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CHAPTER I

INTRODUCTION

Background

A burr is an undesired projection of material formed as the result of cutting,

shearing or casting processes. It is unavoidable in many machining operations. Since

burrs can cause interference in the fit of components in assembly, defects in finished

components, and injuries to workers, they must be removed. Very often, deburring is not

sufficient for some parts, and more precise finishing, called edge finishing must be done to

achieve desired contours. At present, deburring and edge finishing are costly and labor­

intensive. It is common to deburr or grind edges or surfaces manually in off-line

processes, resulting in extra material handling, increased processing time, and lower

quality products. In some highly automated machining processes, deburring or edge

grinding operations may require a significant portion of the time and cost, compared with

other machining operations. It is desirable to develop automatic deburring and edge

grinding to reduce manual work as much as possible, integrating deburring or edge

grinding operations with automated on-line process to streamline machining operations.

Because of its success in other manufacturing operations, the use of robotics appears to

offer potential for automatic deburring and edge grinding.

Automation in manufacturing industries has made extensive use of industrial robots

[1], particularly in those cases where operations are repetitious and require moderate
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position accuracy superior to that of an unaided human. A basic operation in many robot

applications is to pick up an object from one location and move to another for machining,

storing or assembly [2], [3]. This is called a "pick-place" operation. Other common

applications of industrial robots are in spot welding, arc welding, and spray painting.

Carrier Transicold , Athens, GA, a part ofUnited Technologies' Carrier Corp, used a five­

axis gantry-mounted MR5 robot in an arc-welding process to reduce labor hours by 67%,

performing approximately the work of three manual welders [4]. Moreover, the

production rate of32 units per day increased to 50 units daily by using the arc-welding

robot. In painting automation, the use of spray robots has become commonplace, as spray

robots not only significantly increase painting speed, but also save paint and improve the

finish quality[5]. Successfully employing industrial robots is particularly effective in

increasing speed and efficiency in the automotive industry.

The essential feature in most successful robot applications is that manipulators are

commanded to perform only unconstrained maneuvers. There typically is no interaction

between manipulators and environments, and the motion of manipulators is free in the

workspace, that is, any external force on the manipulator is considered an unwanted

disturbance. The objective in controlling unconstrained manipulators is typically to achieve

precise motion tracking or pick-and-place accuracy under highly robust control.

Substantial development in the dynamics and control of manipulators with unconstrained

motion has occurred in the last two decades [6].

In contrast to most robotic applications, robotic deburring or edge grinding

involves interaction of manipulators and manipulator tools with their environments,

namely the workpieces processed. Accordingly, manipulator dynamics must be treated as

constrained maneuvers, in which motion along some path may be constrained by the

environment. While robot end effectors are commanded to move along a desired

trajectory, contact forces are generated both normal and tangential to the contact surface.

In such case, both the robot and the environment must be considered part of the total
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dynamic system. Manipulators in constrained maneuvers require control ofboth motion

and force, or regulation between motion and force. Control of interaction force and

motion simultaneously is fundamental to robotic deburring and grinding. Because control

of a constrained manipulator requires high precision, force and position feedback, and

advanced control strategies, it is often difficult to implement. Developing an effective and

efficient scheme for force control of robots associated with deburring and edge grinding is

therefore an attractive research problem.

Robot Deburring And Edge Grinding

Robot deburring and edge grinding consists of a robot carrying a finishing tool

traveling along a desired path while the finishing tool, driven by an independent actuator,

rotates at high speed for metal removal. Figure 1 shows a simple example of a deburring

or edge finishing process using a SCARA (selective compliance articulated robotic arm)

robot with a grinding wheel mounted on the end effector of the robot. While the robot is

commanded to follow a desired trajectory, it traverses the grinding wheel along the edge

of a workpiece. Material removal occurs as the grinding wheel or finishing tool cuts into

the workpieces. While traditional grinding machines may be limited to motion of the tool

along simple geometric curves, such as straight lines or circles, a finishing tool mounted

on a robot can easily travel along complex spatial curves. This allows more flexibility for

robot deburring or grinding in complex tasks.

The aim of robot deburring and edge finishing is to produce, by metal removal,

finished surfaces along commanded trajectories within allowed dimensional tolerances and

surface roughness. The cutting performance of deburring and grinding tools is primarily

dependent on three process parameters [7]: rotation speed of the cutting tools, depth of

cut, and relative traverse speed of grinding tool and workpiece. For a given geometric

configuration and type of tool, the rotation speed of the finishing tool primarily influences
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Figure 1. 1 Schematic Diagram of a SCARA Robot Engaged in Grinding
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the finish of edges or surfaces. Within the stable grinding stage, increasing the rotation

speed of grinding tools usually improves the finish, provided other grinding conditions

remain contact. On the other hand, the depth of cut and relative traverse speed of the

grinding tool govern the material feed rate of the grinding process, and therefore

determine the grinding force generated [7].

Similar to other automated processes, robot deburring and grinding will perform

best when the disturbance or input is constant, such as a "continuous" bur with constant

width, height, and shape. This would imply an uniform material feed rate and depth of

cut. On the other hand, a robotic deburring or grinding process should be robust to

maintain acceptable performance under fluctuations of inputs and disturbances within

allowable ranges. In many cases, workpieces are fixed, such that material feed rates must

be controlled by adjusting the robot's position and traversing speed along desired edges or

surfaces.

Force control is central to robot deburring and edge grinding, and the forces

generated by the cutting process can be resolved into components normal and tangential to

the trajectory at an idealized "point" of contact between the tool and workpiece.

Maintaining the normal force within desirable limits usually will also maintain the

tangential force within limits, both ofwhich are essential for satisfactory cutting

performance. Zero normal force implies loss of contact, with no cutting action; excessive

normal or tangential force may cause stall of the grinding tool, or damage to the tool,

workpiece, or robot. In fact, for many applications, when the interacting force exceeds

specific limits, chattering may occur before tools or the robot system are damaged.

Chattering is an undesired high frequency oscillation between contact and loss-of-contact

between tool and workpiece. It degrades the quality of the edge or surface finish and

ultimately will damage the tool. It can be avoided with appropriate force control.

There are two principal strategies for force control currently employed in robot

deburring or edge grinding processes. One is to utilize a compliant device connecting the
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robot end-effector to the cutting tool to compensate for interacting forces and position

uncertainty of environments [8],[9]. Use of such compliant devices allows commercial

robots to be used directly without modification ofbuilt-in controllers. The second

strategy is to directly mount the finishing tool on the end effector of the robot and employ

force control by means of an advanced robot controller that integrates end effector motion

control with a force feedback loop.

In the first strategy, the compliant device absorbs much of the contact force

variation, such that the required robot motion compensation control is less demanding.

Depending upon requirements, this may allow commercial robots to be directly employed

without much modification. Some innovative designs of compliant devices, such as the

RCC(Remote Center Compliance)[IO], have been applied to deburring. However, any

type of passive or active compliant devices may increase the end effector inertia of the

robot system, adversely affecting performance. Allowable inertia should be carefully

designed, considering the grinding tool, part contour, feed rate, and desired accuracy.

Typically, large inertia of compliant devices limit the applications of such devices.

Without compliant devices, the second approach usually requires more accurate and

robust control algorithms than are available on commercial robots. Although this strategy

is complex and difficult to implement, it is flexible and versatile. As robot controllers and

sensors improve, this method will become more feasible.

Deburring with Compliant Devices

Early research in robotic deburring employed compliant elements at the end

effector. Kramer et al. [8] first explored the fundamental mechanisms of robot deburring.

Based on the stiffness of an end effector required for a specific deburring task, Kramer, et

al. designed a passive single-degree-of-freedom end effector(PSDF) to hold a finishing

rotary file. This device provided initial compliance for force variation and position
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uncertainty occurring during the deburring process. With the PSDF end effector mounted,

a robot with open loop position control was able to achieve stable deburring results.

However, deburring without force feedback, such as initially used by Kramer, et al., may

result in surface finishes that are insufficiently smooth. Thus, a new strategy was

proposed to integrate a force feedback signal. This approach employed a robot position

control loop and a fine motion control loop. The fine motion control loop was robot­

independent and utilized a micromanipulator to adjust the relative position of a workpiece

relative to the end effector based on a feedback signal from a force sensor. For the robot

position control loop, the robot performed the programmed function with no

communication from the end effector force signal. This allows a robot to be directly

applied to the process without knowledge of the robot's dynamics and controller

architecture. An active x-y positioning table mounting with a force sensor was developed

in the experiment to implement the performance of the mirocmanipulator in the fine

motion loop.

Kazerooni, et al. [9] investigated this strategy in the frequency domain and pointed

out that for a deburring robot, stiffness in the normal and tangential directions should be

designed to be low and high, respectively, so that the system is robust relative to robot

oscillations, robot inaccuracy, and fixturing errors. On the other hand, the deburring

process requires a large robot stiffness in the normal direction and small stiffness in

tangential direction to achieve good deburring performance. This requirement causes the

end effector to ignore the interaction force in the normal direction and stay close to the

desired trajectory. These conflicting design requirements raise the control problem for this

strategy together with difficulty in practical implementation. A compliant device for the

end effector and an active x-y positioning table were designed and implemented to

overcome these difficulties.

Recently, Koelsch [11] reported that General Dynamics used flexible-abrasive

brushes with a "constant force" device mounted on the end effector of an industrial robot
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to debur and chamfer bulkheads and other complex parts for the F-16 fighter. The

combination of the innovative tooling and robot control allowed robot deburring to

successfully achieve the desired results. From a control viewpoint, the wire brushes

function as a highly compliant device to compensate for position uncertainty and fixturing

errors.

Hybrid PositionIForce Control

Traditional approaches dealing with free motion control of manipulators without

contact with the environment focus mainly on the inertial effects on performance. In

contrast, force control for manipulators constrained by environments must deal with the

combined influence of robot inertia and compliances of robot and workpiece.

Effective force control of manipulators requires integration of task modeling,

trajectory generation, force and position feedback, control, and stability. It requires good

understanding of task goals and good modeling, such that an effective control strategy and

trajectories may be planned. It also requires control such that stable and precise

performance of the manipulator is achieved. Since measurement of force and position may

be noisy, effective filtering techniques may be needed. An effective force and position

control algorithm should fulfill all these requirements.

Much research has been done on the force control of manipulators involved in

constrained motion, and an overview of available force control algorithms is given in [12].

Whitney classified force control approaches, based on the relation of the control input and

output, into several types of methodologies, including: stiffness control, damping control,

impedance control, hybrid force/position control, and explicit/implicit force control.

The fundamental differences in various force control methods associated with

manipulators may be classified into two types of control architectures: hybrid

force/position control [13],[14],[15] and impedance control [16] - [24]. In hybrid

8



force/position control, force is commanded and controlled along those directions

constrained by the environments, while position is commanded and controlled along those

directions in which manipulators is unconstrained and free to move. Usually, the force and

position control directions are orthogonal, and a particular control law may be applied in

the individual direction for the regulation of force errors or position errors. On the other

hand, impedance control focuses on the relationship between the interaction force and the

end-effector position. Instead of controlling force or position individually, impedance

control attempts to regulate the interaction force by controlling the amount of compliance

or impedance in the manipulator. Using impedance control, a designer can specify a target

impedance, the desired relationship between the interaction force and end-effector

position, and control the position to maintain the desired interaction force. We first

review hybrid position/force control strategies.

Hybrid position/force control is used for control tasks requiring force control in

some directions and motion control in other directions. It requires the task description to

be decoupled into elemental subtasks, which are defined by a particular set of constraints.

Typically, a position constraint exists in the direction normal to the contact surface, and a

position control subtask is formulated with a force constraint along the tangential direction

of the contact surface. Thus, control is partitioned into a set of orthogonal constraint

directions. With each subtask, pure force control or pure position control algorithms may

be applied. For instance, in the force control direction, force is commanded and

controlled explicitly. The key to hybrid control is the specification of a task constraint

frame, either a natural constraint frame or an artificial constraint frame. Mason [13]

discussed kinematic constraints imposed on manipulator motion due to a particular task

geometry. The discussion in this paper is quite general and includes many types of

constraints that can occur during a variety of tasks.

Raibert and Craig [14] first developed hybrid force/position control, with the

position and force loops operating under different control laws (PID for position and PI
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for force) to control a manipulator. Position was measured with joint-mounted sensors

and a force signal was obtained by a wrist-mounted force sensor. A selection matrix was

introduced to indicate the particular constraint in each degree-of-freedom, and this was

used to apply compensation functions to determine the actuator drive signal for each joint.

Experiments were conducted using a two-axis Scheinman robot to test the designed

controller. Different levels of forces were commanded in the normal direction while

motion was controlled simultaneously in the tangential direction. While the results

showed stable control, force error developed, together with overshoot and unspecified

position errors in the normal direction.

Yoshikawa et al. [15] extended Raibert and Craig's hybrid control approach to a

more general case where the full dynamics of the manipulator were considered, and the

end effector constraint was explicitly described by constraint hypersurfaces. To design a

hybrid controller, nonlinear state feedback was introduced to linearize the manipulator

dynamics. Then servo-controllers were designed for both position and force control based

on the linearized model. A two degree-of-freedom assumption was employed to design

the servo controllers, which took account ofboth command response and robustness for

the modeling errors and disturbances.

