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CHAPTER I

INTRODUCTION

Glass as a disordered medium can host lanthanide ions like Eu3
+ to facilitate

the study of optical properties of these guest ions. The inhomogeneous structural

environment ona microscopic scal,e results in site to site differences in energy levels

and radiative and non-radiative transition probabilities of rare earth ions in glass[I].

The broad band excited optical emission spectra consist of the superposition of

contributions from individual ions. This is called inhomogeneous broadening.

Laser spectroscop'y has been extremely helpful in providing high spectral

resolution to probe the structural disorder in glasses. Fluorescence line narrowing

(FLN) in glass, a technique to selectively excite a subset of ions with their transition

energies resonant with the excitation wavelength, was first studied by Denisov and

Kizel (1967). FLN and time-resolved emission spectra of Eu3
+ were observed in a

borate glass, using narrow lines from mercury lamp were used as the excitation

source [1).

Experiments conducted by Motegi and Sionoya (1973), emphasized on the

vast scope of using laser excited fluorescence for the study of spectroscopic

properties of ions in glasses. From their study on energy transfer among Eu ions in

an inhomogeneously broadened system,. they demonstrated the use£ulness of FLN

techniques in probing the local field strengths at paramagnetic ion sites in glasses[1].

In the past fifteen years, laser induced FLN has been extensively used to

explore other related domains as, electron-phonon coupling, ion-ion interaction, and

the effect of these interactions on energy levels in both organic and i.norganic

glasses.

Recent studies by Gang, Boulon and Powell( 1982) [2], and Gang and Powell

(1984) [3] on Eu doped glasses using time-resolved site-selection spectroscopy
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show a characteristic fluorescence profile that develops a discrete structure with

time. They attributed the spectral structure associated with energy transfer to

correlation effects within the disorder of the glass network. Dixon [4, 5] using the

experimental results of Powell et. a1.,[2,3] reasoned that phonons localized by the

structural inhomogeneities in the medium could also produce these structures.

The smgnificance of such studies lies in being able to obta~n information

regarding the local structure of the host network[6,7] and/or its excitation spectrum,

and in the potential usefulness ofglasses for high power laser systems[8].

The Structure of Glass

Glass is a good example of an amorphous solid. Zachariasen(1932) and

Warren(1937) gave a description of structure of a glass in terms of network formers

and network modifiers. A crystal lattice is distinguished from a glass network by its

translational symmetry. A comparison can be made with the help of two dimensional

analogs of quartz crystal ( a crystalline form of Si02 ) and quartz glass ( an

amorphous form of Si02 ) (fig..l (a),(b»[9]. Common features of their structures are,

fourfold and twofold coordination for Si and 0, respectively, constant bond lengths,

and, all atoms being bonded - each one to its nearest neighbors. However, the

difference between the two lies in the spread of bond angles and a lack of long range

translational order in the silicate glass. While Si04 tetrahedral is arranged in a

regular lattice in quartz crystal ( with Si-O-Si bond angle as 109°), quartz glass is

built up as an irregular network of tetrahedral with varying Si-O-Si bond angles, the

mean value estimated to be 1500 ±15°.In both cases an O-ion 'bridges' two Si­

ions[10].

Glasses are modified from the above described simple structure to more

complicated forms, by fusing the simple network with metal oxides. For divalent

metal ions, the O-ion from such an oxide and a bridging O-ion now form two

dangling bonds terminated by two non-bridging O-ions bonded to one Si each, thus

introducing a discontinuity in the network (fig. 1(c». This results in interstices that
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Figure 1. A two-dimensional representation of quartz (a) crystal lattice, (b) glass
network and (c) metal-modified glass.
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accommodate the metal i.ons. These cations are named network modifiers in contrast

to the Si-ions which act as the network formers.

Examples of other network formers are Ah03, V205, P20S, B20 3, etc. Some

commonly used modifiers are oxides of the alkaline earth and the alkali metals, such

as, K20, CaD, MgO, ZnO, SrO,BaO,etc.

