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ABSTRACT 
 
 This dissertation deals with the interaction of the biologically important 

nitrogen oxides (nitric oxide and nitrite) with manganese and ruthenium centers in 

small inorganic porphyrin and nonporphyrin complexes as well as with manganese 

and cobalt centers in manganese and cobalt substituted myoglobin.  

 Chapter 1 introduces the fundamental background of the biological 

importance of nitric oxide, nitrite, manganese porphyrins and manganese-

reconstituted myoglobin.  

 Chapter 2 describes the preparation of the oxo-bridged dimer 

[Ru(bpb)(NO]2(µ-O) in 60% isolated yield from the reaction of the known 

Ru(bpb)(NO)Cl with silver nitrite.  The compound exhibits a υΝΟ of 1758 cm-1 (KBr 

pellet).   The crystal structure reveals a linear ON-Ru-O-Ru-NO fragment with the 

oxo atom serving as an inversion center in the molecule.  The redox behavior in DMF 

is characterized by a reversible reduction followed by a second but irreversible 

reduction in this solvent.  

 Chapter 3 describes the syntheses of a new set of six-coordinate manganese 

nitrosyl porphyrins of the general form (por)Mn(NO)(L) (por = TTP, TPP, T(p-

OCH3)PP; L = piperidine, methanol, 1-methylimidazole) in moderate to high yields.  

The (por)Mn(NO)(pip) complexes were prepared from the reductive nitrosylation of 

the (por)MnCl compounds with NO in the presence of piperidine.  The IR spectra of 

the (por)Mn(NO)(pip) compounds as KBr pellets show new strong bands at 1746 cm-

1 (for TTP) and 1748 cm-1 (for (T(p-OCH3)PP) due to the NO ligands.  Attempted 

crystallization of one of these compounds (por = TTP) from 
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dichloromethane/methanol resulted in the generation of the methanol complex 

(TTP)Mn(NO)(CH3OH).  Reaction of the (por)Mn(NO)(pip) compounds with excess 

1-methylimidazole gave the (por)Mn(NO)(1-MeIm) derivatives in good yields.  The 

IR spectra of these compounds show υNO bands that are ~12 cm-1 lower than those of 

the (por)Mn(NO)(pip) precursors, indicative of greater Mn→NO π-backdonation in 

the 1-MeIm derivatives.  X-ray crystal structures of four of these compounds, namely 

(TTP)Mn(NO)(CH3OH), (TTP)Mn(NO)(1-MeIm), (TPP)Mn(NO)(1-MeIm), and 

(T(p-OCH3)PP)Mn(NO)(1-MeIm) were obtained, and reveal that the NO ligands in 

these complexes are linear. 

Also we report the room and the low temperature (–78 °C) cyclic 

voltammetric behavior of three six coordinate (por)Mn(NO)(1-MeIm) (por = 

tetraphenylporphyrin dianion (TPP), tetratolylporphyrin dianion (TTP) or tetra-p-

methoxyphenylporphyrin dianion (T(p-OCH3)PP)) complexes at a Pt disc electrode in 

two nonaqueous solvents (CH2Cl2 and THF).  In CH2Cl2 at room temperature, the 

compounds undergo four oxidations and two reductions within the solvent limit; in 

THF, the compounds undergo one oxidation and three reductions.  In both solvents, 

the first oxidation represents a chemically irreversible one-electron process involving 

the rapid loss of nitric oxide.  The oxidation occurs at the MnNO site as judged from 

bulk electrolysis, UV-vis spectroscopy at room temperature, and IR-

spectroelectrochemistry at room temperature and at –78 °C. The second oxidation, 

accessible in CH2Cl2, is also chemically irreversible and occurs at the porphyrin ring; 

the third and the fourth oxidations are, on the other hand, chemically reversible but 

also occur at the porphyrin ring.  The first reduction is chemically irreversible in 
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CH2Cl2, occurs at the porphyrin ring, and is followed by loss of NO.  In THF, the first 

reduction is chemically reversible and is followed by reversible loss of NO.  

 Chapter 4 describes the 1.6–2.0 Å resolution crystal structures of the as-isolated 

Mn-substituted horse heart myoglobin (hh MnIIIMb), the reduced form hh MnIIMb, 

and complexes of hh MnMb with methanol, azide, nitric oxide, and nitrite.  The 

MnIIIMb compound contains distal pocket water in two positions, one coordinated and 

the other not coordinated.  The reduced form, MnIIMb, lacks a distal pocket water 

molecule, in contrast to that observed previously for the iron-containing deoxyMb.  

Interestingly, the structure of the NO adduct suggests a loosely bound NO in the 

distal pocket; the Mn–N–O moiety is surprisingly bent, and represents the first such 

distinctly bent metal-NO unit for a natural or synthetic manganese porphyrin 

complex. Both crystal structures of hh MnIIIMb(ONO) and hh CoIIIMb(ONO) 

determined in this work also reveal this unusual nitrito coordination mode.  In 

addition, this surprising result for the cobalt case, when compared with nitrite ligand 

orientations in related model compounds, demonstrates the importance of the Mb 

distal pocket in orienting the nitrite towards this O-binding mode. 

 In summary, this dissertation shows that nitric oxide binds to the manganese 

center in a linear axial fashion in manganese porphyrin model compounds and in a 

bent tilted fashion in manganese-substituted myoglobin. Nitrite displays the O-

binding coordination mode to both manganese model compounds and manganese-

substituted myoglobin.  Although nitrite exhibits the N-binding coordination mode in 

all known cobalt model compounds, it shows O-binding mode to cobalt-substituted 

myoglobin. The O-binding mode that nitrite exhibits to manganese- and cobalt-
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substituted myoglobin as well as that reported for ferric-myoglobin further 

demonstrates the crucial role of the distal amino acids in the heme pocket in changing 

the coordination preferences of ligands to metal center in myoglobin.
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Chapter 1. Introduction 

  

 It is now widely recognized that nitric oxide (NO)1-8 and nitrite (NO2
–)9-13 have 

a direct relationship to many physiological and pathological processes such as 

vasodilation, neurotransmission, immune system defense, thrombosis, and ischemia 

reperfusion. Indeed, the function of NO and NO2
– ion in these physiological and 

pathological processes is tied in with their interactions with heme-containing 

biomolecules. The active site of these heme-containing biomolecules is either a heme-

imidazole active site such as that in hemeoglobin, myoglobin, and soluble guanylyl 

cyclase or a heme-thiolate active site such as that in cytochrome P450 and nitric oxide 

synthases. 

 Studies on the interactions of NO and NO2
– ion with metalloporphyrin-

imidazole and metalloporphyrin-thiolate model compounds have contributed 

substantially in understanding the biological chemistry of NO/NO2
–-heme protein 

interactions as well as in understanding their many roles in many disease processes 

affecting humans. Since iron is the biologically relevant metal, iron porphyrin model 

compounds have received the greatest attention.  However, these studies have been 

hampered with many difficulties such as the common instability of iron porphyrin 

nitrosyl complexes, the difficulties in obtaining them in a pure state, and the common 

mixed spin states of iron nitrosyl moieties in these compounds.  

 Manganese is only one electron less than iron, and manganese (II) porphyrin 

complexes are isoelectronic with their iron (III) porphyrin analogues. Also, 

manganese has been used to replace iron in many heme-containing biomolecules. 
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However, only few manganese porphyrin nitrosyl and manganese porphyrin nitrite 

compounds have been reported in the literature. In this dissertation, we focus on the 

interaction of nitric oxide (NO) and nitrite ion (NO2
–) with manganese porphyrin 

model compounds and with manganese and cobalt substituted myoglobin model 

compounds. In this chapter, we give a brief background about the biology of NO, 

NO2
– ion, manganese porphyrin and manganese substituted heme proteins.  

 

1.1 Nitric Oxide in Biology 

 The discovery of nitric oxide as a biological molecule was in the late1980s 

when the research groups of Ignarro and Moncada revealed that the endothelium-

derived relaxing factor (EDRF) proposed by Furchgott is NO.2,14-16 Like 

norepinephrine and epinephrine, nitric oxide (NO) is an important intercellular 

messenger in all vertebrates. It regulates blood flow rate, platelet aggregation, and 

neuronal activity. NO is produced in most mammalian cell types provided they are 

appropriately stimulated.7  It was shown by the Food and Drug Administration that 

inhaling a low dose of NO gas can be a powerful treatment of persistent pulmonary 

hypertension in the newborn.5,17  Two biologically pathways are known for NO 

biosynthesis; conventional and non-conventional pathways.  

 In the conventional pathway, nitric oxide is synthesized, in two enzymatic 

steps, from L-arginine by three heme-containing isozymes of nitric oxide synthases 

(NOSs) (eq. 1.1). NADPH, tetrahydrobiopterin (H4B), and oxygen are used as 

cofactors. 
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+ +

N O+

.

O

Nitric oxide

(1.1)

 

  

 In neuronal cells, nitric oxide is produced by the neuronal nitric oxide 

synthase (nNOS or NOSI) isozyme. This isozyme was the first NOS that was cloned 

and purified.1,18  It has been proposed that NO, in the brain, provides an important 

signal-averaging mechanism to control synaptic plasticity.19 Indeed, the nNOS is 

particularly well suited to produce NO in a manner that facilitates synaptic plasticity.6

 Nitric oxide production in macrophages was established by Stuehr and 

Nathan.3  It is produced by the calcium independent inducible nitric oxide synthase 

(iNOS or NOSII) isozyme and serves as a defending agent against pathogens after 

conversion to peroxynitrite (ONOO–) from the reaction with the superoxide ion in a 

diffusion-limited non-enzymatic reaction.20 

 In endothelium cells, nitric oxide is produced by the endothelial nitric oxide 

synthase (eNOS or NOSIII) isozyme.21,22  It can then rapidly diffuse, through tissues, 

either into the smooth muscles or into red blood cells.23,24  In vascular smooth muscles 

NO activates another heme-containing enzyme, soluble guanylate cyclase (sGC), to 

produce cyclic guanosine monophospate (cGMP) from guanosine triphosphate 



 4 

(GTP). Only 5-10 nM concentration of NO is required to activate the sGC enzyme. 

Increased levels of cGMP within vascular smooth muscles had been known to allow 

blood vessels to relax and thus increase blood flow.14  Indeed, cGMP activates cGMP-

dependent kinases in the target tissue that modulates intracellular calcium levels to 

modulate many diverse activities in the target tissues. In red blood cells most of NO is 

scavenged rapidly (k = 3.4 × 107 M−1 s−1)25  by another heme-containing protein 

(oxyhemoglobin) and converted to the inert metabolite nitrate ion (NO3
–) (eq. 1.2). 

 

NO + oxyhemoglobin (Fe2+)    nitrate (NO3
−) + methemoglobin (Fe3+)       (1.2) 

 

The oxyhemeoglobin limits the half-life time of NO in vivo to less than a second, and 

prevents the accumulated NO concentration from directly reacting with oxygen to 

form significant amounts of nitrogen dioxide (very reactive nitrogen species). A 

fraction of NO produced by eNOS in the vasculature (approximately 20%) escapes 

inactivation by hemoglobin and is oxidized to nitrite ion (NO2
–), another biologically 

important nitrogen oxide species, in the plasma by a reaction with oxygen.28 The NO 

oxidation reaction to nitrite has recently been proposed to be catalyzed by the 

ceruloplasmin, a multicopper plasma protein.26 

 

1.2 Nitrite ion in Biology 

  Nitrite (NO2
–) is an important inorganic ion for all living organisms. Its typical 

concentration levels are 0.1-1.0 µM in plasma, 0.5-2.0 µM in tissues and up to 20 µM 

in vascular tissues.27-32  Most of the nitrite in mammalian cells comes from exogenous 
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sources such as food.  A small portion comes from the reaction of NO with molecular 

oxygen as mentioned above.28 Nitrite can readily modify various biomolecules by, for 

example, protein and lipid nitration,33,34 and S-, N-,31 and Fe- nitrosation.35,36  

 In the meat industry, nitrite ion is used in color fixing and as a protecting 

agent against botulism. However, it has been reported that nitrite in the digestive 

system is a source of nitrosoamines that are commonly believed to promote cancer in 

humans.37,38  Also, high concentrations of nitrite in the blood stream have been known 

as a causative agent for methemoglobinemia (loosing the oxygen carrying capability 

of hemoglobin due to its oxidation to met-hemoglobin).39  

 Recently, evidence has accumulated that nitrite ion has beneficial effects 

under conditions of low oxygen in physiological processes such as ischemia 

reperfusion and hypoxic vasodilation and these effects are attributed to the reduction 

of nitrite back to NO.10,27,40  Non-enzymatic and enzymatic mechanisms have been 

proposed to explain this reduction. The non-enzymatic reduction is very slow41 except 

under high acidic conditions that might only be found in stomach,42,43 urine, 44 or 

ischemic tissue.45,46  In the enzymatic reduction, certain mammalian enzymes catalyze 

the reduction of nitrite to NO. Examples are glutathione-S-transferase,47 xanthine 

oxidoreductase,48-50 deoxyhemoglobin,  deoxymyoglobin,27,51-55 cytochrome P450,56 

and nitric oxide synthases.57,58 

 Modeling the interaction of nitrite with heme-containing biomolecules will 

contribute in our understanding of the nitrite reduction mechanism. In Chapter 4 of 

this dissertation, structural details of the interaction of nitrite with manganese- and 

cobalt-reconstituted myoglobin are discussed.  
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1.3 Manganese porphyrins and manganese proteins 

Manganese is a required trace element for all known living organisms.  It is 

essential for many biological processes such as bone and tissue formation, 

reproductive processes, and carbohydrate and lipid metabolism.59  It is a cofactor for a 

number of metalloenzymes such as arginase, catalase, ribonucleotide reductase, 

enolase, superoxide dismutase and the oxygen-evolving complex of photosystem II.60-

63  Humans have a mean manganese concentration of 9.03±2.25 mg/L in whole blood 

with a mean concentration of 1.82 ± 0.64 mg/L in the serum.64 

 Fifty years ago, Borg and Cotzias discovered that injection of radiolabeled 

54MnCl2 into patients in vivo resulted in the incorporation of Mn2+ into red cell 

fractions, and that the incorporated Mn2+ was non-exchangeable and non-dialyzable.65-

67 Based on their data, they suggested that the Mn2+ was most likely incorporated into 

heme, thus providing some circumstantial evidence for the production of a natural 

manganese heme in humans.68  Mahoney and Sargent confirmed this finding, and 

showed that between 0.5-9.0% of administered radiolabeled 54Mn was incorporated 

into red blood cells, and that 60-70% of the radioactivity was recovered in the 

resulting crystalline hemin preparation.69  Hancock and Fritze later showed that, 

indeed, injection of 54MnCl2 into rats resulted in the formation of a 54Mn-containing 

species that had identical gel chromatographic elution behavior as hemoglobin, bis-

pyridine hemochrome and hematin;70  this provided further evidence for the in vivo 

formation of a manganese porphyrin, confirming the earlier results of Borg and 

Cotzias.  These authors noted, however, that added Mn2+ was not able to displace iron 

from heme by a simple metal displacement reaction, suggesting the incorporation of 



 7 

Mn2+ at the heme biosynthesis stage.  In a separate study, Wibowo et al. determined 

that increased levels of protoporphyrin in erythrocytes (induced by exposure to Pb) 

resulted in incorporation of in vivo manganese by the porphyrin.71 In metal ion 

accumulation studies using Norway lobsters, it was determined that exposure of the 

lobsters to Mn2+ resulted in accumulation of the metal ion in nerve tissue, and in the 

hemolymph where it was bound mainly to the respiratory protein hemocyanin (the 

authors noted that Mn2+ was not able to displace copper in the protein).72 

 Manganese-substituted derivatives of a number of heme proteins have been 

prepared and studied.  In many cases, these Mn-substituted derivatives were 

investigated in order to provide insight on the role of heme iron in the reactions of the 

native proteins.73  Manganese-substituted derivatives of heme proteins that have been 

reported to date include those of hemoglobin (Hb),74,75 myoglobin (Mb),76-78 

cytochrome P450,79 soluble guanylyl cyclase,80 cytochrome c,81 nitric oxide 

synthase,82 horse radish peroxidase,75,77,83 cytochrome b5,84 cytochrome c peroxidase 

(CcP),77,85,86 and prostaglandin H2 synthase-1.87  

 Unlike the native iron analogues, MnII-substituted hemoglobin (MnIIHb) and –

myoglobin (MnIIMb) do not bind dioxygen or carbon monoxide,77 although the MnIII-

derivatives bind azide.77,88-90  Mitra and coworkers have shown that MnIIIMb binds 

cyanide and thiocyanate at a location > 6Å from the metal center.91  

 Clearly, Mn porphyrins are becoming increasingly recognized for their 

potential biological applications.  The fact that MnII is incorporated into heme at the 

biosynthesis level (mentioned above) raises an intriguing possibility that Mn-hemes 

might be of some physiological importance, although their function (if any) remains 



 8 

unknown.  Despite numerous reports on the spectroscopy of Mn-substituted heme 

proteins, there are only a few reports of crystal structures of these complexes.  Moffat 

and coworkers reported the structure of MnHb using X-ray difference Fourier 

techniques92,93 and demonstrated the similarity of the structure of this complex to that 

of the native iron compound.  Arnone later reported the 3.0 Å resolution structure of 

the heterometallic complex Hb(α-FeIICO)(β-MnII).94  Very recently, Loll and 

coworkers reported the 2.0 Å resolution crystal structure of Mn-PGHS.87   

 This dissertation is organized as follows. Chapter 2 describes the synthesis, 

characterization, molecular structure, and electrochemical properties of an oxo-

bridged dimmer of a ruthenium nitrosyl compound containing the bpb ligand system. 

Chapter 3 describes the synthesis, characterization, molecular structures, and fiber-

optic IR-spectroelectrochemical properties of a series of six-coordinate manganese 

porphyrin nitrosyl complexes containing three different axial ligands, piperidine, 

methanol, and 1-methylimidazole and three different porphyrin ligands, TPP, TTP, 

and T(p-OCH3)PP. Chapter 4 describes the ligand conformations in derivatives of 

manganese- and cobalt-substituted horse heart myoglobin as determined by X-ray 

crystallography.  
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Chapter 2. Synthesis, Molecular Structure, and Redox Behavior of 
                   an oxo-bridged dimer of a Ruthenium-bpb Nitrosyl*  
 

2.1 Introduction 

 Nitrosyl complexes of the group 8 metals have been studied for many 

decades.1,2  This is due in large part to the fact that the interaction of nitric oxide (NO) 

with iron is biologically relevant both for heme and non-heme proteins.3  The use of 

synthetic models in the study of the heme-NO interactions has provided a wealth of 

information concerning the electronic structure and the predicted geometries of the 

FeNO moiety in these systems. However, a common byproduct of iron porphyrin 

chemistry in aerobic environments is the µ-oxo dimer [(porphyrinato)Fe]2(µ-O).  

Several of these iron porphyrin oxo-bridged dimers have been characterized by X-ray  

crystallography. 4-7  

 In 1998, our group described an unexpected product formed during work with 

organoosmium nitrosyl porphyrins.4  This product, namely [(OEP)Os(NO)]2(µ-O) 

(OEP = octaethylporphyrinato dianion) was characterized by spectroscopy and by X-

ray crystallography, and displayed a linear oxo-bridged ON-Os-O-Os-NO linkage.  

This product was found to be rather unreactive towards acid, and this lack of 

reactivity of the oxo-bridge was attributed to the removal of electron-density in this 

bridge by the two trans NO ligands.  We have not, to date, been successful at 

obtaining the corresponding ruthenium analogue [(porphyrinato)Ru(NO)]2(µ-O). 

-------------------------------------------------------------------------------------------------------
∗ Taken in part from “Synthesis, molecular structure, and redox behavior of an oxobridged dimer of a 
ruthenium-bpb nitrosyl” Zahran, Z. N.; Powell, D. R.; Richter-Addo, G. B. Inorg. Chim. Acta 2006, 
359, 3084–3088, with permission from Elsevier. 
 



 14 

 1,2-Bis(pyridine-2-carboximido)benzene (H2bpb) and its various derivatives 

have been extensively employed as tetradentate diamide ligands for various transition 

metal ions. Mascharak and coworkers have utilized the H2bpb ligand for the design 

and construction of metal nitrosyl complexes that behave as NO-donors under  

 

 

 

mild photochemical conditions.8  Importantly, they have investigated possible 

similarities between the H2bpb ligand and porphyrin ligands.9  Ford,10,11 and  

Mascharak,8,12-15 have published extensively on the phototochemical release of NO 

from group 8 metal-NO compounds with related polydentate ligands.   

  Based on the work of Mascharak, we explored the possibility of designing 

(bpb)Ru(NO)-containing compounds that will complement our work on ruthenium 

nitrosyl porphyrins.  In this chapter, we describe (i) the preparation and spectroscopic 

properties of an oxo-bridged dimer of a ruthenium nitrosyl compound containing the 

bpb ligand system, (ii) its crystal structure, and (iii) its electrochemical properties.  

 

2.2 Experimental Section 

 2.2.1 General. All reactions were performed under an atmosphere of 

prepurified nitrogen using standard Schlenk glassware and/or in an Innovative 
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Technology Labmaster 100 Dry Box.  Solutions for spectral studies were also 

prepared under a nitrogen atmosphere.  Solvents were distilled from appropriate 

drying agents under nitrogen just prior to use. 

 2.2.2  Chemicals. 1,2-Bis(pyridine-2-carboxamido)benzene (H2bpb)16 and 

Ru(bpb)(NO)Cl8 were prepared by the literature methods.  Silver nitrite, tetra-n-

butylammonium hexafluorophosphate (NBu4PF6), and anhydrous DMF were 

purchased from Aldrich Chemical Company and used as received.  Chloroform-d 

(99.8%) was obtained from Cambridge Isotope Laboratories.  Diethyl ether, CH2Cl2 

and THF were distilled from calcium hydride under a nitrogen atmosphere just prior 

to use.  Nitrogen of ultra high purity was purchased from Trigas (Houston, TX). 

 2.2.3 Instrumentation. Infrared spectra were recorded on a Bio-Rad FT-155 

FTIR spectrometer.  Proton NMR spectra were obtained on Varian Mercury VX 300 

MHz spectrometer and the signals referenced to the residual signal of the solvent 

employed (CHCl3 at δ 7.24 ppm).  ESI mass spectra were obtained on a Micromass 

Q-TOF mass spectrometer.  UV-vis spectra were recorded on a Hewlett-Packard 

model 8453 diode array instrument.  Electrochemical measurements were performed 

with a BAS CV-50W instrument.  A three-electrode cell was used (Pt working and 

auxiliary electrodes, Ag/AgCl reference electrode).  The solutions used were 1.0 mM 

in analyte in 10 ml of 0.1 M NBu4PF6.  Nitrogen gas was bubbled through the 

solution for about 8 min before each set of measurements and was passed 

continuously over the surface of the solution during the measurements.   

 2.2.4  Synthesis of [(bpb)Ru(NO)]2(µ-O).  A solution of AgNO2 (0.06 g, 0.4 

mmol) in DMF (10 mL) was added slowly, via cannula, to a solution of 
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Ru(bpb)(NO)Cl (0.20 g, 0.4 mmol) in DMF (5 mL).  The mixture was stirred under 

nitrogen gas overnight at room temperature.  Dichloromethane (30 ml) was added, 

whereby a white precipitate formed.  The solution was filtered, and filtrate was heated 

at ~100 °C under vacuum to remove the solvent.  The IR spectrum of the residue 

showed two bands in the υNO region at 1758 cm-1 (major) and 1840 cm-1 (minor).  

The residue was washed several times with CH2Cl2 to remove an as-yet 

uncharacterized byproduct.  The remaining orange residue, after the wash with 

CH2Cl2, was dried under vacuum for several hours to give the orange-red compound 

[(bpb)Ru(NO)]2(µ-O) (0.11 g, 60% yield based on Ru).  IR (KBr, cm-1): υNO = 1758 

vs, υRu-O-Ru = 816s; also 3057vw, 2984 vw, 1631vs, 1595vs, 1563s, 1470s, 1447w, 

1372s, 1359w, 11268vw, 1112vw, 1092vw, 1028w, 970w, 745w, 725w, 693vw, 

682w, 653vw, 571w, 512w, 452vw.  1H NMR (CDCl3; δ, ppm ): 8.28 (m, 4H), 8.07 

(m, 2H), 8.05 (m, 2H), 7.93–7.84 (overlapping m, 8H), 7.30 (m, 4H), 6.93 (m, 4H);  

also, 5.29 (s, trace CH2Cl2) and 1.57 (s, trace H2O).  ESI mass spectrum: m/z 913.0 

[(Ru(bpb)NO)2O + H]+
 (100%). 

The complex is soluble only in DMF and insoluble or only sparingly soluble 

in most organic solvents. 

 2.2.5  X-ray crystallography. Suitable crystals for X-ray crystallography were 

grown by vapor diffusion of CH2Cl2 (25 ml) into a DMF solution of the compound at 

room temperature under inert atmosphere.  A red prism-shaped crystal of dimensions 

0.16 x 0.10 x 0.10 mm was selected for structural analysis.  Intensity data for this 

compound were collected at 90(2) K using an instrument with a Bruker APEX CCD 
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area detector17,18 using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å).  

Cell parameters were determined from a non-linear least squares fit of 5577 peaks in 

the range 2.27 < θ < 28.18°.  A total of 15194 data were measured in the range 2.09 < 

θ < 26.00° using ω oscillation frames.  The data were corrected for absorption by the 

semi-empirical method19 giving minimum and maximum transmission factors of 

0.840 and 0.897.  The data were merged to form a set of 3859 independent data with 

R(int) = 0.0234 and a coverage of 100.0 %. The monoclinic space group P21/n was 

determined by systematic absences and statistical tests, and verified by subsequent 

refinement.  The structure was solved by direct methods and refined by full-matrix 

least-squares methods on F2.20  Hydrogen atom positions were initially determined by 

geometry and refined by a riding model.  Non-hydrogen atoms were refined with 

anisotropic displacement parameters.  Hydrogen atom displacement parameters were 

set to 1.2 times the displacement parameters of the bonded atoms.  A total of 305 

parameters were refined against 7 restraints and 3859 data to give wR(F2) = 0.0541 

and S = 1.001 for weights of w = 1/[σ2 (F2) + (0.0280 P)2 + 1.5000 P], where P = 

[Fo
2 + 2Fc

2] / 3.  The final R(F) was 0.0211 for the 3587 observed, [F > 4σ(F)], data.  

The largest shift/s.u. was  0.002 in the final refinement cycle.  The final difference 

map had maxima and minima of 0.341 and -0.344 e/Å3, respectively.  Details of the 

crystal data and structure refinement are given in Table 2.1.  Thermal ellipsoids are 

drawn at 50% level. 
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Table 2.1.  Crystal Data and Structure Refinement of [(bpb)Ru(NO)]2O. CH2Cl2 

Formula (C36 H24 N10 O7 Ru2)⋅ (CH2Cl2)2C38 

H28Cl4N10O7Ru2 

Fw 1080.64 

T (K) 90(2) 

Crystal system Monoclinic 

Space group P21/n 

a (Å), α (°) 10.1710(14), 90 

b (Å), β (°) 12.7547(18), 97.919(5) 

C (Å), γ (°) 15.256(2), 90 

V,  Z, Z- 1960.3(5) Å3, 2, 0.5 

D(calcd), mg/m3 1.831  

Abs coeff, mm-1 1.109 mm 

F(000) 1076 

Crystal size (mm) 0.16 x 0.10 x 0.10 

θ range for data collection, deg 2.09 -26.00 

Reflections collected 15194 

Independent reflns 3859 [R(int) = 0.0234] 

Max and min trans. 0.897 and 0.840 

Data / restraints / parameters 3859 / 7 / 305 

Goodness-of-fit on F2 1.001 

Largest and mean shift / s.u. 0.002and 0.000 

R indices (all data) R1 = 0.0211, wR2 = 0.0541 

Largest diff. peak and hole, eÅ-3 0.341 and -0.344 

Observed data [I > 2σ(I)] 3587 

 wR2 = { S [w(Fo
2 - Fc

2)2] / S [w(Fo 2)2] }1/2  

R1 = S ||Fo| - |Fc|| / S |Fo| 

 



 19 

2.3  Results and Discussion 

 2.3.1  Synthesis and spectroscopy of [(bpb)Ru(NO)]2(µ-O).  Several years 

ago, Bohle and coworkers21 reported the preparation of (TTP)Ru(NO)(ONO) in 60% 

yield from the metathesis reaction of the precursor (TTP)Ru(NO)Cl with silver nitrite.  

In our attempt to generate an analogous Ru(bpb)(NO)(ONO) complex, we reacted 

Ru(bpb)(NO)Cl with silver nitrite in DMF.  The product obtained after workup, in 

60% yield, was the oxo-bridged dimer [Ru(bpb)(NO)]2(µ-O).  The production of this 

oxo-bridged dimer from the use of a nitrite reagent is not unusual.  For example, 

Ankers and Fanning22 have reported that ferric salen complexes (salen = N,N’-

ethylenebis(salicylideneiminato) dianion) react with nitrite reagents to generate the 

[Fe(salen)]2(µ-O) species, and that no evidence for the target nitrite adducts was 

obtained.    

 The IR spectrum of [Ru(bpb)(NO)]2(µ-O) as a KBr pellet shows a strong band 

at 1758 cm-1 attributed to υΝΟ.   This υΝΟ band is lower than that of the monometallic 

precursor Ru(bpb)(NO)Cl (υΝΟ = 1867 cm-1), and is reflective of the replacement of 

the chloride ligand by the oxo-bridge in the product.   A similar lowering of υΝΟ  is 

observed in the related Ru(salen)(NO)Cl (1844 cm-1) and [Ru(salen)(NO)]2(µ-O) 

(1762 cm-1) derivatives in CH2Cl2.10  A strong band at 816 cm-1 is also evident in the 

IR spectrum, and is assigned to the IR-active asymmetric Ru-O-Ru stretch.  Related 

stretches have been reported for [Fe(salen)]2(µ-O).py (805 cm-1),23 [Fe(sal-O-

phen)]2(µ-O).py (820 cm-1),23 and [Ru(salen)]2(µ-O) (805 cm-1).10 
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 2.3.2  X-ray crystallography of [(bpb)Ru(NO)]2(µ-O). There are only a 

handful of oxo-bridged compounds of ruthenium containing the (Ox)N-Ru-O-Ru-

N(Ox) fragment that have been structurally characterized in the solid state by X-ray 

crystallography (Table 2.2). Slow diffusion of CH2Cl2 vapor into a DMF solution of 

[Ru(bpb)(NO)]2(µ-O) at room temperature over several days produced single crystals 

suitable for X-ray diffraction.  The molecular structure of this oxo-bridged dimer is 

shown in Figure 2.1, and selected structural data are presented in Table 2.3. Details of 

the bond lengths and angles are presented in Tables 2.4 and 2.5 in the appendix at the 

end of this dissertation.  

 

 

Figure 2.1.  Molecular structure of [Ru(bpb)(NO)]2(µ-O). Thermal ellipsoids are 
                     shown at 50%. Hydrogen atoms and the methylene chloride solvent 
                     molecules are omitted for clarity
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Table 2.2.  Selected Vibrational Frequencies (cm-1) and Geometric Parameters (Å, °) for oxo-bridged Ruthenium  Compounds.a 

 
 

a  Abbreviations:  dmpH = 3,5-dimethylpyrazole; bpy = bipyridine, tw = this work.

Compound υNO υRuORu Ru-O Ru-N(O) Ru-O-Ru Ru-N-O O-Ru-N(O) Ref 

[Ru(bpb)(NO)]2(µ-O) 1758 816 1.8829(3) 1.7486(17
) 

180.0 175.85(15
) 

174.14(5) Tw 

[RuCl2(NO)(dmpH)2]2(µ-O) 1809.1 791.7 1.917(6) 
1.885(6) 

1.734(9) 
1.721(10) 

178.9(4) 178.5(10) 
177.1(13) 

179.6(4) 
179.0(4) 

[24] 
  
 

[RuCl(dmpH)(µ2-dmp)(NO)]2(µ-O) 1829.4, 
1802.4 

715.5 1.910(3) 
1.913(3) 

1.747(4) 
1.752(4) 

116.35(13
) 

177.7(5) 
179.6(4) 

178.1(2) 
178.2(2) 

[24] 

[RuCl4(NO)][Ru(dmpH)4(NO)]( µ-
O) 

1818.2,  
1790.2 

792.2 1.940(2) 
1.873(2) 

1.731(3) 
1.759(3) 

176.6(2) 176.2(3) 
177.0(3) 

177.67(14) 
179.27(14) 

[24] 
 
  

{[Ru(bpy)2(NO2)]2(µ-O)}2+   1.876(6) 
1.890(7) 

 157.2(3)   [25] 
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Table 2.3.  Selected Bond Lengths and Angles for [Ru(bpb)(NO)]2(µ-O) 
____________________________________________________________________ 
Bond Lengths (Å) 
 

N(25)-O(26) 1.174(2) Ru(1)-N(16) 1.9935(15) 

Ru(1)-N(25) 1.7486(17) Ru(1)-N(24) 2.1507(16) 

Ru(1)-N(1) 2.1277(15) Ru(1)-O(27) 1.8829(3) 

Ru(1)-N(9) 1.9890(16)   
 
Bond Angles (°)  
 

O(26)-N(25)-Ru(1) 175.85(15) N(16)-Ru(1)-O(27) 89.49(5) 

N(25)-Ru(1)-O(27) 174.14(5) N(24)-Ru(1)-O(27) 86.41(4) 

N(25)-Ru(1)-N(1) 91.61(7) N(1)-Ru(1)-N(9) 80.14(6) 

N(25)-Ru(1)-N(9) 95.07(7) N(1)-Ru(1)-N(16) 162.84(6) 

N(25)-Ru(1)-N(16) 95.54(7) N(1)-Ru(1)-N(24) 115.53(6) 

N(25)-Ru(1)-N(24) 91.52(7) N(9)-Ru(1)-N(24) 162.86(6) 

N(1)-Ru(1)-O(27) 84.36(4) N(9)-Ru(1)-N(16) 83.69(6) 

N(9)-Ru(1)-O(27) 88.44(5)   

 

 Each ruthenium center is octahedrally coordinated, and the oxo group is at an 

inversion center.  The Ru-N-O moiety is near-linear with a bond angle of 

175.85(15)°, and a Ru-N(O) bond length of 1.7486(17) Å.  The Ru-N(pyridyl) bonds 

are longer than the Ru-N(amide) bonds (Figure 2.1 and Table 2.3) with an average 

Ru-N(bpb) value of 2.06 Å.  The ON-Ru-O-Ru-NO linkage is linear and imposed by 

symmetry, with a Ru-O bond length of 1.8829(3) Å; this Ru-O bond length is similar 

to those determined for related Ru oxo-bridged dimers (Table 2.2).24,25  
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 2.3.3 Redox behavior of Ru(bpb)(NO)Cl and [Ru(bpb)(NO)]2(µ-O). The 

redox behavior of the known compound Ru(bpb)(NO)Cl and the newly-synthesized 

oxo-bridged compound [Ru(bpb)(NO)]2(µ-O) in DMF have been investigated using 

cyclic voltammetry.   These compounds are insoluble or only sparingly soluble in 

other organic solvents, hence we were limited with our choice of solvent for 

electrochemistry.   The electrochemistry of Ru(bpb)(NO)Cl is characterized by two 

reversible one-electron reductions at E°/
1 = –0.17 V and E°/

2 = –0.64 V vs Ag/AgCl 

(Figure 2.2), and these are represented by equations (2.1) and (2.2), respectively. 

 

 

Fig. 2.2. Cyclic voltammogram of 0.1 mM Ru(bpb)(NO)Cl in DMF containing 0.1 M 
NBu4PF6. Scan rate = 0.2 V/s. 
 
 

 

        Ru(bpb)(NO)Cl     
+ e

_

- e
_     [Ru(bpb)(NO)Cl]1-              (2.1) 
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[Ru(bpb)(NO)Cl]1-         
+ e

_

- e
_     [Ru(bpb)(NO)Cl]2-              (2.2) 

 

No oxidation behavior for Ru(bpb)(NO)Cl was apparent in this solvent.  

