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CHAPTER I

INTR.ODUCTION

Statement of the Problem

The natural processes of erosion, detachment, transport, and deposition of

sediments, have occurred throughout geologic times and have shaped the landscape of the

world in which we live. The word erosion is of Latin origin being derived from the verb

erodere - to eat away, to excavate. It is defined as a process where soil particles are

detached from the soil mass and transported off site. The main agents of erosion are

water, wind and ice, aU of which entrain particles and transport them.

Erosion often causes serious damage to agricultural land in many ways, the

soil fertility and plant nutrients are removed; the soil texture is changed; the structure is

degraded; the soil depth is decreased; the crop productivity is reduced. Soil erosion and

deposition also affect stream and river systems by reducing the storage capacity of

reservoirs and lakes and dogging navigable waterways. Environmental pollution is

caused from excessive silting and damages water resources with sediment-bound

chemicals transported by surface runoff from farm land. In terms of total mass eroded soil

is the largest pollutant of surface waters in the United States (Meyer, 1972). Erosion

1
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related pollutants have been estimated to impose net damages of $3.2 to $13 billion per

year in the United States (Clark et aI., 1985).

Water erosion causes the most damage. Estimates of soil erosion in the

United States range from 1.7 to 3 billion toDS lost each year with about 60 percent

es1imated to be from agricultural land (Lake and Shady. 1993). Sediment affects water

quality and its suitability for domestic consumption and industrial use. Soil eroded from

upland areas is the source of most sediments transported by rivers to reservoirs. Off-site

damages caused by sediment in the United States are estimated at $10 billion annually

(Lake and Shady, 1993). Considering these impacts, accelerated soil erosion is a serious

global problem and is widely recognized.

The extent of erosion, specific degradation, and sediment yield from

watersheds relates to a complex interaction between topography, geology, climate, soil,

vegetation, land use, and man-made developments. Erosion has been observed to occur

in various forms under th,e influence of these factors. Erosion is characterized by the

detachment and entrainment of solid particles from the land surface or from the bed and

banks of streams.

The soil erosion process beglns by water falling as raindrops and flowing

on the soil surface. There are three steps in this process, (1) d,etachment, caused by

raindrop impact and shearing of flowing water; (2) transport, resulting from energy and

steam power of flowing water, and (3) deposition, which occurs when transport capacity

is less than sediment load. Soil detachment and transport by surface runoff are

dependent on the hydraulic characteristics of surface flow. When rainfall exceeds the
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soil's infiltration rate, overland flow begins and detached soil particles may be carried

away, the detached soil is transported! from rill to ephemeral gullies, gullies, and streams.

The efficiency of sediment transport from upland areas is dependent on the development

and extent of a rill network. Rill network development is related to the surface micro­

r,ehef and soil properties. Therefore. the quantity of soil erosion and sediment are clearly

dependent on the microtopography of the eroded surface.

For many years, the drainage networks of river basins have been studied.

Various attempts hav,e been made to determine the underlying concepts incorporated in.

the laws of drainage composition (Morisawa, 1985~ Wilson and Storm, 1993). A

topologically random network of river basins has also been proposed by Shreve (1966,

1967, 1969). Ogunlela et aI. (1989) and Wilson and Storm (1992) found that the fractal

properties of rill networks are similar to those of river basins. Very few studies have

examined the relationships of topographic parameters and sediment yield in small

watersheds. Recently erosion and sediment yield modeling has attempted to include these

effects (Storm, 1991). Therefore, further analysis of the relationships between topographic

features and sediment yield is necessary.

Objectives

The objectives of this research are:

1. Define topographic parameters for random rill networks using detailed digital elevation

data.



2. Identify relationships between sediment yield and topographic parameters.

General Procedure

The goal of this research is to correlate sediment yield to quantitative topographi,c

attributes using laboratory and plot scale data. Determination of these attributes will be

p,erformed using digital elevation data and Digital Terrain Modeling. In order to get the

geomorphologic quantitative information, a Digital Terrain Model (DTM) will be used to

derive some information about the morphology of the plot surfaces.

In this study, the first step in the analysis of drainage basins was to define rin

networks using a DTM with erosion plot elevation data. The next step was calculating

topographic parameters using the DTM results. The topographic parameters used in this

study to characterize drainage basins were link lengths including interior and exterior link

lengths, link drainage area, random roughness, and rill density. Finally, the relationship

between sediment yield and topographic parameters were analyzed, using graphical,

statistical, and multivariate techniques.



CHAPTERll

LITERATURE REVIEW

Introduction

The quantitative topographic factors ofdrainage basins are very important

in erosion processes and sediment yield. Since Horton (1945) introduced the idea of

ordering channel networks, and Strahler (1952) simplified the Horton ordering scheme

in a way that makes it purely topological (Melton, 1959), many geomorphologists and

hydrologists have studied the quantitative analysis of drainage networks. Between 1945

and 1966, the study of channel networks developed rapidly. The accomplishments of this

period were summarized by Abrahams (1984): (1) the beginnings of a formal theory

based on the concept of the drainage basin as an open system (Strahler, 1950)~ (2) the

application of dimensional analysis (Strahler, 1958)~ and (3) the investigation of process­

form Jelationships (Melton, 1958).

Shreve (1966) introduced the concept of topologically random channel

networks by assuming that all distinct networks with a given number of sources are

equally likely. Using this concept, Shreve (1967) deduced that a particular channel

network could be assumed as a subnetwork of some infinitely large network. Many

5
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attempts have been made to improve on the concept of a random topologi.cally

representation of channel networks (Dacy and Krumbein, 1976; Abrahams. 1984; Van. Pelt

et a1." 1989). These efforts were aimed at improving Shreve's topological. model of equal

probabili.ty of branching.

The drainage network of basins have been studied for many years. Much

of the quantitative work has been in the development of laws of drainage composition

(Horton, 1945.; Morisawa, 1985), such as the law of stream number. the law of stream

length, the law of drainage area, the law of stream gradient and the law of stream falls.

These laws indicate that at least some limited dimensionless similarities exist among

drainage basins of different size, lithology, climate and other characteristics.

Recently, Ogunlela et aI. (1989) analyzed the drainage network of rills using

topologically random channel networks. Using an indoor erosion table, they collected

approximately one million coordinate points for each erosion run to identify flow paths.

Drainage networks were defined by using an algorithm developed by Couger et aI. (1989.

1992). The algorithm assumed that water will flow to the surrounding point of lowest

elevation and all depressions are assumed to contribute flow. Flow paths were Jinked and

summarized using a riB ordering system simil.ar to Strahler's system. Drainage

composition laws and fractal dimensions were used to quantify network characteristics.

They found that the average bifurcation ratio, average I.ength ratio and average drainage

area ratio were within those values observed from river basins. Their results suggest that

concepts from maj.or river systems might prove useful in predicting the drainage network

of upland flow and erosion.
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Wilson and Storm. (1992) examined the fractal characteristics ofsmall-scale

drainage networks using the. data set of Ogunlela et aI. (]989). They found that the

drainage networks have fractal cbaracteristics and the small-scale fractal dimensions are

similar to those observed in major river networks. Based on HortoD's bifurcation and

length ratios, using Richardson's method., and a derived relationship, their results support

that the small erosion plot data expressed similar characteristics to those of river

networks. Other similarities between rills and rivers have aI.so been reported (Lane and

Foster, 1980).

More recent advances in hydrology, soil science, erosion mechani.cs, and

oomputer technology have provided the technology to extend erosion and sediment yield

modeling. Examples include the WEPP model (Foster et a1., 1987), the DYRT dynamic

erosion model (Storm, 1990) and the PROlL model (Lewis et aI., 19943, 1994b).

Topological Properties

I. Link Characteristics

(1) Distribution

Early researchers have studied link length distributions for river systems.

Schumm (1956) and Maxwell (1960) have investigated the distribution of first-order

stream lengths for a few basins and have concluded· that their data could be represented

by a log-normal probability density function. Their study did not report interior link
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lengths. M. A. Melton (Shreve,} 969) had obtained. the same conclusion concerning both

exterior and interior link lengths based on various basins in the western United States.

Shreve (1969) also fitted a log-normal p.robability density function to interior Link length

from eastern Kentucky data but concluded that the fit was not very good.

Smart (1968) and Abrahams (1972) fitted an exponential probability density

function to interior link length data with reasonable success. Another distribution that has

been propos,ed for link lengths is the gamma probability density function. Shreve (1969),

and Smart (1978) all fitted the gamma probability density function to various samples of

exterior and interior lengths from eastern Kentucky. Abrahams and Miller (1982)

suggested that the mixed gamma function fit link length distributions. They used link

length data from 12 different areas representing a broad range of environmental and

geomorphic conditions to evaluate the log-normal, gamma, and mixed gamma functions.

They found that the mixed gamma satisfactorily fitted 84% of the 70 link length

distributions examined, compared with 67% fitted by the log-normal and 59% fitted by

the gamma.

Wilson (1993) studied the link lengths distribution for small-scale surface

drainage networks.. He used 426 links obtained from Oklahoma State University erosi.on

plot data. He found the distribution of link lengths was better represented by a log­

normal probability density function, but also found that the log-pearson type ill and the

extreme value type I distributions flt welL

(2) Exterior and Interior link lengths

Shreve (1967) first recognized that exterior and interior links have different
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length prope.rties in river basins. Schwnm (1956) analyzed channel networks in eastern

Kentucky and Perth Amboy, Chileno Canyon, and Mill Dam Run basins. He found that

L)Li ranged from 1.15 to 1..96, where Le is the mean of exterior link length and L i is the

mean of interior link length (The definition of exterior link length and interior link length

s,ee Chapter IV). Smart (1972) also obtained a mean value ofLjLj > 1 in the western and

southern United States, but found LjLj < 1 in the Applachian Plateau. An excellent

review of this study is given by Abrahams (1984).

Link lengths and area properties for field-sized areas have not yet been

measured. Wilson and Storm (1993) studied surface drainage networks from erosion plot

research. They compared length and area characteristics for 151 links to those obtained

at two and eight percent slopes. Link lengths at two-percent slope were similar to those

at eight percent. The mean link area and the correlation of area and order for the two­

percent networks were different than those observed for the eight-percent slope.

(3) Link Drainage Area

Although Horton (1945) did not give a law about drainage basin area, many

researchers have studied the relationship of link and link drainage area. Hack (1957)

demonstrated the applicability of the power function for length and area for streams in

seven areas of Virginia and Maryland. He determined the equation to be:

L = 1. 4Ao.6 (2.1 )

where L is stream length in miles, and A is area in square miles. The almost same result

--- - - ----------------------------------
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was obtained by Gray (1961) for basins from the Midwest and the North and Middle

Atlantic States, given as:

L = ~.4 AO.568 (2.2)

Shreve (1967) gives the relationship of link and link drainag,e area for river

systems as:

A = wL = kL 2 (2.3)

where A is the link drainage area, L is the link length, w is the effective width of link

drainage area, and k is a dimensionless constant that approximately equals to one for river

syst1ems.

Wilson (1993) analyzed the relationship of link drainage area and link length .

for rill networks using OSU erosion table data. He found the equations for the interior

and exterior link lengths to be:

a.e = 9. 23L. + 31.8

(2.4)

(2.5)

where 3.i is a dimensionless area for interior link lengths, 3.e is a dimensionless area for

exterior link lengths, L. is a dimensionless link length and can be defined as:
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(2 • 6)

where L is the link length. Lc is a characteristic length scale which can be estimated as:

(2.7)

where 6.x and 6.y are length of the grid sides.

2. Rill Density

Rill density is typically defined as the number of riUs per unit width or

the number of rills that ,exist at a given cross-section (Haan et aI.• 1994). but also can be

defined as the length of riUsper unit area (Storm, 1991). Rill density is a very important

parameter for evaluation of sediment source and sediment yield. A detailed review is

given by Storm (1991). EUison and Ellison (1947) observed that for highly erodible soils

many small rills were very close together and merged into gullies. These rills and gullies

almost had the same size from the top to the bottom of the slope, therefore, indicating

tr.ansport limiting flow where raindrop detachment and interrill transport were dominant.

For relatively low erodibility soils, rill densities are lower and rills vary in width and

depth from top to the bottom of the slope, thus indicating that rill incision and sidewall

sloughing are significant sources of detached material. In addition, Meyer and Monke

(1965) observed that short slope lengths have higher rill densities relative to longer slope

lengths.
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Meyer et aI. (1975) studied the influence of rill den.sity to determine the

source of eroded soil in agricultural test pilots. They used two different rill densities. The

greater rill density was 3 to 5 riUs per 12 ft (3.6 rn) of width, the lower rill density was

one rill per 12 ft (3.6 m) of width. The sediment yield for the greater rill density was

40% higher than that plot with the lower rill density. Meyer et al. (1975) found that the

differences in erodibility between two apparently identical test plots could be explained

in terms of the differences in rill density. Rill density is governed by factors like slope

steepness and length, runoff rate, soil texture, and others. They concluded that riJI erosion

was the largest contributor to the total sediment yield, and the higher rill density was

usually associated with a high sediment yield.

Li et al. (1980) developed a rill density model for laminar and turbulent

flows, ,expressed on a unit width basis. Their model assumed that aU rills were the same

size for a specified distanc,e downslope. Because of the many empirical constants

required by the model, its use is limited. Foster and Lane (1981) criticized this model,

and concluded that the Li et a1. model choice of a representative particle size in the

Shield's diagram caused critical shear stress for rill erosion to be underestimated.

Hirschi and Barfield (1988) performed a sensitivity analysis on the number

of rills across a plot using the KYERMO model. They found that sediment yield

increased with increasing rill number until a maximum was reached, after which sediment

yield decreased. They proposed that the decline in sediment yield at higher numbers of

rills was due to lower flow rates in each rill as the surface runoff was distributed over

more rills. They also showed that the effects of rill number on sediment yield is governed
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by the form of the rill detachment and boundary shear stress equations.

The WEPP Erosion model (Nearing et aI., 1989) assumes that rill density

is analogous to rill spacing, and defilles a rill network as a series of parallel rills. Lewis

et al. (1990, 1994a, 1994b) developed PRORH.., a model similar to the WEPP model, but

with the capability of using a random distribution ofrill numbers and flow in. rills. Based

on the sensitivity analysis results, PRORIL showed that ignoring the stochasticity of rill

networks can make a significant difference in predicted erosion, especially when a

nonerodible layer is encountered.

3. Random Roughness

Soils roughness is often r,eferred to as soil micro-relief formed as a result of

tillage. It can have a significant impact on the rate and amount of erosion. Surface

roughness induced by tillage has two distinct configurations, random and nonrandom

(Sadeghian and Mitchell, 1988). Random roughness is that part of the surface irregularity

that is made up of clods or a mixture of clods and particles. Non-random roughness is

that part of the surface configuration caused by tillage tools. Zobeck et a1. (1986) and

Moore et al. (1979) reviewed the development process, and Kuipers was the first to

quantify soil roughness in 1957. Luttrell (1963) defined a roughness coefficient, R, as

the sum of absolute differences between slopes of lines which connect the end points of

successive probe tips. In the same time, Burwell et ai. (1969) uSled the term "random

roughness" to describe the variations in elevations that occur at random on the soil
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surface. Allmaras et aI. (1966) and Burwell eta!. (1969) have used surface ro,ughness as

a means of describing depression storage on the soil surface.

Random roughness of the soil surface has been studied by many other

investigators using a variety of methods and materials. AUmaras et aI. (1966) described

the method a calculating random roughness, RR, wherein each height measurement was

expressed as a naturallog.arithm. Several researchers have suggested alternative measures

ofsoil RR (Currence and Lovely, 1971 ~ Moore and Larson, 1979). Podmore and Huggins

(1980) characterized seven surfaces using spectral analysis, amplitude-separation

techniques and area-wetted perimeter methods. These methods provided additional means

of describing the soil surface. Mossaad and Wu (1984) developed an erosion model that

computes the rill and inter-rill flow over a surface with random roughness, which used

a method of zero-crossing analysis to generate a random surface model. Zobeck and

Onstad (1986) used a simple model to predict the changes in random roughness with

changes in tillage and rainfall amount. They found RR varied from 5.0 em for a large

offset disk operation to 0.7 em for no-till systems, and decreased exponentially with

increasing rainfall. Storm (1991) developed a random surface generation model using the

turning bands method (TBM).

4. Stream Orders

Horton (1945) was the first to use the methods of classifying stream channels

by order. Later, Strahler (1952) slightly modified the Horton ordering scheme. Melton



(1959) explains the mathematical concepts involved. Generally, Strahler's method is

preferred because of its simplicity and freedom from subjective decisions (Smart, 1972).

The Strahler ordering procedure has three steps: (I) channels that originate at a source are

defined to be first-order steams; (2) when two streams of order u join. a stream of order

(u+l) is created; (3) when two streams of different order join, the channel segment

immediately downstream bas the higher of the orders.

The order of a channel network or drainage basin is its h.ighest order stream.

Two different drainage networks can be compared with respect to corresponding points

in their geometry through use of order number, because order number is dimensionless.

5. Bifurcation

The individual ratios of successive stream numbers are called bifurcation

ratios (Smart, 1972), given as:

(2.8)

where Nu is the number of segments of a given order u, and Nlli-J is the number of

segments of higher order (u+l). Because of variations in watershed geometry, the

bifurcation ratio win not be precisely the same from one order to the next. Several other

bifurcation ratios have been employed by various researchers (Maxwell, 1960). However,

the bifurcation ratios characteristically range between 3.0 and 5.0 for watersheds in which
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the geologic structures do not distort the drainage pattern (Strahler, 1964). A theoretical

minimum value of 2.0 is rarely approached under natural conditions. Bifurcation is

relatively constant throughout the series with small variations from region to region.

Also, Abrahams (1984) found that the bifurcation ratio and length ratio range from 3 to

5 and 1.5 to 3.5 at a basin scale, resp,ectively. Ogunlela et aL (1989) studied rill networks

based on a large scale indoor laboratory from two surface roughness conditions and two

rainfall intensities. They concluded that for the conditions studied, the rill networks may

be characterized using the bifurcati.on ratio, length ratio, and an area ratio deemed

similarly to the length ratio.

6. Fractal Parameter

Recently, fractal geometry has been shown to be a useful method to describe

processes that exhibit similar features over a range of scales. Self-similarity is an

important concept in fractal geometry. It specifies that patterns repeat themselves at all

scales of observation, and as such there is no unique or dominating scale. Mandelbrot

(1983) defines similarity dimension that is equally to the fractal dimension. For example,

consider a unit square where the length of each side is divided into b equal line segments.

The square is then divided into a grid of N = b2 rectangular parts, and each of these

rectangular parts can be determined from the whole for a given b = N Jn
:. A general

definition of similarity of ratio is:
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(2.9)

where r is the similarity of ratio, N is the number of parts and D is the similarity

dimension, usually synonymous with the fractal dimension.

Tarboton et aI. (1988) suggested a fractal dimension for networks of

approximately two based on the fractal characteristics of the total drainage network.

Hjelmfelt (1988) and Rosso etal. (1991) found the fractal dimension range between 1.0

and 1.3, after examining the fractal characteristics of the mainstream length. A fractal

analysis is presented for the erosion plot networks gathered by Ogunlela et a1. (1989).

Wilson and Storm (1992) studied the fractal analysis of these rill networks, and found that

the smaIl-scale fractal dimensions obtained from erosion plot data are generally in good

agreement with reported values for large-scale river system. The fractal dimensions were

approximately two.

7. Stream Frequency

The stream frequency or channel frequency, F, is the number of stream

segments per unit area (Horton, 1945), given by:

(2.10)

where Nu is the number of segments of different orders within the given basin of order

k, and Ak is the area of that basin in square miles. Drainage density (D) is defined as the
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cumulative length of all streams in the basin divided by the total drainage area:

D=
(2.11)

where Lj is the length of stream i, n is the total number of streams in the basin, and Ad

is the total drainage area.

