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CHAPTER I

INTRODUCTION

Background

The question, "What are the effects oftimber management activities on the

ecological health of streams?" has received much attention in research the past several

years. Much has been learned about increased nutrient loading, sedimentation and water

yield following clearcutting (Beasleyet al. 1987; Miller et al. 1988a & 1988b) as well as

increased sedimentation from the construction and maintenance offorest roads (Swift

1984; Wooldridge and Larson 1980). However, much is left to be discovered about the

long-term and cumulative effects of forest management activities on the aquatic biota.

Concern over our nation's degraded water quality resulted in some of the earliest

environmental legislation: The Water Pollution Control Act of 1966; the Federal Water

Pollution Control Act Amendments of 1972 (FWPCA); and the Clean Water Act of 1977.

Consequently, conspicuous improvements in surface water quality and point source

pollution control have been made in the last twenty years. However, we are discovering

that the biotic integrity of our water resources has continued to decline (Karr et al. 1985;

Judy 1984; Schindler et al. 1989).
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Efforts to restore the quality of our water resources have focused primarily on

chemical and physical water quality parameters, with the naive assumption that as these

criteria improved, improvements in biological quality would always follow (Karr et al.

1986). One nationwide U.S. Environmental Protection Agency (EPA) study found

otherwise. This study revealed that 56% of the stream segments with water resource

degradation had a reduced fishery potential because of chemical problems; however, 50%

were impaired by degradation in physical habitat and 67% by flow alteration (Judy et al.

1984). Likewise, an evaluation of instream biota in Ohio indicated that 36% of impaired

sites were not identified using chemical-based criteria (Ohio EPA 1988).

The FWPCA of 1972, commonly known as the Clean Water Act, calls for the

restoration and maintenance of the chemical, physical and biological integrity of the

nation's waters. Integrity is defined as the quality or state ofbeing complete; unimpaired

(Morris 1969). Ecological integrity is attainable only when chemical, physical and

biological (or biotic) integrity occur simultaneously (USEPA 1990). Thus, EPA's

response to the Clean Water Act is an aquatic ecosystem approach to water-quality

monitoring, including the use of integrated physical, chemical, and biological assessment

techniques (MacDonald et al. 1991; USEPA 1989; USEPA 1990). Several

comprehensive methods have been designed and tested in the evaluation offorest

management practices on stream ecological integrity and in the evaluation of forest best

management practices or BMPs (Platts et al. 1983; USEPA 1989; Rinne 1990;

MacDonald et al. 1991; Clingenpeel 1994; Dissmeyer 1994).
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Biotic integrity, a major component of ecological integrity, has been defined as

"the ability of an aquatic ecosystem to support and maintain a balanced, integrated,

adaptive community of organisms having a species composition, diversity, and functional

organization comparable to that of the natural habitats within a region" (Karr and Dudley

1981). Biologists have tried a variety of approaches to assess biotic integrity, including

the use of indicator species (Hilsenhoff 1977, 1982~ Ryder and Edwards 1985; Schaeffer

et al. 1985), diversity indices (Wilm and Dorris 1968; Kaesler et al. 1978; Osborne et al.

1980), the Index of Community Well-Being (Gammon et al. 1981~ Yoder et al. 1981; Ohio

EPA 1987), relative abundance of desirable species (Coble 1982~ Swink and Jacobs 1983),

evaluations of physical habitat conditions (Terrell et al. 1982~ Stalnaker 1982), and the

Index of Biotic Integrity (Karr et al. 1986).

The Index ofBiotic Integrity (IBI) is the focal point of this paper. It was designed

to use a range offish assemblage attributes to evaluate stream biotic integrity. The

strength of the IBI is its ability to integrate information from individual, population,

community, zoogeographic, and ecosystem levels into a single ecologically-based index of

the quality of a water resource (Karr et al. 1986). The illI uses a number of measures, or

metrics, that are scored to evaluate biotic integrity of a sample site with respect to

conditions found in an undisturbed or reference stream within the same geographic region.

High scores indicate sites with minimal perturbation; sites of reduced quality have lower

scores (Karr et al. 1986).

Researchers have successfully utilized the illI to evaluate stream biotic integrity in

a variety of geographic regions within the U.S. (Leonard and Orth 1986; Fausch and
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Schrader 1987; Hughes and Gammon 1987; Steedman 1988; Bramblett and Fausch 1991).

Adapting the IBI to these regions required modifications to accommodate regional

differences in fish distribution, assemblage structure and function (Miller et al. 1988).

Problems remain in adapting the illI to regions of low species richness, establishing

tolerance rankings and scoring criteria, and adjusting scoring criteria for differences in

stream gradient and location of streams of similar size in the drainage network (Miller et

al. 1988; Osborne et al. 1992).

In spite of these difficulties, the illI serves as a functional tool in biological

monitoring of water resource quality. As a result, the Tennessee Valley Authority, and the

states of Illinois, Kentucky, Ohio, and Vermont have all incorporated the IBI into their

monitoring or standards programs (Miller et al. 1988; Ohio EPA 1987). The IBI has also

been included in monitoring programs designed to evaluate BMP effectiveness on forest

lands (Dissmeyer 1994).

Justification and Objectives

Small streams in the Ouachita Mountains region exist in watersheds where timber

management activities have occurred at various levels of intensity since the late 1800's

(Smith et al. 1984). Though research has been done to quantify short-term impacts of

clearcuts to streams in small Ouachita Mountains watersheds (Beasley et al. 1987~ Miller

et al. 1988a & 1988b), little has been done to assess cumulative effects of forest

management activities on the biotic integrity and ecological health of streams in the

Ouachita Mountains. In light of that need, the objectives of this study were to:
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1. Modify the ffiI to reflect regional differences in fish community structure in
mid-sized streams in the Lower Ouachita Mountains Ecoregion.

2. Use the illI to compare ecological integrity in streams offorested watersheds
receiving varying intensities of timber management.

3. Relate differences in illI scores with corresponding differences in chemical,
physical, or aquatic macroinvertebrate community characteristics.

5



CHAPTER II

LITERATURE REVIEW

Timber management activities can impact streams by increasing sediment and

nutrient concentrations; altering streamflow; altering the form and amount of organic

material; increasing temperature and autotrophic production; and simplifying channel

structure and habitat complexity (Brown and Krygier 1970; Troendle and King 1985;

Beasleyet al. 1987; Miller et al. 1988a and 1988b; Allan 1995). These changes are often

followed by changes in the populations ofbenthic macroinvertebrates and fish (Boschung

and O'Neil 1981; Matlock and Maughan 1988; Bisson et al. 1992).

Habitat simplification results in a decrease in species diversity and composition

(Rutherford et al. 1987 and 1992; Bisson et al. 1992). Greater light penetration and

autotrophic production results in an increase in standing crop biomass at all trophic levels

(Murphyet al. 1981; Hawkins et al. 1982; Clingenpeel 1994; Allan 1995).

Riparian vegetation influences instream water quality through its insulating effect

on water temperature. Taxa adapted to cool waters are likely to be eliminated by

temperature increases following canopy removal (Barton et al. 1985).
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Sedimentation reduces permeability to water movement in interstitial spaces. This,

in tum, affects the delivery and removal ofgases and nutrients, and restricts movement by

aquatic biota (Allan 1995). Additionally, spawning habitat is reduced for many fish

species (Beschta 1978; Scrivener and Brownlee 1989; Sweeney 1992), and benthic

macroinvertebrate habitat is impaired (Allan 1995).

The effects of logging on channel structure require a much longer recovery period

than does recovery of shading due to forest re-growth, which will occur in approximately

10-30 years (perhaps less time in warmer climates). Therefore, the effects ofan open

canopy do not appear to be as serious as changes to the channel and streambed (Allan

1995).

Biomonitoringl ffiI

Karr (1981) proposed that by carefully monitoring fish communities, the health or

"biotic integrity" of a water resource could be assessed. He asserted that biomonitoring

was a more sophisticated and environmentally sound approach than merely focusing on

contaminant levels. Chemical monitoring misses many anthropogenic impacts such as

flow alterations, habitat degradation, and heated effluents (Karr 1981).

Karr et al. (1986) suggested that environmental factors affecting aquatic biota be

grouped into five major categories: energy source, water quality, habitat quality, flow

regime, and biotic interactions. Efforts to restore or maintain water quality by modifying

factors in one of these categories will probably fail if factors in another category limit

biotic integrity (Karr et a1. 1986). On agricultural lands, for example, efforts to remove
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pollutants such as pesticides and fertilizers would not result in improved biotic integrity if

the stream had been channelized, thus impairing habitat quality.

Several taxa have been targeted in biomonitoring: diatoms (Patrick 1975;

Somashakar 1988); benthic invertebrates (Resh and Unzicker 1975; Hilsenhoff 1977; Lang

et a1. 1989; USEPA 1989); and fish (Karr 1981; Karr et a1. 1986; USEPA 1989). Ideally,

all of these taxa should be included in a comprehensive biomonitoring program. However,

time and financial restraints often prevent such an ideal biomonitoring program.

Fish occur in almost all streams and in a variety of trophic levels throughout the

aquatic food web. Therefore, fish community assessment can give an integrated view of

watershed condition (Karr et ale 1986). Fish populations are relatively stable during the

summer season when most sampling occurs. They are relatively easy to identify, and

extensive fish data bases already exist. In addition, the public relates well to programs

dealing with fish (Karr et al. 1986).

The illI is a holistic approach to fish community assessment. It assesses 12

biological attributes or metrics, which combine to assess biotic integrity (Karr et al. 1986).

The 12 metrics fall into three main categories: species richness and composition (metrics

1-6), trophic composition (metrics 7-9), and fish abundance and condition (metrics 10-12).

Metrics include:

1. Total number offish species

2. Number and identity of darter species

3. Number and identity of sunfish species

4. Number and identity of sucker species

5. Number and identity of intolerant species

6. Proportion of individuals as green sunfish
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7. Proportion of individuals as omnivores

8. Proportion of individuals as insectivorous cyprinids (minnows)

9. Proportion of individuals as piscivores (top carnivores)

10. Number of individuals in sample

11. Proportion of individuals as hybrids

12. Proportion of individuals with disease, tumors, fin damage and skeletal

anomalies

The main concept of the ffiI is that an ecologically healthy stream has a more

diverse and complex fish community than a degraded stream. More complex habitats

allow for more biotic complexity and diversity. Polluted streams usually have a simple fish

community dominated by a few tolerant species that can out compete less tolerant species

(Karr et al. 1986).

Scores of 5, 3, or 1 are assigned to each metric according to whether its value

approximates, deviates somewhat from, or deviates strongly from the value obtained at a

relatively undisturbed reference site(s) in the same geographic region (Karr et al. 1986).