The disadvantage of hybrid force/position control algorithms is the neglect of

manipulator impedance, and thus inability to regulate the relation of force to position. In

the position control direction, forces are either neglected or considered as disturbance,

while in the force control direction motion errors are left uncontrolled. On the other hand,

hybrid force/position control requires explicit and accurate descriptions of environmental

dynamics in term of position and force constrains. For some complex tasks, this will

present difficulties in formulation and computation.
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Impedance Control

The impedance of a dynamic system is defined from a linear relationship between

displacement and force given by:

F=ZM (1.1)

(1.2)

where M is an m x 1displacement vector of the system from its equilibrium position, F is

an n x 1 vector of external forces applied to the system, and Z is an n x m impedance

matrix. For the static case, Z is simply the stiffness K, a real-valued nonsingular stiffness

matrix with constant elements. The stiffness matrix primarily characterizes the behavior of

a system in constrained maneuvers. Large entries in the stiffness matrix imply large

interaction forces, while small entries in the matrix allow for a considerable amount of

motion of the system in response to interaction forces.

The dynamic impedance characterizing the behavior of an n-dimensional linear

dynamic system contains inertial, damping, and stiffness elements. It may be defined using

Laplace transform natation as:

Z = M d s2 +Bs+K

where s is the Laplace variable and Md, B, and K are n x n positive matrices representing

inertial, damping, and stiffness elements of the system, respectively.

Impedance control regulates the impedance of a system, instead of controlling the

motion of the manipulator or the interaction force individually, as in hybrid force/position

control. By controlling the manipulator motion and specifying the impedance, a designer

can ensure that the manipulator will be able to maneuver in a constrained space while

maintaining appropriate contact force. Impedance control is considered a combination of

pure position control and pure force control. It approaches pure position control when

stiffness approaches infinity. In contrast, if the stiffness approaches zero, it approaches

pure force control.
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The initial idea of impedance control derives from Salisbury's stiffness control [16],

which used a static form of impedance. The desired relationship of contact force and

manipulator motion was modeled as the stiffness of a spring. Active force control was

applied to make the manipulator behave as the desired spring. By specifying the desired

spring stiffness, designers were able to achieve the desired interaction force. Essentially,

Salisbury's stiffness control is a PD (proportional plus derivative) type control law with

force feedback, which is mapped to modify manipulator position.

Whitney [1 7] developed another approach, called damped force control, as another

form of impedance control. In damped force control, the desired relationship of the

interaction force to manipulator motion was modeled as a dashpot. The difference

between damped control and stiffness control is that the former uses manipulator position

as commanded input, while the later uses manipulator velocity as the commanded input.

Hogan's impedance control [18], [19] generalized the work of Salisbury and

Whitney by forcing the dynamic behavior of any manipulator to approximate a generic

linear second-order system with inertia, damping, and stiffness. The concept of impedance

control is to reshape the dynamics of the manipulator such that the closed loop system

behaves as a mass-dashpot-spring system, whose parameters (inertial, damping, and

stiffness matrix) can be specified by the designer based on the desired behavior of the total

system. Hogan's paper series [18] explained the fundamental theory of impedance control.

Using causality and bond graph theories, he presented a thorough study of the mechanics

of interaction between physical systems. He demonstrated the necessity of controlling the

impedance of manipulators so that the desired dynamic interaction between a manipulator

and its environment could be achieved. Hogan also investigated control both with force

feedback and without force feedback. Finally, a simple control law for impedance control

was developed for a manipulator with a desired Cartesian impedance. In his later work

[19], Hogan conducted experiments with a robot to follow a simple edge to verify the
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validity of impedance control. The results showed that proper design of an impedance

controller can guarantee the stability of manipulators in contact with environments.

A sophisticated design method for impedance control was developed by Kazerooni

et al. [21], in which both target dynamics and stability robustness in the presence of

bounded model uncertainties are considered. Full state feedback and feedforward force

was investigated to achieve the target dynamics and global stability. The control

approach, however, was established based on a linearized model of a manipulator in a

small neighborhood around the equilibrium position, with an assumption of small

perturbations in position; the nonlinear velocity term in the manipulator dynamics was

ignored. A controller for a plane position table was designed by this method, and

experiments were conducted to study the interaction between the table and a stiff wall.

Recently, experiments [27] were carried out on a direct drive robot manipulator to

investigate the impedance control method with both a linear (Kazerooni, 1986) and a

nonlinaer controller (Colgate and Hogan, 1988). The results from both controller were

compared, showing that the behavior of the manipulator with a linear controller was

inferior when the manipulator engaged in constrained maneuvers. However, the

experiments investigated only cases in which the input was a constant, that is, set-point

control. Controlled behavior with a dynamic input is needed for more general cases, such

as deburring and grinding.

Impedance control has attracted much study, both theoretically and experimentally.

It is considered a general control method for manipulators with constrained and

unconstrained motion. However, the design and implementation of impedance control is

not as intuitive as hybrid position/force control. It is also difficult to map the desired

dynamic behavior and performance of the controlled system into the target impedance

relationship. In addition, almost all of the literature dealing with impedance control is

limited to linear environments. Nonlinear environments raise significant complexities in

designing and implementing impedance control. Furthermore, it is difficult to design a
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impedance controller to achieve desired performance and preserve stability with

robustness for bounded uncertainties.

Hybrid Impedance Control

Hybrid impedance control is a combination of hybrid position/force control and

impedance control. It breaks down a task into two subtasks in orthogonal directions,

along which either impedance force control or impedance position control is applied.

Noticing the advantages both hybrid control and impedance control, Anderson and Spong

[24] first proposed the concept of hybrid impedance control. They modeled manipulators,

environments and their interaction as an electrical network and used the Norton and

Thevenin equivalents in the network to establish a duality principle, leading to a rule to

construct target impedances of manipulators and select appropriate control schemes. The

dynamics of an environment were modeled as a linear impedance, and the manipulator

interacting with the environment was be controlled as the dual of the environmental

impedance. According to their proposals, impedance relationships could be classified into

three types of impedance: inertial, resistive, and capacitive, given by
o Inertial impedance

IZv(O)I= c Resistive impedance

00 Capacitive impedance

(1.3)

where 0< c < 00. In Laplace notation, these types of impedances take following forms

respectively [24]:

Mds

Zv(s) = B

Mds+B+K / s

Inertial impedance

Resistive impedance

Capacitive impedance (1.4)

If the environmental and manipulator impedances are modeled or chosen to be one

of the above impedance relations, then the duality principle can be applied. That is, if the
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environmental impedances are capacitive, then there will be force control with

noncapacitive manipulator impedances; if the environmental impedances are inertial, then

position control with noninertial manipulator impedances will be applied; if the

environmental impedances are resistive, either force control with inertial manipulator

impedances or position control with capacitive manipulator impedances is applied.

Hybrid impedance control is more similar to hybrid position/force control than to

impedance control. Force and position can be commanded explicitly once the impedance

of the environment is defined or modeled. The duality principle is useful for designers to

choose the control approach and target impedance for a desired task requirement. We will

investigate hybrid impedance control further in our deburring study in Chapter III.

Stability Analysis

Stability analysis is a difficult issue in designing a controller for manipulators with

constrained motion. This is because guaranteeing stability of manipulators in

unconstrained maneuvers does not guarantee stability of manipulators after they interact

with environments. Few discussions in the literature address stability analysis for hybrid

position/force control primarily because the design strategies are so intuitive. In

Yoshikawa's work [15], stability of manipulators was ensured by considering the robust

design of a two degree-of-freedom control law.

For impedance control, as Kazerooni pointed out [22], the stability must address

two important issues: stability of target dynamics and the global stability of the dynamic

system and its environment. Stability of target dynamics is ensured by the proper choice

of target impedance parameters, Md, B, and K. If these target impedance matrices are

real, symmetric, and positive definite, the target dynamics are stable.

Stable target dynamics are necessary for the global stability of the complete

dynamic system; however, this dose not guarantee stability of the total system after
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contact. It is much more difficult to guarantee global stability of the complete dynamic

system, including nonlinear dynamics of manipulator and environment.

For linear, stable environments, Kazerooni et al. [21] gave a sufficient condition

with informal proof: showing the stability of the complete system can be achieved

provided linear, stable target dynamics are designed with symmetric, positive definite

inertial, damping, and stiffness matrices. However, An and Hollerbach [25] showed that a

forth-order linear system, consisting of a manipulator with a force sensor and

environment, employing impedance control for contact tasks with a very stiff environment

became unstable.

Colgate and Hogan [26] presented a necessary and sufficient condition to

guarantee the stability of a linear model of manipulators coupled at a single interaction

port to a linear, passive environment. Using the Nyquist criterion for a system depicted in

Figure 1.2, they concluded that the controlled system A(s) being positive real is a

necessary and sufficient condition to ensure stability when coupled to any passive,

Hamiltonian environment B(s). A simulation with a proposed linear model for a

manipulator together with actuator and transmission dynamics was usd to verify the

proposed design method and stability condition.

f(s)
A(s)

B(s)
v(s)

A(s) -- controlled system

B(s) -- the environment

Figure 1.2 Interaction of a System and an Environment

However, McCormick and Schwartz [27] used such a controller in a direct drive robot

and discovered experimentally that the manipulator coupled with an environment became
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unstable when the force feedback was high no matter how hard (steel) or soft (rubber) the

environment. This may have been caused by modeling the interaction as directly coupled

linear systems in the derivation of stability conditions.

For the general case, stability mechanisms in impedance control are poorly

understood, such stability is dependent upon manipulator dynamics, the nature of the

contact environment, and target impedance parameters.

Objectives of This Study

Previous work reproted in the literature on robotic deburring and edge grinding

has utilized a separate force control loop to monitor the interaction between manipulators

and environments. Force errors obtained from this control loop were mapped into motion

modifications, which were added to the command input of the robot position control loop.

Speed of response was limited by several issues associated with this strategy, such as

mechanical resonance, communication time delay, and programming compatibility. In

contrast, integrated robotic position/force control offers the advantages of a more efficient

force control computation and coordinated force and motion control. With the advent of

faster computers and high performance servos, it has become more attractive to integrate

force control into overall robot position control.

This research investigates position/force control of the dynamics of simple SCARA

manipulators operating in constrained environments, focusing on the application of

manipulators in deburring and edge grinding processes. We employ modeling and

simulation to investigate different control algorithms and their achievable results for a

sample robot engaged in deburring and edge grinding. Through this study, we propose

theoretical control strategies that could later be tested experimentally. In the following

chapters, we describe a new approach to the control of robotic deburring and edge

grinding to provide more accurate, flexible, and robust control than heretofore possible.
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Next chapter first reviews the mechanics of grinding processes in order to develop

a more practical force model for robotic deburring and grinding. We use empirical and

experimental results from conventional grinding process research, together with some

simplifying assumptions to derive interaction force models for robot control purposes.

In chapter 2, we present dynamic models for grinding and manipulator motion in

the presence of contract and grinding forces.

Chapter 3 presents a new force and motion control algorithm for robotic deburring

and grinding. Impedance control and hybrid impedance control are also investigated in

this chapter.

In Chapter 4, edge following and deburring/grinding processes are simulated for

selected workpiece edge contours so as to test and compare between the control

algorithms discussed in this study. Analysis and discussion of the simulation results are

also presented.

We present conclusions of this study and recommendations for future work in

Chapter 5.
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CHAPTER II

DYNAMIC MODELING OF A MANIPULATOR ENGAGED IN

ROBOTIC GRINDING

Appropriate modeling of dynamic systems is usually essential for designing and

analyzing controllers for these systems. Robotic deburring and grinding incorporates the

dynamic behavior of conventional grinding, with complexities added due to the somewhat

compliant nature of robotic arms. In this chapter, we develop a model for the interaction

forces in robotic deburring and grinding. The control strategy discussed in the remaining

part of this thesis is based on the model obtained here. Manipulator dynamics are also

developed in this chapter.

Grinding Mechanics

Conventional grinding process is a complicated and poorly understood machining

process. Usually, a grinding wheel is considered a complex tool with thousands ofvery

small metal cutting "teeth" sprinkled along the periphery of the wheel [7]. The abrasive

grains are all different, with irregular shapes, and are randomly oriented on the grinding

wheel. Most grains have large negative rake angles causing them to slide rather than cut.

Thus, the interaction process between grains and workpiece consists of cutting, plowing,

and rubbing[28]. The stochastic nature of the grains makes it very difficult to analyze the

grinding process and even more difficult to model the dynamics of grinding. Thus, there is
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no good analytically-developed mathematical model for the conventional grinding process.

An attempt to suitably model the process will, however, provide us with a better overall

understanding and help to interpret the forces produced by this process.

workpiece
holder

workpiece

Vs

grinding wheel

tool holder

1lllllllllllllllllllllilllllllllllllllllllllllilt111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

Figure 2.1 Schematic Diagram of Conventional Grinding [28]

Typical studies ofgrinding processes are based on the analysis of a single grain

interacting with a workpiece using energy principles and geometric approximations [7].

Two orthogonal forces can be considered as generated in the grinding process: Fn normal

to the contact surface, and Ft ( the cutting force ) tangential to the contact surface, as

shown in fig. 2.1. From an energy viewpoint, the average cutting force on an individual

grain is dependent on the energy consumed to remove material per unit volume, and is

given by [7]

(2.1)

where

Ft == average cutting force
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Us = specific energy

Vw = feed rate, or work speed

b = width of the grinding path

d = depth of cut

Vs = peripheral wheel speed

In (2.1), all the parameters except Us are controllable to some extent and may be adjusted

to obtain a desired cutting force. Equation (2.1) offers a theoretical basis for calculation

of grinding force. The specific energy us' however, is an experimentally obtained quantity

and is dependent upon the grinding and workpiece materials and grinding conditions. It

varies considerably with the geometry of chips cut from the workpiece because the energy

mode for grinding varies with chip formation. For small chips, energy requirements may

be principally due to friction, while for larger chips energy may be principally required for

cutting. Attempting to express Us analytically as a function of other parameters is based

on some assumptions and approximations, such as a straight-line cutting path, idealized

grains, evenly distributed grains along a peripheral line, etc.. Most investigators consider

the specific energy to be proportional to the inverse of chip thickness, leading to the

following approximate proportionality [7]:

(2.2)

where

r = ratio of chip width to chip thickness, 10 ~ r ~ 20.

c = number of active grains per square area of grinding wheel

D = the wheel diameter.