Melton (1958) studied the relationships between drainage density and

frequency, and derived the dimensionally correct equation:

F ;;:: o. 694D 2 (2.12 }

where F I D2 is the dimensionless number that tends to approach the constant value 0.694.

It shows that the relationship of density and frequency tends to be a constant in nature.

Kenney (1982) found that although this relationship is useful, it cannot be employed for

prediction with anything like the accuracy suggested by its associated correlation

coefficient.

8. Relief Ratio

Relief is the elevation difference between reference points defined in a

watershed, i.e. maximum basin relief is the elevation difference between basin mouth and

the highest point on the basin perimeter. Relief ratio, Rn, is defined as the basin relief

H divided by the horizontal distance. Schumm (1956) measured relief ratio Rn as the

ratio of maximum basin relief to horizontal distance along the longest dimension of the
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basin parallel to the principal drainage line. The relief ratio measures the overall

steepness of a drainage basin and is an indicator of the inten.sity of erosi'on processes

operating on slopes of the basin. He also found that sediment loss per unit area is closely

correlated with relief ratio based on the possibility of a close correlation between relief

ratio and hydrologic characteristics. Mehon (1958) used relative relief, ~, expressed

in percent, given by:

100H
5,280P

(2.13)

where H is maximum basin relief in ft, and P is basin perimeter in mHes.

Man,er (1958) used a relief-length ratio with sediment-delivery ratio of

watersheds in the R.ed Hill area of southern Kansas, Oklahoma, and Texas. He found that

the ratio had a higher correlation with sediment delivery ratio. Maxwell (1960) used

basin diameter as the horizontal distance for calculating of a relief ratio.

Digital Terrain Model

A Digital Terrain Model (DTM) is typically complex but useful model that

uses digital data to represent the spatial distribution of terrain attributes. Generally, there

are three major ways of structuring networks using elevation data. These are: 1) square-

grid network, 2). triangular irregular network (TIN), and 3) contour-based network (Moore

et at, 1991). Grid-based methods use a regularly spaced triangular, square, or rectangular
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mesh to represent the land surface. TINs usually form an irregular network of points

representing peaks, ridges, and breaks in slope. Contour-based methods consist of

digitized contour lines stored as vector data (Onstad and Brakensiek, 1968). Topographic

attributes such as slope, specific catchment area, aspect, plan, and curvature can be

derived from aU three types of DTMs.

The techniques developed to extract topographic information from gridded

digital elevation data are based on neighborhood operations (Jenson and. Domingue, 1988;

Van Deursen and Kwadijk, 1990; Quinn et at, 1991; and Smith and BriUy, 1992).

Douglas (1986) gives an exceUent description of techniques that have been developed to

define ridges, channels, watershed, and other hydrologic features from DTMs. These

techniques are generally based on neighborhood operations where calculations and

decisions are made for a cell based on the: values in the eight adjacent cells.

DTMs have created a profusion of topographic analysis procedures

(Tarboton et at, 1991). These topographic procedures include determination of watershed

boundaries, slope angle and aspect, elevation interpolation, cut and fill estimates,

extraction of channel networks and flow accumulation estimates. To date, most digital

terrain analysis methods are based on gridded data structures. The most common method

of estimating topographic attributes from DTMs involves fitting a surface to the point

elevation data using either linear or nonlinear interpolation (Moore et aI., 1991). The use

of gridded DTMs for topological analysis is well documented by Jenson (1988), Tarboton

et al. (1991) and Smith and Brilly (1992).

Digital elevation data are available for many areas of the United States
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from the U.S. Geological Survey (USGS) in several formats (Dept. of Int. -USGS? 1987).

The digital elevation data available for this study will be from laboratory and plot scale

data.

Geographical Information Systems

Geographical In£onnation Systems (GIS) are computerized resource data

base systems that can collect, manage, analyze and display various spatial data including

land use, topography, vegetation, cover, climate, soil and geology (Burrough, 1986). In

addition, GIS combine hardware and software to perform numerous functions and

operations on the various spatia) data layers residing in the data base. There are two data

types based on their methods for storing spatial data, i.e. vector and raster. GIS data are

slored as a series of layers which are called coverages. In the area of environmental

management, these data layers could include soils, land use, water bodies, topography,

climate, crop yields, chemical use patterns, and others. Each type of data has its own layer

and is stored separately. These layers can be overlaid for display or combined

mathematically to create new coverages. Also, the advent of GISs allows for efficient use

and analysis of large data sets. In this study, the GIS used is the Geographic Resources

Analysis Support System (GRASS), developed by the U. S. Army Corps of Engineers (U.

S. Army Corps of Engineers, 1991). GRASS allows for the import ofDEM data and has

routines providing for digital terrain analysis, and display of rill networks.



CHAPTERID

METHODOLOGY

Introduction

In order to obtain the necessary quantitative topographic information,

a DTM was used to derive information about the morphology of the erosion plots

surfaces. The DTMs extract topographic information from gridded digital elevation data.

In this study, the University of Kentucky erosion plots and Oklahoma State University

erosion table elevation data were used to generate random rill networks using a DTM

model. Information obtained by the DTM was used to define flow paths, define the rill

network, subdivide the network into a series. of connecting branches, and define

subwatersheds for each branch.

Statistical methods were used to analyze relationships and a Storm

Water Management Program (SWAMP TI) {Haan, 1994) was employed to estimate link

length including interior and exterior length distributions.

Data Description

22
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1. University of Kentucky Data

The erosion plots from the University ofKentucky were selected for

this study. The elevation data wer,e obtained by Storm (1991). These erosion plots are

located at the University of Kentucky Coldstream Farm in Lexington, Kentucky. Six

topsoil and six subsoil plots were used. Each plot measures 22.1 m (72.6 feet) in length

and 4.57 m (15 feet) in width with an uniform slope of 8.7%.

i. Soil Type

As the erosion plot field was planted in alfalfa prior to construction,

heavy equipment was used to SCJape the upper 5 cm of a McAfee silt loam soil to remove

the vegetation and the majority of roots. For the topsoil plots, when the upper 5 cm of

soil was removed and the remaining upper 15 em of soil was mixed, a silt clay loam

surface Layer was formed. For the subsoil plots, after scraping and leveling, a Maury silty

clay loam was trucked to the site and compacted to a 30 cm depth.

ii. Soil Surface

Either a smooth or rough random micro-relief surface was created for

this experiment. Therefore, before any tillage operation could be conducted, the soil was

left to dry thoroughly. The subsoil plots were carefully roto-tilled up and down slope with

a 6 foot rota-tiller. For the creation of a subsoil rough surface, atter roto-tilling, garden

rakes were used to reduce preferences. For the creation of a subsoil smooth surface, the

plots were rota-tilled and then an 80 kg steel tube was dragged up slope with a winch
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attached to a small garden tractor.

For the topsoil plots, the smooth surface were created by roto-tilling up

and down slope, and then hand raking cross slope with a garden rake to reduce

preference. The rough topsoil surface was created by performing a one pass disking

operation up and down slope.

iii. Experimental Procedures

The erosion plot experiment was conducted using a rainfall simulator

with constant rainfall intensity (Moore et aI., 1983). Rainfall simulators were position

over each plot, and rainfall applied at an intensity of 78 mmlhr until surface runoff was

initiated somewhere on the plot.

A second rainfall was applied for 1.5 or 2.0 hours for the topsoil and

subsoil plots, respectively. During the rainfall event, rill networks were developed and

the surface runoff was measured at the plot bottom using a tipping bucket apparatus

(Storm, (991). At the same time, rill development was photographed at 2 minute

intervals, and hand drawings of the networks were made. The surface profile was

measured every 0.61 m (2.0 ft) down slope and 1.27 em (0.5 in) crosslope using a surface

profile meter. Topographic data were obtained both before and after the rainfall event.

Sediment data were also obtained from this experiment. Pseudo steady state erosion and

sediment yield fo.r each plot are given in Table 3.1.

A run ID was used to reference all field experiments. Each ill code

includes the soil type. plot number. surface treatment and run number. A run ill consists
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Table 3.1: Pseudo Steady State Erosion Rates and Sediment Yield for University of
Kentucky Erosion Study (Storm, 1991)

, ill Code Pseudo Steady State Sediment Yield
Sediment Load (kg)

(kg/min)

SIR2 4.4 351
I

S2R2 6.5 438

S3R2 5.0 331

81S2 4.4 242

S282 7.4 409

S382 5.3 296

TIR2 5.2 429

T2R2 1.7 168

T3R2 2.1 227

TIV2 4.6 482

T2V2 3.7 395

T3V2 3.6 392
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of 4 digits with the first digit indicating the soil type as either subsoil (8) or topsoil (T).

the second digit showing the plot number, and the third digit indicating the surface

treatment as either roto-tined (R), or roto-tilled and dragged (8), or disked (V). The last

digit defines the run number. Run 1 was the initial rainfall event initiating surface runoff,

and run 2 was the 1.5 or 2.0 hour rainfall event.

2. Oklahoma State University Data

The Oklahoma State University erosion table is located at the western

edge of the Oklahoma University campus in the Biosysterns and Agricultural E.ngineering

Department West Laboratories. The large scale experimental apparatus was designed by

Wilson and Rice (1987), erosion table surface is 2.4 m (8 ft) wide and 9.8 m (32 it) long

with two slope segments. One is fixed and the other is adjustable. The fixed slope

segment is at the oudet and the adjustable slope segment is at the inlet or upslope end of

the table. The table can be adjusted from 0 to 8 percent slope. A schematic of this

system is shown in Figure 3.1 (Rice, 1988). A Rainfall simulator is suspended above

the erosion table to simulate the rainfall process.

Soil surface elevation measurements were obtained usmg an image

processing system with structured lighting concepts developed by Rice et 311. (1988).

Using an imaging system, a line laser is projected onto the soil surface. Elevations are

computed from the location of the reflected light received by a video camera. The

imaging system is moved over the plot using computer driven stepper motors.
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A bare soil experiment was conducted using OSU erosion table by Storm

and Wilson from 1992 to 1994. The loam soil has a dispersed soil matrix of 38% sand.

40% silt. and 22% clay. The experiment were conducted at two uniform slopes: two and

four percent. The soil profile information was interpolated to a square grid, the

dimensions of the grid was 10 em in the downslope and upslope directions. Photographs

were also taken. and rill networks were documented by hand drawings as rill networks

developed during the rainfall event. The rainfall intensity and sediment yield data are

given in Table 3.2.

Table 3.2: Rainfall and Sediment Yield for the Oklahoma State University

Erosion Study

Run Code

AAA

ABA

ACA

Rainfan Duration
(min)

150

150

125

RainfaJI Intensity
(inlhr)

3.1

2.7

2.4

Sediment Yield
(kg)

0.15

0.12

0.11

All experiments were described using a run ID. A run ID contains 3

digits, the first digit indicates the slope of either 1% slope (A) or 2% slope (B), the

second digit indicates run number. and the third digit identifies either after the rainfall

,ev,ent (A) or before the rainfan event (B) surface profile data.
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Digital Terrain Model

The Digital Terrain Model (DTM) determines the information that

represents the spatial distribution of terrain attributes by extracting topographic

information from gridded digital elevation data (Jenson and Domingue, 1988). Storm

(1991) developed a dynamic erosion model using a DTM to define flow networks and

ddineate rill networks with subwatersheds and branches. In addition, the DTM was

developed as a component of SIMPLE (Sabbabh et aI., 1995), which is a distributed

parameter phosphorus transport modeL

Using gridded digital elevation data, the DTM delineates and enumerates

rill networks, outlines subwatershed boundaries, and estimates the surface area, average

slope, and maximum flow travel length and slope. Also the DTM can estimate, for each

grid, the slope, path length to the stream and path slope. The DTM identifies flow paths

for a given data. Procedures for making these estimates were described in the following

steps.

1. Model Procedure

Step ODe In the DTM modeling is to transform the original gridded

elevation data into a depressionless Digital Elevation Model (DEM). With the original

DTM an initial conditioning phase is performed, from which three data sets are generated

and utilized for all subsequent steps. The three data sets are a DEM with depressions
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filled. a data set indicating the flow direction for each cell. and a flow accumulation data

set in whi,ch each cell receives a value equal to the total number of cells that drain to the

cell. Based. upon this set of information. rill networks are defined and subdivided into

branches by a special numbering scheme. With the application of another subroutine

developed by Storm (1991). subwatershed cells are fOWld for each branch and thus

subwatershed boundaries are identified.

(1) Filling Topographic Depressions

A random surface micro-relief will typically include depressions which

will impede flow routing. These depression may be real or an artifact of the sampling

scheme. The depressions may be a single cell or made up of multiple cells (Figure 3.2a).

and occur when all surrounding cells have higher elevation values. To eliminate the

depressions., the first step is to fin all single-cell depressions. For each single-cell

d,epression. the cell elevation is artificially increased to the level of its lowest neighboring

cell. The purpose of doing this is to reduce the complexity of filling multi-cell

depressions.

The following steps are performed to generate the depressionless DEM:

a. Fill single-cell depressions by artificially making each cell's elevation equal to its

lowest elevation neighbor if that neighbor has a higher elevation than the cell.

b. When single-cell depressions have been filled, flow directions for each cell are

defined. (Figure 3.2b and 3.2e).

c. Identify the cells that contain multi-cell depressions.
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d. Build a pour point elevation table between all neighboring multi-cell depression

watersheds. A pour point is the lowest elevation cell linking two watersheds.

,e. Mark pour points. Each multi-cell depression watershed is marked with. a pour point,

which must be the lowest elevation. If there are duplicate lowest pour points for a given

watershed, select one arbitrarily.

f. Update elevation values for each multi-cell depression watershed cell. For each

boundary cell, elevation of neighboring cells outside of the watershed are compared to

select the lowest elevation pour point in the multi-cell depression watershed. Then

elevation values for all the depression cells in the watershed are raised to that pour point

elevation (Figure 3.2e).

(2) Flow Directions

A ,cell's flow direction is defined as the direction where water will flow

out of the cell. The flow direction for a cell x is assigned on the basis of the steepest

elevation slope away from the cell. As shown in Figure 3.3, there are eight possible flow

directions. In the determination of flow directions, there are usually four possible

conditions which are briefly described. Condition I occurs when all eight neighboring

cells have elevations higher than the c,enter ceH, resulting in an undefined flow direction.

Condition 2 occurs when the center cell's distance-weighted drop is higher for one

neighboring cell. In this case, the flow direction ]s assigned towards that cell. The

distance-weighted drop is ,calculated as the difference in elevation between the center cell

and a neighboring cell, divided by the distance to the cell. The distance is 1 for a
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noncorner cell and 2°·5 for a comer cell. Most cells fall into the category of condition 2.

Condition 3 occurs when two to seven cells have equal distance-weighted drops. Flow

direction is assigned based on pred.efined rules of logic, i.e. a look up table. Condition

4 occurs when all the neighboring cells have the same distance-weighted drop. After cells

with the first. second and third conditions are assigned, the fourth condition cells are

resolved in an iterative process. In each iteration, a flow direction is assigned with one

cell being tested at a time. If the flow direction does not result in flow returning back

to the original cell, the flow direction is accepted. The iterative process continues in this

way until all cells have defined flow directions.

(3) Flow Accumulation and Rill Network Delineation

This procedure creates the flow accumulation relying on the flow

direction assigned to each cell. The flow accumulation for cell x represents the total

number of cells that have upstream flow paths passing through it. It is illustrated in

Figure 3.4 with a simple example. Cells located in lower elevations will have higher

accumulation values.

Rill networks are identified and enumerated based on the flow

accumulation values and on a defined threshold value. The threshold value is simply a

flow a,ccumulation threshold value. If the cells have the flow accumulation value equal

to or greater than the threshold value, these cells are identified as network cells. As the

threshold value increases, the density of the rill network decreases. For example, at a

threshold value of 2, five cells are identified as network cells as illustrated in Figure 3.4d.
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If the threshold value changes to 4 in this same example. three cells will be identified as

network cells (see Figure 3.4c).

When the network has been defined. the rills are numbered left to right

looking uphill. Further. these rills are divided at junction nodes into a series of branches

(Storm. 1991). At each junction, there are eight possible flow direction. The branch

numbering is performed clockwise beginning with the flow direction at the ffl:30" clock

position (see Figure 3.5a). The initial junction for each rill is found depending on the

maximum flow accumulation. Subsequent to the enumeration of the upper most junction.

the previous junction is evaluat'ed. At this junction. a new unenumerated path with a

maximum flow accumulation gradient is established. This process continues until all

branches are numbered for each rin. Then. a stream ordering routine is utilized to

renumber the branches for each rill, as illustrated in Figure 3.5. AU first-order streams

are enumerated in sequence. fonowed by the remaining stream orders. This ordering

system is implemented to facilitate the processing of all upstream branches before any

downstream branch.

(4) Watershed and Subwatershed Delineation

This procedure identifies the watersheds and subwatersheds and

delineates their boundaries. The number of watersheds is dependent on the number of

independent rills. Each watershed has only one outlet or start cell. which is the rill outlet.

The watershed is composed of one or more subwatersheds. each of which is associated

with a branch of the rill.
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Subwatersheds are delineated using the following steps. First. cell flow

directions and a subwatershed starter data set are used to locate the subwatershed start

cells. These are given a subwatershed n.umber (Figure 3At) according to the same

numbering order as the one used to enumerate branches. Then the subwatershed number

for each cell is compared with its neighboring cells to identify the boundary cells.

Finally. the cells are enumerated to reflect the associated watershed and boundary cells.

Statistic Analysis

A Storm Water Management Program (SWAMP II) (Haan, 1994) was

employed to an.alyze link length distributions. Exceedance probabilities were estimated

using the standard plotting position method and the theoretical values for four probability

density functions: Normal. Log-Normal, Extreme Value Type I. and Log-Pearson Type

m. Aft,er this process a Chi-square goodness of fit test (Haan, 1977) was performed to

judge whether or not a particular distribution fit the link length data. The Chi-square

goodness of fit test is a comparison between the actual number of observations and the

expected number of observations that fall in class intervals. The test statistic is given as:

t

X; = L (0, - E,)2/E,
i-I

(3.1)

where k is the number of class int'erval, 0i is the observed number of observation in the

class interval. and E i is the expected number of observations in the class interval. If the

x c
2 is less than x2 ,_u. k-p-l , the particular distribution hypothesis is accepted.
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A linear regression method was used to analyze the relationship between

sediment yield and topographic parameters. or between two topographic parameters. The

linear regression model is given as:

Y = a + bX + e (3.2)

where Y is the dependent variabl,e. X is the independent variable, a is the Y intercept. b

is the slope and E is an error term.

To test whether or not a relationship can be appropriately described by a

linear function with parameters a and b. a Student-T test is used at the 95% confidence

level. Estimated parameters a and b are t,ested assuming a = 0 and b = O.



CHAPTER IV

RILL NETWORKS AND TOPOGRAPlllC PARAMETERS

In order to gen.erate the rill networks for the University of Kentucky

(UK) and Oklahoma State University (OSU) erosion plots, th.e DTM model was used with

their elevation data. Based on these results, topographic parameters were calculated.

Generating UK Rill Networks

The DTM required a uniform grid of el,evations. However, the UK

surface profile data was tak,en at 0.61 m ( 2.0 feet) and 0.013 m ( 0.5 in ) upslope and

cross-slope intervals, respectively. In order to balanc,e accuracy and computer

requirements, an interpolated grid 0.025 m ( 1.0 in ) square was used to represent the

micro-re~ief. The original surface profile data were a 353 by 37 elevation matrix. In

order to provide a 0.025 m square grid, every other cross-slope elevation was eliminated,

and missing up,slope elevation were interpolated. Interpolated elevations were calculated

using a linear interpolation scheme with a random component given as:

40
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(4.1)

where z is an interpolated elevation (mm), Zl is a upslope elevation (mm), y is an

interpolated upslope distance (mm), Yl is an upslope distance' where surface profile

measurements were taken, the Zoo and Yo are down-slope elevation or distance, respectively,

RR is a surface roughness parameter (mm) and & is a normally distributed random deviate

with a mean of zero and variance of one.

