among the models that have been studied previously based on interaction and

non-interaction approximation. The models which use a non-interaction approxi-

mation, assume a very low concentration of cracks in the background matrix. A

“very low” concentration implies isolated inclusions embedded into a homogeneous

host matrix. In this case if the inclusions are homogeneous and ellipsoidal/elliptical,

the exact solution of the problem can be obtained (Levin and Markov, 2005), but

if the volume concentration of the inclusions is high, the interactions between the

inclusions must be taken into account. In this case the whole system (random inclu-

sions and host matrix) becomes a many-body problem for which no exact solution is
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possible, and the available solutions are based on approximations. The generalized

singular approximation (GSA) method, is one such approximate solution.

Levin and Markov (2005) give a good review of the various effective medium

theories and their physical consideration to obtain the solution. The popular self-

consistent method is based on the effective medium approximation and reduces a

many-body problem to a one-particle situation (O’Connell and Budiansky, 1974;

Budiansky and O’Connell, 1976). A method developed by Norris (1985) called “dif-

ferential effective medium” (DEM), and later used by Hornby et al. (1994) and

Jacobsen et al. (2000) can also be considered to be a version of effective medium

approximation. The main pitfall of these methods is that the effect of previously

modeled inclusions is not considered.

Hudson’s (1980, 1981) models are based on first order scattering theory and

allows the propagating wave to scatter at the surface of penny-shaped ellipsoidal

cracks embedded in an isotropic background matrix. These models are only valid

for a low crack concentration. Based on Hudson model, a series of articles have

been published by Crampin to explain the observed anisotropy in fractured media

(Crampin, 1978, 1984; Crampin et al., 1986, 1980). Hudson’s (1986) model which

allows high order (second) scattering, predicts high moduli with crack density larger

than 0.1 (Cheng, 1981).

The Thomsen (1995) model claims to be valid for a higher degree of crack concen-

tration to estimate the elastic constants of cracked media using a self-consistent ap-

proach. This approach, however, takes into account the interaction of the main wave

field in a heterogeneous media, but assumes a single heterogeneity in the equivalent
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homogeneous medium. Schoenberg and Sayers (1995) suggest that the effective com-

pliance tensor of the fractured rock can be expressed as the sum of the background

matrix compliance and the compliance of each set of the fractures. The linear-slip

interface model of Schoenberg and Douma (1988) considers all types of fracture

anisotropy in a general anisotropic elastic background matrix for relatively high as-

pect ratio (0.03) and low crack density (= 0.05). However, their model is based on

the single scattering theory. Recently, Sayers (2005) analyzed the anisotropy of shale

due to alignment of cracks and clay minerals. The central hypothesis of Schoenberg

and Sayers (1995) and Sayers and Kachanov (1995) is that the effective compliance

tensor of the fractured rock can be expressed as the sum of the individual compli-

ance tensors. Grechka (2007) discusses the effect of multiple cracks in transversely

isotropic media with a vertical axis of symmetry (VTI) but the analysis is valid only

for the small concentration of cracks, because of non-interacting approximation of

cracks.

In this dissertation, several types of shales are modeled using the GSA method,

which allows arbitrary crack concentration and aspect ratio of the inclusions in the in-

teracting media. The models deal with angle dependence of seismic wave velocity re-

sulting from random, horizontal and vertically aligned cracks in isotropic/anisotropic

background matrix. To check the robustness of the methodology, high values of the

crack density are modeled to observe their effect on seismic wave propagation.

The second part of the dissertation is an analysis of three different types of seismic

upscaling methods of elastic media. Upscaling of the elastic properties is necessary

to integrate data obtained at different scales. Technological advancements have led

to the acquisition of data at various frequencies to improve seismic imaging. The
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integration of data acquired at different frequencies is necessary to accomplish this

task.

The classical work related to upscaling of heterogeneous media can be found in

Postma (1955) Rytov (1956), Backus (1962), Shermergor (1977), Berryman (1979),

Schoenberg and Muir (1981), Bayuk et al. (2003), and Vikhorev (2005). Backus’s

(1962) method of upscaling of thinly layered medium where individual layers are

isotropic, is based on a long wavelength approximation; the physical realization of

scattering attenuation is not considered. Shermergor (1977) and Schoenberg and

Muir (1981) generalized the Backus formulation to allow individual layers to be

anisotropic.

Shermergor (1977), Bayuk et al. (2003), and Vikhorev (2005) formulations of

upscaling of the heterogeneous media are based on pair correlation and multi-point

correlation approximation. The pair correlation approximation allows all the possi-

ble interaction between any pair of the heterogeneities present in the medium. The

multi correlation approximation allows all the possible interaction that can take

place in a heterogeneous medium due to all heterogeneities. The solution of the

Green’s function in heterogeneous media is based on the Dyson series. In this case,

the calculation of the Green’s function requires the summation of the infinite terms

of the Dyson series. These methods consider different physical phenomena that occur

during the wave propagation in heterogeneous media. The results show significant

difference in elastic properties obtained by different upscaling methods.
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1.4 Dissertation Organization

The dissertation is in two parts. Part one deals with the wave propagation in frac-

tured anisotropic media. The comparison of different seismic upscaling methods is

discussed in part two. The salient features of each chapter are organized as follows.

Chapter 2 introduces four different geological models of shale in which aligned

/random cracks are embedded in the isotropic/anisotropic host matrix. As a result,

these models exhibit different anisotropic symmetries. The most common minerals

present in shale are discussed along with their elastic constants, density, and phase

and group velocities. The behavior of elastic waves is studied for cracks filled with

either gas or water. The mathematical background of the technique used in modeling

is discussed. The quantitative analysis of crack-induced anisotropy and clay mineral-

induced anisotropy is presented in detail. The results are analyzed and discussed in

terms of Thomsen’s parameters.

Chapter 3 discusses the effect of the clay mineral alignment, the aspect ratio

of the crack, and the friability factor on anisotropy. The gap that exists between

model-II and model-III (discussed in Chapter 2) is bridged. The question of what

amount of crack-induced porosity is sufficient to dominate the clay mineral-induced

anisotropy is investigated. The volume concentration of the aligned clay minerals

required to exhibit anisotropy in the presence of aligned cracks is quantified.

Chapter 4 deals with the calculation of elastic constants by forward modeling us-

ing mineral assemblage of the rock samples estimated by X-ray diffraction technique

and FTIR. Rock samples belonging to nine different facies were especially designed
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in such a way that the full elastic constants can be extracted for VTI symmetry us-

ing ultrasonic laboratory measurements. Inverse modeling is carried out to extract

the information about the microstructure of the rock samples.

Chapter 5 compares three different methods of upscaling. The main features of

these methods relating their physical considerations, and associated mathematical

background are discussed. The concept of the running window to calculate frequency

dependent elastic properties is explained. Upscaling methods based on pair corre-

lation function approximation is compared with Backus averaging which does not

account for elastic scattering.

Chapter 6 outlines the main conclusions drawn from this research and points out

topic for future investigations.

Some of the important mathematical formulations which are helpful in under-

standing the physical characteristic of the elastic waves are included in the Appen-

dices.
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Chapter 2

Mathematical Modeling of Shale to Distinguish

Saturation Properties

In this chapter shale anisotropy is modeled to account for alignment of clays and gas

or water- filled cracks needs quantitative evaluation. The shale anisotropy in terms

of clay mineral alignment and gas/water- filled aligned cracks requires a quantitative

analysis. The behavior of P- and S- waves is analyzed when gas- and water-filled

cracks are embedded in a host matrix are randomly, horizontally- and vertically

aligned. The host matrix can be either isotropic or anisotropic. When the host ma-

trix is isotropic, the presence or absence of a singularity point in shear waves can be

used to distinguish between water-filled and gas-filled aligned porosity respectively.

If the host matrix is anisotropic, like shale, the behavior of elastic waves depends on

the concentration, alignment, aspect ratio, and connectivity of cracks. Quantitative

investigation shows that even a small concentration of cracks having low stiffness

is sufficient to dominate anisotropy resulting from clay mineral orientation. The

models use published mineralogy and clay platelet alignment data along with other

micromechanical measurements. The distinction between the models is based upon
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the alignment of the minerals and the alignment and orientation of the gas-filled

cracks. Then the effective media modeling is used to predict the elastic properties of

the shale and to identify the dominant contributions to the shale anisotropy. These

results have important applications where the seismic is aimed at predicting the

maturity state of the shale.

2.1 Introduction

Shales are the most common rocks in sedimentary basins and occur as cap rocks,

hydrocarbon-bearing reservoir rocks, and fluid flow barriers. The conventional way

(without anisotropy consideration as in the case of sandstone reservoirs) to charac-

terize shales generally fails because of their inherent anisotropy due to clay mineral

alignment. Accurate seismic data processing, seismic imaging, and interpretation

of AVO anomalies need to account for shale anisotropy. The two main causes of

anisotropy in shale are due to partial alignment of clay platelets and microcracks

(Tosaya and Nur, 1982; Johnston, 1987; Schoenberg and Douma, 1988; Douma, 1988;

Vernik and Nur, 1990; Hornby et al., 1994; Christensen and Johnston, 1995; Sayers,

2005).

Clay minerals in shale generally show preferential orientation, though this does

not happen in all depositional environments (O’Brian and Slatt, 1990). The orienta-

tion of clay mineral alignment is a function of many factors, indicating depositional

environment, state of stress and, diagenesis. Fracture patterns in shale are depen-

dent on the state of stress and their mechanical properties, such as the stiffness of

the shale. Multiple fracture sets observed in an outcrop are due to the changes in
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stress directions over geologic time. Figure 2.1 shows some of the most common

combinations of the host rock matrix and the fractures. For simplicity it is assumed

that the shale anisotropy is due to the clay mineral alignment and crack alignment.

The main goal is to quantify these two causes of shale anisotropy. In other words,

what concentration of aligned cracks would be sufficient to dominate the intrinsic

anisotropy in shales.

Figure 2.1: Schematic representation of four different types of shale models used to
study shale anisotropy. Cyan ellipses represent fractures (or cracks) that are ran-
domly distributed in model-I and aligned in models (II-IV). Model-I: randomly dis-
tributed cracks in aligned clay minerals matrix, Model-II: horizontal aligned cracks in
randomly oriented clay minerals; Model-III: horizontal aligned cracks in aligned clay
minerals matrix; Model-IV: vertical aligned cracks in aligned clay minerals matrix.
Modified from (Hornby et al., 1994)
.
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Through the construction of theoretical models in which the alignment of miner-

als and the orientation of microcracks can be controlled, the separate contributions of

preferential mineral alignment and the orientation of microcracks to the anisotropy

can be estimated ( Figure 2.1). In model-I, clays are preferentially aligned and the

cracks occur randomly, while in model-II aligned cracks are embedded in randomly

distributed clays. Model-I and model-II are constructed to isolate the effect of clay

mineral alignment and crack alignment in shale anisotropy. In model-III both clay

minerals and cracks are aligned to provide their combined effect on shale anisotropy.

In this model the effect of varying crack’s concentration on shale anisotropy will be

examined. Model-IV considers vertical cracks in a horizontal aligned clay mineral

matrix (VTI host matrix). The resulting effective symmetry for this arrangement is

orthorhombic. These models are used to determine the relative importance of these

two main causes of shale anisotropy.

Clay mineral-induced anisotropy in shales are often cited as the underlying cause

of their extreme anisotropy, are scarce (Christensen and Johnston, 1995). Hornby

et al. (1994) calculate effective elastic constants as a function of porosity using

self-consistent and differential effective medium theory. Their starting matrix is

isotropic and anisotropy is due only to aligned cracks. The models in this study

start with an anisotropic matrix which accounts for clay mineral alignment and

cracks are added as an additional factor to be modeled. The models will separately

study the effects of gas-filled and water-filled cracks. Water-filled and gas-filled

cracks for different crack porosity have a direct effect on phase velocity (Tiwary et

al., 2007b). Bayuk and Chesnokov (1999) compare many effective media modeling

methods with the experimental data of Rathore et al. (1995) and conclude that
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the GSA method provides a better fit than other effective media modeling methods

developed by Eshelby (1957), Brown and Corringa (1975) Hudson (1980, 1981),

Nishizawa (1982) and Thomsen (1995). While all effective media solutions are based

on approximations, the GSA provides the best approximation for the explanation of

experimental data (Bayuk and Chesnokov, 1997, 1999).

Sparkman (2006) studied four different models of shale to analyze anisotropy

induced by clay mineral alignment and cracks (Figure 2.1). This work differs from

Sparkman (2006) who used single crystal illite stiffness tensors as the matrix to es-

timate effective elastic constants. The models in this study use an illite-rich clay

stiffness tensor which has a considerably lower value than the single crystal of illite

(Bayuk et al., 2007b). Another significant difference from Sparkman’s (2006) model-

ing is that he does not quantitatively analyze the amount of crack induced porosity

required to dominate the anisotropy exhibited due to clay mineral alignment at a

given aspect ratio (χ) and friability =, an empirical parameter that defines the cracks

connectivity.

2.2 Common Minerals in Shale

Although shale can be classified as an aggregate of any mineral with grain size

smaller than 0.004mm, the samples analyzed during this research work consist of

quartz, calcite, dolomite, siderite, pyrite, apatite, orthoclase, albite and, oligoclase in

addition to illite, smectite, kaolinite, chlorite and other mixed clay minerals. Tables

2.1 and 2.2 present the elastic constants and density, as well as the symmetry system

of most common shale minerals.
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Table 2.1: Elastic constants and density of commonly found minerals in shale. Ref-
erence for the elastic constants of different minerals are included in Table 2.2.

Cij Quartz Calcite Dolo- Albite Clay-water Chlo- Kaoli- Illite-
mite composite rite nite rich clay

C11 86.0 144.5 205.0 74.0 23.66 181.76 171.52 127.387
C12 7.4 57.1 71.0 36.3 12.3 56.76 38.88 48.067
C13 11.91 53.4 57.4 37.6 3.05 20.34 27.11 28.369
C14 -18.04 -20.5 -19.5
C15 13.7 -9.1
C22 86.0 144.5 205.0 137.5 23.66 181.76 171.52 127.387
C23 11.91 53.4 57.4 32.6 3.05 20.34 27.11 28.369
C24 18.04 20.5 19.5
C25 -13.5 -10.4
C26

C33 105.75 83.1 113.0 128.9 8.52 106.77 52.63 53.695
C34

C35 -19.1
C44 58.2 32.6 39.8 17.2 0.83 11.41 14.76 14.411
C45

C46 -13.7 -1.3
C55 58.2 32.6 39.8 30.3 0.83 11.41 14.76 14.411
C56 -18.04 -20.5 -19.5
C66 39.3 43.7 67.0 31.1 5.71 62.5 66.32 39.66
ρ 2.65 2.7 3.795 2.62 2.17 2.69 2.52 2.70

Microscopic and SEM pictures analyses provide an estimate of mineral orienta-

tion. Recently, Wenk and Houtte (2004); Wenk et al. (2007); Lonardelli et al. (2007)

used a new high-energy synchrotron X-ray method to provide a more quantitative

estimate of mineral phase proportion, crystal structure, grain size and preferred ori-

entation of minerals present in the sample. Wenk et al. (2007) and Lonardelli et

al. (2007) claim in their analysis of illite-rich shale, that only clay minerals were

aligned. This observation will be used to support the shale models considered for

the analysis.
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Table 2.2: Most common minerals present in shale and their symmetry system.

Mineral Symmetry System References
Quartz Trigonal Belikov et al. (1970)
Calcite Trigonal Peselnick and Robie (1963)
Dolomite Trigonal Bass (1995)
Albite Monoclinic Belikov et al. (1970)
Illite-rich clay Hexagonal Bayuk et al. (2007b)
Chlorite Hexagonal Katahara (1996)
Kaolinite Hexagonal Katahara (1996)
Clay water composite Hexagonal Bayuk et al. (2007a)

2.3 Phase and Group Velocity of Common

Minerals in Shale

This section, the phase velocity of shale samples belonging to different symmetry

systems due to the alignment in different orientations of clay minerals and cracks

is analyzed. The velocity at which a single plane wave propagates in a particular

direction is called the phase velocity of the wave. When multiple plane waves inter-

fere, the group velocity of a wave is observed. The phase velocity can be thought of

as the plane wave velocity for a single frequency, and a single direction. The group

velocity can be thought of as a constructive interference of waves with different phase

velocities.

If the variation of the plane wave velocities is all in the same direction, the group

velocity is said to represent a dispersive medium because each frequency travels with

a different velocity. If the variation of the velocity occurs in different directions,

this type of velocity variation is called anisotropy. Sometimes the group velocity

for the anisotropic case is called “ray” velocity. If the medium is both dispersive
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and anisotropic the group velocity is sometimes called “energy” velocity. The phase

velocity and the group velocity of a wave can be defined in terms of angular frequency,

ω, and wavenumber, k:

Vphase =
ω

k
, (2.1)

and

Vgroup =
∂ω

∂k
. (2.2)

Understanding the difference between group and phase velocity is imperative in

analyzing laboratory measurement. Dellinger and Vernik (1994) numerically show

that all pulse transmission experiments measure phase velocity, even when the sepa-

ration between the transducer is more than three times the width of the transducers.

The complete explanation of phase and group velocity is given in Appendix A.

Quartz, dolomite, calcite, kaolinite, chlorite, smectite, and illite are anisotropic

shale minerals that occur as polycrystalline aggregates, which may behave isotropi-

cally (Chung et al. (1963)) because the grains are randomly distributed and oriented.

Figures 2.2, 2.3 and 2.4 show the phase and group velocities of quartz, calcite,

dolomite, albite, kaolinite, chlorite, clay-water composite and illite-rich clay. Figures

2.2, 2.3 and 2.4 show that all minerals are anisotropic in their single crystal form,

but their phase and group velocities are different. The most noticeable feature is

the “cusp” in the qSV-wave (green) of the group velocity. The cusps in the group

velocity of qSV-wave propagation are due to the rapid change of the velocity at the

propagation direction near the cusps. This happens because the qSV-waves along

one ray path will suffer interference by other neighboring qSV-waves.
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Figure 2.2: Phase velocity of the most common minerals in shale. Color-coded Vp

(blue), Vfast (green) and Vslow (red) are in XZ plane. The source of elastic constants
CIJ are shown in Table 2.2. The angle (θ) is measured from the axis of symmetry.