Electron States and Localization

In crystals electron states are described by extended Bloch waves of the form

tP(k,r) = uk(r)ei(ll-r) [11], where k is the wave vector, r the spatial coordinate, u,,(r) is

a periodic function, i.e., uk(r+R) = ul,Jr) that modulates the plane wave part ei(lU),

and R is the lattice constant (fig. 1(d) ). k is one of the quantum numbers

characterizing each wave, -nlR < k < nlR. Another quantum number is the energy

describing the electron state or the band energy E(k), a function of h k, the crystal

momentum for each energy band. Electronic wave function in the vicinity of Fermi

level EF are extended, i.e., the wave function has appreciable amplitude throughout

the solid. The plane wave envelope (fig. l(d» takes several tattice constants R to

form a comp,]ete wave of wave vector k.

On the other hand, a plane wave description of electron states becomes

meaningless in glasses because of their structural disorder(10]. Anderson( 1958)

theorized that disorder-induced localization of electronic states is characteristic of

amorphous solids.

Fig. I (e) shows potential wells representing atomic sites with a single valence

electron of each atom occupying, in the isolated atom limit, a bound energy level

shown as a horizontal line. This level gives rise to an energy band width B, in an

ordered lattice. Fig. l(f) shows potential wells of varying depths resulting in an

energy range W for a topology of spatial fluctuations. Anderson showed through

quantum mechanical calculations that when W > B, the Bloch function is replaced by

wave functions of the form _e-a.r (fig l(g», where a is a parameter called the inverse
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Figure 1.(d) A Bloch type extended-state wavefunction. (e),(f) Disorder induced
Anderson localization takes place when W the width ofdisorder exceeds the
overlap bandwidth B. (g) A locatized electron state.
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localization length. The wave function has its maximum amplitude centered at a

small group of atoms, and decays with distance from the site. Such a wav'e said to be

localized. The localization is intrinsic to amorphous solids, where all sites are

different from one another. Rare earth modified glasses display homogeneous optical

linewidths, owing to the large amplitude vibrational motion of the ligands. Phonon

energy 11 ill is distributed in the glass in the ratio -eIV, V and I being the volume of

the sample and the localization length, respectively[12]. A localized phonon would

then have its energy distributed over a much smaller number of atoms as compared

with an extended phonon of the same energy indicating a larger amplitude for the

localized phonon.

The E(k) band structure representation of electron states is analogous to

vibrational modes or phonons. In crystals, phonons with a well defined energy E(k)

when interacting

with light form a discrete line spectrum. By contrast, localized phonons of different

energies are characteristic of the disorder in amorphous solids. Such phonons,

participating in interaction with light, result in inhornogeneously broadened

linewidths. Disorder in crystals is due to defects, lattice imperfections and local

strain cause an inhomogeneous line broadening of ~lcm-l, whereas the same

transition in glass would result in a broadening of z 100cm-J [1].

Localized Phonons in Glass

Like electron waves, elastic waves also can be localized by disorder. For

example, the glasses under investigation have a composition O.65Si02, O.15Na20,

O.15MO,O.05Eu203, where M is Ca, Mg, Zn, or Sf. Raman scattering studies for

these glasses show the onset of low frequency 'boson peak' to be between 14 and

18cro-J
. If k were a good quantum number, then conservati.on of energy and wave

vector would forbid Raman activity except at a few discrete frequencies. The

beginning of continuous Raman activity indicates that k then is no longer a good

quantum number characterizing a phonon. For extended phonons k- l is presumed to
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be le.ss than or equal to the correlation length ~, a measure of disorder in the

network. The slightly perturbed extended phonon acquires a finite mean free path A

such that A » k-1
, i.e., the phonon is scattered by the inhomogeneities ~n the density

and elastic properties of the network. The IofIe-Regd condition £or the weak

scattering description ceases to be valid once k- 1 becomes comparable to A. Thus

for phonons the criterion k~-l is considered to mark the beginning of the strong

scattering regime[ 13] resulting in phonon localization..

Phonon Assisted Energy Transfer

The rare earth ions introduced in the glass network interact with the local

vibrations via the electron phonon coupling. Non-radiative transitions between

excited states of two ions I, 2 separated by energy AE I2 has been treated by

Holstein, Lyo and Orbach (HLO)[14]. The HLO method for the energy transfer

among optically active ions employs Debye phonons as mediators of the mechanism.

Dixon [5] extended the HLO method for the energy transfer process as being due to

atomic vibrations resulting from disorder in structure of the system. When structural

disorder increases to a critical value such that k-1 becomes comparable to the

magnitude of density fluctuation in the medium (glass in this case), localization sets

in, and is defined in terms of fr,equency at the mobility edge, rome. Dixon proposed

an enhanced rate of energy transfer when localized phonons near Wme are involved.