Where undisturbed streams do not exist, it is necessary to depend on least-disturbed

streams or sites, along with the use of historical fish collection data. The 12 metric scores

are totaled to obtain an ffiI score which can then be assigned to the appropriate integrity

class (excellent, good, fair, poor, very poor, no fish), which gives a qualitative description

of integrity or degradation.

Karr et aL (1986) warn that precautions must be followed in using the mI. The

illI is most effective when interpreting extensive amounts of data from complex fish

communities with bi~tic integrity assessment as the goal. illI should not be used, for
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example, with the objective of single species management. Nor should a single assessment

at a single site be used to make a final judgement on the ecological health of the entire

stream. illI is best suited as a screening tool to identify impacted sites which require

additional monitoring, and for assessing trends over time at specific sites (Karr et al.

1986).

Professional judgement must be used in every step of the illI process: selection of

appropriate sampling sites and sampling methodology, application of historical fish

collection data, modification of ffiI metrics, calculation of scoring criteria, and

interpretation of results. "The ultimate arbiter of the quality of a sample is a competent

ichthyologist or aquatic ecologist who is familiar with the local fish fauna. In addition,

users offfiI may want to confer with regional resource managers." (Karr et al. 1986, p.

12).

Species Richness and Composition Metrics

Some of the species richness and composition metrics have required modification

in almost all regions where the illI has been applied, other than the midwestern USA.

These metrics were deleted or replaced because the taxa were either not native, were

depaurperate, were not present in sufficient abundances, or were not expected in the

stream size or habitat (Miller et al. 1988). Other species, such as minnows (Cyprinidae)

and sculpins (Cottidae), have been added (Fausch and Schrader 1987; Hughes and

Gammon 1987).

Leonard and Orth (1986) applied the ffiI to small coolwater streams in the

Appalachian Plateau region ofWest Virginia. A modified illI based on six fish community
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attributes closely correlated with independent rankings of stream degradation. This study

also related another challenge for use of the illI: the use offish tolerance ratings. Species

tolerance might vary among geographic locations. Of even more concern, however, is the

fact that a species that is intolerant of some forms of perturbation might be tolerant of

other forms of disturbance. Leonard and Orth (1986) found that northern hog suckers

(Hypentelium nigricans) and rock bass (Ambloplites rupestris), the least tolerant sucker

and sunfish species in Karr's (1981) tolerance ranking, were present in substantial numbers

in their second-most degraded stream. They suggested that these species were actually

tolerant of poor water quality as long as oxygen concentrations remain high. They also

found that central stonerollers (Campostoma anomalum), while tolerant of other water

quality variations, are sensitive to turbidity and siltation. The fact that tolerance rankings

are often specific to the type of perturbation is an area that deserves much attention in

further use and development of the ffiI (Leonard and Orth 1986).

Trophic Composition Metrics

Of the trophic composition metrics, the proportion of individuals as insectivorous

cyprinids has been most often modified (Miller et al. 1988). Leonard and Orth (1986)

found that proportions of specialist and generalist species were a more accurate indicator

of trophic composition than was the number of insectivorous cyprinids and omnivores.

For example, some insectivorous cyprinids, such as the creek chub (Semoti/us

atromaculatus), inhabit the most degraded streams, and some non-omnivorous generalized

feeders dominate degraded streams. Feeding strategy should, therefore, be considered as

a component of species tolerance (Leonard and Orth 1986). Fausch and Schrader (1987)
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used the proportion of individuals that were specialized invertebrate feeders as a trophic

composition metric for the illI in Northeastern Colorado.

Leonard and Orth (1986) and Fausch and Schrader (1987) deleted the top

carnivore metric because of an absence of carnivores. Hughes and Gammon (1987)

replaced the top carnivore metric with proportion of catchable salmonids, because the

major carnivore in the Willamette River is tolerant of degraded conditions.

Fish Abundance and Condition Metrics

Almost all mIs have included a fish abundance metric in which the greatest fish

abundances receive the highest score (Karr et ale 1986; Leonard and Orth 1986; Fausch

and Schrader 1987; Hughes and Gammon 1987). Scoring criteria for this metric was

adjusted in Steedman's (1988) illI for streams in southern Ontario. High abundances

were associated with warm, enriched agricultural streams; very low abundances were

associated with degraded urban streams (Steedman 1988).

Certain disturbances, such as clearcutting activity, can result in higher fish (and

invertebrate) abundances, which mayor may not affect biotic integrity. Hawkins, Murphy

and Anderson (1982) found invertebrate abundances to be greater immediately after

clearcutting because of increased solar insolation and higher water temperatures. Murphy,

Hawkins and Anderson (1981) found higher salmonid biomass and densities to be greater

in recent clearcuts compared with forested sections, perhaps because ofgreater availability

of prey and improved foraging in unshaded streams.

Leonard and Orth (1986) noted that some species have a greater incidence of

anomalies than others (illI metric #12). For example, the parasitic trematode blackspot
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(Uvulifer spp., formerly Neascus spp.) has a high incidence of occurrence in central

stonerollers (Berra and Au 1978). Certain abnormalities may have a stronger correlation

with habitat characteristics than with the degree of stream degradation (Leonard and Orth

1986). High incidence ofblackspot disease has been reported for unpolluted, unperturbed

streams (Berra and Au 1978). This could be related to the suitability of a stream for

abundance of intermediate hosts (Van Duijn 1973). Though Leonard and Orth (1986)

recognized this possibility, they felt that this metric (proportion of individuals with

anomalies) was still valid. Steedman (1988) found the incidence ofblackspot disease to be

one offive metrics (along with species richness, local indicator species, abundance of large

piscivores, and fish abundance) that cumulatively accounted for 87% of the variation in

illI scores.

Correlation of ffiI with Land Use

Steedman (1988) calibrated the modified illI to land use (urbanization, forest

cover and riparian forest) in 10 watersheds on a variety of spatial scales. Significant

illI/land use relationships were found with whole-basin illI estimates and for illI

estimates from individual stream reaches. Land use immediately upstream of sample

stations was most strongly associated with stream integrity as measured by the mI.

Roth (1994) found a significant relationship between the illI and land use in an

agricultural watershed in southeastern Michigan. The mI declined with increasing

agricultural land use, which explained approximately half of the variation in water quality

as measured by biotic integrity (Allan 1995).
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Limitations of the ffiI

Bramblett and Fausch (1991) modified the illI for use within the Southwestern

Tablelands Ecoregion in southeastern Colorado, to assess effects ofU.S. Army

mechanized infantry training on the biotic integrity of the Purgatoire River. A significant

increase in illI scores at several sites over a 6-year period resulted primarily because of a

decrease in abundance of a tolerant omnivorous fish species.

Because the fish fauna of the Purgatorie River (like other Great Plains streams) is

tolerant of the variable physiochemical and low habitat diversity conditions, certain human

perturbations that mimic natural environmental variation will likely cause little change

(Bramblett and Fausch 1991; Rapport et a1. 1985), whereas other perturbations that shift

conditions beyond the natural range should cause large changes (Bramblett and Fausch

1991). For example, either moderate additions of sediment from erosion or added flow

fluctuations may have little detectable effect. Natural disturbances, such as floods, may

also negate other human disturbances such as nutrient input or removal of large woody

debris (Bramblett and Fausch 1991). Thus, anthropogenic disturbances likely to degrade

the aquatic ecosystem ofthe Purgatorie River (and other streams of the Great Plains) may

have the opposite effect of those that cause change in lotic fish communities of coldwater

streams and more mesic systems in the midwestern USA (Bramblett and Fausch 1991).

In regions of low species richness the illI has proven difficult to apply and has

resulted in extensive modification. Adapting the illI to those regions required that metrics

be replaced, deleted, or added to accomodate regional differences in fish distribution and
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assemblage structure and function (Fausch and Schrader 1987; Hughes and Gammon

1987; Miller et al. 1988).

Biotic integrity now provides a basis for biotic asssessment of surface waters by

the Environmental Protection Agency (USEPA 1990), Tennessee Valley Authority

(Miller et al. 1988), and numerous states (USEPA 1991). Vermont, Ohio, Kentucky, and

Illinois have included the ffiI in their monitoring or standards programs (Miller et al.

1988). The EPA has incorporated the ffiI into its Rapid Bioassessment Protocols (RBP)

designed to provide aquatic biota data for planning and management functions such as

screening, site ranking, and trend monitoring (USEPA 1989).

Benthic Macroinvertebrate Indices

Benthic macroinvertebrates have also been used in measuring biotic integrity

(USEPA 1989; Ohio EPA 1989; Shackleford 1988). Benthic macroinvertebrates are good

indicators of localized conditions; their communities reflect the effects of short-term

environmental impacts; sampling is relatively easy; aquatic macroinvertebrates serve as a

primary food source for many fish species; they are abundant in most streams; and most

state water quality agencies routinely collect such data (USEPA 1989).

Biological impairment ofbenthic macroinvertebrate communities may be indicated

by the absence ofgenerally pollution-sensitive macroinvertebrate taxa such as

Ephemeroptera, Plecoptera, and Trichoptera (EPT); excess dominance by any particular

taxon, especially pollution-tolerant taxa such as some Chironomidae and Oligochaeta; low
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overall taxa richness~ or significant shifts in community composition relative to the

reference condition (USEPA 1989). Most aquatic macroinvertebrate bioassessment

indices are based on these concepts (Lenat 1988; USEPA 1989; Kerans and Karr 1994).

Criteria used to characterize biological condition using EPA's Rapid Bioassessment

Protocols for benthic macroinvertebrates (USEPA 1989) include:

1. Taxa Richness

2. Family Biotic Index or Modified HilsenhoffIndex

3. Ratio of ScraperslFilering Collectors

4. Ratio ofEPT and Chironomid Abundances

5. % Contribution ofDominant Family

6. EPT Index

7. Community Similarity Index

8. Ratio of ShreddersITotal

Scoring criteria are generally based on percent comparability to the reference

station. Streams or sites assessed are then classified as non-impaired (comparable to the

best situation to be expected within an ecoregion); moderately impaired (fewer taxa due to

loss of most intolerant forms); or severely impaired (few taxa are present, and ifhigh

densities exist they are dominated by one or two taxa) (USEPA 1989).

Habitat Assessment

Habitat, as affected by instream and surrounding topographical features, is a major

determinant of aquatic community structure and function (USEPA 1989). Both the

quality and quantity of available habitat are critical to biotic integrity. The pattern,

distribution, and complexity of habitat types within a stream drainage have a significant
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affect on fish production and abundance (Gorman and Karr 1978; Foltz 1982; Schlosser

1982; Rankin 1989; Burton 1991; Lobb III and Orth 1991). Many aquatic species have

specific habitat requirements, including depth, velocity and substrate type (Moyle and

Baltz 1985; Gorman 1987; Allan 1995).