After the interpolated elevations were calculated, boundary elevations

of 9999 mm were defined along the upslope boundary and along each of the side

boundaries to define the watershed boundary. The final elevation grid file consisted of

159,759 elevations in a 183 by 873 matrix covering 101 m2
• The DTM's threshold values

for UK erosion plots ranged from 750 to 2500 cells. This threshold value was chosen for

its closeness to approximating the observ,ed flow network (Lewis, 1990). Table 4.1 gives

the UK threshold values £or each run code. The information generated by the DTM were

imported in the GIS GRASS for graphical display. The Figures 4.1 to 4.10 show the

predicted riB networks for the UK erosion plots. A summary of the all network data is

given in Appendix A.

Generating OSU Rill Networks

The soil surface elevation values for the OSU eroSIOn table were



Table 4.1: DTM Threshold Values for the University of Kentucky Erosion Study
(Lewis, 1990)

,
Run Code Cutoff Number of Rills

SlR2 2500 7

S2R2 2000 8

S3R2 2500 8

! 8182 15,00 9I

:

8282 1500 7

S382 , 2000 8;

T1R2 1500 7

T2R2 1000 9 I

T3R2 1000 12

T1V2 750 12

T2V2 750 10

T3V2 1000 12
I

42



Figure 4.1: 81 R2 Network
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Figure 4.2: 83R2 Network
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Figure 4.3: 8182 Network Figure 4.4: 8282 Network



Figure 4.5: 8382 Network
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Figure 4.6: T1 R2 Network



46

V i
( ! I

f t\ j )

11)\ ~ I (

1\/ \ \ \1

f / ( ]) I j
\ ! )

I' ! \ J '\

1f j \J . I

\} \ \ 1 >
~f ~ I' 1 I' ,)
. I .

Figure 4.7: T2R2 Network. Fgure 4.8: T1 V2 Network



~..

47

I 1 J I

) ~J J Iil \ I II \
Jjl \{ \ ( !

( I. \!

! i \jl(!
~ \ ) J 1

~ I 11 ~ 1(, f ( \1\1(

t ,lJ({)) 1.
t~ ) 1~ J )

l j I ~

}\i > il

n I \~ \ 1

Figure 4.9: T2V2 Network



48

measured using an image processing system. This system was used to gather X-Y-Z data

points after the rainfall event. A square grid of 10 mm in the across-slope direction and

10 mm in :the down-slope direction was used.

For successes delineation of the drainage networks and watershed

boundary, the elevation Z value was extracted from a X,y,z file, boundary elevations of

9999 mm were defined along the upslope boundary and along each of side boundaries,

and an elevation of zero was defined along the bottom boundary. FinaJly~ the elevation

file consisted of 215,600 el,evations ina 980 by 220 matrix and covered 23.52 m2
• Data

reduction programs are given in Appendix B.

Defining the rill networks were conducted for several threshold network

densities. The DlM generated rill networks were compared with observed rill networks

which were hand drawn. The selected threshold values ranged from 7000 to 8500ceUs,

and are given in Table 4.2.

Table 4.2: DTM Threshold Values for the OSU Erosion Study

ID Code Cutoff Number of Rills
I

AAA 7500 2

ABA 8500 3

ACA 7000 2

Due to missing elevation data for ADA and BAA, predicted rill networks
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Figure 4.11: AAA Rill Network Figure 4.12: ABA RW Network



Figure 4.13: ACA Rill Network
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were not obtained. The predicted rill networks for the OSU data are displayed in Figures

4.11 to 4.13. The DTM generat,ed rill networks compare favorably with the observation

rill networks. A summary of the DTM rill network data is given in Appendix A.

A comparison between the UK and OSU rill networks show considerable

differences in rill density. ]n addition, the UK rill networks were relatively straight with

minimal -meandering. In comparison, the OSU networks had very low rill density and

showed a highly meandering pattern. The reasons for the differences may be a) the

surface profiles of the UK data contained interpolated elevation data, b) the slope of the

UK erosion plots was much higher then the OSU erosion table, and c) the soil type,

rainfall duration and rainfall intensities were different.

Topological Parameters

Four topologic parameters were chosen for this study: 1) link length

including exterior link and interior link length, 2) link drainage area, 3) rill density, 4)

random roughness. The parameters were chosen because of their potential influence on

the rill erosion process.

1. Link Length

The specialized topological terms used in this paper have been defined by

Shreve (1966, 1967). The points farthest upslope are termed sources. The point farthest

downslope is called the outlet. The point of confluence of two channel is a junction (or
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Figure 4.14: Definition of Topologic Terms
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fork), and the term link represents a channel segment. An interior link length is a channel

segment between two junctions or between the outlet and the first upslope junction. An

exterior link length is a channel segment between a source and the first downslope

junction. Tbese concepts are illustrated in Figure 4.14. The magnitude ofa link is equal

to the number of sources upslope from it. Therefore, all exterior links have a number of

sources and interior links have a number of sources equal to sum of their upslope

adjoining links. Assuming a junction can only be combined by two links, the following

definitions can be given as (Wilson, 1993):

f=n-l

v = n - 1f

v = 'Ve + v, = 2n - 1

(4.2)

(4.3)

(4.4)

(4.5)

where n is the number of sources, f is the number of junction, Ve is the number of exterior

links, Vi is the number of interior links, v is the total number of interior and exterior links.

Given a micro-relief, a D1M identifies preferential flow paths and

defines the rill networks. The rill networks ofUK. and OSU data were obtained using the

DTM as described in Chapter IV (see Figure 4.1 to 4.13). Also the rill number, total

branch number, each branch cells number and interrill cells number were determined (see



Table 4.3: Link Length Statistics for the UK. Data

I

ill Exterior Link Interior Link Total Link Length
Code Length (m) Length (m) (m)

Number Mean Number Mean Number Mean

SlRl IS 5.05 11 3.80 29 4.57

S2R2 25 4.55 17 3.17 42 4.00

S3Rl 23 ! 3.63, 15 3.31 38 3.51
I

S1S2
I

27 ! 4.00 18 3.92 45 3.96

S2S2 25 I 4.36 18 3.56 43 4.03

S3S2 21 3.71 13 5.30 34 4.32

TIRl 28 3.10 21 4.14 49 3.55

T2R2 41 2.30 32 3.05 73 2.63

TJR2 48 2.77 36 2.21 84 2.53

TIV2 47 2.90 35 2.81 82 2.85

T2V2 49 2.40 39 2.52 88 2.45

T3V2 37 3.26 25 3.98 62 3.55

Table 4.4: Link Length Statistics for the OSU Data

In Exterior Link Interior Link Total Link Length
Code Length (m) Length (m) (m)

Number Mean Number Mean Number Mean

AAA 8 1.50 6 I 1.86 14 1.65

ABA 5 2.90 2 3.33 7 3.02

ACA 6 1.33 4 2.71 10 1.88

54
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Appendix A).

Flow path link length is considered to be the fundamental measure of

length in this study. The total links for each rill network were separated iato exterior and

interior links. If there was a single link in one rill, the single link was defined as an

exterior link. The total, exterior, and interior link lengths were obtained using the DIM's

output (see Appendix A). Tables 4.3 and 4.4 summarize the mean lengths obtained using

the UK and OSU erosion plot data.

A dimensionless link length can be given as:

(4.6)

where L. is a dimensionless link length, L is the link length, Lc is a characteristic length

scale. Lc can be estimated as (Wilson, 1993):

(4.7)

where Ax and l1y are length of the grid sides. For the UK erosion plots I1x is 25.4 mm,

l1y is 25.4 rom, and thus Lc is 35.9 mm.

2. Link Drainage Area

The link drainage area parameter is an important characteristic of the rill

network. It impacts the potential erosion and sediment yield. The mean link drainage

area is calculated based on the number of interrill cells predicted the DTM (see Appendix

A). The mean link drainage area for the UK. and OSU data are shown in Tables 4.5 and
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Table 4.5: Link Drainage Area Statistics for the UK Data

ID Exterior Link Area Interior Link Area Total Link Area
Code (rn2

) (m2
) (m2

)

Number Mean Number Mean Number Mean

81Rl 18 4.21 11 1.76 29 3.28

S2R2 25 I 3.01 17 1.26 42 2.30

83Rl 23 3.19 15 lAO 38 2048

8182 27 2.55 18 1.59 45
I

2.17
I

I

8282 25 2.78 I 18 1.52 I 43 2.25

S382 I 21 3.03 13 2.50 34 I 2.83

TIR2 I 28 2.21 21 1.64 49 1.97
I

T2R2 41 I 1.49 32 1.17 73 1.35
[

T3R2 48 1.52 36 0.70 [ 84 1.17

TIV2 , 47 1.38 35 0.97 82 1.21

T2V2 49 1.28 39 0.92 88 1.12

T3V2 37 1.76 25 1.37 62 1.61

Tabl,e 4.6: Link Drainage Area 8tat.stics for the a8U Data

ill Exterior Link Area Interior Link Area Total Link Area
Code (m2

)
I (m2

) (m2
)

Number Mean Number Mean Number Mean

AAA 8 1.51 6 0.93 14 1.26

ABA 5 1.97 2 1.18 7 1.74

ACA 6 2.05 : 4 1.82 10 1.96

~--- --------------------
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4.6.

The link drainage area can be written i.n dimensionless form as:

a. (4.8)

where a. is a dimensionless link area, a is the link area (m2
) and ac is a characteristic area

scale (m2
). a. and ~. are dimensionless coefficients, and L. is the dimensionless length

given by Equation 4.6. ac is defined as (Wilson, 1993):

(4.9)

For the UK data JU{ = Ay = 0.025 m, and thus ac is 0.000625 01
2

•

3. Rill Density

In this study rill density is defined by length of rills per Wlit area. The

equation is given as:

D L
A

(4.10)

where D is rill density (m/m2
), L is total rill length (m), and A is the rill network area

(ro2
). Rill density for the UK data is shown in Table 4.7. Each UK. plot area is 101 m2

(4.57 m by 22.1 m). The OSU erosion table area is 23.5 m2 (9.8 m by 2.4 m). Table 4.8

shows the rill density for the OSU data.



Table 4.7: RiU Density for the UK Data

ill Code I Total Length (m) i
Rill Density (m/m2

)'I
1

SIRl 133 1.31

S2R2 168 1.66

S3R2 133 1.32

SI82 178 1.77

S2S2 173 1.71

S382 147 1.45

TIR2 174 1.72

T2R2 192 1.90

T3R2 212 2.10

TIV2 234 2.31

T2V2 216 2.14

T3V2 220
I

2.18i

Table 4.8: RiB Density for the OSU Data

ID Code Total Length (m) Rill Density (m/m2
)

AAA 23.1 0.98

ABA 21.2 0.90

ACA 18.8 0.80
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4. Random Roughness

The physical condition of the surface soil is altered in many ways by

human induced and natural forces. Tillage changes the surface roughness. In addition.

climatic can rapidly alter surface characteristics.

There are two typ,es of roughness. The first type, oriented roughness.

is produced by tillage equipment and is characterized by furrows and ridges that nm

parallel to the direction of tillage. The second type of surface roughness is random

roughness, which is unrelated to the direction of tillage and is characterized by the

irregular occurrence of peaks and depressions.

In this study only random roughness is considered and is defined as the

standard deviation of soil surface heights. All random roughness values were estimated

using th,e initial surface elevation data. Random roughness was estimated using elevation

deviations from a series of lines regressed through each cross-slope transect (Storm,

1991). Th,e equation is given as:

£=mx+b (4.11)

where t is the average cross-slope elevation (mm), x is the cross-slope distance (mm),

and hand m are regression coefficients. The elevation deviates about the line, AZ in mm,

are defined by:

liZ = z· - t = z, - mx. + 6
• I

(4.12)

where Zj is an observed elevation, and m and b are parameter estimates for a

particular cross-section. Random roughness. RR in mm. was calculated from:
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(4.13)

or.

(4.14)

where a. is the number downslope cross-sections. and J3 is the number of cross-slope

position.

A portion of the original elevation data for the AAB and ABB

experiments had some obvious errors. For example, there were sudden changes in the

elevations from 33.5 mm to 334.2 mm. The errors in the AAB data were removed by

deleting rows 192 to 221. However, for the ABB data a program was used to adjust the

errors by multiplying the high value by 0.1. This method for the ABB data had to be

adopted because the errors were dispersed in a different part of the data. It was assumed

that these alterations did not significantly alter the analysis.

Based on above method and elevation data, a C language program

(Appendix B) was made to calculate the random roughness. The results of UK data are

given in Table 4.9. Average random roughness for the smooth and rough treatments were

13 and 18 mm for the subsoil plots, and 13 and 17 mm for the topsoil plots, respectively.

The random roughness for the OSU erosion plots are given at Table 4.10. with an .average

random roughness of 10 mm.



Table 4.9: Random Roughness for the UK. Data

ill Code Random
I Roughness (mm)

SlR2 17

S2R2 19

S3R2 17

SlS2 13

S2S2 I 16

S3S2 12

T1R2 10

T2R2 10

T3R2 17

TIV2 17
I

T2V2 15 [

T3V2 17

Table 4.10: Random Roughness for the OSU Data

ill Code Random
Roughness (mm)

AAA 9.5

ABA 8.2

ACA 12.4
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CHAPTER V

RESULTS AND DISCUSSION

This chapter describes the results of the topographic parameter estimates,

and the analysis of topographic parameters and sediment yield relationships. First,

probability density functions were evaluated for exterior link length, interior link length

and total link length for the UK rill networks. Second, the relationship between link

length and link drainage area was discussed for the UK rill networks. Finally a statistic

analysis was performed to relate sediment yield and topographic parameters for link

length, random roughness, and rill density using the UK and OSU rill networks.

Link Length Distribution Analysis

Twelve of the DTM predicted rill networks from the UK data were used

to estimate the probability density functions for link lengths. Link lengths were analyzed

by separating interior, exterior, and total links for each rill network. Exceerlance

probabilities were computed using standard plotting position methods and parameters for

the Normal, Log-Normal, Extreme Value Type I, and Log-Pearson Type ill probability

density functions were approximated (IIaan, 1977). The SWAMP program was used in
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this analysis. A summary of the link length distributions is given in Table 5.1 and

distribution plots are given in Appendix C. The distribution selected was based on a

visual comparison.

(I) Total Link Length. Total link length distributions for the twelve rin

networks from the UK data, nine of the rill networks fit a Log-Nonnal distributson, two

of tbem fit a Log-Pearson Type m distribution. and one rill network fits an Extreme

Value Type 1. The Log-Normal distribution fit 75% of the 12 rill networks for total link

length.

(2) Exterior Link Length. Exterior link length distributions for the UK data,

ten of the rin networks fit a Log-Normal, one of the rill networks fits Log-Pearson Type

III, and one of the rill networks fit a Normal distribution. The Log-Normal distribution

fit 83% of the 12 rill networks for exterior link length.

(3) Interior Link Length. The probability density function of interior hnk

lengths is similar to total and exterior link length distributions. ten of the rin networks

fit a Log-Normal distribution, one of them is fit a Log-Pearson Type III distribution, and

only one fit a Normal distribution. The Log-Normal. distribution fit 83% of the 12 rill

networks for interior hnk length.

From the link length distribution plots, most of link lengths visually fit a

Log-Normal distribution and a few fit the Log-Pearson Type ill distribution. In order to

statistically judge the fit of the distributions, a Chi-Square goodness of fit test is used.

As described in the previous Chapter, the test statistic is calculated based on the

relationship:
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Table S.l: Link Length. Probability Density Function Summary for the UK. Data

ID Name Exterior Interior Total
I

SlR2 LN··
,

LN·· LN·"

82R2 LN··· LNu LN"''''

S3R2 LN·· NR·· BV···

8182
,

LN"'·
I LNu LN·I I

i
I

82S2 LN"'''' LN·· LN"
I

I

8382 LN· LN" LN"''''·

TIR2 LN"'''' LN·· LN·

T2R2 LN··
!

LN·· LN·...

i I

!
T3R2 LN....• I LN.... LN... •

TIV2 LN·'" LN·· LN"'·

T2V2 NR'" Lp·... LP"

T3V2 LP'" LN"'''' LP"'4<

I

Note:
a. NR is Normal distribution;
b. LN is Log-Normal distribution;
c.. LP is Log Pearson Type m distribution;
d. EV is Extreme Value Type I distribution;
e. Using Chi-square test

**'" Significant at a = 0.05.
** Significant at ex. = 0.1.
... Not significant at a = 0.1.
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(5.1)

(5.2)

the hypothesis is accepted. The Log-normal hypothesis was accepted by 72% of link

lengths at the a. = 0.1 level including total, exterior, and interior link lengths. However,

all the distributions were acc1epted based on a visual comparison. The results are shown

in Table 5.1. An example of test process for S2S2 data is shown in Table 5.2. For this

test link lengths are divided into 10 class intervals having equal expected numbers of

observations in each interval. 'In this case when a. level is 0.1, )(20 .90• 7 is 12.00, and x2

is 9.79 which is less than X20.90.7" Therefore, the hypothesis is accepted.

Schumm (1956), Maxwell (1960), Smart (1968), Shreve (1969) and

Abrahams (1982) found that the stream link lengths followed a Log-Normal distribution

in river basins. Also Wilson (1993) found that link lengths were represented by the Log-

Normal distribution in the OSU erosion table. The present study compares well with past

research, and it is especially close to the OSU link lengths distribution characteristics

studied by Wilson (1993).

Link Length and Link Drainage Area

The UK rill networks were used to evaluate the relationship between
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Table 5.2: Chi-Square Test Based on Equal Expected Number Per Class Interval for
the UK S2S2 data

Class Boundaries Observed Expected (O-E)2/E I

Number
,

Number Number
Lower Upper

I
!

1 Minus Infinite 1.04
!

8 4.3 3.18
I I

2 1.04 1.49 5 4.3
I

0.11 I
i

I

3 1.49 1.92 3 4.3 0.39

4 1.92 2.38 2 4.3 1.23

5 2.38 2.92 4 4.3 0.02
I

6 2.92 3.58 1 4.3 2.53
I

7 3.58 4.44 I 3 4.3 0.39
!

8 ! 4.44 $.73 7 4.3 1.69
I

9 5.73 8.16 5 4.3 0.11

10 8.16 Plus Infinite 5 4.3 0.11

Total 43 43 9.79

Note:
a. 0 is observed number;
b. E is expected number.
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link length and link drainage area. Summarizing aU link lengths and link drainage areas

for the twelve rill networks result in 389 exterior link lengths and correlative exterior link

drainage areas, 280 interior link lengths and link drainage areas, and 669 total link lengths

and link drainage areas.

From past research, it was found that the relationship of link drainage

area and link length for river basins is a power function (Hack, 1957; Gray, 1961;

Shr,eve, 1967). Wilson (1993), using earlier OSU erosion table data, found that the

relationship of link drainage area and link length are represented by the power and linear

functions for interior and exterior link length, respectively. Therefore, the first analysis

was performed using a power function between link drainage area and link length. A

general formulation is given in dimensionless form as:

(5.3)

A regression analysis of natural logarithm transformed data was used to determine the

values of dimensionless coefficients a and p. Table 5.3 gives the results of regression

analysis and the dimensionless coefficients for exterior, interior, and total link length.

Figure 5.1, 5.2 and 5.3 show link drainage area and link length plots. The results in

Table 5.3 show that the power coefficients, (3, are 0.63, 0.43 and 1.1 g for total, exterior,

and interior li.nks, respectively. J3's are less than two, which is similar for river basins

(Hack, 1957; Gray, 1961; Shreve, 1967). For the interior link, Pis very close to 1.23,

which was obtained using earlier OSU erosion table data by Wilson (1993).