20



2 1 0 1 2

2

1

0

1

2

velocity (ft/s)

v
e
lo

c
it
y
 (

ft
/s

)

Dolomite

2 1 0 1 2

2

1

0

1

2

velocity (ft/s)

v
e
lo

c
it
y
 (

ft
/s

)
Quartz

2 1 0 1 2 

2

1

0 

1 

2 

Albite

velocity (ft/s)

v
e
lo

c
it
y
 (

ft
/s

)

2 1 0 1 2

2

1

0 

1

2

velocity (ft/s)
v
e
lo

c
it
y
 (

ft
/s

)

Calcite

Figure 2.3: Phase velocity (dashed line) and group velocity (solid line) of dolomite,
quartz, albite and calcite minerals in XZ-plane. Blue = P-wave, green = S1 and red
= S2.
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Figure 2.4: Same as Figure 2.3 but for minerals kaolinite, chlorite, clay-water com-
posite and illite-rich clay.
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2.4 Wave Propagation in Cracked Media

Wave propagation in cracked media has been studied extensively by many workers,

but for limited aspect ratios and crack-induced porosity. The compliance of the

crack depends on aspect ratio. The smaller the aspect ratio the larger will be the

compliance of the crack. State of stress changes with the depth in the subsurface

rocks and hence the aspect ratio of the cracks also changes, provided the rocks are

normally pressured. A wide range of the aspect ratio and crack-induced porosity is

modeled in this study because each rock behaves differently. Eshelby (1957) gives

the static solution based on change in strain field inside a single ellipsoidal inclusion

in an isotropic matrix. Hudson (1980, 1981) estimates effective elastic moduli of a

medium consisting of thin, penny-shaped ellipsoidal cracks from scattering of the

waves on the crack’s surface. The Hudson model is valid for small concentrations of

cracks having a small aspect ratio. Thomsen’s (1995) model, valid for a higher degree

of crack concentration, calculates the elastic constants of cracked media using a self-

consistent approach. The self-consistent approach takes into account the interaction

between heterogeneities within the medium and it assumes a single heterogeneity

in an equivalent homogeneous medium. Nishizawa (1982) uses a numerical method

to calculate the elastic constants of a cracked homogeneous matrix beginning with

a single crack in the matrix and then replacing the initial matrix by the modified

matrix to include successively more and more cracks, with no theoretical limit on

the crack concentration. The effective media modeling methods mentioned above

are not based on the many-body problem, because they either consider a small

concentration of cracks, or the cracks are included in steps ignoring the interaction
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with previously included cracks. In contrast the GSA method computes the effective

elastic constants of cracked anisotropic media for arbitrary crack concentration and

aspect ratio. The GSA formulation takes into account the interaction between all

heterogeneities (cracks) (Bayuk and Chesnokov, 1999).

2.5 Effective Media Modeling

2.5.1 Macroscopic Effective Properties of Random Heterogeneous

Arbitrary Anisotropic Media

Following Shermergor’s (1977) representation, stress, strain and stiffness tensors in

random heterogeneous arbitrary anisotropic media are expressed in the following

forms:

σij(x) = 〈σij〉 + σ
′

ij(x),

εij(x) = 〈εij〉 + ε
′

ij(x), and

Cijkl(x) = 〈Cijkl〉 + C
′

ijkl(x) (2.3)

where σij(x), εij(x), and Cijkl(x) represent stress, strain and the stiffness tensors,

respectively. The angle bracket 〈 〉 denotes the average value over a representative

volume within which the medium is statistically homogeneous. σ
′

ij(x), ε
′

ij(x) and

C
′

ijkl(x), represent the fluctuations from the average value in stress, strain, and

stiffness tensors at an arbitrary point x in a medium.
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In random heterogeneous arbitrary anisotropic media, Hooke’s law is given by

σij(x) = Cijkl(x)εkl(x). (2.4)

Substituting equation 2.3 into equation 2.4 and averaging the results

〈σij〉 = C∗
ijkl〈εkl〉, (2.5)

where, C∗
ijkl is the effective stiffness tensor.

Assuming that the relation between ε and 〈ε〉 can be written in the form

ε
′

ij(x) = Qijkl〈εkl〉, (2.6)

or

ε
′

ij(x) =

∫

Qijkl(x − x
′

)〈εkl(x)〉dx
′

, (2.7)

where, Q is a functional (an integral operator) that depends an interaction between

different elements of structure. In this study it is an interaction between the inclu-

sions. The calculation of the functional, Q, leads to a many-body problem (to be

discussed in Chapter 5) that can can expressed as

C∗
ijkl = 〈Cijkl〉 + 〈C

′

ijmnQmnkl〉. (2.8)

Levin and Markov (2005) state that there is no analytical solution of the ‘many-

body problem’. However, there are several different approximations to find the
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effective stiffness tensor defined by equation 2.8. In general, the effective and the

average stiffness tensors are not equal in random inhomogeneous medium.

Equation 2.6 shows that the problem of determination of the effective stiffness

tensor is reduced to determining a functional Q, relating local and average strains.

If the wavelength is much greater than the inclusion size, the expression for

the static effective elastic constants in equation 2.8, can be estimated using the

equilibrium equation

∂σij(x)

∂xj

= −fi, (2.9)

where, fi is the the body force density function.

The stiffness tensor is represented in the form C = C0 + C
′

, where C0 is a

homogeneous comparison body with known properties and C
′

is the fluctuation

about the comparison body. Using equation 2.3

∂

∂xj

C0
ijklεkl(x) +

∂

∂xj

C
′

ijkl(x)εkl(x) = −fi, (2.10)

where, εkl are the component of the strain tensor, C0
ijkl and C

′

ijkl are the elasticity

tensor of the comparison body and the fluctuation of the elasticity tensor from the

comparison body respectively.

The derivation of the GSA method formula is based on the difference in dis-

placements between a heterogeneous body and the comparison body subjected to

an applied force under the same boundary conditions. The displacement Ui(x) is

expressed in terms of mean, U0
i (x), and fluctuations U

′

i (x)

Ui(x) = U0
i (x) + U

′

i (x), (2.11)
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where U0 represents the displacement of the comparison body, and is a solution for

equation 2.10 when C
′

= 0.

Following Shermergor (1977) equation 2.11 can be expressed as

U
′

i (x) =

∫

G0
ki(x − x

′

)
∂

∂x
′

l

C
′

klmn(x
′

)Um,n(x
′

)dx
′

, (2.12)

where G0
ik is Green’s function, which describes the properties of the comparison

body.

Substituting equation 2.12 in to equation 2.11, gives

Ui(x) = U0
i (x) +

∫

G0
ki(x − x

′

)
∂

∂x
′

l

C
′

klmn(x
′

)Um,n(x
′

)dx
′

. (2.13)

Replacing index, i, with index, j gives

Uj(x) = U0
j (x) +

∫

G0
kj(x − x

′

)
∂

∂x
′

l

C
′

klnm(x
′

)Un,m(x
′

)dx
′

. (2.14)

Applying the operator ∂
∂xj

to equation 2.13 and ∂
∂xi

to equation 2.14, and adding

the results, Bayuk and Chesnokov (1997) obtain an equation for the strain tensor

εij(x) = ε0
ij +

1

2

∫
[(

G0
ki,j(x−x

′

)+G0
kj,i(x−x

′

)

)]

∂

∂x
′

l

C
′

klmn(x
′

)εmn(x
′

)dx
′

, (2.15)

or,

εij(x) = ε0
ij +QijklC

′

klmnεmn(x), (2.16)
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where

Qijkl(x−x
′

)Cklmn(x
′

)εmn(x
′

) ≡
1

2

∫ [

Gki,jl(x−x
′

)+Gkj,il(x−x
′

)

]

Cklmn(x
′

)εmn(x
′

)dx
′

.

(2.17)

Equation 2.17 represents the same functional that was previously used in equation

2.6.

2.5.2 Formal Solution of the Effective Elastic Tensor

Rewriting equation 2.16

εij(x) = ε0
ij +QijklC

′

klmnεmn(x), (2.18)

and, using the rule of permutation of the indices gives

εij(x) = Iijmnεmn(x). (2.19)

From equations 2.18 and 2.19

Iijmnεmn(x) = ε0
ij +QijklC

′

klmnεmn(x), (2.20)

or
[

Iijmn −QijklC
′

klmn

]

εmn(x) = ε0
ij. (2.21)

Using equation 2.21 gives

εmn(x) = Dmnijε
0
ij ,
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where

Dmnij ≡

[

Imnij −QmnklC
′

klij

]−1

.

The formal solution of equation 2.18 is thus

εmn(x) =

[

Iijmn −QijklC
′

klmn

]−1

ε0
ij . (2.22)

Averaging equation 2.22 gives

〈

εmn(x)

〉

=

〈

[

Imnij −QmnklC
′

klij

]−1
〉

ε0
ij (2.23)

where Iijkl = 1
2
(δikδjl + δilδjk) is the unit tensor,

δij =



















0 if i 6= j,

1 if i = j.

is the Kroneker delta, and

〈 〉 denotes the average value.

Equation 2.23 represents the average strain of the medium that can be obtained

by averaging the expression 2.22.

Multiplying equation 2.23 by C, and expressing the results in tensor form gives

〈Cε〉 =

〈

C
[

I − QC
′
]

〉

ε
0
. (2.24)

Equation 2.5 can also be written without indices:

〈

Cε
〉

= C∗〈ε〉. (2.25)
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Comparing equation 2.24 with equation 2.25 gives

C∗〈ε〉 =

〈

C
[

I − QC
′
]

〉

ε
0
. (2.26)

From equation 2.23

ε
0 =

〈

[

I − QC
′
]

−1

〉

−1〈

ε

〉

. (2.27)

Substituting equation 2.27 into equation 2.26, provides the following final expression

C
∗

=

〈

C
(

I − QC
′
)

〉〈

(

I − QC
′
)−1

〉−1

. (2.28)

Equation 2.28 gives the exact solution of the problem of the effective elastic

tensor for a randomly inhomogeneous arbitrary anisotropic medium and coincides

with Shermergor’s (1977) equation 9.12 (p.165). The operator Q is an integral

operator over coordinates. The GSA method uses equation 2.28 to estimate the

effective elasticity tensors that provide the best fit to experimental data (Bayuk et

al., 1998, 1999).

2.6 The General Singular Approximation (GSA)

Method

The General Singular Approximation (GSA) method was first suggested by Shermer-

gor (1977) and Willis (1977). It is assumed that the inclusions are all of ellipsoidal
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shape. The operator Q(x−x
′

) in equation 2.28 is replaced by a local operator g(x),

which reflects the local interaction:

Qijkl(x − x
′

) = g
ijkl
δ(x − x

′

), (2.29)

where

g
ijkl

(x) =

∫

dx
′

Qijkl(x − x
′

). (2.30)

In equation 2.29, the integral operator Q becomes a constant tensor at point

x. Shermergor (1977) showed that g can be expressed in a homogeneous isotropic

medium as,

g
ijkl

= −
1

3µ0

[

Iijkl −
1

5

(

λ0 + µ0

λ0 + 2µ0

)

δijkl

]

, (2.31)

where

(

λ0+µ0

λ0+2µ0

)

is the comparison body and λ, µ are the Lamé’s parameters. The

term δijkl is not the usual Kronecker’s delta as it contains four free independent

indices, but can be represented in terms of Kronecker’s delta as follows:

δijkl ≡ δijδkl + δikδjl + δilδjk, (2.32)

where i, j, k, l = 1, 2 and 3.

For an effectively homogeneous isotropic two phase medium, the stiffness param-

eters K
∗

and µ∗ can be found using Shermergor (1977):

1

K∗ + b
0

K

=
v1

K1 + b
0

K

+
v2

K2 + b
0

K

, (2.33)
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and

1

µ∗ + b0µ
=

v1

µ1 + b0µ
+

v2

µ2 + b0µ
, (2.34)

where v1 and v2 are the volume concentration of two phases. b0K and b0µ can be

expressed in terms of the bulk and shear moduli as

b0K =
4

3
µ0, (2.35)

and

b0µ =
µ0(9K0 + 8µ0)

6(K0 + 2µ0)
. (2.36)

In general anisotropic media the local operator g takes a more complicated form

(Shermergor, 1977) than shown in equation 2.31, and is summarized in Appendix

B. Also, for general elastic media, equation 2.28 can be rewritten as:

C
∗

=

〈

C
(

I − QC
′
)

〉〈

(

I − QC
′
)−1

〉−1

. (2.37)

If the medium is statistically homogeneous, following the ergodicity hypothesis the

volume average can be expressed as a statistical average. If the heterogeneities differ

in their elastic properties, shape, and orientation, equation 2.37 can be written as

C∗ =

{ n
∑

i=1

viCi

∫

Pi(χi; θ, φ, ψ)
[

I − gi(Ci −C0)
]−1

sin θ dχi dθ dφ dψ

}

×

{ n
∑

i=1

vi

∫

Pi(χi; θ, φ, ψ)
[

I − gi(Ci − C0)
]−1

sin θ dχi dθ dφ dψ

}−1

.(2.38)

32



where, vi and Ci are the volume concentration and the elasticity tensor of the ith

component respectively. I is a rank four unit tensor. The tensor C0 is the elasticity

tensor of the so-called comparison body, which can be arbitrarily chosen. The tensor

g is controlled by the properties of the comparison body and the inclusion shape. χ

is the aspect ratio of the inclusions, and θ, φ and ψ are the three Euler angles.

2.7 Friability Factor

In clastic sedimentary rocks, particularly in shale, only some of the pores and cracks

are interconnected, such that the permeability of the rocks is low, even though the

porosity is high (e.g. chalk). To model this type of rock, an empirical dimensionless

parameter, friability (=), is introduced in the formulation to reflect the connectivity

of the crack system. The value of friability ranges between 0 to 1, where (=) =0

means all the cracks are isolated and (=) = 1 means all cracks are connected. Fri-

ability quantifies the connectivity of the cracks, and is used to choose the stiffness

of the comparison body (Cc). Bayuk and Chesnokov (1997) define the stiffness of

the comparison body Cc

Cc = Cm(1 −=) + CI=, (2.39)

where, Cm and CI are the elasticity tensor of matrix minerals and inclusions respec-

tively, and = is the friability factor.

This form of the comparison body helps to achieve upper and lower Hashin-

Shtrikman bounds when = is equal to 0 and 1, respectively. The Hashin-Shtrikman

bounds are the upper and lower limits of the elastic constants for a composite de-

pending upon the microgeometry of the composite (Mavko et al., 1998).
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Xu and White (1996) proposed an alternative comparison body Cc = Cm(1 −

φ=) + CIφ= where φ is the volume concentration of cracks, Cm and CI are the

elasticity tensor of matrix minerals and inclusions respectively, and = is the fri-

ability factor. Unfortunately, this form of the comparison body does not give the

lower Hashin-Shtrikman bound. For this reason, equation 2.39 will be used for the

comparison body.

2.8 Modeling Steps

A simplified view of shales is that they are composed of matrix and inclusions. These

inclusions can be either solid silty grains (quartz) or other granular materials (pyrite,

dolomite, calcite, feldspar, etc.), or pores and fractures filled by gas, oil or water,

or a combination of both. Hornby et al. (1994) assumed that the clay minerals

matrix should be modeled first, and the inclusions should be introduced then in a

second step . Furthermore, the soft component of a composite should be modeled

first followed by a relatively harder component. Thus, the clay minerals matrix is

adopted as the starting point when modeling shale. The following workflow is used

in this study to model shale:

• approximate the matrix properties using the illite-rich clay mineral effective

elastic constants;

• introduce all other minerals (quartz, calcite, dolomite, pyrite, feldspar, etc.)

as inclusions and estimate the effective elastic constants of the composite as a

function of porosity (0 - 100%);
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• select elastic constants at the percentage which equals the percentage of the

inclusions;

• define the aspect ratio of the cracks and introduce them into the matrix;

• define gas, oil or brine as the saturation properties of the cracks; and,

• define the friability value (an empirical parameter that reflects the connectivity

of the fractures) of the rock.

Effective medium theory described above makes it possible to calculate the stiff-

ness tensor relating strain and stress averaged over a representative volume. The

inclusions here are: silty and granular minerals, pores, and cracks. The GSA method

makes it possible to take into account the microstructure of a medium including

shape of grains and ellipsoidal cracks, the crack connectivity to the matrix (friabil-

ity) and their orientation in the medium (distribution function).

2.9 Effective Media of the Four Shale Models

Shales are very complicated rocks in which the shape, concentration, and connec-

tivity of pores changes from sample to sample. The shale shown in Figure 2.1 is

modeled for different combination of aspect ratio (from 10−5 to 1), friability fac-

tor (0.6 to 1), and crack-induced porosity (0.001 to 5%). In order to distinguish

gas-filled and water-filled crack, four simple models of shale are used because the

distinction is of economic interest. O’Brian and Slatt’s (1990) analysis of a Huron

shale composed of (63%) clay minerals, (31%) quartz, (4%) albite, and (2%) pyrite

is used as the starting mineral assemblage. The clay minerals are mainly 87% illite
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and 13% chlorite. The elastic constants of illite-rich clay minerals and other minerals

are are shown in Table 2.1.

Table 2.3: The values of aspect ratio, friability factors, and crack induced porosities
for which all the four shale models are analyzed. The values of aspect are considered
starting from 10−5. On the main plot it may appear that the the same value of Φ, χ,
and = is representing singularity and no-singularity point, but that is not true. The
points on the singularity and no-singularity plots have different values of Φ, χ, and
=.

Crack’s parameters Values

Aspect ratio
0.00001, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.5, 1

Friability 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9

Crack porosity
0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5, 5.0

2.9.1 Shale Model-I

In model-I (Figure 2.1) the total anisotropy is due to aligned clay platelets preferen-

tially aligned in horizontal plane. Since the fractures are randomly oriented in the

medium; and, hence, they do not contribute to the total anisotropy. Other minerals

are considered as spherical inclusions in the system and, therefore, they do not play

any role in the total anisotropy. Due to horizontal alignment of the clay minerals

the medium will exhibit transversely isotropic symmetry with a vertical symmetry

axis (VTI).

Model-I is analyzed for different values of aspect ratio, friability factors and total

crack induced porosities (Table 2.3) and compute the stiffness matrix using equation

2.38. Then from the effective stiffness matrices the Thomsen’s parameters (ε, γ, and
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δ) are derived. In order to keep the model realistic, only those stiffness matrices

are analyzed where the value of Thomsen’s parameters (ε, γ, and δ) are less than

unity. In nature it is highly uncommon for rock to exhibit Thomsen’s parameters

greater than unity, which correspond to a very high value of anisotropy coefficient.

The mathematical expression for the Thomsen’s VTI parameters (Thomsen, 1986)

and orthorhombic media (Tsvankin, 1997) are summarized in Appendix-C.

Figure 2.5 shows combinations of aspect ratio, friability and crack-induced poros-

ity for the gas-filled and water-filled cracks, color-coded by Thomsen’s parameters.

When the cracks are gas-filled, the shear waves (VS1 and VS2) show a singular value

(when VS1 and VS2 are equal) between 00 and 900, plotted in polar plane (Figure

2.7). The same behavior of shear wave velocity is noticed in a majority of cases when

the cracks are water-filled. However, there are some cases, where shear waves do not

show a singular value (Figure 2.6). Figure 2.6 shows that water-filled cracks do not

exhibit singular values when the aspect ratio of the cracks is very small and when

the crack-induced porosities are rather high. Analysis of crack densities shows that

the these points happen to have very large crack density, which is higher than the

threshold crack density (beyond which rocks lose their stability) for the crustal rocks

(Crampin and Leary, 1993; Crampin, 1994). It can be concluded that if aligned clays

are the cause of anisotropy, the shear wave will always show singularity point. In

Figure 2.5 the P-wave anisotropy, ε, for gas-saturated cracks is relatively higher than

water-filled cracks because of a smaller contrast in the case of water-filled cracks.

