
MULTI-DISK ALLOCATION METHODS

FOR BANG FILES

By

JAE-MYEONG JEON

Bachelor of Science

Air Force Academy

Chung-won, R. O. K.

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1995

OKLAHOMA STATE UNIVERSITY

MULTI-DISK ALLOCATION METHODS

FOR BANG FILES

Thesis Approved:

1-/ e
_~~JLJ

rT;r.,j, {.~
~an offi'--&a'fruate College

ii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my thesis adviser, Dr. Huizhu

Lu, for her constructive guidance, patience, and encouragement through this study. My

sincere appreciation extends to my other committee members Dr. J. P. Chandler and Dr.

K. M. George, for their guidance, assistance, and encouragement.

Moreover, I wish to express my sincere gratitude to my government, R.O.K., for

their financial support.

I would like to give my special appreciation to my wife, Y oung-jae, for her strong

encouragement at times of difficulty, love and understanding throughout this whole

process. Thanks also go to my parents for their support and encouragement. Thank

God for everything.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Background .
The Problem .
Purpose of the Study .
Significance of the Study .
Conceptual Assumptions .

II. REVIEW OF THE LITERATURE

Page

1

1
2
3
3
4

7

BAN"G file 8
Basic concepts of multi-dimensional query 16
Disk striping 17
Latin squares ,.. 18
Linear Allocation Method 20

III. METHODOLOGIES 22

Chapter Overview .. 22
Research Methodologies . 24
Analysis of Simulation 30

IV. FINDINGS 34

Effect of Queries 34
Effect ofData Set Size 36
Effect ofData Distribution 38
Effect ofNumber of Disks 40

V. ADVAN"TAGES AND DISADVAN"TAGES 43

VI. CONCLUSIONS

BIBLIOGRAPHY

APPENDIXES

45

49

51

APPENDIX A... 52

iv

B 57

v

LIST OF TABLES

able

1. Buckets and records assigned to the buckets;

first queries and buckets to be examined .

2. Buckets and records assigned to the buckets;
second queries and buckets to be examined

Page

5

6

3. Several Latin Squares for M=4 ... 18

4. The Latin Squares as a mapping function 19

5. Linear Allocation Method with p=2, q=3, r=4, and M=5

vi

21

LIST OF FIGURES

Figure

1. BANG file structure (Max block capacity: 3) .

2. Numbering method

3. Splitting history for 2 dimensional data space .

4. Nested Directory

5. Directory split .

6. Single-disk access system

7. Multi-disk access system

8. Region partitioning and disk allocation ofRNAM
according to region number .

9. Region partitioning and disk allocation ofRNAM
according to inverse region number ..

10. Data partitioning and disk allocation ofPDAM (disk number = 5) ..

11. Shapes of the Queries .

12. Relative speed-ups for queries with uniform-normal
distribution UN (8000) and 10 disks ..

13. Relative speed-ups for queries with hot-spot
distribution HS (4000) and 8 disks .

14. Relative speed-ups for different sizes of data-sets
uniform-uniform distribution with 10 disks .

15. Relative speed-ups for different sizes of data-sets
uniform-normal distribution with 5 disks ..

vii

Page

9

10

11

12

14

22

23

25

26

29

33

35

36

37

38

6. Relative speed-ups for different data distributions
each data-set has 500 points with 5 disks ..

Relative speed-ups for different data distributions
each data-set has 4000 points and 8 disks .

Relative speed-ups for different number of disks
normal-normal distribution (2000) .

Relative speed-ups for different number of disks
uniform-normal distribution (2000) .

Data Distribution ofUU 8000 (X = Uniform, Y = Uniform) .

Data Distribution of UN 8000 (X = Uniform, Y = Normal)

Data Distribution ofNN 8000 (X = Normal, Y = Normal)

. Data Distribution ofHS 8000 (X = HS, Y = HS)

viii

39

40

41

42

53

54

55

56

MISCELLANEOUS

A record r is defined to be an ordered !I-tuple (rl, r2, ... , rn) of values chosen from

L = DI xD2x ... x Dn. The set D; is the ith domain from which the value r; is chosen. A

subset consisting of the k attributes that uniquely identifies a record forms the key space

[9]. Query(q) is defined to be the set of records denoting the response to a query q.

Definition: Exact match query: Query(q) contains just a single record of L [9].

Definition: Partial match query: Query(q) = {r ~ L I(''V/j, 1 ~ j ~ n) (~ = '*' or ~ = rj)}

for a query q = (ql, q2, ... , qn) [9].

Definition: Orthogonal range query: Query(q) = {r ~ L I(Vj, 1 ~ j ~ n) (minj ~ rj <

maxj)} for a query q = ([minI, maXI), ... , [minn, maxn)) [9].

Definition: Let A be a set and R a relation on A. The relation R is

(1) Reflexive if a R a for all a in A,

(2) Symmetric if"a R b" implies "b R a" for a, b in A, and

(3) Transitive if "a R band b R c" implies "a R c" for a, b, c in A. The elements a, b, and

c need not be distinct [15].

Definition: Equivalence relation is a relation which is reflexive, symmetric, and transitive

[15].

Definition: Equivalence classes are disjoint subsets of a set A which is partitioned by an

equivalence relation R [15].

ix

To formalize queries for the BANG file, a grid transforms the Euclidean Space into

a Cartesian Space with a range of 20. The axes are numbered from 0 to 19 and only the

first quadrant is used. The maximum value of the data is 1.00 and the minimum value is

0.00 therefore the distance between points on the axes is 0.05. We can identify cells with

a pair of cell identifier (x, y). N-dimensional space can be described with N-tuples (Xl,

X2, ... , xn), where Xi is an integer.

Definition: Orthogonal path query - An orthogonal path query is a set represented by

(Xl..X2, yl..y2), where either (Xl = X2) or (YI = Y2) [4].

Definition: CoISet(M) - The CoISet(M) is an orthogonal range query represented by

{(Xi..Xi, 0..M-1),1 for i = j .. (j+M-1)}, wherej and M are natural numbers [4].

Definition: RowSet(M) - The RowSet is an orthogonal range query set represented by

{(j .. (j+M-1), yi ..yi), for i = 0..M-1}, where j and M are natural numbers [4].

Definition: Query set Principle Diagonal PD(M) - The Query set Principle Diagonal

PD(M) is a set of queries {PDo, PDI, PD2, .. , PD2M-2} where query PDj = (Xi, yi) I region

include (Xi, yi) AND Xi + yi = j, for allj = {0,1, ..2M-2}, wherej and M are natural numbers

[4].

Definition: Query set Anti-Diagonal PA(M) - The query set Anti-diagonal PA(M) is a set

of queries {PAo, PAl, PA-I, .. , PAM, PA-M} where query PAj = (Xi, yi) I region include (Xi,

yi) AND Xi - yi = j, for allj = {0,1, -1, ... , M, -M}, wherej and M are natural numbers [4].

Definition: BSR(H,W) - The query set Basic Small Rectangles BSR(H,W) is a collection

of orthogonal range queries representing rectangles with height ~ H and width ~ W, where

Hand M are natural numbers [4].

x

Definition: BLR(H, W) - The query set Basic Large Rectangles BLR(H, W) is a

collection of orthogonal range queries representing rectangles with either height = k * H

or width = k * W cells, for k, Hand Ware natural numbers. BLR(H, W) is formally

represented as (Xl..X2, yl..y2), where (X2-Xl) mod W = 0 or (Y2-Yl) mod H = 0 [4].

Definition: Balanced allocation methods - An allocation method is balaned with respect

to a query if the same number of cells in the query are assigned to each disk by the

allocation method. If the query has I Q Icells and if there are M disks, then the allocation

method is balanced with respect to the query Q if and only if the allocation method puts at

least LIQ IIMJ cells and at most 1 + LIQIIMJ cells onto the disk. If IQI is divisible

by M, then each disk gets (IQ I1M) cells [4].