A number of habitat assessment techniques have been utilized (USEPA 1989;

Burton 1991; Rankin 1989; Clingenpeel and Cochran 1992). In the Rapid Bioassessment

approach (USEPA 1989), habitat assessment is partitioned into primary (substrate and

instream cover), secondary (channel morphology) and tertiary (riparian and bank

structure) parameters. Habitat characteristics are weighted (primary characteristics

receive the strongest values, etc.) to reflect their degree of importance to biological

communities. A total score is obtained and is compared to conditions represented by a

reference stream or reference site to determine the level ofbiological health.

The Basin Area Stream Survey (BASS) methodology (Clingenpeel and Cochran

1992) was designed to help monitor the effectiveness ofBMPs in the Ouachita National

Forest. BASS habitat assessment does not result in a qualitative index as does the RBP

approach. BASS quantifies (by actual measurement or visual estimate) elements relating

to habitat type, width, depth, bottom substrate, instream cover, and riparian cover. These

measurements can be used to compare streams in watersheds under various management

regimes to assess BMP effectiveness. In comparing three pairs of streams in managed vs.

reference watersheds in the Ouachita National Forest with the BASS methodology,

Clingenpeel (1994) found that no single factor was indicative of adverse cumulative effects

from silvicultural activities for all three years in which data was collected. However, some
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associations occurred for two of three years. For example, instream cover and shade

canopy was greater for reference streams than for streams in managed watersheds.

Physio-Chemical Water ouality Factors

The U.S. EPA (1989) recommends that water quality assessment be done along

with habitat assessment and biosurveys to determine if stream impairment exists. Typical

water quality parameters include temperature, dissolved oxygen (DO), pH, conductivity,

total suspended solids (TSS) and turbidity. Naiman et al. (1992) found that nitrogen,

phosphorus, turbidity, temperature, and intragravel DO were water quality elements

fundamental to evaluating ecological stream health. Richards et al. (1993) included

concentrations oftotal nitrate, total phosphate, ortho-phosphate, ammonia-N, and

nitrite+nitrate-N as major environmental factors that influence aquatic macroinvertebrate

community structure. Clingenpeel and Cochran (1992) recommended analysis of

additional water quality elements, including a number of micronutrients and heavy metals.
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CHAPTERID

METHODS AND MATERIALS

Streams were chosen for this study with the objective of selecting headwater

streams (2nd-3rd order) within the Lower Ouachita Mountains Ecoregion (Omernik 1987;

Giese et a1. 1987; Clingenpeel 1994) that were similar in size and geomorphology, and

located within watersheds that have been managed under a variety of timber management

schemes.

The Ouachita Mountains consist of long east-west oriented ridges formed under

geologic pressures of folding and faulting. Rock formations in the study area are primarily

sandstone and shale. Soils are primarily silty clay and silty loam ofmedium texture and

moderate permeability. These soils are deep in stream valleys and shallow and stony on

ridge tops. Forest vegetation is a mixture of oak-hickory and shortleaf pine. The primary

land use in the Ouachita Mountains is forestry. Some small-scale farming and mining also

occur (Foti 1978).

Mean annual precipitation in the study area ranges from 50-54"(127-137 cm).

Mean January temperature is 42-44 degrees F (6-7 degrees C), and mean July temperature

is 80 degrees F (27 degrees C) (Foti 1978).
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Figure 1. Location of the four watersheds in this study.

The study included portions of four perennial headwater streams that drain into the

Cossatot River. Caney and Brushy Creeks are located within the Ouachita National

Forest. Moore and Harris Creeks are located on lands owned and managed by

Weyerhaeuser Company. The four study streams are located within a lO-mile radius.
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Caney Creek, the reference stream, is situated in the Caney Creek Wilderness Area

in Polk County, Arkansas. The Caney Creek Wilderness Area is closed to motorized

vehicles. Timber has not been commercially harvested since 1948. The majority of the

timber in the Caney Creek watershed is in the 81-100+ age classes (Clingenpeel 1994).

Any anthropogenic influences on Caney Creek probably result from recreational use. An

eight-mile long hiking trail is located adjacent to Caney Creek.

Brushy Creek is also located within the Ouachita National Forest in Polk County.

Timber in this watershed has been under an uneven-aged management regime. The

majority of trees in this watershed are in the 61-100+ age classes (Clingenpeel 1994).

Four private inholdings are located within the Brushy Creek study area. At least two of

these inholdings contain some pastureland and livestock. Forest Service roads are located

in close proximity to Brushy Creek and cross the creek in several locations.

Moore and Harris Creeks are located south of Caney and Brushy Creeks. Portions

of these streams in the study area are located within Polk and Howard Counties, Arkansas.

These watersheds contain loblolly pine plantations ofvarying age ~lasses. Logging roads

and bridges intersect Moore and Harris Creeks in a number of locations, and cattle grazing

occurs within both watersheds.

Table 1. Stream and watershed characteristics.

....................................................................~~~~y ~~~.~y !!.~~~ M~~~.~ .
Stream length (km) 10.3 8.8 7.1 8.8
Watershed area (km2) 22.8 28.2 26.2 28.7
Riftle-runl£ool ratio 1/1.4 1/0.8 1/1.5 1/2.2
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Watershed areas were obtained using a Geographic Information System (GIS).

Watershed boundaries were digitized into the GIS using 1:24,000 scale USGS

topographic maps. A map wheel was used with the same maps to obtain stream lengths.

Stream profiles, elevation versus stream length, were developed using 1:24,000

scale USGS topographic maps (Appendix A). Each stream was divided into three sections

based on changes in gradient. Biological sampling and habitat assessment was done every

1000 meters throughout each section (upper, middle, and lower) of each stream. A

random number between 1 and 100 was generated to determine the number of meters to

move upstream (from the lowest point in the study area) to identify the first area to be

sampled on each stream. That same number was used to locate the starting point in the

next two sections.

Each sample area consisted of fOUf consecutive habitats (generally two riffle-pool

sequences) or reaches. Habitat reaches were separated using block nets. Sampling began

with electroshocking, and was followed with physical habitat measurements and

macroinvertebrate sampling (Clingenpeel 1994).

Sectionl •
Section 2

•
•

Section 3
•-'-----

Figure 2. Sampling design.
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Habitat Assessment

Habitats within each sampling area were identified and coded using the Ouachita

National Forest Habitat Typing Field Guide based (McCain, et al. 1990). This system is

based on stream channel morphology and fish habitat utilization research from the U.S.

Pacific Northwest. Three habitat types were added to reflect geomorphological

differences in the Ouachita Mountains.

Three primary habitat types are distinguished based on water depth: riffles, runs

and pools (proceeding from shallow to deep water). 25 habitat types stem from these

three main categories. Rime habitat types are differentiated based on water surface

gradient and water depth. Runs are characterized by lower gradient and less surface

agitation than rimes. Run habitat types are differentiated based on water velocity and

depth. Pools are differentiated at two levels: 1) position of the pool in the stream channel

(secondary channel, backwater, lateral, or main channel), and 2) cause of the scour

(obstruction, blockage, constriction, or merging flows) (McCain, et al. 1990).

Sample areas for each stream were identified alpabetically, beginning with the

lowermost area and moving upstream. Habitat reaches within each area were identified

numerically (A1-A4, B1-B4, etc.). Each habitat within each sample area was flagged with

the appropriate habitat type number (0-24).

Physical description of each habitat reach was accomplished using BASS

methodology (Clingenpeel and Cochran 1992). The length and width of each reach were

measured to the nearest tenth of a meter. Mean bank full width was visually estimated to

the nearest meter.
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Water depths were measured (to the nearest centimeter) along a mid-reach

transect at the waters edges, one quarter, halt: three quarters across, and at the thalweg.

Substrate composition was estimated and expressed as a percentage of the total

area of the reach. Substrate was classified into bedrock, boulder (>30cm), cobble (8-30

cm), gravel (1-8 cm), sand (1mm-1cm), and fines «1mm) (Bovee and Cochnauer 1977).

Embeddedness was visually estimated by examining "sediment lines" on several cobble­

sized stones, and estimating the percentage of the stone buried in sediment.

Fish cover was estimated as a percent of the habitat area. Categories included

undercut banks, large woody debris (d>0.15 m), small woody debris (d<0.15 m),

terrestrial vegetation overhanging the stream (height < 0.3 m. above the water), white

water, boulders, bedrock ledges, vegetation clinging to substrate, and rooted vegetation

(Platts et al. 1987).

Left and right stream bank angles were measured in degrees using a clinometer

(undercut bank = < 90 degrees; vertical bank = 90 degrees; sloping bank = > 90 degrees)

(Platts et al 1987). Bank stability was estimated for each bank as a percentage of the bank

that was intact and non-erodable. Riparian vegetation was classified as brush, grass, forest

or barren. Canopy closure was obtained using a spherical densiometer while facing

upstream in the middle of the habitat reach (Clingenpeel and Cochran 1992).

Biological Assessment

Habitat reaches were separated using block nets prior to sampling for fish.

Sampling was conducted during late spring and early summer to reduce variation caused
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by seasonal fish migration and recruitment ofyoung-of-the-year fish (Angermeier and Karr

1986). Fish were sampled by electrofishing with pulsed direct current using a Smith-Root

battery powered backpack electrofisher (Hendricks et al. 1989). Each habitat was

sampled by making a thorough pass up through and back to the lower end ofthe reach.

One person operated the electrofisher, and three persons netted the stunned fish.

Captured fish were identified, counted and released. Representative specimens were

collected·and preserved in 10% formalin for verification in the lab. Young-of-the-year

fishes were excluded because ofdifficulty in identification and because of scoring bias

caused by the influence of recruitment (Karr et a1. 1986; Angermeier and Karr 1986).

One aquatic macroinvertebrate sample per sample area (four consecutive habitat

reaches) was taken using a D-frame kick net. Kicking ofthe substrate just upstream of the

net was done for five minutes throughout a low gradient riffle or similar habitat

(Clingenpeel 1994). Specimens were picked from the net as well as from rocks and

organic matter that accumulated in the net. Specimens were preserved in ethyl alcohol for

later identification using Merrit and Cummins (1984) and McCafferty (1981). Time and

resource limitations prevented the collection ofmultiple habitat macroinvertebrate

samples.

Chemical and Physical Water Quality

Chemical and physical water quality data were collected by sampling one reach in

each stream section (three collections per stream) within a two-day period following

biological sampling. A Hydac Meter was used to obtain conductivity, water temperature,
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and pH measurements. A YSI 55 Meter was used to obtain dissolved oxygen (DO) and

air temperature readings. Two grab samples ofwater were collected for subsequent

analyses, including TSS, nephelometric turbidity, alkalinity, total nitrates and total

phosphorus, using methods described in Greenburg et ale (1985).

Statistical Analyses

Proc GLM in SAS (SAS 1989) was used to perform statistical analyses. Using

stream sections as experimental units, analysis ofvariance (ANOVA) was used to test the

equality of illI means. Parametric tests follow the assumptions of equal variances and

normally distributed data. Because these assumptions cannot be made with the use of

indices like the illI, ANOVA was done on both raw illI scores and on ranks (non­

parametric) (Conover 1981). The Fisher Least Significant Difference Procedure (LSD)

was then used to isolate statistically significant differences in illI scores among streams.