However, δ, is relatively smaller in the gas-filled cracks model than its corresponding

water-filled crack model. There is no significant change in γ, since shear waves are

not sensitive to the fluid properties.
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Figure 2.7 shows the phase velocity for three different values of crack concen-

tration for the gas-filled and water -filled cracks. The anisotropic behavior of the

P-wave and S- wave velocities is the same in gas-filled and water-filled cracks if the

cracks are randomly oriented in VTI matrix. Even though the behavior of the phase

velocity is consistent with the increase in porosity, the velocity decreases with the

increase in porosity. The theoretical results obtained here help to explain the ex-

perimental data of Johnston and Christensen (1994). Johnston and Christensen’s

(1994) P- and S- waves velocities measured on a dry shale sample show an increase

in P-wave velocity from 00 to 900 (00 being normal to the bedding plane), and a

singularity point in the shear wave velocities. They report that when anisotropy is

due to clay mineral alignment, the rate of increase in Vp and Vsh will be greatest

between 200 and 700 which is also observed in the results obtained here in Figure

2.7.
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Figure 2.5: 3D plot of crack-induced porosities (Φ), aspect ratio (χ), and friability
factor (=), color coded by Thomsen’s parameters (ε, γ, and δ). For each point on
the plot, the elastic constants of the corresponding effective medium are calculated.
Only those points are shown which provide singular value in the shear waves for
both gas-filled and water-filled cracks. Singularity point occurs when VS1= VS2.
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Figure 2.6: Same as Figure 2.4 but for water-filled cracks only. Left column shows
only those points in which the singular value is present in their shear waves, and in
right column the singular point is absent.
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Figure 2.7: Phase velocity for three different crack-induced porosity (χ), but same
aspect ratio (Φ), and friability (=) in model-I, where randomly distributed cracks
are embedded in VTI matrix. The singular value (VS1 = VS2) is observed (when VS1

crosses VS2)for both gas-filled and water-filled cracks. The color red = Vp , blue =
VS1 and green = VS2.
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2.9.2 Shale Model-II

In model-II (Figure 2.1) the horizontally-aligned cracks are imbedded in the matrix

of randomly oriented minerals resulting in an isotropic effective stiffness matrix. The

main purpose of studying this model is to examine the effect of oriented fractures

on velocity anisotropy, and to isolate the effect of fracture-induced anisotropy from

mineral-alignment-induced anisotropy studied in model-I. This model is studied for

the same values of aspect ratio χ, friability factors =, and crack-induced porosities

Φ mentioned in Table 2.2. Figure 2.8 and 2.9 show color coded by the Thomsen’s

parameters (ε, γ, and δ), for each combination of aspect ratio, friability factors, and

cracks induced porosities for gas-filled and water-filled cracks.

Figures 2.8 and 2.9 show that when the gas-filled cracks are embedded in an

isotropic matrix, no singular value in shear waves exists for most of the combina-

tions of χ, = and Φ. However, there are few combinations that show singular value

in the shear waves. Likewise, when the cracks are water-filled, most of the combi-

nations of χ, = and Φ show singular value in shear wave phase velocity, with few

exceptions. Figure 2.7 shows that for the critical value of the aspect ratio for gas-

filled cracks and water-filled cracks are 0.5 and 0.2, respectively, in order to keep the

Thomsen’s parameters less than unity. Furthermore, fewer combinations are possible

in gas-filled cracks than in water-filled cracks for which the model provides realistic

anisotropy parameters (Figure 2.8). The combinations for which shear waves show

singular value in gas-filled cracks and no-singular value in water-filled cracks, are

having high crack density value. These combinations are physically not possible in

realistic shale models (Schoenberg and Douma, 1988; Crampin, 1994).
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Figure 2.8: Same as Figure 2.4. but the left column shows gas-filled cracks in
isotropic matric having no-singular value in their shear waves. The right column
shows water-filled cracks in isotropic matrix having singular value in their shear
waves.
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Figure 2.9: Same as Figure 2.4 but the left column shows gas-filled cracks in isotropic
matric having singular value in their shear waves. The right column shows water-
filled cracks in isotropic matrix having no-singular value in their shear waves.
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It can be argued that if the aligned cracks are the cause of anisotropy, the dis-

tinction between gas-filled and water-filled cracks seems to exist. The singular value

in shear waves is absent in the gas-filled cracks, and present in the water-filled

cracks (Figure 2.10). The behavior of P-wave velocity is also different in gas-filled

and water-filled cracks. The velocity of P-wave continuously increases in gas-filled

cracks, but in the case of water-filled cracks such behavior does not exist. The P-

wave phase velocity attains the minimum value at the same angle where qSv becomes

the maximum for the water-filled cracks embedded in isotropic matrix (Figure 2.9).

This behavior of P-wave and shear waves is also observed in experimental results

obtained by Vernik and Liu (1997). The characteristic of P-wave that it attains

minimum value in between 00 and 900 is remarkably different than the observations

in model-I and model-III, where the P-wave minimum velocity is observed along

normal to the bedding plane (Figure 2.10).
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Figure 2.10: Phase velocity for three different crack-induced porosity (χ), but same
aspect ratio (Φ), and friability (=) as in model-I, where aligned cracks are embedded
in isotropic matrix. The singular value (VS1 = VS2) is absent when the cracks are
gas-filled, but present in water-filled cracks. The color red = Vp , blue = VS1 and
green = VS2.
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2.9.3 Shale Model-III

In model-III (Figure 2.1) cracks are aligned in the same horizontal plane as the clay

minerals. The resultant effective medium exhibits transversely isotropic symmetry

with vertical axis, as was the case in model-I and model-II. The only difference in

this model is that the anisotropy is contributed by both the clay mineral alignment

and the alignment of the cracks because both are aligned in the same direction.

Therefore, the resultant anisotropy in this case will be comparatively bigger than

the anisotropy obtained for the model-I and model-II. This model is also analyzed

for the same value of crack induced porosities, aspect ratio, and friability factors. So

far, in all the models it is assumed that the whole volume of the clay minerals are

aligned in the same direction which may not be geologically possible in every depo-

sitional environment, such as shallow marine environment where due to burrowing,

the preferential alignments are disturbed (O’Brian and Slatt, 1990). In such envi-

ronment only a part of clay minerals are preferentially aligned and rest are randomly

distributed. This case will be studied in detail in Chapter-3 where only a proportion

of the clay minerals will be aligned, with rest being randomly distributed.

When the cracks are gas-filled then for the high porosity and small aspect ratio

of the crack, the effective elasticity constants give too large value of anisotropy due

to strong contrast between matrix and gas-filled inclusions. But when the cracks

are water-filled and the contrast is not so high then even a high porosity and small

aspect ratio gives the effective elastic constant with anisotropy being in realistic

range (Figure 2.11). In this model for all acceptable value of χ, =, and Φ, model
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Figure 2.11: Same as Figure 2.4. but the left column shows gas-filled cracks and
right column shows water-filled cracks embedded in VTI host matrix. In both cases
each combinations of χ, =, and Φ shows singular value in shear waves velocity.
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Figure 2.12: Phase velocity for three different values of crack-induced porosity (χ),
but for same aspect ratio (Φ), and friability (=) as in model-I, where aligned cracks
are embedded in the same direction as the clay mienrals. The singular value (VS1 =
VS2) appears in both cases when the cracks are gas-filled as well as water-filled. The
color red = Vp , blue = VS1 and green = VS2. The color red = Vp , blue = VS1 and
green = VS2.
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shows singular value in shear waves for both cracks filled with gas and water, em-

bedded in strong VTI matrix as considered in this case (Figure 2.12). The phase

velocity plot for three different values of cracks induced porosity suggest that as the

amount of crack-induced porosity increases, the angle at which shear waves attain

singular value decreases in gas-filled cracks. This trend does not exist in the case of

water-filled cracks. It leads to a conclusion that if the clay minerals concentration

in a rock is large, as considered in this case, and have the same orientation, then the

behavior of the phase velocity will be similar and singular value in shear waves will

be observed in both gas-filled and water-filled crack. Since a part of anisotropy in

this model is also contributed by the clay mineral alignment, the results for the gas-

filled cracks confirm the experimental results obtained by Johnston and Christensen

(1994).

2.9.4 Shale Model-IV

In model-IV (Figure 2.1) both clay minerals and cracks are aligned but orthogo-

nal to each other. If the anisotropy due to clay minerals alignment in horizontal

plane and due to cracks alignment in the vertical plane are equal, then the effective

symmetry for this arrangement will behave as cubic (Grechka, personal communi-

cation). Since the anisotropy exhibited by clay minerals and cracks’s alignment are

not equal to each other, therefore the resultant effective symmetry of the system

becomes orthorhombic. The presence of the vertical cracks, open or sealed, in shale

is reported in many papers (Singh and Slatt, 2006; Gale et al., 2007). Recently, Gale
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et al. (2007) observed that most of the fractures in the Barnett Shale are calcite-

filled. This model attempts to study geological formation where vertical cracks are

embedded in the host VTI matrix.

This model is analyzed for the different values of Φ, χ, and = to check the

stability of the model. It is observed that when the cracks are water-filled, all

acceptable combination of Φ, χ, and = contain singular value in shear waves in Z-X

plane (Z-axis is vertical) (Figure 2.12). But in gas-filled cracks some combinations

show singular value and some do not (Figure 2.14). In general, no singular value

in shear waves are observed when the aspect ratio of cracks are very small (Figure

2.13). The phase velocity in ZX-, YZ- and XY-plane, for three different value of Φ,

keeping χ and = constant, are shown in Figure 2.15, 2.16 and 2.17. It can be notice

that in XY-plane the P-wave anisotropy in gas-filled cracks are much greater than

that of water-filled cracks (Figure 2.17). This contrast is not very obvious in ZX-

and YZ planes. The singularity point in the gas-filled cracks are maintained for Φ

=0.05% and 0.1%. But it can be noticed that when the value of Φ increases from

0.1% to 0.5%, the singularity point in gas-filled cracks disappear, while it always

appears in water-filled cracks (Figure 2.15). In this model it is also noticed that

each of the Thomsen’s parameters (ε, γ and δ) can take positive or negative value

which is quite different than the rest of the three models discussed before, where

only delta is seen to be negative as well as positive (Table 2.4).
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Figure 2.13: Same as Figure 2.4 but the left column shows gas-filled cracks having no
singular value, and right column shows water-filled cracks having singular value in
shear waves, where the cracks are embedded parallel to the axis of VTI host matrix,
measured in ZX-plane.
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Figure 2.14: Same as Figure 2.4 but the left column shows gas-filled cracks having
singular value, and right column also shows gas-filled cracks but having singular
value in in shear waves, where the cracks are embedded parallel to the axis in axis
of VTI host matrix, measured in ZX-plane.
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Figure 2.15: Phase velocity for three different cracks induced porosity (χ = 0.05%,
0.1% and 0.5%), but for the same aspect ratio (Φ), and friability (=) in ZX-plane.
The color red = Vp , blue = VS1 and green = VS2.
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Figure 2.16: Phase velocity for three different cracks induced porosity (χ = 0.05%,
0.1% and 0.5%), but for the same aspect ratio (Φ), and friability (=) in YZ-plane.
The color red = Vp , blue = VS1 and green = VS2.
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Figure 2.17: Phase velocity for three different cracks induced porosity (χ = 0.05%,
0.1% and 0.5%), but for the same aspect ratio (Φ), and friability (=) in XY-plane.
The color red = Vp , blue = VS1 and green = VS2.
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2.10 Discussion Of the Thomsen’s Parameters in

Shale

A transversely isotropic medium is completely characterized by five independent

elastic constants. Thomsen (1986) suggested that in weakly anisotropic medium

three parameters (ε, γ, and δ), aka Thomsen’s parameters, and P- and S-wave ve-

locity along the axis of symmetry are sufficient to explain a transversely isotropic

(TI) medium. Tsvankin (1997) calculated the Thomsen’s parameters for orthorhom-

bic media. The first three models studied in this chapter are effectively TI medium

with vertical axis of symmetry, and the fourth model shows effectively orthorhombic

symmetry. Al-Khalifah and Tsvankin (1995) outlined the importance of δ in the

calculation of NMO velocity and angle dependent reflectivity. According to Thom-

sen (1986) the only anisotropy parameter needed to explain the difference between

the small-offset NMO (normal moveout) velocity and vertical velocity, and help to

interpret the small-offset AVO (amplitude variation with offset)response, is delta

(δ). δ, probably the most important anisotropy parameter, can take both positive

and negative value in TI and orthorhombic media.

Sayers (2005), by crossplotting ε, γ, and δ (data compiled from various published

literature), shows that ε and γ are always positive, but δ can take negative as well

as positive value. Sayers data collection is only for effectively VTI symmetry (con-

firmed by personal discussion), and his cross-plots do not have data from effectively

orthorhombic symmetric medium. The Thomsen’s parameters obtained for the four

models are summarized in Table 2.4 for gas- and water-filled cracks embedded in
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Table 2.4: Range of Thomsen’s parameters for the four models analyzed. Note that
ε and γ are positive for all range of Φ, χ, and = when the resulting effective medium
is VTI, but they can be negative if the resulting effective media is orthorhombic.
C.O. = crack orientation.

MODEL-I: Host Matrix - VTI, C.O. - Random
Thomsen’s Gas-filled Water-filled

parameters singular no-singular singular no-singular
range Min-Max Min-Max Min-Max Min-Max
ε 0.25 - 0.47 0.17 - 0.50 0.15 - 0.21
γ 0.19 - 0.80 0.19 - 0.95 0.19 - 0.24
δ -0.27 - 0.06 0.20 - 0.25 0.15 - 0.20

MODEL-II: Host Matrix - Isotropic, C.O. - Horizontal
ε 0.21 - 0.87 0.03 - 0.99 0.02 - 0.47 0.02 - 0.09
γ 0.10 - 0.82 0.02 - 0.43 0.02 - 0.99 0.02 - 0.07
δ 0.03 - 0.81 -0.33 - 0.11

MODEL-III: Host Matrix - VTI, C.O. - Horizontal
ε 0.25 - 1.00 0.23 - 0.84
γ 0.21 - 0.52 0.21 - 1.00
δ 0.02 - 0.62 -0.25 - 0.16

MODEL-IV: Host Matrix - VTI, C.O. - Vertical
ε -0.49 - 0.49 -0.49 - 0.09 -0.19 - 0.30
γ -0.49 - 0.98 -0.49 - 0.16 -0.49 - 0.79
δ -0.18 - 0.08 -0.18 - 0.004 -0.11 - 0.05

either isotropic or TI medium. The first three models studied are effectively TI

medium with a vertical axis of symmetry and the fourth model attains orthorhombic

symmetry because the vertical cracks are embedded in a TI medium. It is evident

that, when the resultant effective media is VTI (models I, II, and III), ε and γ are

positive, irrespective of the saturation properties of cracks. Also, it is observed that

when the host matrix is isotropic, the δ in gas-filled cracks is always positive for all

realistic values of crack-induced porosity, and mostly negative in water-filled cracks.

The experimental results of Vernik and Liu (1997), whose are shown in Figure 2.18.
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Vernik and Liu (1997), show that when dry cracks are embedded in isotropic matrix,

δ and ε are positive (data points for crack-induced and dry samples are highlighted

by red circles). But when the cracks are wet, δ becomes negative even though ε

remains positive (data point for crack-induced and wet samples are highlighted by

magenta circles). It is assumed that at a pressure of 70 MPa all the cracks are closed;

and, hence, the anisotropy of shale is only due to clay mineral alignment (intrinsic

anisotropy). This laboratory set-up simulates

Figure 2.18: Cross-plot of anisotropy parameters ε versus δ showing the effect of
clay minerals alignment and aligned cracks on anisotropy. Data are collected from
5 samples of black shale measured at the high pressure (70 MPa) so that all cracks
are closed to measure the intrinsic anisotropy. These samples were also measured
at a low confining pressure to estimate the effect of crack induced anisotropy after
subtracting the effect of intrinsic anisotropy. Prediction of dry and fluid-filled cracks
(big dashed line) are also shown using Hudson (1981) model. Modified from Vernik
and Liu (1997).

59



model-I, in which the anisotropy is due to clay mineral alignment. The laboratory

data of Vernik and Liu (1997) show that δ can be negative or positive when the

anisotropy is due to clay mineral alignment only. The model-I results show the

same behavior of δ as observed from laboratory data. When the resulting medium

is orthorhombic (model IV), the value of ε and γ can be either positive or negative.

Although, not so systematic in δ, which positive and negative, is observed for all

the four models. As discussed before the negative value of ε and δ has never been

reported in the literature to my understanding.

2.11 Summary

Four different models of shale used to study the effect of crack-induced anisotropy in

the presence and absence of intrinsic shale anisotropy indicate that the anisotropy

of shale with water-filled cracks generally shows the same character as observed in

the case when the anisotropy is only due to matrix anisotropy, i.e., clay mineral

alignments. If the cracks are distributed randomly or aligned in the anisotropic

host matrix in such a way that the resultant medium is effectively transversely

isotropic, the trend observed in the phase velocity of P-wave and shear waves is

similar. But if the background matrix is isotropic, this trend is completely different.

The significance of this is that if the host matrix has VTI symmetry, it would be

difficult to distinguish randomly oriented cracks from aligned cracks because the

behavior of phase velocity in both cases looks the same. But if the cracks are

aligned in an isotropic host matrix the identification becomes possible because P-

wave velocity attains a minimum value at an angle that corresponds to the maximum
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velocity of qSv. Also, in model-I and model-III the singular value in shear waves is

observed for all realistic values of porosity, aspect ratio, and friability, and hence, the

distinction whether the cracks are gas-filled or water-filled does not, in fact, exist.

However, there is a definite distinction between the gas-filled and the water-filled

case in model-II where the singular value is only observed in water-filled cracks. The

characteristic of P-wave in model-II, that it attains minimum value in between 00

and 900, is remarkably different than model-I and model-III where P-wave minimum

velocity is observed along the normal to the bedding plane. In model-I and model-

III, to distinguish whether the anisotropy is intrinsic, or due to water-filled cracks

we should have additional information, such as electrical conductivity which would

show a higher value in the presence of water.

P-wave and Vsh velocities measured in gas-filled shale show an increase in P-wave

velocity from 00 to 900 (00 being normal to the bedding plane). It is also found in

our modeling that when anisotropy is due to clay mineral alignment, the rate of

increase in Vp and Vsh will be greatest between 200 and 700 which is also concluded

by Johnston and Christensen (1994) from their experimental data. Johnston and

Christensen (1994) reported that in dry shale the qSv shows maximum velocity ap-

proximately between 300 to 450 from bedding normal which seem to be evident from

the modeling results obtained for gas-filled cracks in model-I, and also in model-III

when the crack-induced porosity is smaller. But when the crack-induced anisotropy

adds up to the mineral aligned anisotropy, then the peak value in qSv moves towards

the symmetry axis.

