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CHAPTER 1

INTRODUCTION

Much interest has been generated by a new class of computer programs called

neural networks. Neural networks have been successfully applied in fields as diverse

as task coordination, optical pattern recognition and sonar signal processing. A recent

article in u.s. News and World Repon states that most financial organizations are

experimenting with neural networks, but only a few have actually put them to use

(Egan). Much of the excitement surrounding neural networks is due to their unique

ability to handle nonlinear data. Neural networks are universal approximators capable

of approximating any nonlinear function (White 1989). This means the functional

form of the model need not be made explicit.

Many people believe that neural networks hold great promise for predicting

futures prices. However, the predictability of futures prices has been a source of

controversy within the academic community for many years. It has been the

contention of many academics that the markets are efficient in the sense that the

current price reflects all information that can be known. In direct contradiction to

this view, many traders have indicated they use technical analysis to aid in their

predictions of future prices. Brorsen and Irwin report that 80 percent of commodity

investment pools use computerized technical trading systems. Two highly regarded

books by Schwager (1989,1992) give the trading testimonials of a large number of

traders who have used technical analysis to produce significant trading profits over a
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long period of time.

Market efficiency is not merely a trivial or academic matter. Stocks,

commodities, currencies, and other financial instrument are traded for various

reasons: reduction of business risks, purchases and sales of raw materials, and the

investment of personal or corporate wealth. Thus the efficiency of the economy

depends in part on the efficiency of the markets which operate in the economy. As

Fama argued (pg. 383):

The primary role of the capital market is allocation of ownership of the
economy's capital stock. In general terms, the ideal is a market in
which prices provide accurate signals for research allocation: that is, a
market in which firms can make production-investment decisions, ...

Agricultural economists have long been interested in the efficiency of the futures

markets. If producers and other market participants use futures prices in their

production and marketing decisions and futures prices give erroneous signals about

future spot prices then a misallocation of resources may occur (Stein).

Futures markets offer an opponunity to speculate on the price changes of

commodities and various financial instruments. In recent years money invested in

managed futures has increased dramatically. The managed money segment of the

futures industry has grown to an estimated $2Q-billion plus business (Futures). If the

current futures price reflects all available information, as some market efficiency

theories stipulate, then it would be impossible for speculators to extract any profits

from this market.

Technical Trading Systems and Market Efficiency

In light of the growing evidence that there is some predictability in futures

prices, many in academia have modified their views on the usefulness of technical
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may sluggishly adjust to new information. Profitable trading systems would then be

possible because of the price trends that exist as a result of the adjustment process

caused by information shocks (Beja and Goldman; Nawrocki). If market participants

are not heterogeneously informed of new or difficult to obtain information, then

prices tend to be an imperfect aggregator of information. Using a two period noisy

rational expectations model, Brown and Jennings claim that because of this imperfect

aggregation, the current price is not a sufficient statistic for private information

possessed by market participants. As a result, historical prices add information that is

not available with the current price alone. In other words, technical analysis provides

additional information to market participants forming an expectation of future prices.

Researchers have begun to argue that asset prices exhibit nonlinear dynamics

(LeBaron). The particular type of nonlinear structure which asset prices may possess

has been an area of debate. Much empirical research has been devoted to

investigating the possibility of chaos in economic systems. A chaotic system exhibits

complex dynamical properties and has limited forecastabiltiy. The property of limited

forecastabilty has particular relevance to the study of market efficiency. However,

empirical research generally shows little support for chaos but strong evidence for

nonlinear dependence (Blank; Brock, Hsieh, and Lebaron; De Grauwe Dewachter,

Embrechts; Decoster, Labys, and Mitchell; Frank and Stengos; Hinich and Patterson;

Hsieh; Mayfield and Mizrach; Peters; Scheinkman and LeBaron).

Neftci argued that if price dynamics are nonlinear, technical analysis may be

capturing information contained in higher-order moments of asset prices. This

information would not be captured by traditional linear models. Mechanical trading

rules based on technical analysis have some advantage over traditional statistical tests
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in detecting nonlinear dependence. Mechanical trading rules have been able to detect

nonlinear dependence and can be used to test the quality of the dependence

(Nawrocki). Logue and Sweeney used a mechanical trading rule to detect dependence

in foreign exchange rates whereas spectral analysis detected no dependence. Brock,

Lakonishok, and LeBaron examined the stock returns generated from some technical

trading rules. Their results suggest that the return-generating process of stocks is

more complicated than the returns suggested by linear models.

Neural Networks and Market EfficieTk.)1

A new class of computer programs, called neural networks, is particularly

capable of handling nonlinear data. Neural networks are capable of approximating

any nonlinear function (White 1989). The nonlinear forecasting ability of neural

networks has been demonstrated in a wide variety of applications. Among them was

Lapedes and Farber who demonstrated that neural networks are capable of decoding

deterministic chaos. Neural networks have been successfully applied in fields as

diverse as task coordination, optical pattern recognition and sonar signal processing.

Oldfield, Rogalski, and Jarrow claim that the arrival of information is best

described by a sporadic jump process. When information arrives in this way and

there are price adjustment delays, Le. the market is in disequilibrium, then any

mechanical trading rule should by adaptive in response to changing information and

dependence levels (Nawrocki). Neural networks may be one of the best tools

currently available to extract complicated and changing dependencies in the price

structure of a time series of futures prices. Consequently, many people feel that

neural networks hold great promise for predicting financial variables.
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Testimonials can be unreliable, nonetheless, specific examples of firms

applying neural networks to trading are being reported. Gerber Baby Foods is using

neural advice to trade cattle futures (Computing Canada). Neural networks are also

being used to trade the S&P index (Business Week, November 2, 1992). Shearson

Lehman is reported to be using neural networks to predict the performance of stocks

and bonds (Business Week, March 2, 1992). Nuwave Investment Corporation uses a

neural network as their primary tool to forecast price changes in a variety of futures

prices.

Some documented examples of applying neural networks to building

commodity trading systems have been published. Some of the earliest studies,

including those of Collard (1991, 1992) and Bergerson and Wunsch showed promising

results. All of these studies, however, were lacking in both the short sample period

as well as absence of any statistical tests on the profits. More recently, academic

studies have begun to use neural network based trading systems to answer questions

of market efficiency. Tsibouris was unable to reject the null hypothesis of a random

walk in exchange rate returns by using a neural network based prediction model.

Studies by Grudnitski and Osburn and Lee and Huh have shown better results. Lee

and Huh forecasted the futures prices of treasury bonds, dIe S&P 500, and Oil and

rejected the random walk. Grudnitski and Osborn produced trading returns of

17.04% and 16.36% trading the S&P 500 and Gold futures respectively.

There are some potential advantages in using a neural network to test market

efficiency and investigate for potential nonlinearities. Traditional tests may not be

able detect nonlinearities as a more direct method such as a neural network trading

model (LeBaron). Market efficiency theories are realistically mitigated by bounded
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rationality arguments. Such arguments hold that humans are inherently limited in

their ability to process information, so that efficiency can hold only to the limits of

human information processing (White 1988). Neural Networks are a relatively new

technology which theoretically could aid market participants in processing

information.

The popular press is filled with claims about the usefulness of neural networks

to commodities trading, but little academic research is available to support these

claims. This research will investigate usefulness of a neural network for trading a

previously neglected futures series. Kansas City Wheat. as well as a more commonly

analyzed futures price series, the deutsche mark currency contract.

Objectives

General Objective:

Determine the applicability of neural networks to trading futures.

Specific Objective:

Determine the profitability of a trading system based on a feedforward neural
network with one hidden layer and inputs consisting of eight lags of the
continuous weekly returns, traded on the hard red winter wheat and deutsche
mark futures contract.

Procedure

The objectives given above are addressed by developing neural network

trading models to simulate trading of the hard red winter wheat and deutsche mark

futures contract. The neural network trading models produce weekly trading signals.

The trading signals associated with a particular week are executed on the opening of

the first trading day of the week because the trading signals are based upon
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information up to and including the last trading day of the previous week. The

positions are then held for the duration of the trading week and reversed on the

opening of the first trading day of the following week if the network signals so

indicate. Therefore the models are in the market at all times.

The dependent variable in both the wheat and deutsche mark trading model is

a binary variable which represents whether a long or short position should be take for

the following week. The independent variables of the deutsche mark trading model

consist of eight lags of the weekly returns. The weekly returns are the changes in the

logs of the closing prices on the last trading day of the weeks. The independent

variables of the wheat models are defined analogously except that quarterly dummy

variables are added to account for any seasonality.

Out-of-sarnple trading simulations are performed for the time period from

1985-1992. The trading simulations for each commodity are performed by eight

neural network trading models, each of which corresponds to a specific time frame of

trading. The time frame of trading for each of the models is one year long and

begins on the first trading day of the year and ends on the last trading day of the

year. The trading models are chosen a priori to have one hidden layer. The number

of hidden neurons for the networks which provide out-of-sarnple trading results are

chosen by examining the out-of-sample trading performance of various network

configurations in previous testing periods. The network configuration, Le. 4, 6, 8, or

10 hidden neurons, for a particular testing period is chosen based upon which

configuration produced the highest average out-of-sarnple net trading profits in the

four previous testing periods. In order to provide true out-of-sample trading

simulations on the first year of the eight years of simulations, it is necessary to
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analyze the performance of networks on 4 testing periods prior to this first year.

Thus the trading results of 12 years are analyzed, but only 8 are true out-of-sarnple

results.

Both gross and net trading returns are calculated for the trading simulations.

Net returns are calculated by taking into account transaction costs which are

composed of both commission costs and skid error or bid-ask spread. Commission

costs are $35 and skid costs are $30 giving a round-turn transaction cost of $65. The

null hypotheses that net and/or gross trading returns are less than zero are testing

using a bootstrapping type of methodology. The bootstrapping type of methodology

was first applied to the analysis of trading returns by Brock, Lackonishock, and

LeBaron. Others using this methodology were Allen and Karjalainen, and Levich.

In this research, the objective of the bootstrapping procedure is to simulate the

distribution of the gross and net trading returns under two separate null models. The

null models are that the data follows a random walk with drift or a GARCH(l, 1)

process. The data in this study are the weekly returns as described above. For the

random walk with drift null model, 500 simulated sets of weekly returns are

constructed by "scrambling" the actual weekly returns from each testing period. The

process of "scrambling" refers to resampling with replacement. For the GARCH(I,

1) null hypothesis a GARCH(I, 1) model is fit to the actual weekly returns. The

residuals are then standardized by the estimated standard deviation for each

observation. These standardized residuals are then "scrambled". The estimated

standard deviations are then multiplied by the scrambled residuals and added to the

predictions from the GARCH(I,I) to form a new data set. The standardized residuals

for each testing period are "scrambled" 500 times to generate 500 data sets. The 500
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simulated data sets from both null models are used to construct 500 testing sets for

each null model and each testing period. The neural network trading models which

are chosen to generate true out-of-sample testing results are tested on each of the 500

testing sets corresponding to the null models. The simulated distribution distributions

are composed of the trading profits obtained by this procedure. Simulated p-values

for a given net or gross trading profit figure can then be calculated by computing the

percentage of items in the simulated distribution which exceed the level being tested.

Organization of Thesis

Chapter 2 discusses the use of technical analysis and reviews the efficient

market hypothesis and evidence against it. The evidence for nonlinearity of

commodity prices is discussed as well as its implications for market efficiency and

tests thereof. Noisy rational expectations and disequilibrium theory are presented as

alternatives to the traditional theories of market efficiency. The relationship of these

alternative theories to technical analysis is also discussed.

Chapter three discusses the theory of neural networks. The history and

develop of neural networks is briefly discussed and some applications of neural

networks are presented. The details of the feedforward type of neural network are

presented in detail. The chapter concludes by presenting the specific method used in

this research to estimate the parameters of the neural network.

Chapter 4 presents the details of the methods used to accomplish the research

objectives. The first section discusses the data and procedures used to develop the

neural network trading models. Next, the trading rules and assumptions are

presented. In the last section, the procedures used to test the statistical significance of
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the trading returns are presented.

Chapter 5 presents and discusses the results of the study. The results of the

estimation of the parameters of the neural network trading models is presented. The

trading profits of the trading models for all 12 testing periods are provided. The

trading profits of the 8 out-of-sample trading simulations are presented. Next, the

statistical analysis of these profits is presented. The results of these statistical tests

are discussed in the context of the research objectives.

The last chapter summarizes the study's results and conclusions. General

conclusions on the applicability of neural networks in trading futures is presented.

Conclusions on market efficiency in the context of the specific models tested in this

research are presented.
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CHAPTER 2

TECHNICAL ANALYSIS AND MARKET EFFICIENCY

Much theory on asset price determination has been developed which seeks to

explain market behavior or how some specific attribute or function of the market

operates. However, according to some of the theory, the techniques that some traders

use to make trading decisions should be of little or no value in making money. More

specifically, the efficient market hypothesis implies that statistically significant profits

can not be made from trading techniques that only use past prices as information, Le.

technical analysis. This chapter discusses the use of technical analysis and reviews

the efficient market hypothesis and evidence against it. Alternative theories of market

efficiency and their relation to technical analysis are also presented.