Definition: Perfect allocation method - An allocation method is perfect with respect to a

query set Qs = {Ql ,Q2, ... , Qk} if and only if the allocation method is balanced for all Qi,

with i = (1,2, ... , k) [4].

xi

CHAPTER I

INTRODUCTION

Background

Spatial databases are designed for a wide variety of observational multi

dimensional data such as geographic data. The design of a successful database system

calls for efficient data maintenance and information retrieval. Data maintenance means

operations such as insertion, deletion, and updates of data. Information retrieval means

an operation to retrieve a set of data matches a user's query. Some of the common

queries are exact match, partial match, and orthogonal range queries. An exact match

query specifies the attribute that uniquely identifies the record as in "Retrieve the record

of the car whose license is abc123 and is registered in Oklahoma.". A partial match query

specifies a subset of attributes as in "Retrieve the records of all students who are 25 year

old and who are graduate students.". An orthogonal range query specifies the range of the

attributes as in "Retrieve the records of those students who major in Statistics and whose

grades range from 3.5 to 4.0.".

A multi-disk system has the potential of servicing a range query for data on a

number of disks concurrently. The number of disks that take part in the execution of a

request depends on the location of the data to be accessed and the amount of data to be

transferred. When more than one disk is involved in the execution of a request, the

request is divided into a number of service demands, each of which is executed

2

independently by a different disk [9]. A query may be composed of one or more

subqueries. Each query results in a seek to the location of a data bucket and a read or a

write of the bucket.

Because of the importance of range queries in data retrieval, much concentration

has been devoted in recent years to the problem of designing multi-attribute file systems

for such queries. Design for range queries of multi-disk allocation methods can be

delineated as follows: Given a set of regions, arrange the buckets into disks in such a way

that the number of continuously examined disk, over all possible range queries, is

minimized. It is desirable to achieve some degree of parallelism in examining required

buckets in order to reduce the access time.

The Problem

Design of spatial databases and access methods for a single disk have improved rapidly

in the past fifteen years [1-3]. The past few decades have seen admirable advances in main

memory access times and CPU speed. However, I/O channels have not developed as

much CPUs and main memory and the design of a multi-disk database to process spatial

queries is not well developed. For that reason, a relatively slow single-disk database has

resulted in a processing bottleneck in I/O. We have studied I/O parallelism as a method

for decreasing the bottleneck in the BANG file.

3

Purpose of the Study

In this thesis we focus on finding a way to allocate buckets given a multi-disk

system to achieve minimum response time for all range query sets. This means the

maximal possible disk access concurrence would be achieved when examining the required

buckets. One of the primary goals of a multi-disk allocation method is to support efficient

data retrieval, which is crucial to any applications of the computer. We propose two new

allocation methods to make BANG file queries more efficient. Storage units of the BANG

file can be accessed simultaneously, and parallel processing of a range query is achieved by

distributing data evenly among the storage units. When data is efficiently distributed for

every possible range query, maximal parallelism is obtained. Our scheme uses multiple

disks that can be accessed simultaneously.

Significance of the Study

The most common method of achieving I/O parallelism is to distribute data

concurrently to multiple I/O processors; that can speed I/O processing by a factor of the

number of disks used. The proposed disk allocation methods partition data among several

disks and maximize output of a database manager in processing various queries. We use a

simple hardware architecture which has M number of independent I/O processors and the

same number of disks, and suggest methods of distributing the BANG file's data buckets

on this architecture. We study several disk allocation methods to distribute newly created

buckets and reduce response time of the range queries to the BANG file.

4

Conceptual Assumptions

For the purposes of this thesis we assumed that every file is divided into pages

(buckets) consisting of one or more records (i.e., we do not consider the case where a

record is spread over several pages) and the whole file is stored on a secondary storage

device such as magnetic disk. When the secondary device is accessed, a whole page is

brought into primary memory. Since the time for disk accesses or seeks is considerably

longer than the main memory access time or the internal machine instruction time, the time

taken to respond to a query can be simply measured in terms of the number of distinct disk

accesses issued. The number of discrete disk accesses that must be issued to respond to a

query is equal to the number of buckets that contain at least one record satisfying the

query.

It is assumed that one bucket can be accessed on one disk unit in one unit of time,

several buckets can be accessed in one unit of time if they are on distinct and

independently accessible disk units. Also, the access time of a bucket is the same no

matter how many records it has and no matter on which disk it is contained. The

response time to a range query in this case is no longer proportionate to the total number

of buckets to be examined, but becomes proportional to the maximum number of buckets

that need to be examined on a particular disk unit.

Suppose buckets 1 and 2 are stored on the first disk unit and buckets 3 and 4 are

stored on the second disk unit of a two-disk system. The average time needed to respond

to a partial match query (a, b, c, d) in TABLE 1, on the two-disk system, would be two

5

units instead of four units for a single-disk system. Both disks could be accessed

simultaneously to retrieve two buckets in one unit of time. Similarly, the time response

for the query (a, b, i, j), TABLE 2, is one unit instead of the two units required for the

single-disk system. Note, however, that the time response for the query (a, b, e, f),

TABLE 2, is two units for the single-disk and the two-disk systems. Thus the response

times will be minimized if we maximize concurrence of disk accesses.

TABLE 1

BUCKETS AND RECORDS ASSIGNED TO THE BUCKETS;
FIRST QUERIES AND BUCKETS TO BE EXAMINED

Bucket 1 Bucket 2 Bucket 3 Bucket 4

a b c d

e f g h

i j k 1

m n 0 p

Queries Buckets to be examined

a, b, c, d 1, 2 , 3 , 4

e, f, g, h 1, 2 , 3 , 4

i, j, k, 1 1, 2 , 3 , 4

m, n, 0, p 1, 2, 3 , 4

TABLE 2

BUCKETS AND RECORDS ASSIGNED TO THE BUCKETS;
SECOND QUERIES AND BUCKETS TO BE EXAMINED

Bucket 1 Bucket 2 Bucket 3 Bucket 4

a e i m

b f j n

c g k 0

d h 1 P

Queries Buckets to be examined

a, b, e, f 1, 2

c, d, g, h 1, 2

i, j, m, n 3 , 4

k, 1, 0, P 3 , 4

a, b, i, j 1, 3

c, d, k, 1 1, 3

e, f, m, n 2 , 4

g, h, 0, P 2, 4

6

CHAPTER II

REVIEW OF THE LITERATURE

Independently accessed multi-disk systems with M disks provide an opportunity

for M-way parallelism in disk operations. This parallelism can serve up to M-times speed

ups in processing large spatial queries [4]. Several multi-disk allocation methods have

been proposed that use the values of key attributes or of coordinate space embedding [9].

Hashed-declustering, round-robin, and parallel R-trees [7] are based on key values. The

coordinate, space-partitioning techniques include the Disk Modulo Method [8].

The properties of multidimensional storage systems are abstracted in terms of their

ability of carrying out M-independent disk operations in parallel [4]. We consider the

storage systems as being a collection of logical disks, each with an independent read/write

head, and an independent channel to transfer data to and from the processor's memory.

Disk blocks accessed from different logical disks are independent, and are carried out in

parallel. Multi-dimensional data refers to a collection of data values embedded in a

coordinate space which has dimension ~ 2. The coordinate space may represent a

Euclidean space or a logical space. Data values embedded in an Euclidean space represent

the measured properties of a physical system. For example, the measurements of

temperature, pressure, and chemical concentration for different points of a physical system

such as an ocean are spread over three-dimensional Euclidean space. The data values

embedded in a logical space may represent data assembled by experiments and models that

illustrate the relationship among state variables of the phenomenon under study. For

7

8

example, the value of a volume of gas at different temperatures and pressures gives rise to

a set of data points spread across three-dimensional Cartesian space, representing

orthogonal dimensions of temperature, pressure and volume.