The oxo-bridged compound [Ru(bpb)(NO)]2(µ-O) displays a quasi-reversible 

and diffusion-controlled reduction in DMF, and the cyclic voltammogram showing 

this reduction (E°/ = –0.99 V vs Ag/AgCl) is shown in Figure 2.3.   

 

-1.30-1.00-0.70

E (V vs. Ag/AgCl)

  

Fig. 2.3. Cyclic voltammogram of 0.1 mM [Ru(bpb)NO]2O in DMF containing 0.1 
M NBu4PF6. Scan rate = 0.2 V/s. 

 

 

The peak separation (ΔE = Epa-Epc) is 132 mV.  We thus represent this first reduction 

by equation (2.3). 

 

[Ru(bpb)(NO)]2(µ-O)     
+ e

_

- e
_     {[Ru(bpb)(NO)]2(µ-O)}1-       (2.3) 
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The compound also undergoes a second, but irreversible, reduction at Ep
2= –

1.63 V (not shown).  Analysis of the peak geometry indicates that the overall process 

consists of a reversible electron transfer followed by a fast chemical (decomposition) 

reaction, i.e., equations (2.4) and (2.5). 

 

{[Ru(bpb)(NO)]2(µ-O)}1-        
+ e

_

- e
_     {[Ru(bpb)(NO)]2(µ-O)}2-      (2.4) 

 

{[Ru(bpb)(NO)]2(µ-O)}2-        decomposition          (2.5)  

 

 Interestingly, a similar pattern of reductions has been reported for the oxo-

bridged ruthenium complexes {[RuX(bpy)2]2(µ-O)}2+ (X = Cl or NO2) in acetonitrile 

vs. SCE (E°/ = –0.32 V and –0.15 V, respectively; Ep2 = –1.0 V and –0.75 V, 

respectively).26  As seen in Figures 2.2 and 2.3, the large negative shifts of the 

reductions of [Ru(bpb)(NO)]2(µ-O) (υNO = 1758 cm-1) compared with those of the 

precursor compound Ru(bpb)(NO)Cl (υNO = 1867 cm-1), by ~0.8-1.0 V,  

 are consistent with the greater electron density in the oxo-bridged compound. 

 

2.4 Conclusion 

 In this chapter we reported the preparation of the oxo-bridged dimer 

[Ru(bpb)(NO]2(µ-O) in 60% isolated yield from the reaction of the known 
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Ru(bpb)(NO)Cl with silver nitrite.  The compound exhibits a υNO of 1758 cm-1 (KBr 

pellet).   The crystal structure reveals a linear ON-Ru-O-Ru-NO fragment with the 

oxo atom serving as an inversion center in the molecule.  The redox behavior in DMF 

is characterized by a reversible reduction followed by a second but irreversible 

reduction in this solvent.  
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Chapter 3. Synthesis, Molecular Structures, and Fiber-optic Infrared 
                   Spectroelectrochemical Studies of Six-Coordinate  
                   Manganese Nitrosyl Porphyrins∗ 
 

3.1 Introduction 

 As mentioned in Chapter 1, the biological role of nitric oxide (NO) is tied in 

with its interactions with iron center in heme-containing biomolecules.1  For example, 

the receptor for NO in smooth muscles is the heme-containing enzyme soluble 

guanylyl cyclase (sGC), and this enzyme contains histidine as an axial ligand to iron.  

NO binds to the ferrous heme site in sGC to give a six-coordinate (por)Fe(NO)(His) 

complex that converts rapidly to a five-coordinate (por)Fe(NO) species.2-5  The 

binding of NO to the heme iron in sGC has been correlated with activation of this 

enzyme, resulting in the formation of cyclic guanosine monophosphate (cGMP) from 

guanosine triphosphate (GTP).  The accumulation of cGMP is associated with 

vasodilation.  Other histidine-liganded hemes also form adducts with NO, and these 

include hemoglobin (Hb), myoglobin (Mb), cytochrome oxidase, nitrophorins, FixL, 

and nitrite reductase.1  In many cases, the binding of NO has been shown to be 

biologically relevant.   

 ------------------------------------------------------------------------------------------------------ 
∗ Taken in part from;  
i-“Synthesis, Characterization, and Molecular Structures of Six-Coordinate Manganese Nitrosyl 
Porphyrins” Zahran Z. N.; Lee J.; Alguindigue S. S.; Khan M. A.; Richter-Addo G. B. Dalton Trans. 
2004, 44–50, with permission from Elsevier. 
ii- “Fiber-optic Infrared Spectroelectrochemical Studies of Six-coordinate Manganese Nitrosyl 
Porphyrins in Nonaqueous Media” Zahran Z. N.; Shaw M.; Khan M. A.; Richter-Addo G. B. Inorg. 
Chem. 2006, 45, 2661-2668, with permission from The American Chemical Society. 
iii-“Specific detection of gaseous NO and 15NO in headspace from liquid-phase reactions involving 
NO-generating organic, inorganic, and biochemical samples using a mid-infrared laser” Yi J.; Namjou 
K.; Zahran Z. N.; McCann P. J.; Richter-Addo G. B. Nitric Oxide 2006, 15, 154-162, with permission 
from Elsevier. 
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 NO binds to both ferric and ferrous hemes, although NO binding to ferric 

hemes is weaker than that for ferrous hemes.6  The biological relevance of NO 

binding to ferric heme is best exemplified by ferric nitrophorins from the kissing bug 

Rhodnius prolixus.7  The nitrophorins are ferric heme proteins contained in the saliva 

of the insect, and the hemes bind NO.  When the insect bites the host, NO is released 

from the ferric nitrosyl nitrophorins, resulting in local vasodilation which ensures that 

the insect obtains a sufficient blood meal.   

Efforts to study well-characterized six-coordinate ferric nitrosyl porphyrins 

have been hampered by the fact that they are difficult to obtain pure, and only a few 

have been obtained in sufficient quantities for detailed spectroscopic and 

crystallographic studies.8  Such ferric nitrosyl porphyrins belong to the {MNO}6 class 

as defined by Enemark and Feltham.9-11  

 We are interested in the study of manganese nitrosyl porphyrins belonging to 

the {MnNO}6 classification.  These are isoelectronic with their ferric nitrosyl and d6 

ferrous carbonyl FeCO counterparts. NO binding to manganese-substituted heme 

provides a possible scenario in which the strong Mn-NO bond formed between NO 

and MnII will effectively mimic the labile Fe-NO bond formed between NO and ferric 

FeIII ion (which is isoelectronic with MnII).  Manganese-substituted hemoproteins 

containing NO continue to provide very valuable information to complement that 

obtained from their isoelectronic and biologically relevant FeCO analogues.  

Examples of such Mn-substituted nitrosyl complexes include those of Hb, Mb, sGC, 

neuronal nitric oxide synthase (nNOS), cytochrome c, and peroxidases.4,12-15 

MnHbNO and MnMbNO have been prepared as spectroscopic models for their EPR-
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silent Fe-CO analogues.16-18  The MnHbNO derivative was shown to behave similarly 

to native HbCO in terms of ligand rebinding kinetics and cooperativity.19  In the case 

of Mn-substituted sGC, binding of NO generated a six-coordinate 

(porphyrinato)Mn(NO)(His) species that did not activate the enzyme.4  Other 

manganese hemes have been prepared for NO-sensing20-22 and for peroxynitrite 

decomposition.23,24 

 Prior to our work in this area, there were only two X-ray crystal structures of 

manganese nitrosyl porphyrins, namely those of (TTP)Mn(NO) and (TPP)Mn(NO)(4-

Mepip).25  In order to better understand the nature of binding of NO to manganese 

porphyrins and to determine the nature of the trans effect of the bound NO ligand in 

these complexes, we prepared a new set of synthetic manganese nitrosyl porphyrin 

complexes containing methanol, and N-donor ligands.  In this chapter, we report their 

syntheses and structural characterization by spectroscopy and high resolution X-ray 

crystallography.  

We were also interested in examining the redox properties of the six-

coordinate (por)Mn(NO)(1-MeIm) compounds containing the axial imidazole group.  

To the best of our knowledge, only one other electrochemical study of MnNO 

porphyrins was reported prior to our work, that of the five-coordinate 

(TPP)Mn(NO).26 The electrochemistry of non-NO-containing manganese porphyrins 

is well developed.27-29  In this chapter, we also report the redox behavior of three 

(por)Mn(NO)(1-MeIm) (por = TPP, TTP, T(p-OCH3)PP)) compounds in CH2Cl2 and 

THF as determined by cyclic voltammetry, infrared spectroelectrochemistry, and bulk 

electrolysis.  
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A structural representation of the new complexes is given in Figure 3.1. 
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Figure 3.1. Structural representation of the new (por)Mn(NO)(L) complexes 
                    X = H, L =  1-Methylimidazole or piperidine     
                    X = CH3, L= 1-Methylimidazole, piperidine, or MeOH 
                    X = OCH3, L = 1-Methylimidazole or piperidine 

 

3.2 Experimental Section 

 All reactions were performed under an atmosphere of prepurified nitrogen 

using standard Schlenk glassware and/or in an Innovative Technology Labmaster 100 

Dry Box.  Solutions for spectral studies were also prepared under a nitrogen 

atmosphere.  The toluene, CH2Cl2, and THF solvents were distilled from calcium 

hydride under nitrogen gas just prior to use. 

3.2.1 Chemicals.  H2TPP (TPP = 5,10,15,20-tetraphenylporphyrinato 

dianion), H2TTP (TTP = 5,10,15,20-tetra-p-tolylporphyrinato dianion), H2(T(p-

OCH3)PP (T(p-OCH3)PP =  5,10,15,20-tetra-p-methoxyphenylporphyrinato dianion), 

(TPP)MnCl, (TTP)MnCl, (T(p-OCH3)PP)MnCl, and (TPP)Mn(1-MeIm) were 

prepared by literature methods.30,31  Pyrrole (98%), benzaldehyde (99%), p-

tolylaldehyde (97%), p-anisaldehyde (98%), piperidine (99.5+%), 1-methylimidazole 
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(1-MeIm, 99+%), anhydrous CH3OH (99.8%) and tetra-n-butylammonium 

hexafluorophosphate (NBu4PF6) were purchased from Aldrich Chemical Company 

and used as received.  Chloroform-d (99.8%) was obtained from Cambridge Isotope 

Laboratories.  Nitric oxide (98%, Matheson Gas) for the synthesis work was passed 

through KOH pellets and two cold traps (dry ice/acetone, -78 °C) to remove higher 

nitrogen oxides. Nitrogen of ultrahigh-purity grade was purchased from Trigas 

(Houston, TX). 

3.2.2 Instrumentation.  Infrared spectra were recorded on a Bio-Rad FT-155 

FTIR spectrometer.  Proton NMR spectra were obtained on Varian VXR-S 500 MHz 

or Varian Mercury VX 300 MHz spectrometers for low temperature and room 

temperature measurements, respectively, and the signals referenced to the residual 

signal of the solvent employed (CHCl3 at 7.24 ppm).  All coupling constants are in 

Hz.  ESI mass spectra were obtained on a Micromass Q-TOF mass spectrometer.  

Elemental analyses were performed by Atlantic Microlab, Norcross, Georgia.  

Electrochemical measurements were performed with a BAS CV-50W 

instrument.  IR spectra were recorded with a Bruker Vector 22 FTIR spectrometer 

equipped with a mid-IR fiber-optic dip probe system and a liquid-nitrogen cooled 

MCT detector (RemSpec corporation, Sturbride, MA, USA).  The stainless steel 

mirror of the fiber-optic dip probe system was replaced by a Pt disc (3 mm diameter) 

working electrode (Bioanalytical Systems).  The spectrometer was set to 4 cm-1 

resolution. Typically 16 scans from 2200−1000 cm-1 were recorded.   

The IR spectroelectrochemical measurements were performed in a three-

electrode cell as described previously (Pt working and auxiliary electrodes, Ag wire 
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quasi-reference electrode).32  The room temperature was 23±1 °C.  We jacketed the 

cell to allow for a dry ice-acetone bath (–78°C) for the low temperature 

measurements.   Potentials are reported versus the ferrocene-ferrocenium couple (~ 

+0.46 V vs. SCE).33  Corrections for iR drop between the working and reference 

electrodes were applied.  The solutions used were 0.5–1.0 mM in analyte in 10 mL of 

0.1 M NBu4PF6.  Nitrogen gas was bubbled through the solution for about 8 min 

before each set of measurements and was passed continuously over the surface of the 

solution during the measurements.  Each measurement was performed in triplicate or 

greater.  

 Nitric oxide detection was based on high-resolution tunable diode laser 

absorption spectroscopy (TDLAS). The experimental setup is shown in Fig. 3.2. The 

system consists of a cold head, optics and control electronics. The cold head, inside 

the cryostat housing, contains an infrared photovoltaic detector, a foil heater, a 

temperature sensor, and a mid- infrared tunable diode laser source emitting in the 

wavelength region around 5.2 µm. The optics consist of a gas cell and a series of 

plane and focusing mirrors for steering and collimating the infrared beam. Associated 

electronics include a laser current controller, a laser temperature controller, a lock-in 

amplifier, two waveform generators, and a computer. The present system employs a 

closed-cycle refrigerator system that cools the diode laser and detector to cryogenic 

temperatures with no need for liquid nitrogen refills. An auto-tuning temperature 

controller (LakeShore, OH), working in conjunction with cryo-cooler (IGC Polycold, 

CA), is used to maintain laser temperatures at set points between 85 and 110 K. The 

spectrometer takes advantage of a second harmonic detection scheme, and a 100-m 
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long optical multi-pass Herriott cell (Aerodyne, MA). 

 

 

Figure 3.2. Schematic diagram of the TDLAS instrument. Major components include 
a cryostat, Herriott multipass cell, electronics, and an integrated gas sampling 
interface. 
 

3.2.3 Preparation of (por)Mn(NO)(pip) compounds (por = TPP, TTP, T(p-

OCH3)PP).  A Schlenk flask was charged with (TTP)MnCl (0.035 g, 0.046 mmol), 

CH2Cl2 (8 mL), and piperidine (0.7 mL).  The mixture was stirred to generate a green 

solution, and NO gas was bubbled through the solution for 20 min.  [Note:  during 
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this time, an uncharacterized white gas was generated from solution]  The color of the 

reaction mixture turned bright red.  Nitrogen was bubbled through the solution for 5 

min to remove any unreacted NO and other gaseous products.  Anhydrous methanol 

(15 mL) was added to the solution, and the volume of the solution was reduced in 

vacuo until a solid precipitated.  The supernatant solution was discarded, and the red-

purple solid was dried in vacuo to give (TTP)Mn(NO)(pip).0.65CH2Cl2 (0.026 g, 

0.029 mmol, 63% isolated yield).  Anal. Calcd for C53H47N6O1Mn1.0.65CH2Cl2: C, 

72.07; H, 5.44; N, 9.40; Cl, 5.15.  Found: C, 71.78; H, 5.66; N, 9.53; Cl, 4.99.  IR 

(KBr, cm-1):  υNO = 1746 s; also 3022 w, 2935 w, 2920 w, 2859 w, 1533 m, 1503 m, 

1450 m, 1404 vw, 1346 m, 1305 w, 1268 vw, 1209 w, 1181 m, 1108 w, 1070 m, 1027 

vw, 1015 w, 1001 s, 871 w, 847 vw, 796 s, 718 m, 631 w, 552 vw, 522 m.  1H NMR 

(CDCl3; δ, ppm, –50 °C): 8.74 (s, 8H, pyrrole-H of TTP), 8.03 (d, J = 7, 4H, o-H of 

TTP), 7.99 (d, J = 7, 4H, o'-H of TTP), 7.52 (app t (overlapping d's), 8H, m/m'-H of 

TTP), 5.29 (s, CH2Cl2), 2.67 (s, 12H, CH3 of TTP), 0.15 (br d, 1H of pip), –0.40 (br d, 

2H of pip), –0.78 (br d, 1H of pip), –1.34 (br d, 2H of pip), –3.42 (app q, J = 13, 2H 

of pip), –3.76 (br d, 2H of pip), –5.48 (app t, J = 13, 1H of pip).  The peaks of 

piperidine ligand were not observed in the 1H NMR spectrum of the complex at room 

temperature.  ESI mass spectrum: m/z 723 [(TTP)Mn]+ (100%). 

   Attempts to obtain suitable crystals of this sample for a single-crystal X-ray 

structural determination have not been successful.  Unexpectedly, however, crystals 

grown by slow solvent evaporation of a CH2Cl2/CH3OH (2:1) solution mixture of 

(TTP)Mn(NO)(pip) under inert atmosphere were identified as 

(TTP)Mn(NO)(CH3OH) by X-ray crystallography.  The IR spectrum of 
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(TTP)Mn(NO)(CH3OH) (as a KBr pellet) showed a strong band at 1743 cm-1 assigned 

to υNO. 

The (TPP)Mn(NO)(pip) and (T(p-OCH3)PP)Mn(NO)(pip) compounds were 

prepared similarly from the reaction of (TPP)MnCl and (T(p-OCH3)PP)MnCl, 

respectively, with NO gas in the presence of piperidine.  The red (TPP)Mn(NO)(pip) 

product was obtained in 85 % isolated yield. IR (KBr, cm-1): υNO = 1744 s; also 3447 

w, 2938 w, 1598 m, 1534 vw, 1490 vw, 1441 m, 1347 m, 1303 vw, 1273 w, 1205 w, 

1175 vw, 1071 m, 1003 vs,  870 vw, 797 m, 752 s, 702 s, 667 w. 1H NMR (CDCl3; δ, 

ppm ): 8.71 (s, 8H, pyrrole-H of TPP), 8.16 (d, J = 7 Hz, 4H, o-H of TPP), 8.06 (d, J 

= 8 Hz, 4H, o’-H of TPP), 7.69–7.64 (overlapping m,  m-H and p-H of TPP).  The 

peaks of piperidine ligand were not observed in the 1H NMR spectrum of the complex 

at room temperature.  ESI mass spectrum: m/z 667.1 [(TPP)Mn]+ (100%). 

The red-purple (T(p-OCH3)PP)Mn(NO)(pip) product was obtained in 81% 

isolated yield.  IR (KBr, cm-1): υNO = 1748 s; also 3032 vw, 2997 vw, 2935 w, 2834 

w, 1608 m, 1574 vw, 1533 m, 1512 s, 1502 s, 1464 m, 1439 m, 1410 vw, 1347 m, 

1303 w, 1287 m, 1248 s, 1206 w, 1175 s, 1107 w, 1071 w, 1039 w, 1026 m, 1002 s, 

872 vw, 848 w, 803 s, 719 m, 637 vw, 632 vw, 607 m, 575 vw, 555 w, 538 m. 1H 

NMR (CDCl3; δ, ppm, –50 °C): 8.73 (s, 8H, pyrrole-H of T(p-OCH3)PP), 8.04 (d, J = 

8, 4H, o-H of T(p-OCH3)PP), 8.01 (d, J = 8, 4H, o'-H of T(p-OCH3)PP), 7.22 (br 

(overlapping with CHCl3 peak), 8H, m/m'-H of T(p-OCH3)PP), 5.29 (s, CH2Cl2), 4.07 

(s, 12H, OCH3 of T(p-OCH3)PP), 0.12 (br d, 1H of pip), –0.43 (br d, 2H of pip), –

0.80 (br d, 1H of pip), –1.36 (br d, 2H of pip), –3.46 (app q, J = 13, 2H of pip), –3.79 

(br d, 2H of pip), –5.50 (app t, J = 13, 1H of pip).  The peaks of piperidine ligand 
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were not observed in the 1H NMR spectrum of the complex at room temperature.  ESI 

mass spectrum: m/z 787 [(T(p-OCH3)PP)Mn]+ (100%). 

3.2.4 Preparation of (por)Mn(NO)(1-MeIm) compounds (por =  TPP, TTP, 

T(p- CH3)PP).  To a stirred CH2Cl2 solution  (8 mL) of 

(TTP)Mn(NO)(pip).0.65CH2Cl2 (0.020 g, 0.022 mmol) was added 1-MeIm (0.01 mL).  

The mixture was stirred for 5 h.  The solvent was removed in vacuo, and the residue 

was redissolved in a CH2Cl2/CH3OH (1:1, 10 mL) mixture.  To this solution was 

added 1-MeIm (0.1 mL).  Slow evaporation of this solution at room temperature 

under inert atmosphere gave spectroscopically pure (TTP)Mn(NO)(1-MeIm) (0.012 

g, 0.014 mmol, 64% isolated yield) as purple crystals.  IR (KBr, cm-1): υNO = 1738 s, 

1732 s; also 3128 vw, 3019 vw, 2952 vw, 2918 vw, 2866 vw, 1532 w, 1506 m, 1457 

vw, 1347 m, 1304 vw, 1284 vw, 1233 w, 1209 w, 1181 m, 1108 m, 1081 w, 1071 m, 

1001 s, 943 vw, 908 vw, 846 vw, 796 s, 731 w, 719 m, 670 vw, 660 vw, 628 vw, 615 

vw, 523 m.  1H NMR (CDCl3; δ, ppm): 8.69 (s, 8H, pyrrole-H of TTP), 8.07 (d, J = 7, 

4H, o-H of TTP), 7.90 (d, J = 7, 4H, o'-H of TTP), 7.50 (d, J = 7, 4H, m-H of TTP), 

7.44 (d, J = 7, 4H, m'-H of TTP), 2.67 (s, 12H, CH3 of TTP).  The peaks of the 1-

MeIm ligand were not observed at room temperature.  1H NMR (CDCl3; δ, ppm, -40 

°C): 8.69 (s, 8H, pyrrole-H of TTP), 8.04 (d, J = 7, 4H, o-H of TTP), 7.91 (d, J = 7, 

4H, o'-H of TTP), 7.50 (d, J = 7, 4H, m-H of TTP), 7.45 (d, J = 7, 4H, m'-H of TTP), 

4.60 (s, 1H of 1-MeIm), 2.66 (s, 12H, CH3 of TTP), 2.06 (s, 3H, CH3 of 1-MeIm), 

1.17 (s, 1H of 1-MeIm), 0.73 (s, 1H of 1-MeIm).  ESI mass spectrum: m/z  805 

[(TTP)Mn(1-MeIm)]+ (57%), 723 [(TTP)Mn]+ (100%). 
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The red (TPP)Mn(NO)(1-MeIm) compound was prepared in 80% isolated 

yield by similar procedures.  IR (KBr, cm-1): υNO = 1737s; also 3122vw, 3030vw, 

2994vw, 2952vw, 2930vw, 2900vw, 2865vw, 1686vw, 1655vw, 1637vw, 1596w, 

1533w, 1489vw, 1440w, 1420vw, 1365vw, 1348s, 1284vw, 1231w, 1204w, 1176w, 

1070s, 1003s, 796s, 752s, 703s, 663w, 614vw, 526vw, 453vw.  1H NMR (CDCl3; δ, 

ppm ): 8.67 (s, 8H, pyrrole-H of TPP), 8.20 (d, J = 7 Hz, 4H, o-H of TPP), 8.01 (d, J 

= 8 Hz, 4H, o’-H of TPP), 7.68–7.64 (overlapping m,  m-H and p-H of TPP).  The 

peaks of the 1-MeIm ligand were not observed in the spectrum at room temperature.  

ESI mass spectrum: m/z 667.2 [(TPP)Mn]+ (68.8%), 749.2 [(TPP)Mn(1-MeIm)]+ 

(100%).  The (por)Mn(NO)(1-MeIm) complexes are stable in the solid state in air for 

at least 1 week (as judged by IR and 1H NMR spectroscopy). Suitable crystals for X-

ray crystallography were grown by slow evaporation of a CH2Cl2/toluene (2:1) 

solution of the compound containing 1-MeIm at room temperature under inert 

atmosphere. 

The purple (T(p-OCH3)PP)Mn(NO)(1-MeIm) compound was obtained in 77% 

isolated yield after recrystallization from CH2Cl2/CH3OH (2:1) in the presence of 

excess 1-MeIm at room temperature under inert atmosphere.  IR (KBr, cm-1): υNO = 

1736 s; also 3128 vw, 3033 vw, 2998 vw, 2958 vw, 2934 vw, 2906 vw, 2833 vw, 

1606 m, 1533 w, 1501 s, 1466 w, 1460 w, 1439 w, 1346 m, 1303 vw, 1285 m, 1247 s, 

1205 vw, 1177 s, 1108 w, 1089 vw, 1073 vw, 1037 vw, 1024 w, 1001 s, 849 vw, 808 

m, 799 m, 735 w, 719 w, 670 vw, 662 vw, 607 w, 582 vw, 540 w. 1H NMR (CDCl3; 

δ, ppm): 8.69 (s, 8H, pyrrole-H of T(p-OCH3)PP), 8.08 (dd, J = 8.4/2.1, 4H, o-H of 

T(p-OCH3)PP), 7.91 (dd, J = 8.4/2.1, 4H, o'-H of T(p-OCH3)PP), 7.22 (dd 
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(overlapping with CHCl3 peak), 4H, m-H of T(p-OCH3)PP), 7.17 (dd, J = 8.4/2.1, 4H, 

m'-H of T(p-OCH3)PP), 4.06 (s, 12H, OCH3 of T(p-OCH3)PP). The peaks of the 1-

MeIm ligand were not observed at room temperature. 1H NMR (CDCl3; δ, ppm, -40 

°C): 8.70 (s, 8H, pyrrole-H of T(p-OCH3)PP), 8.07 (dd, J = 8/2, 4H, o-H of T(p-

OCH3)PP), 7.93 (dd, J = 8/2, 4H, o'-H of T(p-OCH3)PP), 7.22 (dd (overlapping with 

CHCl3 peak), 4H, m-H of T(p-OCH3)PP), 7.18 (dd, J = 8/2, 4H, m'-H of T(p-

OCH3)PP), 4.60 (s, 1H of 1-MeIm), 4.06 (s, 12H, OCH3 of T(p-OCH3)PP), 2.07 (s, 

3H, CH3 of 1-MeIm), 1.15 (s, 1H of 1-MeIm), 0.72 (s, 1H of 1-MeIm). ESI mass 

spectrum: m/z 787 [(T(p-OCH3)PP)Mn]+ (100%).  

 3.2.5 Structural determinations by X–ray crystallography.  X-ray data were 

collected on a Bruker Apex diffractometer using MoKα (λ = 0.71073 Å) radiation.  

The structures were solved by the direct method using the SHELXTL system 

(Version 6.12; 1997) and refined by full-matrix least squares on F2 using all 

reflections.  All the non-hydrogen atoms were refined anisotropically.  All the 

hydrogen atoms were included with idealized parameters.  

(i) (TTP)Mn(NO)(CH3OH). Crystals for X-ray crystallography were grown 

during an attempt at crystallizing (TTP)Mn(NO)(pip) using CH2Cl2/CH3OH.  X-ray 

diffraction intensity data, which approximately covered the full sphere of the 

reciprocal space, were measured as a series of ω oscillation frames each 0.3º for 21 

sec/frame.  The detector was operated in 512 x 512 mode and was positioned 6.00 cm 

from the crystal.  Coverage of unique data was 99.0% complete to 54º(2θ).  Cell 

parameters were determined from a non-linear least squares fit of 7582 reflections in 

the range of 2.8< θ < 25.9º.  A total of 37158 reflections were measured.  The data 
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were corrected for absorption by multi-scan method from equivalent reflections 

giving minimum and maximum transmissions of 0.9193 and 0.9403.  The asymmetric 

unit contains one and half units of the C49H40N5O2Mn complex (with the Mn(2) atom 

situated very near the inversion center) and fractional amounts of dichloromethane 

(0.2) and methanol (1.15) solvent molecules.   SHELXTL restraints of DFIX and 

ISOR were applied to the atoms belonging to the disordered axial group and the 

solvent molecules to achieve convergence during least squares refinement.  The final 

R1 = 0.067 is based on 12836 “observed reflections” [I > 2σ(I)], and wR2  = 0.178 is 

based on all reflections (13303 reflections). 

(ii) (TTP)Mn(NO)(1-MeIm).0.28CH2Cl2. Suitable crystals for X-ray 

crystallography were grown by slow evaporation of CH2Cl2/CH3OH (1:1) solution of 

the compound containing 1-MeIm at room temperature under inert atmosphere.  

Coverage of unique data was 99.1% complete to 53º(2θ).  Cell parameters were 

determined from a non-linear least squares fit of 8729 reflections in the range of 3.6 < 

θ < 26.2º.  A total of 13983 reflections were measured.  The data were corrected for 

absorption by multi-scan method from equivalent reflections giving minimum and 

maximum transmissions of 0.8602 and 0.9036.  The asymmetric unit contains one 

and half units of the C52H42N7OMn complex (with the Mn(2) atom situated very near 

the inversion center) and fractional dichloromethane solvent molecules.  The unit of 

the C52H42N7OMn complex that lies at the inversion center is disordered at the axial 

sites.  The N(10) atom from the NO group lies very close to the N(11) atom of the 1-

methylimidazole ligand.  As a result, the refinement of the positional and thermal 

parameters is compromised.  The Mn-N-O angles and N-O bond distances in the two 
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molecules are significantly different.  However, in view of the axial disorder in the 

disordered molecule, it is not possible to ascertain whether these differences in bond 

angles and bond lengths are real or an artifact of the poor refinement due to the 

disorder.  SHELXTL restraints of DFIX, ISOR and EADP were applied to achieve 

convergence during least squares refinement (the disordered NO group in the 

molecule #2 was allowed to refine without any restraints).  The final R1 = 0.078 is 

based on 13129 “observed reflections” [I > 2σ(I)], and wR2  = 0.222 is based on all 

reflections (13983 reflections).  

(iii) (TPP)Mn(NO)(1-MeIm).2.5toluene.  Suitable crystals for X-ray 

crystallography were grown by slow evaporation of a CH2Cl2/toluene (2:1) solution of 

the compound containing 1-MeIm at room temperature under inert atmosphere.  X-

ray data were collected at 120(2) K.  Intensity data, which approximately covered the 

full sphere of the reciprocal space, were measured as a series of ω oscillation frames 

each 0.3° for 21 sec/frame.  The detector was operated in 512 x 512 mode and was 

positioned 6.12 cm from the crystal.  Coverage of unique data was 94.5 % complete 

to 53.0°(2θ).  Cell parameters were determined from a non-linear least squares fit of 

6715 reflections in the range of 2.5 < θ < 28.2°.  A total of 30030 reflections were 

measured. All the non-hydrogen atoms were refined anisotropically.  All the 

hydrogen atoms were included with idealized parameters.  The asymmetric unit 

contains one C48H34MnN7O molecule and 2.5 toluene solvent molecules which sit on 

the crystallographic two-fold axis.  The final R1 = 0.0448 is based on 10214 

“observed reflections” [I > 2σ(I)].  
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(iv) (T(p-OCH3)PP)Mn(NO)(1-MeIm).CH2Cl2.  Suitable crystals for X-ray 

crystallography were grown by slow evaporation of CH2Cl2/CH3OH (2:1) solution of 

the compound containing 1-MeIm at room temperature under inert atmosphere.  

Coverage of unique data was 98.4% complete to 50º(2θ).  Cell parameters were 

determined from a non-linear least squares fit of 7823 reflections in the range of 3.2 < 

θ < 24.4º.  A total of 23420 reflections were measured.  The data were corrected for 

absorption by multi-scan method from equivalent reflections giving minimum and 

maximum transmissions of 0.9223 and 0.9820.  An initial data set was collected at 

100(2) K and yielded poor refinement.  Better data were obtained at 178(2) K, 

showing much sharper spots on the frames.  There is a highly disordered CH2Cl2 

solvent molecule and some minor disorder involving the nitrosyl O(1) atom, the 

imidazole N(7) atom, and the C(27), C(34), C(41) and C(48) atoms of the porphyrin 

periphery.  The non-solvent atoms were refined without resolving into their 

disordered components due to the very close proximity of these components.  The 

overall geometry of the molecule of interest is sound.  SHELXTL restraints of DFIX, 

ISOR and SADI were applied to the atoms belonging to the disordered solvent 

molecule to achieve convergence during least squares refinement.  The final R1 = 

0.075 is based on 4461 “observed reflections” [I > 2σ(I)], and wR2  = 0.1896 is based 

on all reflections (8054 unique reflections). The data fit well for a triclinic cell (Rint = 

0.07); the Laue symmetry is 1-bar.  

Displacement ellipsoids in Figures 3.3-3.6 are drawn at the 35% probability 

level.  Details of the crystal data and refinement are given in Table 3.1. Some selected 

bond lengths and angles are given in Table 3.2. Details of bond lengths and angles for  
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Table 3.1 Crystal Data and Structure Refinement of (TTP)Mn(NO)(CH3OH) (1), 
(TTP)Mn(NO)(1-MeIm).0.28CH2Cl2 (2), (TPP)Mn(NO)(1-MeIm).2.5toluene (3), and 
(T(p-OCH3)PP)Mn(NO)(1-MeIm).CH2Cl2 (4). 

  
a R1 = ∑||Fo| - |Fc||/∑|Fo|.   b wR2 = {∑[w(Fo

2 - Fc
2)2]/∑[wFo

4]}1/2 
 

Compound 1 2 3 4 
Formula  C49.90H43.33Cl0.27N5O2.77 

Mn  
C52.28H42.56Cl0.56NO 
Mn   

C65.50H53.50N7O 
Mn 

C53H44Cl2N
7O5 

Mn   
Fw 821.69 859.65 1009.59 984.79 
T (K) 96(2) 120(2) 120(2) 178(2) 
Crystal system Triclinic Triclinic Triclinic Triclinic 
Space group P1

_

 P1

_

 P1

_

 P1

_

 
a (Å), α (°) 11.3170(6), 97.9110(10) 14.9067(8), 

104.7090(10) 
9.8071(7), 
105.277(1) 

12.1992(16), 
90.136(2) 

b (Å), β (°) 12.3768(7), 102.9260(10) 15.0365(8), 
90.8320(10) 

13.0989(9), 
97.316(1) 

12.7458(17), 
90.287(2) 

c (Å), γ (°) 23.0336(12), 97.0580(10) 15.8656(9), 
97.3400(10) 

21.4652(15), 
98.166(1) 

15.151(2), 
99.228(2) 

V,  Z 3074.9(3) Å3, 3 3407.4(3) Å3, 3 2593.6(3) Å3, 2 2325.3(5) 
Å3, 2 

D(calcd), g/cm3  1.331 1.257 1.293 1.407 
Abs coeff, mm-1  0.389 0.370 0.307 0.457 
F(000) 1288 1343 1057 1020 
Crystal size (mm) 0.22 x0.18 x 0.16 0.42 x0.38 x 0.28 0.28 x0.12 x 0.04 0.18 x 0.04x 

0.04 
θ range for data 
collection (°) 

1.68–27.00 1.84–26.50 1.66–28.26° 1.62–25.00 

Index ranges –14 ≤ h ≤ 14, –15 ≤ k ≤ 
15, –29 ≤ l ≤ 29  

–18 ≤ h ≤ 18, –18 ≤ k 
≤ 18, –19 ≤ l ≤ 19  

–13 ≤ h ≤12, –17 ≤ 
k ≤17, –28 ≤ l ≤ 27 

–14 ≤ h ≤ 14, 
–14 ≤ k ≤ 15,  
–17 ≤ l ≤ 17  

Reflns. collected 37158 36783 30030 23420 
Independent reflns 13303 [Rint = 0.0162] 13983 [Rint = 

0.0198] 
12135 [Rint = 
0.0195] 

8054 [Rint = 
0.0715] 

Max and min 
transmission 

0.9403 and 
 0.9193 

0.9036 and 
 0.8602 

0.9878 and 
 0.9191 

0.9820 and 
 0.9223 

Data/restraints/ 
parameters 

13303 / 124 / 916 13983 / 69 / 948 12135 / 0 / 680 8054 / 63 / 
672 

Good-of-fit on F2 1.127 1.193 1.053 1.004 
Final R indices 
[I>2σ(I)]a,b 

R1 = 0.0670, wR2 = 
0.1769 

R1 = 0.0780, wR2 = 
0.2205 

R1 = 0.0448, wR2 = 
0.1202 

R1 = 0.0750, 
wR2 = 
0.1721 

R indices (all 
data)a,b 

R1 = 0.0685, wR2 = 
0.1778 

R1 = 0.0811, wR2 = 
0.2220 

R1 = 0.0550, wR2 = 
0.1303 

R1 = 0.1437, 
wR2 = 
0.1896 

Largest diff. peak 
and hole, eÅ-3 

1.311 and –0.776 1.257 and –0.592 1.099 and –0.426 1.190 and –
0.458 
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the four compounds are presented in Tables 3.6-3.13 in the appendix at the end of this 

dissertation. 

