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CHAPTER I

INTRODUCTION

This thesis describes the design of a system that can distinguish

between bare soil and live vegetation, and dispense a fluid onto the

vegetation from a moving vehicle. Such a system would be useful to

growers for detecting and applying he·rbicide to weeds in a field.

During times of the year when there are no crops in a field, growers

must control weeds because they deplete the soil of moisture and

nutrients. A typical weed, such as bindweed (Convolvulus arvensis),

spreads very quickly and can easily grow out of control. The

traditional method of controlling such weeds is to drive a vehicle with

a spray boom attached across a field and spray the entire field with

herbicide. The spray boom used for this operation has several spray

nozzles along its length which continuously dispense the chemical. If

weeds cover only a small fraction of the field, then spraying the

entire field is very wasteful of the expensive herbicide. In this

situation, a system. that would selectively spray only the weeds and not

all the soil would be very useful. This is also a much more

environmentally-sound solution, since much less of the herbicide would

be released into the soil and air. Such a system requires a method of

detecting the location of the weeds.

The objective of the system presented in this thesis is to

provide a solution to the weed detection problem, and to implement the

solution in a working sprayer system. As with the traditional spraying

method, sprayers attached to a vehicle pass over the field. Here,

however, each spray nozzle is controlled (turned on and off) by a

computer that obtains information from a sensor.

As a sprayer unit passes over the field, the computer repeatedly

receives information from a sensor that measures the spectral
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characteristics of energy reflected from the ground surface. The

sensor is sensitive to reflected energy in three wavelength bands.

These bands are located roughly in the red, green, and near infrared

regions of the electromagnetic spectrum. Using this spectral

information, the computer program determines whether or not a plant is

present within the viewing area on the ground under the sensor and

turns a spray nozzle on or off accordingly in order to spray any

detected vegetation.

Several methods to detect green vegetation based on spectral

measurements of reflected radiation have been used in the past.

Several studies, as discussed in Chapter II, suggest that reflected

radiation levels in the red and near infrared wavelength bands are

useful in plant detection. Some of these studies utilize simple

formulas, called vegetation indices, involving these two quantities to

detect vegetation. Since, for the system developed here, we wish to

include the green portion of the spectrum to provide additional

information and possibly improve performance over other systems not

utilizing it, the vegetation indices involving red and near infrared

are not employed. Another reason that the indices are not used here is

that the application of a neural network to the problem was desired, as

discussed below.

The system described in this thesis applies a mathematical

construct called a neural network to the weed detection problem. In

the application of a neural network, the system designer need not know

the relationship between the input variables and the output variables.

That is, we do not need to know the specific way in which the red,

green, and near infrared reflected radiation levels vary with plant

cover to apply a neural network to the problem. The neural network

discovers the relationship during its training and the designer need

only be concerned with the inputs and the outputs of the network.
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Another reason for using a neural network in this application is that

this research establishes methods that may be us·ed in future work where

more complex input data is analyzed. This future work may include

developing ways to distinguish between weeds and regular crops.

A selective weed spraying system is useful in areas other than

agriculture. For example, the system could be applied to controlling

weeds on railways, roads, and airport surfaces.
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CHAPTER II

PLANT DETECTION LITERATURE REVIEW

Several researchers have studied the detection of live vegetation

using optical techniques. Summarized here are several of the papers on

this work that have proven useful.

Wiegand and Richardson (1992) investigated the relationship

between spectral observations and crop yields in agricultural

landscapes. They found that the radiation reflected from live

vegetation, in certain wavelength bands, contrasts significantly with

that of surrounding materials such as soil and dead vegetation. The

study indicates that such criteria might be useful in plant-det.ecting

equipment.

Felton and McCloy (1992) describe a system called Detectspray,

which is a reflectance-based system that controls the nozzles on a

spray boom to apply pesticide or herbicide only to green vegetation. A

sensor located in front of each nozzle views an area on the ground that

is the same size as the spray pattern of the nozzle. The system relies

on the fact that plants absorb red radiation and reflect well in near

infrared. A detector pointing upward monitors incident solar radiation

in these wavebands. Each sensor detects levels of red and near

infrared reflectance, or radiation being reflected from the surface. A

microprocessor at each sprayer unit calculates the fraction of

radiation in each band that is reflected from the surface and

calculates the ratio of near infrared reflectance to red reflectance.

The computer compares this ratio to a threshold to decide whether a

plant is present in the viewing area or not. Researchers claim that

this system has been tested over a wide range of conditions with great

success and that it can detect three percent green in the field of

view. In other words, the claim is that the system can detect
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vegetation when it covers three percent or more of the sensor viewing

area. Also reported is that, in these tests, the savings in areas

sprayed exceeded 90 percent. The paper indicates that the most

important factor with the system is spray boom stability. This is a

problem because of variation in height of the detectors over rough

terrain. This "influences the size of the field of view and hence the

size of weeds that are detected." Other problems noted are shadowing

and lower reliability during the morning and late afternoon hours.

Shropshire, Von Bargen, and Mortensen (1990) conducted research on

using an optical device for detecting weeds, which they call a

reflectance ratio meter. The system uses photoresistors with optical

filters, in an enclosure aimed at the ground, to detect irradiance in

the red and near infrared bands. Electronic hardware produces a ratio

of the near infrared illumination level to the red level. A range

interval method was devised to successfully identify weed presence from

the reflectance ratio meter.

Nitsch, Von Bargen, Meyer, and Mortensen (1991) studied detection

of weeds by a sensor for automatic control of a sprayer. This group

examined reflectance curves in the 400-900 nm (nanometer) wavelength

interval "to determine the contrast between weeds and other plants,

soils and crop residues." Results showed that "the vegetative index,

NIR/R, and the normalized difference rates, {NIR-R)/(NIR+R) at 800 or

850 ron provided the best method for velvetleaf detection." The study

defines R as a measure of reflectance, or reflected radiation, in the

red wavelength band. NIR is a measure of reflectance in the near

infrared wavelength band. The two NIR bands that proved most useful,

when used in the normalized difference rates calculation, were centered

at 800 and 850 nm.
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CHAPTER III

SYSTEM HARDWARE COMPONENTS

System Overview

The experimental sprayer system described in this thesis is

intended to be driven across a field, and to detect and apply herbicide

to weeds or any other green vegetation, but not to bare soil. The

sprayer system consists of a tractor, a spray boom, five sprayer units,

and a fluid system. The five sprayer units are mounted on the spray

boom on the rear of the tractor, as shown in Figure 3.1.

___ tractor

sprayer units

1\
; spray boom

-----
fluid system

,

J

Figure 3.1: Tractor with spray boom.

Each of the five sprayer units consists of a sensor, computer,

computer housing, spray nozzle, spray nozzle driver, and sprayer arm.

Figure 3.2 shows one sprayer unit. The computer and spray nozzle

driver are located inside the computer housing.
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Figure 3.2: Sprayer unit.

Figure 3.3 shows a block diagram of a sprayer unit. As the

weed sprayer system passes over a field, each sprayer unit

independently detects and targets weeds on the ground.

sensor

sensor readings

spray nozzle
drive current

com uter

s ra nozzle

•

','
':,'~\....

," : of. ~
I • I'

/: ':,0': \

,,

Figure 3.3: Sprayer unit block diagram.
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To accomplish this, the sensor in each unit obtains optical data from

the ground directly below it. The computer in the sprayer tmit

processes this data using a neural network based software algorithm.

If a weed, or other plant, is detected, then the computer activates the

spray nozzle at the appropriate time in order to spray the plant with

herbicide.
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Sensor

Each sprayer unit is equipped with a three-band optical sensor to

obtain information from the ground surface. During operation of the

sprayer system, the sensor passes over the ground and provides

measurements of red, green, and near infrared radiation reflected from

the surface. The computer reads this data for processing. Chapter IV

provides more information on the sensor.
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Computer

A separate microcomputer controls each sprayer unit. The

computer is located inside the computer housing of the sprayer unit, as

described in the Computer Housing section of this chapter. As the

spray,er unit passes over the ground, the computer periodically acquires

red, green, and near infrared reflected radiation readings from the

sensor. The computer processes this data to determine whether or not a

plant is present in the viewing area, and turns the spray nozzle on or

off accordingly at the appropriate time. Chapter VII explains the

algorithm in further detail.

The computer used for data processing in each sprayer unit is the

Dearborn Network Analysis Tool (DNAT) manufactured by Dearborn Group,

Inc. Appendix H provides information on the DNAT microcomputer in

additional to that in this section. The computer is referred to in the

appendix as the CNAT (Chrysler Network Analysis Tool), which is merely

a different name for the same device. The DNAT single board

microcomputer uses a Motorola MC68HCllAO microprocessor as its control

unit and has hardware that facilitates connection to a controller area

network (CAN). The phase of the weed sprayer project described in this

thesis does not utilize this CAN hardware. The computer board also

provides headers with access to most of the pins on the MC68HCI1AO,

supports up to 64 kilobytes of memory, and has an RS-232 serial

communications port. These three features are utilized in this

project. The MC6BHCI1AO contains eight 8-bit analog to digital

converters, three of which are used to read the red, green, and near

infrared reflected radiation measurements from the sensor. The

processor also provides digital outputs that can be controlled from

software, one of which is used to turn the spray nozzle on and off.

The DNAT computer can be programmed using two different methods.

The first programming method is typically used during software
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development and involves download of code by means of a serial (RS-232)

communications link to a PC. The programmer compiles C code on the PC

and sends the resulting Motorola s-record file to the DNAT board using

a terminal program that supports text (ASCII) file transfers. The

computer provides 32 kilobytes of non-volatile static RAM for storing

such programs. The serial communications are controlled by the Buffalo

monitor program residing in the 32 kilobytes of EEPROM (electrically

erasable programmable read only memory), also provided on the board.

The Buffalo monitor program was developed by Motorola to aid in

developing systems based on the MC68HC11AO microprocessor. The second

method of programming the DNAT involves removing the EEPROM from the

board, placing the user program on it with an EEPROM programmer, then

placing the chip back in the DNAT board. This method is useful for

creating stand alone programs that begin execution on power-up_ This

is the method utilized in the sprayer units for field operation.



Computer Housing

The computer housing is part of the sprayer unit, as shown in

Figure 3.2. The housing is a plastic box that encloses the weed

sprayer computer and spray nozzle driver to protect them from water,

dirt, and other contaminants in an outdoor environment. Figure 3.4

shows the contents of the housing, with the housing cover removed.

IFigure 3;.4: Computer housing.
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The housing is mounted to the weed sprayer arm with two bolts.

The power supply wiring to the computer and spray nozzle driver pass

through a connector in the bottom of the housing. The 'wiring from the

spray nozzle driver to the spray nozzle, and from the computer to the

sensor, passes through a grommetted hole in the bottom of the housing.

The cover to the computer housing attaches with eight screws and forms

a water-tight seal using a foam rubber gasket.
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Spray Nozzle

The spray nozzle is part of the sprayer unit. It is an

electrically controlled fluid valve which is located on the rear end of

the sprayer ann as show in Figure 3.2. During weed sprayer operation,

a rubber hose containing a pressurized fluid, such as a herbicide

solution, is connected to the spray nozzle. Application of the proper

electrical signal to the two terminals of the spray nozzle activates a

solenoid, which opens a valve and dispenses the fluid toward the

ground. The spray nozzle requires a 12 volts DC drive to activate, and

draws about 0.7 amps current. The nozzle is closed when no voltage is

applied. Appendix B shows the electrical connections to the spray

nozzle.
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Spray Nozzle Driver

The spray nozzle driver is a part of the sprayer unit and

supplies power to the spray nozzle under control of a digital output

from the weed sprayer computer. The spray nozzle driver is located on

a circuit board that is attached to the computer board J2 header with a

socket. The computer and spray nozzle driver are located in the

computer housing. Figure 3.4 in the Computer Housing section of this

chapter shows the location of the spray nozzle driver in the housing.

Appendix E shows a schematic diagram of the spray nozzle driver.

An IRFD123 P-channel power MOSFET (metal oxide semiconductor field

effect transistor) switches the power (12 volts DC at 0.7 amps) to the

spray nozzle to turn it on and off. A 4N35 opto-isolator drives the

gate of the MOSFET and is itself driven by the digital output PED from

the MC68HCI1AO microprocessor in the weed sprayer computer. The opto

isolator is used to supply greater current to the MOSFET gate than is

available at the computer's digital output, and to protect the computer

from any high voltage transients that may occur as a result of

switching the current on and off to the spray nozzle.
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Sprayer Arm

The sprayer arm is part of the sprayer unit. The arm supports

the sensor, computer housing, and spray nozzle, as shown in Figure 3.2.

The arm of each sprayer unit is attached to the spray boom, as shown in

Figure 3.1. The sprayer arm is 95.4 cm (37.6 in.) in length and is

composed of 3/4 in. (1.9 cm) square steel tubing. The wiring from the

computer housing to the sensor and spray nozzle pass through the

sprayer arm. This serves to hide the wiring from view and to protect

it.
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Fluid System

The fluid system components of the experimental sprayer system

are carried on the spray boom that supports the sprayer units. The

fluid system consists of a pressurized air tank, a pressure regulator,

a fluid tank, and rubber hoses. Figure 3.1 shows the location of these

components, with the exception of the pressure regulator. The pressure

regulator is located in-line between the pressurized air tank and the

fluid tank. The pressure regulator serves to supply a constant

pressure to the fluid tank. The fluid tank holds a herbicide solution,

or water during testing, and supplies pressurized fluid to the sprayer

units through rubber hoses. Each sprayer unit dispenses the fluid when

it activates its spray nozzle.

The pressure regulator was set to supply a constant 25 pounds per

square inch of pressure to the fluid system for-most sprayer operations

during the course of this project. The pressure at each spray nozzle

affects the time required for the fluid to travel from the spray nozzle

to the ground when the nozzle is activated. This affects the weed

sprayer timing, and thus the ability of the unit to target plants

detected on the ground.
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Tractor

The tractor is used to carry the spray boom, to which the sprayer

units are attached. The engine of the tractor is computer controlled

and can be driven at nearly constant speed across a field in order to

operate the weed sprayer system. The tractor provides a digital

display of engine RPM., which allows the required speed to be repeated.

Figure 3.1 shows how the spray boom and sprayer units are attached to

the tractor.
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Spray Boom

The spray boom is a metal structure that is attached to the rear

of the tractor and supports the sprayer units. The spray boom also

carries the fluid system. Figure 3.1 shows how the spray boom and

sprayer units are attached to the tractor. The five sprayer units in

the experimental system are placed at 18-inch intervals. This spacing

is approximately equal to the width (perpendicular to the direction of

travel) of the sensor viewing area and the width of the spray pattern

of the spray nozzle. This spacing ensures that the entire ground

surface under the sprayer units will be examined for the presence of

weeds.
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CHAPTER IV

SENSOR

Sensor Overview

A three-band optical sensor is the eye of a sprayer unit. During

operation of the sprayer unit, the sensor passes over the ground and

provides measurements of red, green, and near infrared radiation

reflected from the ground surface. The computer reads this data for

processing. Figure 4.1 shows the sensor mounted on a sprayer unit.

sprayer arm

\
---- sensor

o

computer housing

/

o

spray nozzle ---

Agure 4.1: Sprayer unit.

Figure 4.2 shows the main sensor components and how they fit

together. The main components are the sensor circuit board, circuit

board mask, housing top plate, main housing, and aperture plate.
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Figure 4.2: Main sensor components.
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Basis of Plant Detection

This project utilizes the fact that live vegetation can be

distinguished from bare soil by examining the intensity of

electromagnetic radiation reflected from the ground surface at

different wavelengths. Figure 4.3 shows a plot of relative intensity

of reflected radiation vs. wavelength for a soybean plant and for soil.

Other green plants show very similar reflectivity vs. wavelength curves

(Nitsch 1991) .

Figure 4.3: Reneeted radiatiomspeetra for soybean plant and soil. [Nitsch 1991)

The characteristic shape of the reflectivity curve for green

plants is due primarily to the interaction of light with the

chlorophyll in the leaves (Nitsch 1991). Chlorophyll tends to absorb

light in the visible portion of the spectrum, specifically in

wavelengths of about 400 to 700 nm. In contrast, it reflects very well

in the near infrared, specifically from about 700 to 800 nm. The hump

in the plant spectrum at about 550 run shows that live vegetation
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reflects the color green better than the other visible colors. The

valley near 650 run shows that vegetation absorbs red light very well.

In contrast to live vegetation, the soil reflectance spectrum, also

shown in Figure 4.3, has a more regular shape without the hump in green

and the sharp transition between red and near infrared. These

differences appear to provide a criterion for detecting plants against

a background of soil. Several studies, as summarized in Chapter II,

have indeed found that measuring reflected energy in the red and ne'ar

infrared bands can be very useful in the detection of live vegetation.

Use of the green band would appear to provide additional information.
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Sensor Circuit

The sensor in each sprayer unit consists of three sections, each

corresponding to one wavelength band. These three wavelength bands

fall roughly into the portions of the electromagnetic spectrum that we

call green, red, and near infrared. The three sections measure red,

green, and near infrared radiation levels reflected from the ground

surface. We may think of the sensor as seeing three colors, however

the use of the term color here is somewhat inappropriate since one of

the bands (near infrared) does not fall in the visible spectrum. The

term "wavelength band" is used here instead of "color."

Each of the three sensor sections is sensitive to one wavelength

band. Figure 4.4 shows the circuit diagram of one section of the

sensor circuit. The other two sections are very similar. See Appendix

B for a more detailed circuit diagram of the entire sensor circuit.

output Yoltage

Figure 4.4: One section of the sensor circuit.

In each sensor section, a photodiode responds to radiation

reflected from the surface of the ground. In the red section, a

visible spectrum photodiode (Hamamatsu part no. Gll15) with a colored

glass filter (Spindler & Hoyer 370107) provides the measurement. In

the red section, the same photodiode is used with a different colored

glass filter (Spindler & Hoyer 370087). In the near infrared sensor

section an unfiltered photodiode (Hamarnatsu part no. 52164-01) is used
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that is intended specifically to detect in the near infrared. No

optical filter is necessary in the infrared section. Appendix F

provides additional information on the photodiodes. Appendix G

provides information on the filters used in this project, as well as on

colored glass filters in general.

Figure 4.5 shows the spectral responses of the three sensor

sections from a typical sensor.

Figure 4.5: Sensor spectral response.
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Each hump in the plot corresponds to one section of the sensor.

The three sensor sections correspond roughly to the portions of the

electromagnetic spectrwn that we call green, red, and near infrared.

The green filter appears green to our eyes and the red filter appears

red. Although no near infrared filter is used in the sensor, radiation

in this band is invisible to the hwnan eye. Also indicated on the plot

are the regions of the spectrwn that are generally called green, red,

and near infrared.
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The data for the sensor spectral response plot shown in Figure

4.5 was collected using special software installed in a sprayer unit.

An instrument known as a grating monochromator provided an adjustable

wavelength light source that was directed at the sensor. The sprayer

unit computer collected sensor readings as the monochromator was swept

across the different wavelengths. The photodiode and filter data

sheets in Appendix F and Appendix G provide additional information on

the spectral responses of the individual parts.

Each photodiode in the sensor converts radiation reflected from

the ground into an electric current (See the Theory of Photodiode

Operation section of this chapter). Since, in the sensor circuit, each

photodiode is in series with a resistor, the photodiode current causes

a voltage across the resistor that is proportional to the radiation in

the respective waveband.