BANG file

Data partitioning schemes can be described by a partitioning algorithm of the

BANG file [3,5]. We will work with a two-dimensional coordinate space to depict our

approach. The result can be generalized to higher dimensions. The BANG file maintains

the correspondence between the data bucket and grid region. If a region overflows,

splitting is performed until the best balanced condition is achieved by the partitioning

algorithm. Figure 1 shows how the BANG file system handles the data.

A region numbering method of the BANG file provides the following properties

[5].

• Each region is represented by a unique number pair <r, I>, where r is a region number

and I is the level number of the region.

• The number can be computed from a given set ofn key values (kl, k2, .. , kn) and the

partial level of each dimension (II, 12, .. , In), where level number 1= L Ii.

• Given a region number r at levell, then the region R encloses region r at level 1-1 can

be computed by removing the most significant bit.

x

x
x
x

...... -

x

x

x
x

x

x
x

x

9

Figure 1. The BANG file structure(Max block capacity: 3)

Figure 2 shows an example of this numbering method. Assuming that there is no

preferred attribute, then a cyclic partitioning through the dimensions is suitable [3]. All

regions and their corresponding coordinate numbers are given in binary representation.

Based on figure 2, we obtain some conclusions.

• The total number of the grid regions at level I is 2'.

• Levell is generated from level (1-1) by splitting each grid region into two In some

chosen dimension.

• The grid region r at level I can be split into two unique region numbers rand r + 2/ at

level (/+ 1). This can be achieved by concatenating the least significant bit of the

newly-formed coordinate in dimension i at level I + 1 to the most significant bit of the

corresponding region number at level/. For example, a splitting of the grid region 110

in Figure 2 (d) produces 2 grid regions numbered 0110 and 1110.

a

d *

a

d *

10 11

d *

00 01

1

a

10

~----+----I I~---t-----.,
a 1 a

(a) level = a (b) level = 1 (c) level = 2

010 110 all III

d *

000 100 001 101

I 00 I 01 I 10 I 11 I

(d) level = 3

o

1010 1110 1011 1111

d *
0010 0110 0011 0111

1000 1100 1001 1101

000 100 001 101

I 00 I 01 I 10 I 11 I
(e) level = 4

11

10

01

00

Figure 2. Numbering method

11

• If a record d falls into a region r at level I, then the region that enclosed d at level I-I

can be computed by removing the most significant bit from r. For example, a record d

in Figure 2 (e) that is enclosed in region 0110 at level I = 4 is also enclosed in region

110 in level 1=3.

Figure 3 depicts a tree representation of the splitting history of the data space with

dimension = 2. Each directory entry of the BANG file structure is a number pair <r, I>,

where r is a unique region identifier and I is a level number. To avoid high pointer

overhead, the BANG file system maintains a one-to-one correspondence between the

directory entry and the data block. In order to maintain the correspondence, the BANG

o

1

j\
1

00 10 01 11

1

000 100 010 110 001 101 all 111

0000 1000 0100 11 00 00 10 1010 011 0 III0 000 1 1001 010 1 1101 00 11 101 1 01 11 1111

Figure 3. Splitting history for 2 dimensional data space

12

file system does not requIre the subspace corresponding to a data regIon to be a

hyperrectangle.

Consider the current state of a data space organized by the BANG file system as

shown in Figure 4 (a). The data space is partitioned into two block regions RI and R2.

RI encloses the entire data space and R2 is enclosed within R1. S2 is the subspace

enclosed by region R2, and S1 the subspace enclosed by region R1 minus subspace S2.

The directory of the BANG file in this state contains 2 entries. The first entry <0, 0>

points to a bucket that contains all records included in the subspace S1, and the second

entry <1, 2> points to a data bucket that contains all records included in subspace 82.

Since the data d, in Figure 4 (a), is enclosed by <1,2>, <1, 1>, and also <0, 0>, an

ambiguity may arise during the search of the directory to find an entry that points to a

correct data bucket which contains data d. For example, a directory of the BANG file

with the current state as shown in Figure 4 (b) has 4 entries «0, 1>, <1, 2>, <3, 2>, <4,

3». Suppose the directory entries are arranged as above, and a query for a record d1 is

issued. The

Rl

2 3

*d

0 1 R2

2

* d2

3

-

4

0 * dl 1
-

2

(a)

3

Figure 4. Nested Directory

(b)

3

13

smallest region at current level I that encloses the location of d1 in the data space can be

computed by transforming the set of its key values into a unique region identifier by using

the mapping function. Based on this identifier, all regions that may enclose d1 at every

level can be derived. In this case they are <0,0>, <0,1>, <0,2>, and <4, 3>. During the

search of the directory, the first entry that matches with these regions is <0, 1>, but the

record dl is not located in the data bucket pointed to by <0,1>. To avoid this ambiguity,

the directory entries of the BANG file structure are arranged in order of increasing

partition level. During a search fora data d1, the directory is scanned to find the smallest

region that encloses dl. In this example the directory entry <4, 3> is examined first.

If the directory does not contain the entry for the smallest region r at the current

level I that encloses data d, the search is continued until the smallest region that encloses

d is encountered. As an example, the smallest region that encloses d2 as shown in Figure

4 (b) is <3, 3> since the smallest level in the directory is 3. This region identifier is not

directly recorded in the directory. The search is continued for the next smallest region <3,

2> that encloses d2. This example shows that, although the directory does not contain an

entry for the smallest region that encloses a data d at current level, there is no ambiguity in

locating the correct directory entry as long as the entries are arranged in increasing level

number and some merging constraints are maintained.

In a large database system, the size of the BANG file directory is too large to be

stored in primary memory. Therefore, the directory entries should be distributed among a

sequence of disk blocks. To have the same balancing algorithm as for the data buckets,

the BANG file directory buckets are managed by another BANG file. In the following

discussion, we name the directory of the BANG file as root directory and the directory

14

that manages the data points as second-level directory. When a directory bucket

overflows, it is split by using the same method applied to the data bucket. Each directory

entry is treated as a data point. A partition algorithm is invoked recursively until the best

balance condition is achieved.

In the root directory, each entry points to a second-level directory bucket. All

entries of the second-level directory, in which corresponding regions are enclosed in the

region represented by the entry in the root directory, have to be stored in the same

directory bucket. The arrangement of the entries of the root directory is the same as the

second-level directory, that is, all entries are arranged in increasing partition level.

3

1
~°

0,0
4

2

4

root

2nd level

3 1 3
(a)

d lJj

3

° 1 IS

4

2

4

before split

0,0

after split

3 1 3 overflows

(b)

Figure 5. Directory split

15

In Figure 5 we show an example of how the secondary-level directory bucket is

split and its effect on the root directory. Assume that maximum capacity of a directory

bucket is four entries, and the current state of the BANG file system is shown in Figure 5

(a).

At first, the root directory contains a single entry that represents the whole data space.

Suppose insertion ofa data d causes a data bucket to overflow. The partitioning of this

data bucket introduces a new entry into the second level directory bucket, which in turn

causes this directory bucket to overflow. The result of the partitioning of this directory

bucket is shown in Figure 5 (b). If the content of the regions falls below a certain

threshold, then the merging algorithm is invoked to maintain a responsible storage

utilization.

In a dynamic file system, insertions and deletions of records are intermixed with

the queries. If an insertion of a record causes the bucket to overflow, the partitioning

algorithm is invoked to partition the corresponding block region into two new regions.