The one- and two- phonon mechanisms[5, 14] cause rapid transitions and a resultant

homogeneous broadening at individual ion sites because of differences in AE12•

varying local fields, and the nature of vibrational modes.

Considering a transition I 1",2> ~ 11,2·> [5], for which the energy

separation between excited states is ,1E 12, the interaction Hamiltonian can be written

as HI = He" + Hij where HI is the total interaction Hamiltonian, He!, is the electron­

phonon coupling Hamiltonian, and Hi; is the ion-ion interaction Hamiltonian. The

wave function for the a 1h at the j'h site is given by



8

(1)

where p is the number density of atoms such that

(2)

A particular phonon spectrum is characterized by matrix elements of local strain,

and the phonon density of states. The latter is used in eva~uating the sum over

phonon modes that appear in energy transfer equations. The difference in matrix

element of the local strain are:

flu being the phonon occupation number of theath mod'e. From the HLO treatment

of energy transfer mediated by localized phonons, the probability for one- and two­

phonon absorption can be deduced as:

W- = 21t J2 (f _ )2" I(nn - IIAel nnt 5(.AE - flm )
2~] Ii g L.. ( .. )2 12 n

1 0;. AEu

W- = 21t J
2 (f_ )4"I(no;-1IAelnn)121(np-IIAE!npt8(AE -nm -hID)

2~1 1i g L.. (.)2 ()2 12 n P1 np flO) n I flm p

(4)

where A& = &(1 )-&(2), J is the interionic coupling matrix, and f and g are the

electron-phonon coupling to excited state, and ground state, respectively.

Two models that describe extreme phonon localization are the fracton model

and the 'Einstein modes'. The latter sets ~ to be constant and smaller than the

average interatomic spacing. Each atom becomes an independent oscil1ator[5]. The

density of states in this model varies smoothly through the mobility edge, which

rules out the possibility of sharp changes in density of states as a reason for any

spectral structure formed.
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In this investigation weak localization of phonons is assumed with ~ == k"l

(wavdength ofDebye phonon at rome). Processes represented by W- and W·- become

broadly resonant for phonons near CD me . For rare earth ions with the electron-phonon

coupling constants of the 102_103cm- l such probabilities are significantly targe to

produce structure in the fluoresc,ence spectra [5].

To justify the greater effectiveness of energy transfer mediated by a localized

phonon over a Debye phonon with the same energy nCDa , the gradient of strain

for the two is compared. Equation (2), (3),and(4) show the importance of strain

gradient in energy transfer. A Debye phonon with energy tr. IDa and wavelength of

the order of 10 interatomic spacing, has its elastic strain distributed over a large

volume of the medium, while a localized phonon of the same energy extending over

a few interatomic separation has the elastic strain distributed over that small number

of atoms. A microscopically inhomogeneous system like glass will have regions

where strain and its gradient will be considerably greater than for the extended

phonons.

For instance [5], a 20cm- l weakly localized phonon with ~~8nm has a greater

strain gradient than a Debye phonon of the same energy extending over a volume of

600nm in diameter. It has been shown by Dixon, Gang, and Powell[15] that for

~El2 = 20cm- l
, there exists at least one phonon on an average within an interval of

7nm that participates in energy transfer along with many Debye phonons. Yet, the

effectiveness of energy transfer due to the localized mode is greater. This is because

the vibrations from the singfe localized phonon are coherent rather than those from

the many Debye modes that are incoherent. In the lcm-l linewidth, the effectiveness

of localized phonon in mediating energy transfer is 103 times greater than due to

Debye phonons.
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Figure l.(h) F and D energy levels of Eu+3 ions. The widths of the levels indicate the
Stark splitting of the crystal field states in glass hosts.
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Fluorescence Spectra ofEu3
+ in Glass Hosts

Site-selection time-resolved spectroscopy has been a powerful tool for

probing the spectral structure displayed by rare earth ions in glass hosts. Gang and

Powell [3]performed experiments on glasses of different network formers,

modifiers, their different chemical compositions and different mol% of the dopant

Eu203. To avoid ambiguity arising from transitions to overlapping Stark

components, the forbidden transition between the singlet states sDo-7Fowas found to

be most useful in such a study. Energy levels and transitions are shown in fig. l(h).