 

3.3 Results and Discussion  

 3.3.1 Synthesis and spectroscopic characterization.  The synthesis and 

chemistry of manganese- and other metalloporphyrin nitrosyl complexes has been 

reviewed.1  Scheidt and coworkers showed, over thirty years ago, that reductive 

nitrosylation of manganese (III) porphyrins took place in the presence of aliphatic 

amines to generate manganese nitrosyl porphyrins.34,35  We have used similar 

methodology for the preparation of (TTP)Mn(NO)(pip),  (TPP)Mn(NO)(pip), and 

(T(p-OCH3)PP)Mn(NO)(pip) in 65%, 85%, and 81% isolated yields, respectively (eq. 

3.1). 

 

(por)MnCl  +  xs NO  + pip  →   (por)Mn(NO)(pip)       (3.1) 

(por = TTP, TPP, or T(p-OCH3)PP; pip = piperidine) 

 

These red-purple complexes are soluble in CH2Cl2, CHCl3, and acetone, but 

are only slightly soluble in hexane and methanol.  The complexes are moderately 

stable in air in the solid state, showing no noticeable signs of decomposition over a 

one month period as judged by IR and 1H NMR spectroscopy.  Their solutions, 

however, are air-sensitive.  
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 The IR spectra of the (por)Mn(NO)(pip) complexes (as KBr pellets) show 

new strong bands at 1746 cm-1 (for TTP), 1744 cm-1 (for TPP), and 1748 cm-1 (for 

(T(p-OCH3)PP), respectively, which are attributed to the terminal NO ligands.  These 

bands are similar to that reported for the crystallographically characterized 

(TPP)Mn(NO)(4-Mepip) compound (υNO 1740 cm-1) that exhibits a linear NO 

geometry.34,35  Although the (por)Mn(NO)(pip) compounds are isoelectronic with 

their ferric-NO counterparts, the υNOs of the manganese compounds are significantly 

lower than those of the isolable ferric [(por)Fe(NO)(N-base)]+ complexes (υNO 1894-

1921 cm-1) reported by Scheidt and Ellison.36  Parthasarathi and Spiro have suggested, 

based on resonance Raman studies, that there is reduced metal→NO backbonding in 

FeIII-NO compared with MnII-NO due to the higher effective charge on iron in FeIII-

NO.16  Clearly, such an effect is responsible for the differences in the observed NO 

stretching frequencies between the Mn and Fe compounds.  We have not been able to 

observe the parent ions of the (por)Mn(NO)(pip) compounds in their ESI mass 

spectra; the spectra show ion fragments due to loss of both axial ligands.  Attempts to 

grow crystals of the (TTP)Mn(NO)(pip) complex from dichloromethane/methanol 

resulted in the replacement of the piperidine ligand with methanol solvent to give 

(TTP)Mn(NO)(CH3OH) (υNO 1743 cm-1), as determined from the X-ray crystal 

structure of the crystallization product (see later). 

 The (TTP)Mn(NO)(1-MeIm), (TPP)Mn(NO)(1-MeIm) and (T(p-

OCH3)PP)Mn(NO)(1-MeIm) derivatives were prepared in 62%, 80%, and 77% 

isolated yields, respectively, from the reaction of their piperidine precursors with an 

excess of 1-MeIm in CH2Cl2 (eq. 3.2).  
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(por)Mn(NO)(pip)  +  1-MeIm   →   (por)Mn(NO)(1-MeIm) +  pip     (3.2) 

 

Prior to this work, the (por)Mn(NO)(imidazole) compounds reported in the literature 

were prepared in situ from exposure of NO to solutions of MnII-porphyrins containing 

an excess of the imidazole ligand, and the success of this synthetic procedure was 

very limited.16,37  We find that the preparative route described by eq. 3.2 provides a 

convenient method by which pure samples of the nitrosyl products can be obtained in 

sizeable quantities. 

These products of eq. 3.2 are purple and have similar solubilities and 

stabilities as those of their piperidine precursors.  The IR spectra of the 

(por)Mn(NO)(1-MeIm) complexes (as KBr pellets) reveal bands at 1738/1732 cm-1 

(split band),  1737, and 1736 cm-1 for the TTP, TPP, and T(p-OCH3)PP derivatives, 

respectively, assignable to υNO.  The split υNO band of (TTP)Mn(NO)(1-MeIm) is 

likely due to the presence of two orientations of the 1-MeIm ligand in the bulk solid.  

In any event, the υNOs  in (por)Mn(NO)(1-MeIm) are ~ 12 cm-1 lower in energy than 

the υNOs of the precursor (por)Mn(NO)(pip) complexes.  This feature is consistent 

with the replacement of piperidine ligand with the π -interacting 1-MeIm ligand, 

which makes more electron density available for MnII→NO backdonation, resulting 

in the lowering of υNO.   

The low temperature 1H NMR spectra of the (por)Mn(NO(1-MeIm) 

complexes show, in addition to the peaks due to the porphyrin rings, the peaks of the 

bound 1-MeIm ligands.  The ESI mass spectrum of (TTP)Mn(NO)(1-MeIm) and 
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(TPP)Mn(NO)(1-MeIm) show ion fragments assigned to loss of the NO ligand or loss 

of both axial ligands, whereas that of (T(p-OCH3)PP)Mn(NO)(1-MeIm) shows ions 

fragments from loss of both axial ligands. 

3.3.2 X-ray Crystallographic Characterization.  We were successful in 

obtaining suitable crystals of (TTP)Mn(NO)(CH3OH), (TTP)Mn(NO)(1-MeIm), 

(TPP)Mn(NO)(1-MeIm), and (T(p-OCH3)PP)Mn(NO)(1-MeIm) for single-crystal X-

ray crystallography.  The molecular structures of the four compounds are shown in 

Figures 3.3-3.6.  Selected structural parameters for all four compounds are reported in 

Table 3.2. As stated in the Experimental Section, the asymmetric units in the crystals 

of (TTP)Mn(NO)(CH3OH) and (TTP)Mn(NO)(1-MeIm) contain one 

crystallographically ordered molecule and a second disordered molecule.  Only the 

more accurate data from the ordered components are discussed here. 

 The Mn-N-O moieties in all four complexes are linear, and this observed 

linearity is consistent with the classification of these (por)Mn(NO)(L) compounds as 

{MnNO}6 species.9-11  The axial Mn-N(O) bond length in (TTP)Mn(NO)(CH3OH) is 

1.680(2) Å, and the N-O bond length is 1.165(2) Å.  The Mn-N(por) distances fall in 

the 2.008(2)-2.032(2) Å range, and the Mn atom is displaced by 0.12 Å from the 24-

atom mean porphyrin plane toward the π-acid NO ligand.  The methanol ligand in 

(TTP)Mn(NO)(CH3OH) is oriented essentially between two porphyrin N-atoms (Fig. 

3.3b).  The Mn-O bond length is 2.086(2) Å and the Mn-O2-C49 angle is 124°.  The 

Mn-O bond length is shorter than those observed in other structurally characterized 

MnII and MnIII porphyrins containing alcohol ligands: [(TPP)Mn(CH3OH)2]ClO4 

(2.252(2) and 2.270 (2) Å),38 [(TPP)Mn(CH3OH)2]SbCl6 (2.283(5) Å),39 



 48 

(TPP)Mn(N3)(CH3OH) (2.329(7) Å),40 (P*)Mn(CH3OH)(OH) (2.251(7) Å; P* = D4 

symmetrical chiral porphyrin),41 (TCPP)Mn(CH3OH)(H2O) (2.246 Å; TCPP = 

tetracarboxyphenylporphyrin),42 and [(OEP)Mn(EtOH)]ClO4 (2.145(2) Å).43 

The axial Mn-N(O) bond lengths in the three (por)Mn(NO)(1-MeIm) 

complexes are 1.650(2)-1.645(3) Å and are similar to that observed previously in 

(TPP)Mn(NO)(4-Mepip) (1.644(5) Å)25,34 but are shorter than that determined for 

(TTP)Mn(NO)(CH3OH) (1.680(2) Å).  This feature is suggestive of greater Mn→NO 

π-backdonation in these (por)Mn(NO)(N-base) compounds.  The lower  υNO of the 1-

methylimidazole complexes compared with that of the methanol complex supports 

this view of a greater Mn→NO π-backdonation in (por)Mn(NO)(1-MeIm).  

Importantly, the axial trans Mn-N(imidazole) bond lengths of 2.096(2), 2.0882(13),  

and 2.097(3) Å for the (TTP)Mn(NO)(1-MeIm), (TPP)Mn(NO)(1-MeIm), and (T(p-

OCH3)Mn(NO)(1-MeIm) compounds, respectively, are shorter than that reported for 

the five-coordinate high-spin (TPP)Mn(1-MeIm) complex (2.192(2) Å)44 reflecting 

the influence of the strong field π-acid NO ligand on these trans Mn-N(imidazole) 

bond lengths.  A comparison of the structural data of the (por)Mn(NO)(1-MeIm) 

compounds with those of the previously reported and isoelectronic  [(OEP)Fe(NO)(1-

MeIm)]+ shows that in both classes of compounds, the metal-NO groups are linear.  

Furthermore, the Mn-N(O) bond lengths (1.645(3)-1.650(2) Å) are similar to that in 

[(OEP)Fe(NO)(1-MeIm)]+ (1.6465(17) Å) 36 although the N-O bond lengths in 

(por)Mn(NO)(1-MeIm) (1.174(3)-1.176(4) Å) are slightly longer than that observed 

in [(OEP)Fe(NO)(1-MeIm)]+ (1.135(2) Å). 
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Table 3.2  Selected Bond Lengths in (Å) and Angles in (°) of 
(TTP)Mn(NO)(CH3OH) (1), (TTP)Mn(NO)(1-MeIm) (2), (TPP)Mn(NO)(1-MeIm) 
(3), and (T(p-OCH3)PP)Mn(NO)(1-MeIm (4). 
 
Compound 1 2 3 4 

Mn-N(NO) (Å) 1.680(2) 1.650(2) 1.6411(13) 1.645(3) 

Mn-Xa (Å) 2.086(2) 2.096(2) 2.0882(13) 2.097(3) 

Mn-N(por) (Å) 2.001(1)-

2.032(2) 

2.023(2)-

2.029(2) 

2.019(1)-

2.080(12) 

2.015(3)-

2.097(3) 

N-O (Å) 1.165(2) 1.174(3) 1.1718(17) 1.176(4) 

Mn-N-O (°) 175.66(18) 176.6(2) 178.42(12) 178.3(3) 

X-Mn-N(NO) (°) 177.36(7) 176.76(11) 178.30(5) 179.31(13) 

a X = oxygen atom in compound (1) and nitrogen atom in all other compounds 
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Figure 3.3.  (a) Molecular structure of (TTP)Mn(NO)(CH3OH).  Only the 

crystallographically ordered molecule is shown.  (b) View of the 
orientation of the methanol ligand relative to the porphyrin skeleton.  
The porphyrin tolyl substituents have been omitted for clarity.   
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Figure 3.4. (a) Molecular structure of (TTP)Mn(NO)(1-MeIm).  Hydrogen atoms 

have been omitted for clarity.  Only the crystallographically ordered 
molecule is shown.  (b) View of the orientation of the 1-MeIm ligand 
relative to the porphyrin skeleton.  The porphyrin tolyl substituents 
have been omitted for clarity.   
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Figure 3.5.  (a) Molecular structure of (TPP)Mn(NO)(1-MeIm).  Hydrogen atoms 

have been omitted for clarity. (b) View of the orientation of the 1-
MeIm ligand relative to the porphyrin skeleton.  The porphyrin p-
phenyl substituents have been omitted for clarity.   
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Figure 3.6. (a) Molecular structure of (T(p-OCH3)PP)Mn(NO)(1-MeIm). 
Hydrogen atoms have been omitted for clarity.  (b) View of the 
orientation of the 1-MeIm ligand relative to the porphyrin skeleton.  
The porphyrin p-methoxyphenyl substituents have been omitted for 
clarity.   
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 3.3.3 Fiber-optic Infrared Spectroelectrochemical Studies of 

(por)Mn(NO)(1-MeIm) (por = TPP, TTP, and T(p-OCH3)PP) in Nonaqueous 

Media.  We have examined the electrochemical properties of the three compounds, 

(TPP)Mn(NO)(1-MeIm) , (TTP)Mn(NO)(1-MeIm), and (T(p-OMe)PP)Mn(NO)(1-

MeIm) at a platinum disc electrode in a typically non-coordinating solvent (CH2Cl2) 

and in a coordinating solvent (THF).  The electrochemical properties for the three 

compounds are similar within a given set of conditions of solvent and temperature.  

The data for (T(p-OCH3)PP)Mn(NO)(1-MeIm) will be described as a representative 

example. The data for the other two compounds are presented in Tables 3.3 and 3.4. 

We will consider oxidation processes first, followed by the reduction processes. 

(a) Oxidations.  The cyclic voltammogram of (T(p-OCH3)PP)Mn(NO)(1-

MeIm) at 100 mV s-1 in CH2Cl2/0.1M NBu4PF6 is shown in Figure 3.7.  The 

compound exhibits a chemically irreversible oxidation at Epa(1) = –0.15 V (peak 1 in 

Figure 3.7) vs the ferrocene-ferrocenium couple as an internal standard, and this 

oxidation has associated with it a small return reduction peak at –0.85 V (peak 1//) 

coupled with an anodic peak in a chemically reversible manner (not shown).  The 

analysis of the data for the second oxidation (Epa(2) = 0.66 V; peak 2) suggests that 

this process consists of a slow one-electron transfer followed by a rapid irreversible 

chemical reaction (see later). The third and fourth oxidations, represented by couples 

3/3/ (E°/(3) = 0.78 V) and 4/4/ (E°/(4) = 1.05 V) respectively, were chemically 

reversible.  In all cyclic voltammograms shown, the primed numbers (e.g., 3/) refer to 

the associated return peaks in reversible processes, whereas the double-primed 



 55 

numbers (e.g., 1//) refer to peaks associated with products from follow-up chemical 

reactions. 

 

 

Figure 3.7. Cyclic voltammogram of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in CH2Cl2 
at 23 ºC.  Conditions: 1 mM analyte, 100 mV/s, 0.1M NBu4PF6. 

 

 The first oxidation process is chemically irreversible even at higher scan rates 

up to 1.6 V/s; an analysis of the cyclic voltammograms as a function of scan rate and 

the geometry of the peak (|Epa(1)-Epa/2(1)| = 60 ± 10 mV) suggests an 

electrochemically reversible one-electron transfer followed by a fast irreversible 

chemical reaction (ErCi; see later).  To investigate the first oxidation process further, 

fiber-optic IR-potential step experiments were performed at room temperature where 

the electrode was held at the potential corresponding to the first oxidation peak for 70 

s while FTIR spectra were collected, and a cyclic voltammogram was recorded 

immediately after this period.  The difference IR spectrum, where the unoxidized 

(T(p-OCH3)PP)Mn(NO)(1-MeIm) was used as the background/reference is shown in 
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Figure 3.8a.  The data reveal a consumption of starting (T(p-OCH3)PP)Mn(NO)(1-

MeIm) near the electrode surface after the first oxidation, indicated by the loss of the 

NO stretching frequency at 1732 cm-1 (i.e., the negative peak in Figure 3.8a) without 

formation of a new nitrosyl-containing species.  

 Bulk electrolysis at the first oxidation potential was performed on (T(p-

OCH3)PP)Mn(NO)(1-MeIm), and IR and UV-vis spectra were collected during the 

electrolysis experiment (Figures 3.9a and 3.9b, respectively). Coulombic integration 

of one Faraday equivalent was obtained from the experiment for the first oxidation 

process.  The IR spectra in Figure 3.9a show the loss of NO from the compound 

(similar to that observed in Figure 3.8a), and the UV-vis spectra show the conversion 

to a MnIII species 28,45; the initial Soret band at λ 429 nm is converted into two split 

broad bands at 384 and 411 nm, and the Q band at 481 nm remains at the same 

position but becomes more intense.  This implies that the first oxidation results in a 

net formal oxidation at the metal center at the timescale of the bulk electrolysis with 

concomitant loss of NO, similar to that observed for (TPP)Mn(NO).  
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Figure 3.8. Difference IR spectra of (T(p-OCH3)PP)Mn(NO)(1-MeIm) and its 
products in CH2Cl2: (a) showing the consumption of starting (T(p-
OCH3)PP)Mn(NO)(1-MeIm) after the first oxidation without the 
formation of a new nitrosyl-containing species at 23 ºC, (b) showing 
the consumption of starting (T(p-OCH3)PP)Mn(NO)(1-MeIm) after 
the first oxidation with the concomitant formation of a new nitrosyl-
containing species at –78 ºC, and (c) showing the consumption of 
starting (T(p-OCH3)PP)Mn(NO)(1-MeIm) and the formation of  a new 
nitrosyl-containing species when the electrode potential is held at half 
of the peak reduction potential at 23 ºC. 
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Figure 3.9. Infrared (a) and UV-visible (b) spectra recorded during the bulk 
electrolysis (first oxidation) of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in 
CH2Cl2.  Conditions: 1 mM analyte, 0.29 V, 0.1M NBu4PF6.  The 
dotted line in (b) represents the spectrum of starting (T(p-
OCH3)PP)Mn(NO)(1-MeIm). 
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The low temperature (–78 °C) cyclic voltammogram of (T(p-

OCH3)PP)Mn(NO)(1-MeIm) in CH2Cl2 is shown in Figure 3.10, and it shows that the 

first oxidation process becomes chemically reversible (E°/(1) = –0.19 V) at low 

temperature.  The difference IR spectra obtained after the first oxidation is shown in 

Figure 3.8b (see Discussion).  The other chemically reversible oxidation peaks, at 

E°/(2) = 0.57 V (couple 7/7/) and E°/(3) = 0.91 V (couple 8/8/), are attributed to 

further oxidation of this cationic species at low temperature.  

 

 

Figure 3.10.  Cyclic voltammogram of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in CH2Cl2 
at –78 ºC.  Conditions: 1 mM analyte, 100 mV/s, 0.1M NBu4PF6. 

 

The cyclic voltammogram of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in the 

coordinating solvent THF  is shown in Figure 3.11.  The compound exhibits an 

irreversible oxidation (peak 1; Epa(1) = –0.05 V) in this solvent, similar to that seen in 

CH2Cl2.  Monitoring the first oxidation in THF by IR spectroelectrochemistry reveals 

the loss of the NO band at 1739 cm-1 due to (T(p-OCH3)PP)Mn(NO)(1-MeIm) 
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without build-up of a new NO-containing species (similar to that observed in Figure 

3.8a).  There is no significant difference in the electrochemistry of (T(p-

OCH3)PP)Mn(NO)(1-MeIm) in THF at –78 °C and at 23 °C.  

Tables 3.3-3.5 summarize the electrochemical data for the three 

(por)Mn(NO)(1-MeIm) compounds in both solvents.   

 

 

 

 

 
Figure 3.11.  Cyclic voltammogram of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in THF at 

23 ºC.  Conditions: 1 mM analyte, 100 mV/s, 0.1M NBu4PF6. 
 

 

 
 
 
 
 
 
 
 
 



 61 

Table 3.3.   Infrared (cm-1) and Electrochemical Data for the (por)Mn(NO)(1-MeIm) 
Compounds in CH2Cl2 at 23 °C.a   
 

  Oxidations 
 

Reductions 

Por υNO Epa(1) Epa(2) E°/(3) E°/(4)  Epc(5) E°/(6) 

TPP 1735 –0.12 0.70 0.89 1.10  –1.93 –2.11 

TTP 1731 –0.15 0.69 0.83 1.05  –1.95 –2.05 

T(p-OCH3)PP 1732 –0.15 0.66 0.78 1.05  –1.94 –2.02 

a  Potentials are in volts, and are referenced to the ferrocene-ferrocenium couple set at 
0.00 V.  Conditions:  1 mM analyte, 100 mV/s, 0.1 M NBu4PF6. 
 

 
Table 3.4.   Electrochemical Data for the (por)Mn(NO)(1-MeIm) Compounds in 
CH2Cl2 at –78 °C.a   
 

 Oxidations 
 

Reductions 

Por E°/(1) E°/(7) E°/(8)  Epc(5) E°/(6) 

TPP –0.15 0.94 1.22  –2.24 –2.32 

TTP –0.16 0.74 1.10  –2.20 –2.26 

T(p-OCH3)PP –0.19 0.57 0.91  –2.15 –2.20 

a  Potentials are in volts, and are referenced to the ferrocene-ferrocenium couple set at 
0.00 V.  Conditions:  1 mM analyte, 100 mV/s, 0.1 M NBu4PF6. 
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Table 3.5.   Infrared (cm-1) and Electrochemical Data for the (por)Mn(NO)(1-MeIm) 
Compounds in THF at 23 °C.a   
 

  Oxidation 
 

Reductions 

Por υNO Epa(1)  E°/(9) E°/(10) E°/(11) 

TPP 1741 –0.01  –1.74 –2.11 –2.59 

TTP 1740 –0.03  –1.73 –2.10 –2.59 

T(p-OCH3)PP 1739 –0.05  –1.74 –2.12 –2.60 

a  Potentials are in volts, and are referenced to the ferrocene-ferrocenium couple set at 
0.00 V.  Conditions:  1 mM analyte, 100 mV/s, 0.1 M NBu4PF6. 

 

(b) Reductions.  The reduction behavior of the (por)Mn(NO)(1-MeIm) 

compounds at low temperature were not different from those observed at room 

temperature.  The cyclic voltammogram of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in 

CH2Cl2 displays a chemically irreversible peak at –1.94 V (peak 5 in Figure 3.7) that 

has with it an associated small return peak at –1.25 V (labeled 5// in the Figure).  The 

ratio iPc(5)/υ1/2 increased linearly with increase in scan rate.  In addition, the peak 

geometry |Epc(5)–Epc1/2(5)| remained essentially constant at 62 mV over the potential 

scan range 50–1000 mV/s.  

The product of the first reduction of (T(p-OCH3)PP)Mn(NO)(1-MeIm) was 

examined by IR spectroelectrochemistry.  Figure 3.8c shows the difference IR 

spectrum when the electrode was held at the mid-point potential Epc/2(5).  The 

spectrum shows the presence of a new band that is shifted to a lower wavenumber by 

19 cm-1, assigned to the υNO of the monoanion [(T(p-OCH3)PP)Mn(NO)(1-MeIm)]- 
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(there is a slow loss of NO at this potential, however).  The other two 

(por)Mn(NO)(1-MeIm) compounds display similar υNO shifts (ΔυNO = 22 cm-1 for 

TPP, and 21 cm-1 for TTP).  

In THF, the compound shows a chemically reversible reduction with slow 

electron-transfer kinetics (Figure 3.11, peak 9; with an associated peak 9/), and two 

chemically reversible reductions (couples 10/10/ and 11/11/) on the cyclic 

voltammetry timescale.   

 (c) Discussion. As mentioned earlier, the electrochemical properties of the 

three (por)Mn(NO)(1-MeIm) complexes are similar.  Hence, the more general “por” 

macrocycle will be used in the equations described below.  The cyclic voltammogram 

of (T(p-OCH3)PP)Mn(NO)(1-MeIm) in CH2Cl2/[Bu4N]PF6 is shown in Figure 3.7, 

and the cyclic voltammograms of the (por)Mn(NO)(1-MeIm) compounds reveal an 

interesting comparison with that of (TPP)Mn(NO) in CH2Cl2/[Bu4N]ClO4 reported 

earlier by Kadish and coworkers.26  

(i) Oxidations.  The first oxidation of (T(p-OCH3)PP)Mn(NO)(1-MeIm) is 

irreversible, and the peak geometry indicates an ErCi mechanism for the first 

oxidation.  This peak geometry is similar to that determined for (TPP)Mn(NO)26 in 

which NO dissociation has been shown to occur after the first oxidation process.  The 

first oxidation of the related (TPP)Mn(NO)(1-MeIm) compound (–0.12 V; Table 3.3) 

occurs at a more negative potential than that required for the first oxidation of the 

five-coordinate (TPP)Mn(NO) (–0.01 vs Fc), and this is due to the destabilization of 

the Mn(II) formal oxidation state relative to the Mn(III) state in the six-coordinate 

(por)Mn(NO)(1-MeIm) compounds.  
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 Our IR spectroelectrochemical studies (Figure 3.8a) are consistent with the 

loss of the NO ligand after the first oxidation of (T(p-OCH3)PP)Mn(NO)(1-MeIm) 

without formation of a new NO-containing species. Further evidence of the loss of 

NO upon oxidation comes from the detection of NO gas in the headspace of  a 

CH2Cl2 solution of (TTP)Mn(NO)(1-MeIm) (1.7 mM) upon chemical oxidation using 

the TDLAS technique (Figure 3.12).46 
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Figure 3.12.  NO release from  (TTP)Mn(NO)(1-MeIm) (1.7 mM in CH2Cl2) after  
                      addition of AgBF4 (10 mM) at time t = ∼ 20 sec.  
 

Thus, we assign the first oxidation to the ErCi  process described by eqs 3.3 and 3.4. 

 

(por)Mn(NO)(1-MeIm)  -  e-      [(por)Mn(NO)(1-MeIm)]+      (3.3) 

[(por)Mn(NO)(1-MeIm)]+    [(por)MnIII(1-MeIm)]+ +  NO         (3.4) 
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Indeed, adding a sample of the known compound (TPP)Mn(1-MeIm)44,47 to 

the solution of (TPP)Mn(NO)(1-MeIm) during the cyclic voltammetry experiments 

resulted in an increase in the intensity of the redox couple at E°/ = –0.77 V associated 

with the 1//  peak in Figure 3.7 (i.e., eq  3.5), 

 

[(por)MnIII(1-MeIm)]+  +  e-       (por)MnII(1-MeIm)    (3.5) 

 

as expected if [(por)Mn(1-MeIm)]+ was indeed produced from eq 3.4.  The intensities 

of the peaks in Figure 3.7 associated with the second (peak 2), third (couple 3/3/), and 

fourth (couple 4/4/) oxidations also increased as well, suggesting that these further 

oxidations are due to electrogenerated [(por)Mn(1-MeIm)]+ or its products.  This 

Mn(III)/Mn(II) couple (eq 3.5) is similar to the Mn(III)/Mn(II) couple determined for 

(TPP)MnCl in CH2Cl2/[Bu4N]BF4 (–0.81 V) 48 and in CH2Cl2/[Bu4N]ClO4 (–

0.78V).26     

The irreversibility of peak 2 in Figure 3.7 suggests a loss of the axial 1-MeIm 

ligand after this second oxidation (eqs 3.6 and 3.7).  

 

[(por)MnIII(1-MeIm)]+   -   e-    [(por)MnIII(1-MeIm)]2+     (3.6) 

[(por)MnIII(1-MeIm)]2+       [(por)MnIII]2+     +  1-MeIm      (3.7) 

 

We note that the previously reported second (reversible) oxidation of the five-

coordinate (TPP)Mn(NO) compound (presumably the reversible oxidation of 

electrogenerated [(TPP)Mn]+)  is at E1/2 = 0.69 V (vs Fc),26 whereas the second 
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(irreversible) oxidation of (TPP)Mn(NO)(1-MeIm) is at Epa(2) =  0.70 V.  This 

difference is not unexpected, since the products of the first oxidation of 

(TPP)Mn(NO) and (TPP)Mn(NO)(1-MeIm) are different.  Indeed, this result is 

consistent with the presence of 1-MeIm in the latter compound making it easier to 

oxidize.                                                                                                         

The large difference between Epa(1) and Epa(2) is not inconsistent with a 

change from a metal-centered oxidation (Epa(1)) to a ring-centered oxidation (Epa(2)).  

The relatively smaller difference between the second and third oxidations (|E°/(3)-

Epa(2)| = 0.12 V), and the third and fourth oxidations (|E°/(4)-E°/(3)| = 0.27 V) 

suggests ring-centered redox processes.29 

 Rogers and Goff49 have examined the products of chemical and 

electrochemical oxidation of tetraarylporphyrin manganese complexes in CH2Cl2, 

and have proposed the formation of isoporphyrins from some highly oxidized 

(por)MnX compounds (por = TPP, TMP; X = Cl, OAc).  For example, a peak at +0.6 

V vs SCE in the room temperature cyclic voltammogram of (TPP)MnX was 

tentatively assigned to an isoporphyin derivative.  In the presence of 4-Mepy, 

however, the peak assigned to the isoporphyrin was not observed.49  We do not 

observe such a 0.6 V peak (0.14 V vs Fc) in our experiments involving the 

(por)Mn(NO)(1-MeIm) compounds on the cyclic voltammetry timescale, although we 

cannot rule out the formation of such species on longer experimental timescales.    

We focused on the identities of the products of the first oxidation processes 

for the (por)Mn(NO)(1-MeIm) compounds, and we were interested in stabilizing the 

first oxidation products at low temperature.  Our group have previously reported a 
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simple infrared reflectance spectroelectrochemical set-up for the study of short-lived 

species generated at the electrode surface.32  We have modified the glassware slightly 

to allow for jacketing of the cell compartment with a dry ice bath, and we have found 

this practical for low temperature infrared spectroelectrochemistry. 

The cyclic voltammogram of (T(p-OCH3)PP)Mn(NO) in CH2Cl2 at –78 °C is 

shown in Figure 3.10, reveals that the product of the first oxidation (eq 3.3) is indeed 

stabilized at low temperature.   

  

(por)Mn(NO)(1-MeIm)  -  e-      [(por)Mn(NO)(1-MeIm)]+    (3.3) 

 

Further evidence for a stable [(por)Mn(NO)(1-MeIm)]+ oxidation product 

from eq 3.3 comes from IR spectroelectrochemistry at –78 °C.  The difference IR 

spectrum upon oxidation of (T(p-OCH3)PP)Mn(NO)(1-MeIm) at –78 °C is shown in 

Figure 3.8b, and it reveals a new IR υNO band that is 100 cm-1 higher in energy than 

that of the parent compound.  Such a large shift in υNO is indicative of metal-NO-

centered oxidations in nitrosyl metalloporphyrins, although larger υNO shifts of 166-

187 cm-1 have been observed upon similar electrooxidations of some iron nitrosyl 

porphyrins;50 however, these latter cases likely involve a change in geometry of the 

FeNO linkages from bent to linear.   The other two (por)Mn(NO)(1-MeIm) 

compounds have similar υNO shifts (ΔυNO = 111 cm-1 for TPP, and 108 cm-1 for TTP; 

spectra not shown) upon low-temperature oxidations in CH2Cl2.   
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Follow-up reversible redox processes are observed in the cyclic 

voltammogram of (T(p-OCH3)PP)Mn(NO)(1-MeIm), as observed in Figure 3.10, and 

we assign these tentatively to the processes described by eqs 3.8 and 3.9.    

 

[(por)Mn(NO)(1-MeIm)]+  -  e-       [(por)Mn(NO)(1-MeIm)]2+  (3.8) 

[(por)Mn(NO)(1-MeIm)]2+ -  e-       [(por)Mn(NO)(1-MeIm)]3+ (3.9) 

 

The product of eq 3.9 is not very stable, generating a secondary species with an 

associated peak at 8// in Figure 3.10.  The large 1/1/ peak separation (ΔE = 315 mV) in 

Figure 3.10 suggests slow electron transfer kinetics for this metal-centered process, 

relative to the fast electron processes associated with the ring-centered 7/7/ and 8/8/ 

redox couples.  In general, the voltammograms shown in Figures 3.7 and 3.10 are 

representative of the voltammograms obtained for all three (por)Mn(NO)(1-MeIm) 

compounds in CH2Cl2. 

 We also examined the redox behavior of the compounds in the coordinating 

solvent THF.  The first oxidation is irreversible, and we suggest an electrochemical 

oxidation (eq. 3.3) followed by loss of NO involving coordination of the solvent (eq. 

3.10). 

 

(por)Mn(NO)(1-MeIm)  -  e-      [(por)Mn(NO)(1-MeIm)]+     (3.3) 

[(por)Mn(NO)(1-MeIm)]+  +  THF     [(por)MnIII(1-MeIm)(THF)]+  +  NO   (3.10) 

 



 69 

The peak at 1// can then be represented by the reduction of the product of eq. 

3.10 (i.e., eq. 3.11). 

 

   [(por)MnIII(1-MeIm)(THF)]+  +  e-      (por)MnII(1-MeIm)(THF)     (3.11) 

 

 The cyclic voltammogram is not altered when the data are recorded at –78 °C, 

indicating that THF coordination (eq 3.10) results in a significant denitrosylation of 

the first oxidation product. 

 (ii) Reductions.  The data for the reduction of (T(p-OCH3)PP)Mn(NO)(1-

MeIm) in CH2Cl2 (peak 5 in Figure 3.7) are consistent with an ErCi mechanism (eqs 

3.12 and 3.13).  

 

[(por)Mn(NO)(1-MeIm)]  +  e-       [(por)Mn(NO)(1-MeIm)]-   (3.12) 

[(por)Mn(NO)(1-MeIm)]-             [(por)Mn(1-MeIm)]-     +     NO        (3.13) 

 

Evidence for the existence of the short-lived [(por)Mn(NO)(1-MeIm)]-  monoanion is 

provided by IR spectroelectrochemistry as shown in Figure 3.8c.  The relatively small 

shift in υNO (ΔυNO 19 cm-1) upon reduction suggests that the reduction is centered on 

the porphyrin ring rather than on the MnNO fragment.  The new υNO band disappears 

completely at Epc(5) or at lower potentials, indicative of a fast rate of NO loss at 

Epc(5).  The first reduction peak is coupled to a return peak at –1.25 V labeled 5// in 
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Figure 3.7.  We thus assign peak 5// to the oxidation of electrogenerated [(T(p-

OCH3)PP)Mn(1-MeIm)]- as shown in eq. 3.14.   

 

[(por)Mn(1-MeIm)]-  -  e-       [(por)MnII(1-MeIm)]       (3.14) 

 

 In the case of the previously reported five-coordinate compound 

(TPP)Mn(NO), the first reduction process occurs at –1.41 V26 and is reversible. The 

reduction of (TPP)Mn(NO)(1-MeIm) thus occurs at a more negative potential (at –

1.93 V; Table 3.3), a shift of –0.52 V due to the presence of the axial 1-MeIm ligand.  

We note that the reduction of (TPP)Mn(NO)(py) also occurs at a potential that is 

more negative (by –0.40 V) than that needed for (TPP)Mn(NO)26 and it also exhibits 

irreversible reduction behavior.  In contrast to the first reduction of (TPP)Mn(NO)(1-

MeIm) in CH2Cl2/[Bu4N]PF6, however, the irreversible reduction of 

(TPP)Mn(NO)(py) in CH2Cl2/[Bu4N]ClO4 results in the loss of the axial py ligand 

rather than NO on the cyclic voltammetry timescale.   

A second chemically reversible reduction in CH2Cl2 (represented by the 6/6/ 

couple in Figure 3.7) is thus attributed to the reduction of the electrogenerated 

[(por)Mn(1-MeIm)]- species. 