This procedure is repeated until the best balance condition is achieved. In order to

maintain a responsible storage utilization, a merging algorithm is invoked if a deletion

causes the bucket capacity to fall below a certain threshold.

An insertion of a record into a data bucket may cause it to overflow. In order to

maintain a one-to-one correspondence between a data bucket and the directory entry, the

overflowing data bucket has to be partitioned as follows:

• The partitioning of the data space is performed until the best balance condition is

achieved. Ifn, n > 1, partitions are needed to achieve this balance, then the directory

16

entry <r, l> of the old region is modified into two new entries <r, l> and <rl, l+n>,

where rl is the identifier of the newly formed region.

• If the balance condition is achieved at the first level of division, then the directory

entry <r, l> of the old region is replaced by the identifiers of the two resulting regions

<r, 1+1> and < r+2/ ,1+1>.

• The partitioning of a region is treated as a continuation of a higher level split.

Basic concepts of multi-dimensional Query

A query on multi-dimensional data represents a subset of the data. To process the

query, the database manager has to retrieve the data points contained in each region which

intersects with the query. Two queries are identical if these intersect the same set of

regions [4]. The database manager spends the same disk-access cost in processing

identical queries. For studying the performance of various data distribution techniques,

any query in an equivalence class has the same effectiveness (see MISCELLANEOUS).

Informally, a query with respect to a grid specifies a collection of cells.

Definition: Query - A query Q denotes a set of cells [4].

Definition: Query Set - A Query Set is a set of queries [4].

A data-distribution method assigns a disk-id to each region. The disk-ids for a set

of M disks can be chosen from the range of integers 0 to M-l. The region in two

dimensions can be represented by a region number.

Definition : Allocation method - An allocation method f in two dimensions is a mapping

from a region in two dimensions to a set of integer disk-id's, say 0 .. (M-l).

17

f: [(n)] ~ [Disk-id = O.. (M-I)], where n is a region number.

The allocation method should be designed to satisfy the objectives of a database

manager in processing various queries. One of the important goals of the database is to

maximize output, which imposes two restraints on the allocation methods, fairness and

efficiency [7]. A fair allocation method spreads the regions that are distributed under a

query as uniformly as possible among the various disks. An efficient allocation method

imposes a light load on the database system by accessing as few disks as possible for small

querIes.

Definition: Periodic allocation methods - Periodic allocation methods map regions (n)

and (n mod M) to a common disk, where n is a region number and M is the number of

disks..

Definition: Equivalent allocation method - If there exists a one-to-one function f: {disk

id's} ~{disk-id's}, such that DI(n) = f(D2(n)) for all regions n, two allocation methods

Dl(n) and D2(n) are equivalent, where n is a natural number.

Disk striping

Disk striping has been studied as a disk allocation method to improve I/O

bandwidth. Disk striping is a general purpose facility for achieving parallel I/O [6]. A

striping unit (the number of consecutive data units allocated to each disk) is used to spread

data among the disks. For example, with a striping unit of 1 byte, each block is

partitioned among the N disks with each disk storing byte k, byte k+ 1*N, byte k+2*N.

Disk striping stores the data as a one-dimensional stream of bytes, and thus does not

18

support efficient I/O queries. In the domain of multi-dimensional data, disk striping may

partition the data along one dimension. Range queries of the dimension may be processed

efficiently, but many range queries of the other dimensions may display poor efficiency_

The allocation methods of disk stripping at bit or byte level are paired, but not efficient.

Furthermore, the choice of a data unit restricts on the maximum possible parallelism via

striping.

Latin squares

Latin Squares are square arrays which contain M distinct elements with each

element occurring M times, but, with no element occurring twice in the same column or

TABLE 3

SEVERAL LATIN SQUARES FOR M=4.

3 2 1 0 1 0 3 2 1 2 3 0
1 0 3 2 3 2 0 1 2 3 0 1
2 3 0 1 2 3 1 0 3 0 1 2
0 1 2 3 0 1 2 3 0 1 2 3

3 0 1 2 3 2 0 1 2 0 1 3
2 3 0 1 2 3 1 0 1 3 0 2
1 2 3 0 1 0 3 2 3 2 1 0
0 1 2 3 0 1 2 3 0 1 2 3

19

row [4]. TABLE 3 shows six distinct Latin Squares for M = 4, with items 0, 1,2, and 3.

The Latin Squares are perfect (see MISCELLANEOUS) for RowSet(M) and CoISet(M).

The cells of Latin Squares are denoted by ordered pairs, (i, j), and the lower left

coner is considered to be the origin, as shown in TABLE 4. Each Latin Square can be

considerd to be a function from the coordinate (i, j) to the set (0, I, ... , M-I). For

example, Latin Square (1,1) = 0, Latin Square (2,1) = 3 and Latin Square (1,3) = 3, in the

Latin Square as shown in TABLE 4.

TABLE 4

THE LATIN SQUARE AS A MAPPING FUNCTION

A (2,3) 0

B (3 , 1) 2

C (3,3) 1

3

2

1

o

.I~ A
I

~C'V"

2 3 0 1

3 2 1 0

1 0 3 2 ~B

0 1 2 3

'"/

Point Cell ID Disk 1D

012 3

We can choose one of the Latin Squares for mapping the cells to the disks. The

cells of the Latin Square are distributed uniformly over the disks. The data located in cell

(i, j) in the grid of coordinate space can be mapped in disk-id = Latin Square (i mod M, j

mod M). A Latin Square allocation method is not guaranteed to be perfect with respect to

20

many query sets of interest [4]. Furthermore, the Latin Square allocation method can be

used only when the number of disk is five or fewer [4].

Linear allocation method

The Linear allocation method is a round-robin allocation of cells in a given row or

column to multiple disks and is characterized by two features in 2-dimensions: a disk-id

permutation cycle and a shift [4]. The disk-id permutation cycle describes the round-robin

allocation along the striping units in one dimension. The shift informs the difference

between the starting positions of the permutation cycle between adjacent columns. The

Linear allocation method for all M disks can be described as a function Disk-Id(x, y) == (px

+ qy + r) mod M, where p, q, and r are parameters which determine a set of lines [4].

Linear allocation methods can be composed which are perfect with respect to the Query

set unton {PD(M), PA(M), BLR(M,M), RowSet(M), and CoISet(M) }(see

MISCELLANEOUS).

21

TABLE 5

LINEAR ALLOCATION METHOD WITH P=2, Q=3, R=4, AND M=5.

/,

2 4 1 3 0 2 4 1

4 1 3 0 2 4 1 3

1 3 0 2 4 1 3 0

3 0 2 4 1 3 0 2

0 2 4 1 3 0 2 4

2 4 1 3 0 1 4 1

4 1 3 0 2 4 1 3

'"/

2

3

6

4

5

o

1

012 3 4 567 X

CHAPTER III

METHODOLOGIES

Chapter Overview

Figure 6 depicts the relation between a CPU and an I/O processor in a single-disk

system. The CPU controls the I/O processor to read/write and after the I/O processor

finishes the job, the CPU executes another job. The CPU is waiting during the I/O

processing time which decreases CPU utilization and increases turn around time.

DISK

Figure 6 single-disk access system

Figure 7 describes a multi-disk access BANG file system which has M independent

I/O processors and the same number of disks. Each I/O processor controls its own disk.

In the multi-disk access system, the CPU can manage M parallel I/O processors.

22

23

DISK 0

DISK 1

DISK M-I
-1

Figure 7 Multi-disk access system

The I/O processors are assigned jobs one after another by the CPU. When an I/O

processor is executing a job, the CPU assigns jobs to the other I/O processors. If a job is

assigned before the I/O processor has finished, the job is waiting until the I/O processor

has finished the current job. When a query request several buckets which are in one disk,

the access time is almost the same as the single disk access method. When requested

buckets are distributed equally among the disks, the query access time is the best.