Relation (2.2) is at best a guide and does not exactly represent cutting forces due to

grinding. Since analysis leading to (2.2) is based on assuming cutting by a single grain,

quite different from actual grinding, results from using (2.2) may deviate significantly
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from experimental results. Because of this, some investigators insist upon an experimental

approach to study the grinding process [28].

Hahn and Lindsay [29] completed many experiments to investigate the grinding

process and obtained substantial valuable data. They proposed from experimental results

an empirical relationship given by:

where

F = lw
n Aw

Fn == normal grinding force.

(2.3)

r w == rate of material removal, (volume of chips removed per unit time)

Aw == metal removal parameter

It is easily seen that by definition,

(2.4)

where as before, Vw, d, and b are the feed rate, depth of cut and width of cut, respectively.

Using (2.4) in (2.3) gives

F = Vwbd
n A

m

such that normal force is directly related to the feed rate and depth of cut.

(2.5)

The metal removal parameter, Aw, is a function of grinding wheel speed and material,

workpiece material, grinding conditions, and details of the wheel dressing preceding the

grinding operation. Usually, the metal removal parameter is determined through

experiments. In addition, Hahn and Lindsay [29] found that for easy-to-grind materials, A

w remains constant as long as the grinding conditions remain unchanged.

A semi-empirical equation for prediction of Aw was also suggested in [29].

However, Aw predicted by an equation in [29] yielded errors of +/- 20 %. Moreover, this

equation is very complex. In contrast, graphs obtained from experimental results in [29]
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offered a straightforward means for determination of the metal removal parameter, such

that a simple look-up procedure seems more feasible.

While cutting force Ft determines the energy, or power, used in grinding, normal

force Fn is considered an independent variable affecting the grinding process. Under a

specific grinding condition, normal force and cutting force maintain approximately a

constant relationship, called grinding friction, such that

(2.6)

where J.l is the coefficient of grinding friction. Grinding friction J.l depends on the

grinding wheel abrasive, workpiece material, and grinding conditions, and usually is

obtained by experiment. Notice that because the normal force Fn and the cutting force Ft

are related by the coefficient of grinding friction, specific energy u and metal removal

parameter Aware actually related parameters describing the grinding process.

Equations (2.1), (2.5) and (2.6) provide a basis for analyzing the interaction forces

in the grinding process, and will be used for robotic deburring and grinding studied in this

thesis. Notice that tool pieces used in automatic deburring are not limited to grinding

wheels. Milling tools and files are also popular for automatic deburring. However, the

interaction forces in milling processes are similar to those for grinding because the analysis

of grinding is based on the metal cutting of chips, similar to the milling process. Grinding

can be considered milling with thousands ofvery small teeth. Study of cutting by a single

grain in the grinding wheel is analogous to that of a tooth in a milling cutter.

Mechanics OfRobotic Grinding

A schematic diagram of robotic deburring and grinding used herein is shown in

Figure 2.2. A grinding wheel shaped as a flat cylindrical disk is fixed on the end effector
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of the robot, which may easily move the grinding or other finishing tools within the robot

workspace. In the figure, the x-y axes refer to a Cartesian frame or reference frame, in

which the robot moves. The n axis is normal to the workpiece surface positive into the

workpiece, while the t axis is directed tangential to the surface, positive in a right-hand

coordinate system. The t-n coordinate system is designated "task space". In the ideal

case, the tool wheel moves in the positive or negative t direction, while motion in the n

direction is constrained. In this work, we consider only two-dimensional grinding and

assume the diameter of the grinding wheel is much larger than the depth of cut.

workpiece
\

desired contour

burrs

y

// x

y

t

grinding wheel

x

end-effector of robot

Figure 2.2 Schematic Diagram of the Robotic Grinding Process

Robotic deburring or grinding differs from conventional grinding because of the

compliant structure and mobility of the robot. Material feeding is accomplished by

moving the robot relative to the workpiece, rather than feed-in of the workpiece, as in the

conventional grinding. For conventional grinding machines, the stiffness of the structure

molding the cutting tool is very high in all direction, and it is reasonable to assume that
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there is no "incidental" or unwanted relative motion between wheel and workpiece to

cause spurious changes in material removal rate. Unfortunately, it is not feasible for a

robot to have such high stiffness. Deviation from the desired motion due to the compliant

robot structure may cause unwanted changes in feed rate and depth of cut. Robot

dexterity and mobility may cause unwanted motion against the workpiece, resulting in

cutting along a direction different from that desired. Because of this, (2.5) and (2.6) are

not sufficient to model the dynamic interaction between tool and workpiece in robotic

grinding. Since the normal grinding force is directly proportional to volume removal rate,

material feed-in along any direction due to robot motion must be taken into account. This

requires expressing the motion of the robotic end effector in task space ( t, n coordinate

system) and decomposing the end effector velocity into normal and tangential directions at

contact point. The total normal grinding force will be the sum of the individual normal

forces proportional to the volume removal rate in each direction.

Fig. 2.3 illustrates the volume of material removal due to motion in the tangential

(a) and normal (b) directions. In the force development that follows, we follow the work

of [7] and assume that the workpiece is stationary. We also assume that burr heights are

small compared to the diameter of the grinding wheel, such that the total depth of cut is

small, and that the peripheral speed of the grinding wheel is much higher than the traverse

speed. In addition, we assume the grinding wheel is properly dressed and in good

condition, and that grinding conditions remain constant during deburring and grinding,

such that the diameter of the grinding wheel and the material removal parameter remain

constant. Finally, we assume no chattering and that the width of cut b remains constant.

The total volume of chips removed per unit time rmt in the tangential direction is clearly

rmt=vtdb Vt~O (2.7)

such that from (2.3), the normal force due to material feed in the tangential direction is

Fn1 = vtdb / Am Vt ~ 0 (2.8)

where
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contact

Vt = the velocity of the grinding spindle or the end effector tangential to the

surface.

The motion of end effector in the positive n direction into the workpiece, causes

material removal similar to plunge grinding [7]. In general, the feed rate in this direction is

small due to large normal forces generated. Thus the total volume of chips removed per

unit time rmn in the normal direction is approximately

(2.9)

where

Vn = velocity of the end effector, or grinding-wheel, positive into the workpiece.

I = arc length of the tool in contact with workpiece.

8 = the central angle corresponding to arc I

It can be seen from Figure 2.3(b) that

f) = cos-1[1- d / (D / 2)] (2.10)

(a) (b)

Figure 2.3 The Geometry of Grinding [7]
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(2.11)

where D is the diameter of the grinding wheel. Applying a Maclaurin series expansion

for the right side of (10) and eliminating higher order terms yields

()~ 7!/2-(1-d /(D/2))

substituting from (2.11) in (2.9), yields the volume removal rate

r mn =[(7!/2-1)D/2+d]vnb, vn~O (2.12)

(2.14)

Thus from (2.3) the normal force for material removal in normal direction is

Fn2 = [(7Z" /2 -l)D /2 +d]vnb / Am' Vn ~ 0 (2.13)

Eq. (2.13) shows that the normal force caused by plunge grinding is related to the

dimensions of the grinding wheel. If the depth of cut is much smaller than the diameter of

the grinding wheel, such that the term din (2.13) can be neglected, then the normal force

due to plunge grinding is given by

Fn2 =O.285Dvnb / Am ,

Combining the non-negative force components form (2.8) and (2.14) gives for the total

normal grinding force

Fn=~l +~2 =[vt + (O.285D / d + l)vn]db / Am

Then from (2.6) the tangential grinding force becomes

(2.15)

(2.16)

As seen in (2.15) and (2.16), the grinding forces acting on the robot end effector are

directly related to the motion in two orthogonal directions, such that coupling will occur

when the manipulator dynamics are developed. Furthermore, the dynamic behavior of

grinding is highly nonlinear, since products of displacement (d) and velocities (vt, vn) occur

in (2.15) and (2.16). Obviously, such forces are generated only when the grinding wheel

is in contact with and cutting the workpiece, such that if the depth of cut d is less than or

equal to zero, the wheel has either lost contact or barely contacts the workpiece,

generating no forces. Similarly, if grinding wheel motion in the tangential direction is in

the negative direction, no grinding forces will be generated. Hence, considering the entire
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axes in the nand t directions, grinding, or interaction, forces are inherently nonlinear. To

express this nonlinearity explicitly, (2.15) and (2.16) may be rewritten as

(2.17)

where

(5n = (O.285D / d + l)b / Am

{
o ifa ~ 0

u(a) -
1 ifa> 0

Eq. (2.17) describes the interaction forces generated between the robot end effector and

the workpiece for robotic deburring and grinding. For stable operation with the end

effector tracking a desired trajectory, motion in the normal direction is very small

compared to that in the tangential direction. Accordingly, the force generated due to

cutting along the tangential direction dominates the total grinding force. Even under such

operation, however, nonlinear and coupled dynamic behavior characterizes the grinding

forces.

In the analysis that follows, we assume that the variables are Vt and Vn, and d, with

other parameters characterizing the grinding process remaining constant. We use dot
. .

notation in what follows to denote time differentiation. Let quantities xtd and xnd

represent desired velocities of the end effector in the tangential and normal directions,
. .

respectively, and let quantities xt and X n represent the actual velocities Vt and Vn,

. .
respectively. Also, let i\vtand i\vn, represent small perturbations of x t and X n about

. .
xtd and xnd ,respectively. Further, in the normal direction let xnd represent a desired

position of the robot end effector describing the desired contour of the workpiece surface;

Xn represent the actual position; and xe represent the actual position of the workpiece edge.
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Similarly, let do represent a desired depth of cut, and Ad represent a small perturbation of

actual depth of cut d from do. Then we may write

(2.18)

We assume for linearization purposes that the magnitudes of perturbations are no larger

than 1°percent of corresponding desired values. Substituting from (2.18) into (2.17),

neglecting the small product terms among AVt, AVn and Ad, and assuming nonzero positive

values for Vt, Vn and d, we can express the normal grinding force approximately as:

.. ..
~ =~o +kd(xn -xnd)+kvn(xn-Xnd)+kvt(xt-Xtd). .

Xt > 0, X n > 0, Xn > Xe

where

. .
k d =at Xtd+ an Xnd

Using (2.6), we may represent the tangential grinding force as

.. ..
F; = p[Fno + k d (xn - x nd ) + kvn(xn- Xnd) + k vt (Xt - Xtd)]. .

Xt > 0, X n > 0, Xn > Xe

Now represent (2.19) and (2.20) in matrix form as

. .
F-Fa =Be(X-Xd)+Ke(X-Xd). .

Xt > 0, X n > 0, Xn > Xe
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where

F=[~]

K =[ k
d

e J1kd

x =[::]
,

~]
,

and where xtd and xt are a desired position and actual position of the end effector in the

tangential direction, respectively.

At this point, we have linearized the interaction process of robotic grinding for

positive values of depth of cut and tangential and normal end-effector velocities, and

expressed this process such that dynamic impedances can be obtained. Notice that the

"stiffness" matrix Keand the "damping" matrix Be are positive definite. For the damping

matrix, the coupling term kvt describes the normal force due to the cutting in the tangential

direction, while the coupling term J.lkvn describes the tangential cutting force due to cutting

in the normal direction. The set-point force Fa is dependent on the geometry of the

workpiece, desired trajectory, and grinding conditions. It is specified as the force required

for cutting the desired trajectory Xd under ideal machining conditions and a smooth

workpiece. Eq. (2.21) describes the relationship between the interaction forces and

manipulator motion. If the contact force F provided by the tool and end effector is equal

to the set-point force Fa, the grinding wheel is able to cut the desired trajectory.

Otherwise, cutting force deviations from the set-point force will cause deviation of the end

effector from the desired trajectory.

In robotic deburring and grinding, a force sensor is usually available for feedback

control. In this study, for simplicity, we assume that a force sensor with ideal behavior

and rigid structure is mounted on the end effector. Moreover, we assume that the robot

manipulator is rigid, with no joint or motor compliance, backlash, or other nonlinearities.
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Accordingly, the environmental impedance alone comprises the impedance of our robotic

deburring and grinding process. Assuming such rigidity and robot joint/motor conditions

is restrictive, and in work recommended to follow this study, such assumptions should be

relaxed.

The impedance of the environment allows us to properly choose a controlled target

impedance of the manipulator, together with control schemes along the two orthogonal

directions in task space. Now from (2.21), we use the Laplace transforms, with Laplace

operator s, to obtain the impedance matrix Z(s) as

(2.22)

where

Znt = kvts

Ztt = J1kvt S

we note that the diagonal terms in (2.22) are the impedance terms relating motion in one

of the two orthogonal directions to forces in the respective directions. Moreover, we

observe that in the normal direction, znn has both capacitive and resistive properties, while

in the tangential direction Ztt has only resistive properties.

Having now derived expressions for grinding force-motion impedance, we will

employ them in our control studies in Chapter III.
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Dynamics ofManipulators

For generality consider a manipulator composed of a set ofn rigid bodies

connected in a serial chain with friction acting at the joints. Using the Euler-Lagrange

method, the dynamic system can be expressed as [6]:
..