Contrasts were built to determine if significant differences occurred between the reference

and less-managed stream versus the two intensively managed streams; between reference

and uneven-aged management stream; and between even-aged management streams.

A correlation analysis was run with illI, habitat assessment, biological and physio­

chemical variables to determine significant linear relationships between illI scores and

these variables, as well as among the variables.
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CHAPTER IV

RESULTS AND DISCUSSION

ffiI/E.sh

The illI was modified to reflect differences in fish assemblages in the Cossatot

River watershed ofthe Ouachita Mountains as compared to streams in the midwestern

United States, where the original illI was developed (Table 4 contains the fish list).

illI metrics that were deleted include the following:

* Number and identity ofdarter species. Only two species of darters were

collected, the orangebelly darter (Etheostoma radiosum) and logperch (percina

caprodes). Only two logperch individuals were collected, and they were from a single site

on Moore Creek. Other drainage basins within the Ouachita Mountains Ecoregion contain

several darter species, and could utilize this metric. Because darter species are so limited

within the Cossatot River Drainage, however, this metric was deleted.

Number and identity ofsunfish species. Two common sunfish species were

collected, the longear (Lepomis megalotis) and green sunfish (Lepomis cyanellus). Three

bluegill sunfish (Lepomis macrochirus) were collected; however, this species has been
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widely stocked throughout Arkansas, and it is possible that these fish escaped from stock

ponds and are not a native species.

The primary use of the illI in this study was to detect differences in fish

assemblages relating to the effects of silvicultural activities. It is doubtful that silvicultural

activities would result in the elimination of either of the two common sunfish species in the

Ouachita Mountains (Rutherford et al. 1992). Therefore the number of sunfish species

metric was deleted. However, the proportion ofgreen sunfish to longear sunfish or

smallmouth bass is noteworthy among streams in this study, as later analysis and

discussion indicate.

Number and identity ofsucker species. Only two sucker species were collected,

the creek chubsucker (Erimyzon oblongus) and golden redhorse (Moxostoma

erythrurum); and only three golden redhorse individuals were collected. This metric might

be appropriate for larger streams within the Ouachita Mountains Ecoregion where there is

a greater abundance of sucker species. The three metrics mentioned above were replaced

by the number and identity ofminnow (Cyprinidae) species, which will be addressed later

in this section.

* Number and identity ofintolerant species. This metic was replaced with a

somewhat less restrictive metic, the number of sensitive species. Only one species

collected in this study is considered threatened, rare, or of special concern according to

the U.S. Fish and Wildlife Service, Arkansas Natural Heritage Commission, and Arkansas

Game and Fish Commission (USDA Forest Service 1990). Only one species collected is

described as intolerant according to Karr et al. (1986). For that reason this metric was
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broadened to include species that are sensitive, but perhaps not totally intolerant, to

environmental disturbances. This metric has been similarly broadened in other geographic

areas (Ohio EPA 1988).

* Proportion ofindividuals as omnivores. According to Karr et ale (1986)

omnivores are defined as species with diets composed of at least 25% plant material and at

least 25% animal material. After consulting the literature, I concluded that only one

species collected in this study, the bluntnose minnow (Pimephales notatus), should be

classified as an omnivore. This species was collected in only two ofthe sample streams.

* Proportion ofindividuais as insectivorous cyprinids. The premise of this metric

is that the relative abundance of insectivores (or insectivorous cyprinids) will decrease

with degradation due to changes in the insect abundance resulting from changes in water

quality, energy sources, or instream habitat (Karr et al. 1986). Using this metric in my

study resulted in the reference stream attaining the lowest score among the four sample

streams. This could be due to Caney Creek's size or rate of primary production; or it

could relate to the fact that one of the predominant insectivorous cyprinids (Notropis

boops) is somewhat tolerant to stream impacts and might have a high relative abundance

in more impacted sites.

* Proportion ofindividuals as hybrids. Very few fish were identified as being

hybrids. This could be due in part to inexperience in field identification. However, it

appears that minimal channel alteration has occurred in the study streams. Without major

channel modification, habitat heterogeneity usually results in habitat partitioning among

fish species and should prevent significant hybridization (Karr et al. 1986). After
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examining the fish data (Appendix B), eight metrics were selected to describe fish

community structure and function in the Cossatot River Drainage (Table 2). Scoring

criteria were then set for each metric according to Karr et al. (1986). For metrics 1-6

values were plotted against stream order for each sample area. A 95-percentile line was

fitted by eye, and the area below that line was trisected to achieve qualitative ratings of 5,

3, or 1 (Appendix D). Metrics 1-4 are related to stream order; thus the points produced a

right triangle (Karr et al. 1986). Stream order (Strahler 1964) was determined using

USGS 1:24,000 topographic maps. Metrics 5 and 6 are not a function of stream order;

thus scores are the same regardless of stream size. The trisection method was also

attempted for metric # 7. However, values set with this method would have resulted in

low scores for all four streams. An analysis ofvariance (SAS 1989) was run to test the

equality of means of fish abundances. There were no significant differences between

treatment and reference streams, so all stream sections were assigned scores of 5. General

ratings set in Karr et al. (1986) were used to score metric # 8.

Table 2. IBI metrics selected for this study.

Category

Species richness

and composition

Trophic composition

Fish abundance

and condition

Metric

1. Total number offish species

2. Number and identity ofminnow (Cyprinid) species

3. Number of sensitive species

4. Proportion of individuals as green sunfish

5. Ratio ofgeneralist to specialist feeders

6. Proportion of individuals as top carnivores

7. Number of individuals in sample

8. Proportion of individuals with disease or other anomaly
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As additional data is examined, perhaps other metrics can be added to the ones I

selected. However, as Figure 3 illustrates, these metrics are sensitive to the full range of

biotic integrity.

Metric

1. Total number of species
2. Total number & composition Cyprinids
3. Number sensitive species
4. Proportion green sunfish

5. Generalists/Specialists ratio
6. Proportion top carnivores

7. Fish abundance
8. Proportion fish with anomalies

Low---Biotic Integrity---High

Figure 3. Range of primary sensitivity for each mI metric
(based on Karr et al. 1986).

A description of each metric and metric scores for each stream are given below:

1. Total number offish species (exiuding exotics and hybrids). The number of

fish species supported by similar streams in a given region generally decreases with

environmental degradation (Karr et al. 1986). This metric has rarely, if ever, been

modified.

Scores: Caney - 5; Brushy - 5; Harris - 5; Moore - 5

2. Number and identity ofminnow (Cyprinid) species. Cyprinid species are

abundant throughout Arkansas and represent 58% of the fish species collected in this
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study. Cyrinids are a diverse family in terms of trophic composition and tolerance levels,

and thus are of great value as ecological indicators of water quality (Robison and

Buchanan 1988). Fausch and Schrader (1987) used this metric in an illI for streams in

northeastern Colorado.

Scores: Caney - 5; Brushy - 5; Harris - 5; Moore - 5

3. Number ofsensitive species. This metric replaced Karr's number of intolerant

species. Because this metric was designed to distinguish streams of the highest quality,

only species that are highly intolerant to a variety of disturbances should be considered

intolerant, because this metric is designed to distinguish streams of the highest quality

(Ohio EPA 1988). Because few such intolerant species exist in the study streams, the

metric was broadened to include species that are somewhat intolerant to environmental

disturbances. Table 4 lists tolerance levels as described for this study. Only those species

listed as sensitive were included in this metric.

As is often the case with "categorizing," few distinct boundaries actually exist

when it comes to tolerance levels. Some species, such as the central stoneroller, are

sensitive to some forms of perturbation and tolerant of others (Leonard and Orth 1986;

Ebert and Filipek 1988). The tolerance and trophic groupings listed in Table 4 were

compiled after consulting a variety of published sources, focusing on those specific to

Arkansas. The list was then reviewed by two noted researchers (H.W. Robison and W.J.

Matthews, personal communication).

Scores: Caney - 5; Brushy - 5; Harris - 5; Moore - 3
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4. Proportion ofindividuals as green sunfish. In the Midwest the relative

abundance ofgreen sunfish increases in degraded streams (Karr et ale 1986). My data and

personal observation support this premise for fish assemblages in the Cossatot River

drainage. Because the green sunfish is primarily a pool species, this metric could be biased

against Moore Creek, which has the lowest rime-run/pool ratio, a difference which does

not appear to result from anthropogenic influences. For that reason, I calculated separate

illI scores for rimes and pools. These two scores were then averaged for the actual metric

score. Substitute metrics which would eliminate this bias include proportion of green

sunfish to longear sunfish, and proportion green sunfish to smallmouth bass (less tolerant

species than the green sunfish). Both of these metrics showed the same trend as did the

proportion ofgreen sunfish metric (Table 3).

Scores: Caney - 5; Brushy - 5; Harris - 4; Moore - 4

Table 3. Results of metric #4 and alternative metrics.

Metric

% Green sunfish

Ratio green:longear

Ratio green:smallmouth

Caney

0.2

1:24

1:8

Brushy

0.4

1:17

1:2

Harris

2.2

1:5

2:1

Moore

2.7

1:4

6:1

5. Ratio generalist/specialistfeeders. Initially, I dealt with this concept in two

separate metrics: proportion of specialist feeders and proportion ofgeneralist feeders. For

the fish assemblages in this study, however, these two metrics seemed to be directly
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inversely related. For that reason I combined the two into a single metric. Most of the

sample streams in this study were comprised of insectivorous or invertivorous fish

(Table 4), which may indicate a healthy food supply and minimally degraded conditions

(Karr et a1. 1986). The generalist:specialist metric should be more sensitive to trophic

level changes in minimally impacted streams than the insectivorous cyprinid metric

(Leonard and Orth 1986). The relative abundance ofgeneralist or opportunistic feeders

should increase in degraded sites as specialist feeders emigrate or are eliminated due to

impacted food resources.

Leonard and Orth (1986) used the concept ofgeneralist and specialist feeders as

two metrics in their mI. "Generalists" were defined as species that eat a wide range of

foods or that adapt readily to shifts in food availability. "Specialists" utilized fewer food

resources and exhibited little capability for major diet shifts. Trends and scoring for this

metric followed that for insectivorous cyprinids and omnivores metrics in the original ffil

(Leonard and Orth 1986).

Because of time and resource limitations, I was unable to categorize fish species

under the definitions used by Leonard and Orth (1986). Instead, the specialist category in

this study is comprised ofbenthic specialist feeders, which consisted primarily of

orangebelly darters (Etheostoma radiosum). Although the orangebelly darter is one of the

more adaptable species, it is most abundant in optimal habitat: clear upland streams with a

gravel and cobble substrate and moderate to swift current (Robison and Buchanan 1988),

and it is considered a management indicator species for the Ouachita Mountains Ecoregion
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(USDA Forest Service 1990). Other species that are categorized as benthic specialist

feeders include the creek chubsucker, golden redhorse, and logperch.