Technical Analysis

Technical analysis is an integral part of the trading decisions of many

speculators in futures markets. Irwin and Brorsen reported that over 80 percent of

public futures funds had trading advisors which relied entirely on technical analysis.

The Chicago Board of Trade in a 1983 survey found that 50% of all speculators

consulted charting services. Taylor and Allen reported that 90% of the chief foreign

exchange dealers in London place some weight on Technical analysis in forming their

expectations. Two highly regarded books by Schwager (1989, 1992) give the trading

testimonials of a large number of traders who have used technical analysis to produce
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significant trading profits over a long period of time. Admittedly, trading testimonials

may be unreliable (see Edwards and Ma; Elton, Gruber, and Rentzler; Irwin),

however, it is widely accepted that technical analysis plays a role in the trading

decisions of many traders.

In spite of the apparent widespread use of technical analysis, the academic

community has been less than receptive to its concepts. For example, Malkiel (pg.

132) stated:

Obviously, I am biased against the chartist. This is not only a personal
predilection, but a professional one as well. Technical analysis is
anathema to the academic world. We love to pick on it. Our bullying
tactics are prompted by the two considerations: (1) the method is
patently false; and (2) it's easy to pick on. And while it may seem a
bit unfair to pick on such a sorry· target, just remember: it is your
money we are trying to save.

Malkiel's use of the term chartist was meant to refer to those traders who look at

charts as well as those who make trading decisions based on mathematical measures,

i.e. moving averages, relative strength indexes, etc. Indeed, because of the

proliferation of the personal computer, the 1980's witnessed the increasingly

widespread use of mathematical measures in making trading decisions. The results to

be obtained in this thesis are more applicable to this type of trading as opposed to

II charting".

Traditionally, academics have pointed to the weak form of the efficient market

hypothesis, proposed by Fama, which says that prices, both past and present, fully

reflect all available information. There is an obvious contradiction between the
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widespread use of technical analysis, and some economic theories which say that there

is no economic justification for its use.

Efficient Market Hypothesis

Fama defined an efficient market as one in which asset prices fully reflect

available information. Following the notation of Fortune, let s be defined to be a set

of "circumstances" which describes the state-of-the-world. The set s would consist of

variables such as interest rates, dividends, and inflation. Suppose also that there are

N such possible states of the world, Le. s=l, 2, ... , N, and thatQ represents the
I

information set available at time t. If we let 1t(~ Q) be the probability that state s

will occur and we calculate the value of the asset for each state of nature s, p·(s),

then the expected value is

(1) E(f;lo.) = LP ·(s}1t(.s1Q,).
J

The efficient market hypothesis states that

(2)

where PI is the current price of the asset. Three different forms of the efficient

market hypothesis are associated with three different levels of information:

a. The weak form in which the information set 0t is just historical
prices.

b. The semi-strong form in which ~ is made uQ of all Qublicly
available information at time t.

c. The strong form in which ~ is taken to be all information, both
public and private, at time t.

Thus there are three testable forms of the efficient market hypothesis. Note that the
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information available in the weak form is a subset of the information available in the

semi-strong form, and the information available in the semi-strong form is a subset of

the information available in the strong form. Technical trading systems use past

prices and thus are only a test of the weak form of the efficient market hypothesis.

Thus, failing to reject the weak form according to a technical trading system test does

not imply that the market is inefficient according to the semi-strong and strong forms

of the efficient market hypothesis. However, if we conclude that the market is weak

form inefficient, then we must conclude that the market is also inefficient according to

the semi-strong and strong forms of the efficient market hypothesis.

One method of empirically testing the efficient market hypothesis is with the

random walk model. The random walk model states that successive price changes are

independent and identically distributed. A second way to test market efficiency is by

simulating a trading system and comparing the trading profits obtained to the profits

that are theoretically possible under the efficient market hypothesis. These two types

of tests are discussed in the following two sections

Tests of the Random Walk Model

The efficient market hypothesis has implications for the sequence of prices

over time. If we are in time t and want to forecast the price for time t +I , then we

can only utilize information available at time t to make our forecast. Thus the best

prediction of ~ T 1 is FI..P; 1~ /) where ~ is the information set available at time t.
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Any new information that arrives between time t and t+1 is random and thus its

effect on Pt creates a random deviation from EQ';110,) .

From equation (2), the efficient market hypothesis implies that

(3) PH = (1 + r)P, + E tt1

whereE.{E tt1) = 0, E'+1- i.i .d . ,and r is the expected rate of return on the asset under

consideration. Thus a sequence of prices will be a random walk with drift.

Therefore, the random walk test of market efficiency involves searching for

dependence in the residuals of (3) or in the prices. The random walk model is

sometimes stated as

(4) f(r'+iIO) =1rr,+1)' tEl

wherefis a density function and rr is the one-period percentage return (P,+l -p, )/(P').

Equation (4) states that the conditional and marginal probability distributions are

equal. The random walk test is a test of the weak form of the efficient market

hypothesis because the information set is composed of past prices. Fama admitted

that the random walk model is a stringent restriction and that market efficiency does

imply that prices follow a random walk, or in other words are identically

independently distributed. However, a random walk does imply market efficiency.

The earliest tests of the random walk hypothesis tended to favor prices

following a random walk. Several commodity futures prices were shown to resemble

a random walk (Working). Kendall made similar conclusions about wheat prices,

cotton prices, and share indices. Fama(1965) concluded that the 30 stocks comprising
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the Dow Jones Industrial Average followed something similar to a random walk.

Fama admitted there was some serial correlation but concluded that it was

insignificant from an economic viewpoint. Fama's research had a significant impact

on the academic community and many researchers thereafter assumed that security

and commodity prices follow a random walk.

Some later research on commodity futures as well as the underlying

commodities concluded that the random walk model is not a good description of

commodity price behavior. Leuthold used spectral analysis to study the live cattle

futures market and found non-randomness. Cargill and Rausser tested for serial

correlation in the cash prices of com, oats, wheat, soybeans, copper, live cattle, and

pork bellies. Cargill and Rausser's results did not support the random walk model.

Taylor (1985) found evidence of price trends in several futures contracts. Price

trends would not exist if prices followed a random walk.

However, researchers have not consistently rejected the random walk (Mussa,

Meese, and Rogoft). Cornell, and Mussa suggest that exchange rates appear to

follow a random walk. Mussa (1982) argues that this stochasticity supports the ideas

of rational expectations and market efficiency. Brock, Hsieh, and LeBaron analyzed

five major currencies and found little evidence of serial correlation. They also failed

to detect any linear dependence using the runs test. These results are consistent with

the findings of many others (e.g. Giddy and Dufey; Burt, Kaen and Booth; Cornell;

Logue and Sweeney; Logue, Sweeney and Willett; Rogalski and Vinso). This led
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Brock, Hsieh and LeBaron to say that there has been no strong statistical evidence

confirming or refuting the random walk hypothesis.

The mixed results could be traced back to the methods used to test the

random walk hypothesis. The traditional methods to test the random walk

hypothesis are autocorrelation, spectral analysis, and runs tests. Each of these

methods has been criticized as a test of independence (Taylor 1985). In

particular, autocorrelation tests are inappropriate if the stochastic process X

generating observed returns x, is linear (Taylor 1986). The reason for this is that the

standard errors of the coefficients need not be 1/.;n as they are if the X is linear.

Taylor (1986) showed that the standard errors frequently exceed 31Ii. The

autocorrelation results of Brock, Hsieh and Lebaron addressed this problem by using

heteroskedasticity-eonsistent standard errors. They stated that at best, exchange rate

changes are linearly independent. More recently, there is evidence that stock and

futures prices are nonlinearly dependent.

New statistical tools have recently been developed to test for the existence of

potentially forecastable structure, nonstationarity, or hidden patterns. The BDS test

developed by Brock, Dechert, and Scheinkman has been one of the most popular

tests. Other tests include the Keenan, Tsay, Ramsey RESET, White dynamic

information matrix (White 1987), and the McLeod-Li tests.

The BDS tests the null hypothesis that a series is identically independently

distributed. The alternative includes not only nonlinear dependence but linear
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dependence. However, the linear dependence can be ruled out if the data are first

transformed by removing any possible linear dependence. Brock, Hsieh and Lebaron

looked at the five major exchange rates and found evidence of nonlinearity using the

BDS statistic. Brock, Hsieh and Lebaron along with Scheinkman and Lebaron found

evidence that stock returns follow a nonlinear dynamic system. Frank and Stengos

found similar evidence for the silver and gold markets.

Nonlinear dependence can arise in two ways. Nonlinearities can arise

because of nonlinear dependence in the return series themselves referred to as mean

nonlinearity. Nonlinearities can also arise because of dependence in the variance of

returns. Brock, Hsieh, and LeBaron claim that these two types nonlinearity

encompass all nonlinear stochastic models discussed in the time series literature.

Changes in the level of trading activity and/or the arrival of information will

most certainly cause changes in the return series as market participants adjust to the

changing trading environment. This changing trading environment can also lead to

heteroskedasticity of daily returns. Variances can be non-stationary or conditional

upon past observations and other variables. The most obvious question is how does

heteroskedasticity in returns make a return series nonlinear? Changes in variance or

conditional variance will cause more autocorrelation between x,2 and x t:'t than there

is between ~ and xti-"t' where xt is the return for day t. This is the nonlinear

characteristic of a return series as described by Taylor (1986).

Mandelbrot in 1963 was the first to suggest that the variance of stock returns
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was not constant over time. Mandelbrot thought that stock returns were uncorrelated,

but noticed that large changes tended to be followed by large changes, and similarly

for small changes. This characteristic was observed in other economic series and

eventually led to Engle's development of the ARCH model and Bollerslev's GARCH

model. In the ARCH model,variance is function of past errors. The GARCH

process generalizes the ARCH process by modeling the variance as a function of

lagged values of itself as well as past errors. GARCH models have been popular with

researchers investigating the dynamics of returns because GARCH models can explain

the unconditional leptokurtic distributions.

If price changes are independent, then the law of large numbers implies that

the distribution of price changes should be normal. A great deal of evidence exists

which suggests that the distribution of price changes for futures prices is leptokurtic.

A leptokurtic distribution has more observations around the mean and fatter tails than

a normal distribution. It has long been noted that stock market returns have more

observations in the tail than predicted by the normal distribution (Osborne, 1964;

Fama, 1965). Mandelbrot (1964) suggested that stock returns may belong to a family

of "Stable Paretian" distributions.

The stock market crash of October 19, 1987 brought more attention and

interest to the issue of the distribution of security prices as well as other fmancial

instruments. The most recent studies of the distribution of returns has only confirmed

the observations of earlier researchers. Turner and Weigel (1990) found that returns
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for the S&P 500 were consistent with a leptokurtic distribution. Similar results for

foreign exchange rates have been found by Hsieh (1988) and Friedman and

Vandersteel (1982). Many researchers have found that futures prices are also

leptokurtic (Hudson, Leuthold, and Sarassoro; Cornew, Town, and Crowson; Gordon;

Hall, Brorsen, and Irwin).

Two competing explanations exist which would explain the heavy tails of the

distribution of returns: the data are independently drawn from a leptokurtic

distribution which remains fixed over time, and the data are drawn from a distribution

which varies over time. Hsieh (1986) analyzed foreign exchange rates and found

evidence in favor of changing distributions as the explanation for leptokurtic

distributions. Furthermore, there was evidence that changing means and variances

was the cause of the changing distributions. Brock, Hsieh, and LeBaron used a test

involving the third order moments to distinguish between mean and variance

nonlinearity in exchange rate changes. They found evidence indicating that changing

variances are responsible for the nonlinearities in exchanges rates. These results are

similar to what Yang and Brorsen found for 7 out of 15 commodities tested.

However, Brock, Hsieh, and Lebaron also found evidence that the nonlinearities may

be more complicated.

From the preceding discussions, we would conclude that evidence exists which

indicates that returns for futures prices, as well as other financial instruments, are

nonlinear. The implications of this finding for market efficiency and technical
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analysis are numerous. The efficient market hypothesis implies that investors react to

information as it is received, or in other words, in a linear fashion. Nonlinear and

leptokurtic returns imply that investors react in a cumulative fashion. The next

section puts forth some reasons why technical analysis may be useful, and the last

section presents some economic theory which says that technical analysis may be

useful.

Tests of Market Efficiency Using Simulated Trading Returns

Ample evidence suggests that daily returns do not follow a random walk.

However, a random walk implies market efficiency but market efficiency does not

imply a random walk, thus we can draw no conclusion about market efficiency. The

random walk model assumes perfect competition. Perfect competition assumes (l)

zero transaction costs, (2) all traders are risk neutral, (3) information is transmitted to

all traders instantaneously, (4) all traders agree about the influence of new

information on current prices, and (5) the cost of information is zero. Thus a test of

the random walk model is simultaneously testing the efficient market hypothesis and

the extent to which market behavior conforms to the ideal of perfect competition.