 We attribute the first reduction of (T(p-OCH3)Mn(NO)(1-MeIm) in THF 

(peak 9 in Figure 3.11) to the process described by eq 3.12.  However, the slow loss 

of NO upon reduction in THF suggests an additional process (eq 3.15) which may be 

intimately coupled with eq 3.12. 
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[(por)Mn(NO)(1-MeIm)]  +  e-       [(por)Mn(NO)(1-MeIm)]-  (3.12) 

[(por)Mn(NO)(1-MeIm)]-       [(por)Mn(1-MeIm)(THF)]-   +   NO   (3.15) 

 

This positive shift in the first reduction potential in THF (–1.74 V) compared to that 

in CH2Cl2 (–1.94 V) is indicative of solvent coordination in the product.  Consistent 

with this is the observation that holding the potential at Epc(9) or at values more 

negative to this value results in complete loss of NO.   

Interesting comparisons can thus be made between the electroreductions of the 

(por)Mn(NO)(1-MeIm) complexes and the electroreductions of the five-coordinate 

(TPP)Mn(NO) compound in the presence of Lewis bases.  Reduction of 

(TPP)Mn(NO) in the mixed solvent systems CH2Cl2/DMF, CH2Cl2/Me2SO, and 

CH2Cl2/py, results in the formation of the [(TPP)Mn(NO)(S)]- anion (S = donor 

solvent); NO remains coordinated in the shorter timescale of cyclic voltammetry, but 

is dissociated at longer experimental timescales.26  For example, in neat pyridine, the 

electrochemical reduction of (TPP)Mn(NO)(py) is neat and reversible, and produces 

[(TPP)Mn(NO)(py)]-. 

The other two redox processes (couples 10/10/ and 11/11/) are thus due to the 

reductions of non-nitrosyl containing species and are reversible. 

 (d) Summary. The redox behavior of the (por)Mn(NO)(1-MeIm) compounds 

in CH2Cl2 at room temperature and at –78 °C may be summarized as shown in 

Scheme 3.1.  As mentioned before, only one other electrochemical study of 

manganese nitrosyl porphyrins was reported prior to this study, namely that of the 

five-coordinate compound (TPP)Mn(NO).26  
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The first oxidation of (por)Mn(NO)(1-MeIm) at room temperature is 

essentially irreversible and follows an ErCi mechanism resulting in the net loss of NO 

(eqs 3.3 and 3.4).  This is similar to that reported for (TPP)Mn(NO) (i.e., 

denitrosylation upon oxidation), except that in the present study the product of the 

first oxidation is a five-coordinate [(por)Mn(1-MeIm)]+ species which undergoes an 

irreversible oxidation (eqs 3.6 and 3.7) to lose the axial ligand.  We have stabilized 

the product of the first oxidation (eq 3.3) by recording the redox behavior at –78 °C.  

At this temperature, the initial oxidized product [(por)Mn(NO)(1-MeIm)]+ undergoes 

two further reversible oxidations (eqs 3.8 and 3.9). The reduction behavior of 

(por)Mn(NO)(1-MeIm) is different from that of the five-coordinate (TPP)Mn(NO).  

In the case of (TPP)Mn(NO),26 this compound undergoes two successive reductions 

without loss of NO.  For the six-coordinate (por)Mn(NO)(1-MeIm), however, 

denitrosylation occurs after the first reduction (eqs 3.12 and 3.13).  Importantly, our 

infrared spectroelectrochemistry set-up32 which we have now adapted for low-

temperature work, has allowed us to identify several of the nitrosyl-containing species 

in the redox reactions of the six-coordinate manganese nitrosyl porphyrins 

(por)Mn(NO)(1-MeIm).  
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[(por)Mn(NO)(1-MeIm)]2+

(eq. 3.8)

-e

[(por)Mn(NO)(1-MeIm)]3+

(eq. 3.9)

-e (eq. 3.6)

 

 

3.4 Conclusion 

 Our study complemented previous structural studies by Scheidt and 

coworkers25,34 on the five- coordinate (TTP)Mn(NO) and the six- coordinate 

(TPP)Mn(NO)(4-Mepip) (TPP = tetraphenylporphyrinato dianion) compounds.  In 

summary, we have prepared several isolable six-coordinate manganese nitrosyl 

porphyrins and have characterized them by spectroscopy.  Our successful 

crystallization of four of these derivatives, which were characterized by single-crystal 

X-ray crystallography, significantly increases the number of available structures of 
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manganese nitrosyl porphyrins.  In particular, the trans influence of the linear NO 

group observed in these structures provides a convenient entry into further studies of 

this structural effect.  Comparisons between these manganese(II)  nitrosyl derivatives 

and the ferric nitrosyl derivatives suggest that there are structural similarities between 

these formally isoelectronic MnII-NO and FeIII-NO species.  However, care must be 

taken in the interpretation of these results, since subtle π-backbonding differences 

exist between them.  

 We also studied the room and low temperature (–78 °C) cyclic voltammetric 

behavior of the six coordinate (por)Mn(NO)(1-MeIm) (por = TPP, TTP, or T(p-

OCH3)PP) complexes at a Pt disc electrode in two nonaqueous solvents (CH2Cl2 and 

THF). This study significantly increased the number of the manganese nitrosyl 

porphyrin complexes that have been electrochemically characterized in the literature 

and represent the only spectroelectrochemically characterized manganese nitrosyl 

porphyrin complexes in the literature.  
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Chapter 4. Ligand Conformations in Derivatives of Manganese- and  
                   Cobalt-Substituted Horse Heart Myoglobin As  
                   Determined by X-ray Crystallography 
 

4.1 Introduction  

 Heme-containing enzymes serve a wide range of biological functions ranging 

from oxygen storage and transport, oxoanion reduction, hydrocarbon oxidation and 

electron transport to multi-electron catalysis.1-3 The heme prosthetic groups in these 

enzymes have been replaced by other synthetic metal-hemes mainly to examine their 

effects on structure and function or to probe the active site via the altered electronic 

and steric requirements of using different metal ions. Among these metal-hemes, 

cobalt-4 and manganese-protoporphyrin IX5-7 have the greatest attention.  

 Manganese protoporphyrin IX-reconstituted heme proteins are well known for 

hemoglobin (Hb),8,9 myoglobin (Mb),10-12 cytochrome P450,13 soluble guanylyl 

cyclase,14 cytochrome c,15 nitric oxide synthase,16 horse radish peroxidase,9,11,17 

cytochrome b5,18 cytochrome c peroxidase (CcP),11,19,20  and prostaglandin H2 

synthase-1.21  These manganese protoporphyrin IX- reconstituted enzymes were fully 

characterized by the traditional spectroscopic techniques such as UV-vis,11,19 

resonance Raman,22,23 EPR,9 and NMR spectroscopy.  However, no X-ray structure of 

any of these manganese protoporphyrin IX- reconstituted proteins or enzymes was 

reported except that of the unrefined X-ray difference Fourier crystallographic studies  

∗ Taken in part from;  
i-“Crystal Structures of Manganese- and Cobalt-substituted Myoglobin in Complex with NO and 
Nitrite Reveal Unusual Ligand Conformations” Zahran Z. N.; Chooback L.; Copeland D. M.; West A. 
H.; Richter-Addo G. B. J. Inorg. Biochem. 2007, in press, with permission from Elsevier. 
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on the metmanganohemoglobin24,25 and that recently reported for prostaglandin H2 

synthase-1.21 

 The preparation and functional properties of manganese protoporphyrin IX-

reconstituted Mb and its reaction with, oxygen,11  hydrogen peroxide,11 carbon 

monoxide,11 cyanide, nitrite, azide,11,26 and nitric oxide27,28 have been extensively 

investigated and compared with that of the native iron Mb. Although the protein fold 

of the native Mb and the manganese protoporphyrin IX-reconstituted Mb are 

expected to be similar, their ligation properties are quite different. Thus, for example, 

oxygen, carbon monoxide, cyanide, nitrite, azide, and nitric oxide bind to Mb at the 

iron-heme moiety, whereas the oxidized or the reduced manganese protoporphyrin 

IX-reconstituted Mb did not form complexes with oxygen and carbon monoxide.11  

Azide11,26 binds to the oxidized form, and nitric oxide23,28 binds to the reduced form of 

the Mn-heme moiety while cyanide binds to the oxidized MnIIIMb away from the Mn-

heme moiety.29 

 Interestingly, Mn-substituted hemoglobin (MnHb) exhibits allosteric effects in 

its binding of NO.5,7,30,31  The resulting adduct, written simply as MnIIHbNO, has been 

prepared and characterized.15,31,32  The NO adduct of Mn-substituted Mb is also 

known,31,32 as are the NO adducts of Mn-substituted sGC,14 cytochrome c,15 CcP,32 

cytochrome P450,13 and that of a monomeric MnHb from the insect Chironomus 

thummi thummi.33  Lan and coworkers have examined the ability of sol-gel 

encapsulated MnIIMb to act as an NO sensor under physiological conditions (since it 

binds NO but not O2).34  We, and others, have prepared and characterized several 

synthetic manganese porphyrins ((por)Mn) that bind NO.35-40  In some cases, synthetic 
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(por)Mn compounds have been shown to electrocatalyze the reduction of NO to 

hydroxylamine and ammonia.41  

 We are interested in the structures of the heme pockets in Mb derivatives of 

nitrogen oxides, and in particular how the distal amino acid residues might affect the 

binding preferences of nitrogen oxide ligands.  In this chapter, we describe, for the 

first time, the crystal structures of Mn-substituted Mb; namely the as-isolated 

MnIIIMb and the reduced MnIIMb derivative.  The crystal structures obtained for these 

compounds may help explain some of the contradictory results on the spectroscopy 

previously reported in the literature.  Azide is a known inhibitor of heme enzymes.42  

The physiological role of nitrite is only now being fully recognized43,44 and its 

interaction with Hb and Mb has been shown to result, under conditions of hypoxia, in 

enzymatic NO production.43  To this end, we also report the crystal structures of the 

MnMb adducts with methanol, azide, and nitric oxide (NO).  Further, we report the 

structures of the nitrite adducts of MnMb and CoMb.  

 

4.2 Materials and Methods 

Manganese(III) protoporphyrin IX chloride ((PPIX)MnIIICl), sodium 

dithionite (85%), and 2-butanone were purchased from Aldrich Chemical Company.  

Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl, molecular biology 

grade), and ammonium sulfate (99.5%) were obtained from Fluka.  Sodium nitrite 

(98.0%) was obtained from Baker and Adamson.  Cobalt(III) protoporphyrin IX 

chloride ((PPIX)CoIIICl) was purchased from Frontier Scientific Company.  Nitric 
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oxide (98%, Matheson Gas) was passed through KOH pellets and two cold traps (dry 

ice/acetone, –78 °C) to remove higher nitrogen oxides.   

Horse heart met-myoglobin (hh metMb) was purchased from Sigma.  The 

heme group was removed from metMb (30 mg/ml) using the method of Yonetani19 

and Teale.45  MnIIIPPIX was reconstituted into apoMb following the method of 

Yonetani11 and the product characterized by UV-vis spectroscopy (λmax 378 and 471 

nm).11,12  The CoIIIMb complex was similarly prepared and characterized (λmax 425 

nm).4  The purity of the metal-reconstituted myoglobins were established by SDS 

PAGE.  

 

4.3 Crystallization and Complex Formation 

 All eight Mn- and Co-substituted myoglobin crystalline complexes were 

prepared and structurally characterized in (at least) duplicate. 

 4.3.1 MnIIIMb and CoIIIMb.  Crystals of MnIIIMb and CoIIIMb were grown 

using identical procedures.  The crystals were grown at room temperature (~23 °C) 

using the hanging-drop vapor diffusion method.  A hanging drop (10 μL) containing 

0.45 mM protein (8 mg/mL) and 0.8 M (NH4)2SO4 in 10 mM Tris-HCl buffer at pH 

7.4, was suspended over a well containing 500 μL of 3.4 M (NH4)2SO4 in 10 mM 

Tris-HCl buffer at pH 7.4.  The crystals grew in clusters of plates and reached a 

suitable size in 3-5 days.  A suitable crystal was harvested with a cryoloop, 

transferred to 10 μL of artificial mother liquor containing 10% glycerol as a 

cryoprotectant, and flash frozen in liquid nitrogen. 
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4.3.2 MnIIIMb(MeOH).  The MnIIIMb(MeOH) complex was prepared by 

adding 20 μL MeOH to a MnIIIMb solution (180 μL, 0.9 mM) in 10 mM Tris-HCl 

buffer at pH 7.4.  The mixture was kept at 4°C for 10 min before setting up for 

crystallization using the hanging drop vapor diffusion method employing the same 

conditions as described above for MnIIIMb.  A suitable crystal was harvested and 

soaked for 10 min in a droplet of 10 mM Tris-HCl buffer (pH 7.4) containing 

(NH4)2SO4 (3.4 M), 10% glycerol as cryoprotectant, and MeOH (2% v/v).  The 

crystal was then flash frozen in liquid nitrogen.  

4.3.3 MnIIMb.  The reduced MnIIMb crystal was obtained by soaking a crystal 

of MnIIIMb anaerobically in a 20 μL droplet of the buffer (10 mM Tris-HCl, pH 7.4) 

containing (NH4)2SO4 (3.4 M), 10% glycerol as cryoprotectant, and sodium dithionite 

(114 mM) for at least 20 min.  The crystal and the droplet were submerged in mineral 

oil under an atmosphere of nitrogen.  During the soaking of the crystal, it cracked into 

several pieces and its color changed from purple-red to orange-red indicative of the 

formation of the reduced MnIIMb.11,46  A suitable crystal was harvested with a 

cryoloop and flash frozen in liquid nitrogen. 

4.3.4 MbIIIMb(N3
–).  The azide complex was prepared as reported 

previously22,26 by adding 20 μL of a sodium azide solution (200 mM) directly into a 

solution of MnIIIMb (180 μL, 0.9 mM) in 10 mM Tris-HCl buffer at pH 7.4.  The 

mixture was left at 4 °C for 10 min, and the resulting azide complex crystallized 

using the hanging-drop vapor diffusion method employing the same conditions as 

described above for MnIIIMb.  Crystals grew in 3-5 days.  A suitable crystal was 

harvested and soaked in a 10 μL droplet of 10 mM Tris-HCl buffer (pH 7.4) 
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containing (NH4)2SO4 (3.4 M), 10% glycerol as cryoprotectant, and NaN3 (200 mM) 

for 10 min, and flash frozen in liquid nitrogen.  The excess NaN3 added to the 

cryoprotectant was to maximize the occupancy of the azide ligand in the complex.  

4.3.5 MnIIMbNO.  This complex was obtained by transferring a crystal of 

MnIIMb into a 10 μL droplet of the buffer (10 mM Tris-HCl, pH 7.4) under anaerobic 

conditions and submerged in mineral oil.  The droplet contained (NH4)2SO4 (3.4 M), 

10% glycerol as cryoprotectant, and NO (~2 mM).  The crystal was soaked in this 

solution for ~2 min, and the color changed from orange-red to pink suggesting 

formation of the nitrosyl adduct MnIIMbNO.  The crystal was harvested with a 

cryoloop and flash frozen in liquid nitrogen. 

4.3.6 MnIIIMb(ONO–).  The nitrito-liganded complex, MnIIIMb(ONO–), was 

obtained by soaking crystals of MnIIIMb in a 10 μL droplet of the buffer (10 mM Tris-

HCl, pH 7.4) under anaerobic conditions by submerging the droplet in mineral oil.  

The droplet contained (NH4)2SO4 (3.4 M), 7.5% glycerol as cryoprotectant, sodium 

dithionite (187 mM).  Sodium nitrite (to give 100 mM) was then added to the droplet, 

and the crystal soaked for 2 min in this mixture.  The crystals were then harvested 

with cryoloops and flash frozen in liquid nitrogen.  We note that in our hands, the 

MnIIIMb(ONO–) complex could not be obtained either by soaking the MnIIIMb 

crystals in a droplet free of sodium dithionite (but containing the other components), 

or from co-crystallization of MnIIIMb in presence of excess NaNO2.   

 4.3.7 CoIIIMb(ONO–).  The CoIIIMb(ONO–) complex was prepared by mixing 

a solution of CoIIIMb (10 mg/mL) with a solution of NaNO2 (0.5 M) solutions in a 1:1 

v/v ratio and keeping the mixture at 4 °C for 30 min.  The product was then 
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crystallized using the vapor diffusion method using the same conditions as used for 

CoIIIMb(H2O), and suitable size crystals grew in 3-5 days.  Suitable crystals were 

harvested with cryoloops and flash frozen in liquid nitrogen.  The complex was also 

obtained by soaking CoIIIMb crystals in a droplet of Tris-HCl buffer (10 mM, pH 7.4) 

containing (NH4)2SO4 (3.4 M), 10% glycerol as cryoprotectant, and NaNO2 (500 mM) 

for 30 min.  However, this latter method resulted in a product containing nitrite at 

only ~60 % occupancy as determined by crystallography. 

 

4.4 X-ray Diffraction Data Collection and Processing 

Diffraction data sets were collected at 100 K by using CuKα radiation (λ = 

1.5418 Å) produced from a RigakuMSC RU-H3R X-ray generator operated at 50 

kV/100 mA.  Diffracted X-rays were detected using an R-AXIS IV++ dual image plate 

detector system.  The crystal-to-detector distance was set at 100 mm, and 220 frames 

of data were collected for each crystal, with 1° oscillations and a 5 min exposure time 

per frame.  X-ray intensity data were indexed and processed with the stand-alone 

d*TREK program (Macintosh v.2D)47 available from Molecular Structure 

Corporation. 

 

4.5 Structure Solution and Refinement 

The CCP4 Suite of programs48 was used for structure solution and the 

subsequent refinement of all structures reported here.  Phase information was 

obtained using molecular replacement as implemented in CCP4 (MOLREP).49  The 

search model was the 1.3 Å resolution structure of MbIINO (PDB access code 2FRJ)50 
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with all the solvent molecules, sulfate anions and the NO ligand removed from the 

structure.  After molecular replacement, the iron atom was replaced by manganese or 

cobalt.  In all the structures, no electron density was observed for the C-terminal 

residue Gly153, thus it was not included in the models.  In all cases, ARP/wARP was 

used to add water molecules to the structure during refinement.  Lys47 was refined in 

two positions at 50% occupancy each.  Also, two sulfate groups (three in case of 

reduced MnIIMb) were added to the models based on the initial Fo-Fc map.  After 

completion of the refinement of the individual structures, the interactive 

macromolecular structure validation tool MolPROBITY (available online from the 

Richardson Lab at Duke University at http://kinemage.biochem.duke.edu/ 

molprobity/)51,52 was utilized to assign the final rotamer orientations of Asn, Gln, and 

His side chains, and to test for any unusual side chain contacts.   

In general, the structure solution and refinement procedures were similar for 

all eight structures reported here.  The statistics of the data collection and refinement 

are summarized in Table 4.1.  The Fo-Fc difference electron density maps shown in 

Figures 4.1 and 4.2 were generated using CNS53 and Fcs were calculated using the 

final model but by omitting the ligand from the structure.  All figures were drawn 

using PyMOL (Delano Scientific, 2002; http//www.pymol.org), and labels added 

using Adobe® Photoshop. 

4.5.1 MnIIIMb(H2O).  After molecular replacement, the R-factor was 30.98%.  

After 10 cycles of restrained refinement, the R-factor was 24.86% and initial electron 

density maps were generated.  At this stage, the initial Fo-Fc difference electron 

density map revealed the presence of cone-shaped electron density in the distal Mn-
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heme pocket.  We initially tried to model this as a methanol molecule (see Results 

Section).  This cone-shaped electron density was finally refined as a single water 

molecule in two disordered positions with 70% and 30% occupancies.  Two 

conformations of the distal His64 residue were modeled into the electron density, and 

the occupancies refined to 70% and 30%.  Solvent water molecules were added, 

followed by an additional 15 cycles of refinement with B-factors refined 

anisotropically, and the R-factor dropped to 17.9%.   

4.5.2 MnIIMb.  After molecular replacement the R-factor was 33.09%.  After 

10 cycles of restrained refinement the R-factor dropped to 22.09% and the initial Fo-

Fc difference electron density map showed the absence of electron density for any 

ligand in the Mn-heme distal pocket.  After the addition of the water molecules and 

further cycles of refinement, the R-factor dropped to 19.4%.   

4.5.3 MnIIIMb(MeOH).  At the start of refinement the R-factor was 28.79%.  

After 10 cycles of restrained refinement the R-factor dropped to 22.74% and initial 

electron density maps were generated.  The Fo-Fc difference electron density map 

showed clear electron density for the methanol ligand in the Mn-heme distal pocket, 

and methanol was modeled into this density.  After the addition of solvent molecules 

and further cycles of refinement, the R-factor dropped to 17.4%.  The methanol ligand 

refined to full occupancy with thermal factors of 14.25 and 11.69 Å2 for its O and C 

atoms, respectively.  

4.5.4 MnIIIMb(N3
–).  After molecular replacement, the R-factor was 31.52%.  

Ten cycles of restrained refinement resulted in the lowering of the R-factor to 

24.93%.  The Fo-Fc difference electron density map showed clear density for the 
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azide ligand in the Mn-heme distal pocket, and azide was modeled into the density.  

Solvent molecules were added, and further cycles of refinement dropped the R-factor 

to 18.4%.  The azide ligand refined to near-full (94%) occupancy, with thermal 

factors of 17.95, 20.28 and 22.17 Å2 for its N1, N2, and N3 atoms, respectively.   

4.5.5 MnIIMb(NO).  At the start of refinement, the R-factor was 30.77%.  

After 10 cycles of restrained refinement, the R-factor dropped to 22.23%.  The Fo-Fc 

difference electron density map showed clear density for the nitrosyl ligand in the 

Mn-heme distal pocket, and NO was modeled into the density.  After the addition of 

solvent molecules and further cycles of refinement, the final R-factor dropped to 

17.7%.  The NO ligand refined to 70% occupancy.  Two conformations of the distal 

His64 were modeled into the electron density associated with this residue, and were 

refined with 70% and 30% occupancies.   

4.5.6 MnIIIMb(ONO–).  At the start of refinement, the R-factor was 32.11%.  

After 15 cycles of restrained refinement, the R-factor dropped to 24.36%.  The Fo-Fc 

difference electron density map showed clear density for the nitrite ligand in the Mn-

heme distal pocket, and nitrite was modeled into the density.  After the addition of 

solvent molecules and further cycles of refinement, the R-factor dropped to 18.6%.   

4.5.7 CoIIIMb(H2O).  After molecular replacement, the R-factor was 33.50%.  

After 10 cycles of restrained refinement, the R-factor dropped to 24.38%.  The Fo-Fc 

difference electron density map showed the presence of electron density consistent 

with the presence of a bound water molecule (bound to the heme cobalt atom).  After 

the addition of solvent molecules and further cycles of refinement, the R-factor 

dropped to 19.3%.  
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4.5.8 CoIIIMb(ONO–).  After molecular replacement, R-factor was 30.52%.  

After 10 cycles of restrained refinement, the R-factor dropped to 24.49%.  The Fo-Fc 

difference electron density map showed clear density for the nitrite ligand in the Co-

heme distal pocket, and nitrite was modeled into the density.  After the addition of 

solvent molecules and further cycles of refinement, the final R-factor dropped to 

17.4%.   

 

4.6 Protein Data Bank accession numbers 

 Atomic coordinates and structure factor amplitudes have been deposited with 

the RCSB Protein Data Bank.  The accession codes are listed in Table 4.1. 

 

4.7 Results 

 The crystal structures of the Mn- and Co-substituted myoglobin derivatives 

reported here display the normal protein fold expected for the native horse heart 

myoglobin.  The differences lie with the nature of the heme axial ligand and the 

resulting distal pocket structure.  Hence, we focus on the heme environment in these 

complexes.  Selected structural data for all eight complexes whose structures are 

reported here are shown in Table 4.2. 

4.7.1 MnIIIMb(H2O).  The MnIII-reconstituted myoglobin (MnIIIMb) was 

prepared from the reaction of MnIII-protoporphyrin IX chloride and apo-Mb in 

solution, and its formation confirmed by UV-vis spectroscopy.   The compound in 

solution displays a characteristic split Soret absorption at 378 and 471 nm as reported 

by Yonetani et al.19  We determined the crystal structure of this complex to 1.65 Å 
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resolution.  The MnIII-heme environment is shown in Figure 4.1a.  We also show the 

final Fo-Fc difference electron density map, contoured at 3σ, that reveals the presence 

of the axial water ligand.  This axial water is best refined as a disordered molecule in 

two distinct positions, with 70% (coordinated) and 30% (uncoordinated) occupancies.   

We located two positions for the distal His64 residue, and the occupancies correlate 

with the two water molecule positions.  The 2Fo-Fc map showing the electron density 

associated with the two His64 conformations is shown in Figure 4.2.  The distance 

between the Nε atoms of the two His64 conformations is 0.74 Å, with the minor 

conformation closer to the interior of the protein and closer to the uncoordinated 

water molecule. 

 The major disordered position of the water ligand is close to the MnIII center, 

with a Mn–O distance of 2.52 Å.  This MnIII–O(H2O) distance is longer than those 

determined for the six-coordinate model compound [(TPP)MnIII(H2O)2]ClO4 

(2.271(2) Å)54 and the five-coordinate compounds [(TPP)MnIII(H2O)]SbF6 (2.145(5) 

Å),54 [(TPP)MnIII(H2O)]OTf (2.105(4) Å),55 and [(OEP)MnIII(H2O)]ClO4 (2.149(3) 

Å).56  The O-atom of the water ligand in MnIIIMb(H2O) is 2.62 Å from the Nε atom of 

the major conformation of the distal His64 residue, indicative of hydrogen-bonding 

between these moieties.  In addition, the O-atom of the coordinated water ligand is 

tilted 15° from the normal to the heme four-nitrogen (4N) plane towards to the 

interior of the protein.   

The minor (30%) disordered position of the distal water molecule is 3.96 Å 

from the MnIII center, and is 2.84 Å from the Nε atom of the corresponding minor 

conformation of the His64 residue; this distance between the water molecule and this 
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Table 4.1.  Statistics of X-Ray Data Collection and Refinement. 

 MnIIIMb(H2O) MnIIMb MnIIIMb(MeOH) MnIIIMb(N3) MnIIMb(NO) MnIIIMb(ONO) CoIIIMb(H2O) CoIIIMb(ON
O) 

PDB code 2O58 2O5B 2O5L 2O5M 2O5Q 2O5O 2O5T 2O5S 
Data collectiona            
  Space group P21 P21 P21 P21 P21 P21 P21 P21 
  Cell Dimen.             
     a (Å)   35.41 35.21 35.41 35.48 35.47 35.43 35.31 35.17 
     b (Å) 28.65 28.74 28.59 28.75 28.64 28.67 28.75 28.68 
     c (Å) 62.94 64.20 63.20 62.91 63.19 62.99 63.03 63.36 
     β (°) 106.0 105.45 105.74 105.9 105.7 105.5 106.5 106.1 
  Resolution (Å)  1.65 2.00 1.70 1.65 1.90 1.60 1.60 1.60 
  Mean I/σ(I)  15.2 (4.4) 9 (2.7) 12.5 (3.9) 17.0 (4.6)  9.0 (2.5) 14.5 (4.0) 10.1 (2.9) 20.4 (4.7) 
  No. Reflections              
     Observed  63842  25281 58562   64306 35.301 68845 64903 65732  
     Unique 14874  8510 13275  14301 9669 16177 15721 15758 
  Comp. (%)  99.6 (98.2)  98.7 (96.0) 96.8 (93.7)  95.3 (91.0)  97.8 (99.9) 98.5 (95.9) 96.2 (87.2) 96.5 (86.6) 
  Rmerge (%)b  5.6 (26.4)  7.6 (31.8) 6.8 (36.4)  5.1 (27.2)  9.5 (23.6) 5.3 (31.6) 7.7 (34.8) 4.4 (16.8) 
Refinement             
  Res. Range  (Å)  19.47-1.65  20.63-2.00 21.91 – 1.70  26.75- 1.65  26.57-1.90 25.92-1.60 26.61-1.60 26.58-1.60 
  R-factor (%)  17.9 19.4 17.4  18.4  17.7 18.6 19.3 17.4 
  Rfree (%)c 22.3 23.9 23.3 22.1  21.8 22.4 24.8 22.5 
  rmsd bond  dist. 0.015 0.023 0.014  0.015  0.021 0.013 0.017 0.012 
  rmsd angles (˚)  1.57 2.05 1.53 2.29  2.49 2.26 2.47 2.28 
  B factor (Å2)              
     Mean  17.6  32.12 18.17  16.2  22.02 16.88 21.59 15.36 
     rmsd main 0.82 1.15 0.86  0.81 1.05 0.81 0.85 0.77 
     rmsd side 2.40 3.06 2.48 2.34 2.80 2.27 2.49 2.37 

a Values in parentheses correspond to the highest resolution shells for MnIIIMb(H2O) (1.71–1.65 Å), MnIIMb (2.07-2.00), MnIIIMb(MeOH) (1.76–1.70 Å), 
MnIIIMb(N3-) (1.71–1.65 Å), MnIIMb(NO) (1.97–1.90 Å), MnIIIMb(ONO) (1.66–1.60 Å), CoIIIMb(H2O) (1.66–1.60 Å), and CoIIIMb(ONO) (1.66–1.60 Å). b R-
merge = Σ|I - <I>|/Σ(I) where I is the individual intensity observation and <I> is the mean of all measurements of I. c Rfree is calculated using randomly selected 
reflections comprising 5% of the data not used throughout refinement.  
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Table 4.2.  Selected Geometrical Data for the Mn- and Co-substituted Myoglobin Complexes. 
 
Compound M–N(por) (Å) M–X(axial)a (Å) M-X-Y (°) α (°)b M–N(His93) (M)X…N(His64)c 

(Å) 
ΔMd (Å) 

MnIIIMb(H2O) 2.04-2.08 2.52e − 15.3e 2.22 2.62e −0.18 

MnIIIMb(MeOH) 2.02-2.07 2.48 119 8.2 2.29 2.56 −0.07 

MnIIMb 2.03-2.10 − − − 2.27 − −0.34 

MnIIMb(N3
–) 2.04-2.06 2.37 121 8.9 2.50 2.64 −0.08 

MnIIMb(NO)f 2.06-2.11 2.53f 130 12.5 2.20f 2.60 −0.20f 

MnIIIMb(ONO–) 2.07-2.10 2.33 112 9.7 2.34 2.57 −0.07 

CoIIIMb(H2O) 2.02-2.09 2.46 − 11.7 2.15 2.54 −0.04 

CoIIIMb(ONO–) 2.06-2.07 2.14 105 8.8 2.02 2.71 −0.04 

 
a Distance between the metal and the coordinating atom of the ligand in the distal pocket. b Tilt of the coordinating atom X (of the distal ligand) from the 
normal to the heme 4N plane. c  Distance between the coordinating atom X (of the distal ligand) and the nearest N-atom of the distal His64 residue. d  
Apical displacement of the central metal atom from the heme 4N plane towards the distal ligand. e  These data are for the component with coordinated  
H2O (70% occupancy).  f  The NO ligand refined to 70% occupancy.  Hence, these data likely represent an average of the MnIIMb (30%) and MnIIMb(NO) 
 (70%) components (see text).  The hydrogen bonding distance to the distal His64 residue is for the major His64 component.
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Figure 4.1.  Final models and final Fo-Fc difference electron density maps showing 
side views of hh MnMb derivatives.  Carbon, oxygen, nitrogen, and Mn atoms are 
colored grey, red, blue, and magenta, respectively.  The bonds to Mn are not shown 
for clarity.  (a) MnIIIMb(H2O):  The difference electron density map contoured at 3σ 
shows a single water molecule in two different positions. (b) MnIIIMb(MeOH): The 
difference electron density map is contoured at 3σ.  (c) The reduced MnIIMb showing 
the absence of electron density for a coordinated water molecule in the active site. (d) 
MnIIIMb(N3

–):  The difference electron density map is contoured at 3σ. 
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Figure 4.2. Final model of the Mn-heme environment in MnIIIMb(H2O), and the 2Fo-
Fc  electron density map, contoured at 1σ, associated with the two conformations of 
the distal His64 residue. 

 

distal His64 residue is consistent with hydrogen-bond stabilization of this non-

coordinated water in the distal pocket.   The Leu29 and Val68 residues are the closest 

distal pocket moieties to this water molecule; the distance between the water O-atom 

and the nearest C-atoms of Leu29 and Val68 are 3.14 and 3.32 Å, respectively.  

Thedistance between the O-atom positions of the coordinated and uncoordinated 

water molecules is 1.70 Å.  

 We attempted to refine the Mn atom at two positions to correlate with the 

presence of coordinated and uncoordinated water, but we were not successful.  Thus, 

it is likely that the Mn atom position represents an average between two close-by 

positions.  In the final refined structure, the Mn atom is apically displaced by 0.18 Å 

from the heme 4N plane towards the proximal His93 residue, with a MnIII–N(His93) 
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distance of 2.22 Å.  The displacement of the Mn atom towards the proximal His93 

residue is common feature for all the structures reported here (see Table 4.2), 

although variations in the extent of apical displacement are observed depending on 

the compound being examined. 

4.7.2 MnIIIMb(MeOH).  As part of a control experiment (see Discussion), we 

prepared the methanol adduct of MnIIIMb to determine the binding geometry of this 

ligand.  The structure of the MnIII-heme environment is shown in Figure 4.1b.  The 

Mn–O(MeOH) bond length is 2.48 Å, which is longer than the analogous Mn–O 

distance in the d4 high-spin model non-protein complexes (TPP)MnIII(N3)(MeOH) 

(2.329(7) Å),57 [(TPP)MnIII(MeOH)2]ClO4 (2.252(2), 2.270(2) Å),58 and for the five-

coordinate [(OEP)Mn(EtOH)]ClO4 (2.145(2) Å).59 

The major differences between the structure of MnIIIMb(MeOH) and 

MnIIIMb(H2O) are (i) only one position of MeOH was found, at full occupancy, (ii) 

only one His64 conformation was found in MnIIIMb(MeOH), and (iii) the MnIII atom 

was displaced only 0.07 Å from the heme 4N plane towards the proximal His93 

residue.  The methyl group of the MeOH ligand is oriented towards the interior of the 

protein in the direction of the Leu29 and Ile107 amino acid residues; the distance 

between the C-atom of the MeOH ligand and the nearest carbon atom of the closest 

residue Val68 is 3.51 Å.  The MnIII–O–C(Me) angle is 119°, and the distance between 

the O-atom of the MeOH ligand and the Nε atom of the distal His64 is 2.56 Å, 

indicative of a hydrogen-bonding interaction.   This MnIII–O–C(Me) angle is more 

acute than that observed in the model compound [(TPP)MnIII(MeOH)2]ClO4 

(124.6(3), 124.0(3)°),58 perhaps due to the presence of the hydrogen-bonding 
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interaction present in MnIIIMb(MeOH) which might also be responsible for the 

slightly longer Mn-O bond in the protein.  

4.7.3 The reduced MnIIMb.   Crystals of the reduced MnIIMb complex were 

prepared by soaking crystals of MnIIIMb in buffer containing dithionite.  The structure 

of the Mn-heme environment in the resulting MnIIMb is shown in Figure 4.1c.  The 

absence of electron density in the Fo-Fc map was consistent with the absence of an 

axial water ligand in the distal pocket.  Notable features of this structure include (i) a 

0.34 Å apical displacement of the Mn atom from the heme 4N plane towards the 

proximal His93 residue in this five-coordinate compound, with a MnII–N(His93) 

distance of 2.27 Å.  This is a larger apical displacement of the Mn atom than that 

observed for the six-coordinate MnIIIMb(H2O) compound (0.18 Å).  The MnII–

N(His93) distance is, however, similar to that in the oxidized MnIIIMb(H2O) analogue 

(i.e., only a 0.05 Å difference).   