24

Research Methodologies

Region Number Allocation Method

Each region in the BANG file has a unique ordered pair <r, 1>, where r is a region

number and I is a level number. The region number is also used as a key in the BANG file

directory. The Region Number Allocation Method is characterized by a periodic allocation

of regions to multiple disks. The Region Number Allocation Method for all M disks can

be described as a function Disk-id (r) = (r + k) mod M, where r is a region number, k

insures that each new bucket in a split is assigned to a different disk. k is set to 1 if the

difference of two new region number is zero or equal to a multiple of the number of disks

else k is set to 0, and M is the number of disks. An insertion of a record into a data bucket

may cause it to overflow and the overflowing data bucket has to be partitioned as follows:

a) If a balanced condition is achieved at the first level of division, then the directory entry

<r, I> of the old region is replaced by the identifiers of the two resulting regions

<r, 1+1> and < r+21
, 1+ 1>.

b) The partitioning of the data space is performed until the best balance condition is

achieved. If n, n > 1, partitions are needed to achieve this balance, then the directory

entry <r, I> of the old region is modified into two new entries <r, I> and <r1, l+n> for

nested partition, where r1 is the identifier of the newly formed region.

The difference of the two new region numbers would be 21 (for n = 1) or r1 - r. If either

difference is zero or equal to a multiple of the number of disks, the region <r, 1+ 1> or <r,

25

x x x x
x x x x

x x

disk disk disk disk
o 123

(a) Before splitting region 2

2 3
x x

x x
x x

0 x 1
x x

x

2 6 3
x x x

x x
x x

0 1
x

x x
x

x x x x x
x x x x x

x

disk disk disk disk disk
o 1 321

(b) After splitting region 2

Figure 8. Region partitioning and disk allocation ofRNAM according to region number
with 5 disks (case a, p.23).

l> is assigned to the current disk and the region <r+2', 1+1> or <rl, l+n> is assigned to

the disk N, where N is (r + k) modulo M, and set to k 1. Therefore, the Region Number

Allocation Method assigns the two new buckets to different disks.

In figure 8, we show an example of how the Region Number Allocation Method

assigns buckets to the disks. The splitting entry is <2,2> and the new entries are <2, 3>

and <6,3>. The splitting bucket was assigned to disk 2 since the remainder of the

26

region number 2 is 2 for the five available disks (Disk-id (2) == (2+0) mod 5 == 2). The

two new buckets are assigned to disk 2 and disk 1 since the region numbers are 2 and 6,

respectively (Disk-id (2) == (2+0) mod 5 == 2, and Disk-id (6) == (6+0) mod 5 == 1).

We show another example of how the Region Number Allocation Method assigns

buckets to the disks in figure 9. Assume that maximum capacity of the directory entry is

5, and the current state of the BANG file system is shown in Figure 9 (a). The splitting

3

[2]
1

°

4

2

4

0,0

disk disk disk disk
o 1 3 4

root

2nd level

3 1 3
(a)

3

~

° 11-

4

2

4

0,0

3 1 3

(b)

disk disk disk disk disk

° 1 324

Figure 9 Region partitioning and disk allocation ofRNAM according to region number
with 5 disks (case b, p.23).

27

entry is <1,2> and the new entries are <1,2> and <1, 4>. The bucket corresponding to

the splitting entry was assigned to disk 1 for the five available disks. The new bucket

corresponding to the higher level number is assigned to disk 1 since the region number is

1. To avoid the buckets being assigned to the same disk, we set the variable k to 1 and

assign disk number 2 (Disk-id (1) = (1+1) mod 5 = 2). The new bucket corresponding to

the higher level is assigned to disk 2.

Page Distribution Allocation Method

The Region Number Allocation Method is a good method for uniform data types

but is not good for skewed data types. The Page Distribution Allocation Method is

designed to parallelize the set of rectangle queries. Given M disks, the method is efficient

for BSR(H,W), and BLR(H,W) (see MISCELLANEOUS). BANG file has a tree

structured directory which has the self-balancing property of a B-tree and has the

information of each region on its leaf nodes. The leaf nodes of the BANG file are

arranged in increasing order by region number and entries in the leaf nodes are also

ordered by region number. The ordering of the BANG file is one-dimension and the

entries corresponding to adjacent region numbers are also adjacent on the tree. The Page

Distribution Allocation Method distributes the entries in a node to as many disks as

possible. For that reason, we choose the number of entries of the directory node to be the

same as the number of disks, therefore each entry in a node is assigned to a different disk.

When a bucket splits into two new buckets, the bucket corresponding to the

smaller region number (if the two new region numbers are same, the lower level number is

28

used) stays in the disk and the other new bucket is assigned to a disk which is not

assigned to its node. If the node is an odd child of its parent, a disk from disk 0 to disk

(M-I) is assigned to the bucket corresponding to the new larger region number (if the two

region numbers are same, the higher level number is used). If the node is an even child of

its parent, a disk from disk (M-1) to disk 0 is assigned for the balanced allocation of the

disks.

Definition: Page Distribution Allocation Method

r lowest unassigned disk number of the node : if an odd child of its parent
Disk-Id(n) = i

l highest unassigned disk number of the node : if an even child of its parent

Figure 10 (a) depicts five regions and their corresponding entries. The node is filled with

entries until the node contains maximum capacity. The entries in the node are assigned to

each different disk. When the entry <3,2> is split into <3,2> and <15,4>, the node is split

into two nodes as described figure 10 (b) since the number of entries in the node exceeds

the maximum capacity. In that case, the new bucket corresponding to the larger region

number pair <15,4> is included in the even child node and assigned to disk 3 because it is

the highest unassigned disk number in the node.

In figure 10 (c) we show an example of how the disks are assigned to the odd child

of its parent. The entry <1,2> is split into <1,2> and <5,4>. A bucket corresponding

to the larger region number pair <5,4> is assigned to disk 2 which is the lowest unassigned

disk number to the node, since the node is an odd child of its parent and disk 0 and disk 1

were assigned already. The bucket corresponding to the smaller region number pair <1,2>

is in the disk 3 as it was.

29

3

[2]

0 m

4

2

4

0,0

(even c ild node)

root

2nd level

3 1 3

(a) before splitting

disk disk disk disk disk assigned disk number

4 3 2 ° 1

Us

3

[2]

0 11-

4

2

4

3 1 3 disk disk disk
423

disk disk disk
301

(b) after splitting an even entry of its parent which causes the node splitting

Us

3

Il
0 ~ ~

4

2

4

3 1 3 disk disk disk
423

disk disk disk disk
3 0 2 1

(c) after splitting an odd entry of its parent

Figure 10. Data partitioning and disk allocation of Page Distribution Allocation Method
(disk number = 5)

30

Odd number nodes and even number nodes in the directory are assigned to the

opposite direction to get balanced load of the disks and to increase disk parallelism for the

set of queries. The Page Distribution Allocation Method (PDAM) is efficient for the

queries accessing consecutive records by region number because of the ordering property

of the BANG file directory. The order of the entries in a node is dependent on region

number. If region number is lowest, the entry point of the region is leftmost in the node.

Analysis of Simulation

Data sets

Four sets of data distributions are considered in the experiment. These are called

UU, UN, NN, and HS (see APPENDIX A). The UU data-set is a collection of points (x,

y), where x and yare independent, uniformly distributed random variables. The NN data

set is a collection of points (x, y), where x and yare independent, normally distributed

random variables. The UN data-set is a collection of points (x, y), with independent

random variables x and y, where x is distributed uniformly and y is distributed normally.

An HS data-set ofK points is generated from an initial uniform distribution UU(K/4) over

the unit square. We generate and insert (3K/4) other points from the NN distribution,

with a small standard deviation.