Trading system tests of market efficiency can provide a stronger test of

market efficiency because some of the assumptions such as zero transaction costs

can be eliminated. The Jensen test of the efficient market hypothesis states that a

market is efficient with respect to information set ~ if it is impossible to earn

economic trading profits between time's t and t+T by using the information in ~.

22



The information sets ~ usually considered are those sets associated with the weak,

semi-strong, and strong forms of the efficient market hypothesis as discussed in the

first· section of this chapter.

Economic profits are assumed to be net of all costs and adjusted for risk.

Accounting for transaction costs is relatively straight forward, however, adjusting for

risk is less obvious. Risk adjusted returns for stock investments can be analyzed with

capital asset pricing model (CAPM) (Sharpe). The CAPM says that the risk premium

for accepting a share's undiversifiable risk is proportional to the covariance between

share return and the return on the market portfolio. The market portfolio in stock

market analysis is a portfolio made up of all shares or some market index such as the

S&P 500 made up of a large number of shares. Some researchers have concluded

that the CAPM satisfactorily describes the relationship between risk and return

(Black, Jensen, and Scholes; Miller and Scholes).

To apply the CAPM to futures markets, an appropriate market portfolio must

be found. The S&P 500 and various weighted averages of the S&P 500 and the Dow

Jones Commodity Cash Index have been used as the market portfolio in the context of

futures markets (Dusak; Carter, Rausser and Schmitz). However, each of the market

portfolios proposed for use with futures markets has been criticized for various

reasons. To date, no resolution of this matter has been found

It has been argued that tests of market efficiency using trading rules is

desirable (Friend and Westerfield, Logue and Sweeney). Mechanical trading rules
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can detect nonlinear dependence (Alexander; Cheng and Deets). Mechanical trading

rules have detected nonlinear dependence in foreign exchange rates while spectral

analysis failed to detect dependence (Friend and Westerfield). The economic quality

of the dependence can also be investigated with mechanical trading rules whereas

statistical tests can only test for the existence of the information (Friend and

Westerfield).

Trading rules have been used to analyze market efficiency in a variety of

markets. Some of the earliest studies concerning futures markets include Leuthold

and Peterson who found that statistically significant returns were attainable in live

hogs from 1973 to 1977. Stevenson and Bear tested com and soybean futures prices

from 1951 through 1968 and reported impressive dollar profits, however, due to

inadequate methodology, the statistical significance of the profits can not be

interpreted easily.

More contemporary studies include Irwin and Brorsen (1984) who tested weak

form efficiency by testing trading rules on a portfolio of fourteen commodities from

1963 through 1983. Lukac and Brarsen simulated trading of 23 technical trading

systems on 30 different markets and found that 22 of the systems produced

statistically significant returns. Boyd and Brarsen tested five technical trading

systems on seven commodities and found that significant annual net returns were

possible. Irwin, Krukemyer, and Zulaf found that returns from public commodity

pools were sufficient to cover the costs and risks involved in futures trading. In
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addition, excess net returns significantly greater than zero were found for institutional

commodity pools.

Recently, there has seen a great deal of interest in applying neural networks to

commodities trading. In two papers, Collard reported promising results using a

neural network as a commodity trading model. A study by Bergerson and Wunsch

used the hindsight of a market technician (chartist) to train a neural network when to

buy and sell a commodity. They then used the network along with some traditional

money management techniques and obtained good results. Grudnitski and Osburn

used a neural network to attain annual returns of 16 percent per year for Gold and 17

percent per year for the S&P 500. Trippi and DeSieno found that a neural network

based trading strategy outperformed a buy and hold strategy for the S&P 500.

Claussen and Uhrig used a neural network to predict the directional movements in

cash soybean prices and obtained from 86 to 97% accuracy with trading horizons

ranging from 5 to 30 days. Other studies showing promising results include Kimoto

for stocks and Refenes for exchange rates.

The last two sections have shown the inadequacy of the weak form of the

efficient market h}'lXlthesis to explain securities and futures prices. In response to the

evidence, academics are beginning to change their view that technical analysis is of

no use to market participants. Alternative theories of market behavior have been put

forth in an effort to improve on the efficient market hypothesis and to explain the

usefulness of technical analysis.
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Noisy Rational Expectations and Disequilibrium Theory

Noisy rational expectations was first proposed by Robert Lucas. Information

flows between traders have been studied in the context of the noisy rational

expectations model by Grossman (1976, 1978), Kihlstrom and Mirman, and Green.

Noisy rational expectations removes the assumption that all transactions are made with

complete information. Each trader has their own expectation of the future price of

some asset based on that traders available information. More precisely, the ith trader

observes >[, where Y; = Pi + £/ and PI is the price of some asset one period in the

future. The noise term, Ej prevents any trader from learning the true value of Pt 

Thus the current equilibrium price Po, is a function of 9'1' Y2 , 000' yn)where n is the

number of agents in the market and can be written as Po(Y l' Y2' 000' Yn) •

Much research on market efficiency focuses on the degree to which Po(y)

aggregates the information of the diversely informed traders. The concern is to what

degree is Po a sufficient statistic for ~. In the model proposed by Grossman (1976),

there exists a Po·(y) which is so efficient in aggregating information that there is no

incentive for individuals to collect information. The end result is that equilibrium is

not possible if information is costly. Thus only an imperfect information equilibrium

can be an equilibrium in an economy in which information is costly.

One of the major criticisms of the efficient market hypothesis is that it assumes

that information is costless. Fama's definition of the efficient market hypothesis says
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that costless information is a sufficient condition for prices to fully reflect all available

information. Grossman and Stiglitz argued that costless information is also a

necessary condition. If information is costly then those agents who arbitrage must

receive a return on their costly activity or arbitrage will cease. Grossman and Stiglitz

questioned whether a competitive equilibrium could exist whereby arbitrage profits are

eliminated.

Grossman and Stiglitz proposed a model in which there is an equilibrium

degree of disequilibrium. The model describes a market in which prices only

partially reflect the information of informed individuals so that agents who expend

resources to obtain information are compensated for their efforts. Grossman and

Stiglitz's model differs from that of Grossman (1976) in that in Grossman and

Stiglitz's model there are two distinct sets of traders, informed and uninformed. The

informed traders observe the future price of an asset with some degree of uncertainty

and thus the current price is an imperfect aggregator of the available information.

Uninformed traders, however, do infer some amount of information from the current

price. Diamond and Verrecchia analyzed the degree to which the informed traders

infer information from the current price that is not redundant with respect to the

private information they already possess. Grossman and Stiglitz's model only allows

for private information concerning one piece of information. Diamond and

Verrecchia's model allows for more diverse information. In this framework, they

conclude that informed market participants are able to infer information from prices
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that is not redundant with respect to the private information they possess.

The models proposed by Grossman, Grossman and Stiglitz, and Diamond and

Verrecchia were based upon a two-period economy. These models, in contradiction

to the efficient market hypothesis, say that the current price does not reveal all

information. However the models do not say anything about the usefulness of past

prices in forming expectations about future prices. Hellwig, Singleton, and Grundy

and McNichols developed models in which past prices are useful. In Hellwig's

model, investors use the most recent price as a substitute for the current price which

is constrained to be unusable. Singleton studied the time series properties of asset

prices across alternative economies and Grundy and McNichols studied the time series

properties of information in the form of private signals.

Brown and Jennings extended the models of Diamond and Verrecchia as well

as Hellwig. Brown and Jennings analyzed a three-period economy in which the

payoff occurs in the last period. In their model, an information set containing only

the second period price is dominated by an information set containing a weighted

average of the first and second period prices. Historical prices are useful in

determining investors demands because the current price does not reveal all

information. The first period price is not perturbed by the random variation in the

second period supply. Thus past prices are useful in making inferences about private

signals. In addition, past prices contain information that is not redundant to the

private signals of informed traders. A market that behaves according to Brown and
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Jennings model is not weak-form efficient in the sense defined by Fama.

In the preceding discussion, various models, i.e. Grossman, Grossman and

Stiglitz, Diamond and Verrecchia, imply that the current price does not reveal all

information. This is in direct contradiction to the efficient market hypothesis as

proposed by Fama. In fact, an equilibrium price that reveals all information would

cause the market to break down (Grossman and Stiglitz). These models led to the

development of the model of Brown and Jennings in which not only does the current

price not fully reveal all information, but past prices are useful in predicting future

prices and investors can use technical analysis to their benefit.

The preceding models propose a price which could be said to be in a

equilibrium degree of disequilibrium (Grossman and Stiglitz). The models assume

that informed individuals absorb, process and act on their private information

immediately. Disequilibrium theory argues that markets do not immediately adjust to

information shocks. A market that does not immediately adjust to new information

could exhibit trends or dependence. The implications for the usefulness of technical

analysis are obvious.

One of the major factors affecting how information is processed is the nature

in which the information arrives. Black, Cohen et al., and Beja and Goldman argue

that information arrives in the securities market as large random infusions. Fama had

originally assumed that information arrives as small random doses while

disequilibrium models argue that information arrives spontaneously and is associated
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with a jump in price (Oldfield, Rogalski, and Jarrow). Larson, Mann and Heifner,

and Stevenson and Bear argued that information arrives in the futures markets as large

infusions or shocks. Large amounts of information could take time to process and act

upon. Bounded rationality theory argues that humans are inherently limited in their

ability to process information (Simon 1955, 1982). In addition the information may

contain large amounts of noise which make it hard to determine how the information

may effect future prices. Disequilibrium theory argues that the major reason that

prices cannot immediately adjust to large and possibly noisy amounts of information is

because of market frictions. These market frictions may include the cost of acquiring

information, transaction costs, taxes, and noisy information channels (Beja and

Goldman).

Nawrocki stated that the degree or characteristics of the disequilibrium may

change over time. This changing disequilibrium would have a nonstationary

dependence structure. However, Nawrocki classifies this type of disequilibrium as

stationary disequilibrium if the market structure, i.e. laws, regulations, etc., is

stable. A disequilibrium that shows a stable amount of disequilibriium and

dependence structure is referred to as a continuous disequilibrium. Nawrocki used

mechanical trading rules to test for the type of disequilibrium that may have been

present in 50 different securities. He found evidence that stationary disequilibrium

best describes the disequilibrium that may have been present. Consistent with this

finding is that adaptive trading rules performed better than nonadaptive rules. These
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findings would certainly have implications for the type of technical analysis based

trading system that may be profitable. A neural network may be one of the best tools

available to build an adaptive trading system.
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by Minsky and Papert. It should be noted that Werbos in 1974 developed the

mathematical framework for the backpropagation neural network, however, his work

went unnoticed at the time.

The first section of this chapter briefly discusses some applications of neural

networks and alternative neural network paradigms. The next section presents the

feedforward type of neural network in detail. The last chapter discusses and presents

some methods for estimating the parameters of feedforward neural network.

Applications and Types of Neural Networks

Neural networks are flexible and have been used to solve many different

problems. Some of the applications have been to perform coordination tasks

(Selfridge), decode deterministic chaos (Lapedes and Farber, Gallant and White), and

recognize hand-printed characters (Fukushima and Miyake). Trippi has assembled

various papers which use neural networks in financial market forecasting, macro

economic prediction, credit risk classification, exchange rate prediction and other

applications related to finance and economics.

The most common uses of neural networks can be classified into the following

categories: classification, associative memory, and autoassociative memory. An

example of classification would be to classify sonar signals as those reflecting from a

submarine or from a naturally occurring underwater object. Another example would

be that used in this research. Namely given some inputs composed of forecasting

variables, outputs are produced which indicate a buy, sell or hold position in a

particular commodity or financial instrument. An example of an associative memory

application would be any time series model or a price prediction model. An
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autoassoeiative network is one in which some pattern that has been corrupted by noise

is presented to the network and the network reproduces the original uncorrupted

pattern. In general a neural network can be viewed as estimating a map f X.... y

where X is the space of inputs or independent variable and ¥ is the space of outputs or

dependent variables. In the case of classification Yis a n x 1 vector of variables,

each of which indicate inclusion or exclusion in one of n different categories. In an

associative memory application Yis a vector containing that which is to be predicted,

e.g. the price of corn one month from now. In an auto associative application ¥=X,

where X is the uncorrupted version of the input pattern.

The terminology of neural networks has not become standardized and hence

the term "neural network" can mean different things to different people. The term

neural network defined in its most general sense is an architecture in which its

operations are distributed among many relatively simple processors (Masters).

This definition suggests a great deal of flexibility in what computing paradigms can be

called neural networks. Indeed, a great deal of research has been devoted to

developing different types of neural networks. The literature is extensive and

developing rapidly and therefore a complete review of the subject is beyond the scope

of this research. However, for the interest of those readers seeking to do research in

this area, several different types of neural networks are briefly discussed below.