The results illustrate that the presence of gas-filled porosity significantly modi-

fies the anisotropy of the shale, but the behavior of the shear waves anisotropy in
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water-filled porosity is similar to the case in which clay minerals are aligned. The

Thomsen’s parameters ε and γ are positive if the resulting effective medium is TI,

but if the resulting effective medium is orthorhombic then ε and γ can be positive

or negative. The negative valuess of ε or γ directly characterize the presence of

orthorhombic symmetry, or, alternatively, it indicates the presence of vertical cracks

in a VTI medium.
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Chapter 3

The Effect of Minerals Alignment, Aspect-ratio

and Friability on Anisotropy in Shale

In the previous chapter four different models of shale were considered to understand

and characterize the anisotropy of shale quantitatively. In Chapter 2, model-II and

model-III represent the two end members of the clay mineral distribution: all the clay

minerals are randomly distributed (model-II) and all the clay minerals are aligned

(model-III). It leaves a gap in the modeling of shale considered in Chapter 2, and one

can ask what will happen if just a fraction of the total clay minerals are aligned? In

order to bridge the gap that exist in the model-II and model-III, several models are

considered in which a proportion, starting with 5%, of the total clay minerals (63%)

are considered to be aligned and the rest are randomly oriented. The proportion

of aligned clay mineral is increased by 5% in each subsequent model. Note that

the models associated with 0% and 63% aligned clay mineral cases are the same as

model-II and model-III, respectively, of the previous chapter. The phase velocities

of these models are analyzed and quantitative analysis of clay mineral alignment is

establish in order to observe singularity point (Vs1 = Vs2) in the shear waves.
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3.1 Introduction

The inherent cause of anisotropy in shale is the presence of platy clay minerals in an

aligned fashion (Wenk et al., 2007). The alignment of clay mineral is controlled by

the geological processes through which the sediments have gone through after de-

position, that is diagenesis. Diagenesis covers any physical, chemical and biological

changes that occur in sediments after deposition at near normal temperature and

pressure and before metamorphism (Selley, 1998). The role of depositional environ-

ment on the alignment of microfabric is shown in Figure 3.1, where the regions a, b,

and c, respectively, represent randomly distributed, poorly aligned and well aligned

clay minerals. O’Brian and Slatt (1990) suggest that well-developed lamination is

preserved in a low energy, anaerobic depositional environment where bioturbation of

the sediments by benthonic organisms does not occur due to lack of oxygen. As the

flow energy increases, along with increasing aerobic condition, the lamination get

poorer because of the sediments mixing. The lamination of sediments is completely

destroyed due to complete reworking of the sediments due to high biogenic activities

(O’Brian and Slatt, 1990; Diego and Douglas, 1999).

This chapter illustrate the behavior of elastic waves when ellipsoidal cracks are

introduced into isotropic and anisotropic matrices and how the shape, friability of

the cracks, and crack-induced porosity affect the elastic wave propagation. It also

evaluates the effect of crack alignment on the intrinsic anisotropy due to clay minerals

alignment. The difference in P-wave and the shear waves velocity are analyzed for

gas-filled and water-filled cracks.
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a

b
c

Figure 3.1: Role of sedimentary environment in development of alignment of clay minerals in shale: (a) randomly oriented
microfabric, (b) poorly aligned microfabric, and (c) well aligned microfabric. Modified from O’Brian and Slatt (1990).
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The mineral composition of the shale is the same as was considered in the previous

chapter. This means that the volume concentration of different minerals are: clay

minerals (63%), quartz (31%), albite (4%) and pyrite (2%). The clay minerals are

mainly illite rich (illite = 87% and chlorite = 13%). The elastic constants of the

mixture are calculated, assuming that the percentage of the clay minerals orientation

is only 5%, 10%, 15%, ... 63% (Table 3.1). The clay minerals are mainly illite

rich (illite = 87% and chlorite = 13%). Figure 3.2 shows the values of Thomsen’s

parameters for different proportions of clay mineral alignment. As the proportion of

aligned clay minerals increases the anisotropy parameters, ε, γ, andδ, also increase.

Isotropic elastic constants of polycrystalline aggregates of anisotropic minerals are

calculated using the method in Belikov et al. (1970).

Results indicate that as the crack-induced porosity increases the P-wave and

the shear waves anisotropy increases. If the host matrix is isotropic the distinction

between gas-filled and water-filled cracks is indicated by a singularity point which

occurs only in water-filled cracks. If the background matrix is anisotropic, the sin-

gularity point in the shear waves is observed for both gas and water-filled cracks at

low values of crack-induced porosity. As the cracks stiffen the anisotropy decreases

for both gas-filled and water-filled cracks, but increases with increased friability.
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Table 3.1: The effective elastic constants of shale having 63% clay minerals by
volume, where the percentage of aligned clay is increasing by 5% increments. When
the aligned clay minerals percentage is zero, the rock exhibit isotropic properties.
The anisotropic properties increases with increasing clay mineral alignment.

Clay Minerals Effective elastic constants (Cmn)
oriented (%) random (%) C11 C13 C33 C44 C66

0 63 101.19 29.53 101.19 35.83 35.83
5 58 102.85 28.98 99.21 35.18 36.45
10 53 104.51 28.42 97.24 34.53 37.06
15 48 106.17 27.87 95.27 33.89 37.68
20 43 107.84 27.32 93.30 33.24 38.30
25 38 109.50 26.77 91.32 32.59 38.92
30 33 111.16 26.21 89.35 31.94 39.53
35 28 112.83 25.66 87.38 31.30 40.15
40 23 114.49 25.11 85.41 30.65 40.77
45 18 116.15 24.56 83.44 30.00 41.39
50 13 117.81 24.00 81.46 29.35 42.00
55 8 119.48 23.45 79.49 28.71 42.60
60 3 121.14 22.90 77.52 28.06 43.24
63 0 122.14 22.57 76.34 27.67 43.61

3.2 Effect of Clay Minerals Alignment

The effect of clay mineral alignment on anisotropy will be examined in this section,

keeping crack induced porosity, aspect ratio and friability constant. Also, the effect

of fluid properties present in the cracks is analyzed. The experimental measurement

of shale anisotropy obtained by Johnston and Christensen (1994) and Christensen

and Johnston (1995) is compared with theoretical modeling results obtained in this

section.

Five cases with different matrix anisotropy properties were studied. As more

aligned cracks are introduced in a medium, the medium will become more anisotropic.
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Figure 3.2: Thomsen’s parameters for Table 3.1 .

Increasing the crack-induced porosity reduces the elasticity of the rocks. Wave prop-

agation in cracked media was studied by Eshelby (1957), Hudson (1980, 1981), Bayuk

and Chesnokov (1998) and Thomsen (1995) for an isotropic host matrix. However,

in their study the behavior of elastic waves in cracked media when the matrix is

anisotropic was not considered.

Figure 3.3 shows the behavior of elastic waves in cracked media for an isotropic

host matrix with randomly oriented clay minerals and aligned cracks. The trend of

P-wave and the shear waves obtained for this effective medium matches the results

of Thomsen (1995) for gas-filled and water-filled case, that no singular value exists

for gas-filled cracks, but does exist for water-filled cracks. This trend of elastic waves

changes when the symmetry of the host matrix changes. Figures 3.4, 3.5, 3.6, and
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3.7 show that an increasing proportion of aligned clay mineral, i.e, 5%, 20%, 40%

and 63% produces an increase in anisotropy. If only 5% clay minerals are aligned, the

resulting matrix is weakly anisotropic. At larger percentage of aligned clay minerals,

the behavior of elastic waves in gas-filled cracks become very different than it is for

aligned cracks in an isotropic host matrix: the singular value for the shear waves

appears even in the gas-filled cracks (Figures 3.5, 3.6, and 3.7).

In general, the P-wave anisotropy increases with the increase in the concentration

of aligned cracks. From all the figures it is clearly evident that the singularity point

moves closer to the symmetry axis with the increases in aligned crack’s concentration

and clay minerals alignments. The V p/V smax ratio increases with the increase in

crack-induced porosity for water-filled cracks, but decreases for gas-filled cracks. If

the matrix property is anisotropic due to clay minerals alignment then the V p/V smax

ratio is observed smaller than the isotropic matrix for the same amount of aligned

crack (Φ = 0.1%) (Figure 3.3 and 3.7).

If the matrix property is isotropic then a clear distinction exist in the ratio

of V p/V smax for the gas-filled and water-filled cracks. Also, when the matrix

is anisotropic then for a small amount of crack-induced porosity, the behavior of

V p/V smax in gas-filled and water-filled cracks is indistinguishable, as it is observed

for the porosity = 0.001% (Figure 3.5 and 3.6) and porosity = 0.1 (Figure 3.7).

The amount of porosity needed to make this behavior indistinguishable depends on

the matrix property. If the matrix is strongly anisotropic, more aligned porosity is

required.

The experimental results of Johnston and Christensen (1994), where the anisotropy

is only due to clay mineral alignment (since the measurement was at 100 MPa) show
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Figure 3.3: Clay minerals are randomly aligned. Anisotropy is exhibited only due to aligned cracks. The aspect ratio of
the cracks and the friability factor are 0.01 and 0.8 respectively. The color coded velocity Vp - blue, V s1 - green and V s2

- red (for two leftmost columns). The singularity point is absent in gas-filled cracks and present in water-filled cracks.
The kinks in the V p/V s−max for water-filled cracks coincide with the singularity points. The kinks are evidently absent
in gas-filled cracks.
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singularity point in shear wave velocities. The particular behavior is observed in this

study for very small values of crack-induced porosity and the anisotropy is primarily

due to clay minerals alignment. This observation suggests that even at 100 MPa a

small amount of the cracks were open. Though this character dies off when crack in-

duced anisotropy increases (Figure 3.5, 3.6, 3.7). The volume fraction of the aligned

clay minerals needed to produce a singularity point in the shear waves is greater

than 0.1 (Figure 3.5).
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Figure 3.4: Only 5% (total = 63%) clay minerals are aligned, and rest are randomly aligned. The aspect ratio of the
cracks and the friability factor are 0.01 and 0.8 respectively. The color coded velocity Vp - blue, V s1 - green and V s2 -
red (for two leftmost columns). The singularity point is absent in gas-filled cracks and present in water-filled cracks. The
kinks in the V p/V s−max for water-filled cracks coincide with the singularity points. The kinks are evidently absent in
gas-filled cracks.
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Figure 3.5: Only 20% (total = 63%) clay minerals are aligned, and rest are randomly aligned. The aspect ratio of the
cracks and the friability factor are 0.01 and 0.8 respectively. The color coded velocity Vp - blue, V s1 - green and V s2 - red
(for two leftmost columns). Now the singularity point appears in gas-filled cracks for the porosity = 0.001%. When the
porosity increases to 0.1% the singularity point disappear. The singularity point always appears in water-filled cracks.
The kinks in the V p/V s −max for water-filled and gas-filled cracks coincide with the singularity points. In gas-filled
cracks the kink is evidently present for porosity = 0.001% but absent for higher porosities.

73



0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

Gas−filled

0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
2

4

6

Angle (θ)

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

Water−filled

0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
2

4

6

Angle (θ)

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
1.55

1.6

1.65

1.7

V
p/

V
s−

m
ax

 

 

0 20 40 60 80
1.2

1.4

1.6

1.8

2.0

V
p/

V
s−

m
ax

 

 

0 20 40 60 80
1.2

1.4

1.6

1.8

2.0

Angle (θ)

V
p/

V
s−

m
ax

 

 

gas
water

gas
water

gas
water

porosity

0.001%

0.1%

0.3%

Figure 3.6: Only 40% (total = 63%) clay minerals are aligned, and rest are randomly aligned. The aspect ratio of the
cracks and the friability factor are 0.01 and 0.8 respectively. The color coded velocity Vp - blue, V s1 - green and V s2

- red (for two leftmost columns). Now the singularity point appears in gas-filled cracks for the porosity = 0.001% and
0.1%. When the porosity increases to 0.3% the singularity point disappear. The singularity point always appears in
water-filled cracks. The kinks in the V p/V s − max for water-filled and gas-filled cracks coincide with the singularity
points. In gas-filled cracks the kink is evidently present for porosity = 0.001% and 0.1% but absent for higher porosities.
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Figure 3.7: The total amount of clay minerals (63%) are aligned. The strong anisotropy is due to both, clay minerals
alignment and alignment of cracks. The aspect ratio of the cracks and the friability factor are 0.01 and 0.8 respectively.
The color coded velocity Vp - blue, V s1 - green and V s2 - red (for two leftmost columns). The singularity point appears
in both gas-filled and water-filled cracks for all values of porosities. The kinks in the V p/V s−max are present in all the
curves.
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3.3 Effect of Aspect Ratio

To identify pore fluid in rocks has always been a challenge in hydrocarbon explo-

ration. The distinction between the types of fluid in the pores is made based on

physical attributes that are sensitive to the pore-fluid. To evaluate this it important

to study the behavior of the wave propagation which is produced from the coupled

effect of pore fluid and the shape of the pores. The pores which house the fluid can

occur in a variety of shapes. For the simplicity of mathematical derivation, cracks are

consider to be either ellipsoidal, penny or needle- shape that can be represented in

terms of length and breadth. Generally, the “aspect-ratio” is the ratio of the length

of semi-minor axis to semi-major axis. The aspect ratio of a penny-shaped crack will

range anywhere between 0 and 1. To put it in physical perspective, aspect ratio = 0

means infinitely long oblate crack and aspect ratio = 1 means spherical pores. The

penny-shaped crack is the limiting case of spheroidal cracks if the third axis is very

small. The aspect ratio of needle-shaped cracks may be greater than 1. The smaller

the aspect ratio, the more compliant is the crack. The presence of aligned cracks in

the medium results in anisotropy if there exists a contrast between the crack’s filling

material and the matrix in which they occur. In this section the effects of various

various types of cracks and their contained fluids on wave propagation are studied

in isotropic and anisotropic matrices.

In Figure 3.8 and 3.9 the effect of aspect ratio on wave propagation in cracked

media is demonstrated. This study also indicates the change of P-wave and shear

wave velocities resulting from changing the aspect ratio of the cracks, even though

the crack-induced porosity and the connectivity of the cracks remain the same.
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Increasing the aspect ratio increases the velocity of the P-wave and the S- wave, and

decreases anisotropy. This phenomena is observed for cracks embedded in either an

isotropic matrix (Figure 3.8) or anisotropic host matrix (Figure 3.9). It can also

be noted here that the trend of V p/V smax ratio for water-filled cracks is almost

the same, irrespective of the host matrix symmetry. But for the gas-filled cracks

V p/V smax ratio shows different trend depending upon matrix symmetry, because in

this case, the clay minerals alignment is partially contributing to the total anisotropy.

If the host matrix is isotropic the kink in the V p/V smax appears only in water-filled

cracks. The kink indicates the presence of a singularity point in the shear waves.

Because the gas-filled cracks in the isotropic host matrix do not posses a singularity

point in their shear waves, the kink is absent in the V p/V smax curve.
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Figure 3.8: The total amount of clay minerals (63%) are randomly oriented. The anisotropy is only due to the alignment
of cracks. Here, the amount of crack induced porosity (0.5%) and friability (0.8) is constant, and only aspect ratio of
the cracks is variable. The color coded velocity Vp - blue, V s1 - green and V s2 - red (for two leftmost columns). The
singularity point is absent in gas-filled cracks and present in water-filled cracks. The kinks in the V p/V s − max for
water-filled cracks coincide with the singularity points. The kinks are evidently absent in gas-filled cracks.
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Figure 3.9: The total amount of clay minerals (63%) are aligned. The strong anisotropy is due to both, clay minerals
alignment and alignment of cracks. Here, the amount of crack induced porosity (0.5%) and friability (0.8)is constant,
and only aspect ratio of the cracks is variable. The color coded velocity Vp - blue, V s1 - green and V s2 - red (for two
leftmost columns). The kink in the V p/V s − max is present for both gas-filled and water-filled cracks because of the
strong anisotropy of the host matrix.
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3.4 Effect of Friability

This section shows quantitatively how the connectivity of the crack system affects

the anisotropic properties of the media. The effect of changing the friability of the

crack system embedded in an isotropic matrix and an anisotropic matrix is shown in

Figure 3.10 and 3.11 respectively. To isolate the effect of friability, the aspect ratio

(0.03) of the crack and the cracks induced porosity (0.5%) are kept constant. For an

isotropic matrix the increase in friability increases the ratio of V p/V smax increases

in water-filled cracks, but it decreases in gas-filled cracks (Figure 3.10). Also, the

singularity point in water-filled cracks moves away from the axis of symmetry with

the increase in friability. In general the anisotropy increases with the increase in

friability factor.

If the matrix is anisotropic (TI), and the long axis of the embedded crack is along

the direction of the clay mineral alignment, the trend is the same as for V p/V smax in

an isotropic matrix. The singularity point in gas filled cracks is observed at a lower

angle with the increase in friability, but it is almost constant (same angle) in water-

filled cracks. It is also observed that with the increase in friability the separation of

V p/V smax between gas-filled and water-filled cracks increases, irrespective of matrix

properties. When the host matrix is isotropic the kink in the V p/V s−max is present

only in water-filled cracks and absent in gas-filled cracks. But if the host matrix is

anisotropic the kink appears in both gas-filled and water-filled cracks.
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Figure 3.10: The total amount of clay minerals (63%) are randomly oriented. The anisotropy is only due to alignment
of cracks. ere the amount of crack induced porosity (0.5%) and aspect ratio (0.03) is constant, and only friability is
variable. The color coded velocity Vp - blue, V s1 - green and V s2 - red (for two leftmost columns). The kinks in the
V p/V s−max for water-filled cracks coincide with the singularity points. The kinks are absent in gas-filled cracks.

81



0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

Gas−filled

0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
2

4

6

Angle (θ)

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

Water−filled

0 20 40 60 80
2

4

6

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
2

4

6

Angle (θ)

ve
lo

ci
ty

 (
km

/s
)

0 20 40 60 80
1.2

1.4

1.6

1.8

V
p/

V
s−

m
ax

 

 

0 20 40 60 80

1.4

1.6

1.8

V
p/

V
s−

m
ax

 

 

0 20 40 60 80
1.2

1.4

1.6

1.8

Angle (θ)

V
p/

V
s−

m
ax

 

 

gas
water

gas
water

gas
water

Friability

0.6

0.7

0.8

Figure 3.11: The total amount of clay minerals (63%) are aligned. The strong anisotropy is due to both, clay minerals
alignment and alignment of cracks. Here the amount of crack induced porosity (0.5%) and aspect ratio (0.03) is constant,
and only friability is variable. The color coded velocity Vp - blue, V s1 - green and V s2 - red (for two leftmost columns).
The kink in the V p/V s −max is present for both gas-filled and water-filled cracks because of the strong anisotropy of
the host matrix.
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3.5 Summary

Through detail modeling it is observed that the wave propagation in a fractured

anisotropic shale depends on many variables, such as crack-induced porosity, aspect

ratio of the crack, friability, and the type of fluid in present in the fractured rock.

The anisotropy of the rock increases when the pores having aspect ratio less than

unity, are aligned. The inherent anisotropy of the rock is significantly modified due

to the presence of the aligned cracks. If the crack-induced porosity is very small then

there seem to be no significant change in the behavior of V p/V smax ratio and the

kink appear in both gas-filled and water-filled cracks imbedded in the anisotropic

background matrix, but it becomes distinct for a higher value of porosities. The

clay-mineral alignment seems to dominate the anisotropy when the amount of crack-

induced porosity is rather small. Of course, the amount of aligned porosity needed

to dominate the clay-mineral-induced anisotropy will depend on how strong the clay

minerals anisotropy is. The aspect ratio of the crack plays an important role in

modifying the anisotropy, and so is the matrix-pore fraction of these cracks, called

the friability. The increase in aspect ratio inversely affects the overall anisotropy

of P-wave and the shear waves, and this effect is observed in both isotropic and

anisotropic host matrix. However, the effect of increasing friability on anisotropy

is positive. As the aspect ratio increases the angle at which the singularity point

appears to moves towards the axis of the symmetry in both water-filled cracks in

isotropic, or anisotropic matrix. But when the cracks are gas-filled the singularity

point moves away from the axis of symmetry with increasing aspect ratio. The
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increase in the friability of a rock enhances the anisotropy, and this effect is realized

for both isotropic and anisotropic matrix.

Wave propagation in the fractured reservoir is influenced by the type of pore

fluid, shape of the pores, the matrix porosities, and the connectivity of these pores.