A tunable dye laser was employed as the excitation source. Excitation transition 7Fo_

5Do followed by its radiative decay 5Do-
7Fowas monitored. The fluorescence spectra

observed as time evolved after the excitation pulse showed dist.inct structure due to

energy trans:6er.

The evolution of spectral profile from smooth band with some structure at

early times after laser pulse to a series of distinct peaks at later times is ex.plained as

follows. The former structure is due to site-to-site variation of local crystal fi·elds

brought about by topological disorder in glasses, that overlap to form an

inhomogeneous continuum. On the other hand, the distinct peaks indicate a certain

degree of local order in the glass structure, that results in a fewer number of crystal

fields, decreasing the overlapping of homogeneously broadened spectral lines and

giving rise to discrete resolvable lines.

From their time-resolved spectral observations Gang and Powell concluded

that energy transfer occurs to spectrally dissimilar ions throughout the

inhomogeneously broadened band. The basis of this conclusion, was attributed to

temperature dependence of energy transfer rate associated with thermally populating

new levels providing new energy transfer transitions.

Similar site-selective time resolved experiments conducted by Gang, Boulon

and PoweJl[2] to observe spectral transitions of Eu3
+ in germinate glass host of

composition 66Ge02, 17K20, 17BaO in mol % modified with 1 wt. % Eu3
+ showed

structured fluorescence spectra that evolved into sharper secondary peaks with time,
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after laser pulse. From the spectral analysis it was concluded that the discreteness in

structure at later times resulted from energy transfer to ions in specific types of

sites~ site A located at 577.2nm, site B at 578.Snm ,and site C at 579.5nm. It was

observed for this glass host, that energy was transferred from site C at low energy to
. ~ .

site A at a higher energy without involving the site B of intermediate energy. Thus

participation of thermal vibrations becomes a necessity in the energy transfer

process.

Subject of Investigation

Transition probabilities, proportional to the square of an interaction, are

potentiaUy sensitive to site-dependent variations in interaction strength than energy

levels. In this study, silicate glasses modified with alkaline earth, alkali and 5 mol %

Europium ions, serve as the microscopically inhomogeneous medium where disorder

in structure makes all sites different from one another. Subject to FLN time-re'solved

techniques, the 7Fo-
5Do transition in Eu ions result in a well structured fluorescence

spectra due to energy transfer among different types of sites in the glass host.

Electron-phonon coupling responsible for the de-excitation transition with localized

phonons as the carriers of energy, is studied. An attempt is made to establish

whether the structured spectral profile that results from energy transfer represents

correlations in the local energy splitting of the rare earth elements, as suggested by

Gang and Powell and Gang, Boulon and Powell, or is due to spectral structure in the

phonons, as suggested by Dixon [5].
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CHAPTER II

EXPERIMENTAL PROCEDURE

Samples

For this study, samples of silicate glasses with Eu3
+ doping were investigated.

They had the composition 65Si02, 15Na20, 15MO, SEu203 where M= Mg, Ca, Sr, Zn in

mol%. The samples were provided by Richard C. Powell. Each sample was cut into a

piece of approximately 0.3cm x O.3cm x 2cm. One end and a side of the parallelepiped

were polished to minimize scattering of the laser beam and of the fluorescence produced

as the laser passes through the glass. The absorption spectra were obtained on a Cary05

spectrophotometer. Excitation source was a 50W xenophoto lamp.

Experimental Setup

Figure 2(a) shows the schematic layout of the experiment. A tunable dye laser

consisting of Continuum Nd:Yag pulse laser and rhodamine 6G dye, served as the

excitation source. The pulse duration of the laser was 5ns. The laser operation was

chosen to be at 532nm. A set of dichroic mirrors separate and pass the 1064nm

fundamental beam to a beam dump, which assures a safe disposal of all unused beams.