Some models that are decades old are now receiving renewed interest because

they are easily recast as a neural network. For example Donald Specht's probabilistic

neural network which is used for classification is identical to kemal discriminant

analysis (Sarle 1994b). Another example would be the functional link network
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developed by Yoh-Han Pao. The functional link network is simply a multiple

regression with a nonlinear font-end, and a nonlinear transformation applied to the

output (Masters). These two types of modeling techniques suddenly attracted

attention when they were presented in the context of a neural network.

Other types of neural networks such as feedforward neural networks and radial

basis (RBP) networks are more unique. However, there are some similarities

between these types neural networks and existing modeling techniques. It will be

shown later that the standard feedforward type network could be though of as a form

of nonlinear regression. Xu, Krzyzak, and Yuille have established some useful

connections between kernel regression estimators and RBF networks. Feedforward

neural networks are the focus of this research and are discussed in detail in the next

section.

Feedforward Neural Networks

In light of the considerable hype which has surrounded neural networks, it

would be useful to discuss what a feedforward neural network is not before discussing

what a feedforward neural network is. Neural networks were originally inspired by

the way in which a group of biological neurons process information. Therefore, the

development of neural networks has its roots in neuroscience. There are obvious

analogies that can be drawn between the functioning of artificial neural networks and

their biological counterparts. However, an artificial neural network is a much

simplified model of the way a collection of brain cells operate. In fact, beyond

simple analogies, the neurons in an artificial neural network share little in common

with their biological counterparts.

The word neural probably leads people to sometimes write that a neural
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network simulates the behavior of the human brain. The human brain contains about

1.5 x 1010 neurons of various types and each neuron receives signals from 10 to 16

other neurons (Ripley). Therefore, an artificial neural network is a much simplified

mathematical representation of the way a relatively small collection of biological

neurons operate. The process by which biological neurons process information is

complex. The communication between neurons is both electrical and chemical and

each of these communication process is complex. As will become clear in the next

section, the neurons or processing elements in an artificial neural network are simple

nonlinear functions and the "communication" between the neurons is linear.

However, even though a neural network shares little in common with the workings of

biological neurons, they are powerful enough to possess the ability to "learn" from

experience, develop rules, and recognize patterns in data.

If an artificial neural network is not a model of the brain, the question is what

is a neural network? Before proceeding with the answer to this question, it would be

useful to associate some of the terminology used in the neural network literature to

the corresponding terminology used in statistics or econometrics. The neural network

literature refers to (Sarle 1994b):

- independent variables as inputs

- dependent variables as targets

- predicted values as outputs

- individual variables as a feature

- estimation as training, learning, adaptation, or self-organization.

- observations as training patterns

- parameter estimates as synaptic weights or connection strengths.
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In general, a neural network can be viewed as estimating a map f: X....Y where

X is the space of inputs and Y is the space of outputs.

The following discussion describes how a feed forward type network with one

hidden layer produces its output given some input. Figure 1 provides a reference for

the discussion and is a visual image of equation (1) which will be developed. The

neurons in a neural network are usually arranged in layers. The input layer contains

the inputs (independent variables) at time t and the output layer contains the output(s)

(dependent variables) at time t. Note that similar to a vector autoregression model,

there could be more than one output (dependent variable).

Suppose we have n inputs and q outputs. Then for each training pattern

(observation), the n Input neurons send ~he signals Xi' i = 1, ... , n, to the p neurons

in the hidden layer via connection weights (parameters) Yif, j = 1, .. .,p. Each hidden

unit j then sums the input to itself yielding X' Yj , where x = (x0= I, x I' _., xn)' and

~. = (YOj' YIj' ••., Ynjt. Notice that by definition, Xo = 1. The sum of each hidden

neuron is then is then processed by an 'activation function' tV which as a nonlinear

mapping from mto m. The output or activation of hidden neuron j is

"'j(X/yj ), j = 1, . .. ,p. In other words, each hidden neuron is a nonlinear single

(scalar) valued function whose input is the dot product of the input vector and the

weight vector which is associated with itself. The signals from the hidden neurons

are then passed to the output neuron(s) in an analogous manner as from the input

layer to the hidden layer. The hidden layer sends the signal \IT = ("'0= 1, "'1' ...,"')'
to the q neurons in the output layer via connection weights (parameters)

~k' j= 0, I, ... , p, k= 1, ..., q. The term %will serve the same purpose as Xo in
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Figure 1. Feedforward Neural Network With One Hidden Layer
(4 input variables and 2 output variables)

output layer

pweights

hidden layer

yweights

input layer
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the input layer. The output neurons then process the signals from the hidden layer in

the same way that the hidden neurons process the signals from the input layer.

Therefore, assuming an output 'activation function' F, the output from neuron k

would be Yk = F(iVIPk ) where r\. = (J30k' Pw ... , Pp)'. Thus using all of the

functional relationships that have been established, we can write the functional

relati()nship between the input features (variables) and a particular output feature

(variable) Yk:
p

(1) Yk = F(x,6) = Fk<P Ok + EPklJl,(x'y.», k,pEN
. 1 J J JJ=

where e = (rrl' ... , P~ y~, ... , ~)/. If we assume that the activation function F is the

identity function F(a) = a and there is only one output or dependent variable, as is

the case in this research, then equation (1) reduces to
p

(2) Y = f(x,6) = Po + E P·lJI·(x1y.), P EN
. 1 J J J

J=

where e = (pI!> 1'1' ..., y~)/. From the preceding discussion, it is clear that the

neurons in a neural network need not be thought of as mysterious. All neurons in a

neural network are mearly "processing elements". neurons in the input layer, they

only serve as "input terminals" for the inputs to the network. It can be seen readily

from equation (2) that a feedforward neural network can be considered a nonlinear

regression.

The form of the activation functions, sometimes called transfer functions,

lJI and F can be chosen quit freely. However, the functions are generally

monotonically increasing. The two most common functions are the sigmoid and the

hyperbolic tangent given by lx) = 1 /(1 + ex~ -x» and

lx) = (exp(x) - exp(-x»/(exp(x) + exp(-x» respectively. A nonlinear transfer

function is required in the hidden layer a required because they are responsible for the
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nonlinear approximation capabilities of the feedforward type neural network. A

transfer function in the output neuron(s) is not required and thus is sometimes set to

be the identity function as it is in equation (2). Different transfer functions can be

used in different layers and even within layers. In this research, the hyperbolic

tangent transfer function is used for the hidden layer neurons and the identity function

for the output layer. The use of the hyperbolic tangent transfer function, as apposed

to the sigmoid, has been shown to produce better convergence behavior in certain

circumstances.

The input neuron Xo = 1 and Wo = 1 are commonly referred to as bias

neurons. The parameters connecting the bias neurons to the respective neurons in the

hidden or output layer are analogous to the intercept in a regression. These

parameters for the hidden layer are Yo/ j = 1, . .. ,p and for the output layer

p~, k = 1, ... , q. Since the bias terms in the hidden layer in effect produces an extra

input whose value is always 1, care must be taken when using dummy variables as

inputs. For example, four quarterly dummy variables as inputs would lead to a

"redundant input". One of the inputs would be an exact linear combination of the

other inputs, including the "bias input". Redundant Inputs cause "flats" in the

parameter space, and thus can lead to numerical difficulties (White).

An obvious question to ask is, what are the properties of the mapping obtained

by a neural network? It has been shown that the single hidden layer feedforward

networks of the type given in equation 1 and depicted in figure 1 are "universal

approximators". In other words, given sufficiently many hidden units and properly

adjusted parameters, a neural network can approximate an arbitrary mapping

arbitrarily well for a large class of functions. The theoretical function approximation
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capabilities of feedforward neural networks have been explored by Hornik,

Stinchcombe, and White and Cybenko. Barron showed that the approximation

capabilities of feedforward neural networks require that the number of parameters

grow linearly. Other function approximation methods, e.g. polynomial, spline, and

trigonometric expansions, require that the number of parameters grow exponentially

for comparable approximation. The universal approximation properties of neural

networks are the key to the d,emonstrated usefulness of neural networks in many

applications as well the potential usefulness of neural networks in economics. With a

neural network there is no need to explicitly identify the functional form. Only the

variables relevant to the particular problem need be identified.

Although not the focus of this research, a type of neural network called

feedback or recurrent networks is worth mentioning. Feedback networks include one

or more direct or indirect loops or connections. A common procedure is to include

the values of hidden neurons in the current prediction or time period as inputs to the

network in the next prediction or time period. If a feedback network is making a

prediction a variable for time t it also has information on errors, predictions, or some

other variable(s) whose value was determined at times prior to time t. Feedback

networks have been shown to have interesting properties. for those readers

interested, good references are Hertz, Krogh, and Palmer, Zurada, and Kuan and

White.

Learning (Estimation) In Neural Networks

Until recently, and perhaps still, the generalized delta rule, commonly known

as backpropagation, was the most commonly used training algorithm and was some
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times viewed with Mystique. As Kuan and White write

For a period, artificial neural network models coupled with the method of
backpropagation came to be viewed as magic, with' considerable accompanying
hype and extravagant claims.

Backpropagation is the gradient descent method familiar to anyone with experience in

nonlinear optimization. The analytical derivatives of the function for given in (1) are

easily obtained. Those familiar with nonlinear optimization know that gradient

descent is inferior to many other algorithms which are available. Gradient Descent is

very slow to converge and in addition, if the error surface has "valleys", it can suffer

from a condition known as hemstitching (Avriel). Hemstitching is a condition were

the weight changes "bounce" from wall to wall, making little progress down the

valley.

It should be noted that the traditional implementation of backpropagation is

actually a quasi gradient descent whereby the parameters are adjusted after

presentation of each observation. However, for most implementations that economists

would be interested in, traditional nonlinear least squares is probably the preferred

criterion. The preferable optimization routines would be Marquardt, various Newton

methods, and conjugate gradient methods. In this research, the Marquardt algorithm

will be used. Hagan and Menhaj give a detailed presentation of using this method for

a neural network.
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CHAPTER 4

DATA AND PROCEDURE

This chapter explains the methods used to accomplish the research objectives.

The first section discusses the data and procedures used to develop the neural network

trading models. Next, the trading rules and assumptions are presented. In the last

section, the procedures used to test the statistical significance of the trading returns

are presented. The chapter concludes with a summary of the data and procedures

presented.

The Data

A trading system is constructed which uses neural network based trading

models to produce trading signals. Simulated trading returns are generated using this

model to trade the hard red winter wheat (hereafter referred to as KCBT wheat or

simply wheat) and Deutsche mark futures contracts. To estimate the parameters of

the neural network, inputs and outputs (independent and dependent variables

respectively) are needed to implement the Marquardt estimation algorithm. The

inputs and outputs of the network are a collection of pairs

(1) {(Xl' Yt), · .. , (Xl' Y)l

where ~ = [xI,t x2,t. · · xn ,1 is a n x 1 vector of inputs and y, is the desired output of

the network for observation t. All data needed to calculate the inputs and outputs as

defined in this section were obtained from the data vendor Technical Tools.
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(2)

where

(3)

For both the wheat and deutsche mark trading models, the y,'s are defined by

= ~l, if 't+1 ~ 0
Yt 1 othe~se,

and Pt is the closing price of the specified commodity on the last trading day of week

t. Thus the trading models will produce weekly trading signals. Note also that the

values of the outputs are either 1 or -1 as opposed to the typical 1 or O. The reason

for this is because both inputs and outputs are scaled between 1 and -1. If a transfer

function other than the identity function is used in the output layer, scaling of the

outputs to the range of the transfer function is necessary. Scaling of the inputs is

never required. However, to avoid numerical difficulties, it is common to scale the

data to the range of the transfer functions in the hidden layer. The hyperbolic tangent

transfer function used in this study has a-range of -1 to 1, thus all data in this study

are scaled to that range.

The inputs for both the wheat and deutsche mark trading models are composed

of eight lags of the weekly returns with three additional quarterly dummy variables

added to the inputs of the wheat model. Specifically, for the deutsche mark trading

model, the inputs are defined by an 8x 1 vector with the individual elements defined

by

(4) Xi,t = Tt _; _1 i = l~. - , 8

where " is as defined in (3) with If being the weekly closing price for the Deutsche

mark. The inputs to the wheat trading model are defined by an 11 x 1 vector with

the [JIst eight elements defmed as in (4) for the Deutsche mark model with P,
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replaced by the weekly closing price for KCBT wheat. The final three elements of

the input vector for the wheat trading model are defined by

(5) y _ {I, if quarter is i
"'(1 +8)1 - -1 otherwise i = 1, 2, 3,

The quarterly dummy variables defined in (5) were added because of seasonality

effects that may exist in the KCBT wheat contract. Quarterly dummy variables were

excluded from the deutsehe mark model because of the unlikelihood of any seasonality

in the Deutsche mark contract. Note that dummy variables are included for only 3

quarters. Because of the bias term, defined in chapter 3, a 4th dummy variable would

be a redundant input. Redundant inputs will produce numerical difficulties as

described in White and Hecht-Nielsen.