In each sensor section, the voltage produced by the photodiode

and resistor is buffered to the computer's analog to digital converter

inputs through an LM324 operational amplifier stage with unity gain.

The amplifier provides a low impedance output to the analog to digital

converter, which reduces the possibility of electrical noise in the

cable between the sensor circuit and the computer. Also, the amplifier

provides a more stable high impedance input for the diode-resistor pair

than would the analog to digital converter input alone.

The sensor circuit provides three output voltages, corresponding

to red, green, and near infrared light levels reflected from the ground

surface. These voltages may range from 0 volts to about 3.6 volts.

This output swing is imposed by the LM324 operational amplifier, which

is powered by a 5 volt single polarity supply.
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Theory of Photodiode Operation

Each photodiode in the sensor transforms electromagnetic energy,

in the wavelength band to which it is sensitive, to an electric

current. The photodiodes are configured in reverse bias and the

reverse saturation current in each photodiode is controlled by the

intensity of energy that strikes the diode. The incoming photons create

electron-hole pairs, which cause a reverse current through the diode.

This current is proportional to the radiation intensity, in a certain

wavelength band, falling on the device. Photodiode current, Ip, can be

estimated using the following equation:

II' = llQH,

where
11 = quant.um efficiency
q = charge on an electron, 1.6 x 10-19 C
H =4>A = radiation intensity (photons per second)
41 = photon flux density (photons per second per unit area)
A = photodiode junction area

Note that all factors on the right side of the equation above are

constants except for the radiation intensity. Thus, the photodiode

current is directly proportional to the radiation intensity, making the

use of the photodiode a convenient way to measure light intensity.
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Sensor Optical Geometry

Figure 4.6 shows the basic optical geometry of the sensor. For

simplicity, the path of light for only one section of the sensor is

shown. The sensor circuit, including the photodiodes, are mounted in

an enclosure that allows light to enter in a particular way_ A circuit

board inside the sensor enclosure holds the three photodiodes so that

their light sensitive sides face downward. A slot, or aperture. in the

bottom of the enclosure allows light reflected from the ground to enter

the box and strike the photodiodes. No other light is expected to

enter the enclosure.

plant target

/photodiode

o
____ sensor housing

~ light path into sensor

ground surface

/

Figure 4.6: Basic sensor optical geometry. (dimensions not to scale)

The dimensions of the viewing area, or area on the ground that

the sensor can see, is dependent on the optical geometry of the sensor.

The size of the viewing area is affected by the distance of the

photodiodes from the bottom of the aperture, the dimensions of the

aperture, and the distance from the bottom of the aperture to the

ground surface. These dimensions are assumed to be fixed for this
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project. The first two dimensions are fixed by the physical

construction of the sensor. The last is fixed by adjusting the height

of the spray boom on the tractor so that the bottom of the sensor is

the proper height above the ground. Although this height fluctuates as

the tractor moves across a field, this change is assumed to not cause

any major difficulties with the system. The width, or dimension

perpendicular to the direction of travel, of the viewing area of each

sensor section is about 22.5 inches. The length, or dimension in the

direction of travel, is about 2.65 inches. Appendix A provides

diagrams and calculations involving the sensor optical geometry.

Figure 4.7 shows the relationship between the viewing areas of

the three sensor sections. Because the photodiodes in the three sensor

sections lie next to one another on the sensor board, yet receive light

from the same aperture, the viewing area of each is slightly different.

Although this may affect sensor performance if vegetation is present

near the ends of the viewing area, such an event is expected to occur

so infrequently that the situation is acceptable. The viewing area of

each sensor section is offset from that of the next section by about

three inches.

direction
T
of travel

eel J))
I I I I I I

l' I I red section t ' ,'---""_--;, ...:.;:::.;:x..~="'_='~ ___' , I

1" , near infrared section 1" ,'-_--I-'-- --'-'-===-=:.:.:.:..:.=::.=::....:==='-- --' ,
I ,

tgreen sedion l'

Fjgure4.7:Viewing~areas of the three sensor sections.

Each photodiode directly receives light, through the aperture,

from a roughly rectangular area on the ground. The shape of the
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viewing area actually has circular ends. This shape is due to the

aperture in the bottom of the enclosure. Such a shape has no particular

significance, but is simply easy to machine in the metal with a mill.

Each spray nozzle is intended to apply herbicide to the area on

the ground that its sensor can see. The width {perpendicular to the

direction of travel) of the viewing area of the sensor is approximately

equal to the width of the spray pattern of t.he spray nozzl,e. The

length (in the direction of travel) of the viewing area of the sensor

is somewhat arbitrary. In general, the smaller the viewing area, the

smaller the plant that can be detected. However, as the viewing area

gets smaller, the operating frequency of the computer program must

increase so that no portion of the ground surface is missed. Also,

with a more narrow aperture, less light would strike the photodiodes

and a higher voltage gain would be required in the sensor. This would

tend to increase the effects of electrical noise in the sensor outputs

and makes the design more difficult.
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Sensor Circuit Board

The sensor circuit board provides a mounting place for all sensor

circuit components. Figure 4.8 shows three views of the sensor circuit

board. The bottom view shows the side of the board that faces the

ground when the sensor is in service on a sprayer unit.

PI

03-+
~,..----Lr"

Fi-+

bottom view
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Figure 4.8: Sensor c·rcuit board.

The three photodiodes D1, D2, and D3 in the sensor are glued to

spacers and the spacers are glued to the circuit board. Plastic cement

is used for these bonds. Soldering of the photodiode leads into the

circuit board provides additional mechanical stability for the

photodiode assemblies.

The red and green optical filters (Fl and F2) are bonded to the

tops of the photodiodes (Dl and D2) with 5 minute epoxy at several

points around the edges. No epoxy is near the center of the photodiode

windows, where it would interfere with light reaching the active part

of the device. The filters are cut from larger pieces to approximately
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the size of the tops of the photodiodes. The top and bottom surfaces

of these filters are the original polished surfaces. The near in.frared

photodiode D3, between the other two photodiodes, has no optical

filter.

The plastic or fiber spacers, onto which the photodiodes are

mounted, are cut to lengths so that the top surfaces of each of the

photodiode assemblies are approximately in the same plane. This makes

the distance from the ground to each assembly approximately the same so

that the size of the viewing areas for the three photodiodes will be

about the same. Hard plastic spacers were used to support the red and

green photodiodes, and a fiber spacer was used to support the near

infrared photodiode. These choices were based purely on the lengths of

the spacers available.

The connector PIon the sensor circuit board is as-pin single-

row breakaway header with a.l-inch centers. It allows connection of

the sensor circuit to the computer board in the sprayer unit. Table

4.1 shows the PI connector signal names and descriptions.

Table 4.1: PI Connector Signals.

PIN SIGNAL NAME DESCRIPTION

1
2
3
4
5

+5V
GND
VRED
VGRN
VNIR

positive power supply to sensor circuit.
Power supply ground to sensor circuit.
Output voltage from red sensor section.
Output voltage from green sensor section.
Output voltage from near infrared sensor
section.

The LM324 operational amplifier integrated circuit U1 is a

standard dual inline package (DIP) and is mounted in a standard socket.

The board on which the components are mounted is a standard pad-per-

hole epoxy glass composite prototyping board that is cut to size.
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Sensor Circuit Board Mask

The sensor circuit board is partially covered with a mask to

prevent light from striking any portion of the board except the

photodiodes and a small area around them. Figure 4.9 shows the shape

of the mask.

1.8" o a
2.1"

o

Figure 4.9: Sensor circuit board mask.

This device was deemed necessary after tests showed that light

reflected from the metal on the circuit board affected sensor readings.

The mask is the same size as the sensor circuit board and has an odd

shaped hole cut near the center to allow the photodiode assemblies to

be exposed to light. The hole in the center is custom-shaped to fit

around the photodiode assemblies and allow them to extend through the

mask a small distance. The mask is made of standard copper-plated

glass epoxy composite circuit board. This material was chosen because

of its availability and because it is easy to cut. The copper plating

provides no known benefit. The mask is painted flat black on both

sides to minimize reflection of light. Plastic spacers hold the mask

about 3/8 inches away from the sensor circuit board, allowing the

photodiode assemblies to extend about 1/16 inches past the mask. These

dimensions are not critical.
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Sensor Housing

The sensor housing encloses the sensor circuit assembly. The

housing is a metal box with three main pieces--the top plate, the main

housing, and the aperture plate. Figure 4.2 shows how these three

pieces fit together.

The top plate of the sensor housing, as shown in Figure 4.10,

provides support for the sensor circuit assembly and secures the sensor

to the sprayer unit arm.
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Figur,e 4.10: Sensor housing top plate.

This part is made of 14-gauge steel. It is fixed to the main housing

with two screws, and to the sprayer unit arm with two screws. The

sensor circuit assembly, with the mask attached, is suspended from the

housing top plate by 1.5-inch spacers, as shown in Figure 4.2. The

position of the sensor circuit board in the housing provides the proper

optical geometry for the system. The Sensor Optical Geometry section

of this chapter describes this spacing.

The main housing, as shown in Figure 4.11, is made of 2.5-inch

square aluminum tubing. This part protects the sensor circuit
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assembly (circuit board and mask) and provides a mounting place for the

aperture plate. Two threaded holes at the top of the main housing

allow attachment of the sensor housing top plate. Two small aluminum

blocks welded to the main housing provide enough thickness for the two

holes to be tapped. A rectangular cut at the top allows passage of the

sensor cable into the end of the sprayer unit arm.
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Figure 04.11: Sensor main housing.

Figure 4.12 shows the aperture plate. This part is a 2.5-

inch square of O.125-inch aluminum sheet, with a slot that allows

light from only a certain area on the ground to strike the

detectors in the sensor. The plate is welded onto the bottom end

of the main housing. The outer edge of the aperture plate is

beveled so that the part fits into the end of the housing. This

bevel aids in correct placement of the plate. The Sensor Optical

Geometry section of this chapter describes the geometry

associated with the aperture.



0.125"
.L 250"

0.12S"~ I+-
t Jus"025"

~-
2.50" ( 1, , f-

I
2.125" ••, ,

····:':i
O.lS""': :.... ,
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CHAPTER V

NEURAL NETWORKS BACKGROUND

Introduction to Neural Networks

Neural network theory has developed as a result of man's desire

to build intelligent machines. Since the only object that we generally

view as intelligent is the human brain, simulation of this true neural

network with an artificial one seems a good place to start. Neural

networks are, in fact, an attempt to simulate the interaction of the

nerve cells, or neurons, in the human brain. Although implementation

of an artificial neural network as complex as the natural one found in

the human brain is not currently practical, much simpler networks can

learn some useful tasks that some consider intelligent.

Neural networks are generally 'mathematical constructs implemented

in software, although some have been implemented in hardware as

integrated circuits. Neural network development is inspired by known

facts about the brain. They are characterized by having the following

properties (Rich 1991) :

1. A large number of very simple neuron-like processing elements, or
nodes.. The interaction of the many elements gives the network its
power.

2. A large number of weighted connections between the elements. The
weights on the connections encode the knowledge of the network.

3. Highly parallel, distributed control.
4. An emphasis on learning internal representations automatically.

Neural networks are theoret.ically capable of learning nearly any

task imaginable. They learn by example. That is, a network is taught

a particular task by being presented wit.h many example problems and

t.heir corresponding solutions. By adjusting its internal structure,

the network learns to solve the problems. A set of inputs to the

network characterizes the problem and the network's output is its

solution to the problem.
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Neural networks are an emerging technology and have recently been

applied to a wide variety of problems. They have successfully been

used in bankruptcy prediction, real-time system control, speech

recognition, machine vision, game playing, classifying sonar signals,

and driving a vehicle.

Many different neural network structures exist. This chapter, as

well as the neural network development work for this thesis, deals with

fully connected, layered, feedforward networks. This is a very common

neural network structure that has been successfully applied in many

areas. Many different training methods are also available. The work

for this thesis deals with a training method called back error

propagation, or backPropagation. Many variations of backpropagation

learning exist, some of which are mentioned in other parts of this

thesis. This basic training method was chosen because of its success

and popularity, and because of the availability of neural network

development software utilizing this method.
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The Neural Network Node

A neural network generally consists of several simple processing

elements, or nodes. Each node performs a simple computation. It is

the interaction of the entire group of nodes that gives the network its

strength. Neural network nodes are modeled after neurons in the brain.

Figure 5.1 shows a simplified diagram of a natural neuron. Figure 5.2

shows a neural network processing element, which is similar in

structure to the natural neuron.

dendrites

Figure 5.1: Simplified diagram of a natural neuron.

cell body

/
•

axon

\

ACTIVATION
FUNCTION

F"gure 5.2: Neural network processing element or node.

Each true node in a neural network sums its inputs and passes the sum

through an activation function, or transfer function, to produce an
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output. The inputs Xi to the node are on the left and the output Y is

on the right. Each input Xi comes from the output of a node in the

previous network layer, except the bias input, which is commonly set to

unity. Every node has this bias input. Each input connection,

including the bias input, is weighted by a real number Wi' The output Y

of a node is given by the following expression:

Y = f (S),

where

f = activation function of the node.
S = weighted sum of the node inputs.

- :L {Xi * Wd

A common activation function for a neural network node is the sigmoid

(or S-shaped function), which is defined by the following expression:

f(x) = 1 / (1 + e-)

Figure 5.3 shows a plot of the sigmoid function. The activation

f1mction of a node is required by the backpropagation learning

algorithm to be continuous and differentiable (Rich 1991). Other

activation functions that are sometimes used are the hyperbolic tangent

and the sinusoid.
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Figure 5.3: The sigmoid fUnction.
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Neural Network Structure

A neural network is composed of rows, or layers, of nodes. A

layer may have any number of nodes. The inputs to each node are the

outputs from all the nodes in the previous layer, in addition to the

bias input.

Figure 5.4 shows the general structure of a neural network. The

column on the left is called the input layer and receives external

inputs. The units in the input layer are not true nodes and do not

perform any computation. They merely pas.s the inputs into the network.

All the units in the other layers are true nodes and function as

described in the section of this chapter entitled The Neural Network

Node.

bias bias bias

inputs

outputs

input
layer

bidden
layer

hidden
layer

output
laye:r

Figure 5.4: General structure of a neural network.

The layer on the right of the diagram is called the output layer.

'The nodes in the output layer provide the outputs of the network.
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These numerical outputs would generally be evaluated by a software

program to get information from the neural network.

The layers between the input and output layers are called the

hidden layers. Neural networks generally have one, two, or three

hidden layers. The number of layers required for a particular

application, as well as the number of nodes required in each layer, is

related to the complexity of the relationship between the inputs and

the expected outputs. Many applications require only one hidden layer

(Neural Computing 19911 .
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Neural Network Learning

In order for a neural network to be useful it must be trained to

perform some task. Training consists of modifying the weights, or

strengths of the connections, in the network. Training forms the

mapping between the inputs and outputs that is required for the

particular application. Typically the training process is carried out

by a neural network development software package.

Neural network learning requires that the designer collect a

training data set and a testing data set. These data sets consist of

many sets of example inputs along with the corresponding expected

outputs. This data provides sample problems and their corresponding

solutions. This data should be representative of the types of problems

the network would encounter in its final application. The neural

network is trained using the training data set. Then performance of

the trained network is evaluated using the testing data set. A neural

network should not be evaluated using the same data on which it was

trained because this may only show how well the network memorized the

training set. The network should be able to generalize to the new

situations in the testing set.

Training has a forward propagation step and a backward

propagation step. During the forward propagation step a set of inputs

from the training data set is passed through the network. The network

produces outputs, which are compared to the expected outputs to produce

a measurement of error. During the backward propagation step, the

weights of the network are modified according to a certain learning

rule in order to reduce this error. This cycle, consisting of a

forward propagation step and a backward propagation step, is carried

out for every input-output pair in the training dat.a set. Generally

the training set is passed through many times in this manner to

properly train a neural network.
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Testing of a neural net.work is carried out. after training has

st.opped. The purpose of test.ing a trained neural network is to

determine how well the network can perform the task for which it is

intended. The weights remain fixed during testing. It consists of

applying only the forward propagation step to each input-output pair in

the testing data set. As in training, each set of inputs is passed

through the network and the actual outputs are compared with the

expected outputs. Here the testing data set is used instead of the

training set. A calculation of error for the entire testing set, such

as the mean squared error, may be useful in evaluating how close the

neural network outputs are to the expected outputs. In a neural

network that is to be used for classification, the designer may want to

tabulate how many of the test cases the network correctly classified

after it was trained. The level of performance required for the

trained neural network, as well as the method of evaluating a trained

neural network, will generally be different for each application. If

testing shows that performance is unsatisfactory, additional design and

training work may be required.
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Using a Trained Neural Network

A.fter a neural network has been trained and its performance with

the testing data set is found to be adequate, the network can be placed

in service to perfonn the task for which it was intended. This

normally means implementing the neural network as a series of

mathematical calculations in software.

External inputs are applied to the neural network in order to

utilize it. This input data might be stock prices, statistics found

during res,earch, or measurements taken by a sensor, for example. The

neural network processes the set of inputs and produces a result at

each network output. These outputs may be used in different ways for

different applications. For neural networks used in the classification

of a set of inputs into certain categories, typically the network

output that is numerically greater indicates the network's decision.

For example, a neural network trained to recognize the written digits 0

through 9 might have 10 outputs, each corresponding to one of the

digits. The output that is munerically greatest might indicate the

digit recognized by the network, in response to an image scanned from a

sheet of paper.
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CHAPTER VI

SPRAYER UNIT NEURAL NETWORK

Neural Network Overview

The neural network in a sprayer unit is a mathematical construct

that is part of the software. It is the neural network that ultimately

decides, based on the red, green, and near infrared sensor readings,

whether or not a plant is present in the viewing area of the sensor.

The neural network consists of a set of numerical constants, called

weights, and a series of equations that perform calculations using

these weights and the three sensor readings. The results of the final

calculations, at the outputs of the neural network, determine whether

or not a plant has been detected.

The neural network development for this project concentrated on

neural networks that are considered fully connected, layered,

feedforward networks that are trained using a method called back error

propagation, or backpropagation. This neural network structure and

training method is popular and has found many successful uses.

Neural network development consists of building, training, and

testing. Building creates an untrained neural network that is, in

general, capable of no useful task. During training, an attempt is

made to "teach" the neural network to learn a particular task. The

task required for this project is plant detection. Testing the trained

neural network determines how well it has learned to perform its

required task. Neural network building, training, and testing were

performed for this project with the help of neural network development

software called Neural Works Professional II/Plus, from a company

called Neural Ware. This is a very extensive neural network

deve.lopment tool that allows great flexibility in network configuration

and training.
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Because of the unique nature of this application of neural

networks, determining a good network configuration and training

procedure for the task of plant recognition consisted largely of trial

and error. Tests were run using many variations of configuration and

training. The development software literature (Neural Computing 1991)

gave some direction on parameters that normally work well. A building,

training, and testing cycle consists of building a neural network with

a particular configuration, training it with a certain number of

training examples from the training data set, then testing it on the

test data set. These data sets consist of many examples of typical

input-output pairs for the neural network.