M(q)q+C(q,q)q+ ~(q)+G(q) =r- JT F (2.23)
.

where q is an n x 1 joint variable vector, q is the time derivative of q, M(q) is an n x n

inertia matrix, C(q, q) represents an n x n matrix that describes the centrifugal and Coriolis

terms in the dynamics of the manipulator, G(q) is an n x 1 vector containing terms arising

from forces due to gravity, Fs(q) is the n x 1 vector that specifies the effects of Coulomb

friction force of the joints, t is an n x 1 vector that defines input torques from the actuator

of the manipulator, F is the n x 1 vector that defines the task space force or torque acting

on the end effector of the manipulator, and J(q) is the n x n manipulator task space

Jacobian matrix. This Jacobian matrix is defined by [6]

J(q) = iL(q)
tXj (2.24)

where L(q) is a continuous function of the joint space vector found from manipulator

kinematics and geometric relationships. It relates the nx 1 task space vector X to

generalized joint coordinates q by

X = L(q) (2.25)

Eq. (2.23) establishes the dynamic model of a manipulator for joint-based control, where

the desired trajectory is available in terms of time histories ofjoint position, velocity, and

acceleration, such as in free-motion control of manipulators. On the other hand, for

constrained motions, when the end effector trajectories and interaction forces are

described in a task space, such as in deburring and edge-following tasks, it is convenient to
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use a description of the manipulator dynamics in task space. To obtain the manipulator

dynamics in such a space, we first differentiate (2.25) twice with respect to time to obtain

x =J(q)q
.. ....
X = J(q)q+J(q)q

..
Solving for q yields

q=J-1(q)(X- j(q)q)

Now use (2.26) and (2.27) in (2.23) to obtain
..

Mt(q) X +Ct(q,q) X +F:t(q) +Gt(q) = Fact - F

(2.26)

(2.27)

(2.28)

where Fact represents the n x 1 force vector arising from robot actuator torques reflected

at the end effector; Mt(q) and Ct(q, q) are n x n matrices corresponding to the inertial

matrix and velocity matrix terms in joint space; and Gt(q) and Fst(q) are n x 1 vectors

reflecting the gravity term and friction force terms in joint space. These terms are given

by

M t = J-T (q)M(q)J-1(q)

Ct =J-T (q)[C(q,q)J-1- M(q)J-1j(q)J-1(q)]

F:t =J-T (q)F:(q)

Gt = J-T (q)G(q)

(2.29)

Notice that in (2.28), the dynamic state variables are described in task space. Because the

coefficient matrices in (2.28) are dependent on the manipulator joint configurations, it is

more convenient to express these matrices as functions of the joint variables q in Eq.

(2.28).

In practical implementations, the task requirement is described in task space, while

the control input, usually the robot motor torques t, are described in joint space.

Moreover, encoders and tachometers are usually placed on motor shafts, such that
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(2.30)

displacement and velocity measurements are completed in joint space. To analytically

obtain motion of the end effector, "forward kinematics" is employed and computed. In

such situations, the following expression for the manipulator dynamic system is more

useful and convenient. It is obtained by directly substituting from (2.27) into (2.23).

M(q)J-1(q)(i- j(q)q) +C(q,q)q+ F,.(q) +G(q) =r- JTF

We will use this form of the manipulator dynamics in the design of control laws for

deburring and grinding in Chapter III.

SCARARobot

One of the most popular commercial robots adaptable to the task of robotic

deburring and grinding is a SCARA robot, illustrated in Figure 1. 1. This robot has four

degrees of freedom, consisting of rotation about two parallel vertical joints and translation

and rotation about the tool axis. For the study herein, we are concerned with end-effector

motion and force acting only in a horizontal plane. Accordingly, we employ a model with

only two degrees offreedom, namely rotations of the two main arms of the SCARA robot

about their vertical axes, as shown in Figure 2.4. Because gravity has no effect in the

horizontal plane, the gravity term in (2.23) vanishes, and the dynamic equation in joint

space for this simple model reduces to a second-order nonlinear differential equation given

by [6]

..
M(q)q+C(q,q)q+F,.(q) = r-JTF

where q, ,; and Fare 2 x 1 vectors as defined previously, and

(2.31 )
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arm 1

fixed axis of
rotation, motor 1
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rotation, motor2

Figure 2.4 Schematic Diagram of Two-Arm SCARA Robot

with

Cll = -2pz sin(qz)qz

c1Z = -pz sin(qz)qz

CZ1 = pz sin(qz) ql

where PI' P2' and P3 are constant terms dependent on the manipulator's geometric

dimensions and masses of components. For this study, we use the Berkeley SCARA robot

[31] as a benchmark for our simulations because the parameters of the robot are available

and because this robot is of an appropriate size for grinding and deburring. From [3 1] we

have
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P3 = 13 +14+Ip+(/~Cm4 +/~mp)

p} = I} +12+ I3c +/}2Cm2 +1}2(m3 +m4+mp) +P3

where I] and 13 are rotor inertias of motor 1 and motor 2, 12 and 14 are inertias of link1 and

link 2 about their own gravity center, I 3c is the stator inertia of motor 2, I p is the payload

inertia; m] and m3 are the masses of motor 1 and motor 2, m2 and m4 are the masses of

link 1 and link 2; I] and 12 are the lengths of link1 and link 2, and I]c and 12c are the radii of

gyration for link1 and link2. The Coulomb friction matrix is described by:

~ = [Is}]
Is2 .

thi X sign(q)

lSi = thi X sign(q)

Iql>o

Iql = 0 and Iql > thi

Iql = 0 and Iql ~ thi

where thi , i = 1, 2 is the magnitude of the friction force.

Similarly, from (2-28) the task space dynamics of this robot model is given by the

second-order nonlinear differential equation
..

Mt(q)X+Ct(q,q) X + ~t(q) = ~ct - F (2.32)

with coefficient matrices defined by (2.29) and the appropriate matrices and vectors

defined as for (2.31). To implement dynamic analysis and control based on (2.32), we

define an x-y horizontal reference system plane and a task space t-n by two orthogonal

axes normal and tangential to the surface at an idealized point of contact of the grinding

tool, as shown in Figure 2.5. This is convenient because forces can easily be described

and measured in the t-n directions. Figure 2.5 illustrates joint space (ql' q2), reference

(fixed) space (x, y), and task space (t, n) defined for a manipulator end-effector point
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moving along an arbitrary curved edge. Accordingly, we define the task space coordinates

and reference Cartesian space coordinate by

and y=[;]
where n is positive into the workpiece and normal to the contour of the edge at the end

effector point of contact and t is orthogonal to n, positive in a right-hand coordinate

system.

Notice that the task space coordinate system changes as the tool contact point moves

along an arbitrary curved edge in the reference system. Consequently, we seek mapping

relationships between robot joint space and task space in the following section.

fixed workpiece

curved edge
y

F
n

- arm 1

x

t

Figure 2.5 Schematic Diagram of Three Spaces for an Arbitrary Curved Edge

37



Jacobian Matrix

It is difficult to directly express the task space coordinates as simple functions of

joint space coordinates. Accordingly, we develop a two stage transformation, or mapping,

first from joint space to reference space, and second from reference space to task space.

The mapping from joint space to reference Cartesian space is straightforward and is given

by

(2.33)

where II == length of link 1; 12 == length of link 2

c1 == COS(q1)' C12 == COS(q1+q2)' Sl== sin(Q1)' and S12 == sin(Q1+Q2)·

Lc=[/ICI 12C12 ] Q=[QI]
IIsI 12sI2 Q2

From (2.24) and (2.33), the reference space Jacobian matrix Jc(q) is given by

(2.34)

To derive the task space Jacobian matrix to transform from reference space to task

space, we need the geometric description of the curve to be followed in reference space.

To illustrate this transformation and for use later in this study, suppose the curve to be

followed is an ellipse, described by

(x- g)2 / a2+(y_h)2 / b2 = 1 (2.35)

where a, and b are the semi-major and semi-minor elliptical axes lengths and g and hare

offsets of the center of the ellipse from the origin of reference frame. We assume in (2.35)

that either the x-y system or the workpiece has been rotated such that the ellipse axes have

been aligned with the x-y axes. At the end-effector contact point, the task space

coordinates can be expressed in terms of the reference space coordinates by
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x =Lct(Y)

From Figure 2.5 and analytical geometry, it can be seen that

_[no.i no.j][x]Lct(Y) - 0 0

to·1 to' J Y (2.36)

where i, j, no, and to are defined as unit vectors in the positive x, y, n, and t direction,

respectively. Thus

i = [~] j = [~]

(2.37)

To determine the unit vectors no and to for out elliptical curve, we rewrite (2.35) as

j(x,y) = (x- g)2 / a2+(y_h)2 / b2-1 = 0

The gradient of an arbitrary curve in x, y space g(x, y) = 0 is

Vg(x,y) = Zi + : j
(2.38)

which is a vector normal to the curve at a point (x, y), pointing to the direction of fastest

increase ofg. Consequently, the unit normal vectors no, to for our ellipse in (2.37) are

given by

_ Vf(x,y) _ 1 [0 a
2(y-h) oJno - - - 1 + J

IIVj(x,y)11 L1 b
2 (x - g)

or

(2.39)

where

11.11 represents the magnitude of a vector, and

(2.40)

Since the unit tangential vector to is perpendicular to the unit normal vector, such that

no.to= 0, we may derive to as
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Now using the expressions for i, j, no, and to in (2.36), yields

(2.41)

By analogy to (2.24), the Jacobian matrix between task space and reference space

Jet = CLet = [~etll ~et12]
bY }ct21 } ct22

where

Then from (2.26) we may write

[
e]e n e

X = i = Jet Y

and
e e

Y=Jcq

(2.42)

(2.43)

(2.44)

Now combining results form (2.43) and (2.44), we may complete the transformation from

velocities in joint space to velocities in task space as

[
e]e nee

X = i =JetJeq =J q

where
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Accordingly, for our two degree-of-freedom SCARA robot with end-effector following an

elliptical edge curve, we obtain the dynamic system equations (2.31) and (2.32) in the joint

space and task space, respectively, by using the following relationships from linear

algebra:

, and.. .
J = Jet Je+ Jet Je (2.45)

We have modeled the interaction forces for deburring and grinding and developed

a dynamic model in task space for a two-link robot arm. In the next chapter we will

employ these models to study control design for robotic deburring and grinding.
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CHAPTERllI

CONTROL DESIGN AND ANALYSIS

In this chapter, we design a controller to achieve good performance in robotic

deburring and grinding based on the model developed in Chapter II. Desired performance

and associated manipulator behavior will be discussed to understand the control objectives

before we introduce a control strategy. Simple impedance and hybrid impedance control

will also be investigated. A new controller with simultaneous control of position and force

is proposed for robotic deburring and grinding.

Manipulator Performance

Consider the action of deburring and grinding the edge of a metal part, where a

desired smooth edge contour lies beneath a rough edge. The task is to smooth by grinding

or other metal cutting means the rough edge to the desired contour at a sufficiently fast

rate. It is also desired to control the interacting contact forces for material removal during

cutting action.

At the beginning of deburring and grinding, the manipulator carrying a grinding

wheel or a finishing tool approaches the workpiece from free space, making contact with

the workpiece at the end of this free space motion. Once the tool reaches the workpiece,

the cutting process begins, with material removal proceeding continuously along the edges

or surfaces of the workpiece. Accordingly, we seek a control structure or law such that
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the manipulator maneuvers both in free-motion space and constrained space without any

external hardware or software switch to change the control mode. Indeed, free motion

may be considered a special case of constrained motion, where contact forces are zero and

only reference motion is commanded. In constrained motion task space, control ofboth

motion and force simultaneously is necessary. Position control in task space ensures

accurate tracking of the desired trajectory, while force control is necessary for stable and

continuous material removal without tool or workpiece damage. It is useful for our

design to divide the analysis into two portions, namely motions and forces normal to and

tangential to the workpiece edge contour at the contact point.

While deburring and finishing, the end effector is subject to cutting forces both in

the normal and tangential directions. Such forces may vary widely due to unknown edge

roughnesses of the workpiece. The normal force acts to push the tool and end effector

away from the cutting point, such that large normal forces will cause the end effector to

deviate from the desired trajectory. The control strategy must adjust the dynamics of the

manipulator so that the end effector tracks the commanded trajectory as accurately as

possible in the presence of the cutting forces. Such behavior requires the manipulator to

have high stiffness, or high impedance, in the normal direction. The larger the impedance,

the better the tracking performance.

In the tangential direction, cutting forces generated in deburring and grinding act

to balance the energy input of the grinding wheel or cutting tool, which rotates about the

tool axis at high speed. These forces also act on the end effector, tending to oppose the

feed-in of the tool in the tangential direction. For a grinding wheel with hard bonding,

large cutting forces cause either stall of the grinding wheel or damage to the edge or

surface of the workpiece. Since the tangential cutting force is related to the normal force

by grinding friction, large cutting forces also imply a potential drift of the tool away from

the desired trajectory. Moreover, large cutting forces applied to the manipulator may

excite tool chatter or oscillation of the manipulator. Consequently, it is desirable for the
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manipulator to have high compliance, or low impedance, in the tangential direction. As

mentioned in Chapter I, infinite impedance implies pure position control, while zero

impedance implies pure force control. Unfortunately, the robot structure limits the ability

to obtain good control ofboth position and force in the same direction at the same time,

such that an acceptable tradeoff is needed between position and force control.

In a simple deburing operation, we may need only a bounded cutting force to

guarantee stable interaction, and position accuracy may not be critically important.

However, in precision deburring and grinding, position control in the normal direction may

be more important than precise force control, as long as a stable interaction is maintained.

Thus, in the normal direction, position control would have priority, while the force is

controlled simply to achieve stable interaction. In the tangential direction, ample cutting

force is critical to material removal. Maintaining a constant cutting force is usually

important to achieve good finishing quality. Thus, the tangential tool velocity should be

adjusted to maintain a nearly constant cutting force, provided the position trajectory is

tracked well. Therefore, force control may be more critical than position control in the

tangential direction.

In the types of deburring and edge finishing considering in this study, we assume

that burrs are irregular, unpredictable, and unmeasureable, such that variations of the

cutting force will occur. This can be seen from (2.5) and (2.6) in Chapter II, where the

depth of cut d effectively varies with changes in surface roughness or burr height.