Uniformly distributed data is generated with a maXImum value of 1.00 and

minimum value of 0.00, and normally distributed data is generated with means of 0.50 and

standard deviation of 0.15. The (3K/4) points of the HS data set are generate with

31

standard deviation of 0.05 (see APPENDIX B). Data sets are 500, 1000, 2000, 4000,

8000, and 16000 data points. These data sets are stored in the BANG file via a sequence

of insert operations with the BANG file access method. If a data bucket overflows, the

splitting is performed until the best balanced condition is achieved.

Query sets

Six query sets are applied to represent path and range queries. The query sets are

PD(N), PA(N), RowSet(N), CoISet(N), BSR(N), and BLR(N), where N is 9. The Figure

11 shows shapes of the query sets. To formalize queries for the BANG file, a grid

transforms the Euclidean Space into a Cartesian Space with a range of 20. The axes are

numbered from a to 19 and only the first quadrant is used. The maximum value of the

data is 1.00 and the minimum value is O. 00 therefore the distance between points on the

axes is 0.05. We can identify cells with a pair of cell identifier (x, y). N-dimensional space

can be described with N-tuples (Xl, X2, ... , xn), where Xi is an integer.

• Basic Small Rectangle BSR(N) - The query set small rectangles BSR(N) is a collection

of orthogonal range queries representing N rectangles with height H=N/3 cells and

width W=N/3 cells.

• Basic Large Rectangle BLR(N) - The query set Large Rectangles BLR(N) is a

collection of orthogonal range queries representing rectangles with height H=2N/3

cells and width W=2N/3 cells.

• CoISet(N) - The CoISet(N) is a set of orthogonal range queries described by

{Xi .. Xi, j .. (j-tfN/2l}, where i, j and N are integers.

32

• RowSet(N) - The RowSet(N) is a set of orthogonal range querIes described by

{ j .. (j-+fN/2l), Yi .. Yi }, where i, j and N are integers.

• Principle Diagonal PD(N) - The query set Principle Diagonal PD(N) is represented by

a set of queries (PDo, PD1, ... , PDn-1), where PDk = {(xi,yj)1 cell (Xi, Yj) AND i+j = k

AND 0 ~j - i ~ 1 AND O~i,j<rN/2l}, for all k = {O, 1, ... , N-l}.

• Anti-diagonal PA(N) - The query set Anti-Diagonal PA(N) is represented by a set of

queries { PAo, PAl, .. , Pn-l}where PAk = {(Xi, Yj)1 cell (Xi, Yj) AND O~ i, j< IN/2l AND

i x j = O}, for all k = {a, 1, ... ,N-l}.

Number of disks: 5, 8, and 10

Assumptions

• all M disk units are identical

• the bucket access time is constant

• the CPU time is negligible because the CPU much faster than disk access time.

Thus, only I/O time is counted when we simulate a number of disks. In this

study, we assign the same number of disks and the same number of I/O

processors to each allocation method and compare the performance of each

allocation method.

33

Evaluation

The relative access time of each query depends on the allocation method. Access

time is parallel VO cost, where I/O cost is the number of data buckets accessed. The

access time provided by the best method for each data set and query is treated as unit in

computing the relative access time.

19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
o

0
0
0 0 0 ~
~ 0 ~~
0 ~0 ~~ 0 0 0

~
~ ~~~~~~
~
~
~
~ ~~0 ~~~

0 0 ~~0 0
0 ~~0 0 0

~0 ~~~0 0 0
0 0 ~0 0 0 0 0

0 ~ 0 0 0 0 0 ~
0 0
0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 : Basic Small Rectangle
3 : RowSet
5 : Principle Diagonal

2 : Basic Large Rectangle
4 : ColSet
6 : Anti-Diagonal

Figure 11. Shapes of the Queries

CHAPTER IV

FINDINGS

We evaluated the proposed PDAM and RNAM along with well-known allocation

methods such as Sequential Allocation Method (SAM) and Random Allocation Method

(RAM) for three sets of disks. The relative access time are evaluated for the effect of

queries, data-set size, data distribution, and number of disks. We compared access time

for each allocation method by considering the range query sets.

Effect of Queries

Figure 12 shows the performance of the alternative disk allocation function for

several queries. The queries include small rectangles, large rectangles, rows, columns,

principle diagonals and anti-diagonals of the coordinate space [0 .. 1,0.. 1] where the data is

located. The data distribution is a uniform-normal with 10 disks. The observations show

that the PDAM performs the best overall. The RNAM performs very well. The SAM and

the RAM show similar performance.

34

6

5

Parallel 4
Access 3
Time

2

1

o

IIBSR

IIBLR

II RowSet

ElColSet

III PO

ePA

35

RNAM PDAM SAM RAM
Allocation Methods

Figure 12. Relative access time for queries with
uniform-normal distribution UN(8000) and 10 disks

Figure 13 shows the performance of the alternative disk allocation function for

several queries. The queries include small rectangles, large rectangles, rows, columns,

principle diagonals and anti-diagonals of the coordinate space [0.. 1,0.. 1] where the data is

located. The data distribution is a normal-normal with 8 disks. The observations show

that the PDAM performs the best overall. The RAM performs poorly on PD which is

unexpected.

6

5

Parallel 4
Access 3

Time

2

1

o

11I1000

m2000

114000

[J 8000

11I16000

37

RNAM PDAM SAM RAM

Allocation Methods

Figure 14. Relative access time for different sizes of
data-sets uniform-uniform distribution with 10 disks

Figure 15 shows the performance of the alternative disk allocation function for

data sets of five different sizes: 500 points, 1000 points, 2000 points, 4000 points, and

8000 points; the number of disks is 5. Each data-set is a collection of points (x, y), where

x and yare independent random variables. The observations show that the PDAM

performs well on all sizes of data sets. The performances of the PDAM, RNAM, and

RAM improve reasonably on the set of all queries, as the size of the data sets increases.

Even though the SAM performs well for 4000 points, the performance is hard to accept

because the response time of SAM for 4000 points is less than that for 2000 points. The

PDAM access time is the fastest among the four allocation methods on the set of all

queries, as the size of the data-sets increase.

7

6

5
Parallel
Access 4

Time 3

2

1

o
RNAM PDAM SAM RAM

11II500

111000

112000

[IJ 4000

11I8000

38

Allocation Methods

Figure 15. Relative access time for different sizes of
data-sets uniform-normal distribution with 5 disks

Effect of Data Distribution

Figure 16 shows the performance of the alternative disk allocation methods for

four kinds of data: UU, UN, NN, HS; the number of disks is 5. The UU data-set is a

collection of points (x, y), where x and yare independent, uniformly distributed random

variables. The NN data-set is a collection of points (x, y), where x and yare independent,

normally distributed random variables. The UN data-set is a collection of points (x, y),

with independent random variables x and y, where x is distributed uniformly and y is

distributed normally. The HS data-set of K points is generated from an initial uniform

distribution UU(K/4) over the unit square. We generate and insert (3K/4) other points

from the NN distribution, with a small standard deviation. The observations in Figure 16

show that the PDAM performs very well on the set of all data distributions.

2

1.5
Parallel
Access

Time 1

0.5

o
RNAM PDAM SAM RAM

II UU(x,Y)

II UN(x,Y)

II NN(x,Y)

EJ HS(x,Y)

39

Allocation Methods

Figure 16. Relative access time for different data
distributions each data-set has 500 points with 5 disks

The SAM performs reasonably well on UU and HS. The performance of the PDAM has

the smallest deviation for each data distribution and the access time of the PDAM is the

fastest among the allocation methods. The access time for the SAM show fluctuation with

a 100% difference between UN and HS.

The observations in Figure 17 show that the PDAM performs very well on the set

of all data distributions with 8 disks. The RAM performs reasonably well on UN and HS.

