
PROVIDING TEXT-MODE ACCESS TO BLIND

USERS WITH AN APPLICATION USING

TEXT-TO-SPEECH SYNTHESIS

By

AOUNI HALLAL

Bachelor of science

Oklahoma State University

Stillwater, Oklahoma

1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial 'fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
May, 1995

PROVIDING TEXT-MODE ACCESS TO BLIND

USERS WITH AN APPLICATION USING

TEXT-TO-SPEECH SYNTHESIS

Thesis Approved:

H.
Thesis Adviser

11

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and

appreciation to Dr. Huizu Lu for the opportunity to work

under her supervision. Her advice and ongoing encouragement

were invaluable in guiding the completion of this work.

Many thanks are also due to the members of my advisory

committee, Dr. K. M. George, and Dr. Jim Rogers for their

generous support and constructive recommendations.

I also like to express my thanks to all the people on

the misc.handicap newsgroup for their suggestions, to Ms.

Susan Haaze of the Wellness Center for allowing me to use

the adaptive equipment, and to all my friends and teachers

that I have met during my college years.

Special thanks are due to my grandparents, my mother

and father, and my brothers for their loving concern,

selfless support, and strong encouragement at times of

difficulty. To them I dedicate this thesis and I extend my

deepest appreciation and love.

And above all, I thank God.

III

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. CURRENT ACCESS SySTEMS 4

2.1 Scope 4
2.2 Auditory Adaptations 5

2.2.1 Speech Synthesis 6
2.2.2 Auditory Cues and Spatial Audio 7

2.3 Tactile Access Systems 9

III. DESIGN CONSIDERATIONS FOR SPEECH AUDIO 12

3 .1 Design Constraints 12
3.2 Screen Readers Major Control Facilities 16

3.2.1 Verbalizing the Active Point 16
3.2.2 Handling Window Frames 18
3.2.3 Cursor Routing Facility 19
3.2.4 Automatic Monitoring Facility 20
3.2.5 Emulating Visual Scanning 21
3.2.6 Read Requests and Searching 22
3.2.7 Other Control Features 23

IV. SCREEN ACCESS IMPLEMENTATION 26

4.1 Text-Mode Screen Architecture 26
4.2 Accessing Screen Data 34
4.3 Determining Stating Location for Speech 37
4.4 Controlling what is spoken 39

4.4.1 Speaking Format 41
4.5 Managing Automatic Messages 43

4.5.1 Screen Monitoring Variables 44
4.5.1.1 Action Bar Variables 44
4.5.1.2 Selector Variables 46

4.5.2 Cursor Variables 48
4.5.2 ROM BIOS Internal Variables 49

V. SUMMARY AND RECOMMENDATIONS 54

5.1 Summary 54
5.2 Recommendations for Future Work 55

5.2 . 1 Clustering 55
5.2.2 Non-Speech Audio 56
5.2 .3 Spatial Audio 56

iv

Chapter Page

REFEREN"CES 57
APPENDIXES 62

APPENDIX A-- SOFTWARE AND HARDWARE REQUlRElVIENTS .62
APPENDIX B-- STARTING SCREEN READER 63
APPENDIX C-- USER FUNCTIONS 65
APPENDIX D-- PROGRAM LISTING 70

v

Table

LIST OF TABLES

Page

I. COMMON MONOCHROME ATTRIBUTE BYTE VALUES 32

II. FOREGROUND AND BACKGROUND ATTRIBUTE BYTE
COLOR SETTING FOR COLOR TEXT MODES 33

III. CORRESPONDENCE BETWEEN THE KEYBOARD AND KEYPAD KEYS .64

Vl

LIST OF FIGURES

Figure Page

1. IBM PCjXTjAT Standard Memory Layout 29

2. Attribute Byte For Monochrome Displays 31

3. Attribute Byte For Color Displays 33

4. Screen Storage For Text-Based applications 36

5. Extended Keyboard Status Byte 50

6. Keyboard Flags Byte 52

vii

ASCII

B

BG

BIOS

DOS

FG

H

Kbyte

IVlB

PAL

PC

RAM

ROM

TSR

UI

NOf'JOO\ICIATURE

American standard code for information interchange

Binary representation

Background screen color

Basic input/output system

Disk operating system

Foreground color

Hexadecimal notation

Kilo byte

Mega byte

Profile access language

Personal computer

Random access memory

Read only memory

Terminate and stay resident program

User interface

viii

CHAPTER I

INTRODUCTION

The underlying effort in the evolution of user

interfaces (DIs) has been to facilitate the communication

between the user and the machine. Most current UIs are

either the traditional alphanumeric full-screen terminals

with a keyboard and function keys, or the more modern WIMP

interfaces with windows, icons, menus, and a pointing device

[JAK093] .

The visual channel has a tremendous capacity for

information transfer, and it has been heavily dependent upon

in communicating the interface to the user [VAN89]. The

transformation of this interface into non-visual channels to

accommodate the blind community has raised many challenging

design issues.

One's sight can quickly navigate or scan any part of

the display, screen colors and text attributes communicate

visually important information to the user, boxes tend to

cluster and organize data in a visually appealing manner,

and the location of screen objects enhance the screen layout

and convey different information depending on their

locality. An access software must substitute these tasks

for the blind user which sighted users take for granted.

1

2

Currently, numerous application programs run under

text-mode environments which are mainly popular under DOS

operating systems. Unfortunately, there are practically no

standards that these applications follow, and their user

interfaces are highly dependent on the visual channel

[TED92]. For instance, some applications use the whole

screen to present a menu while others utilize an action bar

with drop-down menus, and the location of these menus on the

screen also differs widely from one program to another.

Consequently, there are many technical difficulties

involved when translating the user interface into non-visual

modalities [VAND92]. In addition, there are various human

factors that are needed to be addressed in order for these

adaptations to be effective solutions [DOUG90]. For

instance, unlike sighted users who can glance at the screen

to refresh their memories, blind users depend on short-term

memory to form a mental model of the screen display.

Therefore, any solutions has to provide sufficient functions

which allow the blind user to form the proper mental model

of the interface and without overloading his/her memory.

Chapter II reviews auditory adaptations, and briefly

covers tactile and multi-sensory access systems. Chapter

III presents major personal and technical constraints faced

in the design of speech audio interfaces, and explores a

group of user control facilities needed in order to provide

efficient exploration and translation of the interface.

Chapter IV discusses the implementation mechanism of

collecting the data for the access program, and the steps

used to coordinate speech with the current screen activity,

the keyboard state, and the disk drive status. Chapter v

gives a summary and some recommendations for future

research.

3

CHAPTER. II

CURRENT ACCESS SYSTEMS

To provide non-visual access and regardless of the non

visual output modality, information about the running

application user interface must first be captured. The

retrieved information is then used to present a different,

non-visual interface of the running application [BETH94b].

This new interface becomes the means with which the blind

user interacts and controls the application.

Once the information is captured, presenting the user

interface in a non-visual modality can take many forms. The

available domains for a severely visually impaired user are

the tactile and auditory channels. Consequently, access

solutions have addressed [CARL92] [LAZZ93]:

1. The auditory mode using screen reading software which is

normally combined with a text-to-speech synthesizer;

2. The tactile mode using mainly dynamic Braille displays;

3. Both channels by using a combination of sound and touch.

2.1 Scope

The implementation program for an auditory system is

limited to a commercial text-based database system called

Alpha4. Text-to-speech synthesis is the medium used to

4

5

produce the output. However t the details of the process of

converting text into speech are beyond the scope of this

paper; good reviews are found in [OMAL90] [HIRS90] [LEON91].

2.2 Auditory Adaptations

Auditory access systems include speech synthesist

auditory cues t and spatialized audio sounds.

2.2.1 Speech Synthesis

Historically speech synthesis technology has been one

of the major factors which influenced non-visual user

interface adaptations. CurrentlYt synthesized speech is one

of the most powerful and least expensive computer access

devices for the blind user and improved algorithms and more

powerful signal-processing chips are resulting in high

quality speech [OMAL90] [LEON91] [LAZZ93]. As a result t the

majority of access solutions thus far have utilized speech

as the principle format of communicating the visual

interface to the blind user.

Early commercial applications produced speech output by

concatenating a sequence of pre-recorded words t syllables t

or phonemes. A phoneme is the smallest unit of speech that

distinguishes one utterance from the other [LEON91]; usually

found in dictionaries to dictate how words are pronounced.

This approach was most useful for systems requiring a

relatively small output vocabulary such as automated

6

telephone directory assistance. Its disadvantages included

the difficulty of handling voluminous or changing

information [ELIM90]. In addition, the scope of words that

can be produced is limited to what has been recorded. The

way a sample is recorded determines the way it will sound

when played back. All the samples must be recorded and

stored in advance which gives little dynamic control over Dr

factors such as speech inflection, length of pauses, and

speaking rate. These constraints have limited the

flexibility of stored voice response systems, and in turn

have affected the efficiency of the auditory user interface.

Text-to-speech synthesis systems, on the other hand,

operate directly from an input text or data stream to

produce a real-time, comprehensible speech instead of using

pre-recorded human speech. These systems take arbitrary

text as input together with optional user specified commands

to control the system parameters (such as phrasing,

prominence, and rate) and produce real-time synthetic

speech. The process of converting text into speech

parameters involves advanced information processing and

detailed physiological control of articulatory organs.

Text-to-speech synthesis approach has the advantage that the

variety of words which can be produced is much greater than

those produced when using the concatenation method; it

allows the production of an unlimited vocabulary. The

disadvantage is that the speech produced tends to sound less

7

natural than that produced when using concatenation.

To apply this auditory solution, a user has to install

additional hardware and software on the workstation. The

hardware is a speech synthesizer which can be either a

circuit card or an external peripheral device. The software

is a screen reader which controls the speech hardware and

verbalizes text.

Typically, a speech synthesizer is a dedicated computer

with the single task to run text-to-speech software.

Current speech synthesizers vary in sophistication. Some

provide means for the user to control the number of words

spoken per minute, to simulate a variety of different voices

(male/female and young/old voices), and to change voice

characteristics such as pitch and volume [LAZZ93]. Whereas,

screen readers are software solutions that are coresident in

memory with the application program. They link the speech

synthesizer with the computer's operating system so that the

visual interface and input devices become verbally

interactive and controlled by the user.

2.2.2 Auditory Cues and Spatial Audio

Some research have been carried out into communicating

the Dr information through sounds other than speech by using

auditory cues [EDW89] [BGB91]. Auditory cues, first

introduced by Gaver in a project called SonicFinder [GAV89],

are mainly used to reinforce single-sensory solutions by

8

providing informative non-speech sounds which represent the

interface components. They range from single audible beeps

to sounds that are associated with everyday objects. For

instance, touching a window sounds like tapping on glass,

touching a text field sounds like an old fashioned

typewriter, and searching through a menu creates a series of

shutter sounds.

Much of the current research in non-speech audio

interfaces has been based on mapping attributes of screen

objects into parameters of sound. By adding sounds to the

interface to provide system information, the interface

bandwidth of communication can be significantly increased.

However, the ultimate success of auditory cues depends on

the development of good analogies between events in the

computer and sound producing events in the real world. The

mapping is not straight forward for the UI components such

as menus and dialogue boxes which are abstract notions and

have no innate sounds associated with them. Further, too

many sounds can be detrimental in being difficult to

remember or distinguish, and tend to slow the interaction

[BETH94a]. In general, auditory cues have been used to

communicate information quickly whereas speech have been

used to give more precise information more slowly.

Research has also proven that the integration of real

time spatial audio can further enhance the non-visual

interface [WENZ90] [BURG92]. Spatial audio to access

9

solutions can convey the locality of objects on the screen.

With this approach, the words being read sound like they are

corning from the location on the screen where they are

located. As the user reads from left to right, the voice

seems to float from left to right [GAVE89] [LUDW90]

[LUDW91]. However, navigation in speech only interfaces

remains a challenging design problem. Audio feedback does

not provide an easy way for users to keep track of their

position in the interface [BETH94a].

2.3 Tactile Access Systems

Dynamic Braille displays can be an alternative or a

complement to voice output. When the Braille display

receives text, it automatically displays it by the raising

and lowering of pins on a strip that contains mechanical

Braille cells. If the user presses a key on the keyboard or

if the screen is updated, one or more of the cells are

activated automatically. However, present commercial

dynamic braille displays are constrained to only one line of

braille output of either 20, 40 or 80 characters [LAZZ90]

[DANI92] [VAN92] which have limited the efficiency of such

adaptations.

The single line braille display does not yield ready

access to information which is two-dimensional or screen

oriented such as spreadsheets [HINT92]. In addition, since

tactile provides a passive way of interaction, it is a

10

difficult medium to quickly alert the user [DANI92]. To

overcome some of these liabilities, numerous efforts have

addressed the implementation of full-page Braille. However,

cost factors have rendered such efforts to be impractical

[DANI92] [BETH94b]. Dynamic Braille displays are currently

used in conjunction with voice adaptations for reviewing

text documents such as reading source code since speech

synthesizers have been notoriously bad at this task.

Moreover, adding Braille to voice output has been most

effective since redundancy is introduced to the user

interface.

Research efforts have further demonstrated that tactile

when combined with speech output can provide access to

simple graphics, diagrams, and charts. A prototype called

"System3" is a cooperative research and development project

of the Trace R&D Center and Berkeley Systems. It is used

with a screen reader to produce a multi-sensory access

system. System3 presents tactile images of text or simple

graphs to the blind user through a set of vibrating pins

atop an absolute reference pointing device. This is

significant in that, unlike the mouse, the relative position

of the pointing device on the tablet corresponds directly to

the position of the pointer on the screen. The user can

feel under a fingertip the vibrating image of the pixels

under the pointer as it moves on the screen, and piece

together mental images of where things are on the screen

11

[VAN90] [VAN92] [TRAC94]. This effort aims at improving the

functionalities of scanning, browsing, and memory jogging

which are not efficiently performed when using a single

sensory adaptations, such as speech or Braille alone.

A great milestone has been achieved in this field;

however, the present non-visual adaptations by no means have

efficiently solved access for blind users. This has been

largely due to the limited experience with non-visual

domains [BETH94a].

CHAPTER III

DESIGN CONSIDERATIONS FOR SPEECH AUDIO

Beyond the process of translating text into speech,

there are a number of considerations which must be taken

into account if an auditory system is to function as an

effective tool for the blind user. The development of these

access solutions have been restricted by various technical

and personal constraints. Furthermore, a group of user

controlled functions have to be provided in order to allow

an efficient exploration and translation of the user

interface.