The second harmonic beam was directed into an attenuator with the hetp of two coated

mirrors. The attenuator reduced the power of the laser beam from 3.2W to 70mW. The

resulting beam was made to enter DL II Dye Cell Chamber. This pump beam is further

weakened in intensity by a 20-25% beam splitter. The DL II dye laser has two cuvette

dye cells, both ofwhich are fiUed with 2ml of rhodamine 6G, their concentrations being

144mg/l OOce of ethanol for the oscillator cuvette and 80mgllOOec of ethanol for the

amplifier cuvette. Tuning of the pump beam to lower its energy is done by the oscillator
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with the oscillator cuvette installed in it. The oscillator output could be maximized by

adjusting dye cell translation, pump beam height, pump beam focus and dye cell rotation.

The pump beam that emerges from the oscillator axis was focused and adjusted to locate

the excited-dye volume of the amplifier, on the oscillator beam axis. This was done with

the help of dye cell height and translation control. Thus the beam could be tuned to the

desired wavelength. For this investigation the tuned wavelengths were 578nm, 579nm,

580nm. The power of the incoming beam into the dye laser should be such as to keep the

organic dye from being damaged and to keep the cuvette from cavitating. Hence the

reason to attenuate the pump beam to -70mW.

The tuned beam was reflected off of a pair of mirrors and directed through an iris

1em. in diameter (to minimize scattered light from the beam), followed by a lens of foca~

length IDem.

The sample was mounted in the cryostat as shown in figure 2(b). The focused

beam was reflected by a right angle prism into the sample along its long axis. The energy

of the incoming radiation was absorbed by Eu3
+ ions along its path. This was followed by

radiative de-excitation of Eu3
+ ions, visible as a column of fluorescence along the axis of

the sample.

The excited volume was situated at the focus of a convex lens with focal length

of IOem. The parallel rays that emerged from the lens formed an image at the focus of a

convex lens of focal length 6.29cm. This image was 2/5 times the original object. It was

brighter and sharper, as well. An electronic shutter with an aperture comparable to the

size of this line shaped image let the fluorescence pass through, whieh was refocused at

the shutter of a O.85m monochromator. The fluorescence had both, the intense excitation

and the relatively weaker de-excitation radiation, the subject of interest To minimize the

former and maximize the latter, the exposure time and the delay time before the electronic

shutter reopens, was optimized.

Spectrometer

The image of the fluorescent line after passmg through the aperture of the

electronic shutter appeared as a fluorescent dot that approximately filled the width of the
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2cm. X O.5cm. entrance of the spectrometer. The slit width was then narrowed to lO0J:.1m

to eliminate the scattered light from the laser. The slits in the middle were left open. The

slit at the exit to the photomultiplier tube(pMT) was set at 100J;.lm. The PMT detected

the fluorescenc'e analyzed by the spectrometer. The PMT operation was controlled by

SPEX 286 computer software, viz., SPEX DM3000S, and, the DM303M input module

from the integrator unit.

Processing Units

The PMT was connected to an oscilloscope that displayed the detected signal in

mY. The signal was sent through a Gated Integrator (Model 4422) followed by a Boxcar

Averager (Model 4420). This was to reduce the signal to noise ratio by a factor of 10. To

observe the signal and its behavior at specific times after the excitation pulse. it was sent

through a signal processor (Model 4402).

Processed by the above three units the improved signal was sent to the computer

by DM303M output module. As the data were being taken by the computer, the spectral

development could be observed on the monitor.

The sample was mounted as is shown in figure 2(b) in a cold finger connected to

a cryogenic refrigerator system, turbo molecular diffusion pump attached to a pressure

monitor and a temperature controller connected to the temperature monitor cum heater.

The dewar was rough pumped to about lOJ.1.Torr. Then the turbo molecular pump

reduced it to -1O-7Torr. The compressor was then switched on. When the temperature

dropped to 250K the heater, pr,eset to 70K was switched on.

Scan Specifications

The dye laser was tuned to three excitation wavelengths (Acx), 578nm, 579nm and

5.80nm, respectively. The tunable laser tuned to a particular A.cx was scanned across a

region between 577.5nrn and 580.5nm. For eacnscan the fluorescence was observed after

lms, 3ms, 5ms, 7ms, and 9ms, respectively after the resonance excitation. Fluorescence
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was observed through a gate 298115 wide. The 'exposure time' on the electronic shutter

and the 'delay time' after which the shutter reopens were 32ms and 14.1ms, respectively.