The above three equations were tested using a Student-T test. The
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Table 5.3: Regression Results of Link Length and Link Drainage Area for Natural
Logarithm Transformed UK Data

Link Type ex p R2 Standard Significant at
Error 95%

Confidence !

Level
!

Total Link ! 147 0.63 0.48 0.73 Yes
,

,

Exterior Link
! ,
I 469 0.43 0.64 0.40 Yes

Interior Link 8.7 1.18 0.88 0.42 Yes

Table 5.4: Regression Results for Link Length and Link Drainage Area for the UK
Data

Link Type Number Intercept, b ~ Slope, m R2 Standard Significant
Error at 95%

Confidence
Level,

,

Total Link 669 526 24 0.73 1188 Yes

Exterior Link 389 1067 24 0.78 1127 Yes

Interior Link 280 -221 24 0.82 798 Yes

j'
I
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results show that above three equarions can explain a significant amount of the variation

in the observed data at the 95% confidence level. The residual plots are given in

Appendix D. From these plots, it can be seen that the interior link length residllal plot

show a random distribution indicating the normality assumption of the residuals is correct.

Howev,er, exterior link length residuals are not random distributed and have a trend

indicating an incorrect model. The total link length residuals show a random distribution.

The variance of the residuals is not constant.

Because the J3 coefficient is relatively close to 1.0, a second analysis

was performed using a linear regression. A general linear equation is given as following:

Q. = mL. + b (5.4)

The results of linear regression analysis are given in Table 5.4. Link drainage area and

link length plots are showed in Figures 5.1, 5.2, and 5.3. The three linear equations were

tested using the Student-T Test. The results show that there are significant linear

relationships at a 95% confidence level. The residual plots are given in Appendix D.

These residual plots are randomly distributed for total, exterior, and interior link length.

It should be noted, however, that the exterior and interior link length do not have a

constant residual variance indicating an incorrect model.

Figures 5.1, 5.2 and 5.3 show that the relationship is represented well

by power and linear function for interior link, and better represented by linear function

for the exterior and total link. These results were similar to past research for river basins

and are especially close to the smaU-scale drainage network characteristics studied by

Wilson (1993). Wilson (1993) studied link length characteristics using earlier OSU
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erosion table data analyzed by Ogunlela et al. (1989). Approximately one minion x-y-z

data points were gathered using the image-processing instrumentation system. The soil

profile information was interpolated to a rectangular grid of 102 x 13 mm. Flow paths

was determine~ using an algorithm developed by Couger ,et aI. (1992).

Although the present study used a DTM and different elevation data

from that of Wilson (1993), link length. characteristics were found to be similar. A

comparison of the relationship between the present study and Wilson (1993) for link

length and link drainage area show significant similarity for the exterior link lengths using

linear regression. For the interior link length the relationship obtained by Wilson was:

In the present study, however, the relationship is found to be

8 7 L1.I8
a.t =. •

(5.5)

(5.6)

using a power function for the interior link length. Comparing these equations for interior

link, it is evident that the relationship and power coefficient 13 are similar.

Topographic Parameters and Sediment Yield

In this section, reJationships between link length, random roughness and

rill density with sediment yield and pseudo steady-state sediment load were analyzed
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using linear regression methods for the UK and OSU data The regression analysis results

were tested using a Student-T test with a 95% confidence level.

(1) Topographic Parameters and Sediment Yield Relationships for th.e UK Data

(a) Topographic Parameters and Pseudo Steady-State Sediment Load

Table 5.5 shows the results of the linear regression analysis between

link length. rill density, random roughness including subsoil and topsoil random roughness

and pseudo steady state sediment load. The plots are displayed in Figures 5.5, 5.7, 5.9,

5.11, and 5.13. Using the Student-T test above relationships, the test results show that

only the link length regression is significant to explain the variation in pseudo steady-state

sediment load at the 95% confidence leveL

(b) Topographic Parameters and Sediment Yield

A linear regression method also was used to analyze the relationship

between link length, rill density, random roughness including subsoil and topsoil

roughness and sediment yield. Table 5.6 shows the results of the linear regression

analysis. Figures 5.4,. 5.6, 5.8, 5.10, and 5.12 give the regression plots. Using the

Student-T test, the results show that there is a significant relationship between subsoil

surface random roughness and sediment yield at tbe 95% confidence level.
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Table 5.5: Regression Results For Topographic Parameters and Pseudo Steady
State Sediment Load for UK Data

Parameter Intercept, b Slope~ m R2 Standard Error Significant
(kg/min) (kg/min) at 95%

Confidence

I
Level

Link Length -0.88 1.53 0.50 1.27 Yes
i

Rill Density I 8.28 -2.. 10 0.11 I 1.53 No

I

Random 2.59 0.. 13 0.05 1.65 No
Roughness

Subsoil Random 3.34
I

0.14 0.11 1.28 No
Roughness I

Topsoil Random 3.40 0.01 : 0.00 1.53 No
Roughness

Table 5.6: Regression Results for Topographic Parameters and Sediment Yield for the
UK Data

Parameter Intercept, b Slope, m R2 Standard Significant at
(kg)

,

Error 95%
(kg) Confidence

,

Level
i

Link Length 261 24 0.03 99.2 No
I

I

;

Rill Density 274 40 0.02 99.9 No

Random 131 14 0.20 90.3 No
Roughness

,

i

Subsoil Random 34 20 0.62 49.0 Yes
Roughness :

Topsoil Random 185 I 11 0.09 ! 131.2 NoI

Roughness :1
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(2) Topogr.aphic Parameters and Sediment Yield for the OSU Data

Table 5.7 lists topographic parameters for the OSU data. Because of the

limited OSU data set. detailed statistics were not applied. Link }ength~ rill density, and

random roughness were compared graphically with sediment yield. These plots are shown

in Figures 5.14 and 5.15. The plots indicate that rill density may be positively correlated

with sediment yield. but the link length and random roughness have no clear tenden.cy

with sediment yield.

Table 5.7: Topographic Parameters for the OSU Data

ID Code Random Rill Density Mean Link
Roughness (m/m2

) Length
(mm) (m)

AAA 9.5 0.98 1.65

I
,

ABA 8.2 0.90 3.02

ACA 12.4 0.80 1.88
I
[

For the UK data, it was also found that there are significant linear

relationships between pseudo steady-state sediment load and total link length, and subsoil

surface random roughness and sediment yield. The remaining parameters have no linear

relationships with sediment yield or pseudo steady state sediment load. However, Mosley

(1974) found that sediment yield from 112 rill systems were significant affected by slope
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shape, and were positively related 10 slope angie, slope length, and rin density per unit

area. In the present study. rill density was not positively related with sediment yield.

This reasons may be due in part to not considering different slopes in the analysis. From

these results. it appears that a) the remaining parameters do not have a simple linear

relationship with sediment yield or pseudo steady state sediment yield. b) the data

variance is too great. c) the variables are not related. d) the range of data should he

incr,eased. More data are needed to evaluate these relationships further.



CHAPTER VI

SUM:MARY AND CONCLUSIONS

Summary

In this study, statistical characteristics of topographic parameters and their

relationships with sediment yield were analyzed. A Digital Terrain Model (DTM) was

used to extract topographic parameters from gridded digital elevation data and to generate

rill networks. Data from the University of Kentucky erosion plots and the Oklahoma

State University erosion table study were used to generate rin networks using a DTM

model. First, the original gridded elevation data was transferred into a depressionless

digital elevation model (DEM); Second, the processed data set was used to generate files

defining the flow direction and flow accumulation values for each cell; Third, rill

networks were delineated and watershed boundaries were outlined based on these two

files, and the parameters of cells and watersheds characteristics were calculated. Finally,

the information generated by the DTM were imported into the GRASS GIS for graphical

display.

Four topological parameter, link len,gth including total, exterior and interior

link length, link drainage area, rill density and random roughness were computed for this

83
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study. For the University of Kentucky of link length statistical analysis, a Storm Water

Management Program (SWAMP) was employed to estimate link length probability density

functions. Normal, Log Normal, Extreme Value Type I, and Log Pearson Type ill

probability density functions were considered. Link length, including total, exterior, and

interior link length, fit the Log-Normal distribution. A Chi-square goodness of test was

used to judge the fit for this distribution. For the relationship of link length and link

drainage area in the UK rill networks, the Student-T test shown that there are significant

relationship with the 95% confidence level for all cases (Total, Exterior and Interior) wi.th

both power and linear functions. Linear regression equations were found to predict link

drainage area as a function of exterior and total link length. A power equation was

estimated to predict link drainage area for interior link lengths.

In order to investigate the possible relationships of sediment yield and

topographic parameters, a linear regression was performed for three topographic

parameters (mean total link length, random roughness and rill density) with pseudo steady

state sediment load and sediment yield for the UK rill networks. The analysis results

show that only link length is significant to explain the variation in pseudo steady sate

sediment load, and random roughness for subsoil sm.-face plots was significant to represent

the variation in sediment yield. Other parameters have no significant relationship with

sediment yield or pseudo steady state sediment yield. The OSU rill networks visually

show a potential relationship for rill density and sediment yield, but link length and

random roughness have no clear tendency with sediment yield.
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Conclusions

The {onowing points can be concluded from this research:

1. Most total link length, exterior link length, and interior link length for the UK rin

networks fit a Log-Normal probability density function, which agree with previous

research both rivers and small-scale drainage basins.

2. For the UK rill networks, link length and pseudo steady state sediment load are linearly

related, and random roughness for the subsoil plots are inearly related with sediment

yield. Rill density and random roughness, with the exception of the subsoil plots, have

no significant relationship with sediment yield and pseudo steady state sediment yield.

3. For the UK data, total and exterior Link length and link drainage area are linearly

related, and interior link length and link drainage area can be described by a power

:£unction. The results are similar to previous river basins research and especially close to

previous sman-scale drainage basin research.

Recommendation for Further Research

This research represents a preliminary study for the relationship of sediment

yield and topographic parameters. There is still more work to be done. The following

topics are suggested as deserving of further investigation:

1. Relationships between sediment yield and topographic parameters should be tested

using more erosion and sediment data.
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2. More complex interactions between topographic parameters and sediment yield and

pseudo steady sate sediment load need to be evaluated. In addition. other topographic

parameters may need to be investigated.



-

BmLIOGRAPHY

Abrahams, A. D., 1972. The Significance of Maximum Extension of Drainage
Networks for the Frequency Distribution of Interior Link Lengths. Journal of Geology
80:730-736.

Abrahams, A. D., 1984. Channel Networks: A Geomorphological Perspective.
Water Resources Research 20(2):161-188.

Allmaras, R. R, R E. Burwell, W. E. Larson, R F. Holt, and W. W. Nelson, 1966.
Total Porosity and Random Roughness of the Interrow Zone as Influenced by Tillage.
USDA Cons. Rept. No.7.

Abrahams, A. D. and A.J. Miner, 1982., The Mixed Gamma Model for Channel Link
Lengths. Water Resources Research 18,: 1126-1136.

Burrough, P. A., 1986. Principles of Geographic Information Systems for Land
Resources Assessment. Carendon Press, Oxford.

Burwell, R.E., RR. Allmaras, and M. Amemiya, 1963. A Description of Methods in
the Com Belt Branch for Evaluating Tillage Practices. ARS Res. Rept. No.363.

Burwell, RE., and W.E. Larson, 1969. In Filtration as Influenced by Tillage-Induced
Roughness and Pors Space. Soil Sci. Soc. Amer. Proc. 33(3):449-452.

Clark II, E. R., 1. Aa.. Hav,erkamp, and W. Chapman, 1985. Eroding Soil the Off­
Farm Impact. The Conservation Foundation. Washington D.C.

Couger, G., B. N. Wilson, A. Oguniela, and C. T. Rice, 1989. Rill Identification From
Point Elevation Data. Paper No. 892159, ASAE Summer Meeting, Quebec, Canada.

Couger, G., B. N. Wilson, A. Ogunlela, and C. T. Rice, 1992. Determination of
Drainage Networks from Plot-Size and Basin-Size Areas. Applied Engineering in
Agriculture 8(2): 185-189.

Currence , H .. D., and W. G. Lovely, 1971. The Analysis of Soil Surface Roughness.
Transactions of the ASAE 14:69-71.

&7



88

Dacy, M F., and W. C. Krumbein, 1976. Three Growth Models for Stream Channel
Networks. Journal of Geology 84:153-163.

Department of Interior-U.S. Geologic Survey, 1987. Digital Elevation Models: nata
Users Guide. National Mapping Program, Technical Instructions, Data Users Guide 5,
R.eston, VA.

Douglas, D. H., 1986. Experiments to Locate Ridges and Channels to Create a New
Type of Elevation ModeL Cartographic 23:29-61.

Ellison, w.n., and O.T. Ellison, 1947. Soil erosion studies. IV. Soil detachment by
surface flow. Agricultural Engineering 28(9):402-408.

Foster, G. R, and L. J. Lane., 1987. User Requirements: USDA - Water Erosion
Prediction Project (WEPP). National Soil Erosion Research Laboratory, West
Lafayette, IN.

Gray, D. M., 1961. Interrelationships of Watershed Characteristics. 1. Geophys. Res.
66:1215-1223.

Haan, C. T., B. 1. Barfield, and 1. C. Hayes, 1994. Design Hydrology and
Sedimentology for Small Catchments. Academic Press Inc. California.

Haan, C. T., 1994. SWAM n Program Documentation.

Haan, C. T., ] 977. Statistical Methods in Hydrology. Ames: Iowa State University
Press.

Hack, I T., 1957. Studies of Longitudinal Stream Profiles in Virginia and Maryland.
U.S. Geol. SUTY. Profess. Paper 2941-B.

Hirschi, M.e., and B.T Barfield, 1988. KYERMO-A physically based research
erosion model. II. Model. sensitivity analysis and testing. Transactions of ASAE
31(3):814-820.

Hirschi, M. C., and B. J Barfield, 1988. KYERMO-A Physically Based R.esearch
Erosion model. n. Model Sensitivity Analysis and Testing. Transactions of ASAE
31(3):814-820.

Horton, R. E., 1945. Erosional Development of Streams and Their Drainage Basins;
Hydrophysical Approach to Quantitative Morphology. Bulletin of the Geological
Society of America 56:275-370.

Jenson, S. K., and 1. O. Domingue, 1988. Extracting Topographic Structure from



89

Digital Elevation Data for Geographic Information System Analysis. Pbotogrammetric
Engineering and Remote Sensing 54(11): 1593-1600.

Kenney, B.C., 1982. Beware of spurious self-correlations!. Water Resources Research
18:1041-1048.

Lake, E. B.., and A. M. Sbady, 1993. Erosion Reaches Crisis Proportions.
Agricultural Engineering. 74(6):8-13.

Lane, L. J.,and G. R. Foster, 1980. Concentrated Flow Relationships. IN CREAMS,
USDA Conservation Res,earch Report No. 26, pp.474-485.

Lewis, S. M., D. E. Storm, B. 1. Barfield, and L. E. Ormsbee, 1994a. PRORlL-AN
Erosion Model Using Probability Distributions For Rill Flow and Density. 1. Model
Development. Transaction of the ASAE 37(1): 115-123.

Lewis, S. M., D. E. Storm, B. J. Barfield, and L. E. Ormsbee, 1994b. PRORIL-AN
Erosion Model Using Probability Distributions For Rill Flow and Density. n. Model
Validation. Transaction of the ASAE 37(1):125-133.

Lewis, S. M., B. 1.Barfield, and D. E. Storm, 1990. An Erosion Model Using
Probability Distribution for Rill Flow and Density. Paper No. 90-2623. American
Society of Agricultural Engineers, S1. Joseph, MI.

Li, R, V. M. Ponce, and D. B. Simons, 1980. Modeling Rill Density. Proc. Am. Soc.
Civil Eng. 106(IR1): 63-67.

Luttrell. D.H.• 1963. The effect of tmage operations on bulk density and other
physical properties of the soil. Ph. D. Dissertation. Lowa State University.

Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W.H. Freeman and
Company, New York.

Maner, S.B., 1958. Factors affecting sediment delivery rates in the Red Hills
physiographic area. Trans. Am. Geophys. Union, 39:669-675.

Maxwell, 1. C., 1960. Quantitative Geomorphology of the San Dimas Experimental
Forest, California. Tech. Rep. 19, Off. Nav. Res. Proj:. 389-042, Dep. of Geol
Columbia Univ. New York.

Melton, M.A.. 1958. Geometric properties of mature drainage systems and their
representation in an E4 phase space. Journal of Geology 66:35-54.

Melton, M. A., 1959. A derivation of Strahler's Channel- Ordering System. Journal



90

of Geology 67:345-346.

Meyer, L.n., and E.I. Monke, 1965. Mechanics of soil erosion by rainfall and
overland flow. Transactions of the ASAE 8(4):572-580.

Meyer. L. D., G. R. Foster, and M. 1. M. Romkens, 1975. Source of Soil Eroded by
Water From Upland Slopes. Agricultural Research Service Publication ARS-S-40.
IWle.

Meyer, L. D., 1972. Soil Erosion by Water on Upland Area. In: H.W.Shen, ed.,
Water Resources Publication, Littleton, Colo.

Moore, 1. D., R. B. Grayson, and A. R. Ladson, 1991. Digital Terrain Modelling: A
Review of Hydrological, Geomorphological, and Biological Applications.
Hydrological Processes 5:3-30.

Moore, I. D., C. H. Michael, and B. J. Barfield, 1983. Kentucky Rainfall Simulator.
Transactions of the ASAE 1085-1089.

Moore, I. D., and C. L. Larson, 1979. Estimating Micro-Relief Surface Storage from
Point Data. Transactions of the ASAE 1073-1077.

Morisawa, M., 1985. Rivers: Form and Process. Longman Inc. New York.

Mosley, M. P., 1974. Experimental Study of Rill Erosion. Transactions of the ASAE
909-913.

Mossaad, M. P., and T. H. Wu, 1984. A stochastic Model of Soil Erosion. Int. J
Numer. Analyt. M,ethods Geomech 8:201-224.

Nearing, C. A., G. R. Foster, L. 1. Lane, and S. C. Finkner, 1989. A Process-Based
Soil Erosion Model for USDA-Water Erosion Prediction Project Technology.
Transactions of ASAE 32(5):1587-1593.

Ogunlela, A.• B. N. Wilson, C. T. Rice, and G. Couger, 1989. Rill Network
Development and Analysis Under Simulated Rainfall. Paper No. 892112. ASAE
Summer M,eeting, Quebec, Canada.

Onstad, C. A., and D. L. Brakensiek, 1968. Watershed Simulation by Stream Path
Analogy. Water Resources Research 4(5):965-971.

Podmore, T. H., and L. F. Huggins, 19&0. Surface Roughness Effects on Overland
Flow. Transactions of ASAE 23:1434-1439.



paz

91

Quinn. P.• K. Beven, P. Chevallier. and O. Planchon, 1991. The Prediction of
Hillslope Flow Paths for Distributed Hydrological ModeUing Using Digital Terrain
Models.. Hydrologic.al Processes 5(1):59-79.

Rice, C. T., B. N. Wilson. and M. Appleman. 1988. Soil Topography Measurements
Using Image Processing Techniques. Computer and Electronics in. Agr. 3:97-107.

Robert, A., and S. Roy, 1990. On the fractal interpretation of the mainstream length­
drainage area relationship. Water Resources Research 26(5):839-842.

Rosso, R., B. Bacchi, and P. La Barbera. 1991. Fractal relation of mainstream length
to catchment area in river networks. Water Resources Research 27(3):381-387.

Sabbagh, G. J., D. E. Storm, M. D. Smolen, C. T. Haan and W. C. Hession, 1995.
Simple: Sediment and Phosphorus Loading Model. Watershed Management Committee
of the Water Resources Engineering Division/ASCE, San Antonio, Texas.