See Chapter V for more information about neural networks in

general. See the Basic Neural Network Implementation section in

Chapter VII for details on the operation of the final neural network

used in the sprayer unit.
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Neural Network Building

This project deals only with the class of neural networks that

are fully connected, layered, fe·edforward networks. This is a popular

class of neural networks that has been used successfully in a wide

range of applications. Chapter V provides more information on this

class of neural networks. To design, or build such a neural network,

the user must first specify the number of hidden layers and the number

of processing elements, or nodes, in each layer. The number of nodes

in the input and output layers is essentially fixed by the neural

network application. The number of hidden layers (the layers between

the input and output layers) to use and the number of nodes to use in

each hidden layer is not so clear.

The number of nodes in the input lay,er of the neural network is

the same as the number of inputs to the network. Since the sensor

provides three reflected radiation readings (red, green, and near

infrared), there are three inputs to the neural network and three nodes

required in the input layer. Typical neural networks used for

classification have one output node for each possible classification

(Neural Computing 1991). For this application, the network must decide

either "no plant" or "plant," so there are two output classifications,

and thus two nodes in the output layer. One output corresponds to the

"no plant" condition and one to the "plant" condition. The network's

decision is indicated by the output that is numerically greater. For

example, for a given set of red" green, and near infrared sensor

readings, if the "plant" output is greater, then the neural network has

decided that a plant is present in the viewing area. Many variations

were tried in the number of hidden layers and the number of nodes in

each hidden layer.
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The neural net.work designer must. also specify the t..ransfer

function, or activation function, of each node, the learning rule (how

the weights are modified during training), and how many total training

examples will be presented during learning. Also, the user may specify

how many training examples are presented to the network between weight

updates. The development software calls this figure the epoch length.

The development software used for this project allows specification of

many other parameters for neural network building and training, but in

the application these parameters were left at their default settings

for simplicity. The Neural Network Development Results section of this

chapter provides more information on neural network building for this

project.
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Neural Network Training

After a neural network configuration has been set up, or built,

the development software trains the network. The training modifies the

weights, or strengths of the connections, within the networ, Before

training, the weights are set to small random numbers. Then, during

training, input-output pairs frornthe training data set are repeatedly

passed through the network and the weights are modified so that the

output error is reduced. The general learning method for all neural

network training for this project is called backpropagation. The

backpropagation method requires a specific learning rule. The

development software provides many learning rules to choose from} all

of which were tested for applicability to this project. A learning

rule was chosen at the beginning of the training of each network

configuration} and was not changed for the duration of the training of

that neural network. Study of the mathematics behind backpropagation

and the associated learning rules used by the development software for

neural network training was not necessary for this project. The

learning rules are referred to here by name only. The development

software literature (Neural Computing 1991) describes the

backpropagation method for each learning rule in further detail. Rich

and Knight (1991) also provide information on backpropagation. The

Neural Network Development Results section of this chapter provides

more information on neural network training for this project. See the

Neural Network Training and Testing Data section of this chapter for

more information on this data.
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Neural Network Testing

After a neural network has been trained in a certain way using

the training data set, its performance may be tested using the test

data set. A network is not exposed to the test data during training.

The network's performance on the test data provides a measure of the

network's ability to generalize to new situations. as it will have to

do in service in a sprayer unit. The neural network development

software carries out the testing of a trained network by presenting it

with the test data and recording the network outputs for each test

case. This data can then be analyzed further to determine how many of

the test cases the neural network correctly classified. The Neural

Network Development Results section of this chapter describes the tests

that were run for this project. See the Neural Network Training and

Testing Data section of .this chapter for more information on these two

data sets.
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Neural Network Development Results

Nearly all of the neural network development for this project was

carried out using training and testing data from a sensor that was an

early prototype of the sensor described in this thesis. The earlier

sensor, referred to as Prototype I, used the same circuit, but a

different enclosure, than the later Prototype 3, and did not include

the sensor circuit board mask for limiting reflections inside the

sensor housing. The newer metal enclosure is more easily manufactured

and is stronger than the earlier plastic enclosure. Very little

additional neural network development was required once training and

testing data was recorded for the new sensor prototype (Prototype 3)

described in this thesis.

As described in the previous sections, neural network development

consists of iterative building, training, and testing using the

development software. Each cycle through building, training, and

testing produces a trained neural network and an evaluation of that

network's ability to perform the task of plant recognition required for

a sprayer unit. Building and training the neural networks that were

tested for this project required specification of the following six

main parameters:

1. Number of hidden layers.
2. Number of nodes in each hidden layer.
3. Transfer function (activation function) for each node.
4. Epoch length (number of training examples presented during

training between weight updates).
5. Learning rule used during training.
6. Number of training examples presented during training.

The development software allows specification of many other param.eters

for a neural network, but these were left at their default settings for

simplicity of testing. The number of input nodes (three) and output

nodes (two) is fixed by the application, as described in the Neural

Network Building section of this chapter. The neural network
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development. for this project consisted primarily of trial and error

using variations of the six main parameters, as listed above, during

building and training. Each resulting neural network was then tested

using the sample cases in the t.esting data set. The fraction of the

sample problems in t.he testing data set correctly classified by the

network gives a measure of the trained neural network's performance.

Approximately 440 building/training configurations were tried in

an attempt to find the best neural network for use with the Prototype 1

sensor. Following is a summary of the different variations that were

tried for each neural network building and training parameter:

Number of hidden layers: 1 to 3.
Number of nodes in each hidden layer: 1 to 10.
Transfer function of each node: linear, sigmoid, sine, hyperbolic
tangent.
Epoch length: 1 to 80.
Learning rule: delta,. cumulative-delta, normalized-cumulative-delta.
Number of training examples: 1000_ to 350000.

The best trial using Prototype 1 resulted in a neural network that

correctly classified 88.3% (53/60) of the test cases in t.he testing

data set. This neural network has the following characteristics:

Number of hidden layers:
Number of nodes in each hidden layer:
Transfer funct.ion for each node:
Epoch length:
Learning rule:
Number of t.raining examples presented:

:2
3
hyperbolic tangent (tanh)
1
normalized-cumulative-delta
40000

The Prototype 3 sensor is a result of improvements, as mentioned above,

to the Prototype 1 sensor. The training and testing for Prototype 3

used different training and testing data sets, which are the data sets

described in the Neural Network Training and Testing Data section of

this chapter. Using exactly the same parameters for neural network

building and training with this new data resulted in a network that

correctly classified 100% (80/80) of the test cases in the new testing

data set. By changing the epoch length from 1 to 16, a neural network
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was developed that was deemed slightly better because the actual

network outputs in the test results file appeared, in general, somewhat

closer to ideal. The actual improvement here was not quantified by any

concrete means. The final trained neural network used in the sprayer

unit described in this thesis was built and trained using the following

main parameters:

Nwnber of hidden layers:
Nwnber of nodes in each hidden layer:
Transfer function for each node:
Epoch length:
Learning rule:
Number of training examples presented:

2
3
hyperbolic tangent (tanh)
16
normalized-cumulative-delta
40000

The weed sprayer neural network is considered a layered, fully

connected, feedforward network. Figure 6.1 shows a diagram of the

network. The Basic Neural Network Implementation section of Chapter

VII provides more information on the final weed sprayer neural network.
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Figure 6.1: Sprayer unit neural network.
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Neural Network Training and Testing Data

Neural network training and testing requires training and testing

data sets. Each of these data sets consists of a group of input-output

pairs that are typical of those that the neural network might encounter

in service. After the network has been trained, it must be tested with

input-output pairs that it has not encountered before. This testing

measures how well the network can generalize to new situations. The

training and testing requires the collection of many typical red,

green, and near infrared reflected radiation sensor readings with a

plant present and with no plant present, under diverse conditions. The

conditions varied for the collection of this data were soil type,

lighting, soil moisture, and plant density.

In order to obtain typical sensor readings for the training and

testing data sets, field conditions were simulated using a test

fixture. During data acquisition, a structure suspended a weed sprayer

sensor above a platform where soil and plants were placed. The soil

spread on the platform simulated the ground in a field. Uprooted

bindweed (Convolvulus arvensis) plants placed on the soil under the

sensor simulated live bindweed. The data was collected from the sensor

using an ACRO data acquisition computer and a PC. The ACRO has 17-bit

analog-to-digital converters to collect such data. The raw data was

later converted to 8-bit precision for use with the neural network.

This was done because the MC68HCI1AO analog-to-digital converters that

acquire data in the sprayer unit have 8-bit precision. The neural

network should be trained and tested on data similar to that which it

will encounter in service.

Appendix E lists the training and testing data sets collected

with the test fixture. Each data set consists of 80 sets of input

output pairs representing example inputs and outputs of the neural

network. Following is an example line from one of the data sets:
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Each line of data consists of a red, green, and near infrared sensor

reading, followed by the two idealized expected outputs of the neural

network. If a plant were in the viewing area of the sensor when the

data was recorded, the two expected outputs are one and zero,

respectively. The two expected outputs are zero and one if no plant

were present. A plant was present for the data taken in the example

above. The expected outputs are only ideal target outputs for the

network. In service, the network's decision is indicated by the output

that is numerically greater. If the first output is greater, then the

system has detected a plant. If the second output is greater, then no

plant has been detected.

The remainder of the line of data was added during development to

help organize the data. This information is a code that indicates

under what set of conditions this line of data was taken. For example,

the code above indicates that this line of data was taken under sunny

lighting, with the soil type Haskell, with dry soil, with 20 percent

plant cover, and with a plant present in the viewing area. Appendix E

gives more information on how to interpret the condition codes.

As mentioned above, the conditions varied for the collection of

the training and testing data were soil type, lighting, soil moisture,

and plant density. Each data set includes data from five different

soil types, each of which has somewhat different coloring and texture.

The ten soil samples used came from different locations around

Oklahoma. The two different lighting conditions used for the tests

were "sunny" and "cloudy." Soil moisture variations are "dry" and

"'wet." To take readings with wet soil, the soil was dampened using a

spray bottle until the surface was saturated. Plant density variations

are 0, 10, and 50 percent plant cover in the sensor viewing area. For
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example, to obtain 50 percent plant cover, half the sensor viewing area

was covered with uprooted bindweed.

Combinations of the conditions mentioned above would give 60 sets

of data in both the training data set and in the testing data set--(5

soil types) x (2 lighting variations) x (2 soil moisture variations) x

(3 plant densities) = 60 variations. Since the plant density

variations are 0, 10, and 50 percent, these 60 sets have twice as many

examples of "plant" conditions as they do "no plant" conditions. In

order to eliminate this difference, 20 additional sets of readings were

taken with no plant present, in both the training data set and the

testing data set. These additional 20 sets of readings consist of the

full combination of the remaining variables--five types of soil, two

types of lighting, and two types of soil moisture. With the addition

of this extra "no plant" data, the training and testing data sets each

have 80 sets of data, 40 of which were taken with plants present, and

40 of which were taken with no plants present. This prevents any bias

one way or the other for the neural network. If the neural network

were trained with more examples with a plant present, then it might be

more inclined to make that decision.
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CHAPTER VII

SPRAYER UNIT SOFTWARE

Sprayer Unit Software Overview

The software in the sprayer unit computer provides the control

algorithm for the sprayer unit. More specifically, the software

controls the spray nozzle according to input conditions from the

sensor. As the sprayer unit moves across a field, the objective of the

software is to detect a plant under the sensor and activate the spray

nozzle to apply herbicide to the plant. The code was developed in the

C language and compiled to run on the Motorola MC68HCIIAO

microprocessor in the weed sprayer computer. Following is an outline

of the operation of the sprayer unit software.

1. Read red, green, and near infrared reflected radiation levels
from the sensor.

2. Scale sensor readings for the neural network.
3. Pass scaled sensor readings through the neural network.
4. Determined, based on the scaled neural network outputs, whether

or not a plant is present in the sensor viewing area.
5. Store "no plant." or "plant '" decision at the rear of the nozzle

state queue (FIFO).
6 . Read earlier Uno plant" or "plant" decision from the front of the

nozzle state queue and update spray nozzle state (turn nozzle on
or off) accordingly.

7. Loop to step 1.

The sprayer unit software uses a mathematical construct called a

neural network to determine whether or not a plant is present in the

sensor viewing area. The neural network was developed using a

commercial software package, as described in Chapter VI, then

implemented in C code for use in the sprayer unit software.

Originally, the sprayer unit software used a direct

implementation of the neural network as created with the development

package. This first implementation used exclusively floating point

arithmetic and was found to execute too slowly for the weed sprayer
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system. Consequently, two techniques were used to reduce the time

required to make a forward pass through the neural network. The first

technique was to implement the hyperbolic tangent activation function

of each neural network node as a lookup table. The second technique

was to convert all floating point arithmetic involved with the neural

network to integer arithmetic. Sections of this chapter describe these

techniques in greater detail.

Several of the sections of this chapter that explain the neural

network implementation in the software are referring to the original

network that was designed with the development package, which uses

floating point arithmetic and calculates the hyperbolic tangent

function for each node without using a lookup table. Such a discussion

facilitates a more clear explanation of how the neural network

operates. Each section of this chapter notes how it applies to each

neural network implementation. Appendix C shows a program listing of

the C code to implement the original floating point neural network.

Appendix D shows a program listing of the C code for the final version

of the sprayer unit software, with the neural network modifications

implemented, and with code added to read the sensor and control the

spray nozzle.



-

60

Reading Sensor Data

The software must obtain information from the sensor before it

determines whether a plant is present in the sensor viewing area. The

final version of the sprayer unit software (Appendix D> obtains data

from the sensor using three of the eight analog-to-digital converters

of the MC68HCI1AO microprocessor in the weed sprayer computer. The

sensor supplies the three reflected radiation levels (red, green, and

near infrared) as three voltages in the range of 0 to 5 volts. An

analog-to-digital converter produces a number in the range of 0 to 255

(8 bits resolution) for each of the sensor voltages. The conversion

takes place in hardware on the MC68HCIIAO. The sprayer unit software

need only begin the conversions, wait for the conversions to complete,

then read the results from special result registers on the MC68HCI1AO.

The time required for these conversions is very small compared to the

time required for other processing of the weed sprayer software. See

the software code in Appendix C, Appendix D, as well as the M68HCl1

Reference Manual for more information on the MC68HCIIAO analog-to

digital converters.

The code for the original floating point neural network

implementation, as shown in Appendix C, does not read sensor data. The

three variables that would normally hold the sensor readings are just

assigned a set of readings from the training data set.
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Neural Network Input Scaling

The sprayer unit software scales the sensor readings before

passing them to the neural network. This section describes neural

network input scaling in the original floating point implementation of

the neural network. The Conversion from Floating Point to Integer

section of this chapter describes the changes made to input scaling for

the final software version.

Neural network input scaling is necessary because sensor readings

fall within a different range of numbers than are useful to the neural

network. Each sensor reading is an integer within the range 0 to 255.

For the original floating point neural network, node outputs are always

in the range -1 to 1 since they ar,e calculated using the hyperbolic

tangent (tanh) activation function of each node. Neural network input

scaling maps the sensor readings to this range of -1 to 1 to be -

consistent with other parts of the neural network.

The scaling functions for each input (red, green, and near

infrared) are slightly different and were formulated by the neural

network development software. The mapping takes into account the

minimum and maximum readings found in the neural network training data

set for each sensor section. For example, the red sensor reading is

scaled according to the following equation, which is very similar to a

line of code in the original neural network software listing in

Appendix c:

NODEOUT[Ol [0] = 2.0 * (REDIN - REDMIN) / (REDMAX - REDMIN) - 1.0,

where

NODEOUT[Ol [0] is an element of the two-dimensional array NODEOUT
and contains the scaled sensor reading ready to be passed to the
neural network.
REDIN = red sensor reading in the range 0-255.
REDMIN = minimum red sensor reading in the neural network
training data set.
REDMAX = maximum. red sensor reading in the neural network
training data set.
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This input scaling causes the minimum red sensor reading in the

training data set to be mapped to -1 and the maximum red sensor reading

in the training data set to be mapped to 1. Such a system helps to

maximize resolution of the neural network inputs. The red and near

infrared neural network inputs are scaled in a very similar way.
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Basic Neural Network Implementation

The neural network is the part of the sprayer unit software that

ultima.tely determines whether or not a plant is present in the sensor

viewing area. The neural network structure is essentially the same for

both the floating point and integer implementations. The Hyperbolic

Tangent Lookup Table and the Conversion from Floating Point to Int,eger

sections of this chapter describe the differences.

The neural network part of the software consists of a series of

equations that involve the three scaled sensor readings (red, green,

and near' infrared) and the fixed weights developed as part of the

network. The numerical outputs of the neural network are evaluated to

determine whether the network has detected a plant in the sensor

viewing area.

The trained neural network implemented in software in a sprayer

unit is considered a fully connected, layered, feedforward network.

Figure 7.1 shows a diagram of the sprayer unit neural network.
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Figure 1.1: Sprayer unit neural network.
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Information passes from left to right through the network. The network

has an input layer consisting of three nodes; two hidden layers, each

with three nodes; and an output layer consisting of two nodes. Each

node in the hidden and output layers uses the hyperbolic tangent (tanh)

as its activation function, or transfer function. No calculation is

performed by the input layer nodes. The inputs to the network pass

through the input layer unchanged. Each node in the hidden and output

layers has a scaled bias input. The bias is unity and the bias input

to each node has an associated weight, just like every other input to

the node.

Appendix C shows a program listing of the C code to implement the

original floating point neural network for the weed sprayer. This code

performs a forward pass through the network. The network consists of

two arrays. One array holds the output of each of the eight nodes.

The second array holds the weights associated with each node. Each

node can be considered a data structure that contains the weights on

all the inputs to the node and the output of the node. The input nodes

are not represented in the software, since they perform no operation on

the data.

The sprayer unit software passes the scaled inputs through the

network in a series of loops. The first hidden layer is processed

first. The program calculates the weighted sum of all the inputs to

each node. When working with the first hidden layer, these inputs are

just the inputs to the network and the bias input. Next, the

activation function (hyperbolic tangent) is applied to the weighted sum

of each node and the result is stored as the output of the node. After

each node in the first hidden layer is processed in this way, the

program moves on to the next layer, which works similarly. The

difference with the other layers is that the inputs to each node are

now the outputs of the nodes in the previous layer, rather than the
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inputs to the network. The outputs of the nodes in the final layer are

the outputs of the neural network.

Figure 7.2 shows a block diagram of a neural network node for the

original floating point neural network as developed.

1.0

Xa-1l1

ACTIVATION X
ij

FUNCTIION f---=--4

tanh( J

Figure 7.2: Block diiagram of a sprayer unit neural network node.

On the left are the inputs from the previous layer. On the right is

the node output. This model applies to every neural network node

except for those in the input layer. The nodes in the input layer can

be modeled by a multiplication by one.

For the original floating point neural network software

implementation, the output of every neural network node, except those

in the input layer, is given by the following equation:

where

1 0 =
i =

=

=
j =

=
=

k
=
=
=

the bias input to each node (unity) before being weighted.
layer number, starting with the first hidden layer
1, 2, . _., [number of layers - 1, including the input
layer]
the variable ", layer" in the software.
node number in the current layer
0, 1, .. _, [number of nodes in the current layer - 1]
the variable "node" in the software.
node number in the previous layer
weight number for the current node (bias weight is no. 0)
1, 2, [number of nodes in the previous layer]
the variable "i" in the software.
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X(i-ll (k-ll = output of the (k-l) th node in the (i-i) th layer
= the array "nodeout [1 []" in the software
= a real number.

Wijk = the k-th weight for the j-th node in the i-th layer
= the array "weight[] [] []U in the software
= a real number.