The scan plot by the computer is set to show wavelength in nanometers on the X-axis and

intensity in volts on the Y-axis. Integrated and averaged value of intensity was obtained

at the end of a lOs interval for a wavelength increment ofO.02nm. The resulting scan had

duration of25min. Observations were made at a pr,eset temperature of70K.
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CHAPTER III

RESULTS AND DISCUSSIONS

A Eu3
+ ion has a simple energy level scheme as compared to other lanthanide

ions such as Yb3
+, Nd3

+, M03
+, etc. Therefore Eu3

+ incorporated into various glasses

fonn an interesting subject to various spectroscopic investigations. Gang, Boulon and

Powell and Gang and Powell [2,3] studied the time evolution of laser induced resonant

line-narrowed spectrum in Eu3
+. As a specific case, the transition studied was 5Do~7Fo,

forbidden by the electric dipole transition selection rules, in g~asses.

Typi,cally, a time evolution process of the fluorescence is as follows. Following

the laser pulse, the initial line narrowed fluorescence decays by a combination of

radiative and non-radiative energy transfer to other Eu3
+ ions without significant line

broadening. Subsequently the process is repeated by the acceptor ions, and a new

inhomogeneously broadened equilibrium emission profile is formed indicating energy

transfer to the neighboring dissimilar sites. This energy transfer is not to the central

resonant site only, but to all the sites within the inhomogeneous profile. This process is

attributed to polar processes and is associated to crystal fields that vary from one type of

site to another [1].

Gang and Powell [3] selectively excited sites on the high and the low energy

sides of the absorption band for seven samples. The glass samples varied in chemical

composition, network formers, network modifiers, their mol %, and the Eu3
+ ion

concentration. Fluorescence spectra obtained at two times after laser excitation showed

marked spectral evolution due to energy transfer. The narrowed line excitation

decreased as the inhomogeneous profile increased and became more discrete in structure

with time. At very long times after the laser pul,se, the spectral profile approached the

inhomogeneous band profile. The observed structure can be explained as being caused

by ligand field sites that are different from one another. When only a few of the many
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ligand field sites are excited by energy transfer, the resulting homogeneously broadened

spectral lines do not overlap, but form a series ofdistinct resolvable lines.

In this investigation, the experiment perfonned with four glass samples of

composition described in chapter II using the experimental set up shown in fig 2(a),

yielded time resolved spectra as displayed in fig 3-14. Nonna~izing these spectra with

respect to the absorption band spectra of each of the samples (fig 15-18), fig 19·30 are

obtained. Graphs generated by calculating the ratio of intensities make the time resolved

spectra clearly observable. Series of distinct peaks developing into more resolvable lines

can be seen, for the reason that energy is being transferred from one type of site to

another. This can be attributed to either correlation effect due to the structur,e of glass or

due to localized phonons mediating the energy transfer.

Energy Transfer Function aCt)

Time resolution of the emission spectra of Eu3
+ ions in various glasses show

structure that indicates energy transfer to ions in different types of sites with a possible

involvement of a mechanism. A method developed by Brawer and Weber quantitatively

characterizes energy transfer [8]. Time evolution of the normalized spectral profile can

be expressed as

I(OJ,I) = a(/)/(co,O)+ [I-a(t)]/(co,oo) (4)

where aCt) is the function that describes the energy transfer with time. Rearranging (4) to

calculate aCt) gives

11/«(1),1)- /(QJ,oo)]dco

aCt) = COl (5).

11/(CO,0) -l(co,oo)}dUJ
(01

COl and (ih define the limits of the region of excitation and a(t) represents the migration of

energy from the central resonantly excited ions to other types of sites in the

inhomogeneuos band.
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In this investigation, spectra were obtained after time delay of lms, 3ms, Sms,

7ms, and 9ms after the laser excitation. Substituting t=lms for t=O in (5) for the initial

time, assuming-that at t~oo the fluorescenc,e intensity approaches that of the broad band

absorption, and adjusting the baseline so as to be able to neglect the nonnalized intensity

I as t~oo, (5) can be approximated as :

A",+O,5nm

L
A",-O.5nm,

let)
5BO.5nm

LI(t)
a(t) == __------,:--=-5.;..:.n.:.:..:.snm=.~~ (6)

I(1ms)
5BO.5nm

L)<lms)
577.5nm

I(ro,t),and I(ro,O) in (5) now become:

I(w, t) ~ (I(t)/:~I(t»)

I(w,O) ~ (I(1ms)/II(lms»)

and I(ro,00) ~ negligibl,e.