Sadeghian, M. R, and J. K. Mitchell, 1988. Response of Surface Roughness Storage
to Rainfall on Tilled Soil. ASAE Winter Meeting. Paper No. 88-2597. Chicago. IL.

Schumm, S. A., 1977. The Fluvial System. Wiley and Sons, New York.

Schumm, S. A., 1956. Evolution of Drainage Systems and Slopes in Badlandsat Perth
Amboy, New Jersey. Bulletin of the Geological Society of America 67:597-646.

Shreve, R L., 1967. Infinite Topologically Random Channel Networks. Journal of
Geology 75: 178-186.

Shreve, R. L., 1966. Statistical Law of Stream Numbers. Journal of Geology 74:17­
37.

Shreve, R. L., 1969. Stream Lengths and Basin Areas in Topologically Random
Channel Network. Joumal of Geology 77:397-414.

Smart, J. S., 1968. Statistical Properties of Stream Lengths. Water Resources
Research 4:1001-1014.

Smart, J. S., 1972. Channel Networks. Advances in Hydroscience 8:305-346.

Smart, J. S., 1978. The Analysis of Drainage Network Composition. Earth Surface
Processes 3:129-170.

Smith, M. B., and M. Brilly, 1992. Automated Grid Element Ordering for GIS-Based
Overland Flow Modeling. Pbotogrammetric Engineerin.g and Remote Sensing, 58(5):



...

92

579-585.

Storm, D. E., 1991. Modeling Dynamic Rill Networks From Random Surface On
Moderate Slopes. Ph.D. Di.ssertation, Uni.versity of Kentucky. Lexington. KY.

Storm, D. E.• B. 1. Barfield and L. E. Ormsbee. 1990. Hydrology and Sedimentology
of Dynamic Rill Networks. 1. Erosion Model for Dynamic Rill Networks. Research
report No. 178. Kentucky Water Resources Research Institute. University of Kentucky,
Lexington. KY.

Strahler. A.N., 1964. Quantitative geomorphology of drainage basins and channel
networks. In Handbook of Applied Hydrology, edited by V. T. Chow. pp. 4-40-4-74.
McGraw-Hill, New York.

Strahler, AN., 1958. Dimensional Analysis Applied to Fluvially Eroded Landforms.
Bulletin of the Geological Society of America 69:279-300.

Strahler, AN., 1952. Hypsornetric (Area-Altitud,e) Analysis of Erosional topography.
Bulletin of the Geological Society of America 63:1117-1142.

Strahler, AN., 1950. Equilibrium Theol)' of erosional Slopes Approached by
Frequency Distribution Analysis. Am. 1. Sci. 248:673-696. 800-814.

Tarboton, D.G., R.L. Bras, and 1. Rodriguez-Iturbe. 1988. The fractal nature of river
networks. Water Resources Research 26(4):2243-2244.

Tarboton, D. G., R. L. Bras, and 1. Rodriguez-Iturbe, 1991. On Extraction of Channel
Networks From Digital Elevation Data. Hydrological Processes 5:81-100.

U.S. Army Corps of Engineers, 1991. GRASS Reference Manual Version 4.0., USA
CERL, Champaign, Illinois.

Van Pelt, V., M. 1. Woldenberg, and R. W. H. Verwer, 1989. Two Generalized
Topological Models of Stream Network Growth. Journal of Geology 97:281-299.

Van Deursen, W. P. A, and K. 1. Kwadijk, 1990. Using the Watershed Tools for
Modeling the Rhine Catchment. Proceeding of the First European Conference on
Geographical Informational Systems, Amsterdam, The Netherlands, pp.254-262.

Wilson, B. N., and D. E. Storm, 1993. Surface Flow Paths for Small Drainage Areas.
Paper No. 932135, Presented at the ASAE Summer Meeting, Spokane, Washington.

Wilson, B. N., and C. R. Rice, 1987. Large-scale Laboratory Apparatus for Erosion
Studies. ASAE Summer Meeting, Paper No. 87-2096, Baltimore, MD.

I
, I



93

Wilson. B. N.• 1993. Small-Scale Link Characteristics and Applications to Erosion
Modeling. Transactions of the ASAE 36(6):1761-1770.

Wilson, B.N., and D.E. Storm, 1992. Fractal analysis ofRin Networks. Paper No.
922005. ASAE Summer Meeting, Charlotte, North Carolina.

Wilson, B. N., and C. R. Rice, 1990. An Indoor Soil Erosion Research Facility. Jof
Soil and Water Conservation. 45(6):645-648.

Zobeck. T. M.• and C. A. Onstad, 1986. Tillage and Rainfall Effects on Random
Roughness: A Review. Soil and Tillage Research 9: 1-20.



-

APPENDIXES

94



APPENDIX A

Summary Rill Network Data

95



Summary Rill Network Data for the UK Data

96

'j,

I
./
I

.'i
'

,j

,I

I
1



Table A. 1: Summary Rill Networ1< Data for the UK (51 R2.CHN)
97

T.R. T.S.
7 37 (LR. = Tolan Number of Rills. T.S. = Total Number of Subshed)

Nwnber Total • Number of Number Nl.IIlber of
of Rill of Branch BUill. Cell of Branch InlerriUceli UJlStream Branch Numbers

1 3 158 1 4555 0 0 0 0 0 0 0 0
1 3 194 2 5301 0 0 0 0 0 0 0 0
1 3 58 3 958 0 1 2 0 0 0 0 0
2 1 89 1 3623 0 0 0 0 0 0 0 0
3 11 22 1 3043 0 0 0 0 0 0 0 0
3 11 87 2 3349 0 0 0 0 0 0 0 0
3 11 274 3 6040 0 0 0 0 0 0 0 0
3 11 326 4 11138 0 0 0 0 0 0 0 0
3 11 284 5 9202 0 0 0 0 0 0 0 0
3 111 297 6 10430 0 0 0 0 0 0 0 0
3 11 263 7 7021 0 3 4 0 0 0 0 0
3 11 146 8 1987 0 5 6 0 0 0 0 0
3 11 133 9 1978 0 2 8 0 0 0 0 0
3 11 185 10 2014 0 9 7 0 0 0 0 0
3 11 35 11 316 0 10 1 0 0 0 0 0
4 5 13 1 2746 0 0 0 0 0 0 0 0
4 5 220 2 7001 0 0 0 0 0 0 0 0
4 5 197 3 7373 0 0 0 0 0 0 0 0
4 5 58 4 255 0 2 3 0 0 0 0 0
4 5 275 5 5506 0 1 4 0 0 0 0 0
5 1 252 1 6940 0 0 0 0 0 0 0 0
6 1 43 1 3459 0 0 0 0 0 0 0 0
7 7 534 1 14066 0 0 0 0 0 0 0 0
7 7 124 2 3451 0 0 0 0 0 0 0 0
7 7 100 3 3575 0 0 0 0 0 0 0 0

I7 7 362 4 12109 0 0 0 0 0 0 0 0
7 7 97 5 1572 0 1 2 0 0 0 0 0

'Ii7 7 308 6 6747 0 3 4 0 0 0 0 0
7 7 B4 7 1736 0 5 6 0 0 0 0 0
0 8 0 1 12267 0 0 0 0 0 0 0 0
0 8 0 2 12267 0 0 0 0 0 0 0 0
0 8 0 3 12267 0 0 0 0 0 0 0 0

I0 8 0 4 12267 0 0 (} 0 0 0 0 0
0 8 0 5 12267 0 0 0 0 0 0 0 0

0 8 0 6 12267 0 0 0 0 0 0 0 0
0 8 0 7 12267 0 0 0 0 0 0 0 0
0 8 0 a 12267 0 0 0 0 0 0 0 0

I
I,
'I



Table A. 2: Summary Rill Network Data for tile UK (S2R2.CHN)
98

T.R. T.S.
8 51 (T.R. =Tolal Number of Rills. T.S. =Total Number of Subshed)

Number Total # Number 01 Number Numbero,f
of RillI of Branch Bran. Oe'll of Branch InlemliCeli Upstream Blanch Numbers

1 9 464 1 6955 0 0 0 0 0 0 0
1 9 113 2 4689 0 0 0 0 0 0 0
1 9 125 3 2804 0 0 0 0 0 0 0
1 9 512 4 10108 0 0 0 0 0 0 0
1 9 30 5 2689 0 0 0 0 0 0 0
1 9 201 6 2439 1 2 0 0 0 0 0
1 9 8 7 130 6 3 0 0 0 0 0
1 9 76 8 889 7 4 0 0 0 0 0
1 9 26 9 199 8 5 0 0 0 0 0
2 7 269 1 7480 0 0 0 0 0 0 0
2 7 170 2 6808 0 0 0 0 0 (} 0
2 7 79 3 4860 0 0 0 0 0 0 0
2 7 39 4 2412 0 0 0 0 0 0 0
2 7 126 5 3154 1 2 0 0 0 0 0
2 7 256 6 4306 5 3 0 0 0 0 0
2 7 142 7 2171 6 4 0 0 0 0 0
3 3 152 1 3464 0 0 0 0 0 0 0
3 3 18 2 2816 0 0 0 0 0 0 0
3 3 75 3 861 1 2 0 0 0 0 0
4 3 699 1 14021 0 0 0 0 0 0 0
4 3 25 2 ,2450 0 0 0 0 0 0 0
4 3 61 3 908 1 2 0 0 0 0 a
5 3 299 1 6196 0 0 0 0 0 0 0
5 3 104 2 3066 0 0 0 0 0 0 0
5 3 459 3 8489 1 2 0 0 0 0 0
6 1 195 1 51511 0 0 0 0 0 0 0

7 1 140 1 3706 0 0 0 0 0 0 {)

8 15 162 1 4160 0 0 0 0 0 0 0
8 15 174 2 3988 0 0 0 0 0 0 0

8 15 197 3 4045 0 0 0 0 0 0 0

8 15 60 4 2740 0 0 0 0 0 0 0
8 15 50 5 2711 0 0 0 0 0 0 0

8 15 15 6 2203 0 0 0 0 0 0 0

8 15 375 7 5032 0 0 0 0 0 0 0

8 15 11 8 21168 0 0 0 0 0 0 0
8 15 81 9 966 1 2 0 0 0 0 0

8 15 60 10 639 3 4 0 0 0 0 0

8 15 133 11 1888 9 10 0 0 0 0 0 ;'1
8 15 42 12 1110 5 6 0 0 0 0 0

8 15 113 13 1280 11 12 0 0 0 0 0

8 15 165 14 3185 13 7 0 0 0 0 0

8 15 98 15 585 14 8 0 0 0 0 0

0 9 0 1 7730 0 0 0 0 0 0 0

0 9 0 2 7730 0 I) 0 0 0 0 0

0 9 0 3 7730 0 0 0 0 0 0 0

0 9 0 4 7730 0 0 0 0 0 0 0

0 9 0 5 7730 0 0 0 0 0 0 0

0 9 0 6 7730 0 0 0 {) 0 0 0

0 9 0 7 7730 0 0 0 0 0 0 0

0 9 0 8 7730 0 0 0 0 0 0 0

0 9 0 9 7730 0 0 0 0 0 0 0



Table A. 3: Summary Rill Network Data for the UK (S3R2:CHN)
99

T.R. T.S.
S 47 (T.R. = Total Number of Rills, T.S. = Total Number of Subshedj

Number Total • Number of Number Nl6TIber of
of Rill of Branch Bralll. Cell of Branoh Int6rriUCelI Upstream Branch Numbers

1 1 238 1 6123 0 0 (} (} (} 0 (} 0
2 15 14 1 3369 (} 0 (} 0 (} (} (} 0
2 15 17 2 3561 (} 0 0 0 (} 0 0 0
2 15 245 3 8238 (} 0 0 (} 0 0 0 0
2 15 101 4 3545 0 0 0 0 0 0 0 0
2 15 134 5 5955 0 0 0 0 0 0 0 0
2 15 60 6 2963 0 0 0 0 0 0 0 0
2 15 160 7 5608 0 0 0 0 0 0 0 0
2 15 252 8 8915 0 0 0 0 0 0 0 0
2 15 62 9 861 0 5 6 0 0 0 0 0
2 15 236 10 4026 0 7 8 0 0 0 0 0
2 15 252 11 9239 0 3 9 0 0 0 0 (}

2 15 223 12 1786 0 4 10 0 0 0 0 (}

2 15 225 13 6372 0 11 1 0 0 0 0 0
2 15 16 14 55 (} 12 2 0 0 0 0 0
2 15 72 15 1068 (} 13 14 () 0 () 0 ()

3 1 50 1 3063 0 (} () () 0 (} () 0
4 1 283 1 5803 () 0 (} (} 0 (} (} 0
5 1 98 1 3614 (} 0 () (} 0 (} (} 0
6 9 43 1 4808 0 0 (} (} 0 (} (} ()

6 9 48 2 3511 0 0 0 (} 0 (} (} 0
6 9 131 3 4306 0 () (} (} (} (} 0 0
6 9 269 4 5314 0 0 (} 0 0 (} 0 0
6 9 409 5 11131 () 0 (} (} 0 (} 0 0
6 9 36 6 229 () 4 5 0 0 (} () 0
6 9 12 7 120 () 3 6 (} 0 (} 0 0
6 9 115 6 970 (} 7 2 0 0 (} (} 0
6 9 176 9 2089 (} 8 1 0 () () () 0
7 1 53 1 3442 0 0 (} 0 0 0 () 0
8 9 161 1 4929' 0 () 0 0 0 0 () 0
8 9 176 2 4646 0 (} 0 () 0 0 0 0
8 9 41 3 2744 0 0 () (} (} 0 (} 0
6 9 238 4 4393 0 0 (} 0 (} (} (} (}

8 9 69 5 3593 (} 0 () 0 0 0 0 ()

8 9' 17 6 92 0 4 5 0 (} 0 0 ()

8 9' 94 7 617 0 3 6 (} (} 0 0 ()

6 9 241 8 3284 0 2 7 0 () () 0 ()

8 9 176 9 1411 0 8 1 (} () () (} ()

0 9 () 1 13685 0 0 () () 0 0 () ()

0 9 () 2 13685 (} () 0 0 0 0 0 0
0 9 () 3 13685 (} () (} () () (} (} 0
() 9 0 4 13685 (} () (} () () 0 () 0
() 9 (} 5 13685 (} () (} () () 0 (} 0
0 9 0 6 13685 (} () () (} 0 0 0 0
(} 9 () 7 13665 0 () () 0 0 0 0 0
() 9 () 8 13685 () () () 0 0 0 0 0
0 9 (} 9 13685 () () 0 0 0 0 0 0



Table A. 4: Summary Rill Network for the UK Data {S1 S2.CHN) 100

T.R. T.S.
9 55 (T.R = Total Number of Rills. T.S. =Tolal Number of Subshedl

Number Total» Number of Number Number 01
of Rill o'f Branch Bran. Cell of Brancll Interrill, Cell Upstream Branch Numbers

1 3 123 1 3484 0 0 0 0 0 0 0 0
1 3 208 2 3902 0 0 0 0 0 0 0 0
1 3 36 3 212 0 1 2 0 0 0 0 0
2 5 530 1 10580 0 0 0 0 0 0 0 0
2 5 145 2 3367 0 0 0 0 0 0 0 0
2 5 220 3 3910 0 0 0 0 0 0 0 0
2 5 238 4 2859 0 2 3 0 0 0 0 0
2 5 264 5 4663 0 1 4 0 0 0 0 0
3 11 646 1 9902 0 0 0 0 0 0 0 0
3 11 225 2 4915 0 0 0 0 0 0 0 0
3 11 184 3 5458 0 0 0 0 0 0 0 0
3 11 33 4 1963 0 0 0 0 0 0 0 0
3 11 264 5 6244 0 0 0 0 0 0 0 0
3 11 215 6 5917 0 0 0 0 0 0 0 0
3 11 176 7 1928 0 5 6 0 0 0 0 0
3 11 33 8 463 0 7 4 0 0 0 0 0
3 11 146 9 2348 0 3 8 {) 0 0 0 0
3 11 44 10 539 0 2 9 {) 0 0 0 0
3 11 128 11 1981 0 1{) 1 {) 0 0 0 0
4 1 99 1 2314 0 0 0 0 0 0 0 0
5 1 19 1 2018 0 0 0 0 0 0 0 0
6 1 202 1 5124 0 0 0 0 0 0 0 0
7 1 78 1 3004 0 0 0 0 0 0 0 0
8 21 21 1 1845 0 0 0 0 {) 0 0 0
8 21 103 2 2n7 0 0 0 0 0 0 0 0
8 21 121 3 3179 0 0 0 0 0 0 0 0
8 21 16 4 1789 0 0 0 0 0 0 0 0
8 21 72 5 3124 0 0 0 {) 0 0 0 0
8 21 136 6 3215 0 0 0 {) 0 0 0 0
8 21 104 7 2916 0 0 0 {) 0 0 0 0
8 21 38 8 2153 0 0 0 {) 0 0 0 0
8 21 103 9 2998 0 0 0 {) 0 0 0 0
8 21 4 10 1575 0 0 0 {) 0 0 0 0
8 21 88 11 3620 0 0 0 0 0 0 0 0
8 21 126 12 1582 0 3 4 0 0 0 0 0
8 21 273 13 6416 0 5 6 0 0 0 0 0
8 21 444 14 4579 0 7 8 0 0 0 0 0
8 21 36 15 1043 0 10 11 0 0 0 0 0
8 21 288 16 6684 0 9 15 0 0 0 0 0
8 21 111 17 3411 0 13 14 0 0 0 0 0
8 21 251 18 3399 0 16 2 0 0 0 () 0
8 21 18 19 166 0 18 12 0 0 0 0 0
8 21 55 20 749 0 19 17 0 0 0 0 0
8 21 105 21 1298 0 20 1 0 0 0 0 0
9 1 250 1 5526 0 0 0 0 0 0 0 0
0 10 0 1 8619 0 0 0 0 0 0 0 0
0 10 0 2 8619 0 0 0 0 0 0 0 0

0 10 0 3 8619 0 0 0 0 0 0 0 0
0 10 0 4 8619 0 0 0 0 0 0 0 0
0 10 0 5 8619 0 0 0 0 0 0 0 0
0 10 0 6 8619 0 0 0 0 0 0 0 0

0 10 0 7 8619 0 0 0 0 0 0 0 0

0 10 0 8 8619 0 0 0 0 0 0 0 0

0 10 0 f1 8619 0 0 0 0 0 0 0 0

0 10 0 10 8619 0 0 0 0 0 0 0 0



Table A. 5: Summary Rill Network Data for the UK (S2S2.. CHN)
101

T.R. T.S.
7 51 (T.R. = Tolal Number 01 Rills, T.S. = Tolall'lumber of Subshed)

NlI'Tlber Total , NLmber 01 Number NlI'11berol
01 Rill of Branch Bran. Cell 01 Brandl InterriU cell Upstream Branch Numbers

1 1 34 1 1991 0 0 0 0 0 0 0 0
2 5 95 1 2609 0 0 0 0 Q 0 0 0
2 5 400 2 11156 0 0 0 0 0 0 0 0
2 5 7 3 1535 0 0 0 0 0 0 0 0
2 5 223 4 4236 0 2 3 0 0 0 0 0
2 5 144 5 3490 0 1 4 0 0 0 0 0
3 9 86 1 2635 0 0 0 0 0 0 0 0
3 9 236 2 5177 0 0 0 0 0 0 0 0
3 9 241 3 5725 0 0 0 0 0 0 0 0
3 9 207 4 4843 0 0 0 0 0 0 0 0
3 9 204 5 5192 0 0 0 0 0 0 0 0
3 9 234 6 4121 0 1 2 0 0 0 0 0
3 9 61 7 615 0 4 5 0 0 0 0 0
3 9 436 8 6513 0 7 3 0 0 0 0 0
3 9 69 9 970 0 6 8 0 0 0 0 0
4 3 43 1 2104 0 0 0 0 0 0 0 0
4 3 322 2 4569 0 0 0 0 0 0 0 0
4 3 187 3 3863 0 1 2 0 0 0 0 0
5 1 108 1 2812 0 0 0 0 0 0 0 0
6 7 5 1 1510 0 0 0 0 0 0 0 0
6 7 523 2 8337 0 0 0 0 0 0 0 0
6 7 45 3 3076 0 0 0 0 0 0 0 0,