A difficulty in using futures prices to construct a set of variables is that futures

price series are "discontinuousIt in the following sense. Each commodity is

represented by several different futures prices representing different months of

delivery. Because of liquidity costs, most commodity pool operators hold the

majority of their positions in the "nearby" contract (Brorsen and Irwin). Therefore, it

has become common practice to construct a price series using the contract closest to

expiration. Constructing a price series in this manner assumes that on a given date, a

position that is held in a contract nearing expiration is rolled into the next nearest

contract month. The specific date on which a contract is rolled over into the next

contract is called the rollover date. For this research, the rollover date is the 20th of

the month prior to expiration for both wheat and the deutsehe mark. If this date falls

on a weekend or holiday, the rollover date is the next nearest trading day. For this

research, a continuous price series around the rollover date would be

(6) o N N
{... ,Pr-.,P" Pt+-l' ...}.

45



where p,N is the weekly closing price of the new contract being rolled into and P,~l is

the weekly closing price of the old contract. In (6), Pt~l is a weekly closing price

that occurs before the 20th and p,N occurs on or after the 20th of the month before

expiration of the contract.

The price series that would result from the procedure described above would

still tend to be •discontinuous" on the rollover date. This is because it is common for

the price of the next nearest contract to be at a discount or premium to the price of

the nearest contract. Therefore, the weekly return series calculated from the price

series in (6)

(7)

would be inaccurate for the observation r, = lrl....Pt
N

/ Pt~l). To resolve this problem,

the return series is calculated as

(8)

if P, falls on or after the 20th of the month prior to expiration and f 1 before the
20th.

Neural Network Trading Model

The major advantage of neural networks is their nonlinear approximation

capabilities. However, these capabilities are also a source of difficulty in developing

a neural network that forecasts satisfactorily out-of-sample. Neural networks can

memorize or overfit the data. If the network memorizes the data, it will fail to make

generalizations about the relationship between the inputs and outputs of the network.

The network would then perform poorly in out-of-sample tests. The degree to which

a neural network "fits" the data is proportional to the number of hidden neurons.

Therefore, a goal in building a neural network model is to estimate the number of
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hidden neurons that will maximize forecasting ability.

To accomplish this goal, neural networks with different numbers of hidden

neurons are trained on a training set and evaluated on an out-of-sample test set. The

data in the training set and test sets are mutually exclusive. Thus networks containing

different numbers of hidden neurons can be tested on test set to evaluate the ability of

the different network configurations to generalize on a data set they have not been

trained on. The configurations (number of hidden neurons) of the networks chosen to

provide true out-of-sample testing results will be chosen based upon the configuration

which produced the highest average net trading profits for the previous four testing

periods. Thus, true out-of-sample testing will only be available after four preliminary

testing periods. The procedure for estimating the number of hidden neurons may be

made clearer by looking at table 1.

Table 1 presents the specific time periods for estimation and testing of the

trading models for the wheat and deutsehe mark trading models. All time periods

given in the table are assumed to begin with the frrst trading day and end with the last

trading day of the years given. The dashed line in the table indicates when true out

of-sample testing will begin. The testing periods from 1981-1984 can be considered

preliminary testing periods since their purpose is to estimate the number of hidden

neurons to use for the trading model estimated over the training period 1979-1984 and

tested on the data from 1985. This procedure continues for all test periods. For

example, the number of hidden neurons for the model tested on the data from 1986,

are chosen based on the performance of networks with different configurations tested

from 1982-1985.

Before the data discussed above is used to train or test a network, it is scaled
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Table 1. Time Periods for Data Sets Pertaining to Estimation and Testing of the
Neural Network Trading Models.·

Training Period

1975-1980

1976-1981

1977-1982

1978-1983

Testing Period

1981

1982

1983

1984

1979-1984 1985

1980-1985 1986

1981-1986 1987

1982-1987 1988

1983-1988 1989

1984-1989 1990

1985-1990 1991

1986-1991 1992

-All time periods listed in the table begin with the first trading day and end with the last
trading day of the years given. Statistical tests of trading profits are performed on time
periods after the dashed line.
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or mapped between -1 and 1. The output of the network given in (2) is defined to be

-1 or 1, thus no scaling of the output is necessary. The inputs are scaled according to

(8) X~t = 2(x~t - mir(X'J)/(max(.i;)- min(x) - 1

where X~t is observation t of variable i, ~t is the scaled observation, and

Xi = [Xi,l' .. ., Xi,T]. As an example, to scale the training set composed of data from

1979-1984, the maximum and minimum values are determined over the same range.

The same maximum and minimum values are then used to scale the testing set for

1985.

The goal in estimation of the parameters of a neural network is to find the

global minimum of the objective function. This can be difficult because of the

presence of multiple local minimums in the objective function. To increase the

probability of finding the global minimum, for each training period and network

configuration, the estimation procedure is performed 10 different times using 10

different randomly chosen starting values. For the 10 estimations, the weights

associated with the network with the lowest objective function value after convergence

(defined in (9» are retained.

The following summarizes the procedures described above. A total. of 480

models are estimated for each of the two commodities, 10 for each network

configuration times 4 configurations times 12 training periods. Based upon the

objective function values, 4 networks out of each training period are retained. These

4 networks represent each of the four possible network configurations chosen for this

research, i.e. 4, 6, 8, and 10 hidden neurons. These four networks for each training

period, are used in the procedures described above to pick the configuration of the

networks on which statistical tests of trading profits are calculated in future testing
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(10)

periods.

The training of the networks was done on an ffiM 3090 mainframe using the

vector facility and SAS software. In particular, the training was done using the proc

NUN procedure available in the STAT module of SAS software. The Marquardt

algorithm was used to estimate the parameters. The macro used to implement the

proc NLIN procedure is listed in the appendix. The macro is similar to those given

in Sarle (1994a). The estimation algorithm is determined to have converged if the

following conditions are met

(SSE i-1 - SSE i)/ (SSE i + 10-6) < 10-16

and

(9) max( maxm(~i~1 - B~I/ Iff"'-\ mllXn(la~-1 - a~l/ ~~11 ) < 10-16

m = 1, _., k, n = 1, .. ., P

where SSE' is the value of the sum-of-squared error objective function for the ith

iteration and ~ and y~ are the parameters or weights for the neural network given

in (1) Of chapter 3. Iteration refers to the iteration of the Marquardt estimation

algorithm. The first statement in (9) is that the change in the objective function is

small and the second condition is that the maximum change in the parameters is

small.

Trading Rules and Assumptions

The trading rule is

long ifYt ~ 0,

short ifYt < 0

where .vt is the output of the neural network trading models in the testing periods.

Since trading signals occur at the end of the trading week, it is assumed that trades

are entered on the opening of the next trading day, typically Monday. The trading
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(11)

(12)

models are in the market at all times, therefore, positions are held until the trading

model indicates a change in position. Transaction costs are composed of the

commission costs and the skid error, or bid-ask spread, of each trade. Commission

costs are 535 per round-tum trade, since this is the maximum cost that most discount

futures brokers charge. An additional 530 is added to the transaction cost to account

for skid error. This leaves transaction costs of $65 per round-tum trade. Transaction

costs will also be incurred on rollover dates when a trade is rolled over into the next

contract month.

Evaluation procedure

Gross daily trading returns are computed for the neural network trading model

assuming one contract is being traded. The gross daily trading returns are the actual

dollar returns. From the gross daily returns, net daily trading returns are calculated

by taking into account transaction costs. The hypotheses to be tested are

Ho: GTR ~ 0

H.: GTR> 0

and

Ho: NTR ~ 0

H.: NTR> 0

where GTR and NTR are gross and net trading returns respectively.

Some studies have sought to test the hypotheses above by using standard t-

ratios. The shortcoming of this procedure is that the use of a t-statistic assumes that

the underlying distribution of returns is normally and independently distributed.

However, research on futures prices indicates that the distribution of futures prices is

leptokurtic (Yang and Brorsen; Hudson, Leuthold, and Sarassoro; Hall, BrorseD, and

Irwin; Gordon). A leptokurtic distribution has more observations around the mean
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and fatter tails than a normal distribution. If futures prices are leptokurtic then the

returns to trading systems are likely to be leptokurtically distributed. These

departures from normality will be addressed using simulated distributions of trading

returns generated from bootstrapping procedures. The bootstrapping type of

methodology was first applied to the analysis of trading returns by Brock,

Lackonishock, and LeBaron. Others using this methodology are Allen and

Karjalainen, and Levich.

The bootstrapping procedure consists of fitting a hypothesized null model to

the data. In this research the data set is the log of weekly price changes. Two

different null models will be tested in this research: a random walk with drift, and a

GARCH(l, 1) model. The null models are used to generate a large number of

simulated data sets. The data sets are created by first estimating the null model and

then scrambling, i.e. resampling with replacement, the residuals. The data sets are

then used to create new testing sets for the neural network trading models. These

simulated testing sets are used with the neural networks which were chosen to

generate true out-of-sample testing results to obtain a simulated distribution of trading

profits under the null model.

If we wish to generate B simulated return series from a specific null model, a

resample is obtained by drawing T items with replacement from the residual series of

the estimated null model

(13) e = {e l' ... , eT }

to form a resampled residual series

(14) eb· = {eb·,l>. M, eb~T}.

The series in (14) is then substituted for the residuals in (13). That is, the series in
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(14) is added to the predicted values from the estimated null model to create a new set

of weekly returns

(15) b = 1, ... , B.

Thus, a new set of weekly returns is created each time the residuals are "scrambled".

The random walk with drift null model is defined to be

(16)

where e
t

- lID with non-zero mean. The simulated return series are created by

"scrambling" the original return series. If the null model is true, the simulated series

will have the same drift, volatility, and unconditional distribution as the original

series. In other words, the simulated price series will replicate the statistical

properties of the original series.

The GARCH(l, 1) null model-isdefined to be

(17)

rt = Jl + Et

E t = Fret
2

hI = w+ae,-l +yht - 1

et - N(O,I)

The GARCH model introduced by Bollerslev is a generalization of the ARCH model

introduced by Engle. The GARCH model addresses both nonlinear dependence and

leptokurtosis. The residuals et in (17) can be standardized as

(18)
Zt = etlf;, Zt - N(O,l).

Bootstrapping of the standardized residuals in (18) generates the resampled series

(19) b = 1, ... , B

which are used to generate the resampled residual series
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(20)

The series in (20) is used to generate B new sets of weekly returns.

For the random walk with drift null model defined in (16), 500 simulated

return series are generated for each of the eight out-of-sample test periods listed in

table 1, i.e. 1985-1992. That is, each of the eight return series associated with the

eight true out-of-sample testing periods is "scrambled" 500 times. These simulated

weekly return series are then used to create 500 testing sets containing the neural

network inputs discussed earlier in this chapter. Each neural ne!W0rk trading model

associated with each of the out-of-sample testing periods is tested on the 500

simulated test sets associated with each of the testing periods. Net trading profits

computed from testing the network on the simulated testing sets is used to calculate

the simulated p-values

(21)
m

p(MTR.> c) = E nb/ 500
b=l

where A. · ) represents probability, c is the value being tested, GTR is as defined in

(11), and

(22) n = " if GTR." > c
b lO, o~e~se

where GTR" is the gross trading returns for the neural network trading model on the

hth simulated testing set. Simulated p-values for net trading returns (NTR) are

similarly defined.

The procedure for the GARCH(1, 1) null model is analogous to that above.

The testing periods are only a year long and thus heteroskedasticity may fail to be

significant in some of the individual time periods. Therefore, the GARCH(1, 1)

model is estimated over the entire test period from 1985-1992. However, to create

the simulated testing sets for a specific testing period, only the residuals from that
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testing period are bootstrapped.
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CHAPTER 5

RESULTS AND IMPLICATIONS

This chapter presents the results of the estimation of the neural networks as

well as the trading simulations performed with those neural networks. The chapter is

divided into 3 sections. The first section presents the results for the estimation of the

parameters of the neural network trading models. Next, the results of the trading

simulations are presented. The last section presents the results of the statistical tests

of the profits obtained from the trading simulations.