Fig.(32-35) of energy transfer function versus time delay after excitation pulse, ,show

aCt) as an exponentially decaying function of time, as energy is transferred from the

central resonant ions to the ions of different types of sites, with varying values of a, the

characteristic decay time. Gang and Powell [3] on the basis of their analysis on diflerent

glasses argued that a represents the average value for energy transfer time to ions in atl

sites spread throughout the inhomogeneous band, Therefore the calculated value of a

could not be directly related to any specific type of transfer mechanism,

Correspondingly, there is an exponential rise ofa(t) for the secondary peaks (fig. 36-37).

From the fluorescence spectra (fig. 19-30) it can be observed that there is a region

between 578.5 and 579nm where a structure can be seen as growing with time aft.er the

lliser excitation pulse, indicating an energy transfer into that region. This implies that

there are preferential absorption transitions between energy levels in Eu3
+ ions that
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requlf,e energy within the above mentioned range. Inhomogeneously broadened

absorption band spectra for each sample at room temperature (fig 15-18) show the

region of maximum intensity. that includes the interval between 578.5 and 579nm

corresponding to a large number of ions that absorb energy in this region. Thus it can be

said that there is a distinct set of sites acting as acceptors of energy within this interval;

the structure seen in the fluorescence scan for a sample is due to a large number of such

ions. This information supports energy transfer due to correlation in the structure of

glasses.

However, the structure in fluorescence spectra Le., the secondary peaks other

than the one discussed above appear at varying locations on the energy scale for

different samples, subject to different A.ex. TabJe I compares the wave number at which

Raman activity begins for each sample, to those which determine the onset of the

secondary spectral structure. Raman activity requires that the wave vector of the energy

carrying phonons be changed for conservation of energy. k then is no longer a valid

quantum number. This favors the energy carrying phonons to be localized. Thus the

frequency at which the localization takes place, in this case, at the onset of the l.ow

frequency boson peak is chosen as the frequency at the mobility edge. Phonons with

frequencies less than COme are not localized. Figure 36 shows al(t) for the first peak

appearing on the shoulder of the central resonant peak, decreasing with time. The ri,sing

edge of the secondary peak begins at 7cm'( at Aex = 578nm for the Ca-modified glass.

Since COme corresponds to Raman activity beginning at 14cm"1 > 7cm"l, a1(t) decays with

time. Hence an ,evidence for the effect of localization not observable for phonons with

frequencies less than COme. Increase in aCt) values for the onset of secondary peaks at

frequencies greater than COme may indi.cate that energy transfer is mediated by localized

phonons, as their efficiency in transferring energy is far greater than Debye phonons of

the same energy.

It is noted that aCt) for the secondary peaks rises to approach a saturated value at

large times after the laser pulse, compar,ed to its characteristic time, a (fig 36-37).

Similarly the resonantly excited peak falls in its a(t) value until it approaches a constant
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value at large times, compared to its charact'eristic decay t.ime, Ct, thus indicating that at

such large times, energy transfer rate from the central resonant peak to the secondary

peaks, and from the latter in tum, to their surrounding acc'eptor sites and so on, reaches

a steady value. Therefore it is possibJ,e to observe the time-resolved structure in the

fluorescence spectra within only a limited time interval beyond which the multistep

transfer will tend to dissipate the structure.

From table I peak-spacing i.e., the frequency interval between the onset of one

secondary peak and the next consecutive one can be calculated. Zn-modified glass shows

peak spacing in the range from 7 to lOcm-J
; Mg-modified glass, between 7 and nem- l

~

Sr-modified glass, between 7 and Ilcm-', and Ca-modified glass between 8 and lOcm-1
.

Thus it can be said that the secondary peaks are regularly spaced to the uncertainty of

± 2cm- l £or these glasses. Dixon [5] proposes that the peak-spacing should correspond

to the low frequency mobility edge for phonon localization (fig 31). The calculated data

in table I agrees with the theory. However, the onset of boson peak is different from the

spacing between the peaks; the latter being smaller than the former in the frequency

regime for all samples. A possible explanation could be that at the onset of Raman

activity both Debye phonons and localized phonons of the same energy may coexist thus.

partially obscuring the manifestation of phonon localization at a frequency that is a near

integral multiple of the peak spacing. Table II shows the frequency values at the onset of

the se,condary peaks in the frequency regime, with 17316cm°1. (577. 5om) as the reference

frequency. The p,eak spacings are found to have the similar values as those obtained

from table I within±2cm-1
. The near constant peak spacing independent of laser

excitation at any wavelength for aU the samples under investigation is suggestive of an

energy transfer mediated by localized phonons of frequencies comparable to the

secondary peak spacing.