Controlling force at a constant level under irregular and unpredictable material volume

removal rate is difficult. It may be more feasible to suppress the variation of the cutting

force into an allowable range. The allowable variation of the cutting force is dependent on

the robot structure and dynamics. In conventional grinding or milling processes, rough

edges or surfaces also cause variation of cutting forces. However, because the tool

holders and machine spindle are designed with high stiffnesses, such variations of forces

are accommodated with little path deviation as long as these forces remain below specified
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limits. With a more compliant structure, robotic deburring and grinding typically yields

more path deviation with cutting force variation. Maintaining forces above a specified

minimum force ensures continuous cutting and no loss of contact with the workpiece.

Maintaining force below a specified maximum force avoids degradation of finish quality

and undesired phenomena such as chattering and oscillation. Our goal for force control of

the manipulator will be to control the variation of cutting forces within an allowable range,

rather than maintain a constant force.

The traverse or tangential velocity of the grinding wheel spindle along the edges of

the workpiece is limited by the dynamics of the robot and the geometry of the workpiece

and its surface roughness. Because the workpiece is fixed during grinding, the frequency

content of the rough edge, as seen from the end effector, are dependent on the traverse

speed of the end effector, as well as the surface roughness of the workpiece. Increasing

the traverse speed increase this frequency. Excessive frequency content in the cutting

forces may either separate the end effector from the workpiece, or require excessive

normal force to maintain contact. Therefore, tangential speeds for the end effector

typically must be maintained below some maximum. On the other hand, lower traverse

speeds in conjunction with certain burr frequencies may approach the natural frequency of

the system, causing resonance and damage. Hence, certain low and intermediate speeds

must be avoided. Since the surface roughness is unknown in general, such speeds would

need to be located by trial and error.

From these considerations, we suggest an alternative control strategy by which the

interaction or normal force is controlled within an allowable range, the tangential velocity

of the end effector is controlled for adequate cutting, and position control in both

directions is used to track a specified trajectory.
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(3.1)

Control Architecture

As shown previously, the equations of motion for our two degree offreedom

SCARA robot are nonlinear and coupled. Direct analysis of such coupled nonlinear

control systems is not possible. Generally, linearization of manipulator dynamics is used

to overcome this problem. Thus, before considering the design of position and force

controllers, we first linearize the manipulator dynamics to obtain a suitable control

structure.

There exist in the literature some effective linearization methods for the control of

manipulators. For example, local linearization in a small neighborhood of an operating

point [21] is often used so that linear control methodologies may be applied.

Alternatively, in robot control, it is more common to use a control algorithm called

computed-torque control [6], which is a special application of feedback linearization, to

deal with the manipulator dynamic nonlinearities. This approach is considered to be the

most well-suited for robot dynamics and can be used to achieve good control

performance, provided the dynamics of the system are known accurately. In this thesis,

we employ this method to establish our control structure.

For convenience, we repeat below the general manipulator dynamic equation given

by (2.30) in Chapter II, namely

M(q)J-1(q)(X- j(q)q) +C(q,q)q+ F:(q)+G(q) = 'r- JTF

Following [30], consider a basic feedback control law structure for robot actuator torque

given by

r=av+N
(3.2)

where v is the "servo" portion of the control law and is designed based on an error signal

to be defined below; a is a term which will be later defined to decouple the feedback-
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controlled manipulator; and N is a term defined below to cancel the nonlinear terms in the

complete dynamic system. The control law in (3.2) establishes an inner control loop,

shown in Figure 3.1, and is designated the model-based portion of our controller. From

inspection of (3.1), we use the strategy described by Craig [30] by selecting

a = M(q)J-1(q) (3.3)

N = -M(q)J-1(q) j(q)q+ C(q,q)q+ F:(q) +G(q) + JTF

Then the model-based portion of our control law in (3.2) becomes

T = M(q)J-1(q)v- M(q)J-1(q)j(q)q+ C(q,q)q+ F:(q)+G(q) +JTF (3.4)

Equation (3.4) is the control law of the manipulator with perfect nonlinear compensation,

dynamic decoupling, and contact force compensation. It requires accurate knowledge of

the dynamics of manipulators and perfect sensors for the measurement of forces, positions

and velocities. Moreover, it requires fast, real-time computation by the control processor

of all the terms on the right side of (3.4), which necessitates a fast and powerful computer

with efficient software. In practical implementation, modeling and measurement errors

always exist. This may cause corresponding errors in (3.4), such that the nonlinear terms

will not be completely canceled. These errors will degrade dynamic behavior of the

controlled system in rather complicated ways [30], and analysis of such errors was judged

to be beyond the scope of this thesis. To overcome this problem, advanced techniques

and control strategies such as on-line estimation and adaptive control might be employed

[32], [33]. On the other hand, advanced control approaches require solution of

significantly more complicated mathematical expressions, leading to significant increases in

computation time. In general, faster and more powerful control processors would be

required, increasing implementation difficulties. As a trade-off: in this study, we assume

the dynamics are known exactly and the sensors are ideal. It is a topic for future research

study to investigate advanced and efficient control approaches for robotic deburring and

grinding.
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Substitution of the right side of(3.4) in (3.1) yields
..
X==v (3.5)

According to our assumption in (3.2), (3.5) shows that the acceleration of the manipulator

end effector is equal to the error driven portion of the control law. It means that if we

properly design the servo controller v so that (3.5) holds during the time intervals of

interest, the desired motion of the manipulator will be achieved from torque acting

according to (3.4).

With the total control law consisting of (3.4), and (3.5), we discuss in the

following sections the design of an error-driven controller v, using impedance control and

other control theories.

------------, 1-----------------------------------

comm
---'---------ill

inputs

..
x

Inner loop

Environment
F

I
I I
I I

___________~ 1 _

Figure 3. 1 Diagram of Control Structure
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(3.6)

Impedance Control

The deburring process requires a controller for the end-effector to track the

desired trajectory while accommodating the force produced by the cutting process and

maintaining it within limits. On the other hand, impedance control [18] regulates the

relation of position to force. By controlling manipulator motion and in addition specifying

an impedance relationship between force and deviation from that motion, we may able to

control both motion and force, effecting a tradeoff between position and force control.

Changing the impedance can modulate and control the interaction. Thus, conceptually,

impedance control would be suitable for control of the deburring process. With

impedance control it is unnecessary to specify a command force.

An impedance control strategy suggested by Hogan [18] is to derive a control law

directly from the target impedance and dynamic model of the manipulator. Assume the

target impedance Z(s) of the manipulator is

Z = M ds2 +Bs+K

where s is the Laplace variable, Z(s) is a 2xl impedance matrix, M d, B, and K are constant

2x2 desired inertia, damping, and stiffness matrix, respectively, specified by designers

according to the desired dynamic behaviors of the controlled system. In the time domain,

the corresponding force-motion relationship is [18]

where

.. ..
M d X+B(X-Xd)+K(X -Xd) =-F (3.7)

x = position vector in task space

Xd = desired position vector in task space

F = external force acting on the end effector.

The minus sign on the right side of (3.7) occurs because the external force from a passive
..

environment opposes the motion of the end-effector. Solving for X gives
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.. 1 ••
X=- M

d
[F+B(X-Xd)+K(X-Xd)] (3.8)

Recall the manipulator dynamics equation (2.28) in task space, repeated here as
..

Mt(q)X+Ct(q,q)X+~t(q)+Gt(q) = ~ct - F
(3.9)

(3.10)

Substituting from (3.8) into (3.9) and solving for Fact yields control law torque as

T = JT~ct =JT[GJF +G2 J1. X+ Gl~.x+ NJ]

.
where we have defined errors ~ X and M by

. . .
~X=Xd-X

M=Xd-X

and gains G j , G2, and G3 by

G1 = I - Mt(q)M~l, with I == unit matrix

G2 = Mt(q)M~lB

G3 = Mt(q)M~lK

and have defined the new term Nj by

N1 = Ct(q,q)X+~t(q)+Gt(q)

The control law in (3.10) is nonlinear [27] owing to the dependence of the gains

and other quantities on joint position and velocity. Essentially, this control law resembles

a proportional plus derivative (PD) position control, plus nonlinear force feedback control

with quantity Nj . As seen from (3.10), the gains in the impedance control law are directly

related to the desired mass and the system mass.

Typically, if the manipulator is in contact with an environment whose dynamics

together with that of a force sensor are modeled as a spring, then the force generated by

interaction with the environment is given by

F= Ke(X -Xd) (3.11 )

where K e is a positive matrix representing the stiffness of the environment. Using (3.11) in

(3.10), gives for the control law
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(3.12)

Solving for Fact and substituting in (3.9) gives for the total system with this impedance

control law
.. ..

M d X+B(X- Xd)+(K +Ke)(X -Xd) =0 (3.13)

The closed-loop system (3.13) is linear with constant parameter matrices and holds for an

ideal model with complete knowledge of manipulator and environmental (including

sensors) dynamics. If all the parameter matrices in the (3. 13) are real and positive­

definite, the total system will be stable [21]. Note that in the position gain (K+Ke), the

environmental stiffness K e will typically be much larger than the manipulator desired

stiffness K for deburring and grinding, such that the position gain will be dominated by the

environmental stiffness. In such cases, if the desired manipulator damping matrix B is

selected considering only the desired manipulator stiffness K, the closed-loop system will

be underdamped and oscillatory, and will perform poorly [25]. The block diagram for

impedance control using (3.9), (3.10) and (3.11) is illustrated in Figure 3.2.

In impedance control with a target impedance described by (3.6), contact forces

are determined by position and velocity deviation from desired trajectories through (3.7).

Equation (3.7) implies that if the end-effector remains close to the desired trajectory and

velocity, then interaction forces are small. Otherwise, large interaction forces occur to

prevent the end-effector from moving away from the desired trajectory. In contrast, for

manipulators engaged in deburring and grinding, large depths of cut will result in large

interaction forces to force the end-effector close to the desired trajectory. To reach a

specified desired contour, forces determined by the cutting process, rather than mere

contact forces, are required. If (3.7) is directly applied to deburring and grinding, large

interaction forces will cause the end-effector to drift from the desired contour. Observing

the motion-force relation (2.21) developed in Chapter II, we modified the target

impedance relationship (3.7) for deburring and grinding to
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.. ..
M d X+B(X- Xd)+K(X - X d) = -(F -Fd) (3.14)

where desired force Fd is a nominal grinding force vector required to remove materials and

reach the desired contour. Eq. (3.14) indicates desired forces should be commanded,

along with desired position and velocity, in using the target impedance for deburring and

grinding tasks. We will evaluate these two versions of impedance control approach in

Chapter IV.

F
Gl(q

Forward
Kinematics

Ke

Xd

Figure 3.2 Block Diagram of Impedance Control with Spring-Like Environment

Hybrid Impedance Control

Hybrid impedance control employs characteristics ofboth hybrid position/force

control and impedance control. In implementing this strategy, we consider the normal and

tangential directions at the contact point, along which either impedance position or

impedance force control is employed.

The key to hybrid impedance control is modeling the impedance of the

environment, because the environmental impedance determines the control strategies to be

employed. Once the environmental impedance is modeled, it is used to design the target

52



impedance of the manipulator to ensure stability and achieve the desired closed loop

behavior of the manipulator. The manipulator impedance and achievable control strategy

are governed by the duality principle proposed by Anderson and Spong [24]. The duality

principle of impedances between manipulator and environment states that if the

environmental impedances are capacitive, then there should be force control with

noncapacitive manipulator impedances; if the environmental impedances are inertial, then

position control with noninertial manipulator impedance should be applied; if the

environmental impedance is resistive, either force control with inertial manipulator

impedances or position control with capacitive manipulator impedances should be applied.

In Chapter II we derived the environmental impedance for deburring and edge

finishing processes. Our analysis showed in (2.21) that for both the tangential and normal

directions, coupling impedances, or non-zero off-diagonal terms existed in this matrix. In

the development that follows, we will ignore these coupling terms, assuming the diagonal

terms will dominate the nature of the relationship of motion and force in a given direction.

This approximation provides the basis for hybrid impedance control applied in this study.

This is consistent with all other investigations found in the literature, none of which

considered coupling impedances. In fact, an approach for handling coupling impedance

apparently does not exist. Following our approximation, we consider the environmental

impedance in the normal direction to be capacitive, while the environmental impedance in

the tangential direction is resistive. The capacitive environmental impedance implies a

spring-like environment, and by the duality principle [24] requires a noncapacitive

impedance for the manipulator and force control in the normal direction. Other choices of

the manipulator impedance and control strategy will result in non-zero steady-state error.

On the other hand, since the tangential environmental impedance is resistive, the

manipulator impedance in the tangential direction should be either inertial or capacitive,

and correspondingly, the control strategy in this direction will be force control or position

control, respectively. Apparently, because of the nature of the deburring and finishing

53



task, capacitive impedance and position control is preferred in the tangential direction [9].

According to our definitions of impedance in (1.4) in Chapter I, a capacitive impedance

consists of a spring-like term with or without a damping or an inertia term, such that Z(O)

= oc; a resistive impedance consists of a damping term with or without an inertia term,

such that Z(O) = non-zero constant [24]. Accordingly, our target manipulator impedances

are given by

normal direction:

tangential direction: Zt = matS +bat + kat / S

(non-capacitive)

(capacitive) (3.15)

The corresponding target relationships of motion and force are

normal direction:
.. .

man n+ban n = -(~ - Fan)....
tangential direction: mdt(t- 1d) +bdt(/- 1d) + kdt (I - Id) = -F; (3.16)

where nand t represent displacements in the normal and tangential directions, respectively;

m, b, and k are positive scalars representing desired mass, damping, and stiffness

respectively; subscripts nand t denote normal and tangential directions, respectively, and

subscript d indicates desired parameters. Now represent (3.16) in matrix form by

with

where

.... ..
M a(X-S Xa)+Ba(X-S Xa)+KaS(X - Xa) = -(F -S'Fa)

(3.17)

F and Fd are 2x 1 external force vector and desired force vectors, respectively.
. ..