The equation for the output of each node differs from this in the

integer implementation of the neural network in the final version of

the sprayer unit software. The differences are discussed in the

Hyperbolic Tangent Lookup Table and the Conversion from Floating Point

to Integer sections of this chapter.
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Neural Network Output Scaling

The neural network output scaling equations were produced by the

neural network development software in order to make the actual network

outputs compatible with the ideal expected outputs specified by the

user in the training and testing data sets. Neural network output

scaling was required for this project only during the neural network

development process, when it was useful to compare scaled neural

network outputs with the ideal expected outputs. The original floating

point neural network implementation incorporates neural network output

scaling. The scaling is not necessary in the final implementation of

the neural network in the sprayer software since the relative

magnitudes of the two outputs is what determines the network's

decision. Neural network output scaling here would add unnecessary

software execution time.

The two unsealed outputs of the neural network are the results of

calculations in the two nodes in the output layer. Since, in the

floating point neural network implementation, these outputs are

calculated using the hyperbolic tangent function, they fall within the

range -1 to 1. The ideal expected outputs of the neural network are

(0, 1) when no plant is present and (1, 0) when a plant is present.

Thus each scaled output is expected to fall within the range 0 to 1.

Neural network output scaling maps each actual neural network output

from the range -1 to 1 to the range 0 to 1. This allows the designer

to see how close the neural network outputs are to ideal.

The scaling is identical for the two neural network outputs. The

"plant" output is scaled according to the following equation, which is

taken directly from the original floating point neural network software

listing in Appendix C:
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OUTPUT1 = (NODEOUT(3] [0] + 0.8) / 1.6,

where

OUTPUTl is the scaled "plant" neural network output.
NODEOUT(3] [0] is an element of the two-dimensional array NODEOUT
and contains the unsealed "plant" neural network output.

Note that this scaling actually maps a neural network output of -0.8 to

o and maps an output of 0.8 to I, instead of mapping -1 (the lower

bound of the tanh function) to 0 and 1 (the upper bound of the tanh

function) to 1. The development software chooses this mapping so that

hitting the ideal outputs during neural network training is actually

possible. The latter mapping is not used because the hyperbolic

tangent result cannot actually reach -1 or I, and so the ideal expected

output could never be reached. Tanh (x) approaches -1 for large

negative values of x and approaches 1 for large positive values of x.
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Interpreting Neural Network Outputs

After the sprayer unit software passes sensor readings through

the neural network, the network outputs are evaluated to determine

whether or not a plant has been detected in the viewing area of the

sensor. The neural network has two outputs, one corresponding to a

"plant" decision and one corresponding to a "no plant" decision. The

output. that is numerically greater indicates the neural network's

decision. This holds true even in the final sprayer unit software,

where output scaling has been removed, and integer arithmetic is used

for the neural network. With the original floating point

implementation, the ideal scaled neural network outputs are (1, 0) with

a plant present and (0, 1) with no plant present. The Sprayer Unit

Software Performance Results section of this chapter shows some typical

scaled and unsealed outputs for the two neural .network implementations.
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Hyperbolic Tangent Lookup Table

The final version of the sprayer unit software uses a lookup

table to implement the hyperbolic tangent (tanh) transfer function of

each neural network node. The lookup table allows software to "'look

up" the result of a hyperbolic tangent calculation in a table in memory

rather than calculate the result. Such a system allows the sprayer

unit software to use much less processing time than the original

floating point version and allows the software to run at a higher

frequency.

The original C code to implement the neural network included a

"tanh(x)" C function for each node. The C compiler for the MC68HCIIAO

microprocessor converted each of these C functions to a series

approximation to run on the MC6BHCIIAO. Since the MC68HCI1AO in the

weed sprayer computer can only manipulate 8-bit and 16-bit integer

numbers, these series approximations required high overhead in

processing time. with the lookup table, the evaluation of the

hyperbolic tangent function amounts only to a few memory accesses,

which requires much less time to execute. The disadvantage with this

method is that some error results in the function evaluation, since the

hyperbolic tangent outcomes are limited to the 256 values stored in the

table. The Sprayer Unit Soft.ware Performance Results section of this

chapter quantifies the advantages and disadvantages of using the lookup

table.

The hyperbolic tangent lookup table was originally developed as a

true tanh function, before being scaled up for the integer version of

the software. The tanh(x) function is equal to the following

expression:
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Figure 7.3 shows a plot of the hyperbolic tangent function. The

original table could access tanh (x) for x in the interval -2 to 2,

inclusive. This range was chosen as a compromise between good

resolution in the table and wasted space in the table. Most of the

"active" part of the function falls within the -2 to 2 region.

Accepting a wider range of inputs to the table would mean lower

resolution in this "active" region and increased error. Tests run by

passing typical sensor readings through the neural network have shown

that the bounds of the lookup table, covering this range of inputs, are

rarely exceeded.

The lookup table used in the final version of the sprayer unit

software does not implement a true hyperbolic tangent function, since

all arithmetic has been converted to use only integers. The lookup

table is a scaled version of the hyp,erbolic tangent function. See the

Conversion from Floating Point to Integer section of this chapter for

more information.

-4 -3 -2 -1

f[x)

1

2 3 4 X

-1

Figure 7.3: The hyperbolic tang'ent (tanh) function.
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Conversion from Floating Point to Integer

The final sprayer unit software uses exclusively integer

arithmetic (at the C code level) to perform all calculations. This

requires much less processing time than the original version, which had

floating point C instructions. Since many calculations are made in the

neural network, conversion to integers allows the sprayer unit software

to run at a much higher frequency. Appendix C shows a program listing

of the C code for the original floating point version of the neural

network. Appendix D shows a program listing for the final integer

version of the code.

The MC68HC11AO microprocessor used in the weed sprayer computer

supports 8-bit and limited 16-bit integer arithmetic. This means that

floating point C instructions require a series of many integer

- operations on the MC6BHCI1AO. Integer C instructions using the "long

int" type, which uses 32-bit signed integers, require significantly

fewer MC68HCI1AO integer operations.

Conversion of the floating point algorithm to integers

essentially consisted of scaling up all numbers to eliminate the

fractional parts. This was a compromise between losing precision and

using integers in a range that can be manipulated quickly by the

MC68HC11AO microprocessor. The larger the number of significant digits

used, the more precision the calculations carry. On the other hand,

larger numbers require more bits for storage, thus more processing time

to manipulate. Following is a list of specific changes made to convert

the original floating point software to integers:

1. For each neural network node, each weight, except for the weight

on the bias input, was multiplied by 104 and rounded to the nearest

integer.

EXAMPLE: The weight 1. 906368 was converted to 19064. This is the

second weight of the first node in the first hidden layer.
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2. For each neural network node, the weight on the bias input was

multiplied by 108
• The weight on t.he bias input t.o each node is

treated differently because the unweighted bias input is always

unity, and is not the output of another node, which would already

be scaled up by 104
•

During code development for the int.eger version of the software,

bias weights were inadvert.ent.ly rounded to t.he nearest 10000.

This result.s in unnecessary loss of precision. In most. cases, two

more significant figures could have been kept..

EXAMPLE: The weight -0.127484 was converted t.o -12750000. This

is the first weight. of the first node in the first hidden layer.

3. Neural network input scaling equations were multiplied by 104
.

EXAMPLE:

The following equation,

nodeout[O] [0] = (redin-redmin) j(redmax-redrnin) *2.0-1.0i

was converted to

nodeout[O] [0] = 20000* (redin-redmin) j(redmax-redmin)-10000i

4. The modified hyperbolic tangent (tanh) lookup table contains 256

entries that. are actually tanh results scaled up by 104 . In the

integer software version, neural network node weighted swns, which

are integers in the range of -2x10 8 to 2x10 8 , are converted to

integers in the range 0 to 255 to access the lookup table. This

table represents the activation function, or transfer function, of

each node. The lookup table evaluates the following function:

y = 104 * tanh(x I 10 8
).

See the Hyperbolic Tangent. Lookup Table section of this chapter

for more information.

Disadvantages of the conversion from floating point to integers

are that the neural network implementation is not so straightforward

and is more difficult to understand. Another disadvantage is that some

precision is lost in all calculations due to the rounding that occurs

in the conversion. This results in error at the neural network

outputs, when compared to the neural network as originally developed.

The Sprayer Unit Software Performance Results section quantifies the



advantages and disadvantages of converting all floating point

arithmetic to integer arithmetic in the sprayer unit software.
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Spray Nozzle Timing

Software timing must ensure that weeds detected on the ground are

properly targeted by the moving sprayer unit. As a sprayer unit moves

over a field, the sensor physically leads the spray nozzle on the boom.

This is necessary so that, when a plant is detected, there is time for

the nozzle to open and for the liquid to travel to the ground before

the plant passes. The distance that the sensor leads the nozzle is far

enough that some time must elapse between the time that a reading is

taken and the time that the nozzle is activated. This allows the delay

time to be adjusted in software to match a particular tractor speed.

The software cannot merely take a reading and then pause until the

proper time to turn on the nozzle because ground would be passed over

in the mean time, and a weed might be missed. Instead, the software

stores nozzle state information in a queue (FIFO) for sending to the

spray nozzle at a later time. Using such a queue does not

significantly affect software execution speed, but does cause the

designed delay between each sensor reading and the corresponding spray

nozzle updates.

During each iteration in the sprayer unit software, after sensor

r,eadings have been passed through the neural network and a decision is

made whether a plant is present in the viewing area or not, the

decision is placed at the rear of the nozzle state queue. The item at

the front of the queue is then retrieved and the spray nozzle is set

accordingly. The spray nozzle remains in this state, either on or off,

until the next software iteration.

The nozzle state queue keeps a history of the past 19 neural

network decisions ("no plant" or "plant"), thus it has a length of 19

items. The length of the queue was matched to a particular ground

speed at which the tractor must run in order for the system to target

the weeds properly. In order to match the queue length to a particular
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ground speed, a rough calculation was first made. This involved

calculating the required queue length based on the known speed of the

tractor in a certain gear at a certain engine RPM. The equation used

that relates these quantities is the following:

L = (f * d I v) - t,

where

L = length of the nozzle state queue (no. of items) .
f = program execution frequency (determined experimentally) .
d = distance (in direction of travel) from center of sensor to

center of spray nozzle.
= 38~O in.

v = tractor ground speed.
t = elapsed time from computer sending signal to turn on spray

nozzle until fluid strikes the ground (determined
experimentally). Measured at 25 psi and 24 in. travel

height.
= 0.107 seconds.

Field tests showed that the initial calculation for the required queue

length was incorrect and the spray did not hit the targeted plants.

This error was probably due primarily to an incorrect figure being used

for the travel time of the fluid from the spray nozzle to the ground.

To correct this problem the tractor speed was matched to the fix.ed

software timing using trial and error. The tractor provides a digital

RPM display, so the required speed could be repeated each time the

system was used.
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Sprayer Unit Software Performance Results

Software execution speed and software computational accuracy were

the two main software performance concerns for this project. Both of

the main techniques used to increase execution speed of the sprayer

unit software cause the disadvantage of decreased computational

accuracy as cOII\Pared to the original neural network as it was

developed. Both techniques result in some round-off error at the

neural network outputs, which may result in incorrect software

decisions ("plant" or "no plant") for "marginal" cases. Speed

improvements are significant and errors in neural network outputs are

small and were deemed acceptable.

Software execution speed is important because it affects the

maximum ground speed that the sprayer system can be driven across a

field. A good.measure of software execution speed is the length of

time required for the software to make one cycle through the code.

This is eff,ectively the time required for one "plant"/"no plant"

decision. Table 7.1 compares the software execution time for a full

cycle through the code, during different stages of software

development. Execution time was reduced by approximately a factor of

four using the two techniques described in this chapter. Based on the

best execution time and on the length, or dimension in the direction of

travel, of the sensor viewing area, the maximum ground speed for the

sprayer system is about 2.15 miles per hour.

Table 7.1: Software execution times at different stages of
development.

TYPE OF'
ARITHMETIC

floating point
floating point
int.eger

ACTIVATION
FUNCTION

tanh (x)
tanh (x) lookup table
tanh (x) lookup table

EXECUTION
TIME (sec)

0.29
0.13
0.070
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The 256-location hyperbolic tangent lookup table used to

implement the activation function of each neural network node rounds

calculations of the function to a value listed in the table.

Conversion, from floating point to integer, of all calculations made in

the neural network forward pass results in round-off error since the

integers used do not generally have as many significant figures as the

original floating point numbers did. Examples of this can be seen by

comparing the array of neural network weights in the two software

versions (Appendix C and Appendix D). The weights in the original

floating point version generally have 6 or 7 significant figures, while

the integer weights in the final integer version have 4 or 5

significant figures (for example, 1.906368 vs. 19064). The magnitude

of the integers used is limited by the C language variable types that

the compiler supports. Variable space (resolution) was not optimized

in the sprayer unit software when the conversion was made to integers.

The conversion was merely done in a simple way, as described in the

Conversion from Floating Point to Integers section of this chapter.

The resulting errors at the neural network outputs were deemed

acceptable.

Table 7.2 shows calculated neural network outputs for the two

extreme cases of the software, in response to the same neural network

inputs. The six sets of inputs are actual sensor readings from the

testing data set. A comparison of the "SCALED NEURAL NETWORK OUTPUTS"

columns of the two sections shows examples of the errors that result at

the neural network outputs due to the spe,ed improvement modifications.

Notice that the differences between these two sections of the tables

are small. The scaled neural network outputs for the first section of

the table were generated using the methods described in the Neural

Network Output Scaling section of this chapter. The scaled outputs for

the second section were generated using very similar linear equations.
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Table 7.2: Comparison of neural network outputs before and after
speed improvement techniques were applied.

FLOATING POINT ARITHMETIC WITH ACTUAL TANH (X) FUNCTION.

NEURAL NETWORK UNSCALED NEURAL SCALED NEURAL
INPUTS NETWORK OUTPUTS NETWORK OUTPUTS

RED GRN NIR OUTPUT 1 OUTPUT 2 OUTPUT 1 OUTPUT 2

113 86 84 -0.803878 0.803503 -0.002424 l.002190
80 67 80 0.796874 -0.796682 0.998046 0.002074
54 34 43 -0.405208 0.406352 0.246745 0.753970
46 37 39 0.274699 -0.275862 0.671687 0.327586
36 29 31 0.669625 -0.670443 0.918516 0.080973
84 78 113 0.824791 -0.823956 1. 015494 -0.014972

INTEGER ARITHMETIC WITH INTEGER LOOKUP TABLE FOR TANH (X) .

NEURAL NETWORK UNSCALED NEURAL SCALED NEURAL
INPUTS NETWORK OUTPUTS NETWORK OUTPUTS

RED GRN NIR OUTPUT 1 OUTPUT 2 OUTPUT 1 OUTPUT 2

113 86 84 . -8026 7969 -0.001625 0.998062
80 67 80 7911 -7969 0.994438 0.001937
54 34 43 -4194 4064 0.237875 0.754000
46 37 39 2678 -2823 0.667375 0.323563
36 29 31 6683 -6769 0.917687 0.076937
84 78 113 8187 -8187 1.011688 -0.011688

Note that in the final version of the sprayer unit software, with

the integer arithmetic and lookup table, neural network outputs are not

actually scaled. They are only scaled here in the table for a

comparison with the previous network implementation.
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SYSTEM PERFORMANCE RESULTS

Sensor Prototype Comparison

During sensor development, tests were conducted to determine

whether or not sensor performance would be consistent when several

sensors were constructed using the same parts. In other words, the

following questions was investigated: "When additional sensors are

constructed, will they behave sufficiently similar to the original

prototype?" Early investigation into this matter was based on two

sensors built using the same construction techniques and parts. ThE

two prototypes, called prototype 2 and prototype 3, were of the same

construction as the sensor described in Chapter IV.

The output voltages of the two prototypes were compared under

nearly identical conditions. Using an outdoor test stand, each sens

was, in turn, suspended above a soil surface and the red, green, ane

near infrared output voltages were recorded. These measurements she

that there was very close correspondence between the respective out~

of the two sensors. The red output voltage of prototype 2 was very

close to the red output voltage of prototype 3. Results were simila

for the green and near infrared voltages. Comparison of these two

original sensors showed that their performance was very simi1ar and

repeatable performance for additional sensors was indicated.



Field Sprayer Unit Comparison

A qualitative comparison of the plant detection capabilities of

the five sprayer units in the experimental sprayer system showed

significant performance differences. The five sensors used on these

five sprayer units included the two original sensor prototypes

(prototypes 2 and 3), in addition to three other sensors that were

later constructed using the same parts and techniques. The qualitativ

tests were run with the five complete sprayer units mounted on the

spray boom, with each suspended above natural soil in a field. Each

sprayer unit ran software that implemented the original floating point

version of the neural network. The tractor and spray boom were

stationary for these tests. The performance of each sprayer unit was

evaluated by holding parts of a bindweed plant near the ground directl

under the sensor, in the viewing area of the unit, and observing the

ability of the unit to detect the plant.

During the field tests, each sprayer unit worked correctly in

that plant material in the viewing area caused activation, or a turnin

on of the spray nozzle. However, different amounts of plant cover wer

required with each sensor to cause activation. One of the sensors was

much more "sensitive" than the others and could be activated

consistently with an estimated five percent plant cover in the viewing

area. This unit also occasionally activated when no plant was present

as lighting condi tions changed due to cloud cover. The other sprayer

units required a higher plant cover. In some cases, an estimated 30

percent cover was required to cause plant detection. Investigations

into the cause(s) of the sprayer unit variations are described in othel

sections of this chapter.
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Sensor Output Comparison

The output voltages of the sensors on the five sprayer units of

the experimental system were compared under nearly identical

conditions. These tests were carried out in an attempt to find the

cause of the pronounced variation in the ability of the five sprayer

units to detect plants. For these tests, the sprayer units were

suspended above the ground by the spray boom. Soil was spread out on a

platform on the ground, which could be placed, in turn, under each of

the five sensor of the sprayer units. For each sensor, the three

output voltages (red, green, and near infrared) were measured, with the

soil covering the entire viewing area of the sensor during the

measurement. These measurements showed significant variations in the

respective output voltages of the sensors, as shown in Table B.l.

Table 8.1: Output voltages of the five sensors under nearly
identical conditions. Conditions: Fort Cobb soil, full sun, dry
soil, zero plant cover.

SENSOR SENSOR OUTPUT VOLTAGES (volts)

RED GREEN NEAR INFRARED
1 (prototype 2) 1.28 0.685 0.905
2 1.30 0.652 0.900
3 1.34 0.777 0.934
4 1. 59 0.926 1. 270
5 (prototype 3) 1.37 0.835 0.986

For consistent performance from sensor to sensor, the output voltages

in each band would be very close to one another. For example, the red

outputs for all five sensors would be nearly the same. This is clearly

not the case. Variations are significant in all three sensor bands.

Note that the output voltages of sensor 4 are much higher than those of

the other sensors. Output voltages measured running these same tests,

but using one of the other soil types, showed similar variations.

variations in sensor output voltages were measured using an

indoor test similar to the one described above. In these tests each



sensor was mounted, in turn, on a test stand and suspended above a

fixed white surface. An ordinary incandescent lamp held in a fixed

position was used as the light source for these tests. Results were

comparable to those above in that there were wide variations between

sensors, and sensor 4 showed the highest readings.

