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CHAPTER I

ABSTRACT

Overpressuring, which is a phenomenon common to deep basins, had been

detected in the Anadarko basin located in the western Oklahoma and the northern Texas

Panhandle for more than a decade. Indeed, the Anadarko basin is the deepest basin in the

North American craton. Overpressuring is maintained in deep basins over long

geological periods by pressure seals. A pressure seal is a shell-like domain of low

permeability sufficient to prevent fluids from escaping from a domain of rocks of

relatively good hydraulic conductivity and porosity, called a "compartment".

The presence of a Megacompartment Complex (MCC) in the Anadarko was first

demonstrated by AI-Shaieb et aI., 1994. The Megacompartment Complex comprises

mainly Pennsylvanian formations from the Morrow through Oswego formation and is

enclosed by three types ofpressure seals: a basal seal, the Woodford shale, a top seal

which cuts across stratigraphy. The lateral seal coincides to the South with the frontal

zone of the Wichita Mountain uplift and to the eastern, western and northern boundaries

with the convergence of the basal and top seals.

The Red Fork Sandstone is one of the formations cut across by the top planar seal

which dips gently southwest. The Red Fork Sandstone is an important producing



reveals that the Red Fork Sandstone is overpressured inside the Megacompartment

Complex and normally pressured on the northern shelf. The change of pressure gradients

with tectonic setting suggests two distinctive pressure domains: a deep overpressured

domain inside the MCC, located in the deep basinal setting, and a near-to-normally

pressured domain located on the northern shelf. Moreover, the Red Fork sandstones of

the MCC and of the northern shelf present evidence of distinctive and separate,

characteristic morphological, textural, mineralogical and diagenetic overprints. The most

obvious criterion distinguishing the two is the presence of repetitive small- to medium­

scale diagenetic banding patterns that are in the deep overpressured Red Fork Sandstones.

These patterns are noticeably absent in sandstones of the near-to-normally pressured Red

Fork of the northern shelf. The origin of these bands is attributed to diagenetic alteration

of shale host rock, due to deep burial diagenesis (AI-Shaieb et aI., 1994). Petrographic

examination and x-ray diffraction of these bands reveals that the bands are essentially

chloritic in nature (Power, R., 1991; AI-Shaieb et aI., 1994).



CHAPTER II

INTRODUCTION

The Anadarko basin is the deepest Paleozoic sedimentary basin of the North

American craton (Figure 1). Al Shaieb et aI., 1994 distinguished three different levels of

compartmentation within the Anadarko basin (Figure 2) based on integrated pore pressure

and geologic data. In that study, Al Shaieb et aI., (1994) described for the first time the

existence of a Megacompartment Complex (MCC) in the Anadarko basin. The basin is

enclosed by three pressure seals (Figure 3). The bottom seal coincides with the Woodford

Shale whereas the top seal dips gently southwest and cuts across stratigraphy (AI Shaieb

et aI., 1994). The top seal is found at approximately 7,500-10,000 ft. below surface. The

southern lateral seal coincides with the frontal zone of the Wichita Mountain uplift. The

eastern, western, and northern boundaries coincide with the convergence of the basal and

top seals. The stratigraphy of rocks within the MCC is illustrated on Figure 4 and

comprises Siluro-Devonian through Pennsylvanian formations. The Pennsylvanian

(Desmoinesian) Red Fork Sandstone, the topic of this study, is a major oil and gas

producer in Oklahoma. The Red Fork sandstones display characteristic features related to

their depositional environments, tectonic settings, and to their diagenetic history. The Red

Fork sandstones reservoirs are overpressured in the deep Anadarko (more than
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than 11,000 ft.) exhibit repetitive diagenetic bands. These bands are noticeably absent in

the Red Fork sandstones of the near- to normally pressured northern shelf. Tiger and AI­

Shaieb, (1990), Al Shaieb et aI., (1991), and Al Shaieb et aI., (1994) indicated the

important role these bands play in the sealing mechanism of the deep overpressured

sandstones. These studies indicated that the repetition of diagenetic bands enhanced the

seal structure in overpressured rocks.

Objectives

The primary objectives of this study are:

1) To verify the presence of compartments in the Red Fork interval within the Anadarko

basin;

2) To comparatively analyze the Red Fork rocks of the deep overpressured domain with

the Red Fork rocks of the shallow near- to normally pressured northern shelf domain.

This analysis will compare: the morphology, the petrology, the mineralogy, and the

diagenetic overprints of the Red Fork;

3) To determine the lateral extent of seal rocks and non-seal rocks and;

4) Define a set of criteria that distinguish the Red Fork seal rocks from the non-seal

rocks.

Methods of Investigations

The verification of the existence of pressure compartments in the Red Fork



gradients was accomplished by examining the pressure-depth profiles from the Anadarko

basin. In addition, Red Fork pressure data, mainly bottom hole pressures (BHP), taken

from previous investigations were reviewed. The data were plotted on an Oklahoma base

map (Figure 5). After reviewing the change from near to normal pressure on the northern

shelf to the overpressured deep basin, a stratigraphic cross-section (Figure 6) that extends

from the near- to normally pressured area into the overpressured deep basin was prepared.