3.1 Design Constraints

Conveying the characteristics of the different aspects

of the interface in an efficient non-visual form has not

been an easy proposition. The auditory system has a higher

information bandwidth than the tactile senses but not as

high as the visual system. Thus, the non-visual interface

has to be less complex, and able to achieve as many of the

benefits that are provided in the visual interface

[BETH94a]. Unfortunately, there are no non-visual media

that are able to convey as much information due to the

serial nature of access solutions as opposed to the parallel

12

13

capacity of sight [EDW88]. Therefore/ additional

functionality has been required to support efficient

exploration of non-visual interfaces.

Persons with visual impairments have limited real-time

access to computer informationj thus/ time has been one of

the most valuable commodities. Short-term memory and strong

concentration have also been important since blind users

lack the means available to sighted people to check the

screen and refresh their memories [EDW89]. Consequently, a

highly relevant design issue for auditory solutions has been

that feedback must be brief, yet informative in order to

conserve time and to reduce the information that the user

has to retain in memory. Nonetheless, all access solutions

utilize procedures that add extra steps to the interface of

the running application. Procedures that are automatically

performed by a sighted user can require substantial

processing resources for blind users [DOUG90]. For

instance/ a sighted user can determine at a glance the

physical location of the cursor on the screen and its

contextual location. On the other hand, at least two steps

would be required for the blind userj one to find out the

cursor location and the other to read the word at the cursor

location.

An overriding aim in any access system has been to

maintain coherent visual and non-visual interfaces. The

primary reason for this goal has been to provide the blind

14

user with a reasonably similar mental model of the running

application as that of a sighted user in order to support

collaboration between them [BETH94a] [PAUL92]. Furthermore,

access solutions need to be transparent to running

applications [BROWN89] [BETH94b] i that is, when an

application is running, it must be unaware of the presence

of the non-visual system. This has been a highly relevant

design factor since the access solution would not require

the recoding of the application itself to support the access

system. If a direct modification approach were to be used,

it would be possible to introduce the mechanisms for the

non-visual interface directly into the application. The

drawback to this latter approach is that it requires

modification to every application of interest. This is not

feasible for a practical access system. Therefore, all

access systems are Terminate ans Stay Resident programs

(TSR) in order to be used concurrently with a running

application [LAZZ90]. However, there exists no solution

that provides access to all text-based application due to

the fact that there are practically no standards followed by

DOS application developers [TED92]. For instance, actions

bars, cursor shapes, and error messages are not consistent

amongst applications. The more complicated screens and non

standard conventions an application utilizes, the harder and

more complex a customization becomes [EDW88] [VAND92].

Navigation and data manipulation can be communicated

15

entirely via a keyboard. Pointing devices such as mice and

trackballs have been added to text-based application user

interfaces; yet input can be communicated exclusively

through the keyboard as blind users can be touch typists.

The Keyboard, however, has been overloaded since it is

heavily used by both the application program and the access

system [EDW88] [TED92]. The keyboard has a limited number

of keys which are already used up performing the application

functions. There are usually few keys or key-combinations

that are available for the access system functions. Some

adaptations have provided an extra keypad in addition to the

keyboard to get all the keys needed. However, this has

added to the complexity of the solution since the user has

to remember which keys to press and their respective

locations.

To reduce the keyboard activity, access solutions have

utilized macros which in turn reduce the memory required to

control the computer and the access software [TED92].

Macros have traditionally been used as keyboard enhancers by

combining keys and functions together into one key. In

access programs, macros have been similarly used to relieve

the user from entering repetitive commands and to watch the

screen for any changes that may occur. For example, the

screen reader can be instructed to watch the bottom line of

information on the screen and whenever the line turns from

blue to red, the screen reader macro is instantly triggered.

16

3.2 Screen Readers Major Control Facilities

When a screen reader is chosen to provide access,

synthesized speech is the medium used to translate the

interface to the blind user. Any screen reader has the

responsibility of conveying the screen activity to the user,

the job usually done by the eyes. Many different screens

appear when an application program is running, the keyboard

keys are used to perform several different functions, and

the action of those keys depends on the mode that the

application is in. For instance, pressing the left arrow

key may take the cursor one character to the left or may

move it to a previous field; or pressing the Enter key may

produce a different result based on whether the application

is in edit or command mode. Therefore, a key component of

any adapted system is the control facilities provided to

convey the screen information.

3.2.1 Verbalizing the Active Point

In order to convey the correct screen activity, screen

access programs have to track and verbalize the active point

on the screen so that the blind user can tell where the

keyboard action will take place [JIM93]. The system cursor

is usually the active point. If the application uses the

system cursor, its information such as position, shape, and

color is held in registers in the display hardware. On the

other hand, if the application creates its own cursor such

17

as highlighting text, there has been no way for the access

program to easily tell where the cursor is [VAND92].

Some applications display a list of commands on the

screen and expect the user to be able to notice that one of

these commands is distinguished from the others because it

is highlighted in a different video enhancement or color.

This area of text is usually known as a lightbar or

selector. Users are often required to move this lightbar

up, down, left, or right on the screen with the cursor arrow

keys. In these situations, the lightbar replaces the

cursor. If a screen reader only verbalizes where the system

cursor moves, it would not be possible for the user to read

the lightbar text. In these cases, some screen readers

attempt to trace a set of video enhancements or color

combinations that make up the lightbar [IBM92a] [WB93].

However, there are occasions where several lightbars may

appear on the screen. For instance, many applications use

the same lightbar attributes to highlight a title, or a

status line. As a result, it is possible to verbalize the

wrong lightbar instead of the desired lightbar. Two

strategies have been suggested by Vanderheiden [VAN92] to

mainstream software developers in order to facilitate

tracking lightbars by screen access programs:

1. To drag the system cursor along with the lightbar, or

2. To carry a character along with the lightbar such as

[A.] Save or ~ A. Save

18

3.2.2 Handling Window Frames

Many software programs use window frames to enclose a

list of commands such as a menu, or to divide a split screen

for example. A text-mode window frame refers to an area on

the screen that is surrounded by a graphic border. In many

cases, this window appears over existing text, and is

enhanced to the sighted user by creating a graphic border

around the text in question. Another common property of

these window frames is that they do not always appear in the

same location on the screen. In these cases, screen readers

have created reading boundaries so that only the text

contained within these windows is verbalized and not the

whole screen [IBM92a] [WB93].

There are further some situations where the text

appearing on the screen cannot be accessed by the system

cursor. This is because the application program does not

require a sighted user to move this cursor into these areas.

These are usually referred to as protected areas. For

instance, line 25 in many word processing programs is in

protected mode since the system cursor cannot access this

area of the screen.

In order to permit the blind user to read these

protected areas, most access solution create another cursor

or pointer [BROWN89] [IBM92b] [ERIC92]. This pointer is

controlled in the same manner as the system cursor, but

unlike the system cursor it is not visible on the screen to

the user. This cursor is referred to as scan cursor or

19

review mode cursor. The review mode suspends the

application program so that the user can explore with this

pointer the current contents of the video buffer.

Therefore, when in this mode, attempting to edit the

contents of the screen, or to execute a command for

interpretation by the application program will not be

recognized or executed.

Most of the control facilities that are provided with

screen readers are executed by the user from within the

review mode. A user is able to control and set any of the

speech synthesizer parameters or any of the screen reader

operating parameters. This mode has also been beneficial

for programs that do not permit the user to redisplay the

current screen information or to navigate through it with

the keyboard arrow keys. A user can freeze the current

screen by entering the review mode and can utilize the

provided facilities with the screen reader to explore it

[LAZZ93J .

3.2.3 Cursor Routing Facility

When in review mode, the scan cursor may be moved to a

location on the current screen where the user may wish to

make a change in the screen content. Since the user cannot

enter text, or edit the current screen contents from within

this mode, the user must leave the review mode before making

20

any changes on the screen. To facilitate this process,

screen readers have provided a routing facility [BROWN89]

[IBM92b] .

The concept of cursor routing instructs the screen

reader to move the system cursor to the location of the scan

cursor. The only limitation to this is attempting to move

the system cursor into a protected area of the screen. A

screen reader would leave the review mode, and attempt to

move the system cursor to this location. If this operation

is successful, the system usually informs the user in some

manner that the cursor has been routed. Otherwise, the user

is told that the task has failed, and the screen reader

attempts to position the system cursor on the closest

accessible line or column to the desired location on the

screen [WB93]. For example, trying to route the cursor to

Line 25 will position the cursor on Line 24 if Line 25 is

inaccessible.

3.2.4 Automatic MOnitoring Facility

To alert the blind user of information such as error or

status messages that are directly sent through the operating

system to the display, a screen reader is programmed to

automatically verbalize such messages. Although this

provides transparent access to some programs, most

application programs bypass the operating system when

displaying output and do not organize their screen displays

21

into a scrolling stream of text [ERIC92]. Therefore,

screen readers have provided another facility which

automatically monitors the screen and announces any changes

that may take place. All the data to be spoken is event

actuated, the screen reader should notice the new

information, decides what needs to be done or spoken and

perform accordingly [TED92]. For instance, the status line

in Word Perfect is usually one line of information which

must be automatically spoken when it changes; however, it is

sometimes two lines and the screen reader should verbalize

both.

3.2.5 Emulating Visual scanning

To mimic the sighted user's visual scanning abilities

of the interface, screen readers have provided a set of Hot

keys or Read Areas [BROWN89] [TED92]. By entering a certain

keystroke(s) or a Hot key, the user can instantaneously read

any section of the screen, or perform various navigational

tasks that are usually done by a sighted user, such as

verbalizing the status bar, the cursor location, or the menu

entries.

To further emulate most of the actions performed in a

visually oriented reading process, screen readers have

provided functions to allow the user to read single letters

in order to identify possible spelling mistakes, words in

order to orient within a line of text, and lines of text in

22

order to perceive the contents of a screen. In addition,

just as sighted users skim documents to obtain a perception

of overall coherence, screen readers have provided blind

users with options which allow these same processes to occur

such as reading a full screen of information or parts of it

[CARL92J .

3 • 2 • 6 Read Requests and Searching

A user is always in either the application mode or the

review mode. When in application mode, any read request

would be relative to the system cursor or the active point.

For instance, if a command is issued to read the current

line, the line containing the system cursor would be read,

and the system cursor is not moved from its location. On

the other hand, when in review mode, any read request is

relative to the scan cursor, and the scan cursor moves to

the last item spoken. For instance, if the user is reading

a character at a time, the scan cursor stops at the last

character read. If reading words, the scan cursor stops at

the beginning of the last word read. However, if reading

entire lines, the scan cursor movement is dependent on the

speech synthesizer in use. If it has indexing, a way for

the synthesizer and screen access program to keep track of

the words spoken, the scan cursor moves and stops at the

beginning of the last word spoken. Otherwise, when reading

lines or entire screens, the scan cursor remains on the

23

beginning of the first spoken line [IBM92b] [ACC91].

There are times when the user is presented with a

screen of information that may be time consuming to read in

its entirety in search of a specific command, word, and so

forth. If the application program being used does not offer

a find feature to locate the desired text, it could be

rather time consuming for the blind user to read the entire

screen in search of this text. A find feature should be

available so that a user can search the entire screen for

the desired information [LAZZ93] [WB93] [IBM92a].

3.2.7 Other Control Features

A critical and important function that a screen reader

has to provide a user is the answer to the following:

"Where am I in the application?"

The response to this question has varied widely across

applications; however, it should provide a point of

reference and direction so that the proper mental model is

formed by the user. For instance, the answer may include

the number of windows present on the screen, the active

window, the current mode, the current location of the system

cursor, and so on. The system cursor position is obtained

from the ROM BIOS and is usually spoken to the user in terms

of its screen coordinates by row and column. However, this

may not convey the proper current location in the

application to the user. This would take place when the

24

system cursor is on one page, and the user is scanning a

different page. Therefore, announcing the cursor position

is not enough to convey the user location in the

application. The only way of notifying the user of the

proper message is when the application utilizes indicators

that shows the active page [JIM93].

The majority of screen readers have provided a facility

in their interface to temporary or permanently silence

speech [BROWN89]. The main reason for the temporally

silence feature is to allow the user from having to wait for

the speech to catch up with the screen display during

keyboard entry, output of a monitor area, or cursor movement

and reading. This allows the user to quickly move the

cursor without any lag time while the voice attempts to

finish any remaining text. For instance, if a user is

moving through a document line by line; without this

feature, each time the cursor or pointer is moved down or

up, the user has to listen to the entire line before hearing

the next one. The permanent silence is also important In

that the station can be used by a sighted user.

Most keyboards have lights to indicate to the sighted

user the status of the lock keys which include Num Lock,

Caps Lock, and Scroll lock. Furthermore, the Insert key can

be toggled to Replace mode in many applications. Screen

readers have provided a verbal method of indicating the

status of those keys to the blind user whenever they are

25

changed. Some applications; however, provide their own on

screen indication whether or not those keys are turned on.

In some cases, this feedback is independent of the flags in

the system or the status of the lights on the keyboard.

This situation have resulted in an inconsistent feedback to

the blind user when an access program tends to check the

status of these indicators [VAN92].

The screen reader operating parameters should further

allow the user amongst many other things to filter out

unwanted symbols as they appear on the screen via BIOS

writes from being read, to control the enunciation of

numbers (which can be spoken in terms of hundreds and

thousands or one digit at a time), and to control the upper

or lower case sensor (by directing the synthesizer to raise

the pitch of the voice or if the subtle differentiation is

not enough, a verbal distinction can be made by speaking

"capital" or "upper" when one is detected) [IBM92aJ [IBM92bJ

[WB93]. A relevant factor which affects the speech output

is whether the speech synthesizer in use accepts the full

ASCII set of characters or a portion of it. Some speech

synthesizers only accept the lower portion of the ASCII set

of characters which constitutes the first 128 characters.

In the latter case, when a character on the screen whose

ASCII value is over 128 is encountered by the speech

synthesizer, a word such as II graphic II would be spoken or the

ASCII equivalent value of the character is spoken.

CHAPTER IV

SCREEN ACCESS IMPLEMENTATION

The screen access program is a Terminate and Stay

Resident program (TSR) which consists of a collection of

functions that are automatically triggered when a change

takes place on the screen, and a set of key sequences that

are invoked by the user to perform a variety of tasks.