The variations measured in sensor output voltages during the

outdoor and indoor tests are believed to be sufficient to cause the

variations in sprayer unit performance that were observed in the fiel<

performance tests. These field tests are described in the section

entitled Field Sprayer Unit Comparison in this chapter. Computer

hardware and software for all five units was essentially identical an<

is unlikely to cause performance differences between units.

The following are believed to be the most likely causes of the

variations in sensors: differences in the photodiode responses,

optical differences in the filters used on the photodiodes, and

differences in the optical properties of the interior of the sensor

housings. Each photodiode likely has a different response when expOSE

to the same lighting. Since each filter was custom cut from a larger

piece of material, the filters are not all identical in shape. The

textures of the cut surfaces of the filters also differ. The fact the

the three readings for sensor 4 were all significantly higher than thE

readings of the other sensors indicates that possibly light is

reflected better inside this sensor housing than the others. Other

sensor components, including the resistors, operational amplifiers, ar.

the sensor circuit board masks, were eliminated as likely sources of

the major output voltage variations observed.
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The Effects of Time of Day

Sprayer unit performance is affected by the time of day of

operation. Tests show that the ability of the system to detect plants

is degraded in the early morning and late evening hours. In general, a

higher plant cover is required to activate a sprayer unit during these

times. This problem is likely due to the fact that the intensities of

the different colors in the sunlight reaching the surface of the earth

are different in the morning and evening hours (Sagan 1994). Atthese

times of the day, light from the sun must travel a greater distance

through the atmosphere before reaching the ground. The colors with

shorter wavelengths, such as blue and violet, are scattered more

efficiently by the atmosphere, thus the intensities of these colors are

reduced when the sun is low on the horizon. Since the sprayer unit

relies on the intensities of the different colors of light in its plant

detection algorithm, performance is affected when the relative

intensities change.
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The Effects of Soil Moisture

Although wet soil was taken into account during neural network

training, tests show that sprayer unit performance is degraded with

some soil types when wet. Even using sensor prototype 3, the sensor

that was used to collect the neural network training and testing data,

plant detection performance was poor under certain conditions with wet

soil. In some cases, false plant detections occurred when no plant was

present in the viewing area. The causes of such performance are

unknown.
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The Effects of Soil Texture

Tests show that the texture of soil that the sprayer unit

encounters affects its performance. Although exposure of the neural

network to several different soil types during training prepares the

sprayer unit for different soil colorings, different soil textures are

not taken into account. Soil texture encountered in the field during

sprayer unit operation was distinctly different than that used during

the neural network training portion of system development. The major

differences observed in the natural soil in the field are in the

following areas: soil smoothness, size of clods, and presence of dead

plant material.

Due to the effects of water and wind erosion, the soil on the

ground in the field was much more smooth than that placed on the test

stand for the acquisition of neural network training and testing data.

The smoother, weathered soil in the field appears to reflect light

better than the more broken-up soil used on the test stand.

The soil in the field had much larger clods, which tend to cause

shadows. These shadows may adversely affect sprayer unit performance,

as described in the section of this chapter entitled The Effects of

Shadows.

Dead plant material, or crop residue, in the field on the ground

surface reflects light differently than soil, and may adversely affect

sprayer unit performance when in the viewing area of the sensor.

However, tests indicate (Nitsch 1991) that some weathered crop residues

have reflectivity curves that are very similar to that of soil. This

is due to the fact that chlorophyll is largely absent in this long-dead

plant material. Based on this information, crop residue may slightly

affect sprayer unit performance, but is unlikely to cause major

problems.
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The Effects of Shadows

Shadows in the sensor viewing area adversely af fect. sprayer uni t

performance. Test.s show that, with large shadows in the sensor viewing

area, a greater percentage of plant cover is required to cause the

sprayer unit to detect the plant. The effects of shadows decrease with

the shadow size. The inability of the neural network used in the plant

detection algorithm to properly classify shadowed fields of view can be

explained by the fact that shadows were not taken into account during

neural network training. The effect shadows have on the sensor

readings is unknown, but since shadowed areas reflect light differently

than areas directly illuminated by the sun, this situation might be

expected to affect performance. An improved plant detection algorithm

might result from adding shadowed plant and soil settings to the neural

network training process.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

Overall System Performance

Although the basic plant detection and spraying methods presented

in this thesis showed potential, the implementation of the experimental

system described here showed significant limitations. The problems

were primarily in the area of plant detection, and are likely due to

the neural network based plant detection algorithm and the sensors.

Although the weed sprayer system worked moderately well and was able to

target weeds under some conditions, plant de-tection performance

suffered because of variations in the following areas: cloud cover,

time of day, soil moisture, soil texture, and shadows. The neural

_ network training and testing was likely insufficient in provi.ding a

plant detection algorithm capable of adapting to the wide variation of

conditions encountered outdoors in an agricultural setting. Additional

problems with wide performance variation among the sensors was

observed. The weed targeting methods used in the sprayer unit software

worked well. However, software execution time of the math-intensive

plant detection algorithm on the available computer hardware limited

tractor speeds. Otherwise, the computer hardware worked well for the

job.
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Sensor

The t.hree-band optical sensor used in the sprayer unit provided

measurements of reflected radiation that proved useful in the detection

of bindweed (Convolvulus arvensis) under a wide range of environmental

conditions. This is evident in the success of the neural network

development process, where only one sensor was utilized. However,

construction and testing of additional sensors showed significant

performance variation. The performance differences in the sensors were

great enough to render some sprayer units ineffective for the task of

plant detection. A method of sensor calibration to compensate for

electrical component variations is reconunended. In addition, the

sensor parts affecting the optical properties of the device should be

very closely matched among sensors.
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Neural Network

Neural network development for the sprayer Wlits was successful

in showing that a neural network could be created to recognize bindweed

(Convolvulus arvensis) under a wide range of conditions using one of

the three-band optical sensors developed for this project. using a

single sensor prototype to collect training and testing data, the

neural network that was developed correctly classified all settings in

the testing data. Implementation of the neural network in a plant

detection algoritlun using additional sensors under new field conditions

revealed significant problems. The neural network was Wlable to

effectively adapt to variation in the sensors or to new variations in

cloud cover, time of day, soil moisture, soil texture, and shadows. If

a neural network is to be developed that can adapt to such a wide range

of conditions, it is recommended that much more attention be given.. to

the neural network development process. The collection of training and

testing data under a much wider range of conditions would likely be

required. This would significantly increase the time required for

collection of field data and would likely increase the time required

for each neural network training and testing cycle during the

development process.



Sprayer Unit Software

The sprayer unit software implements the plant detection

algorithm of the unit. Although the neural network based plant

detection algorithm used in the sprayer units showed good results und

some operating conditions, it did not prove successful in adapting to

wide variety of field situations, as discussed in the Neural Network

section of this chapter. In addition, the ground speed of the tracto

carrying the spray boom and sprayer units was severely limi ted by the

execution speed of the software running the plant detection algorithm

In a practical system, a much simpler algorithm would likely be

required in order to utilize the same relatively inexpensive computer

hardware. A simpler algorithm may exist that is just as effective,

perhaps using the sensor readings to calculate one of the vegetation

indices discussed in Chapter II. Using such a simple calculation

instead of the neural network would also eliminate the need for the

time-consuming process of collection training and testing data for th

neural network development process. The timing system used for weed

targeting in the sprayer unit, as discussed in the Spray Nozzle Timin

section of Chapter VII, worked effectively.
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Computer

The Dearborn Network Analysis Tool (DNAT). based on the Motorola

MC6BHCI1AO microprocessor, was relatively inexpensive and easy to use,

but limited execution speed of the plant detection algorithm. This

algorithm, which involves a neural network, requires a large number of

mathematical calculations. Programming techniques were used to reduce

execution times and achieve a software execution rate of about 14

decisions per second. Still further speed increases would likely be

required in a practical weed sprayer system. This speed-up might

involve using either a much simpler plant detection algorithm, or using

faster computer hardware. Another option is to incorporate larger

amounts of information in lookup table form, although this would likely

require additional computer memory. The DNAT computer was easily

programmed and provided sufficient I/O (input/output) capabilities for

the sprayer unit.
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Figures A-l, A-2, A-3 show the sensor optical geometry and the geometry
of the sensor viewing area.

h

Figure A-l: Sensor optical geometly-side view.

w

h

Figure A-2: Sensor optical geometry-front view.
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Figure A-3: Sensor viewing area.
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Definitions for sensor optical geometry calculations and diagrams.

al =

=
a2 =

=
b =

=
h =

=
L =

=
W =

=

Length (in direction of travel) of aperature in sensor aperature
plate.
0.25 in.
width (perpendicular to direction of travel) of aperature in
sensor aperature plate.
2.125 in.
Distance from lower photodiode surface to lower surface of sensor
aperature plate.
2.5 in.
Distance from lower surface of sensor aperature plate to the
ground surface.
24 in.
Length (in direction of travel) of sensor viewing area on the
ground surface.
2.65 in.
width (perpendicular to direction of travel) of sensor viewing
area on the ground surface.
22.5 in.

Sensor optical geometry calculations:

(L/2)/(b+h) = (at!2)/b
L/ (b+h) = adb
L = al (b+h) /b
L = (O.25) (2.5+24}/2.5
L = 2.65 in.

(W/2}/(b+h) = (a2/2}/b
WI (b+h) = a2/b

W = a2 (b+hl /b
W = (2.125)(2.5+241/2.5
W = 22.5 in ..
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SPRAYER UNIT SCHEMATIC DIAGRAM
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APPENDIX C

PROGRAM L,ISTING OF ORIGINAL FLOATING POINT NEURAL NETWORK SOFTWARE
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I * Ronnie Evans * I
I * This program is a modi f ied form of SPRAY1 0 . C . * /
1* Intended for compilation by Introl C compiler and execution */
I * on the 6SHC11 computer. * I
/ * I.ncorporates new weights obtained from training on data from fro I
/* prototype 3.
/* This program takes red, blue-green, andnir sensor readings, *1
/* runs them through a neural network and decides whether there *1
/* is a plant present or not. *1
/ * The three inputs are assigned in 'main 1 • * I
/* The algorithm for finding the two network outputs (called */
/* out1 and out2 below) is the same as that used by NeuralWare */
/* on a forward pass (test) of the network. */

#include <math.h>
#include <stdio.h>
#include <string.h>
#:include "h11reg.h"
#: inc1ude "terminal. h·'

/* Following are min. and max. readings in the training data set. *1
1* They are used later to scale the inputs to the neural network. *1
#define redmin 28.0 /* Minimum red reading in training data set. *1
#define redmax 172.0 /* Maximum red. */
#define greenmin 21.0 /* Minimum green (blue-green). */
#define greenmax 114.0 /* Maximum green. */
#define nirmin 15.0 /* Minimum near infrared (NIR). */
#define nirmax 170.0 /* Maximum near infrared .. */

*/

1* nothing */}o

3, 3, 2};
number of nodes in each layer,
*1

-1.034428, 0.586344}, 1* hidden layer 2 *1
1.098036, -0.768516 },
1.971593, -0.302194 }

0.146913, -2.45677 5 }, 1* hidden layer 1 * /
-1.797332, 13.357224 },

0.346963, -5.187379 }

0.327346, 0.527086}, 1* output layer */
-0.382149, -0.532109 }

-0.127484, 1.906368,
0.225026, -10.56199,

-0.296284, 4.162867,

-0.112190, (}. 271015,
0.155440, -0.430254,

-0.050510, -0.087746,

#define DONOTHING
#define NUMLAYERS 4 /* Number of layers in neural network, */

1* including input layer. *1
int layer, node, i;
float sum, output1, output2;
int numnodes[NUMLAYERS] = {3,

/* numnodesarray contains
1* including input layer.

float nodeout [NUMLAYERS] [4] ;
/* nodeout array contains node outputs. */
1* indices are [layer#] [node#]. */

float weight [NUMLAYERS] [3] [4] =
{{{ 0, 0, 0,

L
{{

{
{

} ,
{{

(
(

},
{{ 0.017225, -0.329455,
{-0.016978, 0.265793,

}
} ;

/* Array 'weight' contains node weights. */
/* Indices are [layer#] [node#] [weight#]. */
/* First weight for each node is the bias weight. *1
/* The other 3 are the weights on the inputs from * /
1* the previous layer. ~/



sum of inputs to * I
i is weight index. * /

*/
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void main ( )
{

fore;;) /* endless loop */
{

/* Following section assigns neural network inputs. */
/ * The inputs used here are examples from the training data set. * /
/* These inputs would normally by the three sensor readings. * /
redin = 143; /* Assign red neural network input. */

1* This must be in the range 0-255. */
greenin = 111; /* Assign green neural network input. */

/* This must be in the range 0-255. */
nirin = 118; /* Read uear infrared (NIR) neural network input. */

/* This must be in the range 0-255. */

/* Following section scales inputs. */
nodeout [0] [0] = (redin-redmin) / (redmax-re&nin) *2.0-1. 0;

1* scaled red input *1
nodeout(O] [1] = (greenin-greenmin) / (greenmax-greenminl *2.0-1.0;

/* scaled green input *1
nodeout[O] [2] = (nirin-nirminl I (nirmax-nirmin) *2.0-1.0;

/* scaled nir input *1

1* Following section passes inputs through network. */
/ * Loop through -layers of neural network. * /
for (layer=! ; layer <= NUMLAYERS-1 ; layer=layer+1)

{

/* Loop through nodes of one layer. */
for (node=O ; node <= numnodes[layer]-l ; node=node+1)

{

1* Initialize weighted sum with we.ighted bias. * /
sum = 1.0 * weight [layer] [node] [0] ;

1* Following loop calculates weighted
/* one neural network node. Variable
/* Loop through inputs of one node.
for (i=l ; i <= nurnnodes[layer-1] ; i=i+11

{
sum = sum + nodeout [layer-1] [i-1] * weight [layer] (node] [i] ;
}

1* Calculate output of one node by using activation * I
I * function. * /
nodeout[layer] [node] := tanh (sum) ;
}

}

/* Following section scales the neural network outputs. */
outputl = (nodeout[3] [0] + 0.8) I 1.6; 1* "plant" output. *1
output2 = (nodeout[3] [1] + 0.8) I 1.6; 1* "no plant" output. *1

1* Decide whether or not plant has been detected (whether or *1
1* not to tum on spray nozzle) .
if (output1 > output2)

1* Plant detected. *1
printf ("PLANT DETECTED\n") ;

else
1* No plant detected. *1
printf ("NO PLANT DETECTED\n·);

} 1* end of endless FOR loop *1
1* end of main *1
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/ * Ronnie Evans * /
/* This program is a modified form of SPRAY17.C. */
/* This program implements a history queue of past decisions on */
/* whether to spray or not. All floating point operations have */
/* been r,eplaced wi th integer operations for speed. * /
/* Intended for compilation by Introl C compiler and execution * /
/* on the 68HCll computer. *1
/* Incorporates new weights obtained from training on data from */
/* prototype 3. * /
/* Program uses 256-location lookup table for tanh function. */
/* This program takes red, green, and nir sensor readings, */
/ * runs them. through a neural network model and decides whether * /
/* or not a plant is present, and writes to PORT B accordingly */
/* to turn a sprayer on or off. * /
/* The three inputs are assigned in 'main'. */
/* The algorithm for finding the two network outputs (called */
/ * outl and out2 below) is the same as that used by NeuralWare * /
/* on a forward pass (test) of the network. */

#include <stdio.h>
#include <math.h>
#include Whllreg.h"
#include "terminal.h"

#define DONOTHING
#define numlayers 4 /* including input layer */
#define qlength 19 / * length of history queue * /
!define histsize 100 /* size of entire array that holds history * /

/* queue (nozzle state queue). */
int toggle_count, toggle_flag;
int redroin = 28; / * min. red sensor reading in training data set. * /
int redrnax = 172; 1* max. red sensor reading in training data set. */
int greenmin = 21; / * min. green sensor reading in training * /

/* data set. */
int greenmax = 114; /* max. green sensor reading in training */

/* data set. */
int ninnin = 15; / * min. near infrared sensor reading in training */

/* data set. */
int nirmax = 170; /* max. near infrared sensor reading in training */

/* data set. */
/* min and max readings in training file TRAIN8.NNA. */
/* these are used to scale the inputs. */

int layer, node, i, plant;
/ * used to pass data through neural network. * 1

long int redin, greenin, nirin, sum, factorl, factor2, factor3;
1* used to pass data through neural network. *1

float outl, out2; /* neural network outputs *1
int numnodes[numlayers] = {3, 3, 3, 2};

/* numnodes array contains number of nodes in each layer, */
/* including input layer. */

long int nodeout[numlayers] [4];
/* nodeout array contains node outputs. */
/* indices are [layer#] [node#]. */
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long int weight [numlayers] [3] [4] =

1720000, -3295, 3273, 5271}, /* output layer */
-1700000, 2658, -3821, -5321 }

-11220000, 2710, -10344, 5863}, /* hidden layer 2 */
15540000, -4303, 10980, -7685 },
-5050000, -877, 19715, -3022 }

-12750000, 19064, 1469, -24568}, 1* hidden layer 1 */
22500000, -105620, -17973, 133572 },
-29620000, 41628, 3470 , -51873 }

/* Array 'weight' contains node weights. *1
/* Indices are [layer#] [node#] [weight#]. *1
/* First weight for each node is the bias weight. *1
1* The other 3 are the weights on the inputs from the */
1* previous layer. */

I * nothing * Io0,0,0,{{{
},

H
(
(

),

{{
{
{

},
{{

{
}

} ;

/* variables for history table (nozzle state queue). */
int history[histsizeJ ;
int frontptr = 0; /* points to front of q (where data is read) *1
int rearptr= qlength; /* points to end of q (where data is writ.ten) *1

1* Variables for hyperbolic tangent lookup table. */
long. int minlookup = -200000000; 1* min. operand for tanh in lookup */

1* table. *1
long int maxlookup = 200000000; 1* max. operand for tanh in lookup */

1* table. */
int index; 1* index into hyperbolic lookup table. *1

1* hyperbolic tangent lookup table */
static int mytanh[] =
{
-9640 , 1* mytanh [ 0 1 *1
-9629 , /* mytanh [ 1 ] *1
-9617 , 1* mytanh [ 2 ] *1
-9605 , 1* mytanh [ 3 1 */
-9593 , 1* mytanh [ 4 J */
-9580 , /* mytanh [ 5 1 */
-9567 , 1* mytanh [ 6 ] *1
-9554 , /* mytanh [ 7 ] */
-9540 , /* mytanh [ 8 ] */
-9526 , /* mytanh [ 9 ] */
-9511 , 1* mytanh [ 10 ] *1
-9496 , 1* mytanh [ 11 ] *1
-9480 , 1* mytanh [ 12 ] */
-9464 , 1* mytanh [ 13 ] *1
-9447 , /* mytanh [ 14 ] *1
-9430 , 1* mytanh [ 15 ] */
-9413 , 1* mytanh [ 16 1 *1
-9394 , 1* mytanh [ 17 ] */
-9376 , 1* mytanh [ 18 ] */
-9357 , /* mytanh [ 19 ] */
-9337 , /* mytanh [ 20 ] */
-9316 , 1* mytanh [ 21 ] */
-9295 , /* mytanh [ 22 ] */
-9274 , /* mytanh [ 23 ] *1
-9251 , 1* mytanh [ 24 J *1
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-9228 # /* mytanh [ 25 ] */
-9205 # /* mytanh [ 26 ] */
-9180 # /* mytanh [ 27 ] */
-9155 # /* mytanh [ 28 ] */
-9130 # /* mytanh [ 29 ] */
-9103 # /* mytanh [ 30 ] */
-9076 , /* mytanh [ 31 ] */
-9048 # /* mytanh[ 32 ] */
-9019 # /* mytanh [ 33 ] */
-8989 # 1* mytanh [ 34 ] */
-8959 # /* mytanh{ 35 ] */
-8927 , /* mytanh [ 36 ] */
-8895 , /* mytanh [ 37 ] */
-8862 , /* mytanh [ 38 ] */
-8828 # /* mytanh [ 39 ] */
-8793 , 1* mytanh [ 40 ] */
-8757 , /* mytanh [ 41 ] */
-8720 , /* mytanh [ 42 ] 1</