The SAM performs poorly for the data distributions. The access time of the PDAM are

maximally 90 % of difference for each data distribution, and the access time of the PDAM

is 5.8. The PDAM performs the best among the allocation methods, which also shown by

Figure 16. The access time of the SAM are 160% of difference between UU and HS and

the performance of SAM is 8.2. The performance of RAM is better than that of RNAM,

which is unexpected.

3

2.5

Parallel 2
Access 1 5

Time ·

1

0.5

o
RNAM PDAM SAM RAM

II UU(x,Y)

mUN(x,Y)

II NN(x,Y)

EI HS(x,Y)

40

Allocation Methods

Figure 17. Relative access time for different data distributions
each data-set has 4000 points with 8 disks

Effect ofNumber ofDisks

This section is included to show how varying the number of disk drives affects

each allocation method's performance. Figure 18 shows the performance of the

alternative disk allocation methods for different number of disks: 5, 8, 10. The

distribution is normal-normal. The RNAM performs very well on 5 disks, and the PDAM

performs very well on 8 disks. The RAM performs well on 10 disks, better than RNAM

and PDAM. However, the performance of the allocation methods improves as the number

of disks increases. For example, the PDAM improves 34 % when the number of disks

increases from 5 to 10. The increase in performance is direct proportion to the increase in

the number of disks.

2

1.5
Parallel
Access 1

Time

0.5

o
RNAM PDAM SAM RAM

11I5

liS
1110

41

Allocation Methods

Figure 18. Relative access time for different number
of disks normal-normal distribution(2000)

Figure 19 shows the performance of the alternative disk allocation methods for

different number of disks: 5, 8, 10. The distribution is uniform-normal. The PDAM

performs very well on 5 disks and 10 disks. The RAM performs almost evenly on the set

of all disks, which is unexpected. The performance of the PDAM improves very well on

the set of all queries, as the size of data-sets increases.

Parallel
Access

Time

2

1.5

1

0.5

o

1115

liS

1110

42

RNAM PDAM SAM RAM

Allocation Methods

Figure 19. Relative access time for different number
of disks uniform-normal distribution(2000)

We have evaluated the effect of queries, data-set size, data distribution, and

number of disks. Access time of the SAM and the RAM are faster under some

circumstances than that of PDAM but the performance is not consistent. The access time

of the PDAM are fast and consistent. The performance of the RNAM is better than the

SAM and the RAM but not better than PDAM. The access time of the PDAM is the

fastest among the allocation methods for all the queries, data-set sizes, the data

distributions, and the number of disks. This is not surprising since the PDAM directory

leaf node entries are assigned to different disks. The queries retrieve a data region which

is ordered by region number. Therefore, the PDAM queries a large number of disks in a

time unit.

CHAPTER V

ADVANTAGES AND DISADVANTAGES

Executing a query involves two parts: separating it into one or more servIce

demands and dispatching to the appropriate disks by the I/O processor (overload activity),

and executing the accesses by the disks (transfer activity) [10]. A multi-disk system trades

an improvement in the properties of the execution pattern of requests with an increase in

the request overload activity. Multi-disk systems preempt an improvement in the

execution pattern since it leads to concurrent execution of a request, it reduces the

coefficient ofvariation of service demands, and it disperses accesses evenly over all disks.

The first advantage of multi-disk system is that in a lightly loaded system the

response time of a query depends on its execution time since requests rarely compete for

the service when utilization is low. Parallelism reduces execution time and therefore

multi-disk systems will reduce the expected response time of a lightly loaded system.

The second advantage of a multi-disk system comes into play when system utilization is

medium. In a multi-disk system each range query is decomposed into several service

demands that are executed on multiple disks. This means that each disk has a smaller

variation in access demands. For a system with a medium level of utilization the reduction

in service demand variation due to a multi-disk system will entail a significant reduction in

expected response time in spite of the increased overhead. In a highly utilized system, the

single-disk system can exceed memory capacity more easily than multi-disk system.

43

44

The main disadvantage is that the amount of information to be maintained for the

multi-disk system is lager because a file is represented as several subfiles that reside on

independent disks. Also, there is the added complexity imposed by potentially frequent

moves of data across disks as subfiles grow. Since our interest is in improving I/O

performance we ignore this primarily CPU disadvantage in this thesis. The second

disadvantage is an effect of a single disk failure. If redundancy is applied to deal with disk

failures then it is easy to guarantee that the two copies of data will not reside on the same

disk.

CHPATER VI

CONCLUSIONS

In this paper, we have introduced two multi-disk allocation methods, the PDAM

and the RNAM, for the BANG file. Implementations of the allocation methods are

straightforward and the functions used in the algorithms are very simple to compute.

Given a multi-disk system with M independently accessible disks, it is desirable to allocate

buckets among the M-disk equally for range queries. The maximum concurrency of disk

access is achieved in examining the required buckets to minimize the response time. Our

goal is to maximize the parallelism for query sets.

Experimental evaluation shows that the access time provided by an allocation

method depends on the query sets as well as on the data distribution. Table 6 shows the

average performance of the alternative disk allocation functions for several queries. The

searching areas for processing queries include small rectangles, large rectangles, rows,

columns, principle diagonals and anti-diagonals of the coordinate space [0.. 1, 0.. 1].

Sequential Allocation Method (SAM) and Random Allocation Method (RAM) gave

inferior overall performance as shown in Table 6. RNAM performs well on ColSets,

RowSets, and PDs. When a bucket overflows and must be split, RNAM assigns the

buckets corresponding to the two new regions to difference disks. This gives improved

performance on ColSets, RowSets, and PDs.

The BANG file entries corresponding to adjacent region numbers are also adjacent

on the tree. Most of the adjacent regions are assigned to different disks since the PDAM

45

46

TABLE 6

AVERAGE RELATIVE ACCESS TIME FOR QUERIES WITH
NORMAL-NORMAL DISTRIBUTION NN(8000) AND 8 DISKS,

AND UNIFORM-NORMAL DISTRIBUTION UN(8000) AND 10 DISKS

Query Set
====> Small Large Row Col PD PA

RNAM 1.67 2.83 1.83 1.33 2.17 1.33

PDAM 1.33 2.50 1.33 1 2.17 1.33

SAM 1.83 2.83 2.17 1.67 2.33 1.33

RAM 1.67 2.83 2.17 1.33 3.33 1.50

assigns each entry in a node to a different disk. Range queries access data in adjacent

regions which are distributed to different disks by the PDAM; Therefore the PDAM

achieved maximal parallelism and had the best average performance on the set of queries

used in this simulation.

Table 7 shows how varying the number of disk drives affects each allocation

method's performance. SAM gaves inferior performance as shown in Table 7. RNAM

performs well on UU and UN distributions. The UU distribution divides the regions

almost equally in the manner of the grid files. Then the region numbers are apt to achieve

parallelism. Since the RNAM assign regions to the disks by means of their region

47

TABLE 7

AVERAGE RELATIVE ACCESS TIME FOR DIFFERENT
DATA DISTRIBUTIONS; DATA-SETS HAVE 500 POINTS

WITH 5 DISKS AND 4000 POINTS WITH 8 DISKS

Data
Distribution

====> UU UN NN HS

RNAM 1.78 1.61 1.30 1.26

PDAM 1.57 1.40 1.09 1

SAM 2.07 1.84 1.52 1.10

RAM 1.78 1.63 1.28 1.20

numbers, the UU and UN distributions are approximately balanced (see

MISCELLANEOUS) among the disks.

PDAM performs best on the set of all data distributions since adjacent entries in a

node are assigned to different disks by the PDAM. Buckets corresponding to the adjacent

entries are perfectly (see MISCELLANEOUS) distributed to the disks for the queries no

matter what data distributions are used.