Changes on the screen range from the movement of the cursor

or a highlight bar to the appearance of a totally new screen

of data. The key sequences are only invoked when the user

is in review modei this is when the running application is

suspended and the access program is activated.

4.1 Text-Mode Screen Architecture

The screen of a personal computer (PC) is divided into

a matrix of character cells. Most display adapters offer

two text modes: one with a matrix of 40 columns by 25 rows,

and the other (the default) with a matrix of 80 columns by

25 rows [ROBB91]. The cells are not visible, they just mark

possible display locations on the screen. Each cell is

identified by its row and column coordinatesi the

coordinates of the upper left cell are (0,0). On a screen

that has 80 columns by 25 rows, the coordinates of the lower

26

27

right cell are (79,24).

In each cell, the display adapter can only display one

of a predefined set of characters. With a color adapter, a

character is made up of 5 X 7 dots within an 8 X 8 cell, and

the pixel pattern for each character is stored in ROM on the

display adapter. As a result, when a program wants to

display a certain character, it does not have to specify the

character's pixel pattern. Rather, a program needs to

specify the character's identity which is the ASCII code.

The display adapter hardware retrieves the corresponding

pixel pattern from ROM and displays it on the screen

[AITK92] .

This set of pixel patterns includes letters, numerals,

punctuation marks, special symbols, and other characters.

These codes range from 0 to 255, representing the 256

possible combinations of binary digits contained in an

eight-bit byte. A programmer can only display those

predefined characters in the matrix of character cells on

the screen. The ASCII codes to each letter or symbol can be

divided into the following:

o to 31 are Control codes. Generally, sending one of

these codes will cause something to happen

instead of causing a symbol to be displayed.

For example, displaying code 13 will cause a

carriage return.

32 to 127

128 to 175

176 to 178

179 to 218

219 to 223

224 to 255

28

are the fundamental 96 text characters. They

include numbers, letters, and all the

punctuation symbols.

are foreign language characters and few other

miscellaneous characters.

are the 3 characters used for shading.

are line segment characters; forms and tables

can be constructed on the screen by combination

of these characters.

are the block graphic characters.

are Greek letters and mathematical symbols.

Furthermore, MS-DOS was developed on the 8086/8088

central processing unit, which can address a total of 1

megabyte of memory. The typical uses and location of this

memory are shown in Figure 1. There are 16 segments and each

segment's size is 64-Kbyte. Microprocessors developed after

the 8088 can access memory above 1 MB (FFFFFH); However, for

the present discussion, only the memory below FFFFFH is of

interest.

ADDRESS

FFFFF

FOOOO

EOOOO

DOOOO

COOOO

BOOOO

AOOOO

90000

20000

10000

00000

MEMORY
USE

--

System ROM
--

System Use

System Use
--

Disk Control

Video RAM

EGA Graphics
--

User

User

System use

29

Figure 1. IBM PC/x:r/AT Standard Memo:ty Layout

All PC display adapters are memory mapped [STEV89],

which means that they have a section of random access memory

(RAM) that is devoted to the screen display (see figure 1).

This memory has been referred to by various names: video

RAM, video buffer, refresh buffer, and display buffer.

Each character cellon the screen is represented by two

adjacent bytes of memory in Video RAM. The first, or low-

order, byte specifies the ASCII code of the character

displayed. The second byte is the attribute byte, and it

30

contains the ASCII code that specifies the manner in which

the character is displayed. Each character can have one of

several attributes and each bit in the attribute byte

controls a different feature of the character. The

attribute byte differs depending on whether the display is

driven by a monochrome or color display adaptor [AITK92].

The attributes [NELS87] that are available on a display

driven by a monochrome adaptor are:

Normal - white character on black ground

Reverse video - black character on white ground

Underline - used for white characters only

Blinking Character

High-intensity character

Figure 2 shows the attribute byte for a monochrome

adaptor and the purpose of its bits. The attribute

controller divides it into two nibbles l whereby the upper

nibble (bits four to seven) describes the character

background, and the lower nibble (bits zero to three)

describes the character foreground.

7 6 5 4 3 2 1 OBit

31

1__T I ~-J ~[_~~=I

I I I J II I I

Blink Background Highlight Foreground

7 6 5 4 3 2 1 0 Bit
--

0 0 0 1 1 1 Normal Char.
1 1 1 0 0 0 Reverse video
0 0 0 0 0 1 Underlined Char.
0 0 0 0 0 0 No Display
1 1 1 1 1 1 White Char.

--

Bit 7 when set makes the character blink
Bit 3 when set makes the character high intensity

Figure 2. Attribute Byte for Monochrome Display

Blinking and high intensity are each caused by a

specific bit in the attribute byte; bit 7 for blinking and

bit 3 for high intensity. The other six bits have a limited

range of effective values. Further, not all attribute

combinations are available. For instance, underlined

reverse video cannot be obtained. Table I shows a list of

common attribute values and the effects they create.

32

TABLE I

COMMON MONOCHROME ATI'RIBUTE BYTE VALUES

Attribute
Value in Hex

00
01
07

08
09
70
71
78
79
81
87
89
FO
F8
FF

Effect

No display, black on black
Underlined character
Normal character, white on black (this
effect is also obtained with attribute
values 02 through 06)
No display, white on white
Underlined, high intensity character
Reverse video
Underline only
Reverse video, high intensity
High intensity, underlined
Blinking underlined character
Blinking normal character
Blinking, underlined,high intensity char
Blinking reverse video
Blinking, reverse video, high intensity
White character field, White on White

On the other hand, the attribute byte for color

displays further includes the foreground and background

colors (see Figure 3). Colors are made from combinations of

red, green, and blue. In color text modes, the foreground

and background fields control the color of the character

(foreground) and the color of the character cell

(background). There are eight colors to choose from because

this is the number of values that can be specified by a 3

bit field. since the attribute byte's intensity bit (bit 3)

applies to the foreground, there are 16 choices in

foreground colors - the 8 colors of normal intensity plus 8

high intensity colors [AITK92]. Table II shows these 16

colors. On some monitors, the color brown is dark yellow,

and white is light gray.

7 6 5 4 3 2 1 0 Bit

I--~ C
•

II--J _~
Red Green Blue Red Green Blue

I I I I
I I

Background Foreground
Blink Highlight

Figure 3. Attribute Byte for Color Displays

TABLE II

FOREGROUND AND BACKGROUND ATTRIBUTE BYTE
SETTINGS COLOR FOR COLOR TEXT MODES

33

Decimal
Value

Binary
Value

Foreground or
Background

Foreground With
Intensity Bit Set

a 000 Black Dark Gray or Black
1 001 Blue Light blue
2 010 Green Light green
3 all Cyan Light Cyan
4 100 Red Light red
5 101 Magenta Light magenta
6 110 Brown Yellow
7 111 White Bright White

34

4.2 Accessing Screen Data

A screen access program can intercept the computer's

Basic Input/Output System (BIOS) Video Interrupt, which is

interrupt 16 (10H) in the IBM PC family and compatibles

[CHAR92]. This permits the screen access program to capture

each character that is written to the screen via BIOS

writes.

By using only the BIOS services, an application is

virtually guaranteed to run on any IBM compatible machine

and with any of the various compatible color or monochrome

displays. The penalty paid for this flexibility is a lack

of speed due to the extra step of generating an interrupt

[NELS87]. As a consequence, many commercial programs bypass

the BIOS Video services and characters are written directly

to the video memory. This results in a faster application

program but prevents the screen access program from

capturing all the information that is written on the screen

via BIOS services.

On the other hand, since the display adapter uses only

the video buffer in RAM to form the image on the screen (see

Figure 1), the screen access program is guaranteed a

standard location from which to capture all the information

that is presented to the sighted user. For instance, an

uppercase letter "A", white foreground and green background,

is represented by the decimal numbers (65,47) in memory;

where 65 is the ASCII value of the character byte and 47 is

35

the value of the attribute byte. The ASCII numbers that

represent characters are exactly what a screen reader sends

to the synthesizer for it to translate ASCII text to speech.

When 73 is sent to the text-to-speech synthesizer, the

letter 'I' would be verbalized. Conversely, any character

displayed on the screen can be determined at any point by

examining its corresponding location in memory.

An 80 x 25 character display will show 2000 characters,

and requires 4000 byte buffer to display the entire screen

since each character is represented by a character byte and

an attribute byte. The first character on the screen (the

character in the upper left corner) is also the first

character in video RAM, located at offset position OOOOH.

The next character to the right is located at offset 0002H.

All 80 characters of the first screen line follow in this

same manner. Since each screen character takes two bytes of

memory, each line occupies 160 bytes of RAM. The first

character of the second screen line follows the last

character of the first line, and so on (see Figure 4). The

character byte is found on an even address and the attribute

byte on the following odd address.

36

BOFAO
Attribute Byte

BOF9F
ASCII Code

BOF9E

B0002
Attribute Byte

BOOOI
ASCII CODE

BOOOO
Video
Memory

(Actual physical location
varies with the system.)

-I Two bytes for
line25, Char80
or cell (79,24)

Two bytes for
linel, charI or
cell (0,0)

Figure 4. Screen Storage for Text-Based Applications

The starting address of a line within video RAM is

found by multiplying the line number by 160 (starting with

zero for first line). To get from the beginning of the line

to a character within the line, the distance of the

character from the start of the line must be added to this

value. Since each character takes two bytes, the column

number is multiplied by two (also starting at zero for first

column). Adding both products together yields the offset

position of the character in the video RAM. These

calculations are combined to the following formula:

37

offsetyosi tion (row, column) = (row * 160) + (column * 2)

The RAM memory of the video card is integrated into the

normal RAM of the PC system. The segment address of the

video RAM must be known to be used together with the formula

above to find the offset position. The address of the

beginning of the monochrome video buffer is BOOOOR, the

beginning of the color display video buffer is at B8000R

[ANG89]. The actual physical address varies from machine to

another.

4.3 Dete~ning Starting Location for Speech

Messages that are spoken are either automatically

generated by the program to convey screen changes, or

initiated by a user read request. A read request is any

user command which requests reading information from the

screen such as a key command to read the current word under

the cursor. In order to coordinate speech with the screen

activity and according to any user specified read request, a

temporary local pointer is used in the video buffer to

indicate the current location for speech. Depending on the

task sought, the local pointer takes as its starting

position the position of the system cursor, the position of

the scan cursor (also called screen reader pointer), or is

placed directly at any desired screen coordinates. The

system cursor coordinates (Crow, Ccol) are obtained through

BIOS services. The pointer is part of PAL to access

38

protected areas on the screen that cannot be accessed by the

system cursor, and acts as a marking device for speech. It

moves along as speech commences to mark the character, word,

or line just spoken. To allow this process, the following

variables are used:

Row - the local pointer row.

Col - the local pointer column.

Crow - the system cursor row.

Ccol - the system cursor column.

Prow - the screen reader pointer row.

Pcol - the screen reader pointer column.

To determine where reading should start, a user can use

either the cursor position by entering cursor mode, or the

pointer position by entering pointer mode. The local

pointer coordinates (row, col) are set to the the cursor

coordinates (Crow, Ccol) if the mode is set to cursor, or to

the pointer coordinates (Prow, Pcol) if the mode is set to

pointer. Then, any read request used is relative to this

location. Moreover, if the active mode is pointer, the

pointer is set to the position of the local pointer at the

end of the command sequence. In cursor mode, the cursor and

the pointer do not move when a read request is made. For

instance, a command to read the next word results in

speaking the word to the right of the cursor.

39

If this same

command is issued many times afterwards, the same word is

read again and again. On the other hand, if the pointer

mode is the active mode, the pointer moves along to items as

they are read, and stops at the last item being spoken. For

instance, in pointer mode, a command to read the next word

moves the pointer to the beginning of the next word so that

when the same command is issued again, the pointer keeps

moving successively to the next word to the right.

To announce automatic messages, the local pointer is

controlled in the program and positioned based on the change

that takes place on the screen. For instance, if the

highlight bar changes location, the pointer is placed at the

beginning of the newly highlighted item, then an action is

taken such as sending the highlighted text to the

synthesizer to be verbalized. Section 4.5 explores the

method used ln locating screen changes to position the local

pointer.

4.4 Controlling What Is Spoken

After the local pointer is set to the desired starting

location for speech, the stop position for speech can be

either the end of a single character, a word, a line, a

field, a section of the screen, or the whole screen.

When reading a single character at a time, the local

pointer moves character by character in the video buffer.

40

When reading a word at a time, the local pointer sends all

the consecutive non-blank characters to the text-to-speech

synthesizer and stops at the first blank character or when

either the left or the right edge of the screen is reached.

When reading a line at a time, all the characters starting

at the local pointer until the end of the current line are

sent to the synthesizer. When reading the whole screen, all

the text in the video buffer, beginning at the position of

the local pointer, is sent to the synthesizer.

In pointer mode, as previously mentioned, read requests

are relative to the pointer. The pointer moves as messages

are spoken, and always stops at the last item spoken. If

the user is reading a character at a time, the pointer stops

at the last character read. If the user is reading words,

the pointer stops at the beginning of the last word read.

If the user is reading lines, the pointer stops at the

beginning of the last word spoken because the AICOM Accent

text-to-speech synthesizer being used for this

implementation uses indexing which allows the tracking of

the words spoken.

By using a BitAnd operation between a mask and the

current character, it becomes feasible to verbalize a string

of characters that have the same background, foreground, or

full color attribute as that of the character under the

local pointer. To search based on the current character

full color attribute, the mask is set to the hexadecimal

41

value FF where all the bits are equal to the binary value 1.

To search based on the current character foreground or

background color, the mask is set to OFH (0000 1111 in

binary) or FOH (1111 0000 in binary) respectively. A BitAnd

operation between the mask and the attribute of the current

character and each character preceding and following it

until the result of the BitAnd operation is different leads

to locating what needs to be spoken. In other words, the

string of interest is comprised of all the contiguous

characters whose attribute when bitanded with the mask

yields the same result. This is useful when a highlighted

text, such as a field, needs to be verbalized.

Finally, the region to be spoken can also be directly

specified by using the starting and ending row and column

confines on the screen.