Since these effects are usually coupled, this makes it hard to pin point the exact

cause of anisotropy. The effect of these causes are studied here to understand their

isolated effect on behavior of elastic wave. The understanding of these anisotropic

rock properties are important in seismic imaging, prestack seismic analysis, and

reservoir characterization.
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Chapter 4

Ultrasonic Measurements of Shale Anisotropy:

Forward Modeling

High resolution lithological characterization based on a core-study indicates nine

different facies in the Barnett Shale which correspond to nine different depositional

environment (Singh and Slatt, 2006). For each of the nine facies compressional and

shear wave velocity are measured on samples at ultrasonic frequencies (1MHz). The

velocities based on first break picking are measured at room temperature and pres-

sure. Based on elastic properties obtained from the rock samples belonging to the

different facies, the Barnett Shale can be characterized by five different groups, which

are either isotropic, or VTI in nature. The volume concentration of each mineral

phase is estimated using XRD and FTIR techniques. The GSA method (Chapter

2) is used to perform forward modeling to estimate the elastic constants from each

samples’s mineralogical assemblage. The velocities estimated using forward mod-

eling and the ultrasonic measurements are then used to extract the crack-induced

porosity, the aspect ratio of the cracks, and the friability. The extraction is based

on inverse modeling applying a minimization function. The best realistic solution is
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chosen from a number of possible solutions obtained during inverse modeling. The

microfabric analyses provided by SEM photomicrographs give qualitative informa-

tion about crack’s parameters (Φ, χ, and =), which in turn help to constrain the

inversion solution. The maximum error in estimating between measured velocity

and mineralogy-based velocity for different facies is 18% for FTIR mineralogy, and

30% for XRD. Thus mineralogy-based estimates of the velocities can be used as a

tool to characterize sedimentary facies in the absence of any other sources of velocity

data.

4.1 Introduction

The elastic properties of the shale have a large degree of variation. These variations

reflect the depositional environment and the diagenetic processes the sediments have

gone through over geological time. The high resolution sequence stratigraphy de-

veloped by Singh and Slatt (2006) for the Barnett Shale, Fort-Worth basin, divides

the Barnett shale into nine different facies. This facies characterization of the Bar-

nett Shale is primarily based on lithologic signature determined through the detailed

study of core and thin-sections.

From each of the nine facies of the Barnett Shale, samples were collected and

the measurements of velocity in different directions were performed to estimate the

elastic constants of the rock. The difference in the velocities measured in at least two

of the orthogonal directions in a horizontal plane is very small. Therefore, based on

the velocity structure of the different facies, these facies behave as either isotropic,
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or transversely isotropic with a vertical axis of symmetry. The mineralogical as-

semblages of each of the samples is estimated by X-ray diffraction (XRD) technique

by evaluating the XRD intensity pattern for each of the nine samples. The XRD

patterns of the nine samples are shown in Figure 4.1. The 2θ values of primary shale

minerals are listed in Table 4.1. The weight percentage of the minerals obtained

from XRD is converted into a volume fraction to make the calculation of the effec-

tive elastic constants. The calculation of elastic constants using the GSA method

is based on forward modeling where it starts from the volume fraction, elastic con-

stants and density of each mineral phase estimated in the rock sample. The purpose

of this chapter is to extract the information about physical properties of rocks, such

as crack induced porosity, the friability factor, and the aspect ratio of the cracks

using elastic properties obtained via forward modeling and lab measurements. Well

log data and other available information about the microstructure can be used to

restrict the inverse modeling solutions to realistic values.

4.2 XRD and FTIR Mineralogy

The X-ray diffraction technique uses an X-ray beam having a wavelength comparable

to the distance between the atomic or molecular structure of interest. The atomic

planes of a crystal cause incident X-rays to interfere with one another as they leave

the crystal. This phenomenon is called X-ray diffraction. It measures the average

spacing between layers or rows of atoms. This technique helps to determine the

orientation of a single crystal and the crystal structure. The powdered sample is

exposed to the X-ray beam, and the intensity of the diffraction obtained against 2θ

for the nine samples is shown in Figure 4.1. The identification of minerals is based on
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the value of 2θ and the weight percentage concentration of the minerals is dependent

on the intensity of the diffraction peak. The mineral concentration so obtained is

shown in Table 4.2. The intensity of the diffraction pattern at 2θ = 29.60 is very

high (close to 300 cps) in N4, N6 and N8, suggesting that these samples are very

rich in calcareous materials. The samples N3, N5, N7 and N8 show the highest peak

for 2θ = 26.60, indicating that these samples have high silica content. The weight

percentage of other significant minerals present in the rock samples estimated using

X-ray diffraction (XRD) are shown in Table 4.2.

Also, the mineral composition of the nine samples obtained using Fourier Trans-

mission Infrared (FTIR) were made available by Devon Energy Inc. The mineral

assemblage obtained from FTIR technique belong to the same depth of the same

core, which was used for the X-ray diffraction analysis. The detection of minerals

using FTIR spectroscopy is based on the detection of molecular vibrations. The

mineral identification is based on the absorption band in the mid-range of the in-

frared (4000 to 400 cm−1), the characteristic range for most of the minerals (Xu et

al., 2007). The weight percentage of the minerals can be estimated from the FTIR

absorption spectra based on Beer’s law, which states that the absorbance of the

mixture is proportional to the concentration of each mineral obtained. The FTIR

estimated mineral weight percentages are shown in Table 4.3.

Table 4.1: Primary shale minerals and their 2θ values. [from Breeden and Shipman
(2004)].

Minerals Quartz Feldspar Calcite Dolomite Siderite Pyrite Clays
2θ (deg) 26.6 27.5 29.6 31.0 31.8 33.1 19.9 34.6 61.9
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Figure 4.1: XRD pattern of nine rock samples (N1 - N9) representing different sedimentary facies of the Barnett Shale.
N1=calcareous mudstone, N2=limy mudstone, N3=wavy-bed deposit, N4=dolomitic mudstone, N5=fossils-rich deposit,
N6=concretion, N7=non-calcareous, N8=calcareous laminae, and N9=phosphatic deposit.
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Table 4.2: Major mineralogical composition of the nine different facies of the Barnett Shale, Fort-Worth basin, in weight
percentage using X-ray diffraction technique.

Facies Name
Qua− Cal− Dolo− Feld− Py− Side− Apa- Al- Anhy- Total
rtz cite mite spar rite rite tite bite drite Clays

Calcareous Mudstone 21 7 6 6 2 4 6 6 2 39

Limy Mudstone 28 16 5 5 0 3 5 7 4 28

Wavy-bed Deposit 21 7 13 3 3 1 15 7 3 26

Dolomitic Mudstone 17 11 8 5 1 5 8 6 4 37

Fossils-rich Deposit 51 8 4 3 2 2 6 6 2 18

Concretion 10 44 5 3 1 1 4 3 2 27

Non-calcareous 55 3 3 3 1 1 2 5 2 25

Calcareous Laminae 34 5 5 4 2 3 7 5 2 29

Phosphatic Deposit 17 8 8 5 1 5 8 6 4 37
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Table 4.3: Major mineralogical composition of the nine different facies of the Barnett Shale, Fort-Worth basin, in weight
percentage using FTIR technique. (Data courtesy of Devon Energy Inc.)

Facies Name
Quartz Calcite Dolomite Feldspar Pyrite Siderite Apatite Total Clays

Calcareous Mudstone 16 22 0 13 0 8 4 37

Limy Mudstone 25 22 3 13 0 6 0 31

Wavy-bed Deposit 29 26 4 8 0 11 1 21

Dolomitic Mudstone 10 37 16 5 0 7 0 25

Fossils-rich Deposit 20 20 0 10 0 4 7 39

Concretion 13 61 0 14 2 7 0 3

Non-calcareous 23 4 0 21 0 5 4 43

Calcareous Laminae 8 50 14 9 0 3 1 15

Phosphatic Deposit 14 6 6 12 0 7 5 50
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4.3 Calculation of Elastic Constants by Forward

Modeling

The elastic constants of each of the nine facies are calculated using the GSA based

forward modeling method and the minerals assemblage obtained from the XRD

and FTIR techniques. The modeling stats with illite-rich clay mineral, which is

the softest among all components. Then other minerals, such as quartz, calcite,

dolomite, pyrite, feldspar, etc. are introduced as the inclusions. The effective elastic

constants of the composite are estimated as a function of porosity (0 - 100%). The

elastic constants at the percentage which equals the percentage of the inclusions will

be further used to model cracks.

4.4 Rock Sampling

Barnett Shale rock samples were collected from the same continuous well, used

for facies delineation by Singh and Slatt (2006). Each sample was designed to

give cubical or parallelopiped shape with two additional parallel faces at 450 to

the bedding plane (Figure 4.2). In order to extract all the five elastic constants

that define VTI and isotropic symmetry. The opposite planes are parallel to within

1% error which will lead to a tolerable error in the final calculation of the elastic

constants. It is assumed during the sampling that the core was taken from a vertical

well, so that the dipping laminae in the core is reflect the true geological dip.
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Figure 4.2: Sample designed for the ultrasonic measurements. The axis of symmetry
is vertical. The value of θ will always be measured from the axis of symmetry.

4.5 Ultrasonic Measurements

P- and S-wave transducers are used to measure the P-wave and S- wave velocities, re-

spectively, with the ultrasonic frequency (1 MHz) at room temperature and pressure.

According to Auld (1973) if the width of the transducers are very small compared

to the size of the sample, the group velocity is measured; otherwise the phase ve-

locity is measured if the width of the transducers are compared to the sample size.

Dellinger and Vernik (1994) conclude through numerical calculation, that if the sep-

aration between transducers is more than three times greater than the width, that

”almost all pulse-transmission experiments of this kind should measure anisotropic

phase velocity, not group velocity”. Thus, my measurements are of phase velocity.
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The time arrival of P- and S- waves is based on first break picking (Figure 4.3 and

4.4). From the measurements of P-wave, S- wave velocities, and density the elastic

constants (CIJ , where I and J = 1,2,...6) of each of the facies are calculated (Table

4.5).

It can be observed in Table 4.5 that the C11 and C33 values for three facies:

dolomitic mudstone, concretion and calcareous laminae, are almost equal, as are the

value of C44 and C66. This behavior of CIJ results in non-splitting of shear waves, and

characterize isotropic facies (Figure 4.8, 4.10 and 4.12). The velocities measured in

any direction are the same for the isotropic samples and the Thomsen’s parameters

are very small in these three facies. The other six facies can be characterized as

transversely isotropic media with vertical axes of symmetry.

It can also be observed that the elastic constants (CIJ) of calcareous mudstone-

and limy mudstone facies (Figure 4.5 and 4.6) wavy-bed deposit and fossils-rich

deposit facies (Figure 4.7 and 4.9) and non-calcareous and phosphatic deposit facies

(Figure 4.11 and 4.13), are in same range. If only the elastic behavior of these facies

were available it would be difficult to distinguish calcareous mudstone facies from

limy mudstone facies; wavy-bed deposit facies from fossils-rich deposit facies; and

non-calcareous facies from phosphatic deposit. Therefore, it can be concluded that

on the basis of elastic properties, the Barnett Shale has only five “seismic” facies. In

Figures 4.5, 4.7, and 4.11 the measured velocities along two orthogonal directions in

the plane of symmetry are different. This implies that these three facies are nearly

VTI. This can also be observed from the photomicrograph which shows slightly

dipping laminae.
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Figure 4.3: P-wave signals along 00, 450, and 900 to the axis of symmetry. The
arrows indicate the time arrival of P-wave along these directions

The phase velocity, CIJ and microphotograph for each facies, along with Thom-

sen’s parameters, are given in Figures 4.5 - 4.13. The microfabric observed in the

microphotograph of each facies can be used to explain the measured ultrasonic veloc-

ities. In all the microphotographs, wherever an order in the arrangement of minerals

is observed, it results in anisotropy as observed in the microphotographs of calcare-

ous mudstone, limy mudstone, wavy-bed deposit, fossil-rich deposit, non-calcareous,

and phosphatic deposit.
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Interestingly, the rest of the three rock samples: dolomitic mudstone, concretion,

and calcareous laminae facies, which behave as isotropic based on ultrasonic velocity,

do not exhibit any order or alignment in their microstructures. In these rock samples,

velocity in every direction is essentially the same. This can also be seen by their

elastic constants: C11 = C22 = C33 and C44 = C55 = C66 (Table 4.5).

In some of the phase velocity plots there is quite a difference between measured

and predicted quasi S- wave velocity. This difference is attributed to the difficulty

in delineating the shear wave arrival on the vertically polarized seismogram. Figure

4.4 shows two shear-wave seismograms with the polarization vector in-plane to the

displacement vector (blue) and the polarization vector perpendicular to the plane of

displacement (red). Because of the ambiguity in picking up the shear-wave arrival on

the vertically polarized wave the estimated velocity, sometimes, is not correct. This

is reflected on the phase velocity plot where predicted and measured quasi-shear

wave do not match. This difference may be reduced significantly if the measurement

is performed at high pressure which will yield a better quality seismogram due to

the closure of thin cracks.
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Table 4.4: Elastic constants and the Thomsen’s parameters extracted from the ultrasonic (1MHz) velocity measurements
of nine rock samples, each one them represents a different geological facies. Manually calculated density and sampling
depths are also shown.

Facies Name Seismic
C11 C13 C33 C44 C66 ρ Thomsen’s Parameters

(GPa) (GPa) (GPa) (GPa) (GPa) (g/cc) ε γ δ
Facies

Calcareous Mudstone I 60.337 10.569 27.223 11.206 21.683 2.54 0.608 0.467 0.250

Limy Mudstone I 61.323 38.939 25.862 13.23 22.101 2.53 0.693 0.335 0.062

Wavy-bed Deposit II 75.030 31.048 45.242 18.084 26.514 2.65 0.329 0.233 0.682

Fossils-rich Deposit II 76.379 19.811 58.109 21.600 25.903 2.64 0.157 0.100 0.090

Dolomitic Mudstone III 84.720 35.819 84.122 25.930 26.244 2.70 0.004 0.006 0.044

Concretion IV 96.468 47.581 94.980 28.953 29.034 2.66 0.008 0.001 0.119

Calcareous Laminae IV 92.149 30.350 90.951 29.37 29.773 2.66 0.006 0.007 -0.020

Non-calcareous V 54.897 12.435 21.263 11.327 21.114 2.41 0.790 0.432 1.103

Phosphatic Deposit V 52.548 10.328 26.414 10.59 17.909 2.47 0.494 0.346 0.224
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Figure 4.4: Shear wave seismograms along 450 to the axis of symmetry. The de-
lineation of the shear wave arrival is comparatively easier on horizontally polarized
waveform VS|| (blue color) than on vertically polarized waveform VS⊥ (red color).
TP and TS indicate the P- and S- wave arrival respectively. The cyan color ellipse
represents uncertainty in S- wave arrival picking.

4.6 Forward Modeling Including Cracks

Modeling starts with the host matrix (clay minerals); the other minerals are in-

troduced as the inclusions in the host matrix. Since from thin sections and SEM

photomicrographs, it it observed that the inclusions are embedded in the clay miner-

als host matrix. The elastic constants obtained in Section 4.3 represent “crack-free”

rock. From these elastic constants the P-wave and S- wave velocities in any direction

can be calculated using the Green-Christoffel equation. However, the P-wave and S-

waves velocities were calculated along directions parallel, perpendicular, and at 450
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CIJ =

















60.34 16.97 10.57 0 0 0
16.97 60.34 10.57 0 0 0
10.57 10.57 27.22 0 0 0

0 0 0 11.21 0 0
0 0 0 0 11.21 0
0 0 0 0 0 21.68
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Figure 4.5: Calcareous mudstone facies: (a) Elasticity tensor with the Thomsen’s
parameters (b) the calculated phase velocity from elasticity tensor. Color magenta,
red and green represents Vp, V s1 and V s2 respectively, and the solid colored circles
are the measured data in the lab. The values Vp along two orthogonal directions in
the symmetry plane are not equal. This indicates that the medium is not true VTI.
(c) Photomicrograph (x10) shows that the inclusions are randomly distributed with
preferred alignment in the host matrix. The anisotropy is due to the clay mineral
alignment.
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Figure 4.6: Same as Figure 4.5 but for limy mudstone facies. This facies shows
slightly weaker anisotropy than calcareous mudstone facies because the clay mineral
alignment is not so strong.
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Figure 4.7: Same as Figure 4.5 but for wavy-bed deposit facies. This facies does not
show preferred alignment of clay minerals.
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CIJ =
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Figure 4.8: Dolomitic mudstone facies: (a) Elasticity tensor (b) Phase velocity color
magenta, red and green represents Vp, V s1 and V s2 respectively, and the solid
colored circles are the measured data in the lab. (c) Photomicrograph (10X) showing
that inclusions are randomly distributed with no preferred alignment in the host
matrix. This facies is characterized by isotropic behavior of P- and S- waves.
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CIJ =

















76.38 24.57 19.81 0 0 0
24.57 76.38 19.81 0 0 0
19.81 19.81 58.11 0 0 0

0 0 0 21.60 0 0
0 0 0 0 21.60 0
0 0 0 0 0 25.90
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Figure 4.9: Fossils-rich deposit facies: (a) Elasticity tensor (b) Phase velocity color
magenta, red and green represents Vp, V s1 and V s2 respectively, and the solid
colored circles are the measured data in the lab. (c) Photomicrograph (4X) shows
that the inclusions are randomly distributed with preferred alignment in the host
matrix. This facies is weakly anisotropic, which is reflected by the small values of
the Thomsen’s parameters.
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CIJ =

















96.46 38.40 47.58 0 0 0
37.07 96.46 47.58 0 0 0
47.58 47.58 94.98 0 0 0

0 0 0 28.95 0 0
0 0 0 0 28.95 0
0 0 0 0 0 29.03
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Figure 4.10: Concretion facies: (a) Elasticity tensor (b) Phase velocity color ma-
genta, red and green represents Vp, V s1 and V s2 respectively, and the solid colored
circles are the measured data in the lab. (c) Photomicrograph (4X) shows that in-
clusions are randomly distributed with no preferred alignment in the host matrix.
This facies is characterized by isotropic behavior of P- and S- waves, and high P-
and S- wave velocities.
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CIJ =

















54.89 12.67 12.43 0 0 0
12.67 54.89 12.43 0 0 0
12.43 12.43 21.26 0 0 0

0 0 0 11.32 0 0
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Figure 4.11: Non-calcareous facies: (a) Elasticity tensor (b) Phase velocity color
magenta, red and green represents Vp, V s1 and V s2 respectively, and the solid
colored circles are the measured data in the lab. (c) Photomicrograph shows that
the inclusions are randomly distributed with no preferred alignment in the host
matrix.
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CIJ =

















92.15 32.60 30.35 0 0 0
32.60 92.15 30.35 0 0 0
30.35 30.35 90.95 0 0 0

0 0 0 29.37 0 0
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Figure 4.12: Calcareous laminae facies: (a) Elasticity tensor (b) Phase velocity
color magenta, red and green represents Vp, V s1 and V s2 respectively, and the solid
colored circles are the measured data in the lab. (c) Photomicrograph shows that the
inclusions are randomly distributed with no preferred alignment in the host matrix.
This facies is characterized by isotropic behavior of P- and S- waves, and high P-
and S- wave velocities.
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CIJ =

















52.55 16.73 10.33 0 0 0
18.83 52.55 10.33 0 0 0
10.33 10.33 26.41 0 0 0

0 0 0 10.59 0 0
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0 0 0 0 0 17.91

















GPa,

ε = 0.494

γ = 0.346

δ = 0.224

ρ = 2.47 g/cc

(a)

0 20 40 60 80
1

2

3

4

5

Angle (θ)

P
h

a
s
e
 V

e
lo

c
it

y
 (

k
m

/s
)

(b)

100 µm

(c)

Figure 4.13: Phosphatic deposit facies: (a) Elasticity tensor (b) Phase velocity color
magenta, red and green represents Vp, V s1 and V s2 respectively, and the solid
colored circles are the measured data in the lab. (c) Photomicrograph shows that
the inclusions are randomly distributed with weak alignment in the host matrix.
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to the axis of the effective symmetry. These velocities are then used to estimate the

microstructure of the rocks.