-8681 , /* mytanh [ 43 ] */
-8642 , /* mytanh [ 44 ] */
-8602 , /* mytanh [ 45 ] */
-8561 , /* mytanh [ 46 ] */
-8518 , /* mytanh [ 47 ] */
-8475 , /* mytanh [ 48 ] */
-8430 · /* mytanh[ 49 ] */
-8384 · /* mytanh[ 50 ] */
-8337 # /* mytanh [ 51 ] */
-8288 · - / * mytanh [ 52 ] */
-8238 · /* mytanh [ 53 ] */
-8187 # /* mytanh [ 54 ] */
-8135 # /* mytanh [ 55 ] */
-8081 , /* mytanh [ 56 ] */
-8026 # /* mytanh [ 57 ] *J
-7969 # J* mytanh [ 58 ] *J
-7912 , J* mytanh [ 59 ] */
-7852 , /* mytanh [ 60 J */
-7791 , /* mytanh [ 61 ] */
-7729 , /* mytanh [ 62 } */
-7665 , /* mytanh [ 63 ] */
-7599 , /* mytanh [ 64 ] */
-7532 , /* mytanh [ 65 ] */
-7464 , /* mytanh [ 66 ] */
-7393 , J* mytanh [ 67 ] */
-7321 , /* mytanh [ 68 ] */
-7248 , 1* mytanh{ 69 ] */
-7173 , /* mytanhE 70 ] */
-70.95 , /* mytanh [ 71 ] */
-7017 , /* mytanh [ 72 ] */
-6936 , /* roytanh [ 73 ] */
-6854 , /* roytanh [ 74 ] */
-6770 , J* roytanh [ 75 ] */
-6684 , /* mytanh [ 76 ] */
-6596 · /* mytanh [ 77 ] */
-6507 , /* mytanh [ 78 ] */
-6415 , /* mytanh [ 79 ] */
-6322 , 1* roytanh [ 80 ] */
-6227 , J* mYtanh[ 81 ] */
-6130 , J* mytanh [ 82 J */
-6031 , 1* mytanh [ 83 ] */
-5930 , /* mytanh [ 84 ] */
-5828 , /* mytanh [ 85 ] */
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-5723 , 1* mytanh[ 86 ] *1
-5617 , 1* mytanh [ 87 ] *1
-5509 , 1* mytanh £ 88 ] *1
-5398 , 1* mytanh[ 89 ] *1
-5286 , 1* mytanh[ 90 ] *1
-5172 , 1* mytanh[ 91 ] *1
-5056 , 1* mytanh [ 92 ] *1
-4939 , 1* mytanh [ 93 ] *1
-4819 , 1* mytanh[ 94 ] *1
-4698 , 1* mytanh [ 95 ] *1
-4575 , 1* mytanh [ 96 I *1
-4450 , 1* mytanh[ 97 ] *1
-4323 , 1* mytanh [ 98 ] *1
-4195 , 1* mytanh[ 99 ] *1
-4065 , 1* mytanh [ 100 ] *1
-3933 , 1* mytanh [ 101 ] *1
-3799 , 1* mytanh [ 102 ] *1
-3664 , 1* mytanh [ 103 ] *1
-3528 , 1* mytanh [ 104 ] *1
-3390 , 1* mytanh [ 105 3 *1
-3250 , 1* mytanh [ 106 ] *1
-3109 , /* mytanh [ 107 ] */
-2967 , 1* mytanh [ 108 ] *1
-2823 , /* mytanh [ 109 ] *1
-2678 , /* mytanh [ 110 ] *1
-2532 , 1* mytanh [ 111 ] *1
-2385 , /* mytanh [ 112 ] *1
-2236 , /* mytanh [ 113 ] *1
-2087 , /* mytanh [ 114 ] *1
-1936 , 1* mytanh [ 115 ] *1
-1785 , 1* mytanh [ 116 ] *1
-1632 , 1* mytanh [ 117 ] */
-1479 , 1* mytanh [ 118 ] */
-1325 , /* mytanh [ 119 ] */
-1171 , 1* mytanh [ 120 ] *1
-1016 , /* mytanh ( 121 ] */
-861 , 1* rnytanh [ 122 ] *1
-705 , /* rnytanh[ 123 ] *1
-548 , /* mytanh [ 124 ] *1
-392 , /* mytanh [ 125 ] */
-235 , 1* mytanh [ 126 ] */
-78 , 1* mytanh [ 127 ] *1

78 , 1* mytanh[ 128 ] *1
235 , 1* mytanh [ 129 ] *1
392 , /* rnytanh [ 13 0 ] *1
548 , 1* mytanh [ 131 I *1
705 , 1* mytanh [ 132 ] *1
861 , /* mytanh [ 133 ] */
1016 , 1* mytanh [ 134 ] *1
1171 , /* mytanh [ 135 ] *1
1325 , /* mytanh [ 136 ] */
1479 , /* mytanh [ 137 ] */
1632 , /* mytanh [ 138 ] *1
1785 , 1* mytanh [ 139 ] *1
1936 , /* mytanh [ 140 ] *1
2087 , 1* mytanh [ 141 ] *1
2236 , 1* mytanh [ 142 ] */
2385 , /* rnytanh[ 143 ) */
2532 , /* mytanh [ 144 J */
2678 , /* mytanh [ 145 ] *1
2823 , /* mytanh [ 146 J .* /
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2967 , /* mytanh[ 147 ] */
3109 , /* mytanh [ 148 ] */
3250 , /* mytanh [ 149 ] */
3390 , /* mytanh [ lSi] ] */
3528 , /* mytanh [ 151 ] */
3664 , /* mytanh[ 152 ] */
3799 , /* mytanh[ 153 ] */
3933 , /* mytanh [ 154 ] */
4065 , /* mytanh [ 155 ] */
4195 , /* mytanh [ 156 ] */
4323 , /* mytanh [ 157 ] */
4450 , /* mytanh [ 15B ] */
4575 , /* mytanh [ 159 ] */
4698 , /* mytanh [ 160 ] */
4819 , /* mytanh [ 161 ] */
4939 , /* mytanh [ 162 ] */
5056 ., /* mytanh [ 163 ] */
5172 , /* mytanh [ 164 ] */
5286 , /* mytanh [ 165 ] */
5398 , /* mytanh[ 166 ] */
5509 , /* mytanh [ 167 ] */
5617 , /* mytanh [ 168 ] */
5723 , /* mytanh [ 169 ] */
5828 , /* mytanh [ 170 ] */
5930 , /* mytanh [ 171 ] */
6031 , /* mytanh [ 172 ] */
6130 , /* mytanh [ 173 ] */
6227 , /* mytanh [ 174 ] */
6322 , /* mytanh [ 175 ] */
6415 , /* mytanh [ 176 ] */
6507 , /* mytanh [ 177 ] */
6596 , /* mytanh [ 178 ] */
6684 , /* mytanh[ 179 ] */
6770 , /* mytanh [ 180 ] */
6854 , /* mytanh [ 181 ] */
6936 , /* mytanh [ 182 ] */
7017 , /* mytanh [ 183 ] */
7095 , /* mytanh [ 184 ] */
7173 , /* mytanh [ 185 J */
7248 , /* mytanh [ 186 J */
7321 , /* mytanh [ 187 ) */
7393 , /* mytanh [ 188 ] */
7464 , /* mytanh [ 189 ] */
7532 , /* mytanh [ 190 ] */
7599 , /* mytanh [ 191 ] */
7665 , /* mytanh [ 192 1 */
7729 , /* mytanh [ 193 ] */
7791 , /* mytanh [ 194 ] */
7852 , /* mytanh [ 195 J */
7912 , /* mytanh [ 196 ] */
7969 , /* mytanh[ 197 ] */
8026 , /* mytanh [ 19B ] */
8081 , /* mytanh [ 199 ] */
8135 , /* mytanh [ 200 ] */
8187 , /* mytanh[ 201 1 */
8238 , /* mytanh [ 202 ] */
8288 , /* mytanh [ 203 ] */
8337 , /* mytanh [ 204 ] */
8384 , /* mytanh [ 205 ] */
8430 , /* mytanh [ 206 ) */
8475-, /* mytanh [ 207 ] */
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8518 I /* mytanh [ 208 ] */
8561 I /* mytanh [ 209 ] */
8602 I /* mytanh [ 210 ] */
8642 , /* mytanh [ 211 ] */
8681 , 1* mytanh[ 212 ] */
8n{) , 1* mytanh [ 213 ] */
8757 , 1* mytanh [ 214 ] */
8793 , 1* mytanh [ 215 ] */
8828 , /* mytanh [ 216 ] */
8862 , /* mytanh [ 217 ] *1
8895 , 1* mytanh [ 218 ] */
8927 , /* mytanh [ 219 ] */
8959 , /* mytanh [ 220 ] */
8989 , /* mytanh[ 221 ] */
9019 , /* mytanh[ 222 ] *1
9048 , /* mytanh [ 223 ] *1
9076 , /* rnytanh[ 224 ] *1
9103 , /* mytanh[ 225 ] */
9130 , /* mytanh [ 226 ] */
9155 , /* mytanh [ 227 ] */
9180

"
/* mytanh [ 228 ] */

9205 , /* rnytanh[ 229 ] */
9228 , /* rnytanh[ 230 ] */
9251 I /* mytanh [ 231 ] */
9274 I 1* mytanh [ 232 ] */
9295 I /* mytanh [ 233 ] */
9316 I /* mytanh [ 234 ] */
9337 I /* _mytanh [ 235 ] */
9357 I /* mytanh [ 236 ] */
9376 I 1* mytanh [ 237 ] */
9394 I /* mytanh [ 238 ] */
9413 I 1* mytanh [ 239 ] */
9430 I /* mytanh[ 240 ] */
9447 , /* mytanh[ 241 ] */
9464 I /* mytanh [ 242 ] */
9480 I /* mytanh [ 243 ] */
9496 , /* mytanh [ 244 ] */
9511 I /* mytanh [ 245 ] */
9526 I /* mytanh [ 246 J */
9540 I /* mytanh [ 247 ] */
9554 I /* mytanh [ 248 J */
9567 I /* mytanh [ 249 ] */
9580 I /* mytanh [ 250 ] */
9593 I /* mytanh [ 251 ] */
9605 I /* mytanh [ 252 J */
9617 I /* mytanh [ 253 ] */
9629 I /* mytanh [ 254 ] */
9640 , /* mytanh [ 255 J */

} ;
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int main ()
{

for(;;) 1* ':!ndless loop"/
{

HI1ADCTL = Ox10; /* initiate analog-to-digital conversion. */
while(H11ADCTL != Ox9'O) OONOTHING; / .. wait for conversion to */

I * complete. * I
redin = HI1ADRl; /* read red sensor section output. */

/* Result is in the range 0-255. *1
greenin = HIlADR2; / .. read ,green (green) sensor section output.. * I

1* Result is in the range 0-255. *1
nirin = H11ADR3; 1* read near infrared sensor section output. *1

/* Result is in the range 0-255. */

1* Following section scales neural network inputs. *1
nodeout[O] [0] = 20000*(redin-redmin)/(redmax-redminl-10000;

/* scaled red input */
nodeout[O] [1] = 20000* (greenin-greenmin) I (greenmax-greenmin)-lOOOO;

/* scaled green input */
nodeout[O] [2] = 20000* (nirin-nirminl I (nir.max-nirmin)-10000;

/* scaled nir input */

1* Following section passes inputs through neural network. */
1* Loop through layers. */
for (layer=l • layer < numlayers ; layer=layer+l)

{
1* Loop through nodes of one layer. *1
for (node=O ; node < nunmodes[layer] ; node=node+l)

{

1* Initialize weighted sum with weighted bias to this node. *1
sum = weight [layer] [node] [0];

1* Following loop calculates weighted sum of inputs to */
/* one neural network node. variable i is weight index. */
1* This loops through inputs of one node. */
for (i=l ; i < numnodes[layer-l]+l ; i=i+1)

{
1* Add weighted input to weighted sum. */
sum = sum + nodeout (layer-l] [i-1] * weight [layer] [node] [i];
}

1* Calculate index into scaled tanh (sum) lookup table. *1
1* This index is in the range 0 to 255. */
factor1 = (sum - minlookup) I 100;
factor2 = (maxlookup-minlookup) / 100;
factor3 = 255 * factor!;
index = factor3 I factor2;

/* If index is out of range of lookup
1* last entry in table accordingly.
if (index < 0) index = 0;
if (index> 255) index = 255;

table then use first or *1
*1

1* Calculate output of node by accessing tanh lookup table. *1
nodeout(layer] (node] = mytanh(indexj;
) 1* End of loop through nodes of a layer. *1
1* End of loop through layers of net. */

1* Make plant/no plant decision and put 0 or 1 at rear of *1
/* history queue (nozzle state queue). *1
if (nodeout(3] (0] > nodeout[3] [1]) history[rearptr] = I.
else history[rearptrJ = 0;



/* Get nozzle state (on or off) from front of nozzle state queue */
/* and update nozzle state accordingly. The spray nozzle */
/* controlled by the 68HCl1 Port B bit 0, a digital output. */
if (history [frontptr] == 1) H11PORTB = 1; /* turn nozzle on */
else HIIPORTB = 0; /* turn nozzle off */

/* Increment pointer to rear of queue in memory. */
/* If end of allotted memory reached then return to beginning. */
rearptr = rearptr + 1;
if (rearptr == histsize) rearptr = 0;

/* Increment pointer to front of queue in memory. */
/* If end of allotted memory reached then return to beginning. */
frontptr = frontptr + 1;
if (frontptr == histsize) frontptr = 0;

} /* end of endless for loop */
} /* end-main */
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Format of each line of the training and testing data sets:

where

aaa bbb ccc d e ! fggghiij

aaa = Red reflected radiation sensor reading in the range 0-255.

bbb = Green reflected radiation seI.lsor reading in the range 0-255.

ccc = Near infrared reflected radiation sensor reading in the
range 0-255.

d = Target neural network output for the "plant" output.
"0· if no plant was present in the viewing area of the sensor
when the line of data was recorded.
"1" if a plant was present in the viewing area of the sensor when
the line of data was recorded.

e = Target neural network output for the "no plant 6 output.
"1" if no plant was present in the viewing area of the sensor
when the line of data was recorded .
.. 0" if a plant was present in the viewing area of the sensor when
the line of data was recorded.

= An exclamation point indicating to the neural network
development software that the remainder of the line is a comment

- and is to be ignored.

f = '" 0·' if the outdoor lighting was cloudy when the line of data was
recorded.
"I" if the outdoor lighting was sunny when the line of data was
recorded.

Three letter
site for the
has Haskell
alt Altus
man Mangum
chi Chickasha

ggg code for the city in Oklahoma near the collection
soil on the test stand.

goo Goodwell tip Tipton
per Perkins sti Stillwater
lah Lahoma cob Ft. Cobb

h "0 n if the soil on the test stand was dry when the line of data
was recorded.
"1" if the soil on the test stand was wet when the line of data
was recorded.

~~ =" 00" if there was 0 percent plant cover in the viewing area when
the line of data was recorded.
"20 tt if there was 20 percent plant cover in the viewing area when
the line of data was recorded.
"50" if there was 50 percent plant cover in the viewing area when
the line of data was recorded.

j "0" if no plant (0 percent cover) was present in the viewing
area when the line of data was recorded.
"1" if a plant (20 or 50 percent cover> was present in the
viewing area when the line of data was recorded.

See the Neural Network Training and Testing Data Sets section for more
information on this data.
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NEURAL NETWORK TRAINING DATA SET

143 111 118 0 1 lhasOOOO
120 99 126 1 0 1OOs0201

99 91 148 1 0 lhas0501
64 48 56 0 1 Ihasl000
66 60 90 1 0 1OOs1201
62 60 101 1 0 Ihas1501

115 83 94 0 1 ItipOOOO
95 79 117 1 0 Itip0201
89 77 117 1 0 Itip0501
64 47 51 0 1 Itipl000
61 54 78 1 0 Itip1201
59 58 95 1 0 Itip1501

125 87 95 0 1 IperOOOO
111 84 105 1 0 Iper0201

91 79 121 1 0 Iper0501
64 44 50 0 1 Iper1000
62 51 66 1 0 Iper1201
61 56 86 1 0 Iper1501

172 114 129 0 1 ImanOOQO
143 103 140 1 0 lman0201
125 94 143 1 0 Iman0501
111 70 84 0 1 lmanl000

99 72 102 1 0 Iman1201
85 67 116 1 0 lman1501

142 83 110 0 1 lcobOOOO
110 75 116 1 0 1cob02.01

98 74 122 1 0 lcob0501
92 52 71 0 1 lcob1000
83 55 85 1 0 lcob1201
75 60 102 1 0 lcob1501

108 78 91 0 1 1hasOOOO
56 41 49 0 1 1haslOOO
98 66 82 0 1 ItipOOOO
60 43 51 0 1 1tipl000
98 61 81 0 1 1perOOOO
62 42 50 0 1 1perl000

139 82 111 a 1 1manOOOO
101 61 81 0 1 1man1000
133 70 105 0 1 1cobOOOO

89 47 71 0 1 1cob1000
57 44 42 0 1 OhasOOOO
47 39 40 1 0 Ohas0201
49 43 52 1 0 Ohas0501
31 25 21 0 1 OhaslOOO
31 28 27 1 0 Ohas1201
32 30 36 1 0 Ohas1501
52 39 39 0 1 OtipOOOO
48 39 44 1 0 Otip0201
42 39 55 1 0 Otip0501
45 34 32 0 1 Otip1000
30 26 24 1 0 Otip1201
28 27 33 1 0 Otip1501
54 39 38 0 1 OperOOOO
45 36 40 1 0 Oper0201
40 34 44 1 0 Oper0501
36 27 22 a 1 OperlOOO
32 27 26 1 0 Oper1201
38 35 45 1 0 Oper1501
80 55 57 0 1 OmanOOOO
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73 52 59 1 0 Oman0201
75 56 75 1 a Oman0501
51 35 36 0 1 Omanl000
48 35 40 1 0 Oman12 01
46 37 52 1 a Oman1501
63 38 45 0 1 OcobOOOD
74 46 64 1 0 Ocob0201

139 86 170 1 0 OcobOS01
51 31 35 0 1 Ocobl000
50 34 45 1 0 Ocob1201
47 36 53 1 0 I Ocob1501
51 41 37 0 1 OhasOOOO
48 37 39 0 1 Ohas1000
80 58 62 0 1 OtipOOOO
40 32 26 0 1 Otip1000
64 44 45 0 1 OperOOOO
35 26 22 0 1 OperlOOO
84 54 63 0 1 OmanOOOO
67 44 49 0 1 Oman1000
69 41 48 0 1 OcobOOOO
49 30 34 0 1 Ocobl000
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NEURAL NETWORl< TESTING DATA SET