4.4.1 Speaking Fo:nnat

Five spelling tables are provided by the Profile Access

Language [IBM92a] / each of which has 256 entries numbered

from a to 255. A list of the tables follows:

Table 1 - is the spelling table with standard sounds

for most characters.

Table 2 - is the same as spelling table 1/ but all the

letters have phonetic names. For instance,

the letter "a" is "alpha".

Table 3 - has miscellaneous uses. It contains in

42

positions 0 through 15 sixteen colors. the

characters 1, L, ~, ~, and ~ are

defined. To identify the color of the

current character, this table is used.

Table 4 - Standard ASCII keys (alphabetic, numeric,

special characters, Escape, Backspace, Tab,

and Enter) are found in this table.

Table 5 - Extended ASCII keys (function keys, cursor

movement keys, and keys combined with Ctrl

and Alt) are named in this table.

These tables permit the presentation of the screen

information to the user in four different formats. The

active format determines how information is read. In text

format, words are read without speaking punctuation or

announcing blank lines. Instead, punctuation is used to

create the proper pauses and intonation by the synthesizer.

In pronounce format, words are read, punctuation and blank

lines are announced. In spell format, words are spelled,

punctuation and blank lines are announced. In phonetic

format, each letter is represented by a word that begins

with the same letter, punctuation and blank lines are

announced. For instance, when the spell format is active,

the word "act" is spoken as "alpha charley tango".

43

4.5 Managing Automatic Messages

In order to detect changes on the screen, the access

program constantly checks the video memory and the display

hardware registers, usually many times a second. To enable

this continuous checking, the access program is activated

18.2 times a second by intercepting the timer interrupt

(BIOS 6eR). This allows the monitoring of the video memory

by comparing the active screen to a saved copy. If a change

is found, a set of screen monitoring variables are updated.

The drawback to this approach is whenever a message or an

item is exactly repeated word by word, the screen reader

would not sense this change on the screen.

By continuously checking the display hardware

registers, changes to the system cursor position, the disk

drive status, and the lockbyte are detected. Similarly,

when a change is found, a set of variables are updated.

Depending on the change that has taken place, the access

program automatically speaks those changes to the user by

executing a set of commands associated with the variable

that has changed.

Since the timer is updated approximately 18 times per

second during which the access program monitors the screen,

a period of time (based on the clock ticks) is set for which

a changed region or data has to persist before it is

automatically spoken. The delay time for automatic messages

is therefore set in eighteenths of a second increments-.

44

This is useful in situations where a quick change on the

screen is not worth verbalizing to the user. For instance/

in some situations the indicator for Insert/Replace is

sometimes changed rapidly without any significance to the

user; a delay of 9 ticks (half a second) ensures that the

indicator has stabilized before announcing it.

4.5.1 Screen MOnitoring Variables

To effectively control the amount of information

automatically spoken to the user and the point in time it is

spoken/ the screen is divided into smaller regions. Each

section has a variable or a set of variables that are

updated each time a change takes place. Anytime characters

on the screen change/ the PAL variable ScreenChange is

incremented to signal such change. This variable is used

mainly when characters are retrieved from the video buffer

for comparison purposes.

4.5.1.1 Action Bar Variables

After providing as input to the access program the row

number of the action bar and the color of its selector/ it

becomes possible to trace the color attribute of the

selector whenever it moves on the screen. In Alpha Four/

the action bar row number (Arow) is set to 25 and the

selector attribute (ActAttr) is set to 111/ which is

highlighted white on brown.

45

When the selector moves, including when the field is

stationary and the contents of the field changes, a

comparison to a previous copy of the screen signals that a

changes has taken place, then the PAL variables actionchange

is incremented and Acol is set to the beginning column of

the newly highlighted item. As a result, anytime the

selector moves on the action bar, Acol marks the first

character of the selector. By placing the local pointer at

the screen coordinates (Arow, Acol) , it becomes feasible to

send the selector content to the speech synthesizer to be

spoken, or any other action can be taken such as speaking

the whole line the selector is on. For example the

following pseudo code can be used:

If actionchange Then

posi tion local pointer at screen coordinates (arrow, acol)

If attribute of current character = ActAttr Then

Locate string with same BG color as current Character

Send string fOillld to the text-to-speech synthesizer

'EndIf

EndIf.

In Alpha Four, the action bar is not always present on

the screen. It is replaced sometimes by a prompt message

line requesting user input such as selecting a "Yes" or "No"

for an answer. In this situation, the user would only hear

46

the current word highlighted by the selector and would not

hear the message line. To correct this, the video RAM is

directly checked for the presence of "yes" or "No" on line

25 prior to announcing the selector. If found, the local

pointer is moved the left edge of the screen and the message

line is spoken before the selector.

4.5.1.2 Selector Variables

To announce highlighted or selected items as they move

anywhere on the screen, and to detect boxes, and pull down

or pop-up menus as they appear on the screen, an area of the

screen is watched where these changes are likely to take

place. The attribute of the selector (SelAttr) is provided

as input to the access program as well as the area on the

screen to be monitored. The starting row is indicated by

the variable rowl and the last line is set to the variable

row2. Since the action bar occupies row 25, rowl is set to

1 and row2 is set to 24, and SelAttr is set to 111. When a

copy of the screen is being compared with the new screen,

the screen reader watches for an attribute change to the

specified attribute (SelAttr). When the screen reader

recognizes that the attribute has changed to the specified

value, the PAL variable selchange is incremented. the

position of the change is recorded in the variables Srow and

Scol. Thus, to speak the newly highlighted item, the local

pointer coordinates (Row, Col) are set to the starting

47

position for speech at screen coordinates (Srow, Scol).

Simply verbalizing the selector content is not enough

since there are situations where other actions need to be

taken. The following lists some of these cases:

1. When a Warning, Error, Notice, Help, or Zap message

appears on the screen, the whole block of text (more than

one line) in addition to the selector needs to be spoken.

Furthermore, each window frame utilizes different screen

coordinates.

2. At times, a single line of text or a field located prior

or after the selector location needs to be spoken.

3. If the user wants to hear the field name, it must be

announced prior to speaking the selector. The field name

location depends on the current mode. If in the system

default Browse mode, field names are on line 1 but the

column varies with the selector location. If in the

system default View mode, the field name is to the left

of the field content and each one occupies one line.

Furthermore, if the user wants to hear the record number,

it also must be announced prior to the field name and

selector. In Browse or View mode, when a pop up menu

appears on the screen and the record number and/or field

name are turned on, care must be taken not to announce

the record number or field name as long as the pop up

menu is present on the screen.

48

To correct these situations, a set of video RAM

conditions (such as finding unique characters on the screen

associated with each case) and a number of flags are used to

coordinate and control the speech. For more information

refer to the program listing.

4.5.2 Cursor Variables

If the cursor changes position, the PAL variables

CUrsorChange is incremented and Crow and Ceol are also

updated to contain the new location of the cursor. When the

system cursor is moving in a horizontal fashion, Crow is

constant and Ccol changes. On the other hand, if the cursor

is moving in a vertical fashion, Crow changes and Ccol may

change depending on whether or not the cursor falls in the

same column when it moves to another row. If either Crow or

Ccol changes, CursorChange is incremented to also signal the

change.

It is important to realize that when the cursor is not

active, Crow and Ccol values do not fall within the

boundaries of the screen coordinates. On the other hand,

when the cursor is active, the value of Crow is between 1

and 25, and the value of Ccol is between 1 and 80.

Using Crow or Ccol signals that a change in the cursor

position has taken place. However, when such a change

occurs, there is an array of possible actions that can be

taken. The user can be in either a Browse mode or a View

49

mode. In the default Browse mode, the field names are on

row 1, and records are listed starting on row 3 with each

record occupying one line. In the default View mode, only

one record is shown on the screen and each field name is

followed by its content on a different line, starting at row

1. If the user is in View mode and enters Change mode to

modify an existing field entry, the character under the

cursor needs to be spoken plus the field name which is

located to the right of the cursor. If the user is in

Browse mode and enters Change mode, the character under the

cursor needs to be spoken plus the field name which is

located on row 1 needs to be spoken (the column varies based

on the cursor column location). Furthermore, the cursor

appears in pop up menus when requesting user input. As in

the case with selector changes, the cursor location is

combined with screen data and/or variables tests in order to

take any desired action.

4.5.3 ROM BIOS Internal Variables

BIOS reserves the area of memory between addresses

0040:0000 and 0050:0000 for storing internal variables. The

content of most of these variables can be read using some

BIOS functions, or by using direct access. The following

list describes some selected variables, their purposes,and

addresses. The address indicated is the offset address of

segment address 0040H. For example, a variable with the

50

offset address 10H has the address 0040:0010 or 10H.

17H This is the keyboard status byte. Function 02H of BIOS

keyboard interrupt 16H reads this byte. Accessing this

byte allows checking the status of the shift and lock

state.

18H This is the extended keyboard status byte, same as 17H

except it indicates the active status of SysReq and

Break keys (See Figure 5) .

7 6 5 4 3 2 1 o Bit

Bit Number Corresponding Value 1
Key

0 Ctrl Key Pressed
1 Alt Key Pressed
2 SysReq Key Pressed
3 Pause Mode Active
4 Break Key Pressed
5 Num Lock Pressed
6 Caps Lock Pressed
7 Insert Pressed

Figure 5. Extended keyboard Status Byte

3EH The lowest four bits correspond to the number of

installed PC disk drives. These bytes also indicated

whether the connected drives must be calibrated. This

51

is mostly the case after an error occurs during read,

write or search access. When an error occurs, the

corresponding bit in this byte is set to O.

3FH The four lower bits of this byte indicate whether or

not the disk drive motor is in motion. A 1 in the

corresponding bit means the disk is running.

4AH This word (4AH and 4BH) contains the number of text

columns per display line in the current display mode.

6CH the four bytes 6CH to 6FH act as a 32-bit counter for

both BIOS and DOS. The counter is incremented by 1 on

each of the 18.2 timer interrupts per second. This

permits time measurement and time display. The value

of this counter can be read and set with BIOS interrupt

1AH. If 24 hours have elapsed, it resets to 0 and

counts up from there.

A bitwise operation on these variables can be used to

trigger an automatic message. For instance, the ROM BIOS

maintains as previously mentioned a set of keyboard flags

which reflect the status of the Ctrl, Shift, Alt, and Lock

keys. For the lock keys (Scroll Lock, Num Lock, Caps Lock,

and Insert), the flags byte indicates whether they are set

to on or off. Those flags can be read by calling Int 16H

Function 02H [KING88]. Each bit in the flags byte

corresponds to one of the Ctrl, Shift, alt, or Lock keys. A

bit value of 1 means the key is pressed or turned on. For

52

the correspondence between bits and keys see figure 6.

7 6 5 4 3 2 1 o Bit

Bit Number

o
1
2
3
4
5
6
7

Figure 6.

Corresponding Key

Right Shift
Left Shift
Ctrl
Alt
Scroll Lock
Num Lock
Caps Lock
Insert

keyboard Flags Byte

To determine the status of a particular lock key, let

LockByte be BIOS(17H), then the following BitAnd operation

can be performed:

If (LockByte BitAnd SOH) Equal SOH then Insert is on.

If (LockByte BitAnd 40H) Equal 40H then Caps Lock is on.

If (LockByte BitAnd 20H) Equal 20H then Num Lock is on.

If (LockByte BitAnd lOH) Equal lOH then Scroll Lock is on.

In a similar fashion, to determine the status of the

first disk drive motor, the last bit of the BIOS data value

at offset 3FH is tested with a bitwise operation. For

instance, if a BitAnd operation between BIOS(3FH) and the

OlB (B represents Binary) results in OlB would signal that

drive a is running.

53

CHAPTER V

SUMMARY AND RECOMMENDATIONS

A variety of federal and state legislative actions, not

the least of which is the Americans with Disabilities act,

combined with public sentiment are resulting in increasing

awareness and emphasis on accessibility. In concert with

this movement, the software industry has been asked to make

its products more accessible to individuals with

disabilities. This has raised questions among the members

of the industry as to what exactly the problems are, and

which steps they can take to help make their products more

accessible [VAN92]. This paper focuses on a small subset in

an effort to narrow this gap for individuals who are blind

or severely visually impaired by customizing access to a

text based application called Alpha Four.

5.1 Summa:ty

A user is always in either the review mode or the

application mode. When in review mode, the running

application is suspended and the control facilities provided

are used to further clarify and explore the interface.

Whenever the user enters the review mode, the processing of

information becomes slower since extra steps are added to

perform a task. An attempt was made to automatically

54

55

provide enough information about the interface so that the

user can spend more time working with Alpha Four and less

time using the review mode.

Unlike a sighted user, a blind person has to learn both

the adaptation and the software, in this case Alpha Four.

Furthermore, a good understanding of many computer and

speech related issues are a must for a blind user. For

instance, a typical computer user does not have to know

about screen color attributes to move from one field to

another when using a database. Whereas a blind user must

have such knowledge in order to have access.

5 •2 Reccmmendations for Future Work

The user interface for a blind user is unfortunately

hard and not as advanced as that of a sighted user. There

are several improvements which can be made to enhance the

non-visual interface provided in this research.

5.2.1 Clustering

The control facilities provided have to be memorized or

available on braille paper so that the user can remember

each command and its purpose. An enhancement can be made by

clustering commands into a tree of menus in a similar manner

to present sighted user interfaces. Similar commands are

grouped into a single menu. In this way traversing and

selecting available commands would be much simpler and would

56

not result in overloading the blind user memory.

5.2.2 Non-Speech Audio

The interface could futher be improved through the use

of non-speech audio. The drawback to this approach is that

a user has to remember and distinguish the meaning of each

beep signal. Moreover, an analogy must be made between the

screen object and the signal used, which is not an easy task

to be done through audible beeps.

5.2.3 Spatial Audio

Navigation in the interface is hard since audio

feedback does not provide an easy way for users to keep

track of their position on the screen. By integrating real

time spatial audio to the interface, users are provided with

an easier method to keep track of their position in the

interface. With spatial sound, as the user reads the screen

content, the voice seems to float from left to right.

[ACC91]

[AITK92]

[ANG89]

[BElli94a]

[BElli94b]

[BROWN89]

[CARL92]

[CHAR92]

[DANI92]

[DOUG90]

REFERENCES

Accent~ User's Manual. AICOM Corporation,
Fifth Edition, February 1991.