Because the orangebelly darter, primarily a riffle-run species, is the most abundant

of the benthic specialist feeders in this study, I calculated separate scores for riftle-run and

pool habitats. These two were then averaged to obtain the actual metric score, thus giving

equal consideration to both major habitat types and minimizing differences due to natural

morphological variability among streams. This would not be done if the lower riftle-

run/pool ratio was caused by anthropogenic activity such as channelization.

Scores: Caney - 5; Brushy - 4; Harris - 3; Moore - 4

Table 4. Tolerance and trophic groups.

Species Common Name Tolerance Trophic
Group

Campostoma anomalum Central stoneroller M H
Lythrurus snelsoni Ouachita Mountain shiner S IIG
Lythrurus umbratiUs Redfin shiner M IIG
Luxilus chrysocephalus Striped shiner S IIG
Notropis boops Bigeye shiner M IIG
Pimephales notatus Bluntnose minnow M O/G
Semotilus atromaculatus Creek chub T C/G
Erimyzon oblongus Creek chubsucker T liS
Moxostoma erythrurum Golden redhorse S liS
Ameiurus nataUs Yellow bullhead T C/G
Fundulus catenatus Northern studfish S I/G
Fundulus oUvaceus Blackspotted toprninnow M I/G
Labidesthes sicculus Brook silverside T I/G
Lepomis cyanellus Green sunfish T C/G
Lepomis megalotis Longear sunfish M I/G
Micropterus dolomieu Sma1lmouth bass S TC
Etheostoma radiosum Orangebelly darter S liS
Percina caprodes Logperch M liS

Tolerance key: S-sensitive; M-moderately tolerant; T-tolerant
Trophic key: H-herbivore; I-insectivore-invertivore; O-omnivore;

C-carnivore; TC-top carnivore; G- generalist; S-specialist
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6. Proportion ofindividuals as top carnivores. Viable and healthy populations of

such top carnivore species as smallmouth bass, walleye, and pike indicate a healthy,

trophically diverse community (Karr et al. 1986). Carnivorous species such as the creek

chub were not included in this metric because they are opportunistic and generalist type

feeders. In this study the smallmouth bass was the only top carnivore. Smallmouth bass

are primarily upland stream inhabitants and are less tolerant to habitat alteration than the

other black basses, especially relative to high turbidity and siltation (Robison and

Buchanan 1988). This species is also considered a management indicator species for the

Ouachita Mountains Ecoregion, with the assumption that population changes may indicate

the effects offorest management activities (USDA Forest Service 1990). Scores for this

metric were low for all streams. This could have been partially due to sampling

inefficiency. The smallmouth bass is a difficult fish to electrofish because of its speed and

elusiveness.

Scores: Caney - 3; Brushy - 1; Harris - 3; Moore - 1

7. Number ofindividuals in sample. In similar streams, poor quality sites are

generally expected to support fewer fish than sites of higher quality (Karr et al. 1986).

However, biomass at all trophic levels often increases following clear-cutting (Allan

1995). Murphyet aI. (1981) found salmonid biomass and densities to be greater in recent

clear-cuts compared with forested stream sections. My data agree with those findings.

Fish abundance was greater in the two more intensively managed watersheds (Table 5).

Scores: Caney - 5; Brushy - 5; Harris - 5; Moore - 5
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Table 5. Fish abundance for the four sample streams.

Brushy Creek Harris Creek
(uneven-aged (even-aged
mgt.) mgt.)

Fish Abundance
(individuals/lOOm2

)

Caney Creek
(reference)

56 45 86

Moore Creek
(even-aged
mgt.)

83

8. Proportion ofindividuals with disease or other anomaly. Severely degraded

streams often yield a high number offish in poor health (Karr et al. 1986). Parasitism has

been shown to correlate with poor environmental condition (Mahon 1976). Other such

conditions include tumors, fin damage or other deformities, discoloration, excessive

mucus, and hemorrhaging. Although a small incidence of such abnormalities exists in

streams ofhigh ecological integrity, these problems are generally more common in more

degraded streams (Karr et al. 1986).

The most common abnormality found in this study was the occurrence of

blackspot disease, a parasitic trematode that appears as a tiny black spot in the flesh of

fish, especially certain species such as the central stoneroller (Berra and Au 1978).

Blackspot disease has been deleted from some mIs because the presence of this parasite

and varying degrees of infestation may be natural and not related to environmental

degradation (Berra and Au 1978; Berra and Au 1981; Ohio EPA 1988; Lyons 1992).

Incidence and abundance of some parasites could be related to the suitability of a stream

for intermediate hosts (Van Duijn 1973). Hosts of the blackspot trematode include the

ram's hom snail (Helisoma) and the belted kingfisher (Mergacery/e a/cyon).

Moore Creek is the only sample stream that yielded a high number of fish with

anomalies (5.2%), and the vast majority was blackspot disease. Blackspot disease was
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found in less than 1% ofthe fish collected in the other three streams. There are at least

two reasons besides increased degradation that could attribute to the higher incidence of

blackspot disease in Moore Creek:

1) Moore Creek has a greater proportion of pool habitats than the other sample

streams: Moore Creek's riffie-run/pool ratio is 37% lower than that of the reference

stream, and 33% lower than Harris Creek. Pennak (1953) notes that Helisoma spp. exist

in all types ofhabitats, but are most common in quiet waters. For streams, therefore,

Helisoma is likely to be more prevalent in pools than in riflles. This factor alone would

not account for the great increase in occurrence ofblack spot in Moore Creek, which was

over five orders of magnitute greater than the other streams.

2) Although I did not quantitatively measure snail abundance (snails were not

included in the macroinvertebrate kick net samples), it is likely that, due to a more open

canopy, the rate of primary production is higher in Moore Creek than in the other sample

streams, which would support an abundant snail population. Organic suspended sediment

was also greatest in Moore Creek. Snails feed on periphyton or detritus (McCafferty

1981), and thus could have been more abundant in Moore Creek. Fish and aquatic

macroinvertebrate abundances as well as the relative abundance of central stonerollers (the

predominant black spot fish host) were higher in Harris Creek than in Moore Creek,

however, and incidence of anomalies in that stream was only 0.3%

Rosenberg and Resh (1993) categorize one species of the ram's hom snail

(He!isoma anceps) as being somewhat tolerant oforganic pollution. Also, a small study

done on Baker Creek (Balkenbush et al. 1995), a second order stream in the Cossatot
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River drainage, showed the occurrence ofblackspot to be significantly higher at a site

adjacent to grazing lands as compared to a less disturbed reference site. Riftle/run:pool

ratios were similar between sample sites, and a higher proportion offish from riffle-run

habitats were collected than fish from pools, especially at the impacted site. Although this

condition merits additional consideration, I feel that the evidence in this study supports the

inclusion ofblackspot disease in this metric.

Scores: Caney - 5; Brushy - 5; Harris - 5; Moore - 1

Table 6. ffiI scores for each metric.

1 2 3 4 5 6 7 8 Totals 0/0

Caney 5 5 5 5 5 3 5 5 38 95

Section 1 5 5 5 5 5 3 5 5 38 95
Section 2 5 5 5 5 5 5 5 5 40 100
Section3 5 3 3 5 5 1 5 5 32 80

Brushy 5 5 5 5 4 1 5 5 35 88

Section 1 5 5 5 5 4 5 1 5 35 88
Section 2 5 5 5 5 5 1 5 5 36 90
Section 3 3 5 3 5 4 1 5 5 31 78

Harris 5 5 5 4 3 3 5 5 35 88

Section 1 5 5 5 4 4 3 5 5 31 78
Section 2 5 5 5 3 3 3 5 5 34 85
Section 3 5 5 3 5 4 1 5 5 33 83

Moore 5 5 3 4 4 5 1/5 28 70

Section 1 5 5 3 4 4 3 5 1/5 30 75
Section 2 5 5 3 4 4 1 5 1 28 70
Section 3 5 3 1 4 5 1 5 5 29 73
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Because data were obtained from only four streams, I did not feel confident

enough to assign integrity classes based on illI scores to each study stream. By

converting the illI scores to percentages, however, it was possible to fit the scores into

integrity classes designed by other researchers (Table 7). According to Karr et al. (1986),

Caney, Brushy and Harris Creeks would be considered good to excellent, and Moore

Creek would be classified as fair. According to illI ratings set for Wisconsin streams

(Lyons 1992) all four streams would be classified within the excellent integrity class.

Table 7. Integrity classes and related attributes, from Karr et al. (1986).

Integri~ class Attitributes

Excellent Comparable to the best situations without human disturbance; all regionally expected species for the habitat and
stream size are present with a full array ofage (size) classes; balanced trophic structure.

Good Species richness somewhat below expectation, especially due to the loss ofthe most intolerant fonns~ some species
are present with less than optimal abundances or size distributions; trophic structure shows some signs ofstress.

Fair Signs ofadditional deterioration include loss of intolerant fonns, fewer species, highly skewed trophic structure;
older age classes oftopP!'edators may be rare.

Lyons (1992) concluded that for the Wisconsin version of the illI, differences

among illI scores of 10% or less could be caused by sampling error and/or natural

variation, and thus are not significant. Differences of 10-25% may indicate true changes in

biotic integrity, especially among streams with high illI scores. Additional sampling or

supplementary data may be needed to determine if such differences are actually significant.

Differences ofgreater than 25% probably indicate real differences in biotic integrity and

environmental quality (Lyons 1992). Most evident in this study is the difference between

Moore Creek and the other three streams. This point will receive further attention in the

statistical analyses discussion.
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Also noteworthy is the drop in score between sections two and three for Caney

and Brushy Creeks (the two smallest streams). Species richness declines rapidly as one

moves upstream in a second order section (Harrel et al. 1967). The illI should not be

used for sites where only a few species occur naturally (Lyons 1992).

Habitat Assessment

Habitat assessment should support and complement bioassessment, approximating

conditions of a reference or "best attainable" situation (USEPA 1989). Results of the

BASS habitat inventory are divided into the following categories: physical dimensions,

substrate composition and embeddedness, instream cover, and riparian cover.

Table 8. Overview of average habitat reach dimensions.