It may be possible to improve the agreement by a more careful deconvolution of

the fluorescence from the absorption profile and homogeneous linewidths. This is

beyond the scope of the present work.
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K-2883, K-2885, K-2887, and K-2904, respectively as sample names.
Inset shows peaks including the low frequency Boson peak.
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Figure 34. Time dependence of the energy transfer function defined by Eq. (6) for
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TABLE I

ONSET OF RISING EDGE OF LOW FREQUENCY BOSON PEAK

AND OF

SECONDARY PEAKS

Net- Boson A.ex 1sl peak 2nd peak I 3rd Peak 4 th Peak.
work Peak (run) (em-]) (em-I) (em-I) (em-I)

Modi- (em-i)
,

fiers
578 15 22 29 36

Zn 18 579 15(as) 26(as), 24(5) 31(5) 43(a5),39(5)

580 IS 26 37 47

578 II 23 32 40

Mg 12 579 10(as),I2(s) 20(as),21 (s) 30(as) 42(a5),38(s)

580 12 22 30 38

I 578 16 27 37 44

Sr 14 579 16(s),15(as) 26{as),23 (5) 37(as),34(s) 44(a5),44(s)
,
:

580 15 23 38 45

578 7 14 24 33

Ca 14 579 8(as),8(s) 15(a5), 12(s) 23 (a5),20(s) 34(5)

580 - 11 22 34

... (as) and (5) denote antistokes and stokes regions, respectively.
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TABLE II

ONSET OF SECONDARY PEAKS

WITH RESPECT TO ] 7316cm-1

5-9

Zn-modified glass Mg-rnodified glass

Aa =578nm Au:=579nm A.,;x=580nm Aa =578nm Aex=579nm hx=580nm

- 9 28 - 3 20

44 19 37 47 13 29

51 - 48 S5 25 38

59 37 S9 65 35 50

69 - - 73 - 60
I,

69 57 -

76
I

66I

84 78

84

continued...
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Sf-modified glass Ca-modified glass

Au =S78nm Au =579nm Au =580nm Aa =578nm kx=579nm Aa =580nm
I

- 7 8 - 15 IS
,

31 14 20 25 25 25

42 25 30 33 33 33

52 35 43 41 - 40

60 - 51 52 52 52

71 62 60 66 59 -

70 - 78 66

79 78

89

I
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CHAPTER IV

SUM.MARY AND CONCLUSIONS

Time-resolved FLN techniques applied to the glass family under investigation

yielded fluorescence spectra which became more structured with the evolution of time.

The structure characterizes the rate at which the energy is transferred from one type of

sites to another. Energy transfer due to preferential absorption or emission of energy

according to the local energy level separations of the Eu3
+ ions, or correlation effect is

thought to cause the observed discrete structure.

Howev,er, for conservation of energy, a mode of energy transfer different from

that due to correlation effect becomes necessary. This occurs for phonon energies

beyond a threshold energy corresponding to the frequency at the mobility edge, which

has been taken as one at the onset oflow frequency Boson peak (fig. 31).

A common spectral feature observed in all the scans is that at a fixed frequency

interval away from the central resonant peak, a secondary peak appears; away from this

secondary peak at the same frequency separation, another secondary peak appears, and

so on. This is an indication of energy transfer due to localized phon.ons being effective

when the energy separation between. the excited states of different sites corresponds to

rome. The secondary peaks become more structured with the evolution of time. The

energy transfer function aCt) for the secondary peaks rises exponentially (fig. 36-37),

while it decays exponentially for the central resonant peak (fig.32-35). However,. for

larger times compared with the characteristic time for the exponential function, aCt), the

curves saturate and assume constant values, whence the influx of energy into a certain

type of sites becomes comparable to ~ts outflow from the region. Thus the analysis of

fluorescence spectra for a frequency regime greater than or comparable with rome favors

energy transfer mediated by localized phonons.
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