The structure of the heme environment of MnIIMb reported here has some 

similarities with the structure of the model five-coordinate compound (TPP)MnII(1-

MeIm).60  Both MnIIMb and (TPP)MnII(1-MeIm) have a vacant sixth coordination 

site, with the MnII centers displaced from the porphyrin 4N planes towards the 

imidazole groups.  In the model compound (TPP)MnII(1-MeIm), the axial Mn–

N(MeIm) bond length is 2.192(2) Å, with the Mn atom apically displaced by 0.51 Å 

from the four-nitrogen plane of the porphyrin towards the imidazole ligand.60 Thus, 

the Mn-N(imidazole) bond length is ~0.08 Å longer in MnIIMb compared with the 

related distance in the model complex, but the apical displacements of the Mn atom 

towards the proximal imidazole (His93) ligands are similar.   
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4.7.4 MnIIIMb(N3
–).  Figure 4.1d shows the MnIII-heme environment of the 

1.65 Å resolution structure of MnIIIMb(N3
–).  The azide ligand is coordinated to the 

MnIII center with a Mn–N(azide) distance of 2.33 Å.  This distance is longer than that 

observed in the model complexes (TPP)MnIII(N3
–)(MeOH) (2.176(9) Å),57 

(TPP)MnIII(N3
–) (2.045 Å),61 and (Schiff base)MnIII(N3

–)  (2.221(4) Å).62   

The azide ligand in MnIIIMb(N3
–) is oriented towards the interior of the 

protein, with a Mn–N–N(azide) angle of 121° and a tilt of 8.9° of the coordinating N-

atom from the normal to the Mn-heme 4N plane.  The coordinating atom of the azide 

ligand is 2.64 Å away from the Nε atom of the distal His64 residue, indicative of a 

hydrogen-bonding stabilization of the azide ligand in the distal pocket.  The next 

closest nonbonding distance between the azide ligand and distal pocket residues is 

that between the terminal N3 atom of the azide with the side-chain of Leu29, with an 

(azide)N-to-Leu(C-atom) distance of 3.46 Å.   Related distances between the azide 

terminal N-atom and distal pocket residues are with Ile107 (3.70 Å) and Val68 (3.74 

Å).  The Mn atom is apically displaced by 0.08 Å from the Mn-heme 4N plane 

towards the proximal His93 residue, with a Mn–N(His93) distance of 2.37 Å. 

4.7.5 MnIIMb(NO).  The interaction of NO with reduced MnIIMb in solution 

results in a blue shift of the Soret absorption band of MnIIMb at 442 nm to 429 nm 

(with β and α bands at 544 and 583 nm, respectively) indicative of the formation of 

MnIIMb(NO).32  Related absorption bands at (i) 424, 538 and 580 nm34 and (ii) 433, 

538 and 580 nm23,32 have been reported for MnIIMb(NO).  For convenience, we will 

use this oxidation state formalism to describe the adduct between NO and MnIIMb 
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(i.e., to distinguish it from the adduct between NO and MnIIIMb).  We discuss the 

oxidation state formalism later in the Discussion. 

We were not able to obtain, from solution, crystals of the preformed 

MnIIMb(NO) complex.  Fortunately, soaking crystals of MnIIMb (obtained by reacting 

crystals of MnIIIMb with dithionite) with NO also produced the desired nitrosyl 

product.  We determined the 1.9 Å resolution structure of this product, with the NO 

ligand refining to 70% occupancy.  We also located two conformations of the distal 

His64 residue that refined to 70% and 30% occupancies, with the major conformation 

assigned to MnIIMb(NO), and the minor conformation assigned to MnIIMb.  Figure 

4.3a shows the Mn-heme environment of the crystalline MnIIMb(NO) product.  

The Mn-NO moiety is distinctly bent with a Mn–N–O angle of 130°.  The 

nitrosyl N-atom is tilted by 12° from the normal to the Mn-heme 4N plane, and the 

NO group is oriented away from the distal His64 residue in the direction of Leu29.  

The nitrosyl N and O atoms are, respectively, 2.60 and 3.28 Å from the Nε atom of 

the major conformation of the distal His64 residue, consistent with hydrogen-bonding 

stabilization of the NO group in the distal pocket.  The next closest distance between 

the NO group and the distal pocket residues is with a carbon atom of Val68 (3.37 Å 

from the nitrosyl O-atom). 

In the structure of this MnIIMb(NO) complex, the NO ligand refined to 70% 

occupancy.  The apical displacement of Mn by 0.20 Å from the Mn-heme 4N plane 

towards the proximal His93 residue suggests that the structure shown in Figure 4.3a is 

likely a mixture of MnIIMb(NO) and MnIIMb (note that ΔMn for MnIIMb is 0.34 Å).  

We were not able to refine the two separate Mn positions, and the rather long  



 

 97 

 

Figure 4.3.  Final models and final Fo-Fc difference electron density maps showing 
side views of hh MnMb and CoMb derivatives.  Carbon, oxygen, nitrogen, Mn, and 
Co atoms are colored grey, red, blue, magenta, and green, respectively.  The bonds to 
Mn and Co are not shown for clarity.  (a) MnIIMb(NO):  The difference electron 
density map contoured at 3σ shows an NO molecule that refined to 70% occupancy. 
(b) MnIIIMb(ONO): The difference electron density map is contoured at 2.5σ.  (c) 
CoIIIMb(H2O): The difference electron density map is contoured at 2.5σ.  (d) 
CoIIIMb(ONO): The difference electron density map is contoured at 2.5σ. 
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Mn– N(O)  distance of 2.53 Å may thus not correctly represent this bond length.  For 

comparison, the Mn–N(O) bond length in the model compound (TPP)Mn(NO)(1-

MeIm) is 1.641(1) Å.39 

4.7.6 MnIIIMb(ONO–).  We were not able to crystallize this complex from the 

addition of nitrite to MnIIIMb(H2O); either by co-crystallization or by soaking of the 

MnIIIMb(H2O) crystals with nitrite.  Further, we did not observe any spectral change 

in the Soret region of the UV-vis spectrum upon addition of nitrite to a solution of 

MnIIIMb(H2O), consistent with the results from a previous study by Lan et al. 34  

However, addition of nitrite to reduced MnIIMb results in a spectral shift in the UV-

vis spectrum from 442 nm to a new “split” Soret peak at 471 and 378 nm indicative 

of the formation of a new MnIIIMb species.  Indeed, we were successful in obtaining 

crystals of MnIIIMb(ONO–) by this method, by adding nitrite to crystals of reduced 

MnIIMb. 

As demonstrated in Figure 4.3b, the nitrito (i.e., O-bonded) mode of 

coordination of the nitrite ligand is present in the MnIIIMb(ONO) complex.  The 

conformation of the Mn–O–N–O moiety is trans.  The Mn–O(nitrite) bond length is 

2.33 Å, and the coordinating O-atom of the nitrite ligand is tilted 10° from the normal 

to the Mn-heme 4N plane.  The Mn–O–N and O–N–O angles are 112° and 119°, 

respectively.   The coordinating atom of the nitrite ligand is 2.57 Å from the Nε atom 

of the distal His64 residue, indicative of a strong hydrogen-bonding interaction.  

Further, the nitrite N-atom is 3.3 Å from the His64 Nε atom and the Val68 (nearest C-

atom) residues.  The terminal O-atom of the nitrite is 3.26 Å from the His64 Nε atom, 

but is only 3.07 Å from the Leu29 (nearest C-atom) residue.  The bond length 
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between the Mn atom and the proximal His93 residue is 2.37 Å, and the Mn atom is 

displaced by 0.07 Å from the Mn-heme 4N plane towards His93.  

4.7.7 CoIIIMb(H2O).  The Co-heme environment in the crystal structure of 

CoIIIMb(H2O) is shown in Figure 4.3c.  In this six-coordinate complex, the Co–

O(water) distance is 2.46 Å, and the distance between the O-atom (of the coordinated 

water) and the Nε atom of His64 is 2.54 Å.  The O-atom of the water ligand is tilted 

12° from the normal to the Co-heme 4N plane towards the interior of the protein.  The 

Co atom is displaced 0.04 Å from the heme plane towards the proximal His93 

residue, with a Co–N(His93) distance of 2.15 Å.  We note that the 1.65 Å resolution 

structure for sperm whale CoIIIMb(H2O), (Co–O = 2.19 Å; Co–N(His93) = 2.06 Å; 

(Co)O…N(His64) = 2.87 Å) has been reported previously.63  The superposition of the 

heme environments of horse heart (this work) and sperm whale CoIIIMb(H2O) is 

shown in Figure 4.4. 

 

Figure 4.4. A superposition of the heme environments in the crystal structures of hh 
CoIIIMb(H2O) (this work, shown in light grey) and sw CoIIIMb(H2O) (pdb code 
1YOH,63 shown in dark grey) using a global Cα structural alignment. 
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4.7.8 CoIIIMb(ONO–).  Addition of excess nitrite to a solution of 

CoIIIMb(H2O) results in a 6 nm shift of λmax from 425 nm to 431 nm.  This shift is not 

immediately noticeable (e.g, even after 1 min), but is clearly evident several minutes 

after mixing of the nitrite and CoIIIMb(H2O) solutions.  This 6 nm red-shift is larger 

than the 3 nm red-shift observed in the reaction of nitrite ion with native aquometMb 

(λmax 409 nm) to form Mb(ONO) (λmax 412 nm).50,64   

Co-crystallization of CoIIIMb(H2O) in the presence of excess sodium nitrite 

gives crystals of the desired complex with full occupancy of the nitrite ion ligand as 

determined by crystallography.  Soaking crystals of CoIIIMb(H2O) in a solution 

containing a high concentration of nitrite for at least 30 min gives the same 

CoIIIMb(ONO) product, but with only ~60% occupancy of the nitrite ligand.  

The Co-heme environment of the CoIIIMb(ONO) complex obtained from the 

co-crystallization experiment (with full occupancy of the nitrite ligand) is shown in 

Figure 4.3d.  As with the MnIIIMb(ONO) complex described earlier (Figure 4.3b), the 

nitrite ligand displays the nitrito (O-bound) coordination mode with respect to the 

metal center, and the Co–O–N–O moiety is in a trans conformation.   The axial Co–

O(nitrite) distance is 2.14 Å, and the Co–O–N(nitrite) and O–N–O angles are 105° 

and 117°, respectively.  The coordinating atom of the nitrite ligand is within 

hydrogen-bonding distance to the Nε atom of the distal His64 residue (at a distance of 

2.71 Å), and is tilted by 9° from the normal to the Co-heme 4N plane.  The terminal 

O-atom of the nitrite ligand is situated 3.32 Å from the Nε atom of the distal His64 

residue, and is 3.09 and 3.27 Å from the distal Leu29 and Val68 residues, 

respectively. 
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The nitrite (Co)O1–N and N–O2 bond lengths are 1.29 and 1.30 Å, 

respectively; these are identical within the limitation of this 1.60 Å resolution 

structure.  The Co atom is 0.04 Å out of the heme plane towards the proximal 

histidine with a Co–N(His 93) of 2.02 Å, and the axial (His93)N–Co–O1 bond angle 

is 172°.  

  

4.8 Discussion  

 The preparation and ligand binding properties of Mn-substituted Mb have 

been studied in detail by spectroscopic methods.  Both MnIIIMb and MnIIMb are high-

spin species.6,9,46,65  In this chapter, we report the high-resolution crystal structures of 

the as-isolated MnIIIMb, its reduced product, and the methanol, azide, nitrosyl, and 

nitrite derivatives.  In addition, we report the crystal structures of Co-substituted hh 

Mb and its nitrite adduct.  

The overall structure of Mn-substituted horse heart Mb is very similar to that 

of the iron-containing analogue, and the protein retains the typical Mb fold.  Maurus 

et al. compared the crystal structures of natural and recombinant wild-type horse 

heart myoglobin, and showed that small differences existed in the structures.66  When 

the final MnIIIMb model is superimposed on the 1.7 Å resolution crystal structure of 

recombinant horse heart Mb reported by Maurus et al. (pdb access code 1WLA),66 the 

root-mean square deviations in the backbone and side-chain atomic positions are 0.32 

Å and 1.01 Å, respectively.  When compared with the structure of natural Mb (pdb 

access code 1YMB),67 these values are 0.32 and 1.12 Å, respectively.  We find that 

the structures of the heme environments in our Mn-substituted horse heart myglobins 
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more closely match those of the recombinant iron analogues, particularly with the 

Leu29 and Val68 side-chain orientations.  The superposition of the heme environment 

structures of MnIIIMb(H2O) and the two aquometMb structures are shown in Figure 

4.5.  It is interesting to note that Atassi reported earlier that MnIIIMb and wild-type 

Mb exhibit identical immunological properties.10  In this chapter, we focus on the Mn-

heme active sites and their immediate environments.  

4.8.1 The Nature of the Heme Site in MnIII-Substituted Myoglobin.  

Manganese-substituted myoglobin (MnMb) has been prepared and studied in solution 

for decades.  However, the coordination environment around the metal center in 

MnMb derivatives has been a subject of considerable debate.  MnIIIMb displays a 

characteristic “split” Soret band pattern at λmax 378 and 471 nm, whereas MnIIMb 

displays a single Soret peak at λmax 438 nm.6,19,46  Mitra and coworkers used 

multinuclear NMR and optical spectroscopy to determine that the sixth axial position 

in MnIIIMb was unlikely to be occupied by a water molecule.29  In the latter study, 

they did not observe a change in the optical spectrum of MbIIIMb in the pH 4–11 

range, suggesting the absence of an aquo↔hydroxo equilibrium for a hypothetical 

axial water ligand.  This result differed somewhat from that reported by Spiro and 

coworkers who studied the resonance Raman spectra of MnIIIMb and found evidence 

for a weakly interacting axial water ligand in the sixth position.23  As stated in the 

Introduction, there is a noticeable paucity of crystal structures of Mn-substituted  
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Figure 4.5.   A superposition of the heme environments in the crystal structures of hh 
MnIIIMb(H2O) (this work, shown in light grey) and (a) natural hh FeIIIMb(H2O) (pdb 
code 1YMB,67 shown in dark grey), and (b) recombinant hh FeIIIMb(H2O) (pdb code 
1WLA,66 shown in dark grey), using a global Cα structural alignment.  The major 
conformation of His64 in hh MnIIIMb(H2O) is similar to the conformation in 
FeIIIMb(H2O).  The Leu29 and Val68 conformations of the Mn- and Fe-proteins 
overlay better in the structures shown in Figure 4.5b. 
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heme proteins in the literature.  Using X-ray difference Fourier techniques, Moffat 

and coworkers determined that for MnIIIHb, the α hemes contained six-coordinate 

MnIII centers (with axial water) whereas the β hemes were five-coordinate (i.e., no 

axial water).24 

 Farmer and coworkers investigated the electrochemical properties of MnIIIMb 

in dimethyldidodecylammonium bromide surfactant films.68  They discovered a 

dynamic exchange between two MnIII/MnII redox couples (E1 = –0.25 V vs SCE; E2 = 

–0.41 V vs SCE), and they attributed this to the presence of two forms of MnIIIMb 

that probably differed in heme site geometry.   Interestingly, Hoffman and Gibson 

reported that MnIIIMb reacted with azide in two kinetically separable steps, and that 

this was likely due to the presence of two forms of the Mn-porphyrin that differed in 

the extent of metal displacement from the porphyrin plane.26  

 The crystal structure of MnIIIMb(H2O) reported here sheds new light on this 

debate regarding the axial coordination geometry of the metal site in this protein.  

Three independent preparations, crystallizations, and structure solutions at 1.65 Å 

resolution yielded identical MnIIIMb(H2O) crystal structures.  In the structure, there is 

a mixture of a six-coordinate species (with axial water; 70% occupancy) and a five-

coordinate species (without axial water; a non-bonded water refined to 30% in the 

distal pocket).  We also found two conformations for the distal His64 residue, and 

these conformations refined to the corresponding 70% and 30% occupancies (Figures 

4.1a and 4.2).  

During the initial stages of refinement of the structure, we were unsure if the 

electron density (attributed to an axial ligand) observed in the Fo-Fc difference map 
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was due to an adventitious solvent molecule such as methanol.  To test this, we 

performed the following additional experiments.  (i) We effected reduction of the 

purple-red MnIIIMb crystal with dithionite, and obtained the structure of the resulting 

orange-red five-coordinate reduced compound MnIIMb (see later).  We then 

reoxidized this MnIIMb crystal with ferricyanide and determined its 1.9 Å resolution 

structure; it was identical to that obtained for MnIIIMb(H2O) as shown in Figure 4.1a.  

This result reaffirmed to us that the electron density in the distal pocket was not due 

to an adventitious exogenous ligand such as methanol.  (ii) In addition, we prepared 

the previously unknown methanol adduct by cocrystallizing MnIIIMb in the presence 

of methanol, and determining the structure of the resulting MnIIIMb(MeOH) product.  

The positive electron density in the Fo-Fc difference map is consistent with the 

presence of a methanol ligand that refined to full occupancy.  Importantly, the 

geometry of the bound MeOH ligand in the structure of MnIIIMb(MeOH) (Figure 

4.1b) is clearly different from that shown for MnIIIMb(H2O) (Figure 4.1a).   

 The presence of distal-pocket uncoordinated water in the structure of 

MnIIIMb(H2O) is, while initially unexpected, not without precedent in crystal 

structures of native and mutant iron myoglobins.  For example, a similar distal-pocket 

(uncoordinated) water has been located in the 1.15 Å resolution crystal structures of 

wild-type ferrous deoxyMb (horse heart and sperm whale), and this water is stabilized 

by hydrogen-bonding with the distal His64 residue (HOH…N(His) distance of 2.8 

Å).69,70  In the case of hh deoxyMb, this distal pocket water was located 3.53(5) Å 

from the Fe center (c.f. 2.13 Å for liganded water in aquometMb).69  Further, distal 
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pocket water has been observed in other reported structures of wild-type71-73 and 

mutant (V68A,72 V68F,72 V68N (molecule B)74) deoxyMb’s. 

 The crystal structure of the Val68Thr mutant of pig deoxyMb provides an 

interesting comparison with the structure of hh MnIIIMb(H2O) reported here.  In 

molecule A of the Val68Thr deoxyMb, a single water molecule is distributed between 

two positions; one position is within direct bonding distance to Fe (Fe–O = 1.9 Å; 

30% occupancy of H2O), and the other is positioned 3.5 Å from the Fe (70% 

occupancy of H2O) yet within hydrogen-bonding distance of the distal His64 residue 

(HOH… Nε(His) = 2.6 Å).75  In molecule B, a single position of the distal water 

located 3Å from Fe is observed, and this is also within hydrogen-bonding distance to 

the His64 residue (HOH…Nε(His) = 2.6 Å).75   

 The distance between the two distal pocket water molecule positions in 

MnIIIMb(H2O) is 1.70 Å.  This distance is inconsistent with the presence of a 

dioxygen ligand (c.f., the O–O distance of 1.24 Å in oxyMb),69 as are the refined 

occupancies of the O atoms.  Further, this 1.70 Å distance is too short for a 

HOH…OH2 hydrogen-bonding interaction, and rules out the presence of both 

coordinated and unligated H2O in the same molecule (such presence of coordinated 

and uncoordinated H2O has been observed in the 1.9 Å resolution structure of native 

sw aquometMb).71   

 The location of the distal pocket (uncoordinated) water molecule in 

MnIIIMb(H2O) is reminiscent of the distal docking site for photodissociated CO from 

MbCO as determined by X-ray crystallography.76-78  For example, the crystal structure 

of photolyzed hh MbCO shows the CO ligand in a position that is 3.6 Å from the Fe 



 

 107 

atom and atop a carbon pyrrole.76  This site is in the general area as, but not the same 

as, the distal pocket Xe binding site (i.e., the Xe4 site).79   

 Importantly, the displacement of the distal pocket water in deoxyMb has been 

linked to the kinetic barriers for CO binding to ferrous Mb.71,80  It is thus likely that 

the presence of two types of distal H2O in MnIIIMb(H2O) (i.e., coordinated and 

uncoordinated) helps explain the presence of two MnIII/MnII redox couples for the 

electrochemical reduction of MnIIIMb68 and the two kinetically separable steps for the 

reaction of azide with MnIIIMb.26  Finally, we note that Moffat and coworkers have 

utilized X-ray difference Fourier techniques to determine that the Mn center in the α-

heme of MnIIIHb binds H2O as a sixth ligand, whereas the β-heme does not and is 

five-coordinate.24   

4.8.2 The Structure of the Reduced MnIIMb Complex.  The reduction of 

MnIIIMb to MnIIMb in solution is a well-studied reaction, and the reduction can be 

effected using dithionite,11,46,81 radiolysis,46 electrochemical methods employing 

surfactant films,68 or employing the mediator oxazine-170 perchlorate.82  Hori et al. 

employed powder and single-crystal multifrequency EPR spectroscopy to determine 

that the metal center in MnIIMb is high-spin 3d5 (S = 5/2)65 and this is consistent with 

a singly-occupied strongly antibonding dx2-y2 orbital.6 

 Arnone and coworkers reported the 3.0 Å resolution crystal structure of the 

metallohybrid hemoglobin Hb(α-FeIICO)(β-MnII) that crystallizes in the deoxyHb T-

state.83  They determined that the β-MnII subunit is structurally isomorphous with the 

normal deoxy β-Fe subunit.  
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 The crystal structure of MnIIMb reported here reveals that the distal pocket 

water molecules are displaced upon dithionite reduction of MnIIIMb(H2O).  Thus, 

unlike the case of MnIIIMb(H2O), no water molecules were located in the vicinity of 

the MnII center.  This contrasts with several reported crystal structures of iron-

containing deoxyMb where a non-coordinated water molecule has been located in the 

distal pocket.69-73,84 

 The apical displacement of the Mn atom in MnIIMb (ΔMn = 0.34 Å) from the 

heme 4N plane is larger than that observed for MnIIIMb(H2O) (ΔMn = 0.18 Å).  This 

increase in apical displacement upon reduction of the protein is similar to that seen in 

the high-resolution structures of reduced Mb (ΔFe = 0.363(11) Å) vs. aquometMb 

(ΔFe = 0.106(7) Å).69  The heme environments of MnIIIMb(H2O) and MnIIMb, 

obtained from the overlay of the protein Cα backbones, are shown in Figure 4.6.  

Differences are evident in the water ligation and distal His64 placement in these 

proteins.  The His64 residue in the reduced MnIIMb more closely overlaps the minor 

conformation of the His64 residue in MnIIMb(H2O).  Figure 4.7 shows an overlay of 

the heme sites in the reduced MnIIMb and deoxyMb (FeIIMb, Figure 4.7).  In the 

reduced FeIIMb case, one of the two conformations of the distal His64 residue reveals 

an inward movement that supposedly helps stabilize the distal pocket water molecule 

through hydrogen-bonding, whereas in the reduced MnIIMb case such a hydrogen-

bond stabilization is not present due to the lack of distal pocket water.  A 

superposition of the heme environments of MnIIMb and FeIIMb is shown in Figure 4.7 

to illustrate these His64 positions. 
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Figure 4.6.   A superposition of the heme environments in the crystal structures of hh 
MnIIIMb(H2O) (this work, shown in light grey) and hh MnIIMb (this work, shown in 
dark grey) using a global Cα structural alignment, and shown from two different 
views.  The Nε atoms of His64 and His93 residues of MnIIMb are shifted from their 
major/minor positions in MnIIIMb(H2O) by 0.95/0.21 and 0.37 Å, respectively.  Also, 
the MnII center is shifted 0.25 Å from its MnIII position.  A meso carbon and its 
connecting pyrrole ring A are shifted towards the proximal side in MnIIMb relative to 
those in MnIIIMb(H2O).  
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Figure 4.7.  A superposition of the heme environments in the crystal structures of hh 
MnIIMb (this work, shown in light grey) and hh FeIIMb (pdb code 1A6N,69 shown in 
dark grey) using a global Cα structural alignment.  The distal pocket water in hh 
FeIIMb is located 3.53 Å from Fe, and is 2.76 Å from the inward conformation of the 
distal His64 residue; the outer conformation overlaps with that of aquometMb  
 
 

 4.8.3 The Structure of the Azide Complex.  The azide anion is a known 

inhibitor of cellular respiration, and it also inhibits the catalytic activities of catalase, 

cytochrome oxidase, and peroxidases.42  The azide adduct of Mn-substituted Mb has 

been reported,11,81 and has been characterized by optical and resonance Raman 

spectroscopy.22  Hoffman and Gibson reported anomalous binding of azide to 

MnIIIMb, and determined that the reaction of azide with MnIIIMb proceeded in two 

kinetically separable steps to eventually generate MnIIIMb(N3
–).26  In contrast, azide 

binding to iron-containing metMb is consistent with a single binding equilibrium.85  
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The 2.8 Å resolution crystal structure of the azide complex of the iron-containing 

horse metHb is known.86,87  The related crystal structure of the azide adduct of metMb 

was first reported by Stryer et al. in 1964.88  A comparison of the crystal structures of 

hh MbIII(N3
–) (at 2.0 Å resolution) and its His64Thr mutant (at 1.8 Å resolution) was 

reported by Maurus et al. in 1998.89  In the wild type adduct, the Fe–N–N(N) bond 

was 119°, and the Fe–N(azide) bond was 2.11 Å.  In the His64Thr mutant structure, 

two conformations of the azide ligand were present; the major (~90%) conformation 

oriented the azide ligand towards the interior of the protein (as seen in the wild type 

structure), and the minor conformation oriented the azide ligand towards to exterior 

of the protein towards the solvent.  The latter minor conformation is reminiscent of 

the 1.9 Å resolution crystal structure of the azide adduct of ferric myoglobin isolated 

from the buccal muscles of the Mediterranean mollusc Aplysia limacine, where the 

azide ligand is oriented towards the solvent 90; this protein lacks a distal His64(E11) 

residue. 

The crystal structure of hh MnIIIMb(N3
–) reported here, and shown in Figure 

4.1d, is similar to that of wild type MbIII(N3
–),89 in which only one conformation of 

the azide ligand was observed.  In both compounds, the azide ligand is oriented 

towards the interior of the protein.  As is the case of the iron-containing MbIII(N3
–), 

the azide ligand is oriented towards the distal Ile107 residue and in Van der Waal’s 

contact with Leu29.  The Mn atom in MnIIIMb(N3
–) is almost in the heme 4N plane, 

with an apical displacement of only 0.08 Å.  The near in-plane position of Mn is 

consistent with the six-coordination of the metal center and near-complete (94%) 

occupancy of the azide ligand.  The proximal Mn–N(His93) bond length in 
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MnIIIMb(N3
–) of 2.50 Å is, however, longer than that observed in the iron-containing 

MbIII(N3
–) (2.06 Å), demonstrating the effect that the MnIII d4 center has on this axial 

bond length when compared with the ferric d5 center.  Ferric MbIII(N3
–) has been 

shown to exhibit a ground-state low-spin electronic configuration and an observable 

low-spin/high-spin equilibrium at room temperature.85  In contrast, the d4 complex 

MnIIIMb(N3
–) is known to be high-spin,26 and this likely accounts for its longer 

proximal metal–N(His93) bond length.   

4.8.4 The Nitric Oxide Complex.  For convenience, the nitrosyl adduct of 

MnIIMb is represented as MnIIMb(NO), although it is perhaps better represented as 

{MnNO}6 (see later).  In order to place the NO ligand conformation observed in 

MnIIMb(NO) in proper context, some discussion of formalism is warranted.91,92  For 

example, the oxidation state formalism has often been used to describe metal nitrosyl 

linkages.  In this formalism, NO binding to a metal center (M) to generate a linear M-

NO unit results in a complex formulated as M–(NO+), where a formal electron 

transfer to the metal has occurred.  Conversely, when a bent M-NO moiety is 

generated, the complex is formulated as M+(NO–).  Clearly, this formalism is overly 

simplistic.  Although it does take into account that NO is a redox active ligand, it does 

not account for cases where the unpaired electron density on NO essentially still 

resides on the ligand in its metal complex.  Enemark and Feltham developed a 

notation that treats the metal-NO fragment as a single unit, and the use of the 

resulting formalism avoids the oxidation state simplification of the metal-NO 

group.93-95  In this {MNO}n formalism, n denotes the number of assigned electrons to 

the metal d orbitals (without consideration of the NO ligand(s)) plus an electron for 
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each of the attached NO ligands.  Thus, the (por)Mn(NO) complex belongs to the 

{MnNO}6 class, and the (por)Fe(NO) belongs to the {MNO}7 class.  According to 

this formalism as applied to nitrosyl metallopophyrins, {MNO}6 compounds have 

preferred linear NO geometries, and {MNO}7 compounds have bent (~145°) NO 

geometries.  In synthetic six-coordinate iron nitrosyl porphyrins of the {MNO}7 class, 

the FeNO angles are in the tight 137–140° range (avg. ~138.5°).96,97  A much wider 

range of FeNO bond angles (112°–160°) is observed in nitrosyl heme proteins, 

however.50  The reported 1.3 Å resolution crystal structures of hh MbNO showed that 

two reproducible FeNO angles (~144° and 120°) are obtained depending on the 

method of preparation of the complex.50  The variability of FeNO angle in the heme 

pocket of MbNO had been demonstrated previously by Hori et al. using single crystal 

EPR spectroscopy; the FeNO angle was 153 ± 5 at 293K, but was 109 ± 5 at 77 K.98  

Chien and Dickenson showed, using single crystal EPR spectroscopy, that the FeNO 

angles in HbKNO were 167° in the α-subunits and 105° in the β-subunits.15  It is thus 

likely that subtle distal pocket effects influence the metal-NO bond geometry in 

nitrosyl adducts of heme proteins.  We now consider the case of MnIIMb(NO) and 

compare the observed geometry to that expected from synthetic manganese nitrosyl 

porphyrins. 

 To date, all synthetic (por)Mn(NO)-containing compounds of the {MnNO}6 

class (i.e., MnIINO) that have been characterized by X-ray crystallography display 

linear Mn-NO groups.39,40,99,100  The expected and observed linearity of the MnNO 

bonds is supported by the spectroscopic characterization of several low-spin 

(por)Mn(NO)-containing compounds.35,37,92,101  Yu et al. employed resonance Raman 
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spectroscopy to demonstrate that steric constraints within the distal face of a synthetic 

“strapped” (por)Mn(NO) complex enhances the Mn–N–O bending mode, and they 

attributed this observation to a tilting of the trans Mn–N(N-base) bond.101 

 As stated in the Introduction, NO adducts of Mn-substituted heme proteins 

have been prepared and characterized by spectroscopy.  MnIIIMb does not bind NO, 

however MnIIMb does.32  Interestingly, Gersonde and coworkers demonstrated, using 

resonance Raman spectroscopy, that the monomeric MnIIIHb compound from the 

insect Chironomus thummi thummi binds NO to give the MnIIINO adduct, but this 

undergoes autoreduction to the MnIINO derivative.33   

 To the best of our knowledge, the crystal structure of MnIIMb(NO) reported in 

this work (Figure 4.3a) represents the first distinctly bent MnNO moiety in a natural 

or synthetic manganese heme complex.  The NO ligand refines to 70% occupancy, 

but the MnNO bend is clearly evident in the structure.  The nitrosyl N atom is 2.6 Å 

away from the Nε atom of the major conformation of the distal His64 residue, 

suggesting strong hydrogen-bond stabilization of the NO molecule in the distal 

pocket.  As mentioned in the Results section, the observed long Mn–NO distance of 

2.53 Å is likely an average distance that has contributions from the unligated five-

coordinate MnIIMb complex and the nitrosyl adduct.  Assuming that the Mn atom 

were in the heme 4N plane in MnIIMb(NO), the resulting Mn–NO distance would still 

be rather long.  Thus, we propose that the geometry of the MnNO moiety observed 

here represents that of a loosely bound NO molecule to the metal center that is held in 

place by strong hydrogen-bonding to the distal His64 residue.  This geometry is also 

likely determined by the method of preparation of the complex, namely the 
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nitrosylation of the preformed distal pocket in the MnIIMb crystals.  Such a procedure 

may disfavor linear (strong) binding of the NO ligand without significant movement 

of the distal His64 residue away from its position in MnIIMb.  We are continuing 

attempts to crystallize pre-formed MnIIMb(NO) to test this hypothesis. 

 4.8.5 The Nitrite Complex of MnIIIMb and CoIIIMb.  There is renewed 

interest in the nature of binding of the nitrite anion to heme proteins.43,102  It has long 

been appreciated that the heme-nitrite interaction is an essential one insofar as nitrite 

reduction by the heme-containing nitrite reductases (NiRs) is concerned.  Nitrite is 

reduced to NO by the NiRs103-105 and this process is believed to involve initial binding 

of nitrite directly to the iron center in the heme-containing NiRs.  Crystal structures of 

the nitrite adducts of cytochrome cd 1 NiR from P. Pantotrophus reveals the N-

binding (i.e., nitro) mode of nitrite to the iron center.106 

 

Although this nitrite adduct was obtained by soaking crystals of ferrous NiR with 

nitrite, it is reasonable to assume that such an N-binding mode would facilitate 

protonation of a nitrite terminal O-atom to result in eventual release of NO and a 

water molecule.  The crystal structure of the nitrite adduct of ferric cytochrome c NiR 

from Wolinella succinogenes also shows N-binding of the nitrite anion to the iron 

center, and density functional calculations on the related model compound 

(por)FeIII(NH3)(NO2) reveals that the N-binding mode is more stable than the nitrito 

O-binding mode by >10 kcal/mol.107  The crystal structure of the nitrite adduct of the 
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sulfite reductase hemoprotein from E. coli similarly reveals an N-binding mode of the 

nitrite anion to the iron center.108   

 Interestingly, DFT calculations on the nitrite adduct of cytochrome cd1 NiR 

provide intriguing possibilities for nitrite coordination to the heme center in this 

enzyme.109  Although the nitrito O-binding mode was determined to be 4.5 kcal/mol 

higher in energy than the corresponding nitro N-binding mode in the ferric form (6 

kcal/mol in the ferrous form), the nitrito form was considered to also be a viable 

intermediate in NiR catalysis.   

 The nitro N-binding mode has been determined for all crystallographically 

characterized synthetic iron porphyrins containing the nitrite ligand, regardless of 

whether the iron center is formally in the ferric or ferrous state.96  The only exception 

to this is that for the nitrite in the anionic complex [(TpivPP)Fe(NO)(NO2)]– which 

displays both N-binding (nitro) and O-binding (nitrito) of the disordered nitrite 

group.110  Results of DFT calculations on a model iron porphyrin with NO and nitrite 

ligands show that the nitrito linkage isomer (porphine)Fe(NO)(ONO) is only 4.3 

kcal/mol higher in energy than the related nitro isomer (porphine)Fe(NO)(NO2).111 

Our group reported the 1.3 Å resolution X-ray crystal structure of the nitrite 

adduct of ferric horse heart Mb and showed that the nitrite anion was bound to the 

ferric center via the nitrito O-binding mode.50  Importantly, this structure was the first 

to demonstrate that a stable O-binding mode of nitrite is possible in heme proteins.  

Given this rather unexpected nitrito binding mode for the nitrite ligand in the iron-

containing d5 compound MbIII(ONO–) and the role of the distal pocket in stabilizing 
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this (to date) unusual binding mode, we sought to investigate the nitrite binding 

preferences within the distal pockets of the d4 MnIII and d6 CoIII analogues. 

To the best of our knowledge, there is only one report of a crystal structure of 

a synthetic manganese porphyrin containing nitrite, namely that of 

(TPP)MnIII(ONO).112  This compound clearly reveals a nitrito O-binding mode of the 

nitrite anion.  Interestingly, although continuous photolysis of this compound shows 

the formation of (TPP)Mn(O) and NO,112,113 flash photolysis studies on this compound 

reveal dissociation of NO2 from the metal center.114  Recombination of NO2 with the 

(TPP)MnII photoproduct then proceeds via a nitro (TPP)Mn(NO2) intermediate that 

isomerizes to the more stable (TPP)Mn(ONO) compound.114  Not surprisingly, 

therefore, the crystal structure of MnIIIMb(ONO–) also shows that the nitrite anion 

binds to the manganese center via the nitrito O-binding mode (Figure 4.3b).   