4.7 Inversion for Crack Parameters

The crack-free elastic constants estimated using forward modeling are now set as the

background matrix into which cracks having different aspect ratios are introduced.

The model will be evaluated for different concentrations of cracks (crack-induced

porosity) and friability factor. The main purpose is to extract that combination of

aspect ratio (χ), crack-induced porosity (Φ) and friability (=) which can provide

the best fit to the measured ultrasonic velocity. This is achieved by applying a

minimization function to every point in χ-Φ -= space. The minimization function

is defined as

L =

3
∑

i=1
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× 100%, (4.1)

where, L is the percentage error to be minimized as a function of χ,Φ, and =,

superscripts t and m represent the theoretical and measured value of the velocities,

and i=1, 2 and 3 represent the velocity measurements at angle 00, 450 and 900

respectively.

Figure 4.14 shows all the points in 3D space in which every point represents a

fixed value of the aspect ratio (χ), crack induced porosity (Φ) and friability (=).

The velocities for each point are calculated and compared with the lab measured

velocities. Let’s assume that at any one grid point, L1 is the error in Vp, V s1 and
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Figure 4.14: Schematic representation of the solution space in 3D. For each grid
point represents a fix value of χ, Φ and = for which the error L is estimated. The
minimum value of L is chosen as the best solution, which gives best fit to the
measured velocities.

V s2. The same procedure is applied to the neighboring grid point and the error in

Vp, V s1 and V s2 is estimated. Once again, let’s assume that the error in Vp, V s1

and V s2 for this neighboring grid point is L2. If the error at the neighboring grid

point L2 is less than the error at the first point (L1), then L2 becomes the reference

error for the further calculation. But if L2 is larger than the L1 then the reference

error does not change and the calculation proceeds to the next neighboring grid

point, ignoring the first neighboring grid point (L2). The minimum value of L is

found after an exhaustive search.
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Because the inverse modeling solutions are non-unique, many solutions may result

in the same error estimate. Information about the microfabric helps to constrain

the modeling parameters. For example the examination of microfabrics of the shale

Figure 4.15: SEM microphotograph and its processed image highlight the mi-
crostructure of shale. The arrows are pointing to the shape of pores and their
random distribution. A preferred alignment in cracks and minerals is not observed.

that in SEM photomicrographs shown in Figures 4.13 and 4.14 shows that cracks

in Figure 4.13 have comparatively a larger aspect ratio than those in Figure 4.14.

Also, it can be noticed that the cracks in Figure 4.13 are randomly distributed while
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in Figure 4.13 they are aligned. A rough estimate of porosity can also be estimated

by analyzing the surface area of the pores. The pore surface area in shale in Figure

4.13 is clearly larger than in Figure 4.14. This information about the microstructure

of shale is used to constrain the inverse modeling solutions.

Figure 4.16: SEM microphotograph and its processed image highlight the mi-
crostructure of shale. The arrows are pointing to thin cracks and their orientation.
A preferred alignment in cracks and minerals is observed.

A summary of the best solution, with information about aspect ratio of the crack,

crack-induced porosity, and friability for each of the nine facies, is shown in Table
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4.5 and 4.6. These tables also summarize the error estimate in the velocities in

the theoretical and measured results. The percentage error shown in Table 4.5 and

4.6 are for the mineral assemblages, estimated using XRD and FTIR respectively.

The FTIR based mineral assemblage give, overall, a better estimate of the velocities

compared to the XRD. The maximum error in measured velocities and theoretical

velocities is 22% for the FTIR-based mineral assemblage. But for most of the facies

this error is even less than 8% in most of the directions, except V sv along 450,

which is relatively more difficult to measure in the lab at room temperature and

pressure. The largest error is observed in the shale sample from phosphatic deposit

facies. For the calcareous mudstone, limy mudstone and wavy-bed deposit facies

XRD-based mineral assemblage gives a better estimate of velocities than FTIR, but

in the rest of the facies FTIR prevails. This can be attributed to the differences in

the determination of weight percentage of quartz and clay minerals in the samples.

4.8 Sources of Error

There are many sources of error that can magnify the total estimate of percentage

error in both lab-measured and theoretically-estimated elastic velocities. The theory

assumes single aspect ratio and ellipsoidal cracks in the shale, which is obviously not

true in nature. Other than the theoretical assumptions, some of the obvious sources

of error are possible during:

• the estimation of the mineral assemblage of the rock sample,

• ultrasonic velocity measurement in the lab,
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Table 4.5: Error estimate (in percentage) between velocity estimated from minerals assemblage using forward modeling
and the velocity measured in laboratory at ultrasonic frequency (1 MHz). The information of the shale microstructure,
such as crack induced porosity (Φ), the aspect ratio of cracks (χ) and the friability (=) is calculated using inverse
modeling. The cracks filled by water (w) and gas (g) are indicated. Mineralogy from X-ray Diffraction.

Facies Name
Vp V sh V sv

Φ(%) χ =
00 450 900 00 450 900 00 450 900

Calcareous Mudstone 5.96 7.81 8.49 1.45 7.55 8.30 1.45 21.24 5.96 12 0.2 0.8 w

Limy Mudstone 1.93 5.60 4.72 7.66 8.65 7.34 7.67 15.40 6.69 12 0.5 0.8 g

Wavy-bed Deposit 0.18 0.27 0.80 1.13 1.22 0.08 1.13 1.92 3.70 8 0.5 0.8 g

Dolomitic Mudstone 14.06 8.18 4.68 9.89 0.21 9.72 9.89 1.20 8.85 5.5 1.0 0.7 g

Fossils-rich Deposit 6.64 3.45 1.56 8.99 9.47 8.71 8.99 11.73 8.20 6.5 1.0 0.79 g

Concretion 17.88 15.20 3.11 11.55 6.04 2.86 11.55 4.18 12.06 5 1.0 0.77 g

Non-calcareous 8.90 10.04 14.12 12.57 15.53 15.73 12.57 11.57 8.95 10 0.2 0.8 g

Calcareous Laminae 13.15 8.03 0.63 6.64 1.11 6.80 6.64 1.68 7.12 4 1.0 0.73 g

Phosphatic Deposit 10.42 13.92 17.02 7.99 15.19 17.31 7.99 29.68 4.88 10 0.2 0.8 w
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Table 4.6: Error estimate (in percentage) between velocity estimated from minerals assemblage using forward modeling
and the velocity measured in laboratory at ultrasonic frequency (1 MHz). The information of the shale microstructure,
such as crack induced porosity (Φ), the aspect ratio of cracks (χ) and the friability (=) is calculated using inverse
modeling. The cracks filled by water (w) and gas (g) are indicated. Mineralogy from FTIR.

Facies Name
Vp V sh V sv

Φ(%) χ =
00 450 900 00 450 900 00 450 900

Calcareous Mudstone 7.13 8.74 9.36 1.73 7.62 8.29 1.73 21.67 5.66 12 0.2 0.8 w

Limy Mudstone 2.38 6.06 5.09 7.72 8.87 7.54 7.72 15.63 6.94 12 0.5 0.8 g

Wavy-bed Deposit 0.56 5.41 1.80 2.65 0.65 0.02 2.65 2.34 5.18 9 0.5 0.8 g

Dolomitic Mudstone 6.54 3.55 5.14 2.40 2.53 8.94 2.40 4.36 2.56 5.5 1.0 0.7 g

Fossils-rich Deposit 0.38 0.39 3.25 2.13 3.14 5.84 2.13 5.34 3.03 6.5 1.0 0.79 g

Concretion 6.1 7.67 3.44 0.36 0.51 3.03 0.37 1.49 0.07 5 1.0 0.77 g

Non-calcareous 2.37 8.30 14.16 5.33 10.74 12.0 5.33 5.36 1.40 10 0.2 0.8 g

Calcareous Laminae 4.55 2.0 0.69 3.47 0.27 2.87 3.47 0.59 4.09 4 1.0 0.73 g

Phosphatic Deposit 8.46 13.63 17.54 5.03 14.38 17.37 5.03 16.44 1.81 10 0.2 0.8 w

114



• sample preparation, and

• theoretical modeling due to unavailability of elastic constants for each minerals

present in the rock, i.e., for various types of quartz.

4.9 Summary

The quantitative analysis of the shale microstructure is extremely helpful for reser-

voir characterization because the aspect ratio of the cracks and the total porosity

would be asset for reservoir expoitation. Based on ultrasonic velocity measurement

the Barnett Shale can be classified into five distinct seismic facies. The information

about pore geometry is the average over a wide range of crack aspect ratios. The

mineralogy-based estimate of elastic constants provides good results for most of the

groups, which can be used to estimate velocities when they are not directly mea-

sured. If information about the microstructure is available, such as from thin section

and SEM microphotograph analysis, to constrain the inverse modeling results, the

mineralogy based velocity estimate can be very close to the measured velocity.

115



Chapter 5

Comparison of Upscaling Sonic to Seismic

Velocity Methods

In contrast to the new contributions in modeling and measurements presented in

Chapter 2 through 4, the present chapter uses established methods to compare

differences in upscaling of seismic wave sonic log to surface seismic frequencies.

The elastic properties of heterogeneous media are frequency dependent because of

multiple scattering during seismic wave propagation (Mavko et al., 1998; Mukerji et

al., 1995). Three different methods of upscaling to upscale the reservoir properties

are analyzed involving wave propagation in heterogeneous media. The theoretical

formulations to estimate effective elastic constants at a lower frequency from high

frequency data are based on the solution of the wave equation in heterogeneous

media. simple averaging (static), Backus averaging (quasi-static), and averaging

based on pair-correlation (dynamic) are compared. A variable-size running window

approach is adopted to estimate the elastic properties at a smaller scale. The size

of the window is a function of velocity and frequency, and it is assumed that the

medium inside the window is statistically homogeneous. The difference in the results
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obtained by three theoretical models in surface seismic frequency bandwidth (50-100

Hz) will be shown to be ∼2000 ft/s for P-wave and ∼800 ft/s for S- wave velocity.

5.1 Introduction

Upscaling of the Earth’s heterogeneous properties is a mathematical process of ob-

taining, or predicting, the elastic properties of the rock at lower frequencies, from

available measurements at higher frequencies. Upscaling of heterogeneous media

generally simplify the Earth’s model without changing the overall seismic wavefield

during wave propagation (Gold et al., 2000). Generally, there are two types of data

available to geoscientists to carry out reservoir characterization: dynamic and static.

In the dynamic case we obtain data via ultrasonic lab measurements, wireline log,

VSP (vertical seismic profiling), crosswell seismic, and surface seismic, with each of

these measurements operating in a different frequency range. Calculations of compo-

nents of the elasticity tensors using the mineralogical assemblage and elastic moduli

using microindentation technique are called static measurements. In dynamic mea-

surements, when the wavelength is comparable to the size of the heterogeneity, one

can observe different values of any physical property at different frequencies (i.e., Vp

at ultrasonic and seismic frequencies), and therefore, we need a rigorous procedure

of upscaling to predict rock elastic properties at frequencies lower than the mea-

sured frequency. According to Grubb and Walden (1995) upscaling of the random

heterogeneous media basically smooths the elastic properties and is often needed

for seismic imaging or forward modeling. Because of high frequency approxima-

tion, the application of ray tracing can be valid only for media in which the spatial
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fluctuation in properties is larger than the wavelength (Cerveny et al., 1977). In a

practical sense, upscaling means the replacement of a heterogeneous volume with a

homogeneous volume with effectively equivalent elastic constants. Heterogeneity

Figure 5.1: Random heterogeneous media with the size of heterogeneities ranging
from a micro-scale to outcrop scale. Electron microprobe photo (top row), transmit-
ted light microphotograph (middle row), and core and outcrop photograph (bottom
row, left to right, respectively).

occurs at many scales, from pore scale to reservoir scale (Figure 5.1). The fine scale

variation in the model’s parameters significantly affects the coarse scale properties

of the solution (Moulton et al., 1998). Geophysicists focus on coarse scale; hence,
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upscaling of the fine scale media is required in order to give the effective medium

properties on a coarse scale that capture the influence of fine scale structures.

Theoretical estimation of effective moduli of elastic or viscoelastic material gen-

erally requires information about (1) elastic moduli of each component of material,

(2) volume fraction of each component, (3) spatial distribution function of each com-

ponent, (4) porosity of material, (5) geometrical orientation of each component, (6)

viscosity of the fluid, and (7) measurement frequency (Mavko et al., 1998; Vikhorev

et al., 2006). Of all these types of information, estimation of the exact volume

fraction and geometrical details of each component is the most difficult. If we do

not have information about the geometrical details of how the components are ar-

ranged relative to each other, the best we can do is to predict the upper and lower

bounds of a composites (Mavko et al., 1998). The most famous bounds are the Voigt,

Reuss, and Hashin-Shtrikman bounds. Though the Hashin-Shtrikman bounds are

initially formulated for isotropic elastic composite, they can be generalized to include

the anisotropic phase and may incorporate some porosity dependence (Hasin and

Shtrikman, 1962). The Voigt (1928) average represents the upper bound of elastic

properties and is based on the concept of isostrain. When a stress is applied to a

stack of materials, all materials deform by the same amount. The displacement in

one material is exactly equal to the displacement in another material and can be

expressed mathematically by the arithmetic mean [ε(x) = 〈ε〉 = constant]. The

Voight average means the strain in each component is equal to the average volu-

metric strain. The Reuss (1929) average represents the lower bound and is based

on the isostress concept that states that if all the stresses are equal then the strains

can not be equal. This can be expressed mathematically by arithmetic the mean
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[σ(x) = 〈σ〉 = constant] In this case the effective compliance will be equal to the

average compliance, S∗ = 〈S〉.

The Brown (1955) model calculates the effective dielectric constant in a macro-

scopically homogeneous and isotropic composite having only two types of material,

where the volume fraction and the material’s property of each individual are known.

Hasin and Shtrikman (1962) extended this study to calculate effective permeability

of a multiphase composite in the form of upper and lower bounds if the volume

fraction and the material properties of each phase are known. The Wood (1955)

formulation provides the estimate of effective velocity in the case of a fluid mixture

in which the heterogeneities are small compared to the wavelength. A different class

of models that requires detailed information on pore structure and micro geometry

is discussed by O’Connell and Budiansky (1974), Kuster and Toksoz (1974), and Xu

and White (1995). In the self-consistent approximation (O’Connell and Budiansky,

1974), the first step is to calculate the property of the material with no inclusion,

and then in the second step calculate the effective material with one inclusion. In

the case of higher concentrations, the calculation of effective properties takes place

in steps. The effective properties obtained after the first step become the starting

media for the second step, and so on. Therefore, this theory does not account for

the interaction among the inclusions. Kuster and Toksoz (1974) used a long wave-

length first-order scattering theory to estimate P- and S- wave velocities. Their

formulation takes into account a two-phase material with a single type of inclusion

imbedded within the groundmass, where a separate term in the summation should

be included for the inclusion different from the first one. The Xu and White (1995)
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sand-clay model uses a differential effective medium (DEM) scheme to avoid the

dilute concentration restriction by adding a small concentration of pores and cracks.

There are several approaches, analytical as well as numerical, to upscale hetero-

geneous elastic and viscoelastic media. I will only focus on the upscaling methods

of elastic media. These different approaches result in different physical properties

of the media. Tiwary et al. (2007a) compare four upscaling methods based on com-

pletely different physical considerations. The results show large variation in upscaled

properties estimates for P- and S-wave.

5.2 Causes of Frequency Dependence

The causes for frequency-dependent reservoir properties can be classified into the

following three main categories:

(a) Static scale effect: The physical properties of the medium depends on the

scale of investigation. A change in the scale of measurement would lead to a change

in the intrinsic reservoir properties (Figure 5.2 a).

(b) Elastic scattering: Due to the presence of heterogeneities, or change in the

contrast of the medium, some wave energy bounces off in other directions and does

not reach the receiver resulting in lowering the transmitted amplitude (Figure 5.2

b). When the seismic wavelength is comparable to the size of the heterogeneity,

medium, it reflects back and forth losing energy at each bounce. The greater the

contrast between the host rock and the heterogeneities, the more energy is scattered

and thus lost.
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(a)

(b)

(c)

Figure 5.2: Seismic scale phenomena responsible for changing the seismic response
at different frequencies: (a) static scale effect, (b) elastic scattering, and (c) intrinsic
attenuation.
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(c) Intrinsic attenuation: In a porous medium, where the pores are partially- or

fully saturated, the propagation of the seismic wave creates a pressure disequilibrium

in the rock. This pressure disequilibrium initiates a relative displacement between

the grain framework and the pore fluid. If the time period of the seismic wave is

not sufficient to let the pressure equilibrate, the seismic waves loses energy (Figure

5.2c). Also, some of the energy is lost due to conversion of seismic energy into heat

energy.

These processes of attenuation are often coupled, and therefore the quantitative

estimation of their isolated effect on attenuation can be extremely difficult. In this

chapter, it will be assumed that the elastic scattering is the only cause of frequency

dependence.

The three upscaling methods compared in this chapter are shown in Figure 5.3.

These methods consider the following frequency dependence causes:

• simple Averaging includes the Static scale effect,

• Backus Averaging: includes both static scale effect and the interaction

among the layers, and

• Pair correlation function Averaging includes the static scale effect, inter-

action, and the scattering.
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SEISMIC UPSCALING METHODS
FOR

HETEROGENEOUS ELASTIC SOLID
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upscaling without
interaction and scattering
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upscaling with
interaction

Simple
Averaging

	 R

Backus
Averaging

long-wavelength
approximation

with scattering
consideration

Pair correlation
Function Approach

Figure 5.3: Flowchart of the physical consideration involved in mathematical formu-
lation of different upscaling methods.
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5.3 Upscaling of Thin Layered Media

5.3.1 Backus Averaging

Thin layered media1 (Figure 5.4) has been studied widely in different branches of

science (Postma, 1955; Backus, 1962; Shermergor, 1977; Berryman, 1979). A stack of

thin isotropic layers will give rise to the medium called transversely isotropic vertical

axis of symmetry (VTI). Backus (1962) obtained the exact solution to calculate the

effective properties for the VTI medium using the assumptions that all constituents

Figure 5.4: Layered medium in which the thickness of the layer (d) is much smaller
than the wavelength of the seismic wave (λ).