Results ofNeural Network Estimation

Multiple local minima can cause an estimation algorithm to reach a solution

which is very different from the solution at the global minimum. As was discussed in

chapter 4, to increase the probability of obtaining a solution close to the global

minimum, the estimation for each training period was performed 10 different times,

each time from a different random starting point. Figures 2 and 3 are representative

examples of the results of this reestimation. The figures show in histogram form the

sum-oi-squared error (SSE) after convergence across the possible numbers of hidden

neurons for the different starting values. Figure 2 shows the results for the deutsche

mark trading model estimated on the data from training period 1. The reduction in

SSE from the highest to the lowest was as much as 43 % for 4 hidden neurons, from

470 to 264. The reduction was around 30% for 6 and 8 hidden neurons. In General,
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Figure 2. Histogram of Objective Function Values Across Hidden Neurons For Different Starting Values, for the
Deutsche Mark Trading Model and Training Period 1.
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Figure 3. Histogram of Objective Function Values Across Hidden Neurons For Different Starting Values, for the
KCBT Wheat Trading Model and Training Period 8.
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The results shown in figures 2 and 3 show that at least with this particular

data, the objective function value can vary greatly. The common practice of one

estimation, with no additional effort to reach a lower objective function value may not

be adequate. The variation in objective function values might indicates the need for

multiple reestimations. Another, possibly superior, solution to the challenge of

finding the global minimum may involve the application of a global optimization

algorithm. Global optimization algorithms have been applied to the estimation of

neural network parameters by Baba et al., and Styblinski and Tang. Global

optimization algorithms have shown some promise and are an important area of

research, however, they are beyond the scope of this research.

Trading Simulation Result

As discussed in chapter 4, the neural networks were chosen a priori to have

one hidden layer. What remained to be chosen was the number of hidden neurons in

the single hidden layer. Following the procedures outlined in chapter 4, the number

of hidden neurons chosen for the networks which provide out-of-sample trading

results are chosen by examining the out-of-sample trading performance of various

network configurations in previous testing periods. The network configuration, i.e.

4, 6, 8 or 10 hidden neurons, for a particular testing period is chosen based upon

which configuration produced the highest average out-of-sample net trading profits in

the four previous testing periods. Therefore, out-of-sample trading results will be

calculated for all testing periods and all possible network configurations but true out

of-sample trading simulation results are only available after the first 4 testing periods.

Tables 2 and 3 show the out-of-sample net trading profits for 4, 6, 8 and 10
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Table 3. Net Trading Profits For All Numbers of Hidden Neurons for trading
KCBT Wheat Futures Based on a neural network.

Training Testing Hidden Neurons
Peri<Xr Periodb

4 6 8 10

1975-1980 1981 -400 990 -240 -695

1976-1981 1982 -2637 -102 5202 -92

1977-1982 1983 -2070 -470 -3335 -3830

1978-1983 1984 -1145 -2750 -2020 -785
----~--~~~--------------~-----~-~~-~-----~-------------------~----~------~---------

1979-1984 1985 120 -1295 -135c -2775

1980-1985 1986 -4927 1862 -5722c -4737

1981-1986 1987 -1892 -lrB7c
-4457 -6147

1982-1987 1988 257 -3192c 4572 -2507

1983-1988 1989 -6365 -2545c -1350 135

1984-1989 1990 -3260 -27CXY' -7025 -1685

1985-1990 1991 -2175 179<f 5015 -2725

1986-1991 1992 -12 582c -2082 -1842

Averaged -2282 -824 -1398 -2786

rrhe training period starts on the frrst trading day of the first year given and ends
on the last trading day of the second year given.
iYfesting period begins on the first trading day and ends on the last trading day of
the year given.
cIndicates a net trading profit figure for which statistical tests of significance will be
calculated. The number of hidden neurons associated with this net trading profit
figure produced the highest average out-of-sample net trading profits in the four
previous testing periods. Statistical tests of trading profits are only calculated for
testing periods after the dashed line, i.e. 1985-1992.
dAverage is calculated from 1985-1992.
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hidden neurons for the deutsehe mark and wheat trading models. The dashed lines

indicate the time at which true out-of-sample trading results are available. For each

testing period after the dashed line a c by a net trading profit figure indicates that

statistical tests of significance will be calculated for that number. These net trading

profits are associated with the network configuration which was chosen for out-of

sample trading simulations.

The results presented in tables 2 and 3 show that on average the neural

network trading models were not profitable. It can also be seen that there is a large

variation in profits. Assuming one contract is traded, the highest individual profit for

a single testing period was $12,232 for the deutsche mark and $5015 for wheat.

However, it is obvious from viewing all of the results that large trading profits for a

single year are probably spurious. One can see the dangers of evaluating a trading

system on the basis of one year's profits.

Tables 4 and 5 provide other statistics for the trading models. The gross profit

and trading costs given in tables 4 and 5 are associated with the network

configurations which were indicated in tables 2 and 3 to be the networks chosen for

out-of-sample trading simulations. As we would expect from the net profits in tables

1 and 2, the gross trading profits are not impressive. The lack of profitability of the

neural network trading models is reflected in the fact that the turning point accuracy

is around 50 percent. With a transaction cost of $65 per round-turn trade, the trading

costs would indicate that the average trade is being held for around 2 weeks for both

the deutsehe mark and wheat trading models.
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Table 4. Various Statistics for Deutsche Mark Trading Models.

Number of Number of
Testing Trading Gross Weeks Weeks
Period Cos~ Profit %TPAb Long~ Short

1985 2275 3750 56 21 31

1986 1495 -10762 44 18 34

1987 1885 1487 51 20 33

1988 2080 3600 52 19 33

1989 1755 13987 62 14 38

1990 1690 -5812 40 24 28

1991 1885 9100 56 32 20

1992 1495 -362 55 42 11

Average 1820 1873 52 23.75 28.5

rrrading costs assume one contract is being traded. Trading costs are composed of
$35 for commission costs and $30 for skid error.
bPercentage of correct turning point forecasts (%TPA) are according to the output
variable given in chapter 4.
cIndicates the number of weeks in the testing period which in which the trading
model indicated a long position.
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Table 5. Various Statistics for KCBT Wheat Trading Models.

Number of Number of
Testing Trading Gross Weeks Weeks
Period Costs· Profit %TPAb Long~ Short

1985 1885 1750 54 25 27

1986 2210 -3512 42 28 24

1987 1885 787 57 33 20

1988 2080 -1112 44 30 22

1989 1820 -725 52 30 22

1990 1625 -1075 54 30 22

1991 1885 3675 52 28 24

1992 2080 2662 51 31 22

Average 1933 306 51 29.38 22.88

-Trading costs assume one contract is being traded. Trading costs are composed of
$35 for commission costs and $30 for skid error.
bpercentage of correct turning point forecasts (%TPA) are according to the output
variable given chapter 4.
CU1dicates the number of weeks in the testing period which in which the trading
model indicated a long position.
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Statistical Evaluation

The hypotheses to be tested are that gross and/or net trading returns are less

than zero. To statistically test these hypotheses, a bootstrapping procedure is used to

simulate the distribution of the gross and net trading returns under two separate null

models. The two null models are that the weekly returns follow a random walk with

drift or a GARCH(l, 1) process. In this study, the bootstrapping procedure consists

of generating 500 simulated testing sets from each of the null models for each of the

testing periods. The procedures used to generate these testing sets are given in detail

in chapter 4, thus they will not be repeated here. The neural network trading models

which were chosen to generate true out-of-sample testing results for a specified testing

period are tested on each the 500 testing sets corresponding to the null models. The

simulated distributions are composed of the trading profits obtained by this procedure.

Table 6 contains the parameter estimates as well as their t-values for the

GARCH null model. All parameters, except the intercept for the wheat data, are

significant. Tables 7 and 8 present the simulated p-values under both null models for

both net and gross trading profits. For the deutsche mark trading models only the net

and gross profits for the testing period 1989 are significant at the .05 level. For the

wheat models, none of the testing periods showed significant net or gross profits.1

lTo teat whether the poor results for the neural network modela were due to a poor neural network model or the
lack of any dependence (linear or nonlinear) in the weekly retuml, a Donchian trading system was tried (Donchian). For
this study, the trade signals for the Donchian Iyltem were defined by: If cloling price for thiJ week is higher than the
highest weekly closing price for the last eight weckJ then go long and hold the position until a sell signal OCCUR, Else if
closing price is lower than the loweat weekly closing price for the lut eight weckJ than go ahort and hold the position until
a buy signal OCCUR. The Donchian Iystem averaged $-386 per year for KCBT wheat and $2424 per year for the deutsche
mark over 1985-1992. Bootstrapping analogoUi to that used for the neural network trading modelJ wu uaed to teat the null
hypothesis of zero profit! from the Donchian system. No trading profit from the Donchian system for an individual year for
either commodity wu significant at the .OS level. The Donchian Iystem only perfonned marginally better than the neural
network modelJ. However, it shaWl that the I'CUOna for the poor trading pcrfonnance reported in thia ltudy may lie with
the neural network trading models. Further reaearch to compare the neural network modelJ to more traditional technical
trading roa it needed.
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Table 6. GARCH(I, 1) Parameters Estimated Over 1985-1992 for KCBT
Wheat and Deutsche Mark Weekly Returns.-

p. w a 'Y

Deutsche Mark
0.15168 0.60236 0.15527 0.65120
(1.871) (1.955) (2.774) (4.886)

KCBT Wheat
-0.00230 0.34896 0.20694 0.73722
(-0.024) (2.105) (4.247) (13.628)

AT-statistics are given in parentheses.
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Table 7. Simulated P-Values for Gross and Net Profits for Deutsche Mark.·

Random Random
Testing Net GARCH Walk Gross GARCH Walk
Period Profi~ P-Valuec P-Valuecl

Profi~ P-Value P-Value

1985 1475 .288 .288 3750 .244 .260

1986 -12257 .904 .916 -10762 .908 .920

1987 -397 .356 .418 1487 .360 .426

1988 1520 .386 .392 3600 .378 .374

1989 12232 .026 .034 13987 .024 .034

1990 -7502 .782 .734 -5812 .794 .738

1991 7215 .204 .186 9100 .200 .182

1992 -1857 .538 .488 -362 .536 .486

·Simulated p-values are fraction of net or gross profits from bootstrap simulations
which are greater than the profit value being tested. A simulated p-value greater than
.05 indicates significantly positive returns at the .05 level.
brfhe net profit figures in this column are reproduced from table 2.
errhe GARCH(I, 1) null model is described in equation 17 of chapter 4.
dTIle Random walk with drift null model is described in equation 15 of chapter 4.
errhe gross profit figures in this column are reproduced from table 4.
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Table 8. Simulated P-Values for Gross and Net Profits for KCBT Wheat.-

Random Random
Testing Net GARCH Walk Gross GARCH Walk
Period Profif P-Valuec P-Valued

Profi~ P-Value P-Value

1985 -135 .142 .138 1750 .150 .142

1986 -5722 .962 .958 -3512 .932 .934

1987 -1097 .304 .382 787 .338 .398

1988 -3192 .668 .724 -1112 .654 .704

1989 -2545 .930 .588 -725 .722 .622

1990 -2700 .656 .500 -1075 .684 .522

1991 1790 .118 .138 3675 .118 .136

1992 582 .170 .254 2662 .040 .242

·Simulated p-values are fraction of net or gross profits from bootstrap simulations
which are greater than the profit value being tested. A simulated p-value greater than
.05 indicates significantly positive returns at the .05 level.
"The net profit figures in this column are reproduced from table 3.
'The GARCH(l, 1) null model is described in equation 17 of chapter 4.
dTIte Random walk with drift null model is described in equation 15 of chapter 4.
'The gross profit figures in this column are reproduced from table 5.
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The large trading profits obtained for the deutsche mark model for 1989 could

be the result of a neural network model which has truly captured some of the

behavior of the deutsche mark futures contract. As discussed in chapter 4 and the

first section of this chapter, the globally optimal set of parameters for a neural

network are difficult to estimate. The large trading profits in 1989 could be the result

of finding an optimal set of parameters. To investigate this possibility, the original

unsealed data for the testing periods 1990-1992 were sealed using the maximums

and minimums that were used to seale the testing set for 1989. The trading model

which produced the large trading profits in 1989 was then tested on the testing sets

for 1990-1992. The trading profits obtained were -8657, 420, and -19912 in the

years 1990, 1991, and 1992 respectively. Therefore, we can assume that the large

profits obtained for 1989 were spurious. Indeed, tables 2 and 3 show multiple net

trading profits of a large amount, both positive and negative. However, the positive

trading profits with a relatively large magnitude appear randomly scattered across

hidden neurons and test periods. It is possible that for this problem, 500 bootstrap

samples are not enough to accurately measure p-values for profits with a large

magnitude.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The first section of this chapter presents a summary of the results reported in the

previous chapter. Conclusions to be drawn from these results are also reported. The last

two sections discuss the limitations of the study and give suggestions for further research.

Summary ofResults and Conclusions

The reestimation from different starting points of the neural networks produced

widely varying sum-of-squared error (SSE) values after convergence. The reduction in

SSE from the highest to the lowest was as much as 43% for the deutsche mark and 30%

for wheat. The results showed that the common practice of one estimation, with no

additional effort to reach a lower objective function value may not be adequate. The

variation in SSE in this study indicates the need for using alternative sets of starting

values.

Out-of-sample trading results for all possible network configurations, i.e. 4, 6,

8 and 10 hidden neurons, showed a large variation in profits. The highest individual

profit for a single testing period, i.e. 1 year, was $12,232 for the deutsche mark and

$3675 for wheat. However, the trading profits were on average zero or negative and

thus the large trading profits for a single year and a specific model are probably

spurious.