6 7 249 4 5378 0 0 0 0 0 0 0 0
6 7 106 5 3Cl29 0 3 4 0 0 0 0 0
6 7 201 6 3304 0 2 5 0 0 0 0 0
6 7 40 7 225 0 1 6 0 0 0 0 0
7 17 288 1 7690 0 0 0 0 0 0 0 0
7 17 725 2 14845 0 0 0 0 0 0 0 0
7 17 10 3 1547 0 0 0 0 0 0 0 0
7 17 128 4 3753 0 0 0 0 0 0 0 0
7 17 102 5 2413 0 0 0 0 0 0 0 0
7 17 2 6 1579 0 0 0 0 0 0 0 0
7 17 6 7 1566 0 0 0 0 0 0 0 0
1 17 71 8 2341 0 0 0 0 0 0 0 0
1 17 152 9 3379 0 0 0 0 0 0 0 0
7 17 18 10 172 0 1 2 0 0 0 0 0
7 17 166 11 2356 0 6 7 0 0 0 0 0
7 17 45 12 779 0 8 9 0 0 0 0 0
7 17 57 13 1202 0 11 12 0 0 0 0 0
7 17 185 14 1995 0 13 5 0 0 0 0 0
7 17 2.20 15 3621 0 4 14 0 0 0 0 0
7 17 76 16 1029 0 3 15 0 0 0 0 0
7 17 57 17 797 0 10 16 0 0 0 0 0
0 8 0 1 9679 0 0 0 0 0 0 0 0
0 8 0 2 9679 0 0 0 0 0 Cl 0 0
0 8 0 3 9679 0 0 0 0 0 0 0 0
() 8 0 4 9679 0 Cl 0 0 0 0 0 0
0 6 0 5 9679 0 0 0 0 0 0 0 0
0 6 0 6 9679 0 0 0 0 0 0 0 0

0 8 0 7 9679 0 0 0 0 0 0 0 0
0 8 0 8 9679 0 0 Cl 0 0 0 0 0



Table A.6: Summary Rill Networ1< Data tor the UK (S3S2.CHN)
102

T.R. T.S.
8 43 (T.R. =Total Number 01 Rills, T.S. =Tolal Number of Sub5hed)

NU'llber Total. Nl.IT1ber 01 NLmber Ntrnberol
olRlfI 01 Branch Bran. Cell 01 Branch Interri I Cell Upstream Btand1 Numbers

1 3 3 1 2007 (} 0 0 (} 0 0 0 0
1 3 301 2 8111 0 0 0 0 0 0 0 0
1 3 431 3 B633 0 1 2 0 0 0 0 0
2 7 16 1 2067 0 0 0 0 0 0 0 0
2 7 37 2 2514 0 0 0 0 0 0 0 0
2 7 67 3 3621 0 0 0 0 0 0 0 0
2 7 31 4 3563 0 0 () 0 0 0 0 0
2 7 102 5 1396 0 3 4 0 0 0 0 0
2 7 474 6 10542 0 5 2 0 0 0 0 0
2 7 146 7 1014 0 1 6 0 0 0 0 0
3 5 127 1 3154 0 0 0 0 0 0 () 0
3 5 168 2 6213 0 0 0 0 0 0 0 O·
3 5 266 3 4700 0 0 0 0 0 0 0 0
3 5 n 4 1888 0 2 3 0 0 0 0 0
3 5 413 5 9579 0 1 4 0 0 0 0 0
4 5 63 1 3198 0 0 0 0 0 0 0 0
4 5 37 2 2401 0 0 0 0 0 0 0 0
4 5 270 3 8931 0 0 0 0 0 0 0 0
4 5 79 4 nl 0 2 3 0 0 0 0 0
4 5 2 5 25 0 4 1 0 0 0 0 0
5 5 183 1 4833 0 0 0 0 0 0 0 0
5 5 207 2 5278 0 0 0 0 0 0 0 0
5 5 272 3 6960 0 0 0 0 0 0 0 0
5 5 255 4 4261 0 2 3 0 0 0 0 0
5 5 264 5 4636 0 4 1 0 0 0 0 0
6 5 167 1 5583 0 0 0 0 0 0 0 0
6 5 105 2 3358 0 0 0 0 0 0 0 0
6 5 349 3 10615 0 0 0 0 0 0 0 0
6 5 92 4 1568 0 2 3 0 0 0 0 0
6 5 362 5 6066 0 4 1 0 0 0 0 0
7 3 282 1 6476 0 0 0 0 0 0 0 0
7 3 16 2 2044 0 0 0 0 0 0 0 0
7 3 16 3 114 0 1 2 0 0 0 0 0
8 1 102 1 2986 0 0 0 0 0 0 0 0
0 9 0 1 10652 0 0 0 0 0 0 0 0

!,
0 9 0 2 10652 0 0 0 0 0 0 0 0
0 9 0 3 t0652 0 0 0 0 0 0 0 0
0 9 0 4 10652 0 0 0 0 0 0 0 0
0 9 0 5 10652 0 0 0 0 0 0 0 0
0 9 0 6 10652 0 0 0 0 0 0 0 0

0 9 0 7 10652 0 0 0 0 0 0 0 0
(} 9 (} 8 10652 (} v 0 (} (} 0 0 0

0 9 (} 9 10652 (} 0 0 0 0 0 0 0



Table A. 7: Summary Aii:I Network Data for the UK (T1 R2.CHN)
103

T.R. T.S.
7 57 (T.R. = TolaJ NtJmberof Rills. T.S. = Total Number of Subshed}

Number Total 41 Nt.mber of Number Ntnberof
of Rill of Branch Bran. Cell of Brnndl Ill1emtlCSI Upstream Brancl1 Numbers

1 9 59 1 2709 0 0 0 0 0 0 0 0
1 9 172 2 4175 0 0 0 0 0 0 0 0
1 9 36 3 1908 0 0 0 0 0 0 0 0
1 9 83 4 2803 0 0 0 0 0 0 0 0
1 9 76 5 3161 0 0 0 0 0 0 0 0
1 9 141 6 251'9 0 4 5 0 0 0 0 0
1 9 300 7 4675 0 3 6 0 0 0 0 0
1 9 174 8 2988 0 2 7 0 0 0 0 0
1 9 84 9' 2125 0 1 8 0 0 0 0 0
2 1 60 1 2409 0 0 0 0 0 0 0 0
3 11 60 1 2521 0 0 0 0 0 0 0 0
3 111 127 2 3570 0 0 0 0 0 0 0 0
3 11 1 3 2021 0 0 0 0 0 0 0 0
3 11 34 4 1794 0 0 0 0 0 0 0 0
3 11 55 5 2121 0 0 0 0 0 0 0 0
3 11 78 6 2533 0 0 0 0 0 0 0 0
3 11 394 7 5793 0 2 3 0 0 0 0 0
3 11 347 8 4483 0 5 6 0 0 0 0 0
3 11 155 9 2506 0 8 4 0 0 0 0 0
3 11 138 10 1781 0 7 9 0 0 0 0 0
3 11 83 11 850 0 1 10 0 0 0 0 0
4 3 306 1 5773 0 0 0 0 0 0 0 0
4 3 188 :2 3440 0 0 0 0 0 0 0 0
4 3 240 3 3600 0 1 2 0 0 0 0 0
5 15 192 1 471'1 0 0 0 0 0 0 0 0
5 15 165 2 4157 0 0 0 0 0 0 0 0
5 15 1130 3 3404 0 0 0 0 0 0 0 0
5 15 11:15 4 3902 0 0 0 0 0 0 0 0
5 15 437 5 11106 0 0 0 0 0 0 0 0
5 15 25 6 1566 0 0 0 0 0 0 0 0
5 15 165 7 3133 0 0 0 0 0 0 0 0
5 15 97 8 3362 0 0 0 0 0 0 0 0
5 15 294 9 4055 0 7 8 0 0 0 0 0
5 15 5 10 30 0 6 9 0 0 0 0 0
5 15 62 11 371 0 5 10 0 0 0 0 0
5 ~5 39 12 402 0 4 11 0 0 0 0 0
5 15 188 13 2420 0 3 12 0 0 0 0 0
5 15 8 14 134 0 2 13 0 0 0 0 0
5 15 51 15 838 0 1 14 0 0 0 0 0
6 1 378 1 7307 0 0 0 0 0 0 0 0
7 9 3 1 1509 0 0 0 0 0 0 0 0
7 9 35 2 2475 0 0 0 0 0 0 0 0
7 9 98 3 2794 0 0 0 0 0 0 0 0
7 9 98 4 2423 0 0 0 0 0 0 0 0
7 9 66 5 3449 0 0 0 0 0 0 0 0
7 9 120 6 1614 0 4 5 0 0 0 0 0
7 9 34 7 216 0 3 6 0 0 0 0 0
7 9 385 B 7197 0 7 2 0 0 0 0 0
7 9 177 9 4735 0 8 1 0 0 0 0 0
0 8 0 1 10190 0 0 0 0 0 0 0 0
0 8 a 2 10190 0 0 0 0 0 0 0 0
0 8 0 3 10190 0 0 0 0 0 0 0 0
0 8 0 4 10190 0 0 0 0 0 0 0 0
0 B 0 5 10190 0 0 0 0 0 0 a 0
0 8 0 6 10190 0 0 0 0 0 0 0 0
0 8 0 7 10190 0 0 0 0 0 0 0 0
0 8 (} 8 10190 0 0 0 0 0 0 0 0



Table A. 8: Summary Am Network Data lor the UK (T2R2.CHN) 104
LA. T.S.

9 83 (T,R. = Tolal Number of Rills. T.S. = Total NumberofSubshed)

Number Total. NumDerot Number Number of
of Rill o'B"""'" Bran. Cell 01 Branch Imerrill Cell Upstream Branch Numbers

'I 13 70 1 1806 0 0 0 0 0 0 0 0
1 13 37 2 14,64 0 0 0 0 0 0 0 0
1 13 n 3 1813 0 0 0 0 (} 0 0 0
1 13 12 4 1137 0 0 0 0 0 0 0 0
1 13 25 5 1497 0 0 0 0 (} 0 0 0
1 13 134 6 2653 0 0 0 0 0 0 0 0
1 13 'I 7 1319 0 0 0 0 (} 0 0 0
1 13 2 8 9 0 2 3 0 0 0 0 0
1 13 171 9 3376 0 6 7 0 0 0 0 0
1 13 65 10 1303 0 5 9 0 0 0 0 0
1 13 127 11 1923 0 10 4 0 0 0 0 0
1 13 136 12 1563 0 I 11 0 0 0 0 0
1 13 76 13 1403 0 12 6 0 0 0 0 0
2 1 49 1 2129 0 0 0 0 0 0 0 0
3 13 437 1 6161 0 0 0 0 0 0 0 0
3 13 139 2 2952 0 0 0 0 0 0 0 0
3 13 149 3 3697 0 0 0 0 0 0 0 0
3 13 104 4 2276 0 0 0 0 0 0 0 0
3 13 160 5 2951 0 0 0 0 0 0 0 0
3 13 107 6 3402 0 0 0 0 0 0 0 0
3 13 39 7 1379 0 0 0 0 0 0 0 0
3 13 95 6 1931 0 4 5 0 0 0 0 0
3 13 107 9 1600 0 6 7 0 0 0 0 0
3 13 66 10 950 0 9 3 0 0 0 0 0
3 13 151 11 30S6 0 10 6 0 0 0 0 0
3 13 380 12 6342 0 2 11 0 0 0 0 0
3 13 41 13 234 0 12 1 0 0 0 0 0
4 1 38 1 1362 0 0 0 0 0 0 0 0
5 5 109 1 1715 0 0 0 0 0 0 0 0
5 5 184 2 2951 0 0 0 0 0 0 0 0
5 5 53 3 2065 0 0 0 0 0 0 0 0
5 5 431 4 6961 0 2 3 0 0 0 0 0
5 5 137 5 2420 0 4 1 0 0 0 0 0
6 21 9 1 1049 0 0 0 0 0 0 0 0
6 21 110 2 2222 0 0 0 0 0 0 0 0
6 21 90 3 2236 0 0 0 0 0 0 0 0
6 21 33 4 1441 0 0 0 0 0 0 0 0
6 21 51 5 1609 0 0 0 0 0 0 0 0
6 21 55 6 1739 0 0 0 0 0 0 0 0
6 21 16 7 1210 0 0 0 0 0 0 0 0
6 21 45 6 2764 0 0 0 0 0 0 0 0
6 21 41 9 1390 0 0 0 0 0 0 0 0
6 21 76 10 2029 0 0 0 0 0 0 0 0
6 21 36 11 1462 0 0 0 0 0 0 0 0
6 21 117 12 1039 0 9 9 0 0 0 0 0
6 21 122 13 1643 0 10 11 0 0 0 0 0
6 21 52 14, 300 0 6 12 0 0 0 0 0
6 21 62 15 526 0 13 7 0 0 0 0 0
6 21 121 16 860 0 4 14 0 0 0 0 0
6 21 56 17 6S7 0 15 5 0 0 0 0 0
6 21 60 16 49'6 0 16 17 0 0 0 0 0
6 21 60 19 1636 0 19 3 0 0 0 0 0
6 21 251 20 2683 0 2 19 0 0 0 0 0
6 21 124 21 1624 0 I 20 0 0 0 0 0
7 7 14 1 1102 0 0 0 0 0 0 0 0
7 7 194 2 3790 0 0 0 0 0 0 0 0
7 7 6 3 1054 0 0 0 0 0 0 0 0
7 7 103 4 2335 0 0 0 0 0 0 0 0
7 7 141 6 2547 0 3 4 0 0 0 0 0
7 7 61 6 903 0 2 5 0 0 0 0 0
7 7 36 7 450 0 1 6 0 0 0 0 0

e 3 3 1 1036 0 0 0 0 0 0 0 0

8 3 31 2 1360 0 0 0 0 0 0 0 0

9 3 29 3 176 0 1 2 0 0 0 0 0

9 9 51 1 2325 0 0 0 0 0 0 0 0

9 9 537 2 89,92 0 0 0 0 0 0 0 0

9 9 70 3 2335 0 0 0 0 0 0 0 0

9 9 35 4 1141 0 0 0 0 0 0 0 0

9 9 162 5 3249 0 0 0 0 0 0 0 0

9 9 206 6 3387 0 4 5 0 0 0 0 0

9 9 42 7 436 0 6 3 0 0 0 0 0

9 9 132 II 2026 0 2 7 0 0 0 0 0

9 9 148 9 3468 0 6 1 0 0 0 0 0

0 10 0 1 6923 0 0 0 0 0 0 0 0

0 10 0 2 6923 0 0 0 0 0 0 0 0

0 10 0 3 6923 0 0 0 0 0 0 0 0
0 10 0 4 6923 0 0 0 0 0 0 0 0

0 10 0 5 6923 0 0 0 0 0 0 0 0

0 10 0 6 ,6923 0 0 0 0 0 0 0 0

0 10 0 7 ,6923 0 0 0 0 0 0 0 0

0 10 0 6 ,6923 0 0 0 0 0 0 0 0

0 10 0 9 6923 0 0 0 0 0 0 0 0

0 10 0 10 6923 0 0 0 0 0 0 0 0



Table A.. 9: SummaJY Rill~ Data forlhe UK (T3R2.CHN)

105
T.A. T.S.
12 97 (T.R..T__al _. T.S.• ToloI_ al S<ahod)- lolalf

_01_
'_of

"'AI alOIMd1 B<on. Col 01_ _Col
~-~

1. 1 - 1 5126 0 0 0 0 0 0 0
2 .5 Il5 1 2527 Q 0 Q <I 0 0 0
2 15 8ll 2 2'137 0 0 <I <I 0 0 0
2 15 16<1 3 21116 <I 0 0 0 0 0 0
2 15 <2 • 1227 0 0 Q <I 0 0 0
2 '5 2m 5 5011 0 0 <I 0 0 <I 0
2 15 12 6 104<l 0 0 <I 0 0 <I 0
2 15 49 7 = 0 0 <I 0 0 0 0
.2 15 21 6 1007 <I 0 0 0 0 0 0
.2 15 148 • 827 1 2 0 <I 0 0 0
.2 15 22 '0 198 • 3 0 0 0 II 0
2 IS 190 11 "113 10 • 0 0 0 Q 0
2 IS 47 12 93ll 5 6 0 0 0 II 0
2 15 87 '3 1'71 12 7 0 0 0 0 0
.2 IS 168 ,. 1335 11 13 0 0 0 0 <I
2 IS 192 15 1443 If 8 0 0 0 0 0
3 1 32 1 11113 0 0 G 0 0 0 0

• 19· '01 1 31251 0 0 0 0 0 0 0

• ,. 33 .2 1~ 0 0 0 0 0 0 0

• ,. 37 3 26.5 0 0 0 0 0 (I 0

• 19 187 • 2900 0 0 0 0 0 0 0

• 19 ... 5 1678 0 0 0 0 <I 0 0

• 19 163 ·8 242-' 0 0 0 0 0 0 0
4 19 2 7 10\7 0 0 0 0 0 0 0

• 19 50 8 1608 0 0 0 0 0 0 0

• 19 320 • .758 0 0 0 0 <I 0 0

• 19 '70 10 2ll1l·1 0 0 <I 0 <I 0 0

• 19 78 11 1'347 1 2 Q 0 0 0 Q

• 19 104 .2 821 II 3 Q 0 0 <I 0

• ,. 39 13 425 12 • <I 0 0 0 0

• ,. '00 If 1877 13 5 0 0 0 0 0
4 ,. 95 15 687 11 6 0 0 0 0 0

• 1. at 16 - 15 7 0 <I 0 0 0

• 19 18 17 108 16 8 <I <I 0 0 0

• 19 13. 16 2013 17 9 0 0 0 0 0

• 19 ,.3 ,. 2f18 16 10 0 0 0 0 0
5 1 67 1 1:595 '0 0 0 0 0 0 0
8 1 201 I 3735 Q 0 0 <I 0 0 0
7 5 45' I S8ll2 Q 0 0 0 0 0 0
7 5 102 2 1765 Q 0 0 0 0 0 0
7 5 7 3 1040 ·0 0 0 0 0 0 0
7 5 7 • 11M 1 2 0 0 0 0 0
7 5 89 5 909 • 3 0 0 0 0 0
8 I 65 1 2451 0 0 0 0 0 0 0
9 27 '32 1 2497 0 0 0 0 0 0 (I

9 27 12 2 1150 0 <I 0 0 0 0 0
9 27 99 3 2676 0 0 0 0 0 0 0
9 27 5 • 1<31 0 0 0 0 0 0 <I
9 27 69 S 1883 o· 0 0 0 <I 0 0

• 27 .90 8 2173 <I 0 0 0 0 0 0
9 27 15 7 1155 <I 0 <I 0 <I 0 0
9 27 26 8 1255 0 0 0 0 0 0 0
9 27 201 • ~ 0 0 Q 0 0 <I 0
9 27 29 .0 ,227 0 0 Q 0 0 0 0
9 27 53 11 1550 0 0 0 Q 0 0 0
9 27 33 12 1309 0 0 0 0 0 0 0
9 27 75 '3 182:9 0 0 0 0 0 0 0
9 27 63 1f 1781 0 0 0 0 0 0 0
9 27 115 '15 2004 1 2 0 0 Q 0 0
9 27 126 '6 967 3 • 0 0 0 0 0