X , X and X are actual position, velocity, and acceleration 2x 1 vectors,

respectively.. ..
X a , X a and X a are reference position, velocity, and acceleration 2x 1 vectors,

respectively.
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Md, Bd and Kd are positive diagonal2x2 matrices representing target impedance

parameters.

Sand S' are selection matrices defined as diagonal with either ones or zeros on the

diagonal. Ones for diagonal entries ofS mean position control is in effect,

while zeros indicate force control. I is the 2x2 unit square matrix.

We desire to reshape the dynamics of the controlled manipulator so that its

behavior satisfies (3.17). Since the position and velocity of the end effector and the

interacting force are measurable, we rewrite (3.17) as.... ..
X = S Xd- M~l[Bd(X-S Xd)+KdS(X - Xd)+(F -S'Fd)]

(3.18)

The right side of (3 .18) includes the state variables, interacting force, commanded force

and trajectory in task space, and target impedance parameters, which are specified by a

designer according to the desired dynamic performance of the manipulator coupling with

the environment. Eq. (3.18) gives the manipulator acceleration required for obtaining this

target impedance. Comparing (3.18) with the error driven control in (3.5) in the control

structure, gives - ..
v = S Xd-M~l[Bd (X-S Xd)+KdS(X - Xd)+(F -S'Fd)]

(3.19)

Eq. (3.19) describes the outer-loop control in Figure 3.1, where the "error" between

commanded inputs and outputs is given by the right side of (3 .19). Eq. (3.4) and (3.19)

establish the control laws for hybrid impedance control of the manipulator with

constrained motion. A block diagram for this hybrid impedance control approach is given

in Figure 3.3.

The parameters for noncapacitive manipulator impedance and force control in the

normal direction will typically yield overall small impedance values, while the parameter

for capacitive manipulator impedance and position control in the tangential direction will

typically yield high impedance values. Such choices for manipulator impedances may be

suitable for cases such as edge-following or peg-in-the-hole problems, where non-zero
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contact force is assumed in the normal direction and zero force assumed in the tangential

direction. However, as we discussed previously, the task of robotic deburring or finishing

requires large and small, but non-zero, impedances in the normal and tangential directions,

respectively, so that the end effector may track close to the desired trajectory in the

normal direction while accommodating the cutting force in the tangential direction.

Although force control in the normal direction is able to provide stable contact with the

environment, motion in this direction is provided indirectly by force adjustment, instead of

directly by control of position and velocity. Consequently, large position and velocity

errors may occur with this control approach. On the other hand, good motion-tracking in

the tangential direction may not be able to adjust the velocity to accommodate the forces

in this direction.

.
t t

Fnd

Position
Controller

.
n

Force
Controller
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F
_ n
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Figure 3.3 Diagram ofHybrid Impedance Control
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Simultaneous Position and Force Control

For the high stiffness environment encountered in robotic deburring and finishing,

simple impedance control may cause large contact force or oscillations at the beginning of

contact. In practical implementation, large oscillations in transient response, together with

any dynamic modeling errors may cause unstable behavior of the manipulator [25].

Hybrid impedance control uses force control in the normal direction to achieve stable

behavior of the manipulator. However, the performance may deviate substantially from

the required trajectory. We seek a control law by which a manipulator in contact with a

high stiffness environment will achieve good performance with highly accurate trajectory

tracking while maintaining a suitable force. This means it is necessary to control position

and force simultaneously in the same direction.

We assume that the manipulator dynamics are known and that sensors are available

to measure all required variables. This implies that the dynamic model of the controlled

manipulator can be dynamically decoupled and completely compensated to remove

nonlinearities, such that the model-based control law presented in (3.5) is used. We

require a design for the linear error-driven portion of the controller such that desired

performance can be achieved.

Consider again any impedance-like control law. As observed previously, under the

assumption of perfect dynamic decoupling and nonlinear compensation, such controllers

are essentially PD-type controls with force feedback. Typically, in impedance-like control,

regulation of the interaction force is obtained indirectly by control of position associated

with a specified impedance relationship. Measured interaction force is directly fed back to

modify the control output. It is this force feedback term that can cause large oscillation

and unstable contact. Reviewing the total control law for impedance-like controls, we

learned that they consist of linear combinations of motion error terms and force terms.
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This analysis motivates our assumption that the controlled force command is

composed of the simple addition of a sub-command for the motion portion and a sub­

command for the force portion. In the force portion, the actual force should be compared

to a desired force to yield force errors, which multiplied by carefully selected gains, will

drive the force sub-command of the controller. Accordingly, we compose our controller

according to

(3.20)

normal direction:

where Vp represents the sub-command for motion compensation and Vf represents the sub-

command for force compensation. A simple and effective approach is to design the sub­

controllers using Pill (proportional plus integral plus derivative) or other simple

controllers. We may consider this control scheme as an extension or modification of

impedance control.

Notice that different combinations of proportional, integral, and derivative terms

result in different weights for the position sub-control and force sub-control. We found,

for example, that good results could be obtained by using Pill position plus I (integral)

force control in the normal direction, since both position and force should be controlled in

this direction, and the accuracy of position control is more important than that of force

control. In the tangential direction, since cutting force is directly related to normal force

by grinding friction, motion control with a PD controller is used to guarantee the

trajectory tracking in this direction. We avoid derivative force control because of the

difficulty in obtaining force derivatives from measured force, which typically contains high

frequency components. As a result of such choices, we have

vn =~:+ knpepn +knd ; pn+ knifepndt +!ifnpejn +!ifnifejndt

tangential direction: (3.21 )

where error terms e are defined by
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epn =nd-n,

efn =~d -~,

ept = td- t

eft =F;d - F;

knp, knd, and kni are positive scalars representing proportional, derivative, and integral

position gains in the normal direction, respectively; ktp, ktd, and kti are positive scalars

representing proportional, derivative, and integral position gains in the tangential

direction, respective; kfnp, and kfni are positive scalars representing proportional, and

integral force gains in the normal direction; kftp , and kfti are positive scalars representing

proportional, and integral force gains in the tangential direction. Fnd and F td are desired

forces in the normal and tangential direction, respectively. Eq. (3.4), (3.20) and (3.21)

consist of the control law for simultaneous position/force control approach. Figure 3.4

provides a block diagram for the control given by this approach.

Using simultaneous position/force control, we are able to simultaneously control

both position and force within specific ranges. To achieve very accurate position control,

we must obviously relinquish force control. This may be accommodated by specifying

gain values for force control to zero or very small values. Similarly, to achieve accurate

force control, we must relinquish accurate position control. This can be accommodated

by specifying small gain values for position control while assuring that stable control with

good transient performance is obtained.

One of the advantages of this control approach is the ability to switch the control

between position-dominated control and force-dominated control by simply changing the

gain values of the controller in real-time, as indicated in Fig. 3.4. For instance, ifburrs are

small and grinding forces remain below allowed maximum forces Flimit, then position

accuracy remains dominant, and motion control will be applied by setting large position

gains and zero force control gain. Once large burrs are encountered and grinding forces,

measured with a force sensor approach limits, gains may be switched to control the

grinding forces below specific limits with position gains set to relative small values.
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However, such gain changing in real time to switch control between position-dominated

and force-dominated control may cause stability problems if such switches are frequent.

We assume that gains for the two modes have been chosen such that the system is stable

with good performance while operating in either mode. Then if switches occur during

near steady state response of the previous control mode, control may remain stable. On

the other hand, if switches occur during the transient response of the previous control

mode, instability may result. Such situations could occur in practice when burrs are

extremely sharp and frequent. In such cases, multiple passes of deburring and grinding,

with relatively small variations ofburr heights for each pass, may be required to avoid

frequent switches of control modes.

PID Controller

...----------. .
Forward x

t--=-~

Kinematics x

+

PI Controller

Gain Changing
Controller

Flimit

L.....-__----L ----&-_F_--1 Environment

Figure 3.4 Control Diagram of Simultaneous PositionIForce Control

We have discussed and proposed several control approaches which may be suitable

for robotic deburring and grinding. To test the performance of these controllers in

Chapter IV, we will simulate robotic deburring and grinding by employing different
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controllers discussed in this chapter. The results of these simulations will be use to

evaluate each controller type.
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CHAPTER IV

SIMULATIONS AND RESULTS

Simulations

Simulations in this study were implemented using the Berkeley model SCARA

robot, whose dynamics were presented in Chapter II. This model robot was selected

because it's size and weight seemed appropriate for light-duty deburring and finishing

small parts. The values of parameters for this robot used in Eq. (2.31) are [31] :

I] == 0.2675 kg.m2, 12 == 0.36 kg.m2, 13 == 0.0077 kg.m2, 14 == 0.051 kg.m2,

I 3c == 0.04 kg.m2, I p == 0.046 kg.m2;

m] == 73 kg, m2 == 10.6 kg, m3 == 12 kg, and m4 == 4.85 kg, mp == 6.81kg;

I] == 0.36 m, 12 == 0.24 m, I]c == 0.139 m, and I2c == 0.099 m;

th] == 5.5 N-m, and th2 == 0.9 N-m.

The maximum torques for motor 1 and 2 are 245.0 N-m and 39.2 N-m, respectively.

These torque limits were applied as a saturation function in the simulation program to

avoid overloads of robot actuators.

The Berkeley SCARA robot has been verified in [31] as a benchmark for

evaluating various control algorithms. To assist validation of our simulation of this robot

in task space, we used results from our simulation to drive an animation of the two-arm

Berkeley robot motion, as shown in Fig.4.1. Smooth and continuous motion of both arms

indicated reliable modeling and programming. However, more complete validation of the
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dynamic model was obtained during simulations evaluating different control approaches

described later in this chapter.

Motion history of two-arm robot

0.5
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0.3
00
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-0.2
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0.3 0.4 0.5

Figure 4.1 Motion History of Two-arm Berkeley SCARA Robot

The workpiece to be deburred and finished in our example is a steel plate with a

thickness of 10 mm, which we take as the active width of cut b. We assume the grinding

wheel diameter is large compared to both burr heights and the thickness of the workpiece.

The diameter of grinding wheel is selected as 50.8 mm (2 inches), and we also assume that

grinding conditions, wheel dressing, and rotary speed of the grinding wheel are the same

as described for experiments in [29]. Thus we use values for the metal removal parameter

Am obtained from these experiments, which ranged from 1.2644423 x10-7 to 1.0115538 X

10-9 m3/min. kg (0.00035 to 0.0028 in3/min. lb). For simplicity, in all the simulations in this

study, we chose Am = 1.0 x10-s m3/min. kg and grinding friction coefficient 1J,=0.7.
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In the simulation examples herein, two types of desired edge contours for the

workpiece were selected, namely, a straight line and an elliptical curve. These selections

arose because most complex edges are combinations of lines and arcs. Using these desired

contours, position trajectories in reference space were generated within the active

workspace of the manipulator so as to avoid singularities of the Jacobian matrix describing

manipulator dynamics. For straight line contours, most simulations employed a constant

tangential speed of the end-effector in task space. However, impulse acceleration is

required at the start and finish of such a trajectory. Thus for some simulations, we

generated tangential position using linear segments with parabolic blends (LSPB) [6],

given by

where

Xto +att
2 /2

x t = (xif +xto -~tf)/2+Vtt

xif - att} / 2 +attft - a tt
2

/ 2

o~ t ~ tb

tb < t ~ t f - tb

t f -tb <t~tf (4.1)

Xt' xtO,and xtf= positions in the tangential direction with subscripts 0 and!

representing starting position and finishing position.

t, to' and tf = time, starting time, and finishing time, respectively.

Vi = desired velocity in tangential direction.

tb = blending time, determined by tb = (xto - xif +~tf) / V;

at = tangential acceleration, calculated by at =~ / tb .

For the elliptical contour, we also desire constant tangential velocity in task space. This

desired velocity is mapped into reference space to obtain the corresponding velocities as

the elliptical arc is traversed. From this mapping, the desired position in reference space

can be calculated.
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Burrs on the plate edge were numerically generated from assumed size and shapes.

We employed two types of simulated burrs shown in Figure 4.2: (a) randomly generated

burrs with limited average height of burrs, and (b) burrs with regular variation in the

height.

Size and shapes of burrs measured on aircraft engine parts were described by

Kazerooni et al in [9]. In this investigation, the average height hb ofburrs varied from

0.25 to 0.75 mm (0.01 to 0.03 in), and the thickness te varied from 0.025 to 0.075 mm

(0.001 to 0.003 in.). In our studies, the thickness of all burrs is taken to be the thickness

of the plate b = 10 mm. As shown in Figure 4.2, we used burrs with height hb varying

from ato 0.1 mm, with an average height ha of 0.05 mm. The frequency ofburrsfb was

chosen as two burrs per millimeter. While the burr frequency remained constant at this

value, the burr height varied between a and 0.1 mm using a random function. Since burrs

are usually sharp and small, we used a sinusoidal function to generate an individual burr,

shown in Figure 4.2 c, with the magnitude generated by a uniform random number

generator based on the linear congruential method [36]

Yburr =hb(rand) x sin(27ifbxt) a~ xt ~ 0.5mm

where

Yburr is y-coordinate ofburr edge.

hb(rand) = burr height randomly generated, and held constant over each 0.5 mm

interval.

To remove burrs completely and produce a good finishing surface, we also assumed a

desired cut he of 0.5 mm below the lowest burr valley.