A researcher who wished to report positive results for neural-network-based
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trading models could report the trading results of the network configuration which

produced the highest trading profits each testing period. These results would not be truly

out of sample. To avoid this problem, the trading results which were chosen to perform

statistical tests on were produced by a network with a configuration that was chosen

based upon information available up until the beginning of the specific testing period.

These true out-of-sample trading results showed that the neural networks trading models

were not on average profitable. Assuming one contract is being traded, average net

trading profits for the eight testing periods were $53 for the deutsche mark and $-1,627

for wheat. Average gross trading profits were $1873 and $306 for the deutsche mark

and wheat respectively.

Bootstrapping procedures were carried out to test the trading profits for each

testing period. Only the testing period of 1989 for the deutsche mark showed significant

profits at the .05 level. The net trading profits for this testing period were $12,232. To

investigate whether these trading results were the result of fmding a globally optimal set

of parameters, the network which produced the large profits in 1989 was tested on the

testing periods 1990-1992. The average trading profits obtained from this were negative.

Therefore, we can assume that the large profits obtained for 1989 were spurious.

For the specific trading models in this study, we cannot reject the null hypothesis

that gross or net trading returns are less than or equal to zero. Consequently, using a

feedforward neural network with one hidden layer, we cannot conclude that the weekly

returns for deutsche mark or KCBT wheat futures are predictable using an information

set consisting of eight lags of the weekly returns. Therefore, using the specific trading

models in this study and the commodities tested, we cannot conclude that neural networks

would be useful in futures trading. Based on the information obtained from this study,

72



we cannot reject the hypothesis that futures prices are weak-form efficient.

The results of this research should only be interpreted in the context of the

specific trading model used in this research. In addition, there are many limitations to

this research. Numerous other studies have reported significant trading profits using

more traditional technical trading rules. Among these studies are Lukac and Brorsen and

Boyd and Brorsen. Further research is needed before rigorous conclusions about the

dependence, possibly nonlinear, which may exist in the commodities studied in this

research.

Limitations of study

The greatest limitation of this study is that we do not know why the neural

network trading models performed poorly. It is possible that given the information set

that was available to the networks, there is no forecastable structure in the weekly returns

of the two commodities tested. It is also possible that the feedforward type of neural

network structure is not adequate for the forecasting problem in this study. Or a

feedforward neural network may be adequate, but we might have been unable to find a

globally optimal set of parameters. An additional limitation is that any conclusions

drawn from this study are weakened by the fact that only two commodities are tested.

Directions for Funher study

The limitations of this study provide many opportunities for further study. The

most potential for further research is in the improvement of the neural network trading

models. The feedforward type of neural network with one hidden layer may not be

adequate to model the behavior of the two commodities in this study with the inputs that

were used. One hidden layer is theoretically capable of finding almost any mapping
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function between the inputs and outputs. However, as the complexity of the mapping

function increases, the difficulty of finding the globally optimal set of parameters may

also increase. In some cases it may be easier to estimate the parameters of a network

with two hidden layers than a network with one hidden layer. Alternatives to the

feedforward type of neural network architecture may be more capable of modeling

commodity prices. For example, recurrent neural networks are capable of rich dynamic

behavior, exhibiting memory and context sensitivity (Kuan and White).

Better methods for estimating the parameters of the neural network trading models

also offer opportunities for further research. Global optimization algorithms such as

those given in Baba et al., and Styblinski and Tang may be superior to the reestimation

technique used in this study. Robust estimation techniques may also be an area of further

research. Related to robust estimation techniques, alternatives to the sum-of-squared

error objective function could be examined.

The inputs to the neural network trading models were relatively simple. It is

likely that another set inputs could be found which produced better results. However,

the set of inputs to choose from is very large. The use of economic theory or statistical

techniques would be needed to narrow the set of possible inputs to a size that could

actually be examined. Statistical tests of nonlinear structure may also be useful in

finding a better set of inputs as well as the methods used to model the commodity price

behavior using these inputs. The neural network test for neglected nonlinearity presented

in Kuan and White is one such test.
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APPENDIX

SAS MACRO USED TO ESTIMATE NEURAL NETWORK MODELS

/._-----------------
By default, the model is:

x(nx) independent variables (input)
a(nh) bias for hidden layer
b(nx,nh) weights from input to hidden layer
h(nh) hidden layer
c bias for output
d(nh) weights from hidden layer to output
p(ny) predicted values (output values)
y(ny) dependent variables (training values)
r(ny) residuals

1 tanh( x/2) + 1
act(z) = ---

1 + exp( z) 2

nx
h(j) = act( a(j) + sum( b(i,j) • x(i) ) )

i=l

nh
p(k) = c(k) + sum( d(j) • h(j) )

j=l

r(k) = y(k) - p(k)

note: k =1 above

The function actO is an _activation_or _squashing_ function. The
logistic function shown above is the most commonly used activation
function, but many other functions can be used. Note that the output
p[k] is _not_ squashed in this model. It is common practice to squash
the output, but this often leads to various practical difficulties.
In particular, people often forget to scale their dependent variables
to lie between 0 and 1, and optimization tends to be more difficult
when the output is squashed.

Initial parameter estimates (weights) may be read from a data set
or generated randomly. Since there are no general methods for
computing rational initial estimates, it is usually advisable to try
several seta of random initial estimates to reduce the chanco of beiDl
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trapped by a local mjnjmum lbis can be accomplished by nmning the
macro %itermodl.

------------------*/

%macro nlinmodl( ,. Simple example of fittinl a neural network:
(multilayer percepaon) using PROC MODEL .,

data= DATA, ,. Data set containing inputs and training values *'
xvar=XVAR, '* List of variables that are inputs.

Do not use abbreviated lists with -, - or :.

Do not use the variable IUlIDe _0. *'
yvar=YVAR, ,. Output variable that has training values.

Do not use abbreviated lists with -, - or :.
Do not use the variable IUlIDe _0. *'

inest=, '* Data set containing initial parameter estimates .,
hidden=2, ,. Number of hidden nodes *'
acthid=LOGISTIC, ,. activation function applied to hidden nodes .,'* the values can be LOGISTIC, or TANH.'
actout=LINEAR, '* activation function applied. to output nodes *''* the values can be UNBAR, LOGISTIC, or TANH .,
random=0, ,. Seed for random numbers for initial weights .,
bound= 30, '* Bound on absolute values of weights .,
output= _EST_, '* Data set containing estimated weights and other

variables *'
outvars=SSE=SSE,'* Additional variables to put included in the

output data set .,

id=HIDD _ITER_, '* Variables to be included in the ouput data set
that are calculated within the proc Dlin .,

maxiter=200, ,. Maximum number of training iterations allowed .,
nlinopt=METHOD=MARQUARDT G4SINGULAR NOPRINT CONVERGEOBJ= lOE-16

CONVERGEPARM= 10E-16);'* Options to be passed to PROC NUN *'
%if %index(&xvar &yvar,-:) %then %do;

%put %qcmpres(ERROR: Abbreviated variable lists are not allowed
by the NLINMODL macro.);

%gooo exit;
%end;

%•••••• check if activations are correct;
%if %qupcase(&acthid) A= LOGISTIC & %qupcase(&acthid) A= TANH %then %do;

%put %qcmpres(ERROR: Incorrect activation has been specified for the
hidden layer.);

%goto exit;
%end;

%if %qupcase(&actout) A= LOGISTIC & %qupcase(&actout) A = TANH &
%qupcase(&actout) A= LINEAR %then %do;

%put %qcmpres(ERROR: Incorrect activation has been specified for the
output layer.);

%goto exit;
%end;
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%...... find number of inputs and put them in macro array;
%let nx= ~xlstarr(xvar,_x);

%let ny= ~xlstarr(yvar,J,l);

%if 8mx=0 OR &:4y=O %then %goto exit;
%global nh;
%if &hidden %then %let nh=&hidden;

%•••••• let default data set name;
%if %qupcue(&data)==_LAST_ %thcm %let data=&Syslast;

%...... calculate or set initial estimates for parameters;
%if 9'bquote(&.inest)= %then %00; %•• if no initial parameter data set;

data _null_;
%00 _ih= 1 %to &nh;
call symput(-n_a&_ih- ,ranuni(&random)-.S);

%do _ix=l %to &nx;
call symput(-n_b&_ixe_&_ih- ,ranuni(&random)-.5);

%end;
%end;

call symput('n_c' ,ranuni(&random)-.S);
%00 _ih=l %to &hidden;

call symput(-n_d&_ih- ,ranuni(&random)-.S);
%end;

run;
%end;

%else %do;
,. Malee sure that inest data set contains only one observation *'
data temp; set &inest;

if _n_=2 thea stop;
run;

data &iDeat; set temp;
run;

proc datasets nolist;
delete temp;
run;

'* Now set initial values for weights *'
data _null_; set &inest;

%00 _ih= 1 %to &nh;
call symput(-n_a&_ih- ,_a&_ih);
%do _ix=1 %to &nx;

call symput(-n_b&_ixe_&_ih- ,_b&_ixe_&_ih);
%end;

%end;
call symput('n_c' ,_c);
%do _ih= 1 %to &hidden;

call symput(-n_d&_ih- ,_d&_ih);
%end;
run;
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%end;

%•••••• training;

proc nlin data=&data maxiter=&maxiter &:nlinopt;

%. parameter statement and random initial values;
parameters %initparm;

%. define model;
%. compute hiddallayer;
%00 _ih== 1 %to &Db;

_suntl_&_ih=_a&_ih
%do _ix=l %to &nx;

+&&_x&_ix*_b&_ix._&_ih
%end;

%. apply activation function to bidden node;
%actfunc( _h&_ih,_suml_&_ih,&acthid)

%end;

%. compute output;
sum2= c- -

%do _ih= 1 %to &hidden;
+ h& ih* d& ih- - - -

%end;

%* apply activation function to output and define model statement;
model &yvar=_0;

bounds %bounds

%* analytical derivatives;
%deriv

%. compute a few variables to be included in output data set;
hidd= &hidden;

%* include calculated variables (or others) in output data set;
id &id;

%. output statement;
output out=&output parms= %parmout &outvars;

run;

'* output is to large, reduce to one observation .,
data temp(drop=date &xvar &yvar); set &output;

if _D_==2 then stop;
ron;

data &output; set temp;
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run;

proc dltlaets nolist;
delete temp;
nm;

%exit:
%mend nlinmodl;

%macro nlinmod2( '.1bis macro executes the nlinmodl macro by calling it the
first time with gradieat descent to find good starting
values and then calling it the second time using the Marquardt
algorithm .,

data= DATA, ,. Data set containing inputs and training values *'
xvar=XVAR, '* List of variables that are inputs.

Do not use abbreviated lists with ., - or :.
Do not use the variable name _0••/

yvar= YVAR, /* Output variable that has training values.
Do not use abbreviated lists with ., - or :.
Do not use the variable name _0. *'

inest=, '* Data set containing initial parameter estimates *'
bidden=2, '* Number of hidden nodes *'
acthid=LOOISTIC, '* activation function applied to hiddm nodes .,'* the values can be LOGISTIC, or TANH *'
actout=LINEAR, ,. activation function applied to output nodes *''* the values can be LINEAR, LOGISTIC, or TANH *'
random=0, /* Seed for random numbers for initial weights *'
bound= 30, '* Bound on absolute values of weights .,
output= _EST_, '* Data set containing estimated weights and other

variables *'
outvars=SSE=SSE,'* Additional variables to put included in the

output data set .,

id=HIDD _ITER_, ,. Variables to be included in the ouput data set

that are calculated within the proc nlin *'
inititl =50,
initit2=SO,
maxiterl =1S0,
maxiter2=200,
initoptl=METHOD=GRADIENTNOPRINT SMETHOD=HALVE NOHALVE

CONVERGEOBJ = lOE-16 CONVERGEPARM= lOE-16,
initopt2=METHOD=GRADIENlNOPRINTCONVERGEOBJ=lOE-16CONVERGEPARM=lOE-16,
nlinoptl =METHOD = MARQUARDT G4SINGULAR NOPRINT CONVERGEOBJ= lOE-16

CONVERGEPARM = lOE-16,
nlinopt2=METHOD=MARQUARDTG4SINGULAR NOPRINT CONVERGEPARM=10E-16

CONVERGEOBJ= lOE-16
);

'* First do gradient descent without line search to
obtain better better starting values for Marquardt *'

data _Dull_;
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file print;
put 'Beginning initialization with gradient descent';
ron;

%nlinmodl(data=&data, xvar=&xvar, yvar=&yvar, inest=&inest,
hiddea=&hidden, acthid=&acthid, aclout=&aclout,
random=&random, bound=&bound, output=&output, outvars=&outvars,
id=&id, maxiter=&inititl, nlinopt=&'initoptl);

'* Now do marquardt rninirni7Jltion *'
data _null_;

file print;
put 'Now starting training with marquardt algorithm';
run;

%nlinmodl(data=&data, xvar=&xvar, yvar=&'yvar, inest=&Output,
bidden= &hidden, acthid=&acthid, &Ctout=&actout,
random=&random, bound= &.bound, output=&Output, outvars= &Outvars,
id=&id, maxiter=&.maxiterl, nlinopt=&nlinoptl);

'* check to see if converged *'
data _null_; set &output;

call symput('chkiters' ,_iter~;
run;

'* if not converged and options call for second optimization *'
%if &chkitersA =. & &nlinopt2A = &. &initopt2A = %then %do;'* Do gradieat descent with line search *'

data _null_;
file print;
put 'Have not reached convergence; beginning 2nd gradient descent';
run;

%nlinmodl(data=&data, xvar=&xvar, yvar=&'yvar, inest=&Output,
hidden= &hidden, acthid=&acthid, actout=&aclout,
random= &random, bound= &bound, output=&Output,
outvars=&Outvars, id=&id, maxiter=&initit2,
nlinopt=&initopt2);

'* Do marquardt minimization *'
data _null_;

file print;
put 'Beginning marquardt minimization second time';
run;

%nlinmodl(data=&data, xvar=&xvar, yvar=&yvar, inest=&Outpul,
hidden=&hidden, acthid=&acthid, actout=&aclout,
random= &random, bound= &bound, output=&output,
outvars=&outvars, id=&id, maxiter=&maxiter2,
nlinopt=&nlinopt2);

%end;

%else %00;

86



data _null_;
file print;
put 'Model converged the first time';
run;

%end;

%mead nlinmod2;

%macro itennodl( '* This macro calls the nlinmod2 macro repeatedly to
find the lowest minimum .,

data= DATA, '* Data set containing inputs and training values *'
xvar=XVAR, '* list of variables that are inputs.