Stream Reach Bankful Water Water Depth (em) Thalweg Width to
un!rth (m) Width (m) Width (m) Area (m2) Depth (em) Depth Ratio

Cane,- 22.3 26 4.9 118.2 16.2 32 1.6
Section 1 22.0 36 5.1 125.6 19.8 36
Section 2 23.6 24 5.1 132.5 11.8 36
Section 3 19.2 23 3.5 72.7 7.8 16

Brushy 27.2 36 5.5 166.7 16.4 32 2.2
Section 1 35.2 35 7.3 285.5 21.0 42

Section 2 26.0 36 5.6 1~4.9 16.8 30

Section 3 19.0 36 3.0 51.7 10.2 20

Harris 23.2 40 6.5 159.7 19.6 38 2.0
Section 1 21.3 53 7.9 171.2 22.2 45
Section 2 26.1 40 6.6 186.9 22.2 41

Section 3 20.1 29 5.1 103.0 13.0 25
Moore 22.8 38 6.2 140.2 17.6 37 2.2
Section 1 21.8 39 9.7 212.1 27.6 60
Section 2 23.3 40 6.0 136.2 17.0 36
Section 3 23.0 34 4.4 101.0 12.2 25
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Physical dimensions. Table 8 gives an overview of habitat reach dimensions for

each stream. In selecting a reference stream it is not only important to find the least­

disturbed stream in the region, but to minimize natural variabiliy caused by such factors as

geomorphology, topography, soils, vegetation, etc. The shape of the Caney Creek

watershed is long and narrow, with steeper topography and higher elevations than those of

the treatment streams. As a result, the width-to-depth ratio is lower for Caney than for

the other three study streams. Caney Creek's orientation is unique as well, flowing east to

west rather than north to south. Ideally, data from other least-disturbed streams should

have been utilized to characterize reference conditions, in order to minimize variability

caused by natural differences in stream attributes. However, time limitations did not allow

for inclusion of additional data in this study.

Substrate composition and embeddedness. A variety of substrate and habitat types

is desirable to support aquatic organisms. The presence of rock and gravel in flowing

streams is generally considered the most desirable habitat (USEPA 1989). As shown in

Table 9, substrate composition was varied and a high percentage of cobble and gravel

occurred in all four streams.
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Table 9. Ovenriew of substrate composition and embeddedness (percentages).

Bedrock Boulder Cobble Gravel Sand Fines Embed.
Caney 19 23 28 18 6 6 17
Section 1 21 25 26 17 0 13 15
Section 2 26 23 26 17 5 5 16
Section 3 9 23 31 22 14 2 20
Bmshy 18 17 35 17 1 12 11
Section 1 17 16 39 23 2 3 6
Section 2 21 14 36 15 0 14 14
Section 3 17 19 30 14 0 20 12
Harris 20 26 26 16 7 5 26
Section 1 23 23 27 15 0 12 27
Section2 19 27 26 16 10 3 29
Section 3 17 29 26 17 10 2 23
Moore 21 26 26 19 1 9 25
Section 1 29 31 21 16 2 3 15
Section 2 14 30 33 20 0 6 30
Section 3 20 20 25 21 0 18 30

Embeddedness is the degree to which larger rocks are surrounded by fine

sediment. This indicates suitability of the stream substrate as habitat for benthic

macroinvertebrates and fish (USEPA 1989). The degree of embeddedness appears to be

significantly higher in Harris and Moore Creeks, which could result from an increased

sediment load following clearcutting or road construction. This was not substantiated by

the percentage of fines found in each stream, which could have been because of sampling

error; or much of the fine sediment could have been flushed downstream. A more

rigorous quantitative approach is needed to accurately assess such primary habitat

parameters as substrate composition and embeddedness.

Instream cover. Large and small woody debris represent a significant energy

source in small streams (Vannote et al. 1980). Logs and tree roots also provide excellent
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Instream cover. Large and small woody debris represent a significant energy

source in small streams (Vannote et al. 1980). Logs and tree roots also provide excellent

habitat, as do submerged or emergent vegetation, undercut banks, bedrock ledges, etc.

All study streams except Brushy averaged less than 1% woody debris covering habitat

reaches. Boulders and bedrock ledges predominated instream cover, especially in Caney

and Harris Creeks (Table 10).

Table 10. Habitat reach averages for instream cover characteristics by
percentages.

Stream Undercut Large Small Terrestr. White Boulden Bedrock
Banks Woody Woody Vegetal. Water Ledges

Debris Debris
Caney 8 0.1 0.2 J 3 36 41
Section I 11 0 0 10 2 37 ~2

Section 2 8 0 0.2 1 4 36 47
Section 3 5 0.4 0.4 0 1 35 24
Brushy 5 0.8 0.3 J 7 8 26
Section 1 5 0.1 0.3 1 9 5 11
Section 2 ~ 0.3 0.4 6 8 8 32
Section 3 4 3 0.3 0 2 14 35
Harris 9 0.1 0.7 J 4 40 40
Section 1 10 0.2 I 1 4 30 46
Section2 13 0.1 0.9 6 3 37 48
Section 3 4 0 0.2 2 4 56 20
Moore 7 0.2 0.3 2 4 17 26
Section 1 2 0 0 0 2 10 16
Section 2 5 0.1 0.1 3 7 31 16
Section 3 11 0.6 0.8 2 I 9 42

Riparian cover. Well-vegetated banks are usually stable regardless of bank

undercutting. The ability of vegetation, bedrock and other materials on the stream banks

to prevent or inhibit erosion is important in determining stream channel stability and

instream habitat. Riparian cover dominated by shrubs and trees provides instream cover, a

source of coarse particulate organic matter (CPOM) and solar insulation. Using BASS
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methodology it was difficult to distinguish how prevalent shrubs were in the habitat,

because habitats were classified as either forest, shrub, grass, or barren; not a combination

of these types. Although shrubs were present in all four streams, the predominant riparian

vegetation for all four streams was classified as forest. Bank stability for the reference

stream was 13-20% higher than the treatment streams, which could have resulted in higher

erosion and sedimentation in the treatment streams.

The most noticeable difference in riparian cover, however, was canopy closure.

Percentage of overhanging vegetation was 17-29% less for treatment streams than for the

reference stream. This could have resulted in increased solar penetration and primary

production in the treatment streams.

Table 11. Habitat reach averages for riparian cover characteristics.

Stream Clinging Rooted Left Bank Left Bank Canopy Right Bank Right Bank
Veg. % Veg. % Angle Stability % Closure % Angle Stability %

Caney 2 7 150 76 83 136 78
Sect. 1 0 11 144 73 77 136 76
Sect. 2 3 7 149 78 83 129 82
Sect. 3 0 2 156 75 88 156 68
Brushy 2 4 136 68 66 140 59
Sect. 1 0 5 129 70 49 137 53
Sect. 2 3 4 141 66 69 137 58
Sect. 3 1 2 137 70 85 148 68
Harris 6 8 126 76 61 131 75
Sect. 1 1 7 123 80 52 120 70
Sect.2 11 13 135 74 57 129 81
Sect. 3 3 3 114 73 76 147 70
Moore 0 4 137 66 54 142 69
Sect. 1 0 1 145 68 28 143 69
Sect. 2 1 3 135 69 45 131 67
Sect. 3 0 8 136 61 78 152 72

Habitat characteristics such as substrate composition, embeddedness, canopy

closure, and instream cover are certainly important in relation to biotic integrity. A higher
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degree of quantification and/or qualification of these attributes during inventory would

probably make such relationships more apparent.

Table 12 shows the proportion of each of the three primary habitat types for each

stream. All four streams appear similar in composition, except Brushy Creek, which has a

much higher number of runs. This could have been influenced by channel modification

caused by a number of road crossings across Brushy Creek, which tends to result in more

shallow, homogenous reaches. This factor could also have influenced the lower fish

abundance in Brushy Creek.

Table 12. Primary habitat type
percentages by stream
(by number, not area).

Riffles Runs Pools

Caney 30

Brushy 27

Harris 18

Moore 25

20

44

29

23

50

29

53

52

Figures 4 and 5 break the habitat types down further into specific types of ritlles,

runs and pools as described using the Ouachita National Forest Habitat Typing Field

Guide (McCain et al. 1990).
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Aquatic Macroinvertebrates

The method selected to assess the macroinvertebrate community was the Rapid

Bioassessments of Lotic Macroinvertebrates developed by the Arkansas Department of

Pollution Control and Ecology (Shackleford 1988). This method, similar to the EPA

Rapid Bioassessment Protocols, uses a combination of semi-quantitative and qualitative

measures incorporated into seven biometrics. It has been tested and used extensively in

Arkansas (Shackleford 1988). The Mean Biometric Score, which indicates the degree of

impairment, can be used to rank monitoring stations in terms ofwater quality (Shackleford

1988). Biometric scores and corresponding biotic integrity status are shown in Table 13.

Table 13. Biometric scores and integrity status.

...~~g.~.~!~.~ ..§.~gE~.~ M~·~~·i·~~::.~·~··§·~g·~~···················~~l~~~f~~%··i~~~~i~d··· .
3 2.6 - 3.4 Minimal impairment indicated
2 1.6 - 2.5 Substantial impairment indicated
1 1.0 - 1.5 Excessive impairment indicated

Following is a brief description of each metric.

1. Dominants in Common (DIC). A comparison of the dominant tax can be used

to identify changes in community structure. Benthic studies have shown that tolerant

species are present in almost all streams, but dominate only in degraded systems (Lenat

1988; Shackleford 1988).

2. Common Taxa Index (CTI). This qualitative metric deals with the presence or

absence of taxa and is expressed by the formula: CTI = TIC/max (Ta,Tb),
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where TIC = taxa at common between treatment and reference stream; Ta = total number

of reference taxa; Tb = total number of treatment taxa.

3. Quantitative Similarity Index (QSI). This metric compares two communities in

terms of presence-absence and relative abundances of taxa. The minimum relative

abundance is obtained for each taxa that the two sites (reference and treatment) have in

common. These values are then summed to obtain the QSI value. Identical communities

have a value of 100 and totally different communities have a value ofO.

4. Taxa Richness. The number oftaxa present is commonly used as a measure of

community health (USEPA 1989; Platts et ale 1983). The percent change from the

reference to treatment site is used to express the degree of disturbance (Shackleford

1988).

5. Indicator Assemblage Index (fAI). The objective ofthis index is to measure the

change in relative abundances of tolerant and intolerant organisms. It integrates pollution

tolerance and relative abundance of selected taxonomic groups. In general,

Ephemeropterans, Plecopterans and Trichopterans (EPT) are sensitive to pollutants while

Chironomids and Annelids (CA) are relatively tolerant (USEPA 1989; ADPCE 1986).

The IAI is expressed as follows: IAI = 0.5 (%EPTb/ %EPTa + %CAa/ %Cab),

where a = reference stream and b = treatment stream.

6. Missing Genera. A decline in the number of taxa from the orders EPT is

associated with environmental stress (USEPA 1989). This metric examines the EPT

genera that are present at the reference site and absent from the treatment site. It
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combines a quantitative measure of richness and a qualitative measure of intolerant groups

in measuring the relative change in EPT richness.