" 27 155 17 30<13 '5 18 0 0 0 0 0

" 27 .5' 18 !!66 ,7 5 0 0 0 0 0
9 27 38 19 0182 6 7 0 0 0 0 0
9 27 97 20 ".2 ,. 19 0 0 0 0 0
9 27 2" 21 3fJ7 20 8 0 0 0 0 0

" 27 127 22 11&1 • 10 0 0 0 0 0

" 27 ,. ., 2" 22 II 0 0 0 0 0

" 27 83 2' I .... 21 23 0 0 0 0 0

" 27 '5 25 583 2' 12 0 0 0 0 0

• 27 35 28 326 25 13 0 0 0 0 0

• 27 95 27 ,,.,S 26 ,. 0 0 0 0 0
10 1 55 1 13<3 0 0 0 0 0 0 0
11 9 '2' 1 77olO 0 0 0 0 0 0 0
11 " 399 2 &lOS 0 0 0 0 0 0 0

'1 "
,. 3 lUg 0 0 0 0 0 0 0

11 9 ... 4 1213 0 0 0 9 II 0 0
11 9 57 6 159" 0 0 0 0 0 0 0

" • 11. G 995 1 2 0 0 0 0 0
11 • "" 7 '26 5 3 0 I> 0 0 0
11 • 5 6 8 7 • 0 0 0 0 0
11 • 2<3 • 2160 • 5 0 0 0 0 0
12 3 184 , 3223 0 0 0 0 0 0 0
12 3 9 2 1,075 0 0 0 0 0 0 0
12 3 3fJ 3 317 I 2 0 0 0 0 II
0 13 0 1 5696 0 0 0 0 0 0 0
0 13 0 2 5608 0 0 0 0 <I 0 0
0 \3 0 3 5896 0 0 0 0 0 0 0
0 13 0 • 5698 0 <I 0 0 0 0 0
0 .3 0 5 !58Il6 0 0 0 0 0 0 0
0 '3 0 6 5696 0 0 0 0 0 0 0
0 13 0 7 66116 0 0 0 0 0 0 0
0 13 0 8 6696 0 0 0 0 0 0 0
0 13 0 9 5696 0 0 0 0 0 0 0
0 13 0 10 56ll<l 0 0 0 0 0 0 0
0 13 0 II 56ll<l 0 • 0 0 0 0 0
0 13 0 12 5696 0 0 • 0 0 0 0
0 13 0 13 56ll<l 0 0 • 0 0 0 0



-

T_A. 10: Summary AID N9lwocl( Dal.lorlhe UK (TIV2.CHN)

106
T.R. T.S.
12 Il5 (T.R. .1011I ....- <A _. T.5.•T_....-d &eoIlId)- TOlOI'

_01_ _01
dRi d_ -.C<II alB_ _Col ~_.-

1 17 = • 27512 0 0 0 D D 0 0 0

• 17 97 2 '10) 0 0 0 0 0 0 0 0
1 17 155 3 2204 D 0 0 0 0 0 0 0
1 17 130 • 2506 0 0 0 0 0 0 0 0
1 17 258 5 38.4 0 0 0 0 0 0 0 0
1 17 n 6 1586 0 0 0 0 0 0 0 0
1 17 OS 7 11119 0 0 0 0 0 0 0 0
1 17 220 8 2693 0 0 0 0' 0 0 0 0
1 17 3:16 .' 5056 0 0 0 0 0 0 0 0
1 17 52 ~o - 0 5, 7 0 0 0 0 0
1 17 ., II 255 0 8 • 0 0 0 0 0

• 17 581 12 6667 0 10 4 0 0 0 0 0, 17 ", 13 1011 0 11 5 0 0 0 0 0, 17 111 ,. "34 0 2 12 0 0 0 0 0, 17 ,.5 ,.5 1350 0 3 '3 0 0 0 0 0, 17 153 15 1228 0 15 1 0 0 0 0 0, 17 11 17 131 D 15 ,. 0 0 0 0 0
2 , 28Z •

_.
0 0 D 0 D 0 0 D

3 , 37 • .592 D 0 D D 0 D 0 D

• , 83 1 '53' D 0 0 0 0 D 0 0
5 '5 .5 • 854 0 0 D 0 D 0 0 0
5 .5 483 2 a7llO 0 0 D 0 D D 0 0
5 15 178 3 3D7. 0 0 0 0 D 0 0 0
5 IS 47 • '280 0 D 0 0 0 0 D 0
5 .5 II 5 B66 0 D 0 0 0 0 D 0
5 ,5 .66 5 3507 0 D 0 0 0 0 0 0
5 15 32 7 10067 0 D 0 D 0 0 0 0
5 15 20 e ll84 0 D 0 D 0 0 D 0
5 15 226 • 3805 0 2 3 0 0 0 0 0
5 15 223 .0 3355 0 7 e 0 0 0 0 0
5 15 78 11 ,,27 0 5 10 0 0 0 0 0
5 IS 32' 12 658lI 0 5 II 0 0 0 0 0
5 15 "" 13 '" 0 • 12 0 0 0 0 0
5 IS 30 ,. 405 0 .' 13 0 0 0 0 0
5 IS .,, 15 1178 0 1 •• 0 0 0 0 0
6 1 157 1 3153 0 0 0 0 0 0 0 0
7 27 2' 1 B58 0 0 0 0 0 0 0 0
7 27 157 2 34B8 0 0 0 0 0 0 0 0
7 27 &I 3 '345 0 0 0 0 0 0 0 0
7 27 3D 4 87. 0 0 0 0 0 0 0 0
7 27 31 5 ll84 0 0 0 0 0 0 0 0
7 27 OS 6 1452 0 0 0 0 0 0 0 0

7 27 52 7 1220 0 0 0 0 0 0 0 0
7 V '00 " ,- 0 0 0 0 0 0 0 0
7 27 114 • 22'5 0 0 0 0 0 0 0 0
7 27 16 •0 81• 0 0 0 0 0 0 0 0
7 27 54 " 1611-4 0 0 0 0 0 0 0 D

7 27 12' 12 2385 0 D 0 0 D 0 D D

7 27 75 13 '48. 0 0 D 0 D 0 D D

7 27 2
"

761 0 0 D 0 0 0 0 D

7 27 53 IS .51 0 5 6 <I D 0 D D

7 ,21 66 15 .oel 0 13 ,. D D 0 0 0
1 21 81 17 8\2 0 ,. 12 0 0 0 0 0

7 21 .2 18 210 0 11 11 0 0 0 0 0
7 27 •• I. 47' 0 I. 10 D D 0 D 0
7 21 7. 20 003 0 • ,. 0 D D D 0
7 27 33 2\ 552 D B 20 D D 0 D 0

7 21 122 22 1515 0 21i 7 0 0 0 0 0
7 21 10 23 431 0 '5 22 0 0 0 0 0

7 27 113 2' 1;16' 0 • 23 0 0 D 0 D

7 27
"

25 62 0 2. 3 0 <I 0 0 D

7 27 47 26 0;17 0 25 2 0 0 D 0 0

7 27 B2 21 1139 0 1 Zfl 0 0 D 0 0

B , B I 709 D 0 0 0 0 0 <l 0

0 1 260 , 3BS6 0 0 0 0 0 0 0 0

'0 IS 20 1 858 0 0 0 0 0 0 0 0

.0 !5 .11 , 04S7Q 0 0 0 0 0 0 0 0

'0 IS 33 3 Bll2 0 0 0 0 0 0 0 0

'0 IS 138 • 2'00 0 0 0 0 0 0 0 0

'0 " '8 5 .... 0 0 0 0 0 0 0 0

10 .s 73 6 '266 0 0 0 0 0 0 0 0

10 '5 5 7 '264 0 0 0 0 0 0 0 0

'0 .S 3\ 8 137· 0 0 0 0 0 0 0 0

'0 .5 113 • 2301 0 7 B 0 0 0 0 0

'0 ,s 123 '0 '9;16 0 • 6 0 0 0 0 0

'0 '5 '30 11 '953 0 5 '0 0 0 0 0 0

10 IS 55 12 87< 0 • II 0 0 0 0 0

10 '5 36 13 :167 0 '2 3 0 0 0 0 0

10 15 53 .. 183J 0 '3 2 0 0 0 D D

10 .5 ,74 IS 419S " I •• 0 0 " 0 D

11 • 42 , lJlli! " 0 0 0 0 0 0 D

12 • 257 \ 37,40 D 0 0 0 0 D 0 D

0 13 0 1 6,'08 0 0 0 0 0 0 0 0

0 13 0 2 6,108 0 0 0 0 0 0 0 0

D .3 0 3 6.00 0 0 0 0 0 0 D 0

D '3 0 4 .,00 0 0 D 0 <I 0 D 0

D 13 D 5 ••oe 0 D 0 0 0 0 D 0

0 13 D '. •• 00 0 D 0 0 0 0 0 0

0 13 D 7 8.00 0 0 0 0 0 0 0 0

0 '3 0 8 6'06 0 0 0 0 0 0 0 0

0 .3 D 0 .,06 0 0 0 0 0 0 0 0

0 13 0 .0 6106 0 D 0 0 0 0 0 0

0 13 0 " 6106 0 D 0 D 0 0 D 0

0 13 0 12 .,00 0 0 0 0 I) 0 0 0

0 13 0 13 8106 0 0 0 0 I) 0 0 41



Table A. 11: Summary Rill Natwork 'Dala lor Ihe UK (T2V2.CHN)
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T.R. T.S.
'0 .. (T.R.o Total_ .. _. T.S.• TotalN...-ol S<.<loi>ocl)

NUft"i>or To.... _otNull'bof N_ol
oIRm 01_ Bran. ColI 01 e..- tntem"UCe1I Upslf...._N'-O

, , .'. • 1156 0 0 0 0 0 e 0 0
2 17 2 1 766 0 0 0 0 0 e 0 0
2 '7 5 2 7~ 0 0 0 0 0 e 0 0
2 17 65 3 1337 0 0 0 0 0 0 0 0
2 17 221 • 3831 0 0 0 0 0 0 0 0
2 17 22 5 lISt 0 0 0 0 0 e 0 0
2 17 237 6 360. 0 0 0 0 0 0 0 0
2 17 .41 7 1.33 0 0 G 0 0 {) 0 0
2 17 It' 6 .= 0 0 0 0 0 0 0 •
2 17 151 • 3342 0 0 0 0 0 0 0 •2 17 130 10 3303 0 6 • • • 0 0 0
2 17 .oa 11 1701 0 10 7 0 • 0 0 0
2 17 139 12 2'~78 0 • Il 0 0 0 0 0
2 17 <2 13 IOJ. 0 12 5 0 0 0 0 0
2 .7 •• 14 :2:043 0 • 13 0 0 • 0 0
2 .7 5. l' 17'68 0 3 .. 0 0 0 0 0
2 17 M ,. 543 0 15 2 0 0 0 0 0
2 .7 14 17 ~J2 0 \. 1 0 0 0 • 0
3 3 116 • 1701 0 0 0 0 0 0 0 0
3 3 • 2 ••• 0 0 0 0 0 0 • 0
3 3 2. 3 260 0 , 2 0 0 0 0 0

• 7 2 • n. 0 • 0 0 0 0 0 0

• 7 .2 2 89' 0 0 0 0 0 0 0 0

• 7 .2 3 1406 0 0 0 0 0 0 0 •• 7 '.8 • 3095 0 0 0 0 0 0 • 0,

• 7 26 • .92 0 3 • 0 0 • • •• 7 '66 6 2...12 0 2 • 0 • • • 0

• 7 2. 7 203 0 • I 0 • • • 0

• 21 so , 12'13 0 0 0 0 0 0 0 •• 21 2' 2 .7. 0 0 0 0 0 0 0 0
5 21 161 3 2_ 0 0 0 0 0 0 0 0

• 21 '2' • 2420 0 0 0 0 0 0 0 0

• 21 '99 • 2837 0 0 0 0 0 0 0 0

• .. eo • 2035 0 0 0 0 0 0 0 0
5 2' 116 7 2122 0 0 0 0 0 0 0 0

• 21 .17 • 2166 0 0 0 • 0 0 0 0

• 2'
,.

9 7~ 0 0 0 0 0 0 0 0
5 21 .. '0 '1961 0 0 0 • 0 0 0 •• .. 71 11 1422 0 0 0 0 0 0 0 0

• 21 78 '2 669 0 7 6 0 0 0 0 0

• 21 20 '3 '29 0 I. 11 0 0 0 0 0

• 2\ 163 ,. 11895 0 • 12 0 0 0 0 0

• 2' .7 l' 1006 0 • 03 0 0 0 0 0
5 21 1'2 l' 1936 0 14 3 0 0 0 0 0

• 21 257 1:1 3557 0 • l' 0 • • 0 0
5 2' Il. 16 12'6 • 17 • • 0 • 0 0

• 2' 18 ,. 15. • 16 16 • 0 • • 0
5 21 125 2. 1234 0 •• 2 0 • 0 • •
5 2' 15. 21 2247 0 20 , • 0 0 0 0
6 17 16 1 766 0 0 • 0 0 0 0 e
• 17 23 2 ",,2 0 0 0 • 0 0 • •• 17 ,. 3 M6 0 0 0 0 0 0 0 •
6 17 54 • 1310 0 0 0 0 0 • • 0
6 1,7 122 5 244' 0 0 0 0 0 • 0 0
6 17 21 • 1351 0 0 0 • • 0 0 0
6 17 72 7 2092 0 • 0 0 0 • 0 0
6 17 5:2 6 ,g'", 0 • 0 0 0 0 0 0

• 17 • 9 7•• " 0 0 " " 0 0 0

" 17 70 10 12'12 0 • 5 0 0 0 • 0
6 '7 '2 11 1242 0 • 9 0 0 0 0 0
6 17 "' I., 1663 0 7 II 0 • • 0 0

• 17 • 13 3' 0 • '2 0 0 0 0 0
6 17 241 .. .292 0 3 '3 0 • • • •• ,., '« 15 3187 0 14 to 0 • 0 • 0
6 \7 8' '8 12" 0 2 15 0 0 0 0 0

'. 17 2' 17 '66 0 I I. 0 0 0 • 0
7 3 2" 1 3623 0 0 0 0 0 0 0 0
7 3 190 , 4615 0 0 0 0 0 0 0 0
7 3 '36 3 1281 0 I 2 0 • 0 0 0

• 3 20 \ ... 0 0 0 0 0 0 0 0

• 3 53 2 1386 0 0 0 0 0 • 0 0

• 3 33 3 17,. • I 2 0 0 0 0 0
9 15 39 ,

"22 0 0 0 0 0 0 0 0

• IS Hl:J 2 297. 0 0 0 0 0 0 • 0

• l5 59 3 11192 0 • • • 0 0 0 0

• l5 2' • ... 0 0 0 0 0 0 0 0

• '6 20' • 62S1 0 0 0 0 0 0 0 0
9 IS ,.. , 2022 0 • 0 0 • 0 0 0

• .. 170 7 04150 0 0 0 0 0 0 0 0

• 15 19,5< • 3739 • 0 0 0 0 0 0 0

• 16 120 0 2.c.Q2 0 • 5 0 0 0 0 0

• IS 1" ,. 0 •• 0 7 8 • 0 0 0 0

• '5 '7S n 2233 0 6 10 0 0 0 0 0

• IS 67 '12 S!;3 0 11 3 0 0 0 0 0.. ,. 133 .3 2098 0 12 " 0 0 0 0 0.. " M " ,21D 0 2 13 0 0 0 0 0.' 'IS 66 •• 1355 0 .. t 0 0 0 0 0
10 , 204 1 '35,35 0 0 0 0 0 0 0 0
0 11 <> I BU4 0 0 0 0 e 0 0 0
0 11 0 2 67" <> 0 0 0 0 0 0 0
0 II 0 3 !71~ 0 0 0 0 0 0 0 0
0 II 0 • 671.4 0 0 0 0 0 0 • 0
0 II 0 S 67104 0 0 • 0 • 0 0 0
0 II 0 • 6n. 0 0 0 0 0 0 0 0
0 11 0 , 8714 0 0 0 0 0 0 0 0
0 II 0 , 67'04 0 0 0 0 0 0 0 0
0 II 0 • 67'" 0 0 0 0 • 0 0 0

• 11 0 '0 671A 0 0 0 0 0 0 0 0
0 11 0 " 6114 0 0 0 0 0 0 0 0



Table A. 12: Summary Rill Network Data for the UK (T3V2.CHN) 108

T.R. T.S.
12 75 [LR. ~ Total Number 01 R~ls, T.S. ~ Tolal Number of Subshed)

Number Total II Number 01 Number Numoorol
01 Rill 01 Branch Bran. Cell 01 Branch Interllll Cell Upstream Branch NumbeIS

1 1 92 1 1641 0 0 0 0 0 0 0 0
2 19 309 1 5069 0 0 0 0 0 0 0 0
2 19 525 2 7747 0 0 0 0 0 0 0 0
2 19 6 3 1019 0 0 0 0 0 {) 0 0
2 19 25 4 1177 0 0 0 0 0 0 0 0
2 19 204 5 3630 0 0 0 0 0 0 0 0
2 19 25 6 1167 0 0 0 0 0 0 0 0
2 19 54 7 1552 0 0 0 0 0 0 0 0
2 19 22 8 1232 0 0 0 0 0 0 0 0
2 HI 272 9 5176 0 0 0 0 0 0 0 0
2 19 4 10 1243 0 0 0 0 0 0 0 0
2 19 359 11 4901 0 6 7 0 0 0 0 0
2 19 69 12 327 0 9 10 0 0 0 0 0
2 19 116 13 1810 0 4 11 0 0 0 0 0
2 19' 38 14 217 0 12 8 0 0 0 0 0
2 19 171 15 2964 0 2 13 0 0 0 0 0
2 19 175 16 173'1 0 14 5 0 0 0 0 0
2 19 122 17 1852 0 16 3 0 0 0 0 0
2 19 33 18 328 0 15 17 0 0 0 0 0
2 19 86 19 1482 0 18 1 0 () 0 0 0
3 1 36 I 1387 0 0 0 0 0 0 0 0
4 3 72 1 1972 0 0 0 0 0 0 0 0
4 3 55 2 1623 0 0 0 0 0 0 0 0
4 3 27 3 407 0 1 2 0 0 0 0 0
5 3 126 1 3185 0 0 0 0 0 0 0 0
5 3 18 2 1126 0 0 0 0 0 0 0 0
5 3 153 3 2022 0 1 2 0 0 0 0 0
6 1 58 1 1419 0 0 0 0 0 0 0 0
7 7 564 1 9169 0 0 0 0 0 0 0 0
7 7 386 2 6522 0 0 0 0 0 0 0 0
7 7 32 3 1397 0 0 0 0 0 0 0 0
7 7 34 4 1541 0 0 0 0 0 0 0 0
7 7 277 5 2874 0 3 4 0 0 0 0 0
7 7 259 6 3766 0 5 2 0 0 0 0 0
7 7 208 7 1757 0 1 6 0 0 0 0 0
8 9 126 1 3648 0 0 0 0 0 0 0 0
8 9 226 2 5441 0 0 0 0 0 0 0 0
8 9 204 3 3852 0 0 0 {) 0 0 0 0
8 9 23 4 1196 0 0 0 0 0 0 0 0
8 9 174 5 4647 0 0 0 0 0 0 0 0
8 9 239 6 3849 0 4 5 0 0 0 0 0
8 9 178 7 2068 0 3 6 a 0 0 0 a
B 9 205 8 3625 a 7 2 0 0 0 0 0
8 9 26 9 864 0 1 8 0 0 0 0 0
9 5 83 I 1752 0 0 0 0 0 0 0 0
9 5 105 2 1731 0 0 0 0 0 0 0 0
9 5 383 3 5782 0 0 0 0 0 0 0 0
9 5 243 4 2634 0 2 3 0 0 0 0 0
9 5 174 5 2016 0 4 1 0 0 0 0 0
10 1 74 1 1674 0 0 0 a 0 0 0 0
II 11 67 1 1321 0 0 0 0 0 0 0 0
11 11 15 2 1146 0 0 0 0 0 0 0 0
11 11 15 3 1525 0 0 0 0 0 0 0 0
11 11 36 4 1108 0 0 0 0 0 0 0 0
11 II 16 5 1311 0 0 0 0 0 0 0 0
11 II 80 6 2618 0 0 0 0 0 0 0 0
11 11 118 7 1772 0 5 6 0 0 0 0 0
11 11 65 8 687 0 7 4 0 0 0 0 0
11 11 139 9 2329 0 3 8 0 0 0 0 0