P. Aitken. MS-DOS 5 Programming. Microsoft
Press, Redmond, Washington, 1992.

J. Angenneyer et ale The Waite Group's MS-DOS
developer's Guide. Second Edition, Howard W.
Sarns & Company, 1989.

W. Edwards, E. Mynatt, T. Rodriguez. A Non
Visual Interface to the X Window System.
Mercator Project, Georgia Institute of
Technology, 1994.

E. Mynatt, G. Weber. Contrasting Two
Approaches. Mercator Project, Georgia
Institute of Technology, 1994.

C. Brown. A Practical Guide to the Selection
and Use of Adapted Computer Technology.
Second Edition, 1989.

C. Brown. "Assistive Technology Computers and
Persons with Disabilities." Communications
of the AOVl, Vol.35, No.5, pp. 36-45, May
1992.

C. Opperman. "Application of Smart Screen
Technology In Text-Based Voice Output, Screen
Access Programs." In Proceedings of the
Seventh Annual Conference on Technology and
Persons with Disabilities, Los Angeles,
California, pp.391-395, March 1992.

D. Hinton. "Braille Devices And Techniques
To Allow Media Access." Braille Monitor,
pp.15-21, March 1992.

D. Griffith. "Computer Access for Persons Who
Are Blind or Visually Impaired: Human Factors
Issues." Human Factors, Vol. 32, No.4,
pp.467-475, August 1990.

57

[EDW88]

[EDW89]

[ELIM90]

[ERIC92]

[GAV89]

[HINT92]

[HIRS90]

[IBM92a]

[IBM92b]

[JAK093]

[JIM93]

58

A. Edwards. "The Design of Auditory Interface
for Visually Disabled Users." In Proceedings
of ACM Conference on Human Factors in
Computing Systems, CHI'88, New York, pp.83
88, May 1988.

A. Edwards. "Soundtrack: An Auditory
Interface for Blind Users." Human Computer
Interaction, Vol.4, pp.45-66, 1989.

Y. El-lmam. "Text-To-Speech Conversion on a
Personal Computer." IEEE Micro, pp.62-74,
August 1990.

E. Bohlman. "Tinytalk: a Powerful, Low-Cost
Screen Reader." In the IEEE Proceedings of
the Johns Hopkins National Search for
Computing Applications to Assist Persons with
Disabilities, Maryland, pp.191-192, February
1992.

W. Gaver. "The SonicFinder: An Interface That
Uses Auditory Icons." Human-Computer
Interaction, Vol.4, pp.67-94,1989.

A. Johnson. "Modifying The Computer
Interface." Proceedings of the Seventh Armual
Conference on Technology and Persons With
Disabilities, Los Angeles, CA, pp.212-223,
March 1992.

J. Hirschberg. "Voice Response Systems:
Technologies And Applications." AT&T
Technical Journal, pp.42-51,
September/October 1990.

Screen Reader/DOS 1.2 Reference. IBM
Independence Series, Second Edition, June
1992.

Screen Reader/DOS 1.2 User's Guide. IBM
Independence Series, Second Edition, June
1992.

N. Nielsen. "Noncommand User Interfaces."
Communications of the ACM, Vol. 36, No.4,
pp.83-99, April 1993.

J. Thatcher. "The Problems and Challenges of
the Graphical User Interface." Braille
Monitor, pp.9-16, November 1993.

[KRIS91]

[LAZZ90]

[LAZZ93]

[LEON91]

[LUDW90]

[NELS87]

[OMAL90]

[PAUL92]

[ROBB91]

[STEV89]

[TED92]

[VAN89]

[VAN89]

59

K. Jamsa. DOS: The Complete Reference. Third
Edition, Osborne McGraw-Hill, Berkeley,
California, 1991.

J. Lazzaro. "Opening Doors for the
Disabled." Byte, pp.258-268, August 1990.

J. Lazzaro. Adaptive Technologies For
Learning and Work Environments. American
Library Association, 1993.

M. Leonard. "Speech Poised To Join Man
Machine Interface." Electronic Design, pp.43
48, September 26 1991.

L. Ludwig. "Extending The Notion of a Window
System to Audio." Computer, pp. 66 - 72, August
1990.

N. Johnson. Advanced Graphics in C:
Programming and Techniques. Osborne McGraw
Hill, Berkeley, California, 1987.

M. O'Malley. "Text-To-Speech Conversion
Technology." Computer, pp.17-23, August 1990.

P. Jubinski. "Virtac, a Virtual Tactile
Computer Display." In the IEEE Proceedings
of the Johns Hopkins National Search for
Computing Applications to Assist Persons with
Disabilities, Maryland, pp.208-211, February
1992.

J. Robbins. Mastering DOS 5. Third Edition,
Sybex Inc, Alameda, California, 1991.

R. Stevens. Graphics Programming in C. M&T
PUblishing, Redwood, California, 1989.

T. Henter. "Macros and Screen Access." In
Proceedings of the Seventh Annual Conference
on Technology and Persons with Disabilities,
Los Angeles, CA, pp.239-243, March 1992.

G. Vanderheiden. "Nonvisual Alternative
Display Techniques for OUtput from Graphics
Based Computers." Journal of Visual
Impairement and Blindness, Vol. 83, No.8,
pp.383-390, October 1989.

G. Vanderheiden. "Thirty Something Million:
Should They Be Expectations?" Human Factors,

[VAN92]

[WB93]

60

Vol.32, No.4, pp.383-396, August 1990.

G. Vanderheiden. Making Software More
Accessible for People with Disabilities.
Release 1.2, Trace Center, University of
Wisconsin, 1992.

SLIMWARE Window Bridge User's Manual. Syntha
Voice Computers, Ontario, Canada, 1993.

APPENDIXES

61

APPENDIX A

HARDWARE AND SOFIWARE REQUIREMENI'S

The screen reader program runs ln the following environment.

1. Machine Requirements

A. Personal computer with 512k of memory, and a serial

connector.

B. Accent~ text-to-speech synthesizer.

c. An IBM IS-key keypad (optional).

2. Program Requirements

A. DOS operating system 3.3 or later.

B. Alpha Four database system version 2.00.

C. IBM Profile Access Language (PAL).

D. Alpha 4 profile program.

62

APPENDIX B

STARTING SCREEN READER

At the DOS prompt, type srd12 and press Enter; or type

srdload alpha4. To control the screen reader program, PAL

provides a block of 16 keys on the keyboard to be used for

user corrmands. On the other hand, an optional 12-key keypad

can be added to the keyboard and can be the source of input

for the screen reader. The correspondence between the

keyboard and keypad keys is shown in table III [IBM92a].

TABLE III

CORRESPONDENCE BETWEEN
THE KEYBOARD AND KEYPAD KEYS

Keyboard Keypad

1 2 3 4 1 2 3 A
Q w E R 4 5 6 B
A S D F 7 8 9 C
Z X C V * 0 # D
Tab Help
Alt Stop

To activate or de-activate the keyboard keypad

functions, Ctrl and Shift keys must be pressed and released

together. Each time the pop-up key is activated, there is a

63

64

beep. Each time it is deactivated, there is a different

beep. If the user wants to press a single key or key

sequence, the Ctrl and Shift keys can be pressed with the

key that corresponds to the desired corrmand. When the Ctrl

and shift keys are released, the keyboard returns to its

normal operation.

While the pop-up keypad is active, most of the keyboard

keys are disabled and pressing any key beside those of the

pop-up keypad causes an error beep. However, the cursor

movement keys, Page up and Page Down keys can be used.

APPENDIX C

USER FUNCI'IONS

the following is a list of the key sequence

definitions. The keypad equivalent keys are included in

parentheses.

key 1 (1) - read previous line.

key 2 (2) - read current line.

key 3 (3) - read next line.

key Q (4) - read previous word.

key W (5) - read current word.

key E (6) - read next word.

key Z (7) - read previous character.

key X (8) - read current character.

key C (9) - read next character.

keys beginning with a 0

key XX1-D (001-9) - read lines 1 through 9.

key X1X-D (010-9) - read lines 10 through 19.

key X2X-5 (020-5) - read lines 20 through 25.

key X4 (OA) - read whole screen.

key XR (OB) - read the rest of screen from current position.

key XA (07) - read character above.

65

key XS (08) - what is color of current character.

key XD (09) - read character below.

key XF (OC) - read rest of line.

key XZ (O*) - move pointer to top of screen.

key XC (O#) - move pointer to bottom of screen.

key XV (OD) - move pointer to right edge.

key X Tab (OH) - manually enter a field mask number.

key X Alt (OS) - Use pointer position to get a field mask

attribute value.

keys beginning with *

key Zl (*1) - say previous field.

key Z2 (*2) - say current field.

key Z3 (*3) - say next field.

key Z4 (*A) - say rest of field.

key Z Tab (*H) - set field definition to full attribute,

background, or foreground.

key ZQ (*4) - spell previous word.

key ZW (*5) - spell current word.

key ZE (*6) - spell next word.

key ZR (*B) - spell current word with caps.

key ZA (*7) - phonetic previous character.

key ZS (*8) - phonetic current character.

key ZD (*9) - phonetic next character.

key ZF (*C) - ASCII value of current character.

key ZZ (**) - text fonnat.

66

67

key ZX (*0) - pronounce format.

key ZC (*#) - spell format.

key ZV (*D) - phonetic format.

keys that start with #

key Cl (#1) - search for a string.

key C2 (#2) - continue previous search.

key C3 (#3) - search for previous string from top of screen.

key CQ (#4) - keyboard lock keys status.

key CW (#5) - determine current format for reading

information from the screen.

key CE (#6) - current window boundaries.

key CR (#B) - toggle Lock8tatus.

key CS (#8) - say pointer position.

key CD (#9) - current mode (cursor or pointer) and position

status.

key CF (#C) - say cursor position.

key CZ (#*) - route cursor to pointer.

key ex (#0) - switch to pointer mode.

key CC (##) - route pointer to cursor.

key CV (#D) - switch to cursor mode.

key C Tab (#H) - start ignoring a character.

key C Alt (#8) - stop ignoring a character.

keys that start with A

key 41 (AI) - set speech pitch; values to enter are between

68

I and 9, with I having the lowest pitch and 9

the highest.

key 42 (A2) - set speech rate; value I 1S the slowest and

value 9 the fastest.

key 4Q (A4) - toggle caps; when on, capital letters are

preceded by the word Cap.

key 4W (AS) - toggle spaces announcement when in spell or

phonetic fonnat.

key 4R (AB) - toggle graphics; when on, graphic characters

are read.

key 48 (A8) - toggle screen wrap.

key 4D (A9) - toggle numbering.

keys that start with B

key RI (Bl) - read first word of line.

key R2 (B2) - read middle word of line.

key R3 (B3) - read last word of line.

key RQ (B4) - read rest of word above.

key RW (B5) - read rest of current word.

key RE (B6) - read rest of word below.

keys that start with C

Key FX (CO) - say message line (row 23) .

Key FI (CI) - say help line (row 24) .

Key F2 (C2) - say function key line or action bar (row 25) .

Key F3 (C3) - say current mode, which can be Browse, View,

69

Edit, Pause, and so on.

Key FQ (C4) - report settings for selector and action bar.

Key FW (C5) - announce active record number.

Key FE (C6) - toggle record number automatic announcement.

Key FA (C7) - toggle action bar automatic armOW1cement.

Key FS (C8) - toggle selector automatic annOW1cement.

Key FD (C9) - toggle column heading automatic armOill1cement.

Key F4 (CA) - Armounce header title when cursor is active.

Key FR (CB) - cycle through boxes present on the screen.

Key FF (CC) - say active point, selector or cursor line.

Key FV (CD) - where am i.

Key FZ (C*) - armOW1ce menus present on the screen.

Key FC (C#) - location of active point.

APPENDIX D

PROGRAM LISTING

jAlpha4.kpd profile

Key listing

FX (CO) - say message line (row 23)

Fl (Cl) - say help line (row 24)

F2 (C2) - say function key line or action bar (row 25)

F3 (C3) - say current mode

FQ (C4) - report settings

FW (C5) - announce active record number

FE (C6) - toggle record number

FA (C7) - toggle action bar autospeak

FS (C8) - toggle selector autospeak

FD (C9) - toggle Column Heading

F4 (CA) - profile name

FR (CB) - cycle through boxes

FF (CC) - say active point, selector or cursor line

FV (CD) - where am i, box count and current box

FZ (C*) - announce menus present on the screen

FC (C#) - location of active pointj

$include 'core'

/ Initialize the following command sequence to be

processed automatically when the profile is loaded /

70

71

[] = Initialize {

Msg ('alpha 4 profile') I

AutoDelay (11 1) I Set the time to 1/18th
of a second

AutoDelay (2 1 1) I changed region must
persist before

AutoDelay (3 1 1) I an autospeak takes
action.

AutoDelay (4 1 27) I Wait for startup
screen to settle

AutoDelay 51 1) I

AutoDelay 6 1 1) I

AutoDelay 7 1 1) I

AutoDelay 8 1 1) I

AutoDelay 9 1 1) I

AutoDelay 10 1 1) I

Set actattr l 111) I

Set Arow l 25) I

Set nostopl True) I

Set Sayhead I True) ,

Set sayrec l True) I

Set rowl 1 1) I

Set row2 1 24) I

Set selattr l 111) I

Monitor (rowl 1 row2) I

Set firstl 1 True) I

Set first2 1 True) I

Set first3 1 True) I

Set first6 1 True) I

Set first7 1 True) I

Set first9, True) I

Set auto1 1 True) I

Set auto2 1 True) I

Set auto3 1 True) I

selector attribute
action attribute
coordinate speech
between autospeaks
field names in browse
and view modes
announce record

number

Start of monitor area
End of monitor area
Selector attribute

II
Area of th escreen to
be watched

Variables to control
first
triggers of
autospeaks

Auto 4, On),
II

Turn off all
autospeaks but Auto4

72

2, Off),
3, Off),
I, Off),
5, Off),
6, Off),
7, Off),
8, Off),
9, Off),
10, Off),
30, Off),
31, Off),
32, Off)

Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
}

II
Read line 23 on the screen and announce whether
the database order is ascending or descending.