7. Functional Group Percent Similarity (FGPS). Significant change in an aquatic

community's function can indicate interference with the energy flow mechanisms of the

ecosystem (Shackleford 1988). Functional groups with respect to the processing of

nutritional resources have been established (Merritt and Cummins 1984). These functional

groups include shredders, collector-gatherers, filterers, scrapers, macrophyte piercers, and

predators. The FGPS determines the relative change in community function between

reference and treatment sites by applying the QSI equation to the relative abundances of

functional groups.

Table 14 shows individual and mean biometric scores for each study stream.

Caney Creek served as the reference site, with which each of the other streams were

compared; therefore it has an understood score of4.

Table 14. Biometric scores.
# 1 #2 #3 #4 #5 #6 #7 Mean Score

Brushy 4 4 3 4 3 4 4 3.7
Harris 3 3 3 4 4 4 4 3.6
Moore 4 3 4 3 3 4 4 3.6

Mean biometric scores indicate no impairment in any of the managed streams as

compared to the reference stream. Individual metric scores indicating minimal impairment

for Harris Creek deal primarily with similarity characteristics, whereas those metrics
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indicating impairment for Moore Creek also involve common taxa, taxa richness, and

indicator assemblages. Aquatic macroinvertebrate numbers, relative abundances, and

biometric comparisons are found in Appendix C.

It should be noted that macroinvertebrate sampling was restricted to riffle type

habitats. Sampling of CPOM macroinvertebrates and pool benthos would have given a

more comprehensive view ofthe macroinvertebrate community structure and function.

Physio-Chemical Water Quality Factors

Table 15 lists the physical-chemical water quality factors measured with mean

values for each of the four streams. Overall, minimal impairment is indicated. Differences

among the streams are most apparent for turbidity, TSS, and conductivity. Turbidity and

TSS each have a statistically significant inverse relationship with ffiI score (Table 18).
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Table 15. Physical-chemical water quality measures.

Air temperature (C)
Water temperature (C)
Dissolved oxygen (mg/l)
pH
Conductivity (um/cm)
Turbidity (NTU)
Alkalinity (mgll as CaC03)
Calcium (mgll)
Magnesium (mgll)
Potassium (mgll)
Sodium (mgll)
Nitrate-N (mg/l)
Total dissolved phosphorus (mgll)
Total suspended solids (mg/l)
Sediment, fixed (mg/l)
Sediment, volatile (mg!!)

Statistical Analyses

Caney

25.7
21.5
8.6
6.5
15.7
3.3
1.9
0.6
0.6
0.6
0.1
0.04
0.01
1.0
0.6
0.3

Brushy

26.9
23.3

8.1
6.8

20.6
6.3
5.1
1.2
0.8
0.7
1.1
0.03
0.01
1.2
0.8
0.3

Harris

28.1
21.8

8.7
7.0

26.1
9.7
7.6
1.9
0.7
0.7
1.9
0.05
0.02
2.2
1.3
0.8

Moore

26.3
21.8

8.3
6.7

21.9
12.0
4.8
1.1
0.7
0.8
2.0
0.04
0.02
4.0
1.7
2.3

Results of parametric and nonparametric analyses were similar (Table 16). Rank

transformations for ANaVA resulted in a significance level of .04, adequate to reject the

null hypothesis of equal illI means among streams. The resultant LSD test revealed

significant differences (p=.05) between Moore Creek and each of the other three streams.
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Table 16. LSD test results for ffiI scores (p=.05).

Nonparametric
Stream T Grouping Mean N T Grouping Mean

Caney A 36.7 3 A 9.7

Brushy A 34.0 3 A 7.8

Harris B A 32.7 3 A 6.5

Moore B 29.0 3 B 2.0

Contrasts showed a significant difference (p=.05) between the reference stream

and stream in a less intensively-managed watershed versus the two streams in intensively

managed watersheds (Caney, Brushy vs. Harris, Moore) (Table 17). Contrasts between

Harris and Moore Creeks were significantly different (p=.046); but not between Caney

and Brushy Creeks (p=.346).

Table 17. Statistical contrasts among stream ffiI scores.

Contrasts

Caney,Brushy vs. Harris, Moore
Caney vs. Brushy
Harris VS. Moore

p value
(parametric)
0.016
0.214
0.105
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Table 18. Correlation matrix with illl, physical, chemical.. habitat, and biological
variables.

IBI I pH Phos Con TSS Turb Fish Mac Can Fine Emb WW Swd L\vd
IE! --- -.28 -.19 -.49 -.69* -.69· -.58 -.20 .37 -.13 -.51 -.07 -.22 -.26
pH -.28 --- -.16 .68* .47 .58* .54 .49 -.47 -.25 .40 .48 .43 -.19
Phos -.19 -.16 -- -.15 -.36 -.18 -.15 -.38 .31 .54 -.30 -.46 -.08 .97*
Con -.49 .68* -.15 -- .42 .70* .52 .47 -.56 -.19 .43 .49 .40 -.18
TSS -.69* .47 -.36 .42 --- .76* .54 .22 -.52 .01 .64· .39 .30 -.27
Turb -.69* .5S* -.18 .70* .76* --- .48 .29 -.84* -.17 .47 .66* .23 -.21

Fish -.58 .54 -.15 .52 .54 .48 -- .32 -.13 .06 .71* .08 .86- -.02

Mac -.20 .49 -.38 .47 .22 .29 .32 -- -.15 -.56 .63· .03 .12 -.42

Can .37 -.47 .31 -.56 -.52 -.84· -.13 -.15 --- .35 -.06 -.91 .05 .39

Fine -.13 -.25 .54 -.19 .01 -.17 .06 -.56 .35 --- -.01 -.38 .23 .64*

Emb -.51 .40 -.30 .43 .64· .47 .71· .63· -.06 -.01 -- -.09 .54 -.23

WW -.07 .48 -.46 .49 .39 .66· .08 .03 -.91· -.38 -.09 - -.01 -.56

Swd -.22 .43 -.08 .40 .30 .23 .86· .12 .05 .23 .54 -.01 -- .05
Lwd -.26 -.19 .97· -.18 -.27 -.21 -.02 -.42 .39 .64· -.23 -.56 .05 --

• Statistically significant (p = .05)

Phos - Total dissolved phosphorus Fish - Fish abundance
Con - Conductivity Mac - rvIacroinvertcbrate abundance
TSS - Total suspended solids Can - Canopy closure
Turb - Turbidity Fine - % fines

Emb - Embeddedness
WW .. Water width
Swd - Small woody debris
Lwd - Large woody debris

Table 18 is a correlation matrix including all variables that showed significant

relationships. Turbidity and TSS showed the strongest correlation with IBI. Fish and

macroinvertebrate abundance probably show an inverse relationship with illI because the

two intensively managed streams were higher in fish and macroinvertebrate abundances,

but not in biotic integrity. This might also account for the positive correlation between

embeddedness and fish and macroinvertebrate abundance.
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Conclusion and Recommendations

The objectives of this study were to: modify the illI to reflect fish assemblage

differences within the Lower Ouachita Mountains Ecoregion; to use the illI to measure

biotic integrity in forested watersheds under different management regimes; and to relate

differences in illI scores to corresponding differences in chemical, physical, or aquatic

macroinvertebrate community characteristics.

An illI with eight metrics, sensitive to a wide range ofbiotic integrity, was

developed. The illI detected differences among the four study streams. These differences

seemed to be most strongly associated with increased turbidity and TSS in the treatment

watersheds. Metrics which revealed differences in biotic integrity among the four streams

were: number of sensitive species, proportion ofgreen sunfish, generalists:specialists

ratio, proportion of top carnivores, and proportion offish with anomalies. Species

richness and abundance metrics resulted in high scores for all four streams.

The illI score for Moore Creek (even-aged management watershed) was

significantly lower than scores for the other three streams. Further inspection of this

stream could reveal specific impacts (road crossings, grazing pressure, timber management

practices) which might be contributing to reduced biotic integrity. The illI could then be

used to assess specific sites and impacts. Further monitoring would be necessary before

making a judgment on the ecological health ofMoore Creek. illI scores for the other

treatment streams indicated good to excellent biotic integrity.
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Aquatic macroinvertebrate analyses indicated no impairment for all four study

streams according to the Rapid Bioassessments of Lotic Macroinvertebrates (Shackleford

1988). However, sampling was limited to riffle-run habitats. Sampling of CPOM and

pool benthos might reveal more significant differences in macroinvertebrate community

structure among the sample streams.

Habitat assessment showed that Moore and Harris Creeks are larger streams than

Brushy and Caney Creeks. This factor, as well as more intensive silvicultural practices,

could contribute to the more open vegetative canopy over Moore and Harris Creeks.

Greater fish and macroinvertebrate abundances in these two streams was probably a result

of increased solar penetration and primary production. Embeddedness was greater on all

treatment streams as compared to the reference stream, and was highest on Moore and

Harris Creeks. None of the habitat characteristics showed a statistically significant

relationship with IBI scores. More rigorous measurement techniques might reveal

significant relationships, especially concerning characteristics like embeddedness and

substrate composition.

Data from this study supports the use of the illI in the assessment of silvicultural

and related impacts in the Lower Ouachita Mountains Ecoregion. Further refinement

should enable its use within a comprehensive water quality management program to assess

site impacts from timber management and related activities~ to monitor biotic integrity

within streams over time; and to assess effectiveness of forestry best management

practices on stream ecological integrity and water quality goals.
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STREAM PROFILES
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Brushy Creek Stream Profile
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APPENDIXB

FISH BY HABITAT TYPE PER STREAM
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~

Brushy (A-M)
Fi~h Per Habitat Type

Riffle ---- ..-------~ Run ----------------------, Pool -------------------- Total Relative Abundance
1 2 14 15 16 11 12 17 Section 1 Section 2 Section 3

Bigeye Shiner 29 18 43 20 17 8 135· 6 3 0
--

BlacksJ?~~ted Topminnow 1 3 15 19 1 0 0
.~Iuegill 1 1
Central Stoneroller 218 26 70 125 248 1 38 88 814 17 27 61
Creek Chub 131 11 52 146 270 24 48 33 715 1 18 53 1

Green Sunfish 1 2 13 16 1 0 0 1

.-

L0f!gear Sunfish 2 14 21 13 58 159 267 17 3 a
Northern Studfish 1 1 6 2 4 12 4 30 1 1 0
--

Orangebelly Darter 473 100 47 238 463 2 122 86 1531 36 40 39
Ouachita Mt. Shiner 4 69 22 95 8 0 0
Smallmouth Bass 2 6 7 5 7 9 36 2 " 0
~triped Shiner 59 31 33 26 34 19 202 9 4 0
Yellow Bullhead 3 1 3 9 21 3 8 15 63 1 2 2

3924 100 99 'lOa
13 species



Caney (A-N)
~ish Per Habitat Type
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99
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48
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o
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1