When designing multi-disk systems with parallel I/O processors, it is important to

ensure that similar buckets are assigned to different disks to maximize concurrency in

48

retrieval and similar records should be clustered into the same or similar buckets while

similar buckets should be distributed among disks. Therefore we attempt to assign similar

buckets to different disks. Our future research could focus on clustering similar records

into the same or similar buckets.

BIBLIOGRAPHY

1. Guttman, A. "R-Trees: A dynamic Index Structure for Spatial Searching.", Proc.
ACM SIGMOD 1984 Annual Conference SIGMOD Record 14, (1984), 47-57

2. Nievergelt, J., and Hinterburger, H., "The Grid File: An Adaptable, Symmetric
Multikey File Structure.", ACM Trans. on Database Systems 9, 1 (1984), 38-71.

3. Freeston, M. "The BANG file: a new kind of grid file." Proc. ACM SIGMOD
1987 Annual Conference SIGMOD Record 16, 3(Dec. 1987),260-269.

4. Zhou, Y., Shekhar, S., and Coyle, M. "Disk Allocation Methods for Parallelizing
Grid Files. ", Proc. 10th Int. Conf. on Data Engineering, (1994), 243-252

5. Lian, T. "Implementation and Evaluation ofBalanced and Nested Grid(BANG)
File Structures." Stillwater, OK: University of Oklahoma; (1988), 40-94.

6. Salem, K., Garcia-Molnia, H. "Disk Striping. ", Proc. 2nd Int. Conf. on Data
Engineering, (1986), 336-342.

7. Kamel, I., Faloutsos, C. "Parallel R-Trees. ", Proc. ACM SIGMOD 1992 Annual
Conference SIGMOn Record 21,2(1992) 195-202.

8. Du, H. C. "Disk Allocation for Product Files on Multiple Disk Systems. ", ACM
Trans. on Database Systems 7, (March 1982).

9. Wu, C. T., Burkmard, W. A. "Associative Searching in Multiple Storage Units."
ACM Trans. on Database Systems 12, (January 1987) 38-64.

10. Livny, M., Khoshafian, S., and Boral, H. "Multidisk management algorithms",
Proc. ACM SIGMETRICS, (1987) 69-77.

11. Kumar, A. "G-Tree: A New Data Structure for Organizing Multidimensional
Data", IEEE Trans. on Knowledge and Data Engineering 6, 2(April 1994) 341
347.

12. Comer, D. "The ubiquitous B-tree." ACM Comput. Surveys 11, 2 (June 1979),
121-137.

13. Li, J., Rotem, D., and Srivastava, J. "Algorithms for Loading Parallel Drid Files",
Proc. ACM SIGMOD 1993 Annual Conference SIGMOD Record 22, (May
1993) 347-356.

49

14. Jagadish, H. Y. "Linear Clustering of Objects with Multiple Attributes", ACM
SIGMOD 1990 Annual Conference SIGMOD Record 19 (1990) 332-342.

15. Aho, A. Y., Ullman, J. D. "The Theory of Parsing, Translation, and Compiling,
Yolumn I: Parsing", Englewood Cliffs, NJ: PRENTICE-HALL, INC; 1972.

50

APPENDIXES

51

APPENDIX A

DATA DISTRIBUTION GRAPHES

52

DATA DISTRIBUTION GRAPH

2000

1800

1600

1400

F 1200 /XR
E 1000
Q
U

800 ~'-= = ~

~y
E
N 600
C
y 400

200

0.1 0.2 0.3 0.4 0.5 0.6
ATTRIBUTES

0.7 0.8 0.9 1.0

Figure 20. Data Distribution ofUD 8000 (X == Uniform, Y == Uniform)
(Similar for all UU Data-sets)

Vl
W

DATA DISTRIBUTION GRAPH

2000

1800

16001 / ,
1400L

/y
F

/
1200

\
R
E 1000
Q
U 800
E
N 600
C
y 400

200

0.1 0.2 0.3 0.4 0.5 0.6
ATTRIBUTES

0.7 0.8 0.9 1.0

Figure 21. Data Distribution of UN 8000 (X = Uniform, Y = Normal)
(Similar for all UN Data-sets)

Vl
~

2000

1800

1600

1400

F 1200
R
E 1000
Q
u 800
E
N 600
C
y 400

200

DATA DISTRIBUTION GRAPH

0.1 0.2 0.3 0.4 0.5 0.6
ATTRIBUTES

0.7 0.8 0.9 1.0

Figure 22. Data Distribution ofNN 8000 (X = Normal, Y = Normal)
(Similar for all NN Data-sets)

v.
v.

DATA DISTRIBUTION GRAPH

3000

2700

2400

2100

F 1800
R
E 1500
Q
U 1200
E I (/ \ y

N 900
C
y 600 r- J \1 ~ /X

300 r- ~ ~

0.1 0.2 0.3 0.4 0.5 0.6
ATTRIBUTES

0.7 0.8 0.9 1.0

Figure 23. Data Distribution ofHS 8000 (X == HS, Y == HS)
(Similar for all HS Data-sets)

Ul
0\

APPENDIX B

DATA-SET GENERATION PROGRAMS

57

58

This appendix shows four sets of data distributions with 8000 points. The data

distributions are similar for all data points. Each data-set is generated by the SAS

Statistical program.

• Uniform-Uniform data distribution

data uu8000; /* data name */
do i = 1 to 8000 by 1;

x = (ranuni(680036)* 1.0); /* Uniformly distributed random data with standard
deviation of 1.0 */

y = (ranuni(67000I)*I.0);
output uu8000; /* write data */

end;
stop;
proc print data = uu8000; /* print data */
run;

• Uniform-Normal data distribution

data un8000;
do i = 1 to 8000 by 1;

x = (ranuni(665036)* 1.0); /* Uniformly distributed random data with standard
deviation of 1.0 */

y = (rannor(770000)*0.15) + 0.5; /* Normally distributed random data with standard
deviation of 0.15 */

output un8000; /* write data */
end;
stop;
proc print data = un8000; /* print data */
run;

• Normal-Normal data distribution

data nn8000;
do i = 1 to 8000 by 1;

x = (rannor(775036)*0.15) + 0.5; /* Normally distributed random data with standard
deviation of 0.15 */

y = (rannor(770000)*0.15) + 0.5;
output nn8000;

end;
stop;
proc print data = nn8000;

59

run;

• Hot-Spot data distribution

data hs8000;
do i = 1 to 2000 by 1;

x = (ranuni(770000)* 1.0); /* Uniformly distributed random data with standard
deviation of 1.0 (K/4)*/

y = (ranuni(660000)* 1.0);
output hs8000;

end;

do i = 1 to 6000 by 1;
x = (rannor(770000)*0.05) + 0.5; /* Normally distributed random data with standard

deviation of 0.05 (3K/4) */
y = (rannor(898000)*0.05) + 0.5;
output hs8000;

end;
stop;
proc print data = hs8000;
run;

VITA

Jae-myeong Jeon

Candidate for the Degree of

Master of Science

Thesis:

Major field:

Biographical:

MULTI-DISK ALLOCATION METHODS FOR BANG FILES

Computer Science

Personal Data: Born in Chul-won, Kangwondo, R.O.K., On January 16, 1966, the
son ofByoung-sop and okja.

Education: Graduated from Chul-won High School, Chul-won, Kangwondo in
February 1984; received Bachelor of Science degree in Computer Science
from Air Force Academy, Chung-won, R.O.K. in February 1988.
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in December 1995.

Experience: Raised on a farm in Chul-won City, Kangwondo, R.O.K.; worked for
R.O.K. Air Force as a programmer and as the head of Department of
Computer at an Air Base~ Oklahoma State University, Department of
Computer Science, 1993 to present.