11 11 153 10 2348 0 9 2 0 0 0 0 0

'\1 II 284 11 4258 0 10 1 0 0 0 0 0

12 1 169 \ 23112 0 0 0 0 0 0 0 0
0 13 0 1 6420 0 0 0 0 0 0 0 0

0 13 0 2 6420 0 0 0 0 0 0 0 0

0 13 0 3 6420 0 0 0 0 a a 0 0

0 13 0 4 6420 0 0 0 0 0 0 0 0

0 13 0 5 5420 0 0 0 0 0 0 0 0

0 13 0 6 5420 0 0 0 0 0 0 0 0

0 13 0 7 5420 0 0 0 0 0 0 0 0

0 13 0 8 5420 0 0 0 0 0 0 0 ()

0 13 0 9 5420 0 0 0 0 0 0 0 ()

0 13 0 10 5420 0 0 0 0 0 0 0 0

0 13 0 11 5420 0 0 0 0 0 0 0 0

0 13 0 12 5420 0 0 0 0 0 0 0 0

0 13 0 13 5420 0 0 0 0 0 0 0 0



Summary Rill Network Data for the OSU Data

109



Table A. 13: Summary Rill Network Data for the OSU Erosion Study(AAA.CHN)

T.R. T.S.
2 13 (T.R. =Total Number of Rills, T.S. =Total Number of Subshed)

Number Total # Number of Number Number of
of Rill of Branch Bran. Cell of Branch Interrill Cell Upstream Branch Numbers

1 3 23 1 11992 0 0 0 0 0 0 0 0
1 3 50 2 13374 0 0 0 0 0 0 0 0
1 3 34 3 1268 0 1 2 0 0 0 0 0
2 9 39 1 12200 0 0 0 0 0 0 0 0
2 9 11 2 9952 0 0 0 0 0 0 0 0
2 9 392 3 23921 0 0 0 0 0 0 0 0
2 9 146 4 30615 0 0 0 0 0 0 0 0
2 9 96 5 9625 0 0 0 0 0 0 0 0
2 9 27 6 4987 0 4 5 0 0 0 0 0
2 9 610 7 24355 0 6 3 0 0 0 0 0
2 9 303 8 23997 0 2 7 0 0 0 0 0
2 9 142 9 10109 0 1 8 0 0 0 0 0
0 1 0 1 20032 0 0 0 0 0 0 0 0

..........
o



Table A. 14: Summary Rill Network Data for the OSU (ABA.CHN)

T.R. TS.
3 10 (T.R. = Total Number of Rills, T.S. == Total Number of SUbshed)

Number Total # Number of Number Number of
of Rill of Branch Bran. Cell of Branch Interrill Cell Upstream Branch Numbers

1 3 25 1 9089 0 0 0 0 0 0 0 0
1 3 12 2 8611 0 0 0 0 0 0 0 0
1 3 174 3 8573 0 1 2 0 0 0 0 0
2 1 88 1 9934 0 0 0 0 0 0 0 0
3 5 582 1 14531 0 0 0 0 0 0 0 0
3 5 312 2 21817 0 0 0 0 0 0 0 0
3 5 385 3 25764 0 0 0 0 0 0 0 0
3 5 462 4 20724 0 2 3 0 0 0 0 0
3 5 203 5 2878 0 4 1 0 0 0 0 0
0 1 0 1 26286 0 0 0 0 0 0 0 0

---

1



Table A. 15: Summary Rill Network Data for the OSU (ACA.CHN)

T.R. T.S.
2 11 (T.R. = Total Number of Rills, T.S. = Total Number of Subshed)

Number Total # Number of Number Number of
of Rill of Branch Bran. Cell of Branch Interrlll Cell Upstream Branch Numbers

1 1 214 1 26791 0 0 0 0 0 0 0 0
2 9 117 1 22075 0 0 0 0 0 0 0 0
2 9 45 2 10330 0 0 0 0 0 0 0 0
2 9 67 3 18443 0 0 0 0 0 0 0 0
2 9 284 4 22662 0 0 0 0 0 0 0 0
2 9 69 5 22863 0 0 0 0 0 0 0 0
2 9 495 6 29355 0 4 5 0 0 0 0 0
2 9 75 7 3290 0 6 3 0 0 0 0 0
2 9 83 8 8462 0 2 7 0 0 0 0 0
2 9 432 9 31861 0 8 1 0 0 0 0 0
0 1 0 1 6571 0 0 0 0 0 0 0 0

--N
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C Program Code For Calculating Random Roughness
for the UK Plot Data
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#indude <stdio.h>
'include <corno.h>
#include <stdlib.h>
lIinclude <string.h>
Ninclude <process.h>
lIinclude <ermo.h>
#include <math.h>
#mclude <time.h>
#include <dos.h>
#include <como.h>

#rleflne XMAX 353
Nrleflne YMAX 37
#defme CRT 0.0000765
#deflne CEF 1

FILE *ifp, *ofp, *sfp, *ifpx, *ifpy, *ifpz,*ifff;

void mamO

{

int ij,k,zdata(40] [400],id;
float xdata[400],ydata(40];
double xmean,zmean[40],xsum,zsum[400].xzsum[400],xxsum,c,rr;
double a[4D],b[40],delz[40],zsqsum[40],zsq(4D),rrsq,xmx,zmz[40];
char xjile[20],y_fiJe[20], z_file[20],I~ne(10];

ifp = fopen("xdata.out","w");
ofp = fopen("ydata.out","w");
sfp = fopen("zdata.out","w");
ifff= fopen("reg ..out","w");

Ilprintf("Enter X file name !'o'o");
/Iscanf("o/e>s" ,x_file);
//ifpx= fopen(xjile,"r");

ifpx= fopen("RMX.ELE","r"); 1* read X data FrLE */
if(ifpx== NULLH
printf("X data file <%s> not find!\n",xJile);
exiteD);
}

/lprint~("Enter Y file name !\n\n");
/lscanW%s",y_file);

ifpy= fopenCRMY.ELE",."r"); /* read Y data file *1
if(ifpy== NULL){
printf("Y data file not find!\n");
exiteD);
}
printf("\nPlease Enter Z Data File Name !\n\n");
scanf("%s", z_file);
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ifpz= fopeDCzjile:r")~ /. read Z data file */
II ifpz= fopenC"RMT2V2A.ELE","r"); /. read Z data file ./

ifCifpz= NULL){
printfC"Z data file not flDdl\n");
exit(O);
}

1* read x,y,z data files."I
xsum =0;

for (i=O;i<XMAX;i++){
fscanf(ifpx,"%f' ,&xdata[i]); /* get x data ·1

// printfC"i=%d, xdata=%d\n" ,i,xdata[i));
fprintfCifp,"%f\n", xdatafi]);
xsum += xdatali],;

xmean= xsum I (i+l);
}

/I printfC"i=%d, xmean=%f\n" .i,xmean)~
for Ci=O;i<YMAX;i++){

fscanf(ifpy:%d",&ydata[i))~ /* get y data */
/1 printf("i=%d, ydata=%d\n" ,i,ydata[iD;

fprintf(ofp,"%d\n", ydata(i]);
}

for (i=D;i.<YMAX;i++){
zsum[i] =D;
if (i>O){

fscanfCifpz,"%d" ,&id);
// printf("id=%d\n" ,id);

}
for (j=Oj<XMAX;j++){

fscanf(ifpz,"%d\&zdata[i][j]); ,. get z data ./
1/ printf("i=%dj=%d, zdata=%d\n",ij, zdata[i][j]);

fprintf(sfp."%d\n". zdata[i][j])~

zsum[i] += zdata[i][j];
zmean[i]=zsum[i]/(j+1);

}
1/ printf("i=%d,zmean[%d]=%f\n" ,i,i, zmean{i});

}

/* regression */

for (i=O;i<YMAX;i++){
xzsum[i] =0;
xxsum =();

for (j=O;j<XMAX;j++){
xmx=xdata[j] -Kmean;
zmz[i]=Zdata[i][j]-zmean[i];
xzsum[i] += xmx·zmz[i];
xxsum += xmx·xmx;
}
b[i]=xzsum[i]/xxsum;
a[i]=zmean[ i}-b[i]*xmean;

/I printf("i=%d,a=% 13.5f,b=%l3.5f\n" ,i,a[i],b[i]);
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fprintf(ifff:%da=%13.5f b=% B.Sf zmean=%f\n", i,a[i),b[i),zmean[i]);
}

/* calculation for RR.*/
rrsq=O;

for (i=O;i<YMAX;i++){
zsqswn[i]=O;

for (j=O;j<XMAX;j++-){
delz[i] = (zdata[i][j]-b[Wxdata[j]-a[i])*CEF;

/I printf("i=%d,delz=%f\n",i,delz[i]);
zsq[iJ] = delz[Wdelz[i);

/I prmtfC"i=%d,zsq=%f\n",i,zsq[i]);
zsqsum[i) +=zsq[i)~

If printf("i=%d,zsqsum[i]=%t\n",i,zsqsum[i]);
}
rrsq +=zsqsum[i);

1/ plfintf("i=%d,RRSQ=%t\n" ,i,rrsq);
c=CRT*rrsq;
rr=sqrt(c);

}
printf("\nc=%f\n",c);
printf("'\nRRSQ=%t\n" ,rrsq);
printf("\nRR=%f for <%s>.\n"p, zjile);
fprintf(ifff,"\nRandom Roughness RR=% 13.5f in Data File <%s>\n", rr, zjile);
fclose(ifft);
fclose(ifp);
fclose(ofp);
fclose(sfp);
fclose(ifpx);
fc1ose(ifpy);
fclose(ifpz);
printf("\n........Programm is nonnal stop, Thank You! ......\n·);

}
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C Program Code for Calculating Random Roughness for
the OSU Erosion Table Data
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#include <stdio.h>
#include <stdhb.h>
#include <string.h>
#include <ermo.h>
#include <math.h>
'#include <time.h>

#defme XMAX 1000
#defme YMAX 220
#define CRT 0.00000455
#defme CEF 1
FILE ·ifp, ·ofp, +sfp, ·ifpx, *ifpy, *ifpz,·jjfff;

void mainO

{

int ij,k,id;
float xdata[ lOOO],zdata,1220][ lOOO],ydata[220L
double xmean,zmeanI220],xsum,zsum[IOOO],xzsum[IOOO],xxsum,c,rr;
double a[220] ,1:>[220],delz[220],zsqsum[220],zsq[220] ,rrsq,xmx,zmz[220];
char xjile[20];y_file[20J, z'-:file[20],lineI80];

ilfp = fopen("xosu.out" ,"w");
ofp = fopen("yosu.out" ,"w");
sfp = fopen("zosu.out" ,"w");
ifff= fopenC'reosu.out",Ow");

1+ printf("Enter X file name l\n\n");
scanf("'%s" ,xjile);
ifpx= fopen(xji.le,"r"); ·1
ifpx= fopen("osunx ..dat" ,"r"); 1+ read X data FILE +1

if(ifpx== NULL){
printf("X data file <%s> not find'! \nil ,x_file);
exit(O);
}

1* printf("Enter Y file name !\n\n");
scanf("%s",yjile); ·1

ilfpy= fopen("osuny.dat"',"r"); It read Y data file ·1
if(ifpy== NULL){
printf("Y data file not findl\n");
exit(O);
}

/. printf("\nPlease Enter Z Data File Name!\n\n"); ./
/+ scanf("'%s", z_file); +/
/+ ifpz= fopen(zjile,"r"); read Z data file +/

ifpz= fopen("aca.xyz","r"); /+ read Z data file +/
ifOfpz== NULL){
printf("Z data file not fmd!\n");
exit(O);
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}
/. read x,y.,z data meso*'

xsum =O~

for (i=O;i<XMAX;ii++){
fscanf(ifpx,"%f" ,&xdata[i]); /* get x data */

/. printf("i=%d, xdata=%d\n",i,xdata[i]); */
fprintf(ifp."%t\n". xdatafi]);
xsum += xdata[i];

xmean= xsum / (i+l);
}

/* printf("i=%d. xmean=%t\n",i.xmean); *'
for (i:::;();i<YMAX;i++){

fscanf(ifpy,."%d",&ydata[i]); /* get y data*''* printf("i=%d. ydata=%d\n",i.ydata[i]); */
fprintf(ofp,"%d\n" • ydata[i]);
}

for (i.=O;i<YMAX;i++){
zsum[i] =0;
if (i>O){

fscanf(ifpz:%d",&id);
/* printf("id=%d\n" ,id); *'

}
for (j=O;j<XMAX;j-H){

fscanf(ifpz,"%f",&zdata[i][jD; /* g,et z data */
/* printf("i=%dj=%d, zdata=%d\n",ij, zdata[iJ[j]); */

fprintf(sfp:%d\n", zdata[i][j]);
zsum[i) += zdata[i][j];

zmean[iJ=zsum[i]/G+l);
} '* printf("i=%d,zmean[%d]=%t\n",i,i, zmean[i)); */

}

'* regression *'
for (i=O;i<YMAX;i-H){

xzsum[i] =0;
xxsum =0;

for (j=Oj<XMAX;j-H){
xmx=xdata[j]-xmean;
zmz[i]=zdata.[i] [j]-zmean[i];;
xzsum(i] += xmx*zmz[iJ;
xxsum += xmx*xmx;
}
b[i]=xzsum[ij/xxs\llm;
a[i]=zmean[i]-b[i)*xmean;

/* printf("i=%d,a=%13.5f,b=% 13 .5t\n" .i,a[i],b[i)); */
fprintf(ifff. "%d a=% 13.5f b=% l35f zme.an=%t\n", i.arq.b[i],zmean[i));

'* calculation for RR.*'
rrsCjj=O;

for (i=O;i<YMAX;i++){
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}

zsqsum[i]=O;
for (j=Oj<XMAX~++){

delz[i] = (zdata[i]U}-b[ij-xdatam-a[i])·CEF;
,. printf(" i=%d,deIz=%t\n",i,delz{i]); .,

zsq[i] = delz(ill·de1z[i];
,. printf("i=%d,zsq=%t\n" ,i,zsq[i)); .,

zsqsum[i] +=zsq[i];
,. printf(" i=%d,zsqsum[i]=%fu1" ,i,zsqsum[i)); .,

}
rrsq +=zsqsum[i];

,. printf("i=%d,RRSQ=%f\n",i,rrsq);·/
c=CRPrrsq;
n=sqrt(c);

}
printfC"'nc=%fIn" ,0);
printf(·\nRRSQ=%t\n",rrsq);
printfC"\nRR=%f for <%s>.\n",rr, zJile);
fprintfCiffC,"\nRandom Roughness RR=% l3.5f in Data File <%s>\n", IT, z_file);
fclose(ifff);
fc1ose(ifp) ;
fclose(ofp);
fclose(sfp);
fclose(ifpx);
fclose(ifpy);
fclose(ifpz);
printf("\n.. • .... ·Progranun is normal stop, Thank You! ......\n·);
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#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXl 215160

int main (arqc,argv)
int arqc;
char *argv[];
{

FILE *infp/*outfpi
char token[20];
double number;
int i, j, k,n=O;

infp=fopen (argv [1] , .. r") ;
outfp=fopen (arqv[2], "will;

for (k=O; k<222; k++) {
fprintf (outfp, "0 ");
I
fprintf(outfp,"\n9999 "');

for(i=O; i < MAXli i++) (
fscanf Iinfp, "%S", token) ;
fscanflinfp,"%s"/token);
fscanflinfp, "%s",token);
number=atof(token);
n++;
fprintfloutfp, U%d ", (int) number) ;

ifln==220) [
fprintf(outfp,"9999 \n 9999 ");
n=O;

for (k=O; k<222; k++) (
fprintf(outfp,"9999 ");
)
fprintf(outfp, "\n");

fclose {infp) ;
fclose(outfp);
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Table C.l: Total Link Length Probability Density Function Estimated Parameters for
the UK Data

ID Normal Log-Normal Extreme Value I
Name

Standard i StandardMean I Mean Alpha Beta
(m) Deviation Deviation

(m)

SIR2 4.57 3.12 1.22 0.89 2.43 3.17

S2R2 3.99 3.85 0.93 1.05 3.00 2,.26

S3R2 3.51 2.52 I 0.89 0.97 1.96 2.37

8182 3.96 3.41 0.97 1.04 2.66 2.43

82S2 4.03 3.82 0.82 1.32 2.98 2.30

S3S2 4.32 3.45 0.92 1.35 2.69 2.77 I

, T1R2 3.55 2.90 0.79 1.25 2.26 2.24i

T2R2 2.63 2.55 0.51 1.13 1.99 1.48

T3R2 2.53 2.40 1.19 1.09 1.87 1.45

T1V2 2.85 2.78 0.58 1.06 2.17 1.60
I

0.48 1.11 1.42 1.63
I T2V2 2.45 1.82

T3V2 3.55 3.16 0.82 1.03 2.47 2.13
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Table C.2: Exterior Link Length Probability Density Function Estimated Parameters
for the UK Data

ill Normal Log-Normal Extreme Value I
,,,

Name
Mean Standard Standard AlphaMean Beta

[

(m) Deviation Deviation
I

(m)

SIRl 5.05 3.44
,

1.29 0.99 2.69 3.50,
i

S2R2 4.55 4.42 1.00 I 1.14 3.45 2.56I

S3R2 3.63 2.67 0.96 0.84 2.08 2.43
[

S1S2 4.00 3.73 0.93 1.12 2.90 2.32I

S282 4.36 4.52 0.70 1.59 3.52 2.33

S3S2 3.71 2.80 0.83 1.24 2.19 2.45

TIR2 3.10 2.71 0.64 1.30 2.11 1.88

T2R2 2.30 2.68 0.27 1.22 I 2.09 1.09

T3R2 2.77 2.88 0.44 I 1.21 I 2.25 1.47

T1V2 2.88 2.82 0.51 1.20 2.20 1.61

T2V2 2.39 1.96 0.35 ! 1.25 1.53 LSI

T3V2 3.26 3.65 0.59 1.14 2.84 1.62
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Table C.3: Interior Link Length Probability Density Function Estimated Parameters
for the UK Data

I

ID Normal I Log-Normal Extreme Value II

Name
Mean Standard Standard AlphaMean Beta
(m) Deviation Deviation

(m)

SlR2 3.79 2.44 1.12 0.72 1.90 2.69

S2R2 3.17 2.72 0.82 0.92 2.12 1.95

S3R2 I 3.31 2.34 0.79 1.08 1.82 2.26

S1S2 I 3.91 2.98 1.02 0.93 2.32 2.57 ' I

S2S2 3.56 2.63 0.99 0.81 I' 2.05 2.38

S3S2 5.30 4.23 1.06 1.55 I 3.30 3.40

TIR2 4.14 3.10 0.98
I

1.]8 \
2.42 2.74, II

I

I
I I

T2R2 3.06 2.34 0.82 0.94
I

1.83 I 2.00

T3R2 2.21 1.5 ] 0.48 0.92 l.18 1.53

TIV2 2.81 2.77 0.68 0.86 2.16 1.56

T2V2 I 2.52 1.66 0.63 [ 0.90 1.29 I 1.78
I

I

I
1.77 2.96T3V2 3.98 I 2.27 1.16 0.76
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Figure D.4: Residual of Total Link Area for the UK Data
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