1Means that the thickness of each layer is much smaller than the wavelength of the seismic
waves.
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of the medium are linearly elastic and there is no source of energy dissipation due to

friction or viscosity. The Shermergor (1977) formulation, as expressed in equation

2.4, is valid for the more general symmetry class (orthorhombic: characterized by

nine independent elastic constants), and it can be used to calculate the effective

elastic constant in thin layered media even if the layers are anisotropic. If these

anisotropic layers are replaced by isotropic layers, Shermergor’s (1977) formulation

reduces to the formulae derived by Backus (1962) and Rytov (1956) for thin layered

media with isotropic layers. The resulting medium exhibits transversely isotropic

properties with a vertical axis of symmetry.
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11 = 〈C11〉 +

〈

C13

C33

〉2
〈

C−1
33

〉−1
−

〈

C2
13

C33

〉

,

C
∗

12 = 〈C12〉 +

〈

C13

C33

〉〈

C23

C33

〉

〈

C−1
33

〉−1
−

〈

C13C23

C33

〉

C
∗

13 =

〈

C13

C33

〉

〈

C−1
33

〉−1
,

C
∗

22 = 〈C22〉 +

〈

C23

C33

〉2
〈

C−1
33

〉−1
−

〈

C2
23

C33

〉

,

C
∗

23 =

〈

C13

C33

〉

〈

C−1
33

〉−1
,

C
∗

33 =
〈

C−1
33

〉−1
,

C
∗

44 =
〈

C−1
44

〉−1
,

C
∗

55 =
〈

C−1
55

〉−1
,

C
∗

66 =
〈

C66

〉

, (5.1)

where Cij(i, j = 1, 2, 3, ...6) represent the effective elastic constants in two-index

Voigt notation and C∗
ij represent the effective elastic constants over the scale of the
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averaging window length. The angular bracket, 〈 〉, is an integral over the size of

the window (Liner and Fei, 2007).

The Rytov (1956) solution of the wave equation to estimate effective behavior of

the long wave in periodic layered media is based on the Floquet theorem (Floquet,

1883). Equation 5.1 can be considered to be a generalization of the widely Backus

approach for anisotropic (orthotropic 1) layers. Attenuation and dispersion are the

results of multiple scattering at the layer interfaces as well as at the heterogeneities

present in the medium. Friendly multiples cause large transmission loss while a

wave travels through thin layered medium due to stratigraphic filtering (Anstey and

O’Doherty, 2002). Backus (1962) long wavelength approximation does not the effect

of multiple scattering. The upscaling results of Backus averaging for P-wave and S-

wave are shown in Figures 5.5 and 5.6, respectively. The sonic log data show a large

fluctuation in P- wave and S- wave velocities. These fluctuation decreases at the

lower frequencies. At 50Hz the P- wave and S- wave velocity log show the minimum

fluctuation. Beyond this point the upscaled velocity log losses resolution.

1includes orthorhombic, hexagonal, cubic, and isotropic symmetry
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Figure 5.5: Color coded upscaling results of P-wave at various frequencies using the
Backus averaging method. P-wave velocity from the sonic log is used for upscaling.
The high frequency real data show large fluctuation of velocity with depth. The
upscaling result shows smoothing of the fluctuations.
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Figure 5.6: Color coded upscaling results of shear wave at various frequencies using
the Backus averaging method. S-wave velocity from the sonic log is used for upscal-
ing. The high frequency real data show large fluctuation of velocity along the depth.
The upscaling result shows smoothing of the fluctuations.
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5.4 Simple Running Averaging

In simple averaging, the reservoir properties are averaged over a window for which the

length is equal to the size of the wavelength at a given frequency, since the velocity

at a higher frequency is known from the well log. It is assumed that the property

of the medium inside the window is statistically homogeneous, thin layered, and

either isotropic or anisotropic. The window is applied through the sonic or density

log and the arithmetic average of all the data points falling inside the window is

computed and assigned to the window center. As the window moves down, the

process continues as shown in Figure 5.7. This process results in a continuous lower

frequency curve with the output frequency dependent on the window size. The

calculation of effective elastic constants (Cij) is performed using equation 5.2. The

two-index Voigt notation is used for the stiffness tensors Cij. The averaging of

stiffness tensors is estimated, and then the Vp, Vs, and density are calculated using

equation 5.2 and 5.4.

C
∗

ij(H) =
〈

Cij

〉

∣

∣

∣

∣

L

, and ρ∗(H) = 〈ρ〉

∣

∣

∣

∣

L

(5.2)

where, L is the length of the averaging window, H is any subsurface point repre-

senting the depth at which the effective value has been calculated, and C
∗

ij (i, j =

1, 2, 3, ...6) represents the components stiffness tensor of effective elastic constant [in

two-index Voigt notation (Musgrave, 1970)].
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For example, the average value of C11 is

〈C11〉 =
1

NL

NL
∑

i=1

C
(i)
11 , (5.3)

where, 1
NL

is the number of measured points that fall within the chosen window of

size, L.

Once the value of the components of the stiffness tensor are known, the elastic

properties of the medium can be estimated using as

V
∗

p =

√

C
∗

33

ρ∗
, V

∗

S1 =

√

C
∗

44

ρ∗
, and V

∗

S2 =

√

C
∗

55

ρ∗
. (5.4)

The calculated Vp, Vs, and density using simple averaging is shown in Figures (5.8,

5.9, and 5.10).

Simple averaging take the arithmetic mean of Cij and ρ while making calculation

of the effective elastic media. Like Backus averaging, simple averaging does not take

into account the scattering attenuation that can take place due to heterogeneities

of different sizes present in the medium. The difference between Backus averaging

and simple averaging is that Backus averaging accounts for the interactions, while

simple averaging is just the arithmetic mean.
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Figure 5.7: Schematic representation of running window concept: the averaged prop-
erty inside the dashed window of length L1 is shown by dark solid circle. Then the
window moves downward to next location represented by dotted window where the
length of the window is L2 and the averaged property inside this window is shown
by dark star.
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Figure 5.8: Color coded upscaling results of P-wave at various frequencies using
simple averaging method. P-wave velocity from the sonic log is used for upscaling.
The high frequency real data show large fluctuation of velocity with depth. The
upscaling result shows smoothing of the fluctuations.
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Figure 5.9: Color coded upscaling results of shear wave at various frequencies using
simple averaging method. S-wave velocity from the sonic log is used for upscaling.
The high frequency real data show large fluctuation of velocity along the depth.
The upscaling result shows smoothing of the fluctuations and decreasing velocity at
a lower frequencies.
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Figure 5.10: Color coded upscaling results of density at various frequencies using
simple averaging method. The real high frequency density log is used for upscaling.
The high frequency real data show large fluctuation of velocity along the depth.
The upscaling result shows smoothing of the fluctuations and decreasing velocity at
a lower frequencies.
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5.5 Many Body Problem

“It would indeed be remarkable if Nature fortified herself against

further advances in knowledge behind the analytical difficulties of the

many-body problem.” — Max Born (1960)

In multi-scale heterogeneous media (Figure 5.1), seismic waves can be multiply scat-

tered. Seismic waves at a frequency bandwidth commonly used for hydrocarbon

exploration attenuate because of both intrinsic and elastic scattering. The phenom-

ena of elastic scattering in a heterogeneous medium can be simulated as a many-body

system developed for quantum wave field theory (Joachian, 1975). Green’s function

in a multiple scattering system can be estimated using the Dyson series. Green’s

function techniques are powerful tools for studying many-body systems in which

the main wave field will be affected by the interaction of strain field due to hetero-

geneities during wave propagation. The central point in this method is the Dyson’s

equation which determines, through an approximation of the self-energy, the Green’s

function of a heterogeneous medium.

Chesnokov et al. (1995) considered first order interactions to calculate the Green’s

function by summing the first two terms (pair correlation) of the Dyson series. The

dyson series contains infinite terms which summation is not trivial. The higher order

terms are considered small enough to be ignored. The Vikhorev (2005) calculation

of the Green’s function in heterogeneous media accounts for higher orders of in-

teractions called multi point correlation. Figures 5.11a and b, respectively, show

the physical model that explain the interactions considered in pair correlation and
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multi point correlation formulation. Upscaling methods based on pair- and multi-

correlation function approximation account for scattering phenomena that can take

place in a many-body system. Tiwary et al. (2007a) compare four different upscaling

methods and show for surface seismic frequencies that the method based on multi

correlation function approximation gives higher values of the elastic properties than

the method based on pair correlation function approximation. The upscaling method

based on pair correlation functions is relatively new and, needs to be compared with

the well-known Backus averaging.

a b

Figure 5.11: Schematic representations of random heterogeneous media, in which
the green solid circles are the inclusions in the white background matrix. (a) The
double ended red arrows indicate that the interaction between all pair of points in
the space, and (b) the single end arrow indicates that the interactions between all
the points in the space.
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5.6 Correlation Function Averaging

5.6.1 Correlation Function

In a random heterogeneous media, the elastic properties of the medium varies spa-

tially. In this case stiffness tensors, Cijkl), stress, σij , strain, εkl, and density, ρ are

not constant but depend on the co-ordinate, x. Therefore, the stiffness tensor stress,

strain, and density can be expressed in terms of the average and the fluctuation:

Cijkl = 〈Cijkl〉 + C
′

ijkl , (5.5)

σij = 〈σij〉 + σ
′

ij , (5.6)

εkl = 〈εkl〉 + ε
′

kl , (5.7)

and

ρ = 〈ρ〉 + ρ
′

. (5.8)

〈Cijkl〉, 〈σij〉, 〈εkl〉 and 〈ρ〉 are the average value of stiffness tensor, stress, strain,

and density respectively. C
′

ijkl, σ
′

ij , ε
′

kl, and ρ
′

represent, the fluctuation in stiffness

tensor, stress, strain, and density.

It is assumed here that, at any point in space, x, that the fluctuation of any elastic

property of the medium is always smaller than its average value. Let’s assume that

C
′

ijkl(x1) and C
′

ijkl(x2) are the fluctuation in the elastic stiffness tensors at points x1
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and x2 respectively. Then, the pair correlation function (B) of the elasticity tensor

components for the statistically homogeneous case can be expressed as:

(cc)

B
pqmn
ijkl (x1 − x2) = 〈C

′

ijkl(x1)C
′

pqmn(x2)〉 . (5.9)

By the same token, if ρ
′

(x1) and ρ
′

(x2) are the fluctuation in the density at points

x1 and x2 from its mean density value, then

(ρρ)

B (x1 − x2) = 〈ρ
′

(x1)ρ
′

(x2)〉 . (5.10)

The fluctuation in stiffness, C
′

ijkl, and density, ρ
′

is determined as the difference

between the actual value at any point, x, and the mean value averaged over a given

length scale, center about x.

5.6.2 Pair Correlation Function Averaging

Backus and simple averaging do not account for the scattering that can occur at

the surface of heterogeneities and layer interfaces. The averaging based on the

spatial correlation function approach incorporates the physical effects of frequency

dependance which arise due to scattering during waves propagation in heterogeneous

media. The pair correlation function accounts for all the interactions between each

and every pair of points in space. Roy et al. (2001) used pair correlation func-

tion to upscale the elastic wave velocity assuming that the frequency dependence

is only due to scattering phenomena. The theoretical formulation to calculate the

frequency-dependent effective elasticity tensor and density in dispersive media is

139



given by Shermergor (1977); Chesnokov et al. (1998, 2000) use the Feynman dia-

gram technique to derive the theoretical model to calculate frequency dependent

properties.

The pair correlation function formulation (Bayuk et al., 2003) to calculate the

components of effective elastic properties is

C
∗

ijkl(ω, k) =
〈

Cijkl(x)
〉

+

∫

cos(k,x)

[

∂

∂xn

∂

∂xq

G
0

mp(ω,x)

]

(cc)

B
pqkl

ijmn
(x)dx , (5.11)

and

ρ
∗

(ω, k) = 〈ρ(x)〉 − ω2

∫

cos(k,x)G
0

ii(ω,x)
(ρρ)

B (x)dx . (5.12)

where ω is the radial frequency, k is the wave number vector, B is the correlation

function, C
∗

ijkl, (i, j, k, l = 1, 2, 3) is fourth rank effective elasticity tensor, G
0

is the

dynamic Green’s function which depends on medium properties and frequency, and

the superscripts cc and ρρ denote auto-correlation function of stiffness tensors and

density respectively.

Equations 5.11 and 5.12 are valid for an arbitrary anisotropic and heterogeneous

media. If the medium is isotopic, G
0

takes the form 5.13 (Bayuk et al., 2003):

G
0

ij(ω,x) =
1

x

[

h(ω,x)δij + g(ω,x)
xixj

x2

]

, (5.13)

where
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, (5.14)
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and

g(ω,x) ≡
1

4πρω2x2

{[

3

(

1 +
ixω

c

)

−
x2ω2

c2

]∣

∣

∣

∣

c
l

ct

}

e
−
(

iωx

ct

)

, (5.15)

where, c
l
and ct represent longitudinal and shear waves respectively.

The results of pair correlation averaging for P-wave and S-waves as a function of

frequency are shown in Figures 5.12 and 5.13, respectively.
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Figure 5.12: Color coded upscaling results of P-wave at various frequencies using
pair correlation function averaging method. The real sonic frequency P-wave log is
used for upscaling. The high frequency real data show large fluctuation of velocity
along the depth. The upscaling result predicts a smoothing of the fluctuations and
decreasing velocity at a lower frequencies.
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Figure 5.13: Color coded upscaling results of shear wave at various frequencies using
pair correlation function averaging method. The real sonic frequency P-wave log is
used for upscaling. The high frequency real data show large fluctuation of velocity
along the depth. The upscaling result predicts a smoothing of the fluctuations and
decreasing velocity at a lower frequencies.
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5.7 Comparison of Upscaling Results

The results of three different upscaling methods are shown in Figures 5.14 to 5.21.

The estimation of P-wave velocities at 500 Hz, 200 Hz, and 50 Hz, using three

different methods of upscaling, are shown in Figures 5.14, 5.15 and 5.16, respectively.

Also, upscaling results of S-wave velocities at 500 Hz, 200 Hz and 50 Hz are shown in

Figures 5.17, 5.18, and 5.19, respectively. All figures show that the upscaling curves

smooth the highly fluctuating real data. The lower the frequency, the more smooth

are the upscaling results. Figures 5.14 and 5.17 show that at high frequencies there

is only a small difference in upscaling results using the three methods. But as we

decrease the frequency, the differences becomes larger as observed in Figures 5.15

and 5.18 for 200 Hz and 5.16 and 5.19 for 50Hz.

The difference in upscaling results obtained by these three upscaling methods are

due to the difference between including or excluding the heterogeneities interactions

(Tiwary et al., 2007a). If the concentration of heterogeneities are small, the inclusion

interaction can be ignored (Grechka, 2007). Simple averaging, which ignores het-

erogeneity interactions provides significantly higher values of P- wave and S- wave

velocities at 50 Hz than the other two methods (Figures 5.20 and 5.21). Figures 5.20

and 5.21 show that simple and Backus averaging will result P- and S-wave velocities

that are too high.

In pair correlation function function averaging, only first-order interactions of

stress fields with the inclusions are considered. However, if the inclusion density

is large, the stress field around one inclusion may influence the stress field around

other inclusions.
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Figure 5.14: Comparison of upscaling methods obtained for Vp at 500 Hz using
simple, Backus, and pair correlation, overlain on real sonic log P-wave input data
(blue color).
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Figure 5.15: Comparison of upscaling methods obtained for Vp at 200 Hz using
simple, Backus, and pair correlation, overlain on real sonic log P-wave input data
(blue color).
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Figure 5.16: Comparison of upscaling methods obtained for Vp at 50 Hz using
simple, Backus, and pair correlation, overlain on real sonic log P-wave input data
(blue color).
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Figure 5.17: Comparison of upscaling methods obtained for Vs at 500 Hz using
simple, Backus, and pair correlation, overlain on real sonic log shear wave input
data (blue color).
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Figure 5.18: Comparison of upscaling methods obtained for Vs at 200 Hz using
simple, Backus, and pair correlation, overlain on real sonic log shear wave input
data (blue color).
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Figure 5.19: Comparison of upscaling methods obtained for Vp at 50 Hz using
simple, Backus, and pair correlation, overlain on real sonic log shear wave input
data (blue color).
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Figure 5.20: Upscaling results of P-wave velocity at various frequencies using
three different upscaling methods, simple averaging, Backus averaging, and Pair-
correlation function averaging at 7089 feet. At lower frequencies about 2000 ft/s
difference in P-wave velocity is obtained by different upscaling methods, but this
difference gets smaller at higher frequencies.
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Figure 5.21: Same as Figure 5.20 but for shear wave velocity. At lower frequencies
about 800 ft/s difference in shear wave velocity is obtained by different upscaling
methods, but this difference gets smaller at higher frequencies.
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5.8 Summary

The three different elastic upscaling methods provide different answers to the same

question. This difference in the averaging method can be viewed as a difference in

treatment of scattering attenuation by each of the methods considered. Pair cor-

relation function averaging predicts the largest scattering attenuation, while simple

averaging predicts the smallest. The effective dispersion due to the scattering may

be viewed in this context as a measure of the degree of interaction of inclusions con-

sidered by each of the methods. The difference in results obtained by these methods

for P-wave and S- wave upscaling shows ∼ 2000 ft/s and ∼ 800 ft/s respectively.

The wave propagation in heterogeneous media suffers multiple scattering, particu-

larly when the size of the wavelength is either comparable or smaller than the size

of heterogeneities. In such circumstances it is necessary to consider higher-order

interactions where the change in the stress field around a single heterogeneity due to

elastic wave propagation will influence the stress field around other heterogeneities.

Averaging based on the pair correlation function provides a way to consider the

first-order interactions in the medium. Upscaling based on the pair correlation func-

tion, which accounts for both interaction and scattering in the heterogeneous media

predicts lower values of elastic properties obtained by simple and Backus averaging.
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Chapter 6

Conclusions

The Barnett Shale and equivalents currently produce some 55% of the U.S. natural

gas supply. In spite of this importance almost all effective media theory has been

developed for and applied to sand reservoirs. The main purpose of this dissertation

has been to provide a fundamental understanding of shale anisotropy and wave prop-

agation in cracked media. Clay mineral alignment and aligned cracks are considered

to be the two main causes of shale anisotropy. Four shale models have been analyzed

to investigate the isolated effect of clay mineral alignment and aligned cracks using

effecting media theory based on the generalized singular approximation. Although

both of these causes of anisotropy are well-documented in the existing literature,

only a limited number of case studies address crack shape. There are also few ex-

perimental studies in which the shape of the cracks and matrix properties have been

controlled. Thus theoretical modeling for arbitrary crack shape, crack concentration,

and clay platelet alignment offers new insights into shale anisotropy.

Model studies conducted in this dissertation indicate that one cannot easily dis-

tinguish between gas or water saturation when clay mineral alignment is the main
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cause of anisotropy (i.e., cracks are randomly aligned), or when both the clay min-

erals and pores are aligned. When the mineral alignment is not the main cause

of anisotropy, the singularity point disappears for gas saturation but does not for

water saturation. When the matrix is isotropic and the cracks are aligned, the gas

saturation can be distinguished from water-saturation using the P-wave signature.

Shale mineral alignment, pore alignment, aspect ratio and friability all impact

shale anisotropy. Shale mineral alignment is very important when the role of aligned

cracks is reduced, which occurs when shale has just undergone smectite to illite

conversion but before cracking of any kerogen to oil has begun. Such simple models

may allow one to evaluate the different stages in the burial history of shale.

Friability is an indirect measure of the way stress and/or strains are communi-

cated through the rock when pores and matrix act together. Friability allows the

“comparison body” to range between the classic Hashin-Shtrikman elastic bounds

of a medium. As friability increases, the P and S anisotropy of the shale also in-

creases. The amount of anisotropy caused by the shale matrix is controlled by the

amount of the clay minerals in the shale; clay mineral alignment does not contribute

significantly to anisotropy until it exceeds 10% of the total volume.