I$h message line/
[CO] =

Save (Wind, Ignore),
Wind (FuIIScreen),

save setttings
Set reading
bOillldries to

full screen
Ignore (I: I) ,

Get (23, 1),
Right (78), I I Set right edge reading boundry

Stop,
Say (Line),
Right (80),
Get (23, 79),
If (RC Eq 0) And (Char Eq "A") Then

Msg (I ascending order I)
ElseIf (RC Eq 0) And (Char Eq "D") Then

Msg (I descending order I)
EndIf

I$h help line I
[Cl] =

Save(Wind, Pointer),
Wind (FullScreen),
Get (24, 1),
Stop,
Say (Line)

I I Say line 25 which is at times the action bar

73

II
and the function
keys available for use.

I$h function key or action barl
[C2] =

Save(Wind, Pointer),
Wind (FullScreen),
Get (25, 1),
Stop,
If Attr Eq 118 Then II to correct

pronunciation when

While RC EQ a

Say (Field, Fg),

Get (NextFld, Fg)
EndWhile

Else Say (Line)
EndIf

words have no spaces
between them
but appear in different
colors.

I~
Ar:mounce current mode, which can be Browse,
Vlew, etc ...

I h current mode
[C3] =

Save (Wind, Pointer, Wrap),
Wind (FullScreen),
Wrap (Off),
Get (23, 1),
Stop,
Right (7),
Say (Line),
Msg (, mode') I

I$h report settingsl
[C4] =

Stop,
OUt ('action bar set at row'),
OUt (Arow) ,
OUt (, for attribute '),
Msg (actattr),

OUt ('monitoring row ') ,
OUt (row1) ,
OUt (, through '),
Msg(row2) ,

OUt ('monitoring for selector ') ,
Msg(selattr) ,

If Not (Auto1) Then
Msg('action bar off')

74

EndIf,

If Not (Auto3) Then
Msg('selector off')

EndIf

/$h announce active record number/
[C5] =

Stop,
If (display (23, 29, 3) EQ 'Rec') Then

I I Make sure correct screen
Get (23,38),
Msg('reckord I),
Say (Word)

Else Msg('records are not on active screen')
EndIf

/$h toggle record number I
[C6] =

Cycle{ Set (SayRec, False),
Msg('no record numbers');

Set (SayRec, True),
Msg('record numbers') }

I$h toggle action bar announcement/
[C7] =

If State(Auto, 1)
Then Auto (1, Off),

ActionBar (Off),
OUt ('no '),
Set(autol, False)

Else Auto (1, On),
ActionBar (On),
Set(autol, True)

EndIf

/$h toggle selector announcement I
[C8] =

If State(Auto, 3)
Then Auto (3, Off),

OUt ('no '),
Set (auto3, False),
If Not (State(Auto, 2))

II Possibly leave on box change
Then Monitor(Off)

Endlf
Else Auto (3, On),

Monitor (On),
Set(auto3, True)

EndIf,
Msg ('selector')

75

I$h toggle column heading I
[C9] =

Cycle{ Set (Sayhead, False),
Msg('no headings') i

Set (Sayhead, True),
Msg('headings') }

I$h announce header title when cursor 18 activel
[CA] =

Save (Wind),
Wind (Fullscreen),
If Crow Lt 25 Then

Get (2, Ccol) ,
Get (Word),
Say (Word)

EndIf

I$h cycle through boxes
[CB] = I

I$h current active point I
[CC] =

Set (none, T:rue) ,

If Crow LT 26 Then
Get(Crow, Ccol) ,
Set(none, False),
Say (Line)

EndIf,

If (Attr (Arow, Acol) Eq actattr) Then
Get (Arow, Acol) ,
Msg (, action at '),
Say (Field, Bg),
Set(none, False)

EndIf,

If (Attr(Srow, Seal) Eq selattr) Then
Get (Srow, Scol) ,
Msg(, selector at '),
Say (Field, Bg),
Set(none, False)

EndIf,

If none Then
Msg (,no active point ')

EndIf

I$h where am il

76

[CD] =
Save (Mode, Wrap, Trap, Wind),
Wind (FullSereen),
Mode (Pointer),
Trap (Off),
Wrap (On),
Get (Top, Left),
Set (Found1 , False),
Set(Found2, False),
Set (Found3, False),
Stop,

II

Save row and eolumn
of loeal pointer

If RC EQ 0 Then
Set (savrl, Row),
Set (savel, Col),
Set (Found1 , True)

EndIf,
If Foundl Then

Get(Row+l, Left)
Else

Get (Top, Left)
EndIf,

Get (SameAttr, 62, 255, +),
II Yellow on Cyan

I I Start with top menu

Get (SameAttr, 63, 255, +), I I White on Cyan
If RC EQ 0 Then

Set (savr2, Row),
Set (save2, Col),
Set (Found2, True)

EndIf,
If F0lli1d2 Then

Get(Row+l, Left),
Get (SameAttr, 63, 255, +),
If RC EQ 0 Then

Set (savr3, Row),
Set (save3 , Col),
Set (Found3, True)

EndIf
EndIf,

If found3 then
Get (savr3, save3),
Msg (, menu '),
Say (Field, 63)

ElseIf f0lli1d2 then
Get (savr2, save2),
Msg (, menu '),
Say (Field, 63)

ElseIf foundl then
Get (savrl, savel),
Msg (, menu '),

77

Say (Field, 62)
EndIf,

Wrap (Off),

If (Attr(Sraw, Seal) Eq selattr) Then
Msg(, selector at '),
Get (Srow, Seal),
Say (Field)

EndIf,

If (Crow Lt 26) And (Crow Gt 0) Then
Msg(, cursor at '),
Get (Crow, Ccol),
Say (line)

EndIf,

If (Attr (Arow, Aeol) Eq actattr) Then
OUt (, action item at '),
Get (Arow, Acol) ,
Say (Field)

Endlf

/$h announce menus present on the screen/
[C*] =

Save (Mode, Wrap, Trap, Wind),
Wind (FullSereen),
Mode (Pointer),
Trap (Off),
Wrap (On),
Get (Top, Left),
Set (Found1 , False),
Set (Found2, False),
Set (Found3, False),
Stop,

Yellow on Cyan
If RC EQ 0 Then

Msg (' menu 1 '),
Say (Field, 62),
Set (Found1 , True)

Endlf,
If Foundl Then

Get (Row+l, Left)
Else

Get (Top, Left)
Endlf,

Get (SameAttr, 62, 255, +),

II

Get(SameAttr, 63, 255, +),
I I White on Cyan

78

If RC EQ 0 Then
If FOillldl Then

Msg (, menu 2 ')
Else Msg (, menu 1 ')
EndIf,
Say (Field, 63),
Set (FOillld2, True)

Endlf,
If FOillld2 Then

Get(Row+l, Left)
ElseIf Not (FOillld2) And Not (Foundl) Then

Msg (, no active menu '),
exit

Endlf,

Get(SameAttr, 63, 255, +),
If RC EQ 0 Then

If Foundl And FOillld2 Then
Msg (, menu 3 ')

Else Msg (, menu 2 ')
EndIf,
Say (Field, 63),
Set (Found3, True)

EndIf,
If Found3 Then

Get (Row+l, Left)
Else exit
EndIf,

Get(SameAttr, 63, 255, +),
If RC EQ 0 Then

If Foundl And Found2 Then
Msg (, menu 4 ')

Else Msg (, menu 3 ')
EndIf,
Say (Field, 63)

EndIf

/$h announce current active menu/
[C3] =

Set (Found1 , False),
Save (Trap, Wind, Mode, Wrap),
Trap (Off),
Wrap (On),
Wind (Fullscreen),
Mode (Pointer),
Stop,

If Crow GT 25 Then
Get (Srow, Scol) ,
Get (SameAttr, 63, 255, -),

I I White on Cyan

79

If RC EQ 0 Then
Set(nostop, true),
Get (row, left),
Get (SameAttr, 63, 255, +),
Msg (' menu '),
Say (Field, 63),
Set (Found1 , True)

EndIf,

If RC EQ 0 Then
Get (row, left),
Msg (' menu '),
Say (Field, 62)

EndIf
EndIf

If Not (Found1) Then
Get (Srow, Seol) ,
Get (SameAttr, 62, 255, -),

II Yellow on Cyan

ElseIf (Crow GT 1) Or (Crow LE 25) Then
Get (Crow, Ceol) ,
Get(SameAttr, 63, 255, -),

I I White on Cyan

If RC EQ 0 Then
Set(nostop, true),
Get (row, left),
Get(SameAttr, 63, 255, +),
Msg (' menu '),
Say (Field, 63),
Set (Found1 , True)

EndIf,

Yellow on Cyan

If Not (Foundl) Then
Get (Crow, Ceol) ,
Get(SameAttr, 62, 255, -),

II
If RC EQ 0 Then

Get (row, left),
Msg (, menu '),
Say (Field, 62)

EndIf
EndIf

EndIf,

If Not (Found1) Then
Msg (, no active menu on the screen ')

EndIf

80

I$h location current active point I
[C#] =

Set(none, True),
If (Attr (Arow, Acol) Eq actattr) Then

OUt ('action item at '),
Msg (Arow) , Msg (Acol) ,
Set(none, False)

EndIf,

If (Attr(Srow, Scol) Eq selattr) Then
Msg('selector at '),
Msg (Srow) ,
Msg (Scol) ,
Set(none, False)

EndIf,

If (Crow Lt 26) And (Crow Gt 0) Then
Msg('cursor at'),
Msg(Crow),
Msg (Ccol) ,
Set(none, False)

EndIf,

If none Then
Msg('no active point')

EndIf

I action bar change I
[] = Autospeak { 1: <ActionChange>
True =

If firstl I I Ignore first trigger
Then Set (firstl, False),
Exit

Endlf,

Save (Trap),
Trap (Off),
Set(ReadIt, False),
Get (Arow, Acol) ,

If Attr Er actattr
Then I Check cases.when action bar becomes

a message llne
Set (@stat, Display (Arow, Acol, 2)),
If (@Stat EQ 'Yet) OR (@Stat EQ 'No')Then

Set (Readlt, True)
EndIf,

If Not (Readlt) AND NOT (nostop) Then
Stop

81

ElseIf Readit Then
I I Action Bar is a message line

Get (Arow, 1),
Save (Ignore),
Wind (FullScreen),
AddIgnore(': '),
Say (Field, FG)

EndIf,

Get (Arow, Acol) ,
I I read action bar selector

Get (Field, Bg),
I I by using the background attribute

Say (Fie1d, Bg)

EndIf

}

/ selector chan~e /
[] = Autos1?eak. t 3: <SelChange>

I I only say if just selector movement
True =

If first3 I I Ignore First trigger
Then Set (first3, Fa1se),
Exit

EndIf,

Set(@stat, Display (7, 36, 4)),

If @stat EQ 'Warn') Or (@stat EQ ' Not') Then
II Warning or Notice

Stop,
Save (Wind, Trap, Wrap),
Wind (7, 11, 13, 69),
Trap (Off),
Wrap (On),
Get (7, 15),
Say (Line),
Msg(, press enter or escape to continue '),
If Display(8, 12, 3) EQ 'Bad' Then

I I To control critical
Set (Flagl, False) I I error flag

EndIf,
exit

EndIf,

If (@stat EQ 'Erro') Or I I Warning or Error
(@stat EQ ' Err') Then
If Not (Skip) Then

Stop,

82

Set(nostop, True),
Save (Wind, Trap, Wrap),
Wind (7, 11, 13, 69),
Trap (Off),
Wrap (On),
Get (7, 15),
Say (Line),
Set(Skip, True),
If Display (8, 12, 3) EQ 'Bad' Then

II
To control critical

Set (Flag1, False) error flag
EndIf

EndIf
EndIf,

If (@stat EQ 'Erro') Or I I Warning or Error
(@stat EQ ' Err') Then
Set (Skip, False)

EndIf,

Set(@stat, Display (7, 12, 4)),
If (@stat EQ 'Crit') Then I I Critical error

If Not (Flag1) Then II To allow sp~aking of
Retry or Fall

Stop,
Save (Wind, Trap, Wrap),
Wind (7, 11, 15, 69),
Trap (Off),
Wrap (On),
Get (7, 11),
Say (Line),
Set(Flag1, True),
exit

EndIf
EndIf,

If (Display (2, 38, 4) EQ 'Help') Then
Save (Wind, Trap, Ignore),
Wind (3, 9, 17, 70),
Trap (Off),
Ignore (,~-,) ,
Set(nostop, True),
Set (InHelp, True),
Get (3, 9),
Say (line)

Else Set(InHelp, False)
EndIf,

If Not (Inzap) Then
Save (Wind, Trap, Wrap),

If (Display (4, 36, 3) Eq 'Zap') Then
II Zap menu

Not (InHelp) Then

83

Wind (5, I, 9, 75),
Trap (Off),
Get (Top, Left),
Wrap (On),
Set (Inzap, False),
Say (Line)

EndIf
EndIf,

If (Srow Eq 24) Then
Set(@stat, Display (Srow, Seol, 2)),
If (@Stat EQ 'Ye') OR (@Stat EQ 'No') Then

Save (Wind, Trap, Ignore),
Wind (FullSereen),
Trap (Off),
Set(nostop, True),
Get (Srow, 1),
Wind (FullScreen),
AddIgnore(': '),
If (Display (4, 36, 3) Eq 'Zap') Then

Set (Inzap, True)
EndIf,
Say (Field, FG)

EndIf
EndIf,

Save (Trap, Wind),
Trap (Off),
Wind (FullScreen),

Set(@STATl, Display (23, I, 6)),

If Sayhead And (@STATI EQ 'BROWSE') And
I I Say Header in Browse

(Display (25, 6, 4) EQ 'Chan') And
I I Action Bar is active

Get (Srow, Seal-I),

I I
Check if Seal is at
lefmost position of screen

If RC EQ 0 Then

If Char (Srow, Seal-I) NE "~,, Then
I I Avoid Pop Up menus When

Save (Wind, Mode, Trap),
I I in Browse Mode

Mode (Pointer),
Wind (FullScreen),

84

Trap (Off) I

If Not (SayRec) Then
Stop

EndIf l

Set(nosto~l True) I

II read field header in Browse
Get (11 Scoi) I

Say (Word)
EndIf

Else I I Selector Column is not in Column 1
If (Char (2 / 1) EQ 11 11) And Not (InHelp)
Then II Left of screen

If Not (SayRec) Then
Stop

EndIf l

Set (nostopi True) I

Get (111) I

Say (Word)
EndIf

EndIf

EndIf l

Save (Wind I Trap) I

Wind (FullScreen) I

Trap (Off) I

Get(Srow l Scol) I

If (Scol Eq 1) And
(Display (11 34 1 5)
Set(Nostopi True) I

Get (6 1 1) I

Say (Line)
EndIf l

Save (Trap I Ignore) I

Trap (Off) I

Get (Srow l Scol) I

If RC Eq 0 Then
Save (Graphics) I

Graphics (On) I

I I Save As menu
Eq 'S a v') Then

For cases when selector announcement is not
enough/rather the whole line in the active
menu or screen needs to be spoken. i.e
Index selections

If RC EQ a Then
Wrap (Off),
exit

85

If (Display (Srow, Scol+l, 2) EQ ' .. ') AND
(Char (Srow, Scol-I) EQ II~II) AND

II Avoid saying Memo fields twice
(Attr(Srow, Scol+3) NE Selattr) Then

I IAvoid saying a field with
Save (Trap, Ignore),
Trap (Off),
Ignore (, . ') ,
Set (SayNext, True)

Else Set(SayNext, False)
EndIf,

If nostop Then I I Control Stopping speech
Set(nostop, False)

Else Stop
EndIf,

If (Char (Srow, Scol+l) EQ ". II) And

II

Cor~ect speech since
perlods cause spell mode
(Char (Srow, Scol+2) EQ ". II) Then
Save (Ignore),
AddIgnore ('.')