Do not use abbreviated lists with - or :. *'
yvar=YVAR, '* List of variables that have training values.

Do not use abbreviated lists with - or :. *'
hidden= 2, '* Number of hidden nodes *'
acthid=logistic, '* activation function applied to hidden nodes *'
actout=linear, /* activation function applied to output nodes *''* the values can be LINEAR, LOGISTIC, or TANH *'
random=0, '* Seed for random numbers for initial weights *'
bound=30, '* Bound on absolute values of weights *'
output=_EST_, '* Data set containing estimated weights *'
outvars= SSE= SSE,'* Additional variables to put included in the

output data set *'
id=hidd _iter_, '* Variables to be included in the ouput data set

that are calculated within the- proc nlin *'
inititl =SO,
initit2=50,
maxiterl =150,
maxiter2= 200,
initoptl = METHOD = GRADIENT NOPRINT SMETHOD = HALVE NOHALVE

CONVERGEOBJ=10E-8
CONVERGEPARM= IOE-S,

initopt2=METHOD=GRADIENT NOPRINT CONVERGEOBJ= IOE-8 CONVERGEPARM=IOE-8,
nlinoptl = METHOD=MARQUARDT G4SINGULAR NOPRINT CONVERGEOBJ=10E-8

CONVERGEPARM= 10E-S,
nlinopt2=METHOD==MARQUARDT G4SINGULAR NOPRINT CONVERGEPARM= 10E-8

CONVERGEOBI=IOE-8,

tempdat=TEMPDAT, '* Data DaIIle for temporary output data set *'
endo=5, '* number of restarts .,
outhist=_ITHIST->; '* data set containing iteration history *'
%let n=&endo;
%let be8tsse=;
%let nextsse=;

%do i= 1 %to &endo;

data _null_;
iter=symget(ti');
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file print;
put 'Beginning iteration' iter' of itermodel';
nm;

%nlinmod2(data=&data, xvar=&xvar, yvar=&yvar, hidden=&hidden,
acthid=&acthid, actout=&actout, random=&random, bound=&bound,
output=&tempdat, outvars=&Outvars, id=&id, inititl=&inititl,
initit2=&initia, maxiter1=&maxiter1, maxiter2 = &maxiter2,
nlinoptl =&nlinoptl, nlinopt2=&nlinopt2);

%if &:i= 1 %then %do;
%* entering first do ;
data &Output(drop=&xvar &yvar); set &tempdat;

if _n_=2 then stop;
run;

data _null_; set &tempdat;
call symput('bestsse' ,sse);
run;

data templ(keep=ssel-sse&n); set &tempdat;
if _n_=2 then stop;
sse1= sse;
run;

%end;

%else %do;
%* entering second do ;
data _null_; set &tempdat;

call symput('nextsse' ,sse);
run;

%if &nextsse < &bestsse %then %do;
data &output; set &tempdat;

if _n_=2 then stop;
call symput('bestsse' ,sse);
run;

%end;

%let ib= %eval(&i-l);
data temp&i(keep=ssel-sse&n); merge temp&ib &tempdat;

if _n_=2 then stop;
sse&i=sse;
run;

%if &i=&endo %then %do;
data &outhist; set temp&i;

run;
%end;

%end;

%end;

proc datasets Dolist;
%00 _ov=l %to &i;
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run;

%mend itermodl;

%macro netrun( '* this macro uses a data step to run a network that is already

estimated *'
data=DATA,
xvar=XVAR,
yvar=YVAR,
hidden=,
acthid=LOGISTIC, ,. activation function applied to hidden nodes .,

actout=UNEAR, '* activation function applied to output nodes *''* the values can be LINEAR, LOGISTIC, or TANH *'
predict=predout,
inest=_EST_,
out= _DATA-.J;

%if %bquote(&hidden)= %then %do;
%put ERROR: Number of hidden neurons is blank.;
%goto exit;

%end;

%let nx= %xlstarr(xvar,_x);
%let ny= %xlstarr(yvar,J, 1);

%if &nx=O OR &ny=O %then %goto exit;

%global nh;
%if &hidden %thea %let nh=&hidden;

data tempI(drop=date); set &inest;
if _n_=2 then stop;
run;

data temp2;
if _n_= 1 then do;

do;
set tempI;
end;

end;
set &data;
run;

data &Out(keep=date &xvar &yvar &predict); set temp2;
%* compute hidden layer;
%do _ih= 1 %to &Db;

sum=a&ih- --
%do _ix=l %to &nx;

+&&_x&_ix*_b&_ix._&_ih
%end;
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%. apply activation function to hidden node;
%actfunc( _h&_ih,_sum,&acthid);

%end;

%. compute output;
sum= c- -

%00 _ih= 1 %to &hidden;
+_h&_ih·_d&_ih

%end;

%. apply activation function to output;
%actfunc(&predict,_sum,&actout)
run;

proc datasets Dolist;
delete tempI temp2;
nm;

%exit:
%mend netnm;

%••••••••••••••••••••••••••UTILlTY MACROS •••••••••••••••••••••••••••••;

%macro xlstarl'Llist,_array,size); "* convert list to array,
return count;

%local_i _D _temp;
%if "bquote(&&&_list)= %then %do;

%put ERROR: %UPCASE(&_list) is blank.;
%let _i=O;
%goto exit;

%end;

%if %bquote(&size)= %then %let _n=2000000000;
%else %let _n=&size;

%do _i= 1 %to &_n;
%Iet _temp= %qscan(&&&_list,&_i, %str( »;
"if %bquote(&_temp)= %then %go1o break;
%global &_array&_i;
%let &_array&_i=&_telDp;
%*put &_array&_i=&&&_array&_i;

%end;
%break:

%Iet _i= %eval(&_i-l);

%if %bquote(&size)A = %then %do;
%if &_i>&size %then %put

WARNING: More than &size items in %UPCASE(& list)=&&& list.. ;
%else %do; - -

%Iet _temp=&&&_array&_i;
%do_i=&_i+l %to&size;

%global &_array&_i;
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%let &_array&_i=&_temp;
%*Put &_array&_i=&:&&_array&_i;

"end;
%end;
%let _i=&size;

%end;

%macro actfunc(out,in,act); %* activation function;
%if %qupcase(&act)=LINEAR %then %do;

&out= &in;
%ead;
%else %if %qupcase(&act)=LOGISTIC %then %do;

if &in<-4S then &Out=O; "* avoid overflow;
else if &in> 45 then &out= 1; %* or underflow;
else &out= 1/(1 +exp(-&in»; %* logistic function;

%end;
%else %if %qupcase(&act)=TANH %then %do;

if &in<-22.S then &Out=-I; %* avoid overflow;
else if &in> 22.5 then &out= 1; %* or underflow;
else &Out=1-2/(1+exp(2*&in»; %* tanh function;

%end;
%else %00;

%put ERROR: Unrecognized activation function "&act".;
ACTIVATION???;

%end;
%mend actfunc;

%macro initparm;
%00 _ih= 1 %to &nh;

a& ih=&&n a& ih- - --
%00 _ix=1 %to &nx;

b& ix. & ih=&&n b& ix. & ih---- ----
%end;

%end;

c=&n c- -
%00 _ih= 1 %to &hidden;

d& ih=&&n d& ih--- - ~-

%ead;

%mead initparm;

%macro deriv;
%if %qupcase(&actout)=UNEAR %then %do;

der._c=l;
%00 _ih= 1 %10 &hidden;

der._d&._ih= _b&_ih;
%end;

%end;
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%if ~qupcue(&actout)=LOGISTIC%then %00;
der._c=_0*(1-_0);
%00 _ih= 1 %to &hidden;

der._d&_ih=_h&_ih*_0*(1-_0);
%end;

%end;

%if %qupcase(&actout)=TANH %then %do;
der._c= 1-<-0)**2;
%00 _ih= 1 %to &hidden;

der._d&_ih=_h&_ih*(l-_O**2);
%end;

%end;

%if %qupcase(&actout) = LINEAR & %qupcase(&acthid)=LOGISTIC %then %do;
%do _ih= 1 %to &nh;

der._8&_ih=_h&_ih*(1-_h&_ih)*_d&_ih;
%do _ix= 1 %to &nx;

der._b&_ix._&_ih=&&_x&_ix*_h&_ih*(l-_h&_ih)*_d&_ih;
%end;

%end;
%end;

%if %qupcase(&actout)=LINEAR & %qupcase(&acthid)=TANH %then %do;
%do _ih== 1 %to &nh;

der._8&_ih= (l-<-h&_ih)**2)*_d&_ih;
%do _ix= 1 %to &nx;

der._b&_ix._& _ih=&&_x&_ix*(I-<-h&_ih)**2)*_d&_ih;
%end;

%end;
%end;

%if %qupcase(&actout)=LOGISTIC & %qupcase(&acthid)=LOGISTIC
%then %do;
%do _ih=l %00 &nh;

der._a&_ih= _h&_ih*(l-_h&_ih)*_d&_ih*_0*(1-_0);
%do _ix= 1 %to &nx;

der._b&_ix._&_ih=&&_x&_ix*_h&_ih*(l-_h&_ih)*_d&_ih*_0*(1-_0);
%end;

%end;
%end;

%if %qupcase(&actout)=LOGISTIC & %qupcase(&acthid)=TANH %then %do;
%do _ih= 1 %to &nh;

der._a&_ih=(l-<-h&_ih)**2)*_d&_ih*_0(1-_0);
%00 _ix= 1 %to &nx;
der._b&_ix._&_ih=&&_x&_ix*(l-<-h&_ih)*~)·_d&_ih*_o*(l-_o);

%end;
%end;

%end;

%if %qupcase(&actout)=TANH & %qupcase(&acthid)=LOGISTIC %then %do;
%do _ih=l %to &nh;

der._a&_ih=_h&_ih*(1-_h&_ih)*_d&_ih*(l-_0**2);
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%00 _ix= 1 %to &nx;
dere_b&_ixe_&_ih=&&_x&_ix*_h&_ih*(l-_h&_ih)*_d&_ih*(l-_o**2);

%end;
%end;

%end;

%if %qupcase(&actout)=TANH & %qupcase(&acthid)=TANH %then %do;
%do _ih= 1 %to &nh;

dere_a&_ih=(l-Lh&_ih)**2)*_d&_ih*(l-_o**2);
%00 _ix= 1 %to &nx;

dere_b&_ixe_&_ih=&&_x&_ix*(l-Lh&_ih)**2)*_d&_ih*(l-_o**2);
%end;

%end;
%end;

%mend deriv;

%macro parmout;
%do _ih= 1 %00 &nh;

%str( _a&_ih)
%do _ix=l %to &nx;

%str( _b&_ixe_&_ih)
%end;

%end;

%str( _c)
%do _ih=l %10 &hidden;

%str( _d&_ih)
%end;

%mend parmout;

%macro bounds;
-&bound< c < &bound

%do _ih= 1 %to &hidden;
,-&bound<_d&_ih< &bound

%end;

%do _ih=l %to &nh;
,-&bound< _a&_ih< &bound
%do _ix= 1 %10 &nx;

,-&bound < _b&_ix._&_ih<&bound
%end;

%end;
,

%mend bounds;
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