This dissertation provides a means to investigate the role of gas saturation, the

creation of new pores and the ultimate state of the shale. Clay volume and clay

alignment along with crack-induced porosity and crack alignment are the major

factors causing anisotropy. Gas-filled cracks cause a greater degree of anisotropy

because of a higher degree of contrast between host matrix and crack-filled fluid. The

matrix dominates anisotropy when the cracks are water-filled. The crack dominates
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when they are gas-filled. With this understanding in mind one can start to explore

a shale environment in order to investigate the hydrocarbon potential of the shale.

The ultrasonic measurements in this dissertation have been applied to nine dif-

ferent lithologic facies within the Barnett Shale. For each of the nine facies com-

pressional and shear wave velocity are measured on samples at ultrasonic frequencies

(1MHz). Elastic properties obtained from the rock samples belonging to the dif-

ferent facies indicate that the Barnett Shale can be characterized by five different

seismic facies, which are either isotropic, or VTI in nature. The mineralogy-based

velocities, which have been estimated using forward modeling and the ultrasonic lab

measured velocities, are then used to extract the crack-induced porosity, the aspect

ratio of the cracks, and the friability. Inverse modeling of measured velocities can

thus be used as a tool to estimate crack parameters for reservoir exploration and

exploitation. Also, the mineralogy-based estimates of the velocities can be used as

a tool to characterize sedimentary facies in the absence of cores and log data.

The theoretical models commonly used to upscale heterogeneous elastic media are

based on different physical considerations. Of the three different upscaling methods

analyzed in this dissertation, indicate that the method based on the pair correlation

method is preferred. The pair correlation method of upscaling assumes that the

fluctuation in the physical properties is much smaller than the average values. The

pair correlation method is more empirically reasonable and is based on more exact

physics than the Backus and simple averaging. At the Barnett Shale depth (7089

ft) in the well the maximum difference in P- and S- wave velocities obtained by

three different upscaling methods are 2000 ft/s and 800 ft/s respectively. This large

difference in upscaled velocity and anisotropy may lead to poor seismic imaging.

156



The methods that account for interaction and scattering, based on the pair cor-

relation approximation, results in a smaller velocity than Backus averaging, which

ignores scattering. Simple averaging does not allow for either interaction or scat-

tering. The higher upscaled velocity obtained by simple and Backus averaging in

surface seismic frequency range may be attributed to not accounting for multiples

by these methods. Pair correlation provides more accurate upscaling estimates of

velocities at surface seismic exploration scales than Backus and simple averaging.

However, future calibration studies require the highly-controlled measurements on

synthetic rock samples.
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Appendix A

Phase and Group Velocity in Anisotropic Media

A.1 Phase Velocity

Let us consider Newton’s Second Law to describe the motion of a volume element

in a medium:

fi = mai, (A.1)

where fi is the force, m is the mass and ai is the acceleration. Hereafter, I will use

vectors and tensors in the index form, i.e., ~a↔ ai.

From continuum mechanics (Mase, 1970), we know that

fi =
∂σij

∂xj

, (A.2)

where, σij is a second rank symmetric tensor.
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From equation A.1 and A.2,

∂σij

∂xj

= ρ
∂2ui

∂t2
. (A.3)

where, ui is the displacement vector and ∂2ui

∂t2
is the acceleration.

In linear elastic inhomogeneous and arbitrary anisotropic media without initial

stress, Hooke’s Law can be expressed (Mase, 1970) as

σij(x) = Cijkl(x)εkl, (A.4)

where, Cijkl is the tensor of elastic constants, or the stiffness tensor, and εkl is the

strain tensor. The stiffness tensor, Cijkl, is symmetric due to the symmetry of stress

(σij = σji), and strain (εij = εji), and the scalar character of elastic energy (Landau

and Lifshitz, 1986). In this case

Cijkl = Cjikl = Cijlk = Clkij. (A.5)

Substituting equation A.4 in A.3,

∂

∂xj

(

Cijkl(x)εkl(x)

)

= ρ
∂2ui

∂t2
. (A.6)

Taking into account the expression for the linear strain tensor (Landau and

Lifshitz, 1986):

εkl(x) =
1

2

(

∂uk(x)

∂xl

+
∂ul(x)

∂xk

)

(A.7)

From equation A.6 and A.7,
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∂

∂xj

[

Cijkl(x)
1

2

(

∂uk(x)

∂xl

+
∂ul(x)

∂xk

)]

= ρ
∂2ui

∂t2
. (A.8)

Since Cijkl is a symmetric tensor, equation A.8 can be written,

(

∂

∂xj

Cijkl(x)
∂

∂xl

)

uk = ρ
∂2ui

∂t2
. (A.9)

If the medium is homogeneous, then the Cijkl, σij and εij will be constant at any

point in the medium, therefore equation A.9 can be expressed as

Cijkl

∂2uk

∂xj∂xl

= ρ
∂2ui

∂t2
, (A.10)

which is the wave equation for homogeneous arbitrary anisotropic media.

Let us consider the plane wave propagation in inhomogeneous media:

uk = A • Pie
−i(kixi−ωt), (A.11)

where, uk is a displacement vector, A is the amplitude of the displacement, Pk is the

direction of the displacement (or displacement vector), and ki is the wave vector in

ni direction. The wave vector ki = k • ni. xi is the vector co-ordinate, t is the time,

and ω is the angular velocity.

The condition for the existence of a plane wave in arbitrary anisotropic media

(equation A.11) can be obtained by substituting expression A.11 into equation A.10.

Before doing the substitution, let us present expression A.11 in the form:

uk = A • Pke
−ik(nixi−vt), (A.12)
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where v = ω/k is the phase velocity.

Substituting equation A.12 into A.10, and calculating the differential:

(1) First derivative over xi:

Cijkl

∂

∂xj

[

(

− ik ni δil
)

uk

]

= ρv2ui (−k2) (A.13)

where, δil = ∂xi

∂xl
is the Kronecker Delta. The Kronecker Delta, δik = 1 when i = j,

and 0 when i 6= j. In the right side of equation A.13 the second derivative over time

is already written.

(2) Second derivative:

Cijkl

[

(

− k2 nl nj

)

uk

]

= ρv2ui (−k2), (A.14)

or,

Cijkl

[

(

nl nj

)

uk

]

= ρv2ui. (A.15)

Using equation A.12,

Cijkl

(

nl nj

)

A • Pk = ρv2A • Pi, (A.16)

or

Cijkl

(

nl nj

)

Pk = ρv2Pi, (A.17)
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where, niδil = nl, and niδij = nj.

After simple algebraic transformation equation A.17 can be written as

(

Cijkl nj nl − ρv2δik

)

Pk = 0, (A.18)

where, Pi = δikPk and δik is the Kronecker Delta.

Equation A.18 represents the Green-Christoffel equation (Landau and Lifshitz,

1986), which can be written:

(

Γik − ρv2δik

)

Pk = 0, (A.19)

where,

Γik = Cijkl nj nl. (A.20)

Expression A.20 represents the symmetric Green-Christoffel tensor, where i, j, k, l =

1, 2, 3.

Equation A.19 will have an unique solution if and only if the determinant of this

equation is equal to zero. i.e, if

|Γik − ρv2δik| = 0. (A.21)

The solutions of equation A.21 will have three eigenvalues (three different velocities)

and three eigenvectors (three displacement vectors). The three different velocities

will represent the phase velocities (v) in an arbitrary anisotropic media and the three

displacement vectors the polarization of the wavefield.
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For example let us obtain the exact expression for the phase velocities in trans-

versely isotropic media with vertical axis of symmetry (VTI). According to Helbig

(1994), VTI medium is characterized by an isotropic horizontal plane in which veloc-

ity does not depend on the direction of propagation of a wave (i.e., ni), and vertical

axis of a symmetry (Figure A.1).

6

-

	

*

X1

X2

X3

k•niOy
θ

Figure A.1: Schematic representation of VTI medium, in which plane O X1 X2
represnts the plane of isotropy and O X1 X3 and O X2 X3 are the mirror planes.
The angle (θ) is measured from the axis of symmetry to the direction of propagation
of a wavefront.

In VTI media, equation A.21 can be solved analytically, and the three eigenvalues

(phase velocities) can be expressed as a function of angle, θ, in the k vector direction.

Following Ruger (2001) the phase velocities (VP , VSH and VSV ) in VTI media are:

VP =
1

2ρ

√

(C11 + C44) sin2 θ + (C33 + C44) cos2 θ +K, (A.22)

VSV =
1

2ρ

√

(C11 + C44) sin2 θ + (C33 + C44) cos2 θ −K, (A.23)

VSH =
1

ρ

√

C66 sin2 θ + C44 cos2 θ, (A.24)
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where, K ≡
√

(

(C11 − C44) sin2 θ − (C33 − C44) cos2 θ
)2

+ 4(C13 + C44)2 cos2 θ sin2 θ),

and C11, C13, C33, C44, and C66 are the five independent elastic constants in VTI me-

dia.

Due to the symmetry of the Green-Christoffel matrix (equation A.20), at any

given phase angle the polarization vectors Pk for SH , (quasi) SV , and (quasi) P are

mutually orthogonal. However, the propagation direction (ki) and the polarization

direction (Pk) are in general orthogonal to each other only in the SH-wave. Since

VSV and VSH are not equal to each other in anisotropic media, (VSH 6= VSV in the

same direction) splitting of the shear waves will take place. In other words, the two

shear waves (VSH and VSV ) travel at a different velocity in the same direction. Also,

it can be noted that the periodical behavior of VP , VSH and VSV is due to the fact

that the equations A.22, A.23 and A.24 are presented via sinθ and cosθ, which are

periodic functions.

A.2 Group Velocity

Unlike isotropic media, in an anisotropic medium the displacement vector and the

wave vector do not coincide with each other, and hence the velocity along the wave

vector and along the energy flux (flow of energy) are different as well. The velocity

along the wave vector is called phase velocity, and the velocity along the energy flux

is called group velocity, or ray velocity.

Let us rewrite the Green-Christoffel equation A.17 as

Cijkl njnl Pk = ρv2Pi. (A.25)
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Multiplying both sides of equation A.25 by Pi, we get

Cijkl njnl Pk Pi = ρv2P 2
i (A.26)

where, Pi is a displacement vector. For the case in which P is a unit vector; P 2
i =

P 2
1 + P 2

2 + P 2
3 = 1. Then, equation A.26 can be presented in the following form:

Cijkl njnl Pk Pi = ρv2, (A.27)

or

Cijkl njnl Pk Pi = ρω2 λ
2

4π2
, (A.28)

where v = ω
k

= ω λ
2π

is the phase velocity. Multiplying equation A.28 by 4π2

λ2 , we get:

Cijkl Pi kjkl Pk = ρω2, (A.29)

where 2π
λ
nj ≡ kj and 2π

λ
nl ≡ kl. Differentiating A.29 with respect to kj or kl, we

get:

2Cijkl Pi kl Pk = 2ρω
∂ω

∂kj

, (A.30)

or

Cijkl Pi kl Pk = ρω
∂ω

∂kj

, (A.31)

or

V
g

j =
∂ω

∂kj

=
1

ρω
Cijkl Pi kl Pk, (A.32)
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where V
g

J is defined as the group or ray velocity in kl direction. The expression in

equation A.32 can also be written as

V
g

j =
∂ω

∂kj

=
1

ρv
Cijkl Pi Pl nk. (A.33)

By introducing the second Green-Christoffel tensor, we get:

Tjk = Cijkl Pi Pl, (A.34)

where Tjk is the energy vector. We can now write equation A.33 as

V
g

j =
∂ω

∂kj

=
1

ρv
Tjk nk, (A.35)

where, ρ is the density of the medium, v is the phase velocity and nk are the direction

cosines. It is obvious from equation A.35 that the speed and direction at which a

wavefront moves is different from the speed and direction at which Tjk moves. In

other words, the phase velocity and group velocity in an anisotropic media move at

different speeds and directions (Figure A.2).

The basic differences of wave propagation in anisotropic media and in isotropic

media are:

1. the existence of periodical dependencies of velocities on wave vector direction

(equation A.22, A.23, and A.24);

2. non-coincidence of the direction of propagation and particle displacement (equa-

tion A.19);
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3. the non-coincidence of the magnitude of phase and group velocities and an

angular dependence on this difference (equation A.35);

4. non-existence of pure longitudinal (VP ) or shear (VSV ) waves. These are, re-

spectively, called quasi-P and quasi-SV wave (equation A.19). For waves prop-

agating at an angle to the bedding plane, it is found that that the SV and

P-waves couple so that neither is a pure mode, while SH-wave remains a pure

mode; and

5. the existence of two shear waves. In transversely isotropic medium they are

VSV and VSH (equation A.23 and A.24).

Phase Velocity
Surface

Phase
Fronts

Group Velocity
Surface

V
g

V
p

Source

ψ

k

P G

Figure A.2: Geometrical representation of plane waves from a point source in
anisotropic homogeneous media. In an anisotropic media each plane waves will
travel with an individual phase velocity. The locus of P and G, respectively, is
called phase and group velocity. The angle between wavefront normal and group
velocity direction is ψ. In true homogeneous and anisotropic media phase and group
velocity travel with different velocities and in different directions. (Modified from
Johnston and Christensen (1994)).
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Appendix B

Representation of the Local Operator g in

General Anisotropic Media

According to Bayuk and Chesnokov (1998) the calculation of effective elastic con-

stants in heterogeneous anisotropic media can be constructed using the GSA method

as shown in equation B.1 (also shown in equation 2.38).

C∗ =

{ n
∑

i=1

viCi

∫

Pi(χi; θ, φ, ψ)
[

I − gi(Ci − Cc)
]−1

sin θ dχi dθ dφ dψ

}

×

{ n
∑

i=1

vi

∫

Pi(χi; θ, φ, ψ)
[

I − gi(Ci − Cc)
]−1

sin θ dχi dθ dφ dψ

}−1

(B.1)

where, vi and Ci are the volume concentration and elasticity tensor of the ith com-

ponent respectively. I is the fourth rank unit tensor. The tensor C0 is the elasticity

tensor of the so called comparison body which can be arbitrarily chosen. The tensor

g is controlled by the properties of the comparison body and the inclusion shape. θ,

φ and ψ are the three Euler angles.

The tensor g has a definite form for each type of inclusion (Bayuk et al., 2007a),

as expressed in the follows equation:
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gkmln(x) ≡
(akmln + aknlm)

2
, (B.2)

where

aiklm(x) ≡

∫

v

Gik,lm(x − x1)dx1. (B.3)

Here, Gik,lm is the second derivative of the Green’s function with respect to lm, and

a is the fourth rank tensor which is constant in the case of ellipsoidal inclusion, and

can be written as

aimjn = −
1

4π

∫ π

0

∫ 2π

0

nmnΛ−1
ij dΩ, (B.4)

where

Λij ≡ C0
imjnnmn,

nmn ≡ nmnn, (B.5)

and

n1 =
sin θ cosφ

a1
,

n2 =
sin θ sinφ

a2
,

n3 =
cos θ

a3
. (B.6)

C0 is the comparison body, a1, a2 and a3 are the semi-axes of the ellipsoidal inclusion,

and dΩ ≡ sin θ dθ dφ.
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Appendix C

Thomsen’s Parameters in TI and Orthorhombic

Media

C.1 VTI Media

VTI and orthorhombic media have three mutually orthogonal planes (Figure C.1).

Let’s represent these three orthogonal planes by X1−X2, X2−X3, and X1−X3.

In the case of VTI medium, let’s assume that the axis X3 represents the axis of

symmetry, and therefore, plane X1 −X2 will be the plane of isotropy. Also, there

will be no shear wave splitting along the axis X3. That means the velocity of P-wave

traveling in plane X2 −X3, and X1 −X3 will be the same, and so will be the two

shear waves.

A Transversely isotropic medium can be fully defined by five independent elastic

constants (Figure C.2). According to Thomsen (1986), a weakly TI media can be

explained by three Thomsen’s parameters (ε, γ and δ), which are basically the ratio

of stiffness tensors (equation C.1, C.2 and C.3).
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X1

X2

X3

Figure C.1: Three mutually orthogonal planes in VTI, or orthorhombic media. In
VTI media, plane X1-X2 will represent the plane of isotropy and X3 will be the axis
of symmetry. In orthorhombic media, each of the three planes will be an anisotropic
plane.

CIJ =

















c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

















; CIJ =

















c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

















(VTI symmetry) (Orthorhombic symmetry)

where, c12 = c11 − 2c66

Figure C.2: Stiffness tensors in VTI and orthorhombic symmetry system. Note that
five and nine independent elastic constants are required to characterize VTI and
orthorhombic media, respectively.
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ε =
c11 − c33

2c33
(C.1)

γ =
c66 − c44

2c44
(C.2)

δ =
(c13 + c55)

2 − (c33 − c55)
2

2c33(c33 − c55)
(C.3)

C.2 Orthorhombic Media

If these three axes represent orthorhombic medium, then each of the three planes

will be anisotropic, and therefore, the splitting of the shear waves will take place

along all three mutually perpendicular axes. An orthorhombic medium can be fully

characterized by nine independent elastic constants. Tsvankin (1997) derived the

anisotropic parameters for the orthorhombic medium in each of the three planes, as

shown below.

Thomsen’s parameters in the X1 −X3 plane:

ε(2) ≡
c11 − c33

2c33
, (C.4)

γ(2) ≡
c66 − c44

2c44
, (C.5)

δ(2) ≡
(c13 + c55)

2 − (c33 − c55)
2

2c33(c33 − c55)
. (C.6)
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Thomsen’s parameters in the X2 −X3 plane:

ε(1) ≡
c22 − c33

2c33
, (C.7)

γ(1) ≡
c66 − c55

2c55
, (C.8)

δ(1) ≡
(c23 + c44)

2 − (c33 − c44)
2

2c33(c33 − c44)
. (C.9)

Thomsen’s parameters in the X2 −X3 plane:

δ(3) ≡
(c12 + c66)

2 − (c11 − c66)
2

2c11(c11 − c66)
. (C.10)

Tsvankin (1997) pointed out that ε(3) and γ(3) would be redundant for this plane.
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Appendix D

Numenclature

B = Pair correlation function

Cijkl or C = Fourth rank stiffness tensor

C0 = Stiffness tensor of the comparison body

C∗
ijkl or C∗ = Fourth rank effective stiffness tensor

C
′

ijkl or C
′

= Fluctuation in stiffness tensor

Cc = Stiffness tensor of the comparison body

Cc = Stiffness tensor of the matrix

CI = Stiffness tensor of the inclusions

fi = Body force

G = Green’s function

gijkl = Local operator or singular component of the second derivative of the Green’s

function

I = Fourth rank unit tensor

k = Wave vector

K = Bulk modulus
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K∗ = Effective bulk modulus

Pi = Volume concentration of the ith type of inclusion

Q = Integral operator or functional

S = Compliance tensor

U = Displacement

U
′

= Fluctuation in displacement

VP = P-wave velocity; VS1 and VS1 = Two shear wave velocities

χi = aspect ratio of the ith type of inclusion

δij= Kronecker’s delta

ε
′

ij = Fluctuation in strain

ε, γ, and δ = Thomsen’s parameters

λ and µ = Lamè parameters

µ = Shear modulus

µ∗ = Effective shear modulus

ν = Volume concentration of a phase

ω = Angular/Cyclic frequency

φ = Total porosity

Φ = Crack-induced porosity

ρ = density

σij = Stress

εij = Strain

σ
′

ij = Fluctuation in stress

θ, φ and χ = Euler angle
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