EndIf,

Get (Field, Bg),
I I Verbalize selector content

Say (Field, Bg)
EndIf,

If SayNext Then
II cases that require verbalizing next field

Get (Srow, Scol+3),
II caused when selector is highlighting only

Say (Field, FG), I I first word.
exit

EndIf,

If (Display (1, 26, 7) EQ 'F i e 1') Then
I I For Field Selection menu

Save (Mode, Wrap, Trap, Wind) I

Wind (FullScreen),
Mode (Pointer),
Trap (Off),
Wrap (On),
Get (2, Left) I

Get(SameAttr, 63, 255, +),
I I White on Cyan

}

86

EndIf,
Get (NextFld),
If Rc Eq 0 Then

msg (, test 2 '),
Say (line)

EndIf,
exit

EndIf,

Some Menus require user input, and selector
is only on parts of
the fields. This forces rest of line to be
verbalized.

Get (NextFld, Fg),

If (Char (Srow, Col) EQ ":") Or
II verbalize next field (s)

(Char (Srow, Col+1) EQ ":") Then
Save (Wind, Trap, Wrap ,Ignore),
Wind (FullScreen),
Trap (Off),
Wrap (Off),
/Set(Nostop, True),/
Ignore (, '),
Say (lineT

EndIf,

If (Crow Eq 24) Or (Crow Eq 25) Then
Set (First6, True),
Save (Wind, Trap, Wrap ,Ignore),
Wind (FullScreen),
Trap (Off),
Wrap (Off),
Ignore (, '),
Get (Crow--; left) ,
Say (line)

EndIf

lJ

start up autospeak, it monitors the first
screen of Alpha 4 and
turns on other autospeaks
= Autospeak { 4: (23,1)

,:xxxx '= Continue I I This a nonsense value
Else

Save (Wind, Mode, Trap),
Wind (FullScreen),
Trap (Off),

II Activate Monitor

87

Set (@status, Display (24, I, 8)),

If @status Eq 'Default ') Then
I I Startup Screen message

Save (Wind, Ignore),
Wind (FullScreen) I

Ignore I I Backslash delays speech
Msg(, default data base set'),
Get (24, 23),
Say (Line),
Msg(' f 10 continue f 9 change data)'
Msg('base set '),
Delay (300), I I Stop processing 3 seconds

To allow user totake action

Selector (selattr),
Monitor (On),

ActionBar (Arow, actattr), II Act~vate
Actlon Bar

ActionBar (On),

Auto (3, On),
Auto (I, On),
Auto (2, On),
Auto (8, OFF),
Auto (9, On),
Auto (6, On),
Auto (7, On),
Auto (5, Off) ,
Auto (30, On),
Auto (31, On),
Auto (32, On)

EndIf

}

[] = Autospeak { 5: (25,33)
'Alt-IVlM' = II Memo field message

Save (Graphics), .
Graphics (On) ,
If (Char (2, 3) NE 11 __ 11) Then II Trial

Save (Wind, Mode, Trap),
Wind (FullScreen),
Set(nostop, True),
Trap (Off),
Get (Crow, left),
Get (NextWord), II Skip field numbers
Say (Word)

If Sayhead Then

88

EndIf
}

/ speak cursor field whenever cursor row changes
in Change mode /

[] = Autospeak { 6: <Crow>
True =

If first6 I I Ignore first trigger
Then Set (first6, False),
Exit

EndIf,

Save (Trap),
Trap (Off),
If (Attr (Crow, Ccol) EQ 25)
II Attribute of field in Change Mode

AND (Display (23, I, 6) EQ 'CHANGE') Then

II Say field name
Save (Graphics),
Graphics (On),
If (Char (2, 3) EQ 'L_II) Then

I I Browse Mode,
Save (Wind, Mode, Trap),

II II~_" is ASCII (196)

Wind (FullScreen),
Trap (Off),
Get (1, Ccol) ,
If RC EQ 0 Then

Set(nostop, True),
Say (Word)

EndIf

Else I I View Mode
Save (Wind, Mode, Trap),
Wind (FullScreen),

Set(nostop, True),
Trap (Off),
Get(Crow, left),
Get (NextWord), II Skip field

numbers
Say (Word)

EndIf
Endlf,

Save (Mode, Trap, Ignore),
Mode (Cursor),

89

Trap (Off),
Ignore (, '),
Get (Crow, Ccol) ,

If RC EQ a Then
If nostop Then

Set(nostop, False)
Else Stop
EndIf,

Say (Char),
II Say cursor field by using foreground

Set (first7, True)
EndIf

EndIf,

If Display(25, 37, 5) EQ 'MMemo' then
I I In View mode, record
It nostop Then
I I Number is constant

Set(nostop, False)
I I and Cursor Row changes
Else Stop
EndIf,

Msg('Memo Field'),
Set (First7, True)

EndIf,

If Crow Eq 24 Then
lGet(Crow, Ccol-2),
If (Char Eq ": ") Thenl
Get (':', -),
If Rc Eq a Then

Set(nostop, true),
Get (Crow, Left),
Say (Line)

EndIf
EndIf,

Get (Crow, Ccol) ,
Wind (Fullscreen) ,
Get (,Enter' 1 -),

If Rc Eq a then
I If (Display (11, 23, 5) EQ 'Enter') Thenl

Save (Wind),
Wind (FullScreen),

I Get (24, 1) ,I
Get (Crow, Left),

Say (Line)
EndIf,

90

If (Display (6, 27, 4) Eq 'Rang') Then
Msg (, range description ')

EndIf
}

/ speak cursor field whenever cursor column
changes in Change mode /

[] = Autospeak { 7: <Ccol>
True =

If first7 I I Ignore first trigger
Then Set (first7, False), I I Stop auto7
I I from repeating what auto6 verbalizes
Exit

EndIf,

I I
In Browse mode, speak cursor field when
column changes

Save (Trap),
Trap (Off),
If (attr(Crow, Ccol) EQ 25)

AND (Display (23, 1, 6) EQ 'CHANGE') Then

If Sayhead And II Say field name
(Char (2, 3) EQ 11 __-II) And
II for Browse mode only
((Attr(Crow, Ccol-1) NE 25) OR
(Crow EQ 1)) Then

Save (Wind, Graphics),
Wind (FuIIScreen),
Graphics (On),
Get (1, Ccol) ,
If RC EQ 0 Then

Set(nostop, True),
Say (Word)

EndIf
EndIf,

Save (Mode),
Mode (Cursor) I

Get (Crow, Ccol) ,
If RC EQ 0 Then

Save (Ignore),
Ignore (, '),

If nostop Then
Set(nostop, False)

Else Stop
EndIf,

91

Say (Char), I I Use field foreground
Set (first6, True) I I Stop auto6

I Ifrom repeating what
EndIf I Auto7 verbalizes

EndIf,

If Display(25, 37, 5) EQ 'MMemo' then
Msg('Memo Field'),
Set (first6, True)

EndIf

}

/ speak record number /
[] = Autospeak { 2: (23,38)
'XXXXX' = Continue
Else

Set(@stat, Display (23, I, 6)),
Set(@stat2, Display (7, 36, 4)),

I I Take care of warnings

If (((Crow LT 23) OR (@stat EQ 'BROWSE') OR
(@stat EQ 'VIEW ') OR

(@stat EQ 'CHANGE')) AND (Display (23,29,6)
EQ 'Record')) Then

If sayrec Then
Save (Trap, Wind),
Trap (Off),
Wind (FullScreen),
Stop,
Set(nostop, True),
Get (23, 38),
Msg('reckord '),
Say (Word)

EndIf

EndIf,

Say Memo fields in Change mode when row changes
since cursor is
not active when in memo fields

If (Display (25, 37, 5) EQ 'MMemo') then
If nostop Then

Set(nostop, False)
Else Stop
EndIf,

92

Msg('Memo Field'),
Set (first6, True)

EndIf

}

[J = AutoSpeak { 9: <ScreenChange>
True =

If first9 then I I Ignore first trigger
Set (first9, Fa1se),
Exit

EndIf,

/ If (Attr(Crow, Ccol) EQ 25) AND
(Char (2, 1) EQ "~") And (Ccol EQ 1) Then

Save (Ignore),
Ignore (, '),
If SayHeao Then

Get (I, 1),
Say (Word)

EndIf,
Get (Crow, 1),
Say (Char),
Set (first6, True),
Set (first7, True)

EndIf, /

I I Detect Some menus that pop up on the screen
I I with the following if statements

I I Detect the find menu
It (Display (10, 38, 4) EQ 'Find') And

((Ccol EQ 44) OR (Ccol EQ 5)) Then

II
Say all fields with
same background color

Stop,
Save (Wind, Ignore),
Wind (FullScreen),
Ignore (, '),
AddIgnore1 ':'),
If Crow EQ 12 Then

I I Find has 2 menus based on
Get (12, 22)

Else Get (12, 5)
EndIf,
Say (Field, BG)

index being used

93

EndIf,

EndIf,

(Ccol EQ 30) Then
Stop,
Save (Ignore),
Ignore (, '),
AddIgnore1 ':'),
Get (8,17),
Say (Field, BG) I I Say all fields with same

I I backgroillld color

I I Detect the Index menu
If (Display (6, 35, 3) EQ 'Ind') And

I lInd for Index

I
I Say all fields with

I same background color

I I Detect the locate menu
It (Display (10, 37, 6) EQ 'Locate') And

(Ceol EQ 18) Then
Stop,
Save (Ignore),
Ignore (, '),
AddIgnore1 ':'),
Get (12, 5),
Say (Field, BG)

EndIf,

If (Display (23, 1, 4) Eq 'Paus') Then
Stop,
say (' pausing')

EndIf,

If (Display (23, 1, 3) Eq 'End') Then
Stop,
say (, End')

Endlf,

Get (23, 1),
Get ('Col " +),
If RC Eq 0 Then

/Stop,/
Right (75),
Get (23, 1),
Say (Line),
Right (80)

Endlf,

I I Detect the Search menu
If (Display (10, 31, 6) EQ 'Search') Then

Stop,

If (Crow EQ 12) And (Ccol EQ 20) Then
Msg (, search for ')

Endlf,

If (Crow EQ 13) And (Ccol EQ 20) Then
Msg (, replace with ')

EndIf,

If (Srow EQ 12) Then
Msg (, verify each replacement ')

Endlf

EndIf,

If (Display (1, 35, 6) Eq 'S t a ') Or
I I Status menu

(Display (1, 35, 6) Eq , a s e') Then
II datadase info

Save (Wrap, Trap, Wind),
Wrap (On),
Trap (Off),
Wind (FullScreen),
Bottom (22),
Get (2, 1),
Say (line),
exit

EndIf,

If (Display (4, 37, 4) Eq 'Pack') Then
II Pack notice menu

Save (Wrap, Trap, Wind),
Wrap (On),
Trap (Off),
Wind (5, 5, 20, 70),
Get (Top, Left),
Say (Line)

EndIf,

If (Display (8, 31, 4) Eq 'Fiel') And
I I Field Statistics

(Crow Eq 12) And (Ccol Eq 10) Then
Save (wind),
Wind (FullScreen),
Get (24, 1),
Say (Line)

EndIf,

If (Display (15, 35, 4) Eq 'Info') And
I I Statistics information

94

(Crow Eq 6) And (Ccol Eq 15) Then
Save (wind),
Wind (FullScreen),
Get (24, 1),
Say (Line),
Msg(, information '),
Get (16, 10),
Say (Line),
Get (17, 10),
Say (Line)

Endlf,

If (Display (2, 1, 8) Eq 'C:\ALPHA') Then
Auto (4, Off) ,
Auto (2, Off) ,
Auto (3, Off) ,
Auto (1, Off),
Auto (5, Off),
Auto (6, Off) ,
Auto (7, Off),
Auto (8, Off),
Auto (9, Off) ,
Auto (10, Off),
Auto (30, Off),
Auto (31, Off),
Auto (32, Off),
Msg('Exiting Alpha 4')

Endlf

}

95

[] = AutoSpeak {10: <BIOS (&H3F) BitAnd &B01>
True = If (BIOS (&H3F) BitAnd &B01) Eq &B01

Then
Msg (, running drive a: ')

Else Msg(, ready drive a: ')
Endlf

}

/ Modified Core profile/

[J = Initialize {
Set(StrLen, 0), / current search string

length /
Set (FldMask, &hFF) , / field mask

initialized to full field /
Set(@cormsg1, 'enter a number '),
Set(@cOTImsg2, 'between 1 and 9') }

/ To fix situations when local pointer 1S
undefined I

$MACRO FixPointer()
If (Row LT 1) Or (Row GT 69) OR

(Col Lt 1) OR (Col GT 80) Then
Get (I, 1)

EndIf
$ENDM

1------------------------1
I keys 1 - 9 I
1------------------------1
I$h previous linel
[1] =
FixPointer(),
Get(Row-I, Left),
Say (Line)

I$h current line/
[2] =
FixPointer() ,
Get (Row, Left),
Say (Line)

I$h next linel
[3] =
FixPointer(),
Get(Row+l, Left),
Say (Line)