The situation for cobalt was not expected, however.  To date, all 

crystallographically characterized nitrite adducts of synthetic cobalt porphyrins 

demonstrate that the nitrite anion is bound to the cobalt centers via the nitro N-

binding mode.115-118  To the best of our knowledge, there is no exception to this 

observation for model cobalt porphyrin compounds.  Indeed, it was demonstrated that 

during the recombination of NO2 with (TPP)CoII (generated from flash photolysis of 

(TPP)CoIII(NO2)), an intermediate forms which decays to (TPP)CoIII(NO2); the 

intermediate was assigned as the nitrito linkage isomer (TPP)CoIII(ONO).119 

To the best of our knowledge, no nitrite adducts of cobalt-substituted heme 

proteins or related cobalt biomolecules have been characterized.  Thus, the structure 

of CoIIIMb(ONO–) represents the first report of a cobalt nitrite heme protein, and is 
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the first stable nitrito binding to cobalt porphyrins to be established.  Clearly, it is 

evident that although information from crystal structures of cobalt nitrite compounds 

of model porphyrins have helped in understanding the mechanisms of action of these 

compounds as catalysts for chemical transformation such as O-atom transfers in 

oxidation reactions (generating (por)Co(NO) intermediates),118 the structures may not 

correlate very well with the geometries present in cobalt-substituted heme proteins.  

The ability of the distal pocket in CoIIIMb to effect the nitrito O-binding preference is 

significant, and suggests that the hydrogen-bonding provided by the distal His64 

residue is primary in stabilizing this binding mode.  Since such a moderate to strong 

hydrogen bonding capability is absent in most synthetic cobalt porphyrins with nitrite 

ligands, it is thus not surprising that this O-binding mode has yet to be observed in 

these model compounds.  It is somewhat surprising, however, that even in the picket 

fence porphyrin derivatives such as (TpivPP)Co(NO2)(1-MeIm) which provide 

electrostatic interactions between “distal” NH groups and bound nitrite, that this 

stabilization is not sufficient to induce O-binding of the nitrite group,116 perhaps due 

to the artificial symmetrical nature of the distal pockets. 

In summary, the X-ray crystal structures reported to date of synthetic Mn, Fe, 

and Co porphryins with nitrite ligands reveal a preference for nitrito O-binding for the 

Mn compound, and nitro N-binding for the Fe and Co compounds.  In the Mb 

derivatives, however, all three metal-nitrite derivatives (MnIII, FeIII, and CoIII) reveal 

the nitrito O-binding mode, suggesting that the distal pocket of Mb is the major 

determinant in this structural preference for these Mb nitrite derivatives. 
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4.9 Conclusion 

 The recent biological role of nitrite ion in many physiological processes such 

as hypoxic vasodilation, ischemia reperfusion, and mitochondrial respiration has been 

demonstrated to be due to its conversion to NO under enzymatic or nonenzymatic 

reduction. In the enzymatic pathway, deoxy hemoglobin and deoxy myoglobin have 

been reported to mediate this conversion. We are interested in the active site structure 

of the complexes formed from myoglobin–nitrite or myoglobin-NO adducts and how 

the metal-heme center and the peripheral amino acids in the distal pocket will affect 

the binding mode of these biologically important ligands. Our group has previously 

reported the unusual nitrito O-binding mode of coordinated nitrite in the iron-

containing hh MbIII(ONO). In this chapter, we reported the 1.60 Å resolution crystal 

structures of the nitrite adducts of manganese and cobalt-substituted horse heart 

myoglobin (hh MnMb, hh CoMb). Interestingly, both of the structures reveal the O-

binding mode (hh MnIIIMb(ONO), hh CoIIIMb(ONO)) although all known cobalt 

nitrite model compounds are showing N-bound nitrite coordination mode suggesting 

the effective role of the distal histidine amino acid (His 64) in forcing the O-binding 

mode through the H-bonding with the coordinated oxygen atom of nitrite ion. In 

addition we reported the 1.90 Å resolution crystal structure of MnMb-NO adduct. 

The structure suggests a loosely bound NO in the distal pocket; the Mn–N–O moiety 

is surprisingly bent, and represents the first such distinctly bent metal-NO unit for a 

natural or synthetic manganese porphyrin complex. We also reported the high 

resolution crystal structures of the oxidized Mn-substituted horse heart myoglobin 

(hh MnIIIMb), the reduced form (hh MnIIMb), and complexes of hh MnMb with 
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methanol, and azide. The MnIIIMb compound contains distal pocket water in two 

positions, one coordinated and the other uncoordinated. This finding explains the 

controversial spectroscopic, kinetic, and electrochemical properties reported in the 

literature. The reduced form, MnIIMb, lacks a distal pocket water molecule, in 

contrast to that observed previously for the iron-containing deoxyMb. 

 

4.10 References  

 (1) Gray, H.; Ellis, W. In: Bertini I, Gray HB, Lippard SJ, Valentine JS  
                        (eds), Bioinorganic Chemistry. University Science Books, Mill Valley,  
                        1994, 315-364. 
 (2) Eichhorn, G.; Marzilli, L. In: Heme proteins, Advances in inorganic  
                        biochemistry series No. 7, Elsevier, New York, 1988. 
 (3) Dawson, J. H. Science 1988, 24, 433. 
 (4) Yonetani, T.; Yamamoto, H.; Woodrow, G. V. J. Biol. Chem. 1974,  
                        249, 682-690. 
 (5) Bull, C.; Fisher, R. G.; Hoffman, B. M. Biochem. Biophys. Res.  
                       Commun. 1974, 59, 140-145. 
 (6) Boucher, L. J. Coord. Chem. Rev. 1972, 7, 289-329. 
 (7) Gibson, Q. H.; Hoffman, B. M. J. Biol. Chem. 1979, 254, 4691-4697. 
 (8) Fabry, T. L.; Simo, C.; Javaherian, K. Biochim. Biophys. Acta 1968,  
                       160, 118-122. 
 (9) Yonetani, T.; Drots, H. R.; Leigh, J. S.; Jr; Reed, G. H.; Waterman, M.  
                        R.; Asakura, T. J. Biol. Chem. 1970, 245, 2998-3003. 
 (10) Atassi, M. Z. Biochem. J. 1967, 103, 29-35. 
 (11) Yonetani, T.; Asakura, T. J. Biol. Chem. 1969, 244, 4580-4588. 
 (12) Breslow, E. J. Biol. Chem. 1964, 239, 486-496. 
 (13) Gelb, M. H.; Toscano, W. A., Jr.; Sligar, S. G. Proc. Natl. Acad. Sci.  
                        U.S.A 1982, 79, 5758-5762. 
 (14) Dierks, E. A.; Hu, S.; Vogel, K. M.; Yu, A. E.; Spiro, T. G.; Burstyn,  
                        J. N. J. Am. Chem. Soc. 1997, 119, 7316-7323. 
 (15) Chien, J. C. W.; Dickinson, L. C. J. Biol. Chem. 1977, 252, 1331- 
                        1335. 
 (16) Hemmens, B.; Gorren, A. C. F.; Schmidt, K.; Werner, E. R.; Mayer, B.  
                        Biochem. J. 1998, 332, 337-342. 
 (17) Theorell, H. Nature (London) 1945, 156, 474. 
 (18) Ozols, J.; Strittmatter, P. J. Biol. Chem. 1964, 239, 1018-1023. 
 (19) Yonetani, T. J. Biol. Chem. 1967, 242, 5008-5013. 
 (20) Yonetani, T.; Asakura, T. J. Biol. Chem. 1968, 243, 3996-3998. 



 

 121 

 (21) Gupta, K.; Selinsky, B. S.; Loll, P. J. Acta Cryst. 2006, D62, 151–156. 
 (22) Yu, N.-T.; Tsubaki, M. Biochemistry 1980, 19, 4647-4653. 
 (23) Parthasarathi, N.; Spiro, T. G. Inorg. Chem. 1987, 26, 3792-3796. 
 (24) Moffat, K.; Loe, R. S. J. Mol. Biol. 1976, 104, 669-685. 
 (25) Moffat, K.; Loe, R. S.; Hoffman, B. M. J . Am. Chem. Soc. 1974, 96,  
                        5259-5261. 
 (26) Hoffman, B. M.; Gibson, Q. H. Biochemistry 1976, 15, 3405-3410. 
 (27) Parthasarathi, N.; Spiro, T. G. Inorg. Chem. 1987, 26, 2280-2282. 
 (28) Masuya, F.; Hori, H. Biochimica et Biophysica Acta 1993, 1203, 99- 
                       103. 
 (29) Mondal, M. S.; Mazumdar, S.; Mitra, S. Inorg. Chem. 1993, 32, 5362- 
                        5367. 
 (30) Gibson, Q. H.; Hoffman, B. M.; Crepeau, R. H.; Edelstein, S. J.; Bull,  
                        C. Biochem. Biophys. Res. Commun. 1974, 59, 146-151. 
 (31) Hoffman, B. M.; Gibson, Q. H.; Bull, C.; Crepeau, R. H.; Edelstein, S.  
                        J.; Fisher, R. G.; McDonald, M. J. Ann. N. Y. Acad. Sci. 1975, 244,  
                        174-186. 
 (32) Yonetani, T.; Yamamoto, H.; Erman, J. E.; J. S. Leigh, J.; Reed, G. H.  
                        J. Biol. Chem. 1972, 247, 2447-2455. 
 (33) Lin, S.-H.; Yu, N.-T.; Gersonde, K. FEBS Lett. 1988, 229, 367- 
                        371. 
 (34) Lan, E. H.; Dave, B. C.; Fukuto, J. M.; Dunn, B.; Zink, J. I.; Valentine,  
                        J. S. J. Mater. Chem. 1999, 9, 45–53. 
 (35) Wayland, B. B.; Olson, L. W. J. Am. Chem. Soc. 1974, 96, 6037-6041. 
 (36) Wayland, B. B.; Olson, L. W.; Siddiqui, Z. U. J . Am. Chem. Soc.  
                        1976, 98, 94-98. 
 (37) Piciulo, P. L.; Scheidt, W. R. Inorg. Nucl. Chem. Lett. 1975, 11, 309- 
                        311. 
 (38) KELLY, S.; Lancon, D.; Kadish, K. M. Inorg. Chem. 1984, 23, 1451- 
                       1458. 
 (39) Yi, J.; Namjou, K.; Zahran, Z. N.; McCann, P. J.; Richter-Addo, G. B.  
                        Nitric Oxide 2006, 15, 154-162. 
 (40) Zahran, Z. N.; Lee, J.; Alguindigue, S. S.; Khan, M. A.; Richter-Addo,  
                        G. B. Dalton Trans. 2004, 44–50. 
 (41) Yu, C.-H.; Su, Y. O. J. Electroanal. Chem. 1994, 368, 323-327. 
 (42) Keilin, D. Proc. Roy. Soc. B 1936, 121, 165-173. 
 (43) Azarov, I.; Huang, K. T.; Basu, S.; Gladwin, M. T.; Hogg, N.; Kim- 
                            Shapiro, D. B. J. Biol. Chem. 2005, 280, 39024–39032. 
 (44) Bryan, N. S. Free Rad. Biol. Med. 2006, 41, 691-701. 
 (45) Teale, F. W. J. Biochim. Biophys. Acta 1959, 35, 543. 
 (46) Langley, R.; Hambright, P.; Alston, K. Inorg. Chem. 1986, 25, 114- 
                        117. 
 (47) Pflugrath, J. Acta Crystallogr. 1999, D55, 1718-1725. 
 (48) By Collaborative Computational Project, N. S. D. L.,  
                        Warrington WA4 4AD, England Acta Crys. 1994, D50, 760-763. 
 (49) Vagin, A.; Teplyakov, A. J. Appl. Crystallogr. 1997, 30, 1022-1025. 



 

 122 

 (50) Copeland, D. M.; Soares, A.; West, A. H.; Richter-Addo, G. B. J.  
                        Inorg. Biochem. 2006, 100, 1413-1425. 
 (51) Arendall III, W. B.; Tempel, W.; Richardson, J. S.; Zhou, W.; Wang,  
                         S.; Davis, I. W.; Liu, Z.-J.; Rose, J. P.; Carson, W. M.; Luo, M.;  
                         Richardson, D. C.; Wang, B.-C. J. Struct. Funct. Genomics 2005, 6,  
                        1-11. 
 (52) Davis, I. W.; Murray, L. W.; Richardson, J. S.; Richardson, D. C.  
                        Nucl. Acids Res. 2004, 32 (Web Server), W615-W619. 
 (53) Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.;  
                         Grosse-Kunstleve, R. W.; Jiang, J.-S.; Kuszewski, J.; Nilges, M.;  
                         Pannu, N. S.; Reed, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. 
                         Acta Crystallogr. 1998, D54, 905-921. 
 (54) Williamson, M. M.; Hill, C. L. Inorg. Chem. 1987, 26, 4155-4160. 
 (55) Williamson, M. M.; Hill, C. L. Inorg. Chem. 1986, 25, 4668-4671. 
 (56) Cheng, B.; Cukiernik, F.; Fries, P. H.; Marchon, J.-C.; Scheidt, W. R. 
                        Inorg. Chem. 1995, 34, 4627-4639. 
 (57) Day, V. W.; Stults, B. R.; Tasset, A. L.; Day, R. O.; Marianelli, R. S.  
                        J. Am. Chem. Soc. 1974, 96, 2650-2652. 
 (58) Hatano, K.; Anzai, K.; Iitaka, Y. Bull. Chem. Soc. Jpn. 1983, 56, 422- 
                        427. 
 (59) Cheng, B.; Scheidt, W. R. Acta Cryst. 1996, C52, 361-363. 
 (60) Kirner, J. F.; Reed, C. A.; Scheidt, W. R. J . Am. Chem. Soc. 1977,  
                        99, 2557-2563. 
 (61) Day, V. W.; Stults, B. R.; Tasset, E. L.; Marianelli, R. S. Inorg. Nucl. 
                        Chem. Lett. 1975, 11, 505-509. 
 (62) Brooker, S.; McKee, V. Acta Cryst. 1993, C49, 441-445. 
 (63) Brucker, E. A.; Olson, J. S.; Phillips, G. N. J. Biol. Chem. 1996, 271, 
                        25419–25422. 
 (64) Sono, M.; Dawson, J. H. J. Biol. Chem. 1982, 257, 5496-5502, and  
                        references therein. 
 (65) Hori, H.; Ikeda-Saito, M.; Reed, G. H.; Yonetani, T. J. Magn. Reson.  
                       1984, 58, 177-185. 
 (66) Maurus, R.; Overall, C. M.; Bogumi, R.; Luo, Y.; Mauk, A. G.; Smith,  
                        M.; Brayer, G. D. Biochem. Biophys. Acta 1997, 1341, 1-13. 
 (67) Evans, S. V.; Brayer, G. D. J. Mol. Biol. 1990, 213, 885-897. 
 (68) Bohle, D. S.; Sagan, E. S. Eu. J. inorg. Chem. 2000, 1609. 
 (69) Vojtechovsky, J.; Chu, K.; Berendzen, J.; Sweet, R. M.; Schlichting, I.  
                        Biophys. J. 1999, 77, 2153-2174. 
 (70) Kachalova, G. S.; Popov, A. N.; Bartunik, H. D. Science 1999, 284,  
                        473-476. 
 (71) Quillin, M. L.; Arduini, R. M.; Olson, J. S.; Philips, G. N., Jr. J. Mol. 
                        Biol. 1993, 234, 140-155. 
 (72) Quillin, M. L.; Li, T.; Olson, J. S.; Phillips, G. N., Jr.; Y, D.; Ikeda- 
                        Saito, M.; Regan, R.; Carlson, M.; Gibson, Q. H.; Li, H.; Elber, R. J. 
                        Mol. Biol. 1995, 245, 416-436. 
 (73) Takano, T. J. Mol. Biol. 1977, 110, 569-584. 



 

 123 

 (74) Krzywda, S.; Murshudov, G. N.; Brzozowksi, A. M.; Jaskolski, M.;  
                        Scott, E. E.; Klizas, S. A.; Gibson, Q. H.; Olson, J. S.; Wilkinson, A. J.  
                        Biochemistry 1998, 37, 15896-15907. 
 (75) Cameron, A. D.; Smerdon, S. J.; Wilkinson, A. J.; Habash, J.;  
                        Helliwell, J. R.; Li, T.; Olson, J. S. Biochemistry 1993, 32, 13061- 
                       13070. 
 (76) Chu, K.; Vojtchovsky, J.; McMahon, B. H.; Sweet, R. M.; Berendzen,  
                        J.; Schlichting, I. Nature 2000, 403, 921-923. 
 (77) Schotte, F.; Soman, J.; Olson, J. S.; Wulff, M.; Anfinrud, P. A. J.  
                       Struct. Biol. 2004, 147, 235-246. 
 (78) Lamb, D. C.; Nienhaus, K.; Arcovito, A.; Draghi, F.; Miele, A. E.; 
                        Brunori, M.; Nienhaus, G. U. J. Biol. Chem. 2002, 277, 11636–11644. 
 (79) Brunori, M.; Bourgeois, D.; Vallone, B. J. Struct. Biol. 2004, 147,  
                        223-234. 
 (80) Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem.  
                        Rev. 1994, 94, 699-714. 
 (81) Cox, R. P.; Hollaway, M. R. Eur. J. Biochem. 1977, 74, 575-587. 
 (82) Taniguchi, I.; Li, C.-Z.; Ishida, M.; Yao, Q. J. Electroanal. Chem.  
                        1999, 460, 245-250. 
 (83) Arnone, A.; Rogers, P.; Blough, N. V.; McGourty, J. L.; Hoffman, B. 
                        M. J. Mol. Biol. 1986, 188, 693-706. 
 (84) Nienhaus, K.; Ostermann, A.; Nienhaus, G. U.; Parak, F. G.; Schmidt,  
                        M. Biochemistry 2005, 44, 5095-5105. 
 (85) Bogumil, R.; Hunter, C. L.; Maurus, R.; Tang, H.-L.; Lee, H.; Lloyd,  
                        E.; Brayer, G. D.; Smith, M.; Mauk, A. G. Biochemistry 1994, 33,  
                        7600-7608. 
 (86) Perutz, M. F.; Mathews, F. S. J. Mol. Biol. 1966, 21, 199-202. 
 (87) Deatherage, J. F.; Obendorf, S. K.; Moffat, K. J. Mol. Biol. 1979, 134,  
                        419-429. 
 (88) Stryer, L.; Kendrew, J. C.; Watson, H. C. J. Mol. Biol. 1964, 8, 96- 
                       104. 
 (89) Maurus, R.; Bogumi, B.; Nguyen, N. T.; Mauk, A. G.; Brayer, G.  
                        Biochem. J. 1998, 322, 67-74. 
 (90) Mattevi, A.; Gatti, G.; Coda, A.; Rizzi, M.; Ascenzi, P.; Brunori, M.;  
                        Bolognesi, M. J. Mol. Recogn. 1991, 4, 1-6. 
 (91) Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls; Oxford University 
                        Press: New York, 1992. 
 (92) Cheng, L.; Novozhilova, I.; Kim, C.; Kovalevsky, A.; Bagley, K. A.;  
                        Coppens, P.; Richter-Addo, G. B. J . Am. Chem. Soc. 2000, 122, 7142- 
                        7143. 
 (93) Feltham, R. D.; Enemark, J. H. Top. Stereochem. 1981, 12, 155-215. 
 (94) Westcott, B. L.; Enemark, J. H. In Inorganic Electronic Structure and 
                        Spectroscopy; Lever, A. B. P., Solomon, E. I., Eds.; Wiley and Sons:  
                        New York, 1999; Vol. 2 (Applications and Case Studies), p Chapter 7. 
 (95) Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406. 
 (96) Wyllie, G. R. A.; Scheidt, W. R. Chem. Rev. 2002, 102, 1067-1089. 



 

 124 

 (97) Wyllie, G. R. A.; Scheidt, W. R. Inorg. Chem. 2003, 42, 4259-4261. 
 (98) Hori, H.; Ikeda-Saito, M.; Yonetani, T. J. Biol. Chem. 1981, 256,  
                        7M9-7855. 
 (99) Scheidt, W. R.; Hatano, K.; Rupprecht, G. A.; Piciulo, P. L. Inorg. 
                        Chem. 1979, 18, 292-299. 
 (100) Piciulo, P. L.; Rupprecht, G.; Scheidt, W. R. J. Am. Chem. Soc. 1974,  
                        96, 5293-5295. 
 (101) Yu, N.-T.; Lin, S.-H.; Chang, C. K.; Gersonde, K. Biophys. J. 1989,  
                        55, 1137-1144. 
 (102) Duranski, M. R.; Greer, J. J. M.; Dejam, A.; Jaganmohan, S.; Hogg, 
                        N.; Langston, W.; Patel, R. P.; Yet, S.-F.; Wang, X.; Kevil, C. G.;  
                        Gladwin, M. T.; Lefer, D. J. The Journal of Clinical Investigation  
                        2005, 115, 1232-1240. 
 (103) Averill, B. A. Chem. Rev. 1996, 96, 2951-2964. 
 (104) Hollocher, T. C. In Nitric Oxide.  Principles and Applications;  
                        Lancaster, J., Ed.; Academic Press: San Diego, 1996, p 289-344. 
 (105) Eady, R. R.; Hasnain, S. S. In Comprehensive Coordination Chemistry 
                        II; Que Jr., L., Tolman, W. B., Eds.; Elsevier: San Diego, CA, 2004;  
                       Vol. 8 (Bio-coordination chemistry), p 759-786. 
 (106) Williams, P. A.; Fulop, V.; Garman, E. F.; Saunders, N. F. W.;  
                        Ferguson, S. J.; Hajdu, J. Nature 1997, 389, 406-412. 
 (107) Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P. M. H.; Neese,  
                        F. J. Am. Chem. Soc. 2002, 124, 11737-11745. 
 (108) Crane, B. R.; Siegel, L. M.; Getzoff, E. D. Biochemistry 1997, 36,  
                       12120-12137. 
 (109) Silaghi-Dumitrescu, R. Inorg. Chem. 2004, 43, 3715-3718. 
 (110) Nasri, H.; Ellison, M. K.; Chen, S.; Huynh, B. H.; Scheidt, W. R. J .  
                       Am. Chem. Soc. 1997, 119, 6274-6283. 
 (111) Novozhilova, I. V.; Coppens, P.; Lee, J.; Richter-Addo, G. B.; Bagley,  
                        K. A. J. Am. Chem. Soc. 2006, 128, 2093-2104. 
 (112) Kim, K.; Lee, W. S.; Kim, H.-J.; Cho, S.-H.; Girolami, G. S.; Godin,  
                        P. A.; Suslick, K. S. Inorg. Chem. 1991, 30, 2652-2656. 
 (113) Suslick, K. S.; Watson, R. A. New. J. Chem. 1992, 16, 633-642. 
 (114) Hoshino, M.; Nagashima, Y.; Seki, H. Inorg. Chem. 1998, 37, 2464- 
                        2469. 
 (115) Yamamoto, K.; Iitaka, Y. Chem. Lett. 1989, 697-698. 
 (116) Jene, P. C.; Ibers, J. A. Inorg. Chem. 2000, 39, 3823-3827. 
 (117) Adachi, H.; Suzuki, H.; Miyazaki, Y.; Iimura, Y.; Hoshino, M. Inorg. 
                        Chem. 2002, 41, 2518-2524. 
 (118) Goodwin, J.; Kurtikyan, T.; Standard, J.; Walsh, R.; Zheng, B.;  
                        Parmley, D.; Howard, J.; Green, S.; Mardyukov, A.; Przybla, D. E.  
                       Inorg. Chem. 2005, 44, 2215-2223. 
 (119) Seki, H.; Okada, K.; Iimura, Y.; Hoshino, M. J. Phys. Chem. A 1997,  
                        101, 8174-817.
 



 

 125 

Appendix 

 
Table 2.4.  Bond Lengths [Å] for [Ru(bpb)(NO)]2(µ-O). 
------------------------------------------------------------------------------------------------------ 
Ru(1)-N(25)                        1.7486(17) 
Ru(1)-O(27)                         1.8829(3) 
Ru(1)-N(9)  1.9890(16) 
Ru(1)-N(16)  1.9935(15) 
Ru(1)-N(1)  2.1277(15) 
Ru(1)-N(24)  2.1507(16) 
N(1)-C(2)  1.335(2) 
N(1)-C(6)  1.359(2) 
C(2)-C(3)  1.383(3) 
C(2)-H(2)  0.9500 
C(3)-C(4)  1.382(3) 
C(3)-H(3)  0.9500 
C(4)-C(5)  1.386(3) 
C(4)-H(4)  0.9500 
C(5)-C(6)  1.382(3) 
C(5)-H(5)  0.9500 
C(6)-C(7)  1.515(3) 
C(7)-O(8)  1.230(2) 
C(7)-N(9)  1.344(2) 
N(9)-C(10)  1.416(2) 
C(10)-C(11)  1.395(3) 
C(10)-C(15)  1.421(3) 
C(11)-C(12)  1.394(3) 
C(11)-H(11)  0.9500 
C(12)-C(13)  1.385(3) 
C(12)-H(12)  0.9500 
C(1S')-H(1S2)  0.99 

C(13)-C(14)  1.388(3) 
C(13)-H(13)  0.9500 
C(14)-C(15)  1.398(3) 
C(14)-H(14)  0.9500 
C(15)-N(16)  1.417(2) 
N(16)-C(17)  1.343(2) 
C(17)-O(18)  1.233(2) 
C(17)-C(19)  1.511(3) 
C(19)-N(24)  1.359(2) 
C(19)-C(20)  1.385(3) 
C(20)-C(21)  1.379(3) 
C(20)-H(20)  0.9500 
C(21)-C(22)  1.380(3) 
C(21)-H(21)  0.9500 
C(22)-C(23)  1.383(3) 
 C(22)-H(22)  0.9500 
C(23)-N(24)  1.339(3) 
C(23)-H(23)  0.9500 
N(25)-O(26)  1.174(2) 
O(27)-Ru(1)#1  1.8829(3) 
Cl(1S)-C(1S)  1.764(3) 
Cl(2S)-C(1S)  1.764(2) 
C(1S)-H(1SA)  0.9900 
C(1S)-H(1SB)  0.9900 
Cl(1')-C(1S')  1.764(4) 
Cl(2')-C(1S')  1.763(4) 
C(1S')-H(1S1)  0.9900 

 
Table 2.5.  Bond Angles [°] for [Ru(bpb)(NO)]2(µ-O). 
------------------------------------------------------------------------------------------------------- 
N(25)-Ru(1)-O(27)                174.14(5) 
N(25)-Ru(1)-N(9) 95.07(7) 
O(27)-Ru(1)-N(9) 88.44(5) 
N(25)-Ru(1)-N(16) 95.54(7) 
O(27)-Ru(1)-N(16) 89.49(5) 
N(9)-Ru(1)-N(16) 83.69(6) 
N(25)-Ru(1)-N(1) 91.61(7) 
O(27)-Ru(1)-N(1) 84.36(4) 
N(9)-Ru(1)-N(1) 80.14(6) 
N(16)-Ru(1)-N(1) 162.84(6) 

N(25)-Ru(1)-N(24) 91.52(7) 
O(27)-Ru(1)-N(24) 86.41(4) 
N(9)-Ru(1)-N(24) 162.86(6) 
N(16)-Ru(1)-N(24) 79.93(6) 
N(1)-Ru(1)-N(24) 115.53(6) 
C(2)-N(1)-C(6) 119.25(16) 
C(2)-N(1)-Ru(1) 130.07(13) 
C(6)-N(1)-Ru(1) 110.61(12) 
N(1)-C(2)-C(3) 122.19(18) 
N(1)-C(2)-H(2) 118.9 
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C(3)-C(2)-H(2) 118.9 
C(4)-C(3)-C(2) 119.01(19) 
C(4)-C(3)-H(3) 120.5 
C(2)-C(3)-H(3) 120.5 
C(3)-C(4)-C(5) 119.03(18) 
C(3)-C(4)-H(4) 120.5 
C(5)-C(4)-H(4) 120.5 
C(6)-C(5)-C(4) 119.40(19) 
C(6)-C(5)-H(5) 120.3 
C(4)-C(5)-H(5) 120.3 
N(1)-C(6)-C(5) 121.10(18) 
N(1)-C(6)-C(7) 118.09(16) 
C(5)-C(6)-C(7) 120.78(17) 
O(8)-C(7)-N(9) 127.74(18) 
O(8)-C(7)-C(6) 120.53(16) 
N(9)-C(7)-C(6) 111.72(16) 
C(7)-N(9)-C(10) 128.11(16) 
C(7)-N(9)-Ru(1) 119.42(13) 
C(10)-N(9)-Ru(1) 112.32(12) 
C(11)-C(10)-N(9) 124.36(17) 
C(11)-C(10)-C(15) 119.67(17) 
N(9)-C(10)-C(15) 115.97(17) 
C(12)-C(11)-C(10) 119.68(18) 
C(12)-C(11)-H(11) 120.2 
C(10)-C(11)-H(11) 120.2 
C(13)-C(12)-C(11) 120.76(19) 
C(13)-C(12)-H(12) 119.6 
C(11)-C(12)-H(12) 119.6 
C(12)-C(13)-C(14) 120.29(18) 
C(12)-C(13)-H(13) 119.9 
C(14)-C(13)-H(13) 119.9 
C(13)-C(14)-C(15) 120.14(18) 
C(13)-C(14)-H(14) 119.9 
C(15)-C(14)-H(14) 119.9 
C(14)-C(15)-N(16) 124.77(17) 
C(14)-C(15)-C(10) 119.46(18) 
N(16)-C(15)-C(10) 115.78(16) 
C(17)-N(16)-C(15) 128.29(16) 

C(17)-N(16)-Ru(1) 119.42(13) 
C(15)-N(16)-Ru(1) 112.24(11) 
O(18)-C(17)-N(16) 127.86(19) 
O(18)-C(17)-C(19) 120.04(17) 
N(16)-C(17)-C(19) 112.09(16) 
N(24)-C(19)-C(20) 121.40(18) 
N(24)-C(19)-C(17) 118.47(16) 
C(20)-C(19)-C(17) 120.09(17) 
C(21)-C(20)-C(19) 119.40(19) 
C(21)-C(20)-H(20) 120.3 
C(19)-C(20)-H(20) 120.3 
C(20)-C(21)-C(22) 119.11(19) 
C(20)-C(21)-H(21) 120.4 
C(22)-C(21)-H(21) 120.4 
C(21)-C(22)-C(23) 119.09(19) 
C(21)-C(22)-H(22) 120.5 
C(23)-C(22)-H(22) 120.5 
N(24)-C(23)-C(22) 122.31(19) 
N(24)-C(23)-H(23) 118.8 
C(22)-C(23)-H(23) 118.8 
C(23)-N(24)-C(19) 118.71(16) 
C(23)-N(24)-Ru(1) 131.26(13) 
C(19)-N(24)-Ru(1) 110.02(12) 
O(26)-N(25)-Ru(1) 175.85(15) 
Ru(1)-O(27)-Ru(1)#1 180.0 
Cl(2S)-C(1S)-Cl(1S) 111.13(18) 
Cl(2S)-C(1S)-H(1SA) 109.4 
Cl(1S)-C(1S)-H(1SA) 109.4 
Cl(2S)-C(1S)-H(1SB) 109.4 
Cl(1S)-C(1S)-H(1SB) 109.4 
H(1SA)-C(1S)-H(1SB) 108.0 
Cl(2')-C(1S')-Cl(1') 111.0(5) 
Cl(2')-C(1S')-H(1S1) 109.4 
Cl(1')-C(1S')-H(1S1) 109.4 
Cl(2')-C(1S')-H(1S2) 109.4 
Cl(1')-C(1S')-H(1S2) 109.4 
H(1S1)-C(1S')-H(1S2) 108.0 

Table 3.6.  Bond Lengths [Å] for (TTP)Mn(NO)(MeOH). 
 ---------------------------------------------------------------------------------------------------- 
Mn(1)-N(5)                    1.6804(17) 
Mn(1)-N(1)  2.0077(17) 
Mn(1)-N(3)  2.0148(17) 

Mn(1)-N(2)  2.0212(16) 
Mn(1)-N(4)  2.0315(17) 
Mn(1)-O(2)  2.0863(15) 
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O(1)-N(5)  1.165(2) 
O(2)-C(49)  1.455(3) 
N(1)-C(1)  1.372(2) 
N(1)-C(4)  1.374(3) 
N(2)-C(9)  1.380(2) 
N(2)-C(6)  1.384(3) 
N(3)-C(14)  1.376(3) 
N(3)-C(11)  1.379(2) 
N(4)-C(16)  1.377(3) 
N(4)-C(19)  1.377(2) 
C(1)-C(20)  1.403(3) 
C(1)-C(2)  1.442(3) 
C(2)-C(3)  1.345(3) 
C(3)-C(4)  1.437(3) 
C(4)-C(5)  1.403(3) 
C(5)-C(6)  1.405(3) 
C(5)-C(21)  1.497(3) 
C(6)-C(7)  1.437(3) 
C(7)-C(8)  1.352(3) 
C(8)-C(9)  1.441(3) 
C(9)-C(10)  1.402(3) 
C(10)-C(11)  1.389(3) 
C(10)-C(28)  1.504(3) 
C(11)-C(12)  1.446(3) 
C(12)-C(13)  1.347(3) 
C(13)-C(14)  1.445(3) 
C(14)-C(15)  1.402(3) 
C(15)-C(16)  1.395(3) 
C(15)-C(35)  1.496(3) 
C(16)-C(17)  1.443(3) 
C(17)-C(18)  1.358(3) 
C(18)-C(19)  1.443(3) 
C(19)-C(20)  1.394(3) 
C(20)-C(42)  1.501(3) 
C(21)-C(26)  1.392(3) 
C(21)-C(22)  1.404(3) 

C(22)-C(23)  1.386(3) 
C(23)-C(24)  1.384(4) 
C(24)-C(25)  1.394(3) 
C(24)-C(27)  1.513(3) 
C(25)-C(26)  1.398(3) 
C(28)-C(29)  1.386(3) 
C(28)-C(33)  1.391(3) 
C(29)-C(30)  1.389(3) 
C(30)-C(31)  1.381(3) 
C(31)-C(32)  1.390(3) 
C(31)-C(34)  1.513(3) 
C(32)-C(33)  1.387(3) 
C(35)-C(36)  1.389(3) 
C(35)-C(40)  1.393(3) 
C(36)-C(37)  1.394(3) 
C(37)-C(38)  1.385(4) 
C(38)-C(39)  1.391(4) 
C(38)-C(41)  1.511(3) 
C(39)-C(40)  1.388(3) 
C(42)-C(47)  1.389(3) 
C(42)-C(43)  1.397(3) 
C(43)-C(44)  1.393(3) 
C(44)-C(45)  1.387(3) 
C(45)-C(46)  1.387(3) 
C(45)-C(48)  1.513(3) 
C(46)-C(47)  1.391(3) 
Mn(2)-Mn(2)#1  0.3354(18) 
Mn(2)-N(8)  1.676(3) 
Mn(2)-O(4)#1  1.748(3) 
Mn(2)-N(6)#1  2.0044(19) 
Mn(2)-N(8)#1  2.007(3) 
Mn(2)-N(7)  2.020(2) 
Mn(2)-N(6)  2.037(2) 
Mn(2)-N(7)#1  2.038(2) 
Mn(2)-O(4)  2.081(3) 
O(4)-C(74)  1.478(4) 
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O(4)-Mn(2)#1  1.748(3) 
N(8)-O(3)  1.169(3) 
N(8)-Mn(2)#1  2.007(3) 
N(6)-C(50)  1.375(3) 
N(6)-C(53)  1.378(3) 
N(6)-Mn(2)#1  2.0044(19) 
N(7)-C(58)  1.376(2) 
N(7)-C(55)  1.379(3) 
N(7)-Mn(2)#1  2.038(2) 
C(50)-C(59)#1  1.397(3) 
C(50)-C(51)  1.438(3) 
C(51)-C(52)  1.346(3) 
C(52)-C(53)  1.445(3) 
C(53)-C(54)  1.398(3) 
C(54)-C(55)  1.400(3) 
C(54)-C(60)  1.499(3) 
C(55)-C(56)  1.442(3) 
C(56)-C(57)  1.358(3) 
C(57)-C(58)  1.445(3) 
C(58)-C(59)  1.396(3) 
C(59)-C(50)#1  1.397(3) 
C(59)-C(67)  1.502(3) 