31
1
2
5
1

100

Relative Abundance
• • t • .. ,

Riffle-------------------- Run------------------- Pool--------------------------------- Total Section 1 Section 2 Section 3
2 , 24 14, 15 16 5 ; 11 12 17 23

~~~eye Sh 5 5 0: 42 17 ' 1 , 0 72 10 0, 163
Stone_~I_I~r 87 7 ~ i 209 85 - 33: 20 425' 73' 63 1_~~0~

Creek Ch 4 2 5 14 30 0 65 126' 41 34: 447
'Green 8F- 0 0 a 0' 0 0 0 5 1 0 ' , 7
---_.-,----_.- _.'- ~

~_oi1g~ar_?F 0 17 5 4,. _~ 1 0 2~ 125 9 O· ,1.6?,
N. Studfish 1 0 1 a 0 0' 3 1 1 1 ' 9
-.------- - --

08 Darter 100 13 34 100 137 7 56 284 21, 22 1276

OM Shiner 0 0 0 a a 0' a 4 3 0 7
----._-_._--~- -

8M Bass 2 3 1 , 5 4 0 1 30 5 a 57 !
-------- ._-

~~ri~~9 ~h . _ _ 7 1 2 23 12, 0: a 65 4 3 151
Y. Bullhead 1 1 2 3 10, 0 5' 66 5 0 118

3680

-..J
U1

11 soecies





Moore Creek
Fish per Habitat Type

Relative Abundance
:Riffle--------------------· Run------------- P001--------------------------------------------------------------------- Tota1 Secti0 n 1 Section 2 Section 3

1 2 3 15 16 5 9 11, 12 13 17 20 22
Bigeye Sh ~ 15 15 95 88 98 12 44 70' 37 5 29 6 514 14 6 8
BS Topmin 7 7 1 0 0
Bluntnose 17 2 7 17 15 1 4 1 65 0 1 1
B. Silversi 1 1 1 7 8 18 1 a 0
Stoneroller 175 69 343 402 8 53 100 413; 21 284 59 2302 36 45 32
Creek Chu 1 64 117 5 91 154 532 1 2 18
Creek CS 2 9 2 30 27 35 105 0 0 4
Green SF 8 6 9 24 4: 13 20 41 5 31' 3 164 3 3 2
Logperch 2 0 0 0
Lo~gear 28 33 14 31 94 7 32 40 258 19 143 35 734 25. 16 4
N. 8tudfish 1 1 1 3 0 0 0

,- !

OB Darter 467 68 11 160 270' 4 4 20 239 5 241 12 1501 15i 25 28
---J (Redfin Sh . 1 3 6 27 2 16 5 4: 64 2 0 1---J

8M Bass 3 4 2 3 1 7 2 4 1 27 1 1 a
Y. Bullheac 6 8 1 4 17 5 1 42 1 1 1

100 100 99
15 Soecies
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tAquatic rvlacroinvertebrate Numbers and Relative Abundance Per Stream
,

Caney·--··--· 8 ru shy--..--....- Harris.--..-....--- Moore--------..-!
IORDER F~~'l!LY (:, E~·H.JS STAGE No. RA :"Jo RA No. RA No. RA
!COleoptera Psephenidae ?c;eohenus larvae 277 18 296 27 270 17 328 19

l Elmldae Oct:0serJUS adult 52 '1 23 10
j E\midae Ster.elmls adult 56 4 16 1 28 2 53 "t

I
..;

i
Elmidae Or:~0brevia larvae 18 0 aI 10 1 14-

I Elmidae An~'Jr\Jn'fX adult 1 0 :) 0 a 0 :j Q

I Gyrinidae DlneL;tus adult I] 0 0 8 1 0

I
Gynnidae Gyr:nus adult 0 0 0 0 0 0 0

I Dytiscidae Oreodytes adult 0 I] :J 0 0 0 0
I
\Dlptera Tipulidae He;tatama larvae 40 3 ~ 3 1 1 0 r3 0
I Empldidae larvae 29 2 10 1 12 1 15 1I
I Oixldae Dixella larvae 0 0 0 0 0 0 3 0
I
i
i Ephydndae larvae 0 0 1 0 0 0 0 I]
I
I Chlronomidae larvae 3 I) ~2 4 39 2 77 5

I Simuliidae larvae 2 I] 0 a 0 3 0

I Tabanidae larvae 0 0 0 0 1 0 3 0

INematocera pupae 3 0 0 0 0 0 0 0

Ephemeropter Heptageniidae Macdunnoa larvae 142 9 223 20 290 19 243 14

Oligoneuriidae Isonychia larvae 25 2 61 6 180 12 161 9

Siphlonuridae Ameletus laF"Jae 3 0 23 2 9 1 3 0

Baetidae Baetis laF"Jae 0 0 1 a 3 0 2 a
...

Baetidae Pseudocloeon larvae 12 1 18 2 2 a 7 0

Caenidae Caenis larvae 0 0 0 0 2 a 3 0

I Leptophlebiidc Leptophlebia larvae 0 0 1 a 1 0 7 0

I
Ephemerellida.Attenella larvae 0 0 0 0 a 0 0

Ephemerel.I~~a?errCl tella larvae 0 I] a 0 0 0 I]

IHemlPtera Gerridae Gerris adult 3 0 0 2 0 15 1

I Gerridae Trepobates adult 3 0 a 0 0 0 0

\
Gerridae Metrobates adult 1 0 0 a 0 0 0 0

I Nepidae Raratra adult 1 :J J 0 0 0 ."'1

I
I.)

I
Belostomatida Lethccerus adult 1 tJ 0 a 0 0 :] 0

I Belostomatida Belostoma adult 1 0 0 0 1 0 0 0
I Veliidae Rhagovelia adult 1 0 4 0 0 0 0
i
! \/eliidae Microvelia adult 0 0 a 0 1 0 0 a

unkno\ovn nymph 1 0 a 0 a 0 0 0
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IAquatic Macroinvertebrate Numbers and Relative Abundance Per Stream
I .

I . . Caney-.--.--- Brushy-·--·_- Harns·---·_----
Hlrudinoldea Glossiphoniidae adult I 0 7 1 0

Hirudinidae adult 0 0 1 0 3

Isopoda Asellidae adult 2 0 0 0 0

Lepidoptera Pyralidae Petrophlla larvae 0 0 1 0 0

unknown pupae 0 0 0 0 0

Megaloptera Corydalidae Corydalus larvae 18 1 45 4 34

[ Corydalidae Nigronia larvae 22 1 13 1 14

Sialidae Sialis adult 0 0 0 0 0

Gomphidae Gomphus larvae 7 0 8 1 22

Gomphldae adult 0 0 0 a
Gomphidae HagenJus larJae 9 1 1 0

Aeshnidae Boyena larvae 0 0 2 0

Calopterygida Calopteryx larvae 0 0 0 0

Coenagrionida.Argia larvae 0 0 4 0

Plecoptera Perlidae Neop~~ta larvae 283 18 119 11

Perlidae Claassenia larvae 5 0 6 1

Perlidae Acroneuria larvae 4 0 14 1

Tnchoptera Philopotamida.Chimarra larvae 58 4 19 2

Hydropsychid, Cheumatopsy, larvae 392 26 60 5

Hydr()psy~hidc. Cheumatopsy~~pupae 0 0 1 0

Helicopsychjdi.Helicopsy~he larvae 5 0 1 0

Prosobranchia (sbclass) adult 1 0 47 4

Oligochaeta (class) adult 48 3 37 3

t 531 100 1106 100
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Aquatic Macroinvertebrate Biometrics

Metric #
1 # Dominants in Common
2 # Common Taxa
3 _SImilarity Index
4 Taxa Richness % Diff.
5 Indicator Assemb. Index
6 Missing Genera
7. Funct. Group % Simi!.

Total Number Taxa
No. individuals/minute
0/0 EPT*
% CA*

Brushy Harris Moore Caney
4 3 L1

?-,o 25 29_I

64 64.2 71.5
5.5 8.2 14

0.667 1.074 0.758
0 0 0

76 92 79

35 34 43 37
17 28 24 22
50 62 60 57

7 3 7 3

. -
1t EPT - Ephemeroptera, Plecoptera, Tricoptera

CA - Chironomidae, Annelida
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APPENDIXD

SCORING CRITERIA FOR ffiI METRICS
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~~,'c .5
Generalists/Special ists

.;=- ..... ~-~-==:~== ==.=.===l=---===:-,,=-~===~:~=======-=.=.=:==.==.==-:===~-====~

rifft(~ '{1-\(,S

.Series1

Series2

fA'ts

43.5

._------~---------_.~-----~---------_.--

2.5

""'._----

21.50.5

.~-~--~--~--~--~~~-~---_.~-----

o

15.00
14.50 -7-~-~-·-------·--------·------------------·_----~·----------------~----------.----.-----.-- ..-.--.---.-------.-.- ..--------.---.---.­

14.00 .~:_.~--~--...........,..--.--.------------------------..---------:--.-.---..----------~--------------.----------------------.------.---------

13.50
13.00 -;---------.--------.------------------------~.------

12.50 -~
12.00 +-.-•._._._-._.--------~----------

11.50 ~i---

11.00

10.50
10.00 ·r-~-----------··--·----·-----_·--------~---------~-------------~---------~-- ..----------------
9.50 ~--------~--------.-.--------.

9.00 ...:----------------------------------------------
8.50 -l~-.- ..----------.~------ ..---.-.----.-----------------------------.----------~ ----.-f;[-----------.--------.----.-.--- -

8.00 .t-~-------------.--c-.------ ..

7.50 ~--------------------.--.-------.-------------------.------------------------- ..------.-----..-------------.----~-.--.---.-------.------ ..-----.. -.----.--.

7.00 .~:-~-.-.~~-~-~-----------.--..--.--.---.---.-.. ------..---.-------.---~._-.--- ----.-.. --.-.---~ ...-----==----.-------.-.---.--.--.-~---.-----

6.50---0- ....
6.00 .,----------.------.-------.-----...---- -~------.-_.- ..__.---_.-. - ...----- .. -.-.-------.-----------------.------.---- .---..-------_.-~---_~-.- ..----.. -- ....-----..---------.. --..- .. -_..... -_ .. -_ .. -_....._.

:5

5.50 ----..---.---------=----.... -. - ..-.-.~-_ ....-..-..---._.
5.00 .------. -- ----.---.- ..-....-...--.--..---

4.50 ~ '-'
4 .00 ~---------.------- .. --' - -- - .-- --- _.- .---------.---.-.----.--.-.----~---------....--- -.-.--------....-. -~-------.----_._i-.__.-.----
3.50 ..---~. ~--.--'-----~.~--'-------"-.'- ------- ..----------.--~ ..-~-..-------. -= '-' -~.----.- .•---.-.-. --- --.-.-.------.-------

0.50 --.' .'.- _.. -~- -.~--.---- ..-------._-.---.---'ir-_._.--- ._.-_ -_.--.----.---..--.-.. -..-- -.-- -.-----

0.00 -.-------: '--'-------- ----·-----·--~-t-----·--- --.--.-- ---.---.
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