Another type of surface roughness occurs in the scallop produced by a ball-shaped

end mill machining surfaces of complex parts, such as certain automobile parts [34]. This

kind of surface exhibits regularity in the scallop pattern. The size and frequency of

scallops are dependent on the tool dimension and the number of passes per unit width of
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Figure 4.2 Schematic Diagram of Geometry ofBurrs
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surface. In our simulations, we generated an artificial "edge scallop" by assuming the

diameter of the ball-shaped mills as 30 mm, with a 5 mm span of tool passes. Simple

geometry shows that this results in a 0.25 mm scallop height hb with a frequency of200

scallops per meter.

Using these artificial surfaces, we simulated robotic deburring and grinding using

different controllers described in the following sections. The purposes of our simulations

were to investigate (1) stable interaction between the end-effector and the workpiece, (2)

achievable performance including position errors and contact forces, and (3) ability to

accommodate to sudden large burrs. All the simulations were accomplished in MATLAB

[36] using the automatic step size, Range-Kutta 45 algorithm. Except for Simulation 10,

all simulations began and ended with the robot arms positioned with respect to the

workpiece, as shown in Figure 4.3(a).

+
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workpiece
~ ------- r7-- r --r--r----,---,

iT--r--~--~-7-~ ~,," " ,," ,," J
r " " " " '" \" ,," " " " I
',," ,," ,," ,," ,," ) \ " " " " ,," Ir " " " " "I ( ,," ,," ,," " A
, ,," ,," ,," ,," ,," I desired contour ''',,'',,'',,'',,'' I

L" " " " " I " " " " I
y " " " " ) \ """ ~',," " " " __-w-_ """'", " ,," ,," "// Arm 2 ----- A .".."'"
t.._.J"A ~ ///,......

\ Q20 /

\ (
\

""""" ...... ............

(a)
A: Beginning Point, B: End Point

(Drawings are to scale)

(b)

Figure 4.3 Schematic Diagram ofRobot Configuration in Deburring
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Simulations for Impedance Control

We examine three simulations of an impedance controller to test the performance

of impedance control for robotic deburring and grinding.

Simulation 1 :

1) Simulation of deburring a straight edge starting from (0. 1m, 0.4m) to (0.2m, 0.4m) in

reference space. Total simulation time was set at 10 sec.

2) Employing impedance control law (3.6), the target impedance matrices were chosen as

Md == [2.5 kg, 0; 0, 2.5 kg], B == [200 N.s/m, 0; 0, 45 N.s/m],

K== [4000 N/m, 0; 0, 200 N/m]

A large stiffness was selected for the normal direction while a small stiffness was selected

for the tangential direction according to our earlier deburring analysis.

3) Desired workpiece contour: straight edge, parallel with x axis and located at y == 0.4

m in reference space. Accordingly, the desired trajectories in the normal direction are: y ==

0.4 m, vn == an == 0;

4) Burr height and shape: randomly generated burrs with shaped as shown in Figure 4.2a;

average burr height ha == 0.05 mm; desired cut he == 0.5 mm; burr frequency fb == 10000

burrs/m.

5) Assume a constant tangential speed of ~ == 0.01 mls.

6) Simulation results showing position error and measured forces in the normal and the

tangential directions are given in Figures 4.4 and 4.5.

Simulation 2 :

In this simulation, we modified the target impedance relationship as in (3.14) by

considering a desired contact force at desired position trajectories. For convenience, we

repeat (3.14) here as.. ..
M d X+B(X-Xd)+K(X - X d) =-(F -Fd)
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where Fd is the desired force vector when the end-effector tracks the desired trajectories.

The desired force Fd is the nominal grinding force at the desired depth of cut and the

desired traverse velocity of the grinding wheel. To obtain the actual desired force Fd, we

would need complete knowledge of the geometry ofburrs, admittedly a difficult

requirement in practice.

Except for the impedance matrices, we use the same simulation conditions as in

Simulation 1. The nominal grinding force was chosen as F d = [5.5; 5.5J.l] kg, an

approximation calculated from (2.6) and (2.15) using ~ = 0.01 mis, Vn = 0 mis, d = 0.55

mm, and D = 50.8 mm. The grinding friction coefficient was selected as 0.7 [29]. After

some initial trials, the target impedances were chosen as

M d = [2.5 0; 0 2.5] kg, B = [200 0; 0 45] N. slm, K = [4000 0; 0 200] N/m;

Simulation results are presented in Figures 4.6-4.7

Simulation 3 :

We repeated Simulation 1, except that we changed the desired tangential velocity

to that generated by LSPB described in (4.1), with Vi = 0.015 mls. The other parameters

in (4.1) were to = 0; tf = 10 s; x tO = 0.1 m; xtf= 0.2 m, and the remaining parameters were

calculated as indicated in (4.1). This simulation was run to evaluate the controlled

performance, when the traverse desired velocity profile of the grinding wheel spindle was

generated in a more realistic manner. Simulation results are shown in Figures 4.8-4.9.

Results and Analysis for Impedance Control

The results of Simulation 1-3 given in Figures 4.4 - 4.9 indicate that impedance

control was able to achieve stable performance as long as the impedance parameter
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matrices are positive definite. Overshoot and oscillation exist in the transient response due

to the nature of impedance control. Force feedback in the impedance control law acts as a

high position feedback gain when the environment is very stiff This large virtual gain

results in underdamped response as shown in the Figures 4.4-4.9. However, ifhigh

impedance parameter values are selected, steady state is reached quickly.

In Simulation 1, we used the target impedance relationship (3.7) proposed by

Hogan [18]. The results in Figures 4.4 and 4.5 illustrate large steady state position errors

and small contact forces in the normal direction. Changing the impedance parameters

seemed to change only the transient response, without significantly affecting steady state

response. Notice that small forces in steady state indicate the grinding wheel barely

removed materials, yet remained in contact with the workpiece. This is confirmed by

observing position errors in the normal direction. These steady state position errors in the

normal direction are approximately equal to the deviation of the average rough edge

position from the desired normal position. In other words, the grinding wheel performed

edge-following with little cutting. This is an expected consequence of impedance control,

consistent with what others have reported [18, 19]. The results from Simulation 3

illustrate a similar edge-following phenomenon when the tangential velocity is generated

by LSPB.

In Simulation 2, we modified the target impedance relationship by employing

grinding force-motion relation (2.21) derived in Chapter II. This requires knowledge of

the geometry ofburrs, such that the desired depths of cut are known and Eq (2.6) and

(2.15) may be used to obtain the nominal grinding forces, which is commanded in the

target impedance relationship (4.2). Simulation results in Figures 4.6 and 4.7 show that

steady state position errors in the normal direction were eliminated, though small steady

state tangential position errors remained. Contact forces in steady state remained close to

commanded forces, which were required to remove materials to reach the desired edge

contour. These results indicate that if surface roughness geometry is measured or
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Figure 4.9 Results of Simulation 3 with Impedance Control: (b) Forces
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predicted, then modified impedance control defined by (4.2) may achieve good

performance for robotic deburring and grinding. Unfortunately, since burrs are highly

irregular and unpredictable in practical deburring, it is likely very difficult to calculate and

command desired grinding forces accurately. In such cases, impedance control could

degrade or become unstable.

Based on these simulation results, we conclude that an impedance controller may

be suitable for edge following or other tasks requiring a small amount of contact force

between the end effector and environment. If large interaction forces are expected

between the end-effector and its environment, a specified constant desired force should be

commanded by employing (4.2). For deburring and grinding, with large and varying

contact forces, impedance control is impractical for achieving desired performance.

Simulations for Hybrid Impedance Control

Simulation 4 :

The hybrid impedance control law of (3 .4) and (3.18), with position control in the

tangential direction and force control in the normal direction, was used in this simulation.

After some initial trials, impedance parameters were selected as: mt == 10 kg, bt == 200 N­

slm, kt == 1000 N/m; mn == 100 kg, bn = 100 N-s/m. The target force in the normal

direction was set atfn == 4 kg. Other conditions were the same as those in Simulation 1.

Results are presented in Figures 4. 10 and 4. 11.

Results and Analysis for Hybrid Impedance Control

Various trial simulations, in addition to that in Simulation 4, were conducted to

investigate hybrid impedance control for deburring and grinding. We studied controlled

performances of the manipulator under different elements in the gain matrices ranging
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from as small as 2 to large values in the thousands. Selected results are given in Figures

4. 10 and 4.11. As can be seen, oscillations ofboth positions and velocities, and thus

contact forces, occurred during the interaction between the grinding wheel and workpiece.

We found that large values ofmt, bt , and kt improved motion tracking in the tangential

direction, while small values caused fluctuations in the tangential velocity. For force

control in the normal direction, changing bn affected impact of the end effector at the

beginning of contact with the workpiece due to its effect on velocities approaching the

workpiece. This may be better understood from the following analysis. Since the contact

force is zero before contact, from (3.16) we obtain

The solution of (4.3) for constant Fdn and zero initial velocity is

· Fn =~ (1- e-bntlmn)

bn

Since mn and bn are positive, we observe that

· F
n<~

bn

(4.3)

(4.4)

That is, the normal velocity approaching the workpiece is bounded by zero and IFdn/bnl,

such that bn determines the upper limit. Thus, large bn results in low impact of the end­

effector as it contacts the workpiece.

The parameter mn is critical in obtaining stable control because it essentially acts

as a force feedback gain. Small values for mn result in high oscillations, which lead to

unstable contact. However, large values ofmn will slow and degrade motion tracking in

the normal direction. Our simulation showed that, ifmn= 1600 kg, bn = 1600 N-s/m, the

manipulator requires the entire simulation time (10 sec) to approach and contact the

workpiece.

Through simulations, we concluded that hybrid impedance control is not

appropriate for deburring and grinding, although previous investigators [24] reported that
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hybrid impedance control was successfully employed for force control in simple assembly

tasks. In such tasks no friction force existed in the tangential direction, and a linear

relationship between motion and force in the normal direction was assumed. In other

words, dynamics and control in two orthogonal directions were decoupled. In deburring

and grinding forces, the coupling of cutting and normal forces degrades the performance

of the hybrid impedance controller. Because the controller acts so as to achieve the

desired forces, dynamic effects of impacts cause fluctuations in position, or depth of cut,

in the normal direction due to the absence of position control in this direction.

Oscillations in depth of cut, through the grinding force relationship, will cause

fluctuations in the velocity in the tangential direction. In turn, motion oscillations in both

directions lead to large force fluctuations. These phenomena appear throughout the entire

simulation run, as shown in Figures 4.10 and 4. 11.

Simulations for Simultaneous PositionIForce Control

Simulation 5 :

1) Simulation of deburring a straight edge from (0. 1m, 0.4m) to (0.2m, 0.4m) in reference

space. Total simulation time was 10 sec.

2) Employ the simultaneous position/force controller (3.4), (3.19), and (3.20). In this

simulation, we investigated the controller for cases where high position accuracy is

required and the robot and tooling are sufficiently strong to accommodate the large

grinding forces generated. Position control is more important here than force control.

3) Desired workpiece contour: straight horizontal edge, located at y = 0.4 m in reference

space. Accordingly, the desired trajectories in normal direction are: y = 0.4 m, vn = an = 0;

4) Burr height and shape: randomly generated burrs as in Simulation 1, shown in Figure

4.2a; average burr height ha= 0.05 mm; desired cut he = 0.5 mm, burr frequency fb =

2000 burrs/m.
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5) Assume a constant desired tangential speed of ~ == 0.01 mls.

6) After some initial trials, gain values were selected as:

Kp =[400, 0; 0, 400] 1/s2, Kd == [40, 0; 0, 40] l/s, K j = [0, 0; 0, 0] 1/s3,

Kf = [0,0] mI(s2.N), Kfi = [0,0] mI(s3.N).

Simulation results are presented in Figures 4.13 and 4.14.

Simulation 6 :

1) Simulation of deburring a straight edge starting from (O.lm, 0.4m) to (0.2m, 0.4m) in

reference space. Total simulation time was 10 sec.

2) Employ the simultaneous position/force controller (3.4), (3.19), and (3.20). In this

simulation, we investigated force control ability with the simultaneous position/force

controller. Contact forces are controlled to track desired forces, while positions are

allowed to deviated from desired trajectories. Force control is more important here than

position control.

3) Desired workpiece contour: straight edge, located at y == 0.4 m in reference space.

Accordingly, the desired trajectories in the normal direction are: y == 0.4 m, vn == an == O.

4) Assume a constant desired tangential speed of ~ == 0.01 mls.

5) Burr height and shape: randomly generated burrs as in Simulation 1 and shown in

Figure 4.2a; average burr height ha == 0.05 mm, and burr frequency fb == 2000 burrs/me

However, in this simulation we desired a deeper cut, with he == 1.5 mm, which would

require a normal force of about 15.5 kg, calculated from (2.17). However, we assume

that the maximum allowable normal force is 12 kg, such that we must control normal force

to remain below 12 kg.

6) After initial trials, gain matrix elements were selected as

Kp =[45, 0; 0, 45] lIs2, Kd = [6.J5 , 0; 0, 6.J5] lis, Ki = [0, 0; 0, 0.5] lIs3,

Kf = [0.05,0] mI(s2.N), Kfi = [0.0000595,0] mI(s3.N).

Simulation results are presented in Figures 4.15 and 4.16.
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Simulation 7 :

If an abrupt large burr is encountered during the grinding process, normal forces

exceeding the allowed maximum force may occur. The controller should be able to

contain the normal force below the allowed limits in such a situation. In this simulation,

we investigated the controlled performance of the manipulator when a large burr was

suddenly encountered.

1) Simulation of deburring a straight edge starting from (O.lm, 0.4m) to (0.2m, 0.4m) in

reference space. Total simulation time was 10 sec.

2) Employ the simultaneous position/force controller (3.4), (3.19), and (3.20), with the

addition that the elements in the gain matrices were changed from position-dominated

control to force-oriented control when large burrs were encountered.