C(60)-C(61)  1.396(3) 
C(60)-C(65)  1.398(3) 
C(61)-C(62)  1.390(3) 
C(62)-C(63)  1.383(4) 
C(63)-C(64)  1.387(4) 
C(63)-C(66)  1.517(4) 
C(64)-C(65)  1.396(4) 
C(67)-C(72)  1.389(3) 
C(67)-C(68)  1.394(3) 
C(68)-C(69)  1.390(3) 
C(69)-C(70)  1.389(3) 
C(70)-C(71)  1.380(3) 
C(70)-C(73)  1.513(3) 
C(71)-C(72)  1.390(3) 
C(75)-Cl(2)  1.717(4) 
C(75)-Cl(1)  1.719(3) 
C(76)-O(5)  1.465(4) 
C(77)-O(6)  1.479(5) 
C(78)-O(7)  1.476(5) 
C(79)-O(8)  1.479(5) 
C(80)-O(9)  1.472(5) 

 
Table 3.7.   Bond Angles [º] for (TTP)Mn(NO)(MeOH). 
------------------------------------------------------------------------------------------------------
N(5)-Mn(1)-N(1) 93.15(8) 
N(5)-Mn(1)-N(3) 92.73(8) 
N(1)-Mn(1)-N(3) 174.11(7) 
N(5)-Mn(1)-N(2) 93.06(8) 
N(1)-Mn(1)-N(2) 89.95(7) 
N(3)-Mn(1)-N(2) 90.06(7) 
N(5)-Mn(1)-N(4) 94.06(8) 
N(1)-Mn(1)-N(4) 89.81(7) 
N(3)-Mn(1)-N(4) 89.46(7) 
N(2)-Mn(1)-N(4) 172.88(7) 
N(5)-Mn(1)-O(2) 177.36(7) 

N(1)-Mn(1)-O(2) 87.22(6) 
N(3)-Mn(1)-O(2) 86.92(6) 
N(2)-Mn(1)-O(2) 84.32(6) 
N(4)-Mn(1)-O(2) 88.56(6) 
C(49)-O(2)-Mn(1) 124.31(13) 
C(1)-N(1)-C(4) 105.86(16) 
C(1)-N(1)-Mn(1) 127.03(14) 
C(4)-N(1)-Mn(1) 127.09(13) 
C(9)-N(2)-C(6) 105.46(16) 
C(9)-N(2)-Mn(1) 126.79(14) 
C(6)-N(2)-Mn(1) 127.38(12) 
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C(14)-N(3)-C(11) 105.73(16) 
C(14)-N(3)-Mn(1) 127.44(13) 
C(11)-N(3)-Mn(1) 126.73(14) 
C(16)-N(4)-C(19) 105.94(16) 
C(16)-N(4)-Mn(1) 126.80(13) 
C(19)-N(4)-Mn(1) 126.77(14) 
O(1)-N(5)-Mn(1) 175.66(18) 
N(1)-C(1)-C(20) 126.40(18) 
N(1)-C(1)-C(2) 110.03(17) 
C(20)-C(1)-C(2) 123.56(18) 
C(3)-C(2)-C(1) 106.80(17) 
C(2)-C(3)-C(4) 107.38(19) 
N(1)-C(4)-C(5) 126.12(18) 
N(1)-C(4)-C(3) 109.89(17) 
C(5)-C(4)-C(3) 123.97(19) 
C(4)-C(5)-C(6) 124.19(19) 
C(4)-C(5)-C(21) 116.98(17) 
C(6)-C(5)-C(21) 118.76(17) 
N(2)-C(6)-C(5) 124.79(18) 
N(2)-C(6)-C(7) 110.05(17) 
C(5)-C(6)-C(7) 125.17(19) 
C(8)-C(7)-C(6) 107.34(18) 
C(7)-C(8)-C(9) 106.92(17) 
N(2)-C(9)-C(10) 125.27(18) 
N(2)-C(9)-C(8) 110.21(18) 
C(10)-C(9)-C(8) 124.52(17) 
C(11)-C(10)-C(9) 124.74(18) 
C(11)-C(10)-C(28) 117.73(18) 
C(9)-C(10)-C(28) 117.50(18) 
N(3)-C(11)-C(10) 125.89(18) 
N(3)-C(11)-C(12) 110.01(17) 
C(10)-C(11)-C(12) 124.09(18) 
C(13)-C(12)-C(11) 107.00(17) 
C(12)-C(13)-C(14) 107.18(18) 
N(3)-C(14)-C(15) 125.97(17) 
N(3)-C(14)-C(13) 110.06(17) 

C(15)-C(14)-C(13) 123.98(19) 
C(16)-C(15)-C(14) 123.79(19) 
C(16)-C(15)-C(35) 118.97(17) 
C(14)-C(15)-C(35) 117.22(17) 
N(4)-C(16)-C(15) 126.02(17) 
N(4)-C(16)-C(17) 110.14(16) 
C(15)-C(16)-C(17) 123.84(18) 
C(18)-C(17)-C(16) 106.90(18) 
C(17)-C(18)-C(19) 106.97(17) 
N(4)-C(19)-C(20) 125.57(18) 
N(4)-C(19)-C(18) 110.05(17) 
C(20)-C(19)-C(18) 124.37(17) 
C(19)-C(20)-C(1) 123.87(17) 
C(19)-C(20)-C(42) 119.48(18) 
C(1)-C(20)-C(42) 116.64(18) 
C(26)-C(21)-C(22) 117.8(2) 
C(26)-C(21)-C(5) 123.44(18) 
C(22)-C(21)-C(5) 118.75(18) 
C(23)-C(22)-C(21) 120.8(2) 
C(24)-C(23)-C(22) 121.4(2) 
C(23)-C(24)-C(25) 118.1(2) 
C(23)-C(24)-C(27) 119.9(2) 
C(25)-C(24)-C(27) 122.0(2) 
C(24)-C(25)-C(26) 120.8(2) 
C(21)-C(26)-C(25) 120.9(2) 
C(29)-C(28)-C(33) 118.22(18) 
C(29)-C(28)-C(10) 121.79(19) 
C(33)-C(28)-C(10) 119.99(17) 
C(28)-C(29)-C(30) 120.6(2) 
C(31)-C(30)-C(29) 121.33(19) 
C(30)-C(31)-C(32) 118.11(19) 
C(30)-C(31)-C(34) 121.08(19) 
C(32)-C(31)-C(34) 120.8(2) 
C(33)-C(32)-C(31) 120.8(2) 
C(32)-C(33)-C(28) 120.90(19) 
C(36)-C(35)-C(40) 117.8(2) 
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C(36)-C(35)-C(15) 120.13(19) 
C(40)-C(35)-C(15) 122.02(19) 
C(35)-C(36)-C(37) 120.8(2) 
C(38)-C(37)-C(36) 121.4(2) 
C(37)-C(38)-C(39) 117.7(2) 
C(37)-C(38)-C(41) 121.0(2) 
C(39)-C(38)-C(41) 121.3(2) 
C(40)-C(39)-C(38) 121.2(2) 
C(39)-C(40)-C(35) 121.0(2) 
C(47)-C(42)-C(43) 118.35(18) 
C(47)-C(42)-C(20) 120.80(17) 
C(43)-C(42)-C(20) 120.72(19) 
C(44)-C(43)-C(42) 120.2(2) 
C(45)-C(44)-C(43) 121.3(2) 
C(46)-C(45)-C(44) 118.12(19) 
C(46)-C(45)-C(48) 120.3(2) 
C(44)-C(45)-C(48) 121.6(2) 
C(45)-C(46)-C(47) 121.1(2) 
C(42)-C(47)-C(46) 120.82(19) 
Mn(2)#1-Mn(2)-N(8) 169.9(5) 
Mn(2)#1-Mn(2)-O(4)#1 172.2(4) 
N(8)-Mn(2)-O(4)#1 7.9(2) 
Mn(2)#1-Mn(2)-N(6)#1 90.9(4) 
N(8)-Mn(2)-N(6)#1 95.17(15) 
O(4)#1-Mn(2)-N(6)#1 96.90(11) 
Mn(2)#1-Mn(2)-N(8)#1 8.4(4) 
N(8)-Mn(2)-N(8)#1 178.32(9) 
O(4)#1-Mn(2)-N(8)#1 173.1(2) 
N(6)#1-Mn(2)-N(8)#1 85.83(13) 
Mn(2)#1-Mn(2)-N(7) 88.3(5) 
N(8)-Mn(2)-N(7) 99.62(17) 
O(4)#1-Mn(2)-N(7) 91.89(13) 
N(6)#1-Mn(2)-N(7) 90.74(8) 
N(8)#1-Mn(2)-N(7) 81.70(14) 
Mn(2)#1-Mn(2)-N(6) 79.6(4) 
N(8)-Mn(2)-N(6) 94.21(15) 

O(4)#1-Mn(2)-N(6) 92.57(11) 
N(6)#1-Mn(2)-N(6) 170.52(5) 
N(8)#1-Mn(2)-N(6) 84.76(13) 
N(7)-Mn(2)-N(6) 89.00(8) 
Mn(2)#1-Mn(2)-N(7)#1 82.2(5) 
N(8)-Mn(2)-N(7)#1 89.80(17) 
O(4)#1-Mn(2)-N(7)#1 97.50(13) 
N(6)#1-Mn(2)-N(7)#1 89.41(8) 
N(8)#1-Mn(2)-N(7)#1 88.87(14) 
N(7)-Mn(2)-N(7)#1 170.53(5) 
N(6)-Mn(2)-N(7)#1 89.30(8) 
Mn(2)#1-Mn(2)-O(4) 6.5(4) 
N(8)-Mn(2)-O(4) 172.2(2) 
O(4)#1-Mn(2)-O(4) 178.75(8) 
N(6)#1-Mn(2)-O(4) 84.35(9) 
N(8)#1-Mn(2)-O(4) 6.59(18) 
N(7)-Mn(2)-O(4) 88.15(11) 
N(6)-Mn(2)-O(4) 86.18(10) 
N(7)#1-Mn(2)-O(4) 82.44(11) 
C(74)-O(4)-Mn(2)#1 122.3(3) 
C(74)-O(4)-Mn(2) 123.2(3) 
Mn(2)#1-O(4)-Mn(2) 1.25(7) 
O(3)-N(8)-Mn(2) 167.8(4) 
O(3)-N(8)-Mn(2)#1 169.4(4) 
Mn(2)-N(8)-Mn(2)#1 1.68(9) 
C(50)-N(6)-C(53) 106.00(16) 
C(50)-N(6)-Mn(2)#1 126.08(14) 
C(53)-N(6)-Mn(2)#1 127.78(14) 
C(50)-N(6)-Mn(2) 126.47(14) 
C(53)-N(6)-Mn(2) 127.02(14) 
Mn(2)#1-N(6)-Mn(2) 9.48(5) 
C(58)-N(7)-C(55) 105.96(17) 
C(58)-N(7)-Mn(2) 126.27(14) 
C(55)-N(7)-Mn(2) 127.63(13) 
C(58)-N(7)-Mn(2)#1 126.71(14) 
C(55)-N(7)-Mn(2)#1 126.82(14) 
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Mn(2)-N(7)-Mn(2)#1 9.47(5) 
N(6)-C(50)-C(59)#1 126.33(18) 
N(6)-C(50)-C(51) 110.06(18) 
C(59)#1-C(50)-C(51) 123.56(18) 
C(52)-C(51)-C(50) 107.17(18) 
C(51)-C(52)-C(53) 107.21(18) 
N(6)-C(53)-C(54) 125.68(18) 
N(6)-C(53)-C(52) 109.55(18) 
 C(54)-C(53)-C(52) 124.75(19) 
C(53)-C(54)-C(55) 124.23(19) 
C(53)-C(54)-C(60) 116.72(17) 
C(55)-C(54)-C(60) 119.02(19) 
N(7)-C(55)-C(54) 125.51(19) 
N(7)-C(55)-C(56) 110.03(17) 
C(54)-C(55)-C(56) 124.44(19) 
C(57)-C(56)-C(55) 107.03(19) 
C(56)-C(57)-C(58) 106.89(18) 
N(7)-C(58)-C(59) 125.71(19) 
N(7)-C(58)-C(57) 110.08(17) 
C(59)-C(58)-C(57) 124.20(18) 
C(58)-C(59)-C(50)#1 124.40(18) 
C(58)-C(59)-C(67) 119.08(18) 

C(50)#1-C(59)-C(67) 116.53(17) 
C(61)-C(60)-C(65) 118.2(2) 
C(61)-C(60)-C(54) 121.1(2) 
C(65)-C(60)-C(54) 120.6(2)  
C(62)-C(61)-C(60) 120.8(2) 
C(63)-C(62)-C(61) 121.5(2) 
C(62)-C(63)-C(64) 117.6(2) 
C(62)-C(63)-C(66) 121.4(3 
C(64)-C(63)-C(66) 121.0(3) 
C(63)-C(64)-C(65) 122.0(2) 
C(64)-C(65)-C(60) 119.9(2) 
C(72)-C(67)-C(68) 118.36(18) 
C(72)-C(67)-C(59) 120.88(19) 
C(68)-C(67)-C(59) 120.65(17) 
C(69)-C(68)-C(67) 120.21(18) 
C(70)-C(69)-C(68) 121.5(2) 
C(71)-C(70)-C(69) 117.92(18) 
C(71)-C(70)-C(73) 121.31(19) 
C(69)-C(70)-C(73) 120.8(2) 
C(70)-C(71)-C(72) 121.4(2) 
C(67)-C(72)-C(71) 120.7(2) 
Cl(2)-C(75)-Cl(1) 105.9(3)

 
 
 
 Table 3.8.  Bond Lengths [Å] for (TTP)Mn(NO)(1-MeIm). 
-------------------------------------------------------------------------------------------------------
Mn(1)-N(5)  1.650(2) 
Mn(1)-N(3)  2.023(2) 
Mn(1)-N(1)  2.024(2) 
Mn(1)-N(2)  2.027(2) 
Mn(1)-N(4)  2.029(2) 
Mn(1)-N(6)  2.096(2) 
O(1)-N(5)  1.174(3) 
N(1)-C(4)  1.374(4) 
N(1)-C(1)  1.381(3) 

N(2)-C(6)  1.376(4) 
N(2)-C(9)  1.379(3) 
N(3)-C(14)  1.370(4) 
N(3)-C(11)  1.377(3) 
N(4)-C(19)  1.374(4) 
N(4)-C(16)  1.384(4) 
N(6)-C(51)  1.324(4) 
N(6)-C(49)  1.374(4) 
N(7)-C(51)  1.341(4) 
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N(7)-C(50)  1.374(4) 
N(7)-C(52)  1.463(4) 
C(1)-C(20)  1.397(4) 
C(1)-C(2)  1.442(4) 
C(2)-C(3)  1.350(4) 
C(2)-H(2A)  0.9500 
C(3)-C(4)  1.449(4) 
C(3)-H(3A)  0.9500 
C(4)-C(5)  1.403(4) 
C(5)-C(6)  1.411(4) 
C(5)-C(21)  1.496(4) 
C(6)-C(7)  1.444(4) 
C(7)-C(8)  1.355(4) 
C(7)-H(7A)  0.9500 
C(8)-C(9)  1.437(4) 
C(8)-H(8A)  0.9500 
C(9)-C(10)  1.402(4) 
C(10)-C(11)  1.388(4) 
C(10)-C(28)  1.498(4) 
C(11)-C(12)  1.446(4) 
C(12)-C(13)  1.339(4) 
C(12)-H(12A)  0.9500 
C(13)-C(14)  1.447(4) 
C(13)-H(13A)  0.9500 
C(14)-C(15)  1.392(4) 
C(15)-C(16)  1.395(4) 
C(15)-C(35)  1.494(4) 
C(16)-C(17)  1.433(4) 
C(17)-C(18)  1.361(4) 
C(17)-H(17A)  0.9500 
C(18)-C(19)  1.439(5) 
C(18)-H(18A)  0.9500 
C(19)-C(20)  1.402(4) 
C(20)-C(42)  1.497(4) 
C(21)-C(22)  1.390(4) 
C(21)-C(26)  1.398(4) 

C(22)-C(23)  1.399(5) 
C(22)-H(22A)  0.9500 
C(23)-C(24)  1.387(5) 
C(23)-H(23A)  0.9500 
C(24)-C(25)  1.389(5) 
C(24)-C(27)  1.512(5) 
C(25)-C(26)  1.388(5) 
C(25)-H(25A)  0.9500 
C(26)-H(26A)  0.9500 
C(27)-H(27A)  0.9800 
C(27)-H(27B)  0.9800 
C(27)-H(27C)  0.9800 
C(28)-C(29)  1.389(4) 
C(28)-C(33)  1.390(4) 
C(29)-C(30)  1.390(4) 
C(29)-H(29A)  0.9500 
C(30)-C(31)  1.381(5) 
C(30)-H(30A)  0.9500 
C(31)-C(32)  1.381(6) 
C(31)-C(34)  1.516(5) 
C(32)-C(33)  1.390(5) 
C(32)-H(32A)  0.9500 
C(33)-H(33A)  0.9500 
C(34)-H(34A)  0.9800 
C(34)-H(34B)  0.9800 
C(34)-H(34C)  0.9800 
C(35)-C(36)  1.397(5) 
C(35)-C(40)  1.397(4) 
C(36)-C(37)  1.392(5) 
C(36)-H(36A)  0.9500 
C(37)-C(38)  1.382(5) 
C(37)-H(37A)  0.9500 
C(38)-C(39)  1.379(5) 
C(38)-C(41)  1.511(5) 
C(39)-C(40)  1.380(5) 
C(39)-H(39A)  0.9500 
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C(40)-H(40A)  0.9500 
C(41)-H(41A)  0.9800 
C(41)-H(41B)  0.9800 
C(41)-H(41C)  0.9800 
C(42)-C(47)  1.397(4) 
C(42)-C(43)  1.400(4) 
C(43)-C(44)  1.398(4) 
C(43)-H(43A)  0.9500 
C(44)-C(45)  1.380(5) 
C(44)-H(44A)  0.9500 
C(45)-C(46)  1.390(5) 
C(45)-C(48)  1.509(5) 
C(46)-C(47)  1.387(4) 
C(46)-H(46A)  0.9500 
C(47)-H(47A)  0.9500 
C(48)-H(48A)  0.9800 
C(48)-H(48B)  0.9800 
C(48)-H(48C)  0.9800 
C(49)-C(50)  1.359(4) 
C(49)-H(49A)  0.9500 
C(50)-H(50A)  0.9500 
C(51)-H(51A)  0.9500 
C(52)-H(52A)  0.9800 
C(52)-H(52B)  0.9800 
C(52)-H(52C)  0.9800 
Mn(2)-N(10)  1.755(9) 
Mn(2)-N(9)#1  1.981(3) 
Mn(2)-N(8)  1.992(3) 
Mn(2)-N(9)  2.068(3) 
Mn(2)-N(8)#1  2.072(3) 
Mn(2)-N(11)  2.047(7) 
N(11)-C(79)  1.332(9) 
N(11)-C(77)  1.482(8) 
N(12)-C(77)  1.349(8) 
N(12)-C(78)  1.375(8) 
N(12)-C(80)  1.486(8) 

C(77)-H(77A)  0.9500 
C(78)-C(79)  1.376(10) 
C(78)-H(78A)  0.9500 
C(79)-H(79A)  0.9500 
C(80)-H(80A)  0.9800 
C(80)-H(80B)  0.9800 
C(80)-H(80C)  0.9800 
N(10)-O(2)  1.127(10) 
C(81)-Cl(2)  1.719(4) 
C(81)-Cl(1)  1.720(4) 
C(81)-H(81A)  0.9900 
C(81)-H(81B)  0.9900 
N(8)-C(53)  1.365(3) 
N(8)-C(56)  1.375(4) 
N(8)-Mn(2)#1  2.072(3) 
N(9)-C(61)  1.369(3) 
N(9)-C(58)  1.378(3) 
N(9)-Mn(2)#1  1.981(3) 
C(53)-C(62)#1  1.396(4) 
C(53)-C(54)  1.439(4) 
C(54)-C(55)  1.345(4) 
C(54)-H(54A)  0.9500 
C(55)-C(56)  1.441(4) 
C(55)-H(55A)  0.9500 
C(56)-C(57)  1.403(4) 
C(57)-C(58)  1.405(4) 
C(57)-C(63)  1.495(4) 
C(58)-C(59)  1.439(4) 
C(59)-C(60)  1.345(4) 
C(59)-H(59A)  0.9500 
C(60)-C(61)  1.436(4) 
C(60)-H(60A)  0.9500 
C(61)-C(62)  1.397(4) 
C(62)-C(53)#1  1.396(4) 
C(62)-C(70)  1.498(4) 
C(63)-C(68)  1.394(4) 
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C(63)-C(64)  1.405(4) 
C(64)-C(65)  1.393(4) 
C(64)-H(64A)  0.9500 
C(65)-C(66)  1.391(5) 
C(65)-H(65A)  0.9500 
C(66)-C(67)  1.379(5) 
C(66)-C(69)  1.513(5) 
C(67)-C(68)  1.387(4) 
C(67)-H(67A)  0.9500 
C(68)-H(68A)  0.9500 
C(69)-H(69A)  0.9800 
C(69)-H(69B)  0.9800 
C(69)-H(69C)  0.9800 
C(70)-C(75)  1.392(4) 
C(70)-C(71)  1.396(4) 
C(71)-C(72)  1.380(4) 
C(71)-H(71A)  0.9500 
C(72)-C(73)  1.396(5) 

C(72)-H(72A)  0.9500 
C(73)-C(74)  1.389(5) 
C(73)-C(76)  1.506(4) 
C(74)-C(75)  1.389(4) 
C(74)-H(74A)  0.9500 
C(75)-H(75A)  0.9500 
C(76)-H(76A)  0.9800 
C(76)-H(76B)  0.9800 
C(76)-H(76C)  0.9800 
C(82)-Cl(4)  1.722(3) 
C(82)-Cl(3)  1.723(4) 
C(82)-H(82A)  0.9900 
C(82)-H(82B)  0.9900 
C(82')-Cl(3')  1.722(4) 
C(82')-Cl(4')  1.722(4) 
C(82')-H(82C)  0.9900 
C(82')-H(82D)  0.9900

 
Table 3.9.  Bond Angles [º] for (TTP)Mn(NO)(1-MeIm). 
-------------------------------------------------------------------------------------------------------
N(5)-Mn(1)-N(3) 91.13(10) 
N(5)-Mn(1)-N(1) 94.19(10) 
N(3)-Mn(1)-N(1) 174.68(9) 
N(5)-Mn(1)-N(2) 94.68(11) 
N(3)-Mn(1)-N(2) 89.68(9) 
N(1)-Mn(1)-N(2) 89.92(10) 
N(5)-Mn(1)-N(4) 93.11(11) 
N(3)-Mn(1)-N(4) 90.02(10) 
N(1)-Mn(1)-N(4) 89.65(10) 
N(2)-Mn(1)-N(4) 172.21(9) 
N(5)-Mn(1)-N(6) 176.76(11) 
N(3)-Mn(1)-N(6) 86.85(9) 
N(1)-Mn(1)-N(6) 87.84(9) 
N(2)-Mn(1)-N(6) 87.84(9) 
N(4)-Mn(1)-N(6) 84.38(9) 

C(4)-N(1)-C(1) 106.3(2) 
C(4)-N(1)-Mn(1) 126.86(18) 
C(1)-N(1)-Mn(1) 126.8(2) 
C(6)-N(2)-C(9) 105.9(2) 
C(6)-N(2)-Mn(1) 126.96(18) 
C(9)-N(2)-Mn(1) 126.8(2) 
C(14)-N(3)-C(11) 106.5(2) 
C(14)-N(3)-Mn(1) 126.90(18) 
C(11)-N(3)-Mn(1) 126.5(2) 
C(19)-N(4)-C(16) 106.0(2) 
C(19)-N(4)-Mn(1) 127.3(2) 
C(16)-N(4)-Mn(1) 126.54(19) 
O(1)-N(5)-Mn(1) 176.6(2) 
C(51)-N(6)-C(49) 105.3(2) 
C(51)-N(6)-Mn(1) 125.97(19) 
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C(49)-N(6)-Mn(1) 128.3(2) 
C(51)-N(7)-C(50) 107.2(3) 
C(51)-N(7)-C(52) 125.9(3) 
C(50)-N(7)-C(52) 126.9(3) 
N(1)-C(1)-C(20) 126.1(3) 
N(1)-C(1)-C(2) 109.7(2) 
C(20)-C(1)-C(2) 124.2(3) 
C(3)-C(2)-C(1) 107.3(2) 
C(3)-C(2)-H(2A) 126.4 
C(1)-C(2)-H(2A) 126.4 
C(2)-C(3)-C(4) 107.1(3) 
C(2)-C(3)-H(3A) 126.4 
C(4)-C(3)-H(3A) 126.4 
N(1)-C(4)-C(5) 126.5(3) 
N(1)-C(4)-C(3) 109.6(2) 
C(5)-C(4)-C(3) 123.8(3) 
C(4)-C(5)-C(6) 123.5(3) 
C(4)-C(5)-C(21) 118.8(2) 
C(6)-C(5)-C(21) 117.7(2) 
N(2)-C(6)-C(5) 126.0(3) 
N(2)-C(6)-C(7) 109.9(2) 
C(5)-C(6)-C(7) 124.1(3) 
C(8)-C(7)-C(6) 107.0(3) 
C(8)-C(7)-H(7A) 126.5 
C(6)-C(7)-H(7A) 126.5 
C(7)-C(8)-C(9) 107.0(3) 
C(7)-C(8)-H(8A) 126.5 
C(9)-C(8)-H(8A) 126.5 
N(2)-C(9)-C(10) 125.6(3) 
N(2)-C(9)-C(8) 110.2(2) 
C(10)-C(9)-C(8) 124.2(3) 
C(11)-C(10)-C(9) 124.0(3) 
C(11)-C(10)-C(28) 116.7(3) 
C(9)-C(10)-C(28) 119.2(3) 
N(3)-C(11)-C(10) 126.7(3) 
N(3)-C(11)-C(12) 109.5(3) 

C(10)-C(11)-C(12) 123.8(3) 
C(13)-C(12)-C(11) 107.1(3) 
C(13)-C(12)-H(12A) 126.5 
C(11)-C(12)-H(12A) 126.5 
C(12)-C(13)-C(14) 107.6(3) 
C(12)-C(13)-H(13A) 126.2 
C(14)-C(13)-H(13A) 126.2 
N(3)-C(14)-C(15) 125.8(3) 
N(3)-C(14)-C(13) 109.3(2) 
C(15)-C(14)-C(13) 124.9(3) 
C(14)-C(15)-C(16) 125.3(3) 
C(14)-C(15)-C(35) 117.2(2) 
C(16)-C(15)-C(35) 117.5(3) 
N(4)-C(16)-C(15) 125.2(3) 
N(4)-C(16)-C(17) 110.1(2) 
C(15)-C(16)-C(17) 124.7(3) 
C(18)-C(17)-C(16) 106.8(3) 
C(18)-C(17)-H(17A) 126.6 
C(16)-C(17)-H(17A) 126.6 
C(17)-C(18)-C(19) 107.2(3) 
C(17)-C(18)-H(18A) 126.4 
C(19)-C(18)-H(18A) 126.4 
N(4)-C(19)-C(20) 125.6(3) 
N(4)-C(19)-C(18) 109.8(3) 
C(20)-C(19)-C(18) 124.6(3) 
C(1)-C(20)-C(19) 124.3(3) 
C(1)-C(20)-C(42) 118.4(3) 
C(19)-C(20)-C(42) 117.3(3) 
C(22)-C(21)-C(26) 118.2(3) 
C(22)-C(21)-C(5) 120.5(3) 
C(26)-C(21)-C(5) 121.3(3) 
C(21)-C(22)-C(23) 120.6(3) 
C(21)-C(22)-H(22A) 119.7 
C(23)-C(22)-H(22A) 119.7 
C(24)-C(23)-C(22) 121.3(3) 
C(24)-C(23)-H(23A) 119.3 
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C(22)-C(23)-H(23A) 119.3 
C(23)-C(24)-C(25) 117.6(3) 
C(23)-C(24)-C(27) 120.7(3) 
C(25)-C(24)-C(27) 121.7(3) 
C(26)-C(25)-C(24) 121.8(3) 
C(26)-C(25)-H(25A) 119.1 
C(24)-C(25)-H(25A) 119.1 
C(25)-C(26)-C(21) 120.4(3) 
C(25)-C(26)-H(26A) 119.8 
C(21)-C(26)-H(26A) 119.8 
C(24)-C(27)-H(27A) 109.5 
C(24)-C(27)-H(27B) 109.5 
H(27A)-C(27)-H(27B) 109.5 
C(24)-C(27)-H(27C) 109.5 
H(27A)-C(27)-H(27C) 109.5 
H(27B)-C(27)-H(27C) 109.5 
C(29)-C(28)-C(33) 117.9(3) 
C(29)-C(28)-C(10) 120.9(3) 
C(33)-C(28)-C(10) 121.1(3) 
C(28)-C(29)-C(30) 121.1(3) 
C(28)-C(29)-H(29A) 119.4 
C(30)-C(29)-H(29A) 119.4 
C(31)-C(30)-C(29) 120.9(3) 
C(31)-C(30)-H(30A) 119.5 
C(29)-C(30)-H(30A) 119.5 
C(30)-C(31)-C(32) 118.0(3) 
C(30)-C(31)-C(34) 120.9(4) 
C(32)-C(31)-C(34) 121.1(4) 
C(31)-C(32)-C(33) 121.6(3) 
C(31)-C(32)-H(32A) 119.2 
C(33)-C(32)-H(32A) 119.2 
C(28)-C(33)-C(32) 120.4(3) 
C(28)-C(33)-H(33A) 119.8 
C(32)-C(33)-H(33A) 119.8 
C(31)-C(34)-H(34A) 109.5 
C(31)-C(34)-H(34B) 109.5 

H(34A)-C(34)-H(34B) 109.5 
C(31)-C(34)-H(34C) 109.5 
H(34A)-C(34)-H(34C) 109.5 
H(34B)-C(34)-H(34C) 109.5 
C(36)-C(35)-C(40) 117.8(3) 
C(36)-C(35)-C(15) 121.6(3) 
C(40)-C(35)-C(15) 120.6(3) 
C(37)-C(36)-C(35) 120.3(3) 
C(37)-C(36)-H(36A) 119.9 
C(35)-C(36)-H(36A) 119.9 
C(38)-C(37)-C(36) 121.3(3) 
C(38)-C(37)-H(37A) 119.4 
C(36)-C(37)-H(37A) 119.4 
C(39)-C(38)-C(37) 118.4(3) 
C(39)-C(38)-C(41) 120.1(3) 
C(37)-C(38)-C(41) 121.5(4) 
C(38)-C(39)-C(40) 121.2(3) 
C(38)-C(39)-H(39A) 119.4 
C(40)-C(39)-H(39A) 119.4 
C(39)-C(40)-C(35) 121.0(3) 
C(39)-C(40)-H(40A) 119.5 
C(35)-C(40)-H(40A) 119.5 
C(38)-C(41)-H(41A) 109.5 
C(38)-C(41)-H(41B) 109.5 
H(41A)-C(41)-H(41B) 109.5 
C(38)-C(41)-H(41C) 109.5 
H(41A)-C(41)-H(41C) 109.5 
H(41B)-C(41)-H(41C) 109.5 
C(47)-C(42)-C(43) 118.3(3) 
C(47)-C(42)-C(20) 122.0(3) 
C(43)-C(42)-C(20) 119.7(3) 
C(44)-C(43)-C(42) 120.1(3) 
C(44)-C(43)-H(43A) 119.9 
C(42)-C(43)-H(43A) 119.9 
C(45)-C(44)-C(43) 121.5(3) 
C(45)-C(44)-H(44A) 119.3 
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C(43)-C(44)-H(44A) 119.3 
C(44)-C(45)-C(46) 118.1(3) 
C(44)-C(45)-C(48) 121.2(3) 
C(46)-C(45)-C(48) 120.6(3) 
C(47)-C(46)-C(45) 121.4(3) 
C(47)-C(46)-H(46A) 119.3 
C(45)-C(46)-H(46A) 119.3 
C(46)-C(47)-C(42) 120.5(3) 
C(46)-C(47)-H(47A) 119.7 
C(42)-C(47)-H(47A) 119.7 
C(45)-C(48)-H(48A) 109.5 
C(45)-C(48)-H(48B) 109.5 
H(48A)-C(48)-H(48B) 109.5 
C(45)-C(48)-H(48C) 109.5 
H(48A)-C(48)-H(48C) 109.5 
H(48B)-C(48)-H(48C) 109.5 
C(50)-C(49)-N(6) 109.9(3) 
C(50)-C(49)-H(49A) 125.0 
N(6)-C(49)-H(49A) 125.0 
C(49)-C(50)-N(7) 106.0(3) 
C(49)-C(50)-H(50A) 127.0 
N(7)-C(50)-H(50A) 127.0 
N(6)-C(51)-N(7) 111.6(3) 
N(6)-C(51)-H(51A) 124.2 
N(7)-C(51)-H(51A) 124.2 
N(7)-C(52)-H(52A) 109.5 
N(7)-C(52)-H(52B) 109.5 
H(52A)-C(52)-H(52B) 109.5 
N(7)-C(52)-H(52C) 109.5 
H(52A)-C(52)-H(52C) 109.5 
H(52B)-C(52)-H(52C) 109.5 
N(10)-Mn(2)-N(9)#1 98.3(3) 
N(10)-Mn(2)-N(8) 96.0(3) 
N(9)#1-Mn(2)-N(8) 92.97(11) 
N(10)-Mn(2)-N(9) 90.0(3) 
N(9)#1-Mn(2)-N(9) 171.31(9) 

N(8)-Mn(2)-N(9) 88.70(12) 
N(10)-Mn(2)-N(8)#1 92.1(3) 
N(9)#1-Mn(2)-N(8)#1 88.90(12) 
N(8)-Mn(2)-N(8)#1 171.28(10) 
N(9)-Mn(2)-N(8)#1 88.21(10) 
N(10)-Mn(2)-N(11) 173.2(4) 
N(9)#1-Mn(2)-N(11) 85.3(2) 
N(8)-Mn(2)-N(11) 89.6(2) 
N(9)-Mn(2)-N(11) 86.2(2) 
N(8)#1-Mn(2)-N(11) 82.10(19) 
C(79)-N(11)-C(77) 99.9(6) 
C(79)-N(11)-Mn(2) 139.2(5) 
C(77)-N(11)-Mn(2) 119.8(4) 
C(77)-N(12)-C(78) 106.8(5) 
C(77)-N(12)-C(80) 126.9(5) 
C(78)-N(12)-C(80) 126.0(5) 
N(12)-C(77)-N(11) 111.4(5) 
N(12)-C(77)-H(77A) 124.3 
N(11)-C(77)-H(77A) 124.3 
N(12)-C(78)-C(79) 106.5(5) 
N(12)-C(78)-H(78A) 126.7 
C(79)-C(78)-H(78A) 126.7 
N(11)-C(79)-C(78) 115.4(6) 
N(11)-C(79)-H(79A) 122.3 
C(78)-C(79)-H(79A) 122.3 
O(2)-N(10)-Mn(2) 158.6(7) 
Cl(2)-C(81)-Cl(1) 111.0(3) 
Cl(2)-C(81)-H(81A) 109.4 
Cl(1)-C(81)-H(81A) 109.4 
Cl(2)-C(81)-H(81B) 109.4 
Cl(1)-C(81)-H(81B) 109.4 
H(81A)-C(81)-H(81B) 108.0 
C(53)-N(8)-C(56) 106.6(2) 
C(53)-N(8)-Mn(2) 124.75(19) 
C(56)-N(8)-Mn(2) 128.67(19) 
C(53)-N(8)-Mn(2)#1 126.85(19) 
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C(56)-N(8)-Mn(2)#1 125.95(19) 
Mn(2)-N(8)-Mn(2)#1 8.72(10) 
C(61)-N(9)-C(58) 105.9(2) 
C(61)-N(9)-Mn(2)#1 124.80(19) 
C(58)-N(9)-Mn(2)#1 129.33(18) 
C(61)-N(9)-Mn(2) 126.85(19) 
C(58)-N(9)-Mn(2) 126.58(18) 
Mn(2)#1-N(9)-Mn(2) 8.69(9) 
N(8)-C(53)-C(62)#1 126.2(2) 
N(8)-C(53)-C(54) 109.8(2) 
C(62)#1-C(53)-C(54) 124.0(3) 
C(55)-C(54)-C(53) 107.0(3) 
C(55)-C(54)-H(54A) 126.5 
C(53)-C(54)-H(54A) 126.5 
C(54)-C(55)-C(56) 107.4(3) 
C(54)-C(55)-H(55A) 126.3 
C(56)-C(55)-H(55A) 126.3 
N(8)-C(56)-C(57) 126.2(2) 
N(8)-C(56)-C(55) 109.2(2) 
C(57)-C(56)-C(55) 124.6(3) 
C(56)-C(57)-C(58) 123.4(3) 
C(56)-C(57)-C(63) 118.4(2) 
C(58)-C(57)-C(63) 118.3(2) 
N(9)-C(58)-C(57) 125.5(2) 
N(9)-C(58)-C(59) 109.8(2) 
C(57)-C(58)-C(59) 124.7(3) 
C(60)-C(59)-C(58) 107.1(3) 
C(60)-C(59)-H(59A) 126.5 
C(58)-C(59)-H(59A) 126.5 
C(59)-C(60)-C(61) 107.2(3) 
C(59)-C(60)-H(60A) 126.4 
C(61)-C(60)-H(60A) 126.4 
N(9)-C(61)-C(62) 126.3(3) 
N(9)-C(61)-C(60) 110.1(2) 
C(62)-C(61)-C(60) 123.6(2) 
C(53)#1-C(62)-C(61) 124.6(2) 