I$h previous word/
[4] =
FixPointer() ,
Get (Prevword),
Say (Word)

I$h current wordl
[5] =
FixPointer() ,
Get (Word),
Say (Word)

I$h next wordl
[6] =
FixPointer(),
Get (Nextword),
Say (Word)

96

I$h previous characterl
[7J =
FixPointer(),
Get(Row, Col-I),
Say (Char)

I$h current characterl
[8J =
FixPointer() ,
Say (Char)

I$h next characterl
[9J =
FixPointer() ,
Get(Row, Col+l),
Say (Char)

1------------------------1I keys that start with 0 I
1------------------------1
I$h one more key gives lines 1 through 91
[OOJ =

Mode (Pointer),
Get (?, Left),
Save (Numbering),
Numbering (On),
Say (Line)

I$h one more key gives lines 10 through 191
[OlJ =

Mode (Pointer),
Get (10+?, Left),
Save (Numbering),
Numbering (On),
Say (Line)

I$h one more key gives lines 20 through 251
[02J =

Mode (Pointer),
Save (Numbering),
Numbering (On),
Get (20+?, Left),
Say (Line)

I$h whole screenl
[OAJ =

Save (Wrap, Table, Numbering),
If State(Table) Gt 2 Then

Table (1)
Endif,

97

98

Get (Top, Left),
Wrap (on),
Numbering (Off) ,
Say (Line)

/$h rest of screen/
[OB] =

Save (Wrap, Table, Numbering),
If State(Table) Gt 2 Then

Table (1)
Endif,
Wrap (on),
Numbering (Off) ,
Say (Line)

/$h character above/
[07] =

FixPointer(),
Get(Row-I, Col),
Say (Char)

/$h color of current character/
[08] =

Save (Table),
Table (3),
OUt (, attribute '),
OUt (Attr) , II say numeric

value for attribute
Say (Attr BitAnd &HOF) , II say 4 bit

I I foreground color
OUt (' on'),
Say ((Attr BitAnd &HFO) Div 16) ,

I I say 4 bit background color
If (Attr BitAnd &H80) BitEq &H80 Then

I I if blinking bit is ON then
OUt (' or blinking '),
Say (Attr BitAnd &HOF) ,

I I say 4 bit foreground color
OUt (' on '),
SaI((Attr BitAnd &H70) Div 16)

I say 3 bit background color
Endi

/$h character below/
[09] =

FixPointer(),
Get(Row+l, Col),
Say (Char)

/$h rest of line/
[OC] =

FixPointer(),
Say (Line)

I$h pointer to top leftl
[0*] =

Mode (Pointer),
Get (Top, Left),
Msg(, top left ')

I$h pointer to bottom leftl
[0#] =

Mode (Pointer),
Get(Bottom, Left),
Msg (, bottom left ')

I$h pointer to right edgel
[OD] =

Mode (Pointer),
Get (Row, Right),
Msg (, right edge ')

I$h manually enter a field mask I
[OH] =

Set (temp, 0),
Set (Key, 18),
Msg(, enter a field mask ending with pound'),
Msg(, key or press stop to cancel'),

While (Key Ne 16) And (Key Ne 15)
Keypad (Key),
Stop,
If (Key Ne 16) And (Key Ne 15) Then

Set (temp, (temp * 10) + Key)
EndIf

EndWhile,

If Key Ne 16 Then
Set (FldMask, temp),
Msg(, field mask is '),
Say (FldMask)

Else Msg (' field mask setup cancelled')
EndIf

I$h use pointer position to set up field mask
attribute value/

[OS] =
Get (Prow, Peal),
If RC EQ 0 Then

Msg (, pointer at row '),
Say (Prow),
Msg (, column '),
Say (Peal),

99

Set (FldMask, Attr) ,
Msg(, field mask is '),
Say (Attr)

Else Msg(, move pointer to desired position
first ,)

EndIf

1------------------------1
I keys that start with * I
1------------------------1
I$h previous fieldl
[*lJ =

Save (Wrap, Trap),
Wrap (On),
Trap (Off),
Get (PrevFld, FldMask),
If RC Eq 0 Then

Say (Field, FldMask)
Else Msg(, first field')
EndIf

I$h current fieldl
[*2J =

Save (Wrap),
Wrap (On),
Get (Field, FldMask),
Say (Field, FldMask)

I$h next fieldl
[*3J =

Save (Wrap, Trap),
Wrap (On),
Trap (Off),
Get (NextFld, FldMask),
If RC Eq 0 Then

Say (Field, FldMask)
Else Msg (, last field ')
EndIf

I$h rest of fieldl
[*AJ =

Save (Wrap),
Wrap (On),
Say (Field, FldMask)

I$h set field definitionl
[*HJ =

Cycle{ Set (FldMask, BG),
Msg('background fields only');

Set (FldMask, FG),
Msg('foreground fields only');

100

Set (FldMask, &hFF) ,
Msg('full fields') }

/$h spell previous word/
[*4] =

Save (Format, Caps),
Format (Spell),
Caps (Off),
Get (Prevword),
Say (Word)

/$h spell current word/
[*5] =

Save (Format, Caps),
Caps (Off),
Format (Spell),
Get (Word),
Say (Word)

/$h spell next word/
[*6] =

Save (Format, Caps),
Caps (Off),
Format (Spell),
Get (Nextword),
Say (Word)

/$h spell current word with caps/
[*BJ =

Save (Format, Caps, Table),
Format (Spell),
Caps (On),
Table (1),
Get (Word),
Say (Word)

/$h phonetic previous character/
[*7J =

Save (Table, Caps),
Table (2),
Caps (Off),
Get (Row, Col-1),
Say (Char)

/$h phonetic current character/
[*8J =

Save (Table, Caps),
Table (2),
Caps (Off),
Say (Char)

/$h phonetic next character/

101

[*9] =
Save (Table, Caps),
Table (2),
Caps (Off),
Get(Row, Col+1),
Say (Char)

/$h ascii value of current character/
[*C] = Save (Format, Caps),

Caps (On),
Format (Ascii) ,
Say (Char)

/$h text format/
[**] =

Format (Text),
Table (1),
Msg ('text format')

I$h pronounce formatl
[*0] =

Format (Pronounce),
Table (1),
Msg('pronounce format')

I$h spell formatl
[*#] =

Format (Spell),
Table (1),
Msg('spell format')

/$h phonetic format/
[*D] =

Format (Spell),
Table (2),
Msg('phonetic format')

1------------------------1
I keys that start with # I
/------------------------1

I$h search from top/
[#1] =

Msg('enter search string'),
Read (@searchst),
If Length(@searchst) Eq 0 Then
Inull string entered/

Msg('string search cancelled')
Else

OUt ('looking for '),
Say (@searchst),
Save (Wrap, Trap, Caps),

102

Wrap (On),
Trap (Off),
Caps (Off),
Mode (Pointer),
Get (Top, Left),
Get(@searchst, +),
If RC Eq 0 Then

OUt ('found '),
Msg(Pointer)

Else Get (Top, Left),
Msg ('not found')

Endif
Endif

/$h continue search/
[#2] =

If Length(@searchst) Eq 0 Then
/null string

entered/
Msg('Search string not defined')

Else
Msg('continuing search'),
Save (Wrap, Trap, Caps),
Wrap (On),
Trap (Off),
Caps (Off),
Mode (Pointer),
Set (r1, Row),
Set (c1, Col),
Get(Row, Col+1),
If RC Eq 0 Then

Get(@searchst, +),
If RC Eq 0 Then

OUt ('found '),
Msg(Pointer)

Else Get (r1, c1),
Msg ('not found')

Endif
Else

Get(Row+l, Left),
If RC Eq 0 Then

Get(@searchst, +),
If RC Eq 0 Then

OUt ('found '),
Msg(Pointer)

Else Get (r1, c1),
Msg ('not found')

Endif
Else

Msg ('not found')
Endif

Endif

103

Endif

/$h search from top for previous string/
[#3] =

If Length(@searchst) Eq 0 Then
/null string

entered/
Msg('Search string not defined')

Else
OUt ('looking for '),
Say (@searchst),
Save (Wrap, Trap, Caps),
Wrap (On),
Trap (Off),
Caps (Off),
Mode (Pointer),
Get (Top, Left),
Get(@searchst, +),
If RC Eq 0 Then

OUt ('found '),
Msg(Pointer)

Else Get (Top, Left),
Msg ('not found')

Endif
Endif

/$h lock keys/
[#4] =

If (LockByte BitAnd &h80) Eq &h80
/announce locks status/
Then OUt ('insert ')

Else OUt ('replace ')
Endif,

If(LockByte BitAnd &h40) Eq &h40
Then OUt ('caps lock ')

Else OUt ('no caps lock ')
Endif,

If (LockByte BitAnd &h20) Eq &h20
Then OUt ('nurn lock ')

Else OUt ('no nurn lock ')
Endif,

If (LockByte BitAnd &hl0) Eq &hl0
Then OUt ('scroll lock ,)

Else OUt ('no scroll lock ')
Endif,
Msg (' ')

/$h current format/

104

[#5J = Msg(Format)

/$h current window/
[#6J =

Out ('top '),
Out (Top),
Out (, left '),
Out (Left),
Out (, bottom '),
Out (Bottom),
Out (, right '),
Msg(Right)

/$h lock status on or off/
[#BJ =

If State(LockStatus) Then
Out ('no '),
LockStatus (Off)

Else
If IgnoreInsFlag Then

LockStatus(On, -)
Else LockStatus(On)
Endif

Endif,
Msg('lock status')

/$h pointer position/
[#8J = Out ('pointer at '),

Msg(Pointer)

/$h current mode and position/
[#9J =

If State(Pointer) Then
Out ('pointer mode at r),
Msg (Pointer)

Else Out ('cursor mode at '),
Msg (Cursor)

Endif

/$h cursor position/
[#CJ = Out ('cursor at '),

Msg (Cursor)

/$h cursor to pointer /
[#*J =

Save (FastRoute),
FastRoute (On),
Route (Prow, Pcol) ,
If NOT ((Prow Eq Crow) And (Peol Eq Ccol))

Then FastRoute(Off),
Route (Prow, Pcol)

105

106

Endif,
If ((Prow Eq Crow) And (Pcol Eq Ccol)) Then

OUt ('cursor to pointer at I),
Msg(Cursor)

Else
Msg('cursor to pointer unsuccessful, '),
OUt ('cursor at '),
Msg (Cursor),
OUt ('pointer at '),
Msg(Pointer)

Endif,
Mode (Cursor)

I$h pointer model
[#OJ = Mode(Pointer),

OUt ('pointer mode at '),
Msg(Pointer)

I$h pointer to cursor I
[##J =

Mode (Pointer),
Get (Cursor),
OUt ('pointer to cursor at '),
Msg(Pointer)

I$h cursor mode I
[#DJ = Mode(Cursor),

OUt ('Cursor mode at '),
Msg (Cursor)

I$h start ignoring 1 or more charactersl
[#HJ =

Msg(' enter characters to start ignoring') I

Read (@ignorest),
If RC Eq 0 Then Inull string entered I

Msg (' cancelled ')
Else

OUt{' start ignoring '),
Save (Fo:rmat) ,
Fo:rmat (Spell),
Say (@ignorest) I

AddIgnore(@ignorest)
Endif

I$h stop ignoring 1 or more charactersl
[#S] =

Msg(' enter characters to stop ignoring '),
Read (@ignorest),
If RC Eq 0 Then Inull string entered I

Msg (' cancelled I)
Else

OUt (' stop ignoring '),

Save (Format),
Format (Spell),
Say (@ignorest),
DelIgnore(@ignorest)

Endif

1------------------------1
I keys that start with A I
1------------------------1
I$h set pitchl
[Al] = Keypad (Pitch),

SetPitch(Pitch),
OUt ('pitch '),
Msg(Pitch)

I$h set ratel
[A2] = Keypad (Rate),

SetRate (Rate),
OUt ('rate '),
Msg (Rate)

I$h caps on or offl
[A4] =

If State(Caps) Then
OUt ('no '),
Caps (Off)

Else Caps (On)
Endif,
Msg ('caps')

I$h spaces on or offl
[AS]

If State(Spaces) Then
OUt ('no '),
Spaces (Off)

Else Spaces (On)
Endif,
Msg ('spaces')

I$h graphics on or offl
[AB] =

If State(Graphics) Then
OUt ('no '),
Graphics (Off)
Else Graphics (On)
Endif,
Msg (,graphics')

107

/$h wrap on or off/
[A8] =

If State(Wrap) Then
Out ('no '),
Wrap (Off)

Else Wrap (On)
Endif,
Msg (,wrap')

/$h numbering on or off/
[A9] =

If State(Numbering) Then
Out ('no '),
Numbering (Off)

Else Numbering(On)
Endif,
Msg('numbering')

/------------------------/
/ keys that start with B /
/------------------------/

/$h first word of line/
[Bl] = Get (Row, Left),

Say (Word)

/$h middle word of line/
[B2] = Get (Row, Right),

Get(Row, (Right Div 2)),
Get (Word),
Say (Word)

/$h last word of line/
[B3] = Get (Row, Right),

Get (Word),
Say (Word)

/$h rest of word above/
[B4] = Get (ROW-I, Col),

Say (Word)

/$h rest of word/
[B5] = Say (Word)

/$h rest of word below/
[B6] = Get (Row+l, Col),

Say (Word)

108

/------------------------/
/ help and stop keys /
/------------------------/

[H] = Help

/$h stop speech now/
[S] = Stop

109

VITA

Aouni Hallal

Candidate for the Degree of

Master of Science

Thesis:

Major Field:

Biographical:

PROVIDING TEXT-MODE ACCESS TO BLIND USERS
WITH AN APPLICATION USING TEXT-TO-SPEECH
SYNTHESIS

Computer Science

Personal Data: Born in Habbouche, Lebanon, on June 23,
1967, the son of Samih and Fatima Hallal.

Education: Received Bachelor of Science degree in
Management Science and Computer Systems from
Oklahoma State University, Stillwater, Oklahoma in
December 1988. Completed the requirements for the
Master of Science degree with a major in Computer
Science at Oklahoma State University in May 1995.

Experience: Employed by Oklahoma State University,
Wellness Center as a graduate research assistant;
Oklahoma State University, Wellness Center, 1991 to
1993.

Professional Memberships: Phi Kappa Phi Honor Society,
Golden Key National Honor Society, Student
Government Association.