3) Desired workpiece contour: straight edge, located at y = 0.4 m in reference space.

Accordingly, the desired trajectories in normal direction are: y = 0.4 m, vn = an = 0;

4) Assume a constant desired tangential speed of~ = 0.01 mls.

5) Burr height and shape: randomly generated burrs as in Simulation 1 and shown in

Figure 4.2a. At the beginning and end portions of the workpiece edge, burrs are small

with average burr height ha = 0.05 mm, and burr frequency fb = 2000 burrs/m. However,

we add a large "rectangular" burr on the edge in the region in reference space 0.14 m :S x

:S 0.17 m, with burr height hb ranging from 1 mm to 1.1 mm, with an average height ha =

1.05 mm, and burr frequency fb = 2000 burrs/m. The same random burr height generator

was used as in Simulation 1. The rough edge is depicted in Figure 4.12a. We desired to

remove burrs while grinding deep into the workpiece, with he = 0.5 mm to produce a

finished contour. By using Eq. (2.17), it can be shown this requires a normal force of

about 5.5 kg for removing small burrs, while for the large burrs, expected normal forces

may reach 15.5 kg. Assuming that our system allows a maximum force of only 10 kg, we

desired to control normal force at levels below this value.
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6) We used a position-dominated controller for deburring the small burrs because small

normal forces were required in such cases, and position accuracy was deemed

predominant. If the measured normal force approached the maximum allowed force, a

force-dominated controller was applied. The switch of controllers was accomplished by

changing gain values. By trial and error, gain values for the position-dominated controller

were selected as

Kp =[400, 0; 0, 400] 1/s2, K d = [40, 0; 0, 40] lIs, K j = [0, 0;0, 0] 1/s3,

Kf = [0,0] m/(s2.N), Kfi = [0,0] m/(s3.N).

For the force-dominated controller, gain values were selected as

Kp =[10, 0; 0, 10] lIs2, Kd = [2M, 0; 0, 2M] lis, Ki = [0, 0; 0, 0.005] lIs3,

Kf = [0.005,0] m/(s2.N), Kfi = [0.0000598,0] m/(s3.N).

Simulation results are presented in Figures 4.17 and 4.18.

Simulation 8 :

In Simulation 7, we generated a large rectangular-shaped burr with a rough top edge.

This represents a very abrupt, and perhaps unrealistic burr geometry. Considering the

comparatively large diameter of the grinding wheel, actual large burr height changes

would be approached more gradually. To simulate a more gradual change, we generated a

large trapezoidal-shaped burr in this simulation, as illustrated in Figure 4.12b. The

trapezoidal burr lies in the interval O. 13 m ~ x ~ O. 19 m. The base shape of the trapezoidal

burr and its dimensions are given in Figure 4.12c. On this base shape, we superimposed a

randomly generated signal, similar to that in Simulation 1, yielding height hb varying from

1.0 mm to 1. 1 mm and average height ha = 1.05 mm. Gains were the same as in

Simulation 7, and simulation results are presented in Figures 4.19 and 4.20.
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Figure 4.12 Schematic ofLarge Burrs

Simulation 9 :

1) Simulation of deburring a straight edge from (0. 1m, 0.4m) to (0.2m, 0.4m) in reference

space. Total simulation time was 10 sec.

2) Employ the simultaneous position/force controller (3.4), (3.19), and (3.20).

3) Desired workpiece contour: straight edge, located at y = 0.4 m in reference space.

Accordingly, the desired trajectories in normal direction are: y = 0.4 m, vn = an = 0;

4) Burr height and shape: scallop-type ofburr with shape shown in Figure 4.2b, with a

0.25 mm scallop height and a frequency of 200 scallops per meter.

5) Assume a constant desired tangential speed of ~ = 0.01 mls.

6) Gain matrix elements were the same as in Simulation 5, namely

Kp =[400, 0; 0, 400] 1/s2, K d = [40, 0; 0, 40] lIs, K j = [0, 0; 0, 0] 1/s3,

Kf = [0, 0] mI(s2.N), Kfi = [0, 0] mI(s3.N).

Simulation results are presented in Figures 4.21 and 4.22.
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Simulation 10 :

We evaluated the simultaneous position/force controller for our manipulator

deburring a more complex contour, namely that of a workpiece having an interior elliptical

contour.

1) Simulation of deburring an elliptical edge in reference space region 0.1 m s x s 0.2 m.

Total simulation time was 10 sec.

2) Employ the simultaneous position/force controller (3.4), (3.19), and (3.20).

3) Desired workpiece contour: a section of an elliptical curve described by (3.25) with

parameters:

a = 0.4 m, b = 0.2 m; g = 0 m, h = 0.25 m; 0.1 m s x s 0.2 m.

The total perimeter of this ellipse is 1.938 m, such that our simulation contour covers only

approximately 6.5% of this perimeter. Figure 4.3b shows the workpiece contour with the

robot arm positions at the beginning and end of the simulation.

4) Burr height and shape: randomly generated burrs as in Simulation 1, with shape shown

in Figure 4.2a. The maximum height ofburrs is 0.04 mm and minimum height is zero,

with average burr height measured in the normal direction was ha = 0.02 mm. To remove

the burrs and grind deep into the workpiece, we used he = 0.5 mm,

5) Because the desired contour section of the workpiece is approximately flat in the x

direction, we selected position and velocity trajectories in reference space, and then

mapped them into task space. Velocity along the x axis in reference space is chosen

constant at Vx = 0.01 mls. Desired position and velocity in they direction is derived from

the kinematic constraint equation (2.35). If the contour were not approximately flat, the

desired trajectories should be commanded in task space directly, such that spurious

commands caused by mapping between the different spaces will not occur.

6) Gain matrices were chosen by trial and error as

Kp =[900,0; 0,900] l/s2, K d = [60,0; 0, 60] l/s, K j = [0.1,0; 0,0.1] l/s3,

Kf = [0,0] mI(s2.N), Kfi = [0,0] mI(s3.N).
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Simulation results are presented in Figures 4.23 and 4.24.

Results and Analysis for Simultaneous PositionIForce Control

We ran Simulation 5 and 6 under the same conditions as Simulations 1 and 2 for

impedance control in order to compare results from the two controllers. If the gains are

properly selected, simultaneous position/force control is able to achieve good transient and

steady state response. The oscillations in transient response and non-zero steady state

error observed with impedance control were eliminated by this new control. The results

of these simulations showed that simultaneous position/force control is superior to

impedance control.

Figures 4.13 and 4.14 illustrate a very accurate position control was achieved in

Simulation 5 by this control approach. In cases where a strong robot is employed to

remove a small amount of material, as recommended in [35], an accurate finished contour

can be obtained. Results from simulation 5 indicate that PD control may be able to

achieve good performance, provided accurate and fast sensors can feedback measured

signals to cancel nonlinear effects in the system dynamics, and efficient real-time

computation is available to perform the model-based calculations. The integral portion of

position control is required only when force control is simultaneously employed, or to

eliminate steady state errors caused by dynamic modeling and nonlinear compensation

errors.

Simultaneous position/force control is also able to achieve good force control, as

shown by the results of Simulation 6 in Figures 4. 15 and 4. 16. In force control, the

integral gain of force control portion played a critical role in achieving good force

performance. Large values of force integral gain led to instability and loss of contact.

Thus very small gains were used in this simulation. As seen in Fig. 4.16, contact forces

were effectively controlled to track the desired forces. However, Fig. 4.15 shows that
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position errors were significant. This is due to physical impossibilities in robot structure,

rather than the control algorithm, because it is impossible for the robot to simultaneously

have large compliance for good force control and large stiffness for good position control.

In contrast, we found earlier that impedance control could not achieve good force control.

One of advantages of simultaneous position/force control is that the control law

allows the designer, or an automatic gain changer, to switch the control from position­

control-dominated to force-control-dominated by simply changing the gain values without

any change of control structure. As discussed in Chapter II, position accuracies are more

important when deburring small burrs as long as contact forces are below the allowed

force limits. Once large burrs are encountered, the normal force must be maintained

below forces limits, such that force control now becomes more important than position

control. Such situations require that the controller adapt during deburring. In Simulation

7, we employed a simultaneous position/force controller to deburr a complex rough edge

with a mix of small and large burrs. The results showed simultaneous position/force

control was able to achieve good manipulator performance and finishing results for this

situation. Figures 4.17 and 4.18 show position errors were very small during the initial 4

seconds of deburring with the normal force below the allowed limit of 10 kg. Once the

large burr was encountered, normal forces initially exceeded this limit, but were then

effective held below this limit, although results also show that there were jumps at the

beginning and end of the large burr due to the switch of gain values and sudden change of

burr size. To examine the effects of more gradual changes in bur sizes, we generated a

large trapezoidal-shaped burr for Simulation 8. The results in Figures 4.19 and 4.20

indicate the jump in position error and force at the beginning of the large burr was not

significantly affected, bur the jump at the end was significantly decreased. We expect such

large transients in force may be further decreased in practical deburring because the size of

the grinding wheel would likely moderate some of the sudden plunging into a large burr.

We observe that obtaining performance this good would be impossible for an impedance
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controller. A similar simulation using an impedance controller was conducted, but several

hours of simulation time produced no results. We suspect that the dynamics were

sufficiently complicated that our Rung-Kutta solver was unable to cope with them.

Simultaneous position/force control was also applied to the scallop-type burrs

shown in Figure 4.2b. The results in Figures 4.21 and 4.22 of Simulation 9 show this

control approach is also able to achieve good performance for deburring this kind ofburr.

Our final simulation was completed to evaluate simultaneous position/force control

in deburring a portion of an elliptical curve. For simplicity, in this simulation, commanded

inputs were described in reference space because of the small curvature of the desired

elliptical contour. Results of Simulation 10 in Figures 4.23 and 4.24 show that this

control scheme applied to a curved geometric surface is as effective as when applied to a

straight edge contour. The normal and tangential forces in Fig. 4.24 gradually decrease

with time because setting desired velocity constant in the x direction in reference space

actually causes the tangential velocity in task space to gradually decrease as the ellipse is

traversed from point A to B in Fig. 4.3b.

In summary, our simulation results indicate simultaneous position/force control is

effective and superior to impedance or hybrid impedance control. This control scheme can

achieve good results in deburring tasks when the normal force is required only to remain

below specified limits. In the next chapter, we present recommendations for further work.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

We have focused, in this study, on the dynamic modeling and control of robotic

deburring and grinding. The major contributions of this thesis are summarized as follows:

1. A relatively accurate model of the interaction force for robotic deburring and

grinding was developed based on conventional grinding mechanics. It was shown

that the interaction of robotic deburring and grinding can be modeled as a contact

task of a robot with a rigid environment. Nonlinear coupling characterizes the

dynamic behavior of the interaction between the end effector and its environment.

An approximate linearization of the nonlinear relationship between the grinding force

and the end effector motion was used to help analysis and understanding of the

dynamic behavior of the robotic deburring and grinding process.

2. Mechanical implementation of robotic deburring and grinding involves different

tasks. The Jacobian matrix is used to relate the motion of manipulators in different

spaces. We developed the 2-dimensional Jocobian matrix between the joint space

and the task space of elliptical surfaces for SCARA manipulators. This formulation

is necessary to control the SCARA manipulator with complex geometric constraints.
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3. A new controller, called simultaneous position and force control, was proposed to

effectively control a manipulator contacting a rigid environment. The control scheme

was developed based on the analysis of impedance control and hybrid impedance

control, and it may be considered either an extension of impedance control or a new

version of hybrid impedance control. However, this control strategy offers a more

intuitive means to deal with position and force control of manipulators undergoing

constrained motions. Using this control method, designers can modulate control

between the force-oriented or motion-oriented control by selecting gain values

properly.

4. Using simultaneous position and force control, we are able to control robotic

deburring and grinding with irregular and unpredictable burrs to achieve good

position accuracy under specified, maximum contact forces. This strategy is different

from previous work on deburring and grinding, where constant contact forces are

desired. The method proposed herein for robotic deburring and grinding is unique in

that conventional grinding mechanics is used to model contact forces.

5. Two common control strategies in force control of manipulators, impedance control

and hybrid impedance control, were also investigated for robotic deburring and

grinding. The results showed that impedance control may achieve good performance

for edge-following tasks, which require small contact forces between the end-effector

and the environment. Once engaged with deburring and grinding, control of

manipulators requires a target impedance integrated with a command force planned

carefully. Otherwise, significant position errors occur with this scheme. In contrast,

hybrid impedance control provides independent force and position control in two

orthogonal directions and results in significant oscillations due to the nonlinear

coupling dynamics of the interaction.
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Recommendations

Simulation results have shown that the model and control algorithm developed in

this thesis are able to produce successful robotic deburring and grinding. Further

investigations following this study are recommended as follows:

1. Investigate the effects of modeling errors and measurement noise on the stability and

robustness of the proposed simulations position/force control.

2. Develop experiments to test and verify the results of this research. Sensor dynamics

should be considered in further studies so as to achieve more realistic results.

3. Because an accurate model of the dynamics of the interaction between the

manipulator and environment during grinding or deburring is difficult, a controller

integrated with on-line estimates of material removal parameters and other system

parameters, such as masses and inertial moment of the links (include those of the

tools), may result in more robust control performance. Adaptive control combined

with the control scheme developed in this study may be applied to complete these

tasks.

4. Since fuzzy control is known to provide good control of complex, nonlinearly

coupled dynamic systems, better performance may be possible if a fuzzy controller is

used in a hierarchical structure, together with our proposed controller, to generate

desired forces and positions. Accordingly, we recommend investigation of fuzzy

control concepts for this problem in further researches.

5. In addition to grinding wheels, other material removal tools may be investigated to

achieve good results in deburring various materials.
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