C(53)#1-C(62)-C(70) 117.9(2) 
C(61)-C(62)-C(70) 117.5(2) 
C(68)-C(63)-C(64) 117.5(3) 
C(68)-C(63)-C(57) 121.8(3) 
C(64)-C(63)-C(57) 120.6(3) 
C(65)-C(64)-C(63) 120.3(3) 
C(65)-C(64)-H(64A) 119.8 
C(63)-C(64)-H(64A) 119.8 
C(66)-C(65)-C(64) 121.4(3) 
C(66)-C(65)-H(65A) 119.3 
C(64)-C(65)-H(65A) 119.3 
C(67)-C(66)-C(65) 118.2(3) 
C(67)-C(66)-C(69) 121.0(3) 
C(65)-C(66)-C(69) 120.8(3) 
C(66)-C(67)-C(68) 121.2(3) 
C(66)-C(67)-H(67A) 119.4 
C(68)-C(67)-H(67A) 119.4 
C(67)-C(68)-C(63) 121.4(3) 
C(67)-C(68)-H(68A) 119.3 
C(63)-C(68)-H(68A) 119.3 
C(66)-C(69)-H(69A) 109.5 
C(66)-C(69)-H(69B) 109.5 
H(69A)-C(69)-H(69B) 109.5 
C(66)-C(69)-H(69C) 109.5 
H(69A)-C(69)-H(69C) 109.5 
H(69B)-C(69)-H(69C) 109.5 
C(75)-C(70)-C(71) 118.1(3) 
C(75)-C(70)-C(62) 121.4(3) 
C(71)-C(70)-C(62) 120.5(3) 
C(72)-C(71)-C(70) 120.8(3) 
C(72)-C(71)-H(71A) 119.6 
C(70)-C(71)-H(71A) 119.6 
C(71)-C(72)-C(73) 121.2(3) 
C(71)-C(72)-H(72A) 119.4 
C(73)-C(72)-H(72A) 119.4 
C(74)-C(73)-C(72) 117.9(3) 
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C(74)-C(73)-C(76) 120.9(3) 
C(72)-C(73)-C(76) 121.2(3) 
 C(73)-C(74)-C(75) 121.1(3) 
C(73)-C(74)-H(74A) 119.5 
C(75)-C(74)-H(74A) 119.5 
C(74)-C(75)-C(70) 120.8(3) 
C(74)-C(75)-H(75A) 119.6 
C(70)-C(75)-H(75A) 119.6 
C(73)-C(76)-H(76A) 109.5 
C(73)-C(76)-H(76B) 109.5 
H(76A)-C(76)-H(76B) 109.5 
C(73)-C(76)-H(76C) 109.5 
H(76A)-C(76)-H(76C) 109.5 

H(76B)-C(76)-H(76C) 109.5 
Cl(4)-C(82)-H(82A) 109.7 
Cl(3)-C(82)-H(82A) 109.7 
Cl(4)-C(82)-H(82B) 109.7 
Cl(3)-C(82)-H(82B) 109.7 
H(82A)-C(82)-H(82B) 108.2 
Cl(3')-C(82')-Cl(4') 109.8(3) 
Cl(3')-C(82')-H(82C) 109.7 
Cl(4')-C(82')-H(82C) 109.7 
Cl(3')-C(82')-H(82D) 109.7 
Cl(4')-C(82')-H(82D) 109.7 
H(82C)-C(82')-H(82D) 108.2 
Cl(4)-C(82)-Cl(3) 109.9(3) 

 
Table 3.10.  Bond Lengths [Å] for (TPP)Mn(NO)(1-MeIm).  
------------------------------------------------------------------------------------------------------- 
Mn(1)-N(5)            1.6411(13) 
Mn(1)-N(4)  2.0189(12) 
Mn(1)-N(2)  2.0200(12) 
Mn(1)-N(1)  2.0248(12) 
Mn(1)-N(3)  2.0280(12) 
Mn(1)-N(6)  2.0882(13) 
O(1)-N(5)  1.1718(17) 
N(1)-C(4)  1.3712(18) 
N(1)-C(1)  1.3738(19) 
N(2)-C(9)  1.3721(19) 
N(2)-C(6)  1.3731(18) 
N(3)-C(11)  1.3735(19) 
N(3)-C(14)  1.3736(17) 
N(4)-C(19)  1.3712(19) 
N(4)-C(16)  1.3728(18) 
N(6)-C(47)  1.321(2) 
N(6)-C(45)  1.3827(19) 
N(7)-C(47)  1.3478(19) 
N(7)-C(46)  1.374(2) 
N(7)-C(48)  1.456(2) 

C(1)-C(20)  1.391(2) 
C(1)-C(2)  1.445(2) 
C(2)-C(3)  1.349(2) 
C(2)-H(2A)  0.9500 
C(3)-C(4)  1.443(2) 
C(3)-H(3A)  0.9500 
C(4)-C(5)  1.398(2) 
C(5)-C(6)  1.397(2) 
C(5)-C(21)  1.4977(19) 
C(6)-C(7)  1.445(2) 
C(7)-C(8)  1.350(2) 
C(7)-H(7A)  0.9500 
C(8)-C(9)  1.442(2) 
C(8)-H(8A)  
C(9)-C(10)  1.401(2) 
C(10)-C(11)  1.398(2) 
C(10)-C(27)  1.499(2) 
C(11)-C(12)  1.4458(19) 
C(12)-C(13)  1.352(2) 
C(12)-H(12A)  0.9500 
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C(13)-C(14)  1.443(2) 
C(13)-H(13A)  0.9500 
C(14)-C(15)  1.397(2) 
C(15)-C(16)  1.395(2) 
C(15)-C(33)  1.4982(19) 
C(16)-C(17)  1.446(2) 
C(17)-C(18)  1.348(2) 
C(17)-H(17A)  0.9500 
C(18)-C(19)  1.4409(19) 
C(18)-H(18A)  0.9500 
C(19)-C(20)  1.4038(19) 
C(20)-C(39)  1.498(2) 
C(21)-C(22)  1.387(2) 
C(21)-C(26)  1.390(2) 
C(22)-C(23)  1.393(2) 
C(22)-H(22A)  0.9500 
C(23)-C(24)  1.378(3) 
C(23)-H(23A)  0.9500 
C(24)-C(25)  1.372(3) 
C(24)-H(24A)  0.9500 
C(25)-C(26)  1.392(2) 
C(25)-H(25A)  0.9500 
C(26)-H(26A)  0.9500 
C(27)-C(28)  1.392(2) 
C(27)-C(32)  1.397(2) 
C(28)-C(29)  1.395(2) 
C(28)-H(28A)  0.9500 
C(29)-C(30)  1.383(3) 
C(29)-H(29A)  0.9500 
C(30)-C(31)  1.379(3) 
C(30)-H(30A)  0.9500 
C(31)-C(32)  1.393(2) 
C(31)-H(31A)  0.9500 
C(32)-H(32A)  0.9500 
C(33)-C(34)  1.390(2) 
C(33)-C(38)  1.393(2) 

C(34)-C(35)  1.391(2) 
C(34)-H(34A)  0.9500 
C(35)-C(36)  1.386(2) 
C(35)-H(35A)  0.9500 
C(36)-C(37)  1.387(2) 
C(36)-H(36A)  0.9500 
C(37)-C(38)  1.392(2) 
C(37)-H(37A)  0.9500 
C(38)-H(38A)  0.9500 
C(39)-C(40)  1.388(2) 
C(39)-C(44)  1.397(2) 
C(40)-C(41)  1.392(2) 
C(40)-H(40A)  0.9500 
C(41)-C(42)  1.386(2) 
C(41)-H(41A)  0.9500 
C(42)-C(43)  1.381(2) 
C(42)-H(42A)  0.9500 
C(43)-C(44)  1.390(2) 
C(43)-H(43A)  0.9500 
C(44)-H(44A)  0.9500 
C(45)-C(46)  1.346(2) 
C(45)-H(45A)  0.9500 
C(46)-H(46A)  0.9500 
C(47)-H(47A)  0.9500 
C(48)-H(48A)  0.9800 
C(48)-H(48B)  0.9800 
C(48)-H(48C)  0.9800 
C(49)-C(50)  1.377(3) 
C(49)-C(54)  1.393(3) 
C(49)-H(49A)  0.9500 
C(50)-C(51)  1.381(3) 
C(50)-H(50A)  0.9500 
C(51)-C(52)  1.347(4) 
C(51)-H(51A)  0.9500 
C(52)-C(53)  1.367(4) 
C(52)-H(52A)  0.9500 
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C(53)-C(54)  1.390(3) 
C(53)-H(53A)  0.9500 
C(54)-C(55)  1.500(4) 
C(55)-H(55A)  0.9800 
C(55)-H(55B)  0.9800 
C(55)-H(55C)  0.9800 
C(56)-C(61)  1.373(4) 
C(56)-C(57)  1.377(5) 
C(56)-H(56A)  0.9500 
C(57)-C(58)  1.400(4) 
C(57)-H(57A)  0.9500 
C(58)-C(59)  1.349(4) 
C(58)-H(58A)  0.9500 
C(59)-C(60)  1.359(4) 
C(59)-H(59A)  0.9500 
C(60)-C(61)  1.413(4) 

C(60)-H(60A)  0.9500 
C(61)-C(62)  1.435(4) 
C(62)-H(62A)  0.9800 
C(62)-H(62B)  0.9800 
C(62)-H(62C)  0.9800 
C(63)-C(65)#1  1.388(4) 
C(63)-C(64)  1.392(4) 
C(63)-H(63A)  0.9500 
C(64)-C(65)  1.384(4) 
C(64)-C(66)  1.538(7) 
C(65)-C(63)#1  1.388(4) 
C(65)-H(65A)  0.9500 
C(66)-H(66A)  0.9800 
C(66)-H(66B)  0.9800 
C(66)-H(66C)  0.9800 

 
Table 3.11.  Bond Angles [º] for (TPP)Mn(NO)(1-MeIm).  
------------------------------------------------------------------------------------------------------- 
N(5)-Mn(1)-N(4)            93.56(5) 
N(5)-Mn(1)-N(2) 93.47(6) 
N(4)-Mn(1)-N(2) 172.97(5) 
N(5)-Mn(1)-N(1) 91.15(5) 
N(4)-Mn(1)-N(1) 89.47(5) 
N(2)-Mn(1)-N(1) 90.37(5) 
N(5)-Mn(1)-N(3) 92.65(5) 
N(4)-Mn(1)-N(3) 89.99(5) 
N(2)-Mn(1)-N(3) 89.71(5) 
N(1)-Mn(1)-N(3) 176.18(5) 
N(5)-Mn(1)-N(6) 178.30(5) 
N(4)-Mn(1)-N(6) 87.96(5) 
N(2)-Mn(1)-N(6) 85.01(5) 
N(1)-Mn(1)-N(6) 88.10(5) 
N(3)-Mn(1)-N(6) 88.10(5) 
C(4)-N(1)-C(1) 106.19(12) 
C(4)-N(1)-Mn(1) 126.30(10) 

C(1)-N(1)-Mn(1) 126.90(9) 
C(9)-N(2)-C(6) 106.38(12) 
C(9)-N(2)-Mn(1) 127.25(9) 
C(6)-N(2)-Mn(1) 126.36(10) 
C(11)-N(3)-C(14) 106.16(12) 
C(11)-N(3)-Mn(1) 126.63(9) 
C(14)-N(3)-Mn(1) 126.20(10) 
C(19)-N(4)-C(16) 106.02(12) 
C(19)-N(4)-Mn(1) 127.15(9) 
C(16)-N(4)-Mn(1) 126.51(10) 
O(1)-N(5)-Mn(1) 178.42(12) 
C(47)-N(6)-C(45) 105.11(13) 
C(47)-N(6)-Mn(1) 129.25(10) 
C(45)-N(6)-Mn(1) 125.52(11) 
C(47)-N(7)-C(46) 106.90(13) 
C(47)-N(7)-C(48) 127.13(13) 
C(46)-N(7)-C(48) 125.92(13) 
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N(1)-C(1)-C(20) 125.75(13) 
N(1)-C(1)-C(2) 109.90(12) 
C(20)-C(1)-C(2) 124.34(14) 
C(3)-C(2)-C(1) 106.85(13) 
C(3)-C(2)-H(2A) 126.6 
C(1)-C(2)-H(2A) 126.6 
C(2)-C(3)-C(4) 107.22(13) 
C(2)-C(3)-H(3A) 126.4 
C(4)-C(3)-H(3A) 126.4 
N(1)-C(4)-C(5) 125.57(13) 
N(1)-C(4)-C(3) 109.84(13) 
C(5)-C(4)-C(3) 124.54(13) 
C(6)-C(5)-C(4) 124.66(13) 
C(6)-C(5)-C(21) 117.71(13) 
C(4)-C(5)-C(21) 117.59(13) 
N(2)-C(6)-C(5) 125.95(13) 
N(2)-C(6)-C(7) 109.61(12) 
C(5)-C(6)-C(7) 124.33(13) 
C(8)-C(7)-C(6) 107.10(13) 
C(8)-C(7)-H(7A) 126.4 
C(6)-C(7)-H(7A) 126.4 
C(7)-C(8)-C(9) 107.04(13) 
C(7)-C(8)-H(8A) 126.5 
C(9)-C(8)-H(8A) 126.5 
N(2)-C(9)-C(10) 125.55(13) 
N(2)-C(9)-C(8) 109.83(12) 
C(10)-C(9)-C(8) 124.61(14) 
C(11)-C(10)-C(9) 124.54(14) 
C(11)-C(10)-C(27) 117.63(12) 
C(9)-C(10)-C(27) 117.80(13) 
N(3)-C(11)-C(10) 125.53(13) 
N(3)-C(11)-C(12) 109.86(12) 
C(10)-C(11)-C(12) 124.60(14) 
C(13)-C(12)-C(11) 106.98(13) 
C(13)-C(12)-H(12A) 126.5 
C(11)-C(12)-H(12A) 126.5 

C(12)-C(13)-C(14) 107.02(13) 
C(12)-C(13)-H(13A) 126.5 
C(14)-C(13)-H(13A) 126.5 
N(3)-C(14)-C(15) 125.75(13) 
N(3)-C(14)-C(13) 109.97(13) 
C(15)-C(14)-C(13) 124.28(13) 
C(16)-C(15)-C(14) 124.34(13) 
C(16)-C(15)-C(33) 117.29(13) 
C(14)-C(15)-C(33) 118.32(13) 
N(4)-C(16)-C(15) 126.23(13) 
N(4)-C(16)-C(17) 109.93(12) 
C(15)-C(16)-C(17) 123.79(13) 
C(18)-C(17)-C(16) 106.81(13) 
C(18)-C(17)-H(17A) 126.6 
C(16)-C(17)-H(17A) 126.6 
C(17)-C(18)-C(19) 107.18(13) 
C(17)-C(18)-H(18A) 126.4 
C(19)-C(18)-H(18A) 126.4 
N(4)-C(19)-C(20) 125.90(13) 
N(4)-C(19)-C(18) 110.02(12) 
C(20)-C(19)-C(18) 123.94(13) 
C(1)-C(20)-C(19) 124.04(13) 
C(1)-C(20)-C(39) 118.84(12) 
C(19)-C(20)-C(39) 117.09(13) 
C(22)-C(21)-C(26) 118.57(15) 
C(22)-C(21)-C(5) 120.07(15) 
C(26)-C(21)-C(5) 121.36(15) 
C(21)-C(22)-C(23) 120.57(19) 
C(21)-C(22)-H(22A) 119.7 
C(23)-C(22)-H(22A) 119.7 
C(24)-C(23)-C(22) 120.3(2) 
C(24)-C(23)-H(23A) 119.9 
C(22)-C(23)-H(23A) 119.9 
C(25)-C(24)-C(23) 119.59(17) 
C(25)-C(24)-H(24A) 120.2 
C(23)-C(24)-H(24A) 120.2 
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C(24)-C(25)-C(26) 120.62(19) 
C(24)-C(25)-H(25A) 119.7 
C(26)-C(25)-H(25A) 119.7 
C(21)-C(26)-C(25) 120.38(19) 
C(21)-C(26)-H(26A) 119.8 
C(25)-C(26)-H(26A) 119.8 
C(28)-C(27)-C(32) 118.92(15) 
C(28)-C(27)-C(10) 121.68(15) 
C(32)-C(27)-C(10) 119.40(14) 
C(27)-C(28)-C(29) 120.32(17) 
C(27)-C(28)-H(28A) 119.8 
C(29)-C(28)-H(28A) 119.8 
C(30)-C(29)-C(28) 120.12(18) 
C(30)-C(29)-H(29A) 119.9 
C(28)-C(29)-H(29A) 119.9 
C(31)-C(30)-C(29) 120.10(16) 
C(31)-C(30)-H(30A) 120.0 
C(29)-C(30)-H(30A) 120.0 
C(30)-C(31)-C(32) 120.14(17) 
C(30)-C(31)-H(31A) 119.9 
C(32)-C(31)-H(31A) 119.9 
C(31)-C(32)-C(27) 120.39(17) 
C(31)-C(32)-H(32A) 119.8 
C(27)-C(32)-H(32A) 119.8 
C(34)-C(33)-C(38) 119.09(13) 
C(34)-C(33)-C(15) 121.12(13) 
C(38)-C(33)-C(15) 119.79(13) 
C(33)-C(34)-C(35) 120.50(14) 
C(33)-C(34)-H(34A) 119.7 
C(35)-C(34)-H(34A) 119.8 
C(36)-C(35)-C(34) 120.11(15) 
C(36)-C(35)-H(35A) 119.9 
C(34)-C(35)-H(35A) 119.9 
C(35)-C(36)-C(37) 119.86(14) 
C(35)-C(36)-H(36A) 120.1 
C(37)-C(36)-H(36A) 120.1 

C(36)-C(37)-C(38) 120.00(14) 
C(36)-C(37)-H(37A) 120.0 
C(38)-C(37)-H(37A) 120.0 
C(37)-C(38)-C(33) 120.43(14) 
C(37)-C(38)-H(38A) 119.8 
C(33)-C(38)-H(38A) 119.8 
C(40)-C(39)-C(44) 118.96(14) 
C(40)-C(39)-C(20) 121.00(13) 
C(44)-C(39)-C(20) 120.01(14) 
C(39)-C(40)-C(41) 120.70(15) 
C(39)-C(40)-H(40A) 119.6 
C(41)-C(40)-H(40A) 119.6 
C(42)-C(41)-C(40) 119.94(15) 
C(42)-C(41)-H(41A) 120.0 
C(40)-C(41)-H(41A) 120.0 
C(43)-C(42)-C(41) 119.78(15) 
C(43)-C(42)-H(42A) 120.1 
C(41)-C(42)-H(42A) 120.1 
C(42)-C(43)-C(44) 120.51(15) 
C(42)-C(43)-H(43A) 119.7 
C(44)-C(43)-H(43A) 119.7 
C(43)-C(44)-C(39) 120.11(15) 
C(43)-C(44)-H(44A) 119.9 
C(39)-C(44)-H(44A) 119.9 
C(46)-C(45)-N(6) 109.95(14) 
C(46)-C(45)-H(45A) 125.0 
N(6)-C(45)-H(45A) 125.0 
C(45)-C(46)-N(7) 106.46(14) 
C(45)-C(46)-H(46A) 126.8 
N(7)-C(46)-H(46A) 126.8 
N(6)-C(47)-N(7) 111.58(13) 
N(6)-C(47)-H(47A) 124.2 
N(7)-C(47)-H(47A) 124.2 
N(7)-C(48)-H(48A) 109.5 
N(7)-C(48)-H(48B) 109.5 
H(48A)-C(48)-H(48B) 109.5 
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N(7)-C(48)-H(48C) 109.5 
H(48A)-C(48)-H(48C) 109.5 
H(48B)-C(48)-H(48C) 109.5 
C(50)-C(49)-C(54) 120.7(2) 
C(50)-C(49)-H(49A) 119.6 
C(54)-C(49)-H(49A) 119.6 
C(49)-C(50)-C(51) 120.2(2) 
C(49)-C(50)-H(50A) 119.9 
C(51)-C(50)-H(50A) 119.9 
C(52)-C(51)-C(50) 119.6(3) 
C(52)-C(51)-H(51A) 120.2 
C(50)-C(51)-H(51A) 120.2 
C(51)-C(52)-C(53) 121.0(2) 
C(51)-C(52)-H(52A) 119.5 
C(53)-C(52)-H(52A) 119.5 

C(52)-C(53)-C(54) 121.3(3) 
C(52)-C(53)-H(53A) 119.3 
C(54)-C(53)-H(53A) 119.3 
C(49)-C(54)-C(53) 117.2(2) 
C(49)-C(54)-C(55) 121.3(2) 
C(53)-C(54)-C(55) 121.5(2) 
C(54)-C(55)-H(55A) 109.5 
C(54)-C(55)-H(55B) 109.5 
H(55A)-C(55)-H(55B) 109.5 
C(54)-C(55)-H(55C) 109.5 
H(55A)-C(55)-H(55C) 109.5 
H(55B)-C(55)-H(55C) 109.5 
C(61)-C(56)-C(57) 119.1(3) 
C(61)-C(56)-H(56A) 120.4 
C(57)-C(56)-H(56A) 120.4 

C(56)-C(57)-C(58) 122.0(3) 
C(56)-C(57)-H(57A) 119.0 
C(58)-C(57)-H(57A) 119.0 
C(59)-C(58)-C(57) 117.5(3) 
C(59)-C(58)-H(58A) 121.2 
C(57)-C(58)-H(58A) 121.2 
C(58)-C(59)-C(60) 122.5(3) 
C(58)-C(59)-H(59A) 118.7 
C(60)-C(59)-H(59A) 118.7 
C(59)-C(60)-C(61) 119.8(2) 
C(59)-C(60)-H(60A) 120.1 
C(61)-C(60)-H(60A) 120.1 
C(56)-C(61)-C(60) 119.0(3) 
C(56)-C(61)-C(62) 118.9(3) 
C(60)-C(61)-C(62) 122.0(3) 
C(61)-C(62)-H(62A) 109.5 
C(61)-C(62)-H(62B) 109.5 
H(62A)-C(62)-H(62B) 109.5 

C(61)-C(62)-H(62C) 109.5 
H(62A)-C(62)-H(62C) 109.5 
H(62B)-C(62)-H(62C) 109.5 
C(65)#1-C(63)-C(64) 121.5(3) 
C(65)#1-C(63)-H(63A) 119.3 
C(64)-C(63)-H(63A) 119.3 
C(65)-C(64)-C(63) 117.0(3) 
C(65)-C(64)-C(66) 121.5(3) 
C(63)-C(64)-C(66) 121.4(3) 
C(64)-C(65)-C(63)#1 121.5(3) 
C(64)-C(65)-H(65A) 119.3 
C(63)#1-C(65)-H(65A) 119.3 
C(64)-C(66)-H(66A) 109.5 
C(64)-C(66)-H(66B) 109.5 
H(66A)-C(66)-H(66B) 109.5 
C(64)-C(66)-H(66C) 109.5 
H(66A)-C(66)-H(66C) 109.5 
H(66B)-C(66)-H(66C) 109.5
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Table 3.12.  Bond Lengths [Å] for (T(p-OCH3)PP)Mn(NO)(1-MeIm).  
------------------------------------------------------------------------------------------------------- 
Mn(1)-N(5)                   1.645(3) 
Mn(1)-N(1)  2.015(3) 
Mn(1)-N(3)  2.028(3) 
Mn(1)-N(2)  2.032(3) 
Mn(1)-N(4)  2.034(3) 
Mn(1)-N(6)  2.097(3) 
O(1)-N(5)  1.176(4) 
O(2)-C(24)  1.388(4) 
O(2)-C(27)  1.438(5) 
O(3)-C(31)  1.378(4) 
O(3)-C(34)  1.424(5) 
O(4)-C(38)  1.372(4) 
O(4)-C(41)  1.434(5) 
O(5)-C(45)  1.380(4) 
O(5)-C(48)  1.407(5) 
N(1)-C(1)  1.365(4) 
N(1)-C(4)  1.404(4) 
N(2)-C(9)  1.375(4) 
N(2)-C(6)  1.382(4) 
N(3)-C(11)  1.365(4) 
N(3)-C(14)  1.398(4) 
N(4)-C(19)  1.370(4) 
N(4)-C(16)  1.377(4) 
N(6)-C(51)  1.307(5) 
N(6)-C(49)  1.382(5) 
N(7)-C(50)  1.331(5) 
N(7)-C(51)  1.368(5) 
N(7)-C(52)  1.446(6) 
C(1)-C(20)  1.427(5) 
C(1)-C(2)  1.429(5) 
C(2)-C(3)  1.360(5) 
C(3)-C(4)  1.434(5) 
C(4)-C(5)  1.410(4) 
C(5)-C(6)  1.398(5) 

C(5)-C(21)  1.501(5) 
C(6)-C(7)  1.420(5) 
C(7)-C(8)  1.341(5) 
C(8)-C(9)  1.434(5) 
C(9)-C(10)  1.396(5) 
C(10)-C(11)  1.413(5) 
C(10)-C(28)  1.514(5) 
C(11)-C(12)  1.439(5) 
C(12)-C(13)  1.360(5) 
C(13)-C(14)  1.420(5) 
C(14)-C(15)  1.402(5) 
C(15)-C(16)  1.400(5) 
C(15)-C(35)  1.501(5) 
C(16)-C(17)  1.445(5) 
C(17)-C(18)  1.352(5) 
C(18)-C(19)  1.455(4) 
C(19)-C(20)  1.380(5) 
C(20)-C(42)  1.500(5) 
C(21)-C(26)  1.377(5) 
C(21)-C(22)  1.385(5) 
C(22)-C(23)  1.391(5) 
C(23)-C(24)  1.385(5) 
C(24)-C(25)  1.378(5) 
C(25)-C(26)  1.397(5) 
C(28)-C(29)  1.378(5) 
C(28)-C(33)  1.393(5) 
C(29)-C(30)  1.387(5) 
C(30)-C(31)  1.366(5) 
C(31)-C(32)  1.372(5) 
C(32)-C(33)  1.377(5) 
C(35)-C(36)  1.387(5) 
C(35)-C(40)  1.389(5) 
C(36)-C(37)  1.377(5) 
C(37)-C(38)  1.387(5) 
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C(38)-C(39)  1.383(5) 
C(39)-C(40)  1.399(5) 
C(42)-C(47)  1.377(5) 
C(42)-C(43)  1.389(5) 
C(43)-C(44)  1.378(5) 
C(44)-C(45)  1.387(5) 
C(45)-C(46)  1.357(5) 
C(46)-C(47)  1.393(5) 

C(49)-C(50)  1.352(6) 
C(53)-Cl(1)  1.717(4) 
C(53)-Cl(2)  1.720(4) 
C(53')-Cl(1')  1.719(4) 
C(53')-Cl(2')  1.720(4) 
C(53")-Cl(1")  1.715(4) 
C(53")-Cl(2")  1.720(4) 

Table 3.13  Bond Angles [º] for (T(p-OCH3)PP)Mn(NO)(1-MeIm).  
------------------------------------------------------------------------------------------------------- 
N(5)-Mn(1)-N(1)            93.88(14) 
N(5)-Mn(1)-N(3) 92.84(14) 
N(1)-Mn(1)-N(3) 173.27(12) 
N(5)-Mn(1)-N(2) 93.21(13) 
N(1)-Mn(1)-N(2) 90.84(11) 
N(3)-Mn(1)-N(2) 89.24(11) 
N(5)-Mn(1)-N(4) 91.66(13) 
N(1)-Mn(1)-N(4) 88.81(11) 
N(3)-Mn(1)-N(4) 90.54(11) 
N(2)-Mn(1)-N(4) 175.13(12) 
N(5)-Mn(1)-N(6) 179.31(13) 
N(1)-Mn(1)-N(6) 86.11(11) 
N(3)-Mn(1)-N(6) 87.17(11) 
N(2)-Mn(1)-N(6) 87.48(11) 
N(4)-Mn(1)-N(6)              87.65(11) 
C(24)-O(2)-C(27) 116.2(3) 
C(31)-O(3)-C(34) 117.2(3) 
C(38)-O(4)-C(41) 116.3(3) 
C(45)-O(5)-C(48) 117.7(3) 
C(1)-N(1)-C(4) 104.8(3) 
C(1)-N(1)-Mn(1) 128.9(2) 
C(4)-N(1)-Mn(1) 126.0(2) 
C(9)-N(2)-C(6) 106.4(3) 
C(9)-N(2)-Mn(1) 127.0(2) 
C(6)-N(2)-Mn(1) 126.6(2)  

C(11)-N(3)-C(14) 105.2(3) 
C(11)-N(3)-Mn(1) 127.7(2) 
C(14)-N(3)-Mn(1) 126.4(2) 
C(19)-N(4)-C(16) 107.0(3) 
C(19)-N(4)-Mn(1) 126.7(2) 
C(16)-N(4)-Mn(1) 125.9(2) 
O(1)-N(5)-Mn(1) 178.3(3) 
C(51)-N(6)-C(49) 105.2(3) 
C(51)-N(6)-Mn(1) 128.7(3) 
C(49)-N(6)-Mn(1) 126.1(3) 
C(50)-N(7)-C(51) 108.1(3) 
C(50)-N(7)-C(52) 125.8(4) 
C(51)-N(7)-C(52) 126.1(4) 
N(1)-C(1)-C(20) 124.6(3) 
N(1)-C(1)-C(2) 111.7(3) 
C(20)-C(1)-C(2) 123.7(3) 
C(3)-C(2)-C(1) 106.5(3) 
C(2)-C(3)-C(4) 107.4(3) 
N(1)-C(4)-C(5) 125.6(3) 
N(1)-C(4)-C(3) 109.6(3) 
C(5)-C(4)-C(3) 124.8(3) 
C(6)-C(5)-C(4) 124.9(3) 
C(6)-C(5)-C(21) 117.5(3) 
C(4)-C(5)-C(21) 117.6(3) 
 (2)-C(6)-C(5) 125.7(3) 
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N(2)-C(6)-C(7) 109.1(3) 
C(5)-C(6)-C(7) 125.1(3) 
C(8)-C(7)-C(6) 108.1(3) 
C(7)-C(8)-C(9) 107.2(3) 
N(2)-C(9)-C(10) 126.4(3) 
N(2)-C(9)-C(8) 109.2(3) 
C(10)-C(9)-C(8) 124.4(3) 
C(9)-C(10)-C(11) 123.7(3) 
C(9)-C(10)-C(28) 117.9(3) 
C(11)-C(10)-C(28) 118.4(3) 
N(3)-C(11)-C(10) 125.7(3) 
N(3)-C(11)-C(12) 111.0(3) 
C(10)-C(11)-C(12) 123.3(3) 
C(13)-C(12)-C(11) 106.2(3) 
C(12)-C(13)-C(14) 107.8(3) 
N(3)-C(14)-C(15) 124.7(3) 
N(3)-C(14)-C(13) 109.8(3) 
C(15)-C(14)-C(13) 125.4(3) 
C(16)-C(15)-C(14) 125.5(3) 
C(16)-C(15)-C(35) 117.2(3) 
C(14)-C(15)-C(35) 117.3(3) 
N(4)-C(16)-C(15) 126.2(3) 
N(4)-C(16)-C(17) 109.2(3) 
C(15)-C(16)-C(17) 124.5(3) 
C(18)-C(17)-C(16) 107.5(3) 
C(17)-C(18)-C(19) 106.9(3) 
N(4)-C(19)-C(20) 127.3(3) 
N(4)-C(19)-C(18) 109.3(3) 
C(20)-C(19)-C(18) 123.4(3) 
C(19)-C(20)-C(1) 123.3(3) 
C(19)-C(20)-C(42) 119.6(3) 
C(1)-C(20)-C(42) 117.0(3) 
C(26)-C(21)-C(22) 118.3(3) 
C(26)-C(21)-C(5) 120.3(3) 
C(22)-C(21)-C(5) 121.4(3) 
C(21)-C(22)-C(23) 121.1(3) 

C(24)-C(23)-C(22) 119.5(4) 
C(25)-C(24)-C(23) 120.4(3) 
C(25)-C(24)-O(2) 123.8(3) 
C(23)-C(24)-O(2) 115.7(3) 
C(24)-C(25)-C(26) 119.0(3) 
C(21)-C(26)-C(25) 121.7(3) 
C(29)-C(28)-C(33) 117.2(3) 
C(29)-C(28)-C(10) 122.1(3) 
C(33)-C(28)-C(10) 120.7(3) 
C(28)-C(29)-C(30) 121.3(4) 
C(31)-C(30)-C(29) 120.4(4) 
C(30)-C(31)-C(32) 119.4(3) 
C(30)-C(31)-O(3) 124.6(4) 
C(32)-C(31)-O(3) 116.0(3) 
C(31)-C(32)-C(33) 120.3(4) 
C(32)-C(33)-C(28) 121.4(4) 
C(36)-C(35)-C(40) 117.2(3) 
C(36)-C(35)-C(15) 120.1(3) 
C(40)-C(35)-C(15) 122.7(3) 
C(37)-C(36)-C(35) 122.3(4) 
C(36)-C(37)-C(38) 119.8(4) 
O(4)-C(38)-C(39) 116.4(4) 
O(4)-C(38)-C(37) 124.0(4) 
C(39)-C(38)-C(37) 119.6(3) 
C(38)-C(39)-C(40) 119.6(4) 
C(35)-C(40)-C(39) 121.5(4) 
C(47)-C(42)-C(43) 116.9(3) 
C(47)-C(42)-C(20) 121.6(3) 
C(43)-C(42)-C(20) 121.5(3) 
C(44)-C(43)-C(42) 121.7(3) 
C(43)-C(44)-C(45) 120.0(4) 
C(46)-C(45)-O(5) 124.8(3) 
C(46)-C(45)-C(44) 119.1(3) 
O(5)-C(45)-C(44) 116.0(3) 
C(45)-C(46)-C(47) 120.5(4) 
C(42)-C(47)-C(46) 121.7(4) 
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C(50)-C(49)-N(6) 109.9(4) 
N(7)-C(50)-C(49) 106.3(4) 
N(6)-C(51)-N(7) 110.5(4) 

Cl(1)-C(53)-Cl(2) 114.5(3) 
Cl(1')-C(53')-Cl(2') 114.3(3) 
Cl(1")-C(53")-Cl(2")        114.5(3)
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