113 86 84 0 1 19oo0000
80 67 80 1 0 19oo0201
84 78 113 1 0 19oo0501
66 48 49 0 1 19oolOOO
61 54 70 1 0 19oo1201
62 57 82 1 0 19oo1501
85 64 62 0 1 laltOOOO
74 63 76 1 0 lalt0201
72 65 84 1 0 1alt0501
52 39 36 0 1 1altlOOO
52 47 57 1 0 lalt1201
55 52 69 1 0 lalt1501
94 62 75 0 1 lstiOOOO
81 62 87 1 0 1sti0201
71 63 101 1 0 lsti0501
57 38 45 0 1 lstilOOO
54 46 68 1 0 1stil201
53 50 79 1 0 lsti1501
90 61 70 0 1 llahOOOO
76 60 89 1 0 11ah0201
73 62 97 1 0 11ah0501
52 36 40 0 1 llah1000
52 42 55 1 0 llah1201
51 47 71 1 0 11ah1501
95 56 77 0 1 1ehiOOOO
74 54 84 1 0 1ehi0201
72 57 90 1 0 1ehi0501
52 34 40 0 1 1ehi1000
52 43 61 1 0 1ehi1201
52 45 67 1 0 1ehiI501
94 64 72 0 1 19ooOOOO
61 44 46 0 1 19oo1000
67 46 50 0 1 laltOOOD
46 34 33 0 1 1altlOOO
77 47 62 () 1 lstiOOOO
54 34 43 0 1 lstilOOO
77 47 60 0 1 llahOOOO
47 31 36 0 1 llah1000
78 41 62 0 1 lehiOOOO
49 30 37 0 1 lehilOOO
58 45 39 0 1 OgooOOOO
51 42 44 1 0 Ogoo0201
43 41 55 1 0 Ogoo0501
36 28 22 0 1 OgoolOOO
36 31 30 1 0 Ogoo1201
38 37 48 1 0 Ogoo1501
36 28 22 0 1 OaltOOOO
46 37 39 1 0 Oalt0201
46 39 54 1 0 Oalt0501
35 27 21 0 1 OaltOOOO
30 27 24 1 0 Oaltl201
29 28 34 1 0 Oalt1501
52 35 36 0 1 OstiOOOO
50 37 44 1 0 Osti0201
42 36 54 1 0 Osti0501
37 26 24 0 1 OstilOOO
39 30 32 1 0 Osti1201
33 31 41 1 0 Osti1501
63 41 44 0 1 OlahOOOO
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43 33 37 1 0 Olah0201
40 34 46 1 0 01ah0501
59 37 44 0 1 OlahlOOO
36 29 31 1 0 Olah1201
35 34 46 1 a Olah1501
45 29 31 a 1 OchiOOOO
41 29 35 1 0 Ochi0201
35 29 42 1 0 Ochi0501
30 21 18 a 1 OchilOOO
30 24 24 1 0 Ochil201
32 29 39 1 0 Ochil501
51 39 34 0 1 OgooOOOO
39 30 25 0 1 OgoolOOO
44 33 28 0 1 Oa.ltOOOO
29 23 15 0 1 OaltlOOO
55 38 39 0 1 OstiOOOO
43 30 30 0 1 Ostil000
60 40 41 0 1 OlahOOOO
45 31 31 0 1 OlahlOOO
68 40 49 0 1 OchiOOOO
36 25 22 0 1 OchilOOO
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Ph,otodiodes
Including Si, GaAsP and GaP Photodiodes
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HAMAMATSU
HA'MAMATSU PHOTONICS K.K., Solid Slate Division
1126, lohinCH:ho, Hamamalsu City, 435 Japan
Tel~phone: 0534134-3311, Fax: 0534/35-1037, Telex.: 422'5-185
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Main Products
Silicon Photodiodes
PIN Silicon Pholodiodes
Silicon Avalanche Photodiodes
GaAsP Pho,lodiodes
PCO LI~ear Image Sensors
Posilion-5ensilive Detectors
Phololransistors
Infrared Detectors
CdS Photoconductive Cells
Optoisolalors
Opto-Hybrid IC
Infra.red LED
Pulsed laser Diodes

Hamamatsu also suppUes:
Photoelectric Tubes
Imaging Tubes
Specialty Lapms
Measuring Video Systems

Information .in this C4talOQ' ls
boU• .,1Id 10 be ,.1~bM.How.v.r.
tlO f • .rpon.Abilify~ aa.utrHld (or

fXJ$$ibI. in.ccurecl•• or ommfon.
Sp«{fICllIiOl'f.S a'. ,ubjecJ to
c1uI"II" ",;11>01.11 _.N4 ~l.nl

'IGhts ar. grcnJfId to .ny of 1Ji.

drcuit3 desaibed' herein'.

Sales Offices

ASIA:
HAMAMATSU' PH'OTONICS K.K.

325-6. Sunayama..,tlo,
Hamamatsu City, ~30 Japan
Telephone: 0S34/~·2:141.Fax: 0S34/56-1869.
Telex: 4225-186

U.S.A.:
HAMAMATSU CORPORAnON

Main'Oltice
360 Foolhill Road. P.O. BOx 6910,
Bridgewater. N.J. O88OT-Q910, U.S.A.
Telephone: 2011231-0960. Fu: 2011231-1539

Weslern U.s.A. OIliCIJ·
2#4 Moorpark Av,,"ue. Sulle :n2
San Jose, Calif. 95128, U.s.A.
1,e,lephane: 408129UJ600, Fax: 408/279-1au

United Kingdom:
HAKUJO INTERNATIONAL (Ulq LTD.
Eleanor House. 33-35. E1eallQr Cross Road,
Waltham Cross" Hattlordshlre, ENS 7LF Enoalnd
Telephone: 0992-769090. Fax: 0992-763300
l'el8lC 299284

France, Spain, Portugal. Belgium:
HAMAMATSU PHOTONICS FRANCE
49/51, Rue de la Vanne,
92120 Monlrouge, France
Telephone: (1)46 55 41 58. Fax: (1)4655:l6 65
Telex; 6314195

W.Germany:
HAMAMATS'l,I PHOTONICS DEUTSCHLAND GmbH
Arzb<lrgerstr. 10,
0...a0:I6 Hert'SChing am Ammersee,
West Germany
Telephone: 0815·2-375-<1. Fa,.: 08152-2658
Telex: 52713~

Sweden, NO,IWay, F:inland:
LAMBDA aECTRONICS AB
Grevgalan 39, $01,1453.
Stockholm, Sweden
Telepl>one: 06-662 06 to, Fax: 0lHi63 40 26
Telex: 13952:

Denmark:
LAMBDA aECTROHK:S AS

NIII"ej8c.
OK-2000 Frederlksb<lrg F, Denmark
Telephone: 01-t915 55. Fax: 01-~937 59

Italy
HESA S.P.A.
Vlale Teodorico 19/1. 20149 Milano, Iialy
Telephone: j02)311-551, Fax: (02}341-384
T,elex: 3312:19

Hong Kong:
5&T ENTERPRISES Lm.
Room 404, Block B.
Watson's Esl.ate. Walson Road,
·Ilorth Point, Hong Kong
Telaphone: 5-164921, Fax: 58Q.73126
Telex: 73942

.TaIwan. R.O.Co:
5&T ENTERPRISES LTD.
TaIwan BrancA
No. 75, 5e<:Uon 4, Nanklng Easl Road,
Talpal, Taiwan
Talephone: 02·715-3403. Fax: 02;·112-9240
Talax: 22S9O

KORya ELECTRONICS CO., LTD.
Min-sang Trade Bldg.,
No. 342, Mln-Seng East Road,
Taipei, taiwan.
Telaptlone: 02·5Q5.G410, fax: 02·501-1552
Telex: 25335

Koraa:
SAHGSOO SANGSA CO.
Sulle 42:1, Sunmyunghol Bldg..
24-2, Yoldo-Oong, Youngdeungpo-/lu.
seoul, Korea
Tetephcne: 02-182..a514, Fax; 02-184-6062
Telex: 22S65

Singapole:
5&T ENTERPRISES LTD.
51nllllponl Sntnch .
SO, Ge.Uno lane,
Unit Q3.(J2. 03-05. GenUng Block
Ruby Incfustrlal Complex
Sinoapore 1334.
Telephone: 14594235. Fax: 065-1469630
Telex: 24764

Quality, technology. and service are part of every product. OEc/8Y
SU.,.,rsed•• JAN/as
CR~ P,ln"'d In J.pan
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Silicon Photodiodes (Visibl,e LighUVisible Light to IR Photometry)

@ Pholosensitive surface SpedtaiResponse Char&c1erlstlcs (25"C)

Outlines ;, ...:r ":-: Typlcal'RedLanl s.naltlYlty IAtWj

Type No. Features ~ ikedlve
. Range' Peak:

,';~:~;.
.:\' . '."",..

~Wonclow Si~e /." . WaYe-. S60nm 63:lnm
MaJer1al5 .1 Area MlIIk' . length. GBP; ,He-Ne GaAs

(mm) (mm21 (nm) : inm) . leRgth .LEO Laser "lED I

5111117-ll'1 FQr visiblle lighllo near IR ~/A 300- I1lXlfA 94O:t5O 0.55 0.35 0.42 0.55

51ll1l7 For visible Ugh!
fi)N

1.3 x 1.3 1.6
:l2O-730/8 560:t2O 0.3 0.3 0.16 -

51087.03 For visible lighl. hlgl>-speed "asponse

521,64 Chtp 1:11"'''' Iyp., ro~ '1'..... 1'iDh' \0 ftiII., IR '~!lllA 300 -lllXlfA 940.t5() 0.!;5 0.35 0.42 0.55

f1)1F
1.3 x 1.3 1.6

0.55 i52164-01 Chi-p earrie-r Iype'. v~sjbl' Il;M eulolf ,~ 700- '1001C 940.tSO 0.55 - -
52357 Gtaas epox,y .ubSlr.'18. fOf ¥isib~ Ii.QhI WN 1.1 x 1.7 1.78 320-730/8 560.t20 0.3 0.3 0.16 -
51133-ll1 Fo' v;,lb~ Jighllo near ,IR

fIj/R iaoo-llOOlA 940.t50 0.55 0.35 0.42 0.55
51133·11 For ",.lbl4' u,rrllO ....... 1R" ttJoh apoMd rnpon...

51133 For visible Ughl
32O-7JOI8

51133-ll3 Fo' visible Iighl. high-speed response
G'JN 2.4 X 2.8 6.6 --- 560.t20 0.3 0.3 0.2 -

51133-02 For visible Jighi. high ....nsilivfly
320-lIolOl8

51133-12 For 'ilsible (jghl. high .entUiv~ly. high s.pe1!d

51133-14 ::M.t~~~ II9f\I co neat IR.h~~. lq,. m fll'IR 300-1060/0 740t50 GAS 0.3 0.4 0.25

S1133-o5 Fo.- ~Iigtrt.. ~'ftOIOII"M'.'IOw"lRr"lo
"-~N 320-73018 560t20 0.3 0.3 0.2 -

51787-08 For visible Ilighilo near IR. S1P case fDIR 300- 11lXlfA 940.t50 0.55 0.35 0.42 0.55

5178741 For visible light. SIP ,case - i
:l2O-73O/8

02 I5t787-06 ''Of "t1:tiOIeUfhC. I'Ifc;1"'~ , ...~•• SIP~N
WN

2.4 x2.8 6.6
'560t2O 0.3 0.3 -

51787-ll5 F.,.. visilliellg!lt. hI9h Nnslilvily.~p ease
F'OI'~ tight.biQft apwcl. tllgtl ~tlvJty.SIP 320-84018

51787-07 QW

....ao

,

• •
s. ~F\..

V" '~ 'l
~Ir-.· /' '. ,

)
/; I

"': 0 \
A

rg y' ,
\ \\ !.- ,...-

~I \: \ ,
\,

If' ~~
\
\,

,•...
•.

i o.

"'~ o.

~
:l: o.

~
~ G.

• Spectral Response

••
~.b

'000

•

, "/
I--: '/'•

s

•
•
G

.,.

-. ...

.,..

• Temperature CharaclerisUc 01 Ish® See pages 34 to 37 lor oullines.
Window materials are
R: Besin coating
V: Visible compensating liller
F: Visible light cutoff lilter
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.i...·.: I;.':"'!~. ....... . '. Characterlstlcs (at 25°C) • Absolute Maldmutn RaIIng.s

Infrared SIlorI Cll<uII Temper...... Dark Temper.tu<e Shunt Resist· Juncllon Rise Time Temperalure Range
SensltMty .Coman! • o.pa- Current Do......,..... 8nce.~ . Capacitance "i ·Ista.·~!:·- cI SIlorI CWull !d' .... cr VR - 10mV Cj VR - OV~ Type No.

Ralkl ·:·1oawx:· .. ",;:CuQ'en( ,'. VR - \V -~ VR - OV At. - lkO Voltage
Typ.··~

:~·::·i;.~
ir';:.,.TYP~:~· Max. . TYII.

..
Typ.· Typ. Vllmax Operatlng .Storage

'\%i';~;
,

Min.• Typ.
:;;~.~~ (pAl " (TImesI"C) (GO) IGOI IllFl (,.5) IV) ("cl ("C)

- , !.5 +0.1 51687·01
10 4 30 200 0.5

-0.01 1.t2 10 -10-·HiO -20-+70 Sl1187
10 0.13

-0.02 20 2 10 60 0.2 51087-03

1.5 52164- +0.1 10 1.12 4 30 200 0.5 10 -10- HiO -20-+70
l.O 52164·01

10 0.17 -0.01 10 1.12 4 30 250 0.5 10 -10- +60 -20- +70 523S7

10 4 30 700 2.5 511:13.01- 5.5 +0.1
20' 2 10 200 0.5 51133-11

0.54 10 4 30 700 2.5 51133
10 -0.01

0.50 20 1.12 2 10 200 0.5 10 -10-+60 -20- +70 51133-03

0.85 -0.02 10 4 30 700 2.5 51133.02
20

0.78 -0.01 51133·t2

- 3.2 +0.1 20 2 10 200 0.5 $1133-1:4

8 0.50 -0.02 51133.05

- 5.5 +0.1 51787-68
liD 4 30 700 2.5

0.54 -0.01 51787.04
10

0.50 -0.02 20 1.12 2 HI 200 0.5 10 -10- +60 -20- +70 51787-ll6

0.85 -0.01 lO 4 30 700 2.5 51787.05
20

0.78 -0.02 20 2 10 20Q 0.5 51787.(J7

• Resp<Jnse TIme YS. Load Resistance

. .• 'I=l=t:j:~a

~II"

~

~ ., '1=Jl::J8-ii±::·.l::::I.

• Shunt Resistance ys. Temperature

....,..
Ide"

-1'0- 0 ...10 ... 1lI .. 50 .'0
AW8I!IU ,.[ WPt:lAAfl;;1lt fC)

• Dark Current YS, Reverse Voltage
fI_..,.nCI

··,~~tlW~*ffi~~~~~¥l~~c= ........ '::.:..:' .

y~:' - +a·jl-j·-t-HI-
'. ':!:".,..J-........L••~.,.....I-....L.J,,:!:'•.':-......-'-"'!:O,.--J-'e..L.+.!.,.

• Linearity (Represenlalille Example)

,•.r--r-..-,_.,--r--r"'I•.:,:....;.y."'''''''C,'

10"1--+-+--1-+-+--1

'··1--j-+-1--f--+-ze:lW'+-l.,
:10"--
Ej
3""'I-+-l-+-';~"",
~ to··
§

10' to" II" ID'
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GaAsP Photodiodes

! @ Pholosensiliv9 Surface Spectral R.esponse : Charac:lerlstlcs (2S"C)

Oumnes , Typical RadIanlSenslIM)y (AfW) Short CltQlil CurNnI

Type No. ~ Package Effective
Peak peak"-q"5eon~ ~~~'J. •. .'; .. ..,., ~~ 1m' ;<.

WiJKlow SiZe Ran.ge Wave-
Materials Araa length . Wave-·· ,':GaP "He-Ne'~ ·····f·····length I LED Laser :'. .. Mln.~ Typ:

(mm) (mm) (mm2) (nm) (nm) .("A)' (II A)

DUluslon Type (for Visible Ug'ht)

Gl115 O/K To-18 1.3 x 1.3 1.66 0.12 0.\5

Gl116 0/K TO·5 2.7 x. 2.7 7.26.· 0.45 0.6

01117 IIi)/K TO-8 5.6><5.6 29.3 2 2.5
300-680 610t3O 0.3 0.29 0.29

G1113 fl}/R 5x6 1.3>< i.3 1.66 0.12 0.15

G1120 G!)/R. 6.9 x 10.1 5.6 X5.6 29.3 2 2.5

GH~ Oil T0-18 1,3-)1 1 3 1.66 O:~ 0.5

Diffusion Type (Extended Red Sensitivity TYPe)

01735 O/K TO·18 1.3 x 1.3 1.66 0.2 0.25

G1736 0/K TO·5 2.7 x 2.7 7.26 0.8 1.1

Gl737 lEl/l< T0-8 5.6 x 5.6 29.3 3.5 4.5
400-7'60 710:t3O 0.4 0.22 0.29

G1738 tD/R 5x6 1.3" 1.3 1.66 I 0.2 0.25

G1140 '(fI/R 8.9" 10.1 5.6 x 5.6 29.3 3.5 4.5

G1742 OIL TO·18 1.3 x 1.3 1.66 0.7 0.8
-

• Sp~alResponse

~.

WAYEUNG"" c.w.J

&

IIt
I,
, !k.D<f'J11£0 •,. 1m" JYP£ I

, \ )'
'r-- f'OR "SUU UGH)t/

'\
"

. '/

~
/ \

1

V V \ \•'00 JOO "" SOO &<10 100 •

(fJ"il" '1' 2'~Cl

rOll'OISIIl<£~

........-::~ ".....
!--

[l~1O
S S£HSJTMfY TYPE

• Temperature Characteristic of Ish
.I.S

® See pages 34 to 37 for outlines.
Window materials are
K: Borosilicate glass
l: lens type borosilicate glass
R: Resin coating

....
zoo )0I:Ji 400 5«) '00 700 loa

WAYa!.HGfH Vml
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.; . . '":.... Characterlsllcs (~C, _ Ab&olute MaxImum Rallngs

NEP OOo
Typ. Typ.

(W1Hz~) (Q'Il-/-2%m)

•. Temperalln Range

Reverse .' ,.
Voltage '. r;',. \,
V"max Operatlng Storage

M ..' r'Cl ("C)

Type No.

1 10 10 80 300 1 9xlO- 15 Gl115 [

2.5 25 4 ~ 1400 4 2 x 10- 15 -20- +80 G1116

5 50 2 15 6000 15 3 x 10- 15
1 x 10t4.

Gl117
1.07

9 x 10- 16
5 -10- +60

1 10 10 80 300 t G"18

'3 x 10-'5
-20-+70

5 50 2 15 6000 15 G1120

1 10 10 80 300 1 9 X 10-'5 -20- +80 01122

2 20 5 25 250 0.5 2 x 10- 15 G1735

5 -~ 2 10 1200 1.8 3x 10-'5 -20-+80 61736--
10 100 1 5 4500 10 7 x 10- 15

6x 1013
G1737

1.07
2 x 10-'5

5 '-10-+60
2 20 5 25 250 0.5, G1738

7 x 10- 15
-20- + 70

10 100 1 5 4500 10 G1740

2 20 5 25 250 - 0.5 2x10-'5 -20-+80 G1142

.. Response Time !,IS. Load Resistance
U....I .,... """ ~&"C)

10 '~~aw*:r-m~I-~~~'/~/.~:.~.~,· ..~~~~-~~m
I-HH1I+-I+-+',..:-j.j~/-7'f: .. ./

;;;,•••,'':T;>'".-.-..•..~ ,
" .. ,if ~aJO • .. ...

~,,,..;'V

C?7'
'.'ffi!~~~

fO"II~=''''''L-..........".'=-•....L......L..LJ,"!:.::-.-'-'"-'~,:!<",-'--'-"""!,..
LO"O KSl$lAHCl! (01

.. Dark Current Y5. Reverse Voltage

f:~i~~~~~fH~(f~"'~'~'~Uf-<:~'
,..,

1---

'0'

'0'

.... -.
, ....!oou

"I--'I--- /
/

, /
, /
. /

'I--lL/:/ AUtJI: TO fI6I~.. .. " .. ., ., -. .,

'I',.
I.

10'"
to to 10 10 10 '0 10 10 1(11

INJUlSln (W1

10 •

-linearity

" .JO ...a .,60
It.Io/.8rU'lr l[Wl':£AATUItI: C'C 1

,..
,..-z.

.. Silunt Resistance vs. Temperature
If 0.'1
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Dimensional Outlines

ILO_'_5_1_22_-6-_1_8_B_o_e_lc_" 11@52386.18Letc.

Unil:mm

118 51190-01

%
__I

!l." I a" ..
',ItO.1 ::.

4.J10.2

; ....

l-lLUO COWloOOJ<
TO CA$£

~(

r
j_o_,_S_11_8_8-0_2._S221__6-0_1._e_Ic. ....J110 52381,52382,,52383 110 51226-SS0 etc.

~, '
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A
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•
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I~~I:::::.I::-+:;;

"ii'inr'-oI:c+:

s:£N'smv£
SUiRFAC"(

\



-
127

IW 52336. 52337 _________11 W52164,52164-01

Unit:mm

•
52331

Details of Sensllive Area
(Unit Fm)

52336

52331

run. g'O:":;;iI I; I

52336

IL~=-I_S_23_57 11 m52551

'0010 ,

31.1:0.1

d
~ $[HSlTlvE 5l.Rr..c£

~rb-.. -------.--j t-- m

----

~ . ~~ U~H[AD ~
,~.u ~ u

• The spacings 01 Ihe leads in llle ligures are indicaled as cente,-Io-eenler dimensions. The photograph shows a Iypical type.
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<1>0" <1>1\+ <1>", +¢r

$11 == CflRI + 41R2

$r
1:= $0

$-
'i= ~..,

1: "" Tj' P

<1>" = incident radiation flux
<1>R "" rellacted radiation flux
<1>" .. absorbed radiation flux
<l>y co transmitted radiation Ilux
<1>.. co inside exit face incident flux
<1>.. = insideentra,nce face incident flrux
t .. transmission, factor
1:; == internal tl'llllsmission lactor
P == retlection factor
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,9SPlNDLER
&HOYER

COLORED GLASS FILTERS
Glass tilters are designed to attenuate the radiation from
polychromatic soorces. They either attenuate this radiation
ul1iformJy (neutral density f~ters) Of selectMlly at differ6l'lt
wavelengths (color filters). When incident light <%>0 passes
through a colored glass mter. a fraction of the energy <1>11 is
reflected at both of the air/glass boundaries. Another fcaction
<1>.. is absorbed and tha remainder <I>-r is transmitted.

The transmisston factor t is defined' as the ratio of the trans·
mitted intensity to the incident intensity and consequently
characterizes the transmission behavior of a filter at a certain
wavelength ;I..

You will tind the internal transmission tactor 1:; in the filter
graph. It indicates the ratio of the rad.iant flux within the filler.

Transmission lactors t can be calculated by multiplying 1:; by
the reflection factor l? (for the d.Jine 587.6 nm). Reflection
factor P is stated tor the individual filters.

The internal uansmission factor 1:; aUows you to determine
the dependence of the tiller transmission ol'llhickness. It is
ploned as an ordjnale based ona 1-Iog{log +1 scale. This
exaggerates the curves in the lower transmission region.
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o SPINDLER
&HOYER

COLORED GLASS FILTERS SHARP CUT

Unmounted InM~untC In Mounl50
Thick· Aperture Apenure

Edge position Ae"'ection oess 022.~mm 050mm 021.4mm 048mm
Typ nm Facto,P (mm) Part No. Pan No. PanNa. Part No.

UV·absofption fill,e,. colorless GG:l85 385 0.90S 2 370\06 370014 063438 031875
Yellcwfilter GG475 475 0.915 3 370088 370013 063452 031869
Orange filler OG530 530 0.915 3 370089 370012 063453 03187,0
fled filter. bright red OG590 590 0.915 2 370090 370058 063439 031880
Red filter. medium red AG610 610 0.915 2 370107 370041 063440 03 t871
Aed filter. dark red AG630 630 0.915 3 370081 370011 063081 03 U372
IA·filter AG780 780 G.915 3 370091 370019 063454 031874
IA-fiUer AG830 830 0.915 3 370092 370063 063455 031881
IR·fiIter AG850 850 0,910 3 370108 370109 063441 031884
IRselective ltIter for near IA RG9 735 0,915 2 370093 370042 063456 031873

TOLERANCE
022,4mm: -0.3mm

050mm: -0.6rnm

Thickness: ±0.2 mm

Bubbles:

Schlie,efl:

Sur/ace quality:

Parallelism:

1/5xO,25

2/03

515xO.25

15'

O.fl()

o,~

£.
I

0.99

0.98

o.t7
0.8$
o.r..

0.70

0.60

0:50
O.AQ
O.JO
0,2ll

0.'0
0,05

0.01

10:1
10·
10'

OOD ....

I 1/ I II !/ I " V
/ I I I \ I

I y

I I :IAlI I / ~..
I ; ~ ~ ?~ '" [I

'"
0:

" " r ~ , l 6C> 0

IQ ,I f I / "-,,
0: '"

'"" , , , I
I I I

, I J I I,
I

I

'I 1/ I I
I I I

, I J I I If
I :1 I J f I /, ./ I / ./

/ / / ,

200 300 ·00 500 6i'o 700 800 9CO 1

Wave ~nglh

Inlemal transmission factor
(.,

0.99

MO

0.70

0.60
0.50

0.40
O.JO
0.20

0.10
O,OS

om
.0'
10'"
.0"

0.98

0.91

0,96
US
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L'SPINOLER
~ &HOYER

COLORED GLASS FILTERS

.Unmounted In Maunte In MountSO
max. :1'hick- Apel\Ure Ape<lure

Transmission' Reflection nes,s 022.4mm 0SOmm 021,4mm 0.48mm
Type nm FactorP {mml Pa~No. Part No. PartNo. Part No.

Blue-green filter BG38 480 0,915 3 370086 370043 063450 031867
mode,rone red transmission
max.IR transmission at 2400nm

Blue-green filter 8(;18 500 0.91 5 370087 370036 063451 031866
nan:llyallY rea transmiSSion
max. IR transmission at 2400 nm

Gr,een filter, dark green VG9 520 0.91 2 370082 370015 063082 031868
very little red transmission
max. IR transmission at 2600 nm

Green filter, bright green VG5 530 0.91 2 370103 3700S5 063435 0318S9
considerable red lIansmission
max. IR transmission between
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CNAT Overview

The ~hrysler Metwork Analysis tool (CNAT) is a
small single board controller intended to aid in the
development and analysis of mUltiplex networks using
the chrysler developed CCO interface.

The CNAT board has the following features:
• MC68HC11AO microprocessor
• 32K bytes of EPROM
• 32Kbytes of Non-Volatile RAM

CCO bus interface IC
• CCO bus physical layer interface with choice of

terminations
I/O' conn,ectors with port pins available for user
attachment
A "Power-On ll LED
A "CCO Transmit" LED

• A "cco Receive'" LED
• RS-232 communication at 19,200 baud to the host

PC
• Single 12 volt input with on-board voltage

regulation

The CNAT can be used in two different ways:

• It can operate as a stand-alone board connected
to the CCO bus while executing a program stored
in on-board non-volatile RAM memory. This is the
•Stand-Alone' mode.

• It can operate as an intelligent interface board
connected to a ceo bus and communicate via an RS-232
serial link to an IBM compatible personal computer (PC)
host. This method of operation uses communication and
display software created for use on an IBM PC compatible
computer. This is the 'PC' mode.

The CNAT is intended for use in a lAboratory, bench top

environment only. Although the CHAT was designed with
pr,otec'tion ,circu.itry against the automoti V8 environment,
operation in automotive enviromental or electrical
conditions has not been tested and is not gUArantied.

See Figure 1 for a block diagram of the CNAT board.

134
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UO Connectors

68HC11 . ASIC
Ext

Trigger SCI
SPI

In

PC
SA

PR
RS232
Port

Reset
PB iceo I Physical

5v IC . Layer
Mux
Bus

Power Power
on StJpply

+12vLED ln

Figure 1 CNAT Block Diagram
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Getting Started

To start using the CNATyou must first install the
user interface software, and also set up the
hardware configuration of the CHAT board itself.

software InstallatioD

The installation of the interface software for the
CNAT is very simple. The software is no,t copy
protected. The interface software may be run from a
floppy disk or fro,m a hard disk.

The following example will create a sub directory on
the hard disk, and copy all of the CNAT files to the
sub directory. If your hard disk has a drive
designation other than c:, or a floppy disk
designation other than A~, then substitute that
drive letter in the example.

C:>

C:>

C:\CNAT

mkdir c: \CIUl~J

cd c:\anatJ

xcopy a:*.* /s IvJ

To execute the interface program on the PC, change
to the sub directory and type the program name
cnat followed by a space, then the number of the
COM port the CNAT' board is connected to:

C: \CNAT> anat 1.J

CNAT 1 uses the COKI port and CNAT 2 uses the COM2
port. The CHAT program is easy to use and will
provide on-screen help. A detailed discussion of the
software is provided later in this manual.
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There are a number of jumpers and switches on the CNAT
board ~at are used to configure the board for your
intended use. There are also 4 connectors to attach the
board to outside signals. The individual jumpers should
be set before power is applied to the board. We
recommend that power to the board be turned off (via the
Power ON or OFF To'ggle switch) before changes are '1Ilade to
jumper .settings.

Here is a quick overvi,ew of the hardware jumpers,
switches and connectors, and what they do.

See Figure 2 to locate the placement of these jumpers,
switches and connectors.

Power ON or OFF Toggle Switch

There is a toggle switch on the board, labeled "ON"
and "OFF". Leave it uOFF" until the board is
configured, and the power connector (same as the MUX
bus connector) is attached. switch it to liON" to
make the board work.

Power ,ON I.ED

When the switch is in the "ON" position and there is
power connected to the board via the Mux Bus
Connector the LED next to the Power toggle switch
will light.

Reset Pushbutton

There is a pushbutton switch on the board labeled
"RESE'l'". Push it to reset the entire board. This
has the same effect as a t'power-on-reset".
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PC or stand-Alone Togqle switch

There is a toggle switch on the board, labeled "PC"
and "SA" (stand-Alone). This t09'gle switch
determines what-mode the board will operate in.

When set to "PC" it will e.xpect to cOJDlllunicate with
another device via the serial port upon power-on.
It will continue to attempt to communicate on the
serial connection, and will not execute any user
proqram stored in non-volatile RAM until the correct
command is sent via the serial interface.

When set to "SAu, the board will attempt to execute
a user program stored in non-volatil-e memory on the
board. If there is not a valid program stored then
the results are unpredictable.

Non-Volatile RAM: Write Protect Toggle switch

There is, a toggle switch on the board, labeled "WE"
(Write Enable) and II PROT" (Protect). When set to
"WE" the NOV-RAM contents may be changed by the
micro. When set to "PROT" writing to the NOV-RAM
is prevented.

CCD MUK Bus ~ermination Selection Jumpers

There are three jumpers on the board that control
the termination resistors for the physical layer of
the CCD bus.

1. Jumper JP6, When inserted, connects a 1200
resister between the BUS+ and BUS- terminals.

2. Jumper JP5, when inserted, connects a 13KO
resistor from the BUS- terminal to Vcc on the
board.

3. Jumper JP7, when inserted, connects a 13KO
resistor from the BUS+ terminal to Ground on the
board.

Mux Bus and Power In Connector

There is a 4 pin mini-DIN connector on the CNAT
board. This connector is the connection to the CC.D
bUS, and it is also the power connector for the
board. Make sure the Power ON or OFF toggle switch
is in the OFF position before attaching this
connector.
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There are two LED,s at the edge af the board, next to the
Trigger Input connector. One is labeled Il)(MIT", for
transmit, and one is labeled "RCV", for receive. These
LEOs are used to indicate when the microproce,ssor is
processing bus messages into or out of the board. They
are driven by port pins from the microprocessor.

Trigger Input Connector

There is a BNe connect,or on the CHAT board. This
connector is used to input a trigger signal to the
microprocessor. This trigger input capability is
provid,ed for use with customer-written application
software. The basic C8IU software and the PC
C8IU software do not use th~ trigger input.

serial I/O Connector

There is a 9-pin 10' type female connector on the
CNAT board. This is the connector for the RS-2J2
connection to the PC.

Port Expansion Connectors

There are two 40 pin female header connectors on the
board. These connectors bring out the
microprocessor's port and control signals for
expansion of the CNAT board. Refer to the
electrical schematics, supplied separately, for the
details of these connections.
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Reset

Power

MUXBUS
and POWER IN

DB-9
Serial Port

PC/StandAlone

NOV-RAM
Write Protect

4:l1i.2

IExpansion

Power on LED

JP5
c:::3

JP6
c:::3

MUX BUS Active LED's
XMIT RCV.-. IExpansion

Trigger Input

Figure 2 CNAT Board Layout

CNAT UNr'S M&nuII
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KUK Bus an4 Pover Cable

'lou must provide a cable to, attach the power inputs (+12
volts and ground) and the Mux Bus connections to the CNA'l'
board. The cable should be wired as shown in Figure 3.
The end of the cable that will attach to the CNAT board
must have a 4-pin mini DIN type male connector on it.
One of these connectors is provided with the CHAT board.
The other end of this cable should have a connector that
will attach properly to your source of power and to your
Hux Bus siqnals.

Pin 1
+12 input

Pin 2
Bus,+

Pln4
Ground

Pfn3
Bus-

Viewe,d from the WIRE side of the cable connector
or

looking INTO the PC board connector

Figure 3 Mux Bus and Power Cable Pinout
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Yo,u must provide a cable to attach the CNAT board to the
Computer. The cable should be wired as shown in Figure 4.
The end of the cable" that will attach to the CNAT board
must have a 9-pin 10' type male connector on it. The
other end should have a connector that will attach
properly to your PC's COM port connector.

RS232 CommuniQatioDB

The CNAT is designed to run at a baud rate of 19,200 with
8 data bits, no parity, and 1 stop bit. No other baud
rates or formats are supported.

Pin 1
Gnd
Pin
TxO

Pin
RxD

_+-__ Pin 7
Gnd

- Shell is not grounded

Figure 4 Serial Cable Pinout
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The 68HC~~ microprocessor in the CNA'I' module performs
like any other 68HCIL A user program can be downloaded
into the 68HC11 1 s NOV-RAM. These instructions are put
into the 68HC~~'s NOV-RAM memory as described.

The following memory maps are <Jiven to aide the user in
writing executable code. The program can be executed in
the stand alone mode only and is accomplisbed by setting
the PC/SA switch to the SA position and depressing the
RESET butto,n.

CHAT Board Hemory HAP

* Memory map:

PRU:
NOVRAM:
EPROM:

loaOH - lFF'FH.
2000H - 7FF'FH.
SOOOH - FFFFH.

The following information is to aid the user in writing
executable code to. download into the CNAT's HCll non
volatile RAM:

-There are no useable subroutines within the CNAT CBITJ
s,oftwara, i . a. transmit or race!va.

-Microsoft and C compilers offer useable functions to
implement standard routines

-The data rate is set at 19.2k baud.



Interrupt vector Assiqnments tor CNAT

,\lo...~. I 1,".0..... ,'..., <:~ ...,.o

7FCt ·7FC3 STANDAt.ONE_SCI

7FC4.7FC6 STANQAlONE_SPI

7FC7 ·7FCll' STAlIlO'ALOHE_PAIE

7fCA-7FCC STANOALONE_PAOF

i 7FCD-7FCF STANDAl.ONE_TOI

, 7FOO - 7'FD2 , STANDALONe_OCSl

7FD3.7FD5 STANDALONE_~

1FD6.7FDII STANDALONE_OC3I

7FD9· 7FOB STANOALONE_0C21

7FOC-7FOE STANOALONE_OCll

7fOF -7FEI STANOALONE_1C31

7FE2- 7FE" STANOALON1U C2f

7FES-7FE7 STANDALONE_1CII

7Fea-lFEA STANOAlONE_RTt I

7FEa -7FEO STANDALONE_IRQ

7FEE·7FFO STANOALONE_X1RQ

7FFl - 7FF3 STANOALONE_SWl

7FF4- 7FF6 STANDALONE_1OPC

7FF1- 7fF9 STANOALONE_COPF

7FFA·7FFC STANOALONE_COPMF I:

, 7FFO- 7FFF STANDAlONE_RESET

.... l'Ilt.._.A.i.u:Ut~ eTATt: 1 U·..P\ ..u , .
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Note: Each vector must contain a jump or a branch to the
interrupt service routine.

Specifications

Envir,olUl18ntal

Storage temperature: -40 to 85 degrees C.

Operational temperature: 0 to 70 degrees c.
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Bleet-rical

Maximum supply cu.rrent, 300 milliamps.

Input Yoltage { From P2.l to P2.4 }:

• Line transi,ent for Vcc <= '6V:
milliseconds.

• ReY,erse yoltage duration:
-lOOV.
Minimum operational input voltage:

• Maximum input voltage:'

* I/O port electrical specifications:

60V for t S 120

Infinite for V ~

6.25V.
26V.

Valid logic input low voltage:
to P2.4 }.

Valid logic input high voltage:
respect to P2.4 ).

Valid logic output low y,oltage:
respect to P2.4 ).
( Load = 1.6 milliamps

Valid logic output high voltage:
respect t,o P2. 4 ).
( Load = -0.8 milliamps

S lV { with respect .

~ 3.5V { with

~ 4.2V ( with

Analog voltage range: 0 to 5V.
( JP8: 19, 21, 23, 25, 27, 29, 31, 33 with respect to
P2.4 ).

Minimum pulse width low duration for interrupt
acknowledge,
" JP8: 1, 3 ) 1020 nsec ( IRQ & XIRQ )

Minimum pulse width low or high for valid input capture,
( JP8: 3, 5, 7,9,11,13,15,17 ) 1020 nsec (
PAO - PA2 )



-
146

CCO interface:

Biasing pull-up and pUll down resistor values: 13K ohms
± \5.

Network ter1llinating resistor values: 120 ohms ±
%5.
Transmission data rate:
<1Hz.

Microprocessor crystal frequency:
<492Hz.

7812.5Hz ±

4.9152MHz ±
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