Correlations were done using wire-line signatures. Depositional features and sedimentary

structures were studied from five cores (Figure 7) to verify the depositional settings and

environments of the Red Fork. The mineralogy and diagenetic overprints of the Red Fork

were studied from thin sections, microscopy, and x-ray diffraction.

Petroleum Geology

In the deep overpressured Anadarko basin the Middle Pennsylvanian

(Desmoinesian) Red Fork sandstones are thick and constitute excellent reservoirs for

natural gas. In the near- to normally pressured northern shelf of the Anadarko basin, the

Red Fork sandstones are shallower and thinner and constitute important oil reservoirs.

The Red Fork sandstones produce primarily from stratigraphic traps; such as

lenticular sandstone bodies that abruptly terminate against shale. In the deep Anadarko

basin, the Red Fork sandstones have lower porosities and permeabilities than their

northern shelf counterparts. The Excello black shale and other Cherokee Group black

marine shales are considered to be primary hydrocarbon source rocks for Desmoinesian



""II
'I

~

~ ~ ~ ~

0» ~ ~ ~
~

R5W

I
I
I
I

I
R10W I

I
I

R20W

1t15W

.....
o
z

.....
(ft

Z

...
N
o
Z

...
N
(ft

Z

...
N
o
Z

Figure 5. Distribution of the Red Fork pressure-depth gradients and location of the
overpressured domain and the near-to-normally pressured northern shelf
the dashed line represents the transition zone between the two domains.

..



_:./1 I I 1.1 I'"

"

II!Ie...

; = i !! : I ~ ! • !~ lit ! _
1'. ••• •• • • • :I __ _ .~

~""""'''''+-1I-1'''''''''''''''''''t-1~-+''''~'''t-1 : : : :~ I I I I I • ••

WI.

I I

t=t:t-liii+t±t±±t J I I I I ITFti I I,·. I I II. I • I

1 - T-...co Leete, 8

2_~h Smlth_B_21_1

3 - WGada SwItz.-C _5_1

4_ o.ta Herring No 1

5-~ GIIbow No 1

I-Getty Tf'llCt No 1 -'WSW

~

'M
IL

llIt.

+-t-+-t-f...... 4

•

-_T.. III·~II• CON LOCIItian

l-t-t-Hft-+-I+~~"""'I-+""'+-I~"

~y..

Figure 6. Cross section location map_ •



I I I I I I I 11.,._

•

. : I:ttflll II Iltt1t1tt -

...

-- - = e • •• • : = i
• ; I •• I ; • •

-HHEillEl flllill~Wlfll
ILl .111 I'. rr:.~lt:t:t=

Ill.
L. ~

1 ~

I ~

r ~~
1 i'l \

I I';:". IICItit "I!I iT . - ,,....

~_~.z I_~._ -~- I

~~_~1.
1 l

~I-~"'I-
• I .\

t='t- .-.... I... L.I 'I II -. ,

J-I-' - -----.... II I _ 1 ~.,..., "-J!"l"'.
• II J ~ ~

..,

_I ~I .... _"'W"'lI.... I I •••••••. __

_ .. 1 .~

t:~ -p..!-~ ,~- - i I I I I I I I I I I I I

-" ~. I :~ 1 I I I I I I I I ,- 1-. III I I , I I I I , II
l' I _ ~I I r TTl _

" I I III. III .... ~I'II r-r-

"""--...u""'l! I I ",",_~ I -

I I I I I .
.....~ 1 J I II ..

--"' ~ I I'r'~ 11 ftI
.. 1 IJ-,

L~~'_ I.~ II \ ~~~.~,~~~

~~ ~~~~~ ~~~ I_~~~ - ~ u

\l) ~~"","lJ "~,.••

lelCl1i

Tract No 1 18,WSW

• Co.. L0C8tlan

1_T....~ ....ter 6

2_~h Srnlth_B_21_1

3 - W'Oods SwItzer-C _5_1

4_o.ta Herring No1

5 - r:.11Iuton GfIIbow No 1

6-Getty

I'I·D:ZJ::tttjt1j±±ttJCIi:EfBBj:t±t~~~~~4:t:~tJ~~:t:tl:SBliEEB:IifEB8
:I1EEBEllElllJEl33:I£BS:il

,....
1" I I I I I I I 1-1

Figure 7. Core location map.



sandstones reservoirs in northeastern Oklahoma (Baker, 1962, James and Baker, 1972).

These core shales (Heckel, 1985) contain a mixture of type I and type III kerogens (Ece,

1989; Rice and other, 1989). A number of oil and gas fields have been developed in the

Red Fork sandstones of both pressure domains. Table 1 gives a listing of some major Red

Fork oil and gas fields and their locations are illustrated on Figure 8.



Table 1 : Total production of Major Red Fork oil and Gas fileds

Field name Discovery date Cumulative Oil Cumulative gas
production (bbl) production (MCF)

S. W Aledo 5/72 498,911 18,551,865

West Butler - Custer 2/82 568,096 13,683,896

North Canute 9/62 1,208,189 90,782,329
Carpenter 1/71 641,773 270,664,071

N. E. Carpenter 11/80 858,601 50,292,856
East Cheyenne 4/81 7,259 879,512
West Cheyenne 11/76 41,698 359,198,838

Foss 10/82 18,993 9,803,300
N. W. Foss 10/82 62,862 6,883,120

East Hammon 2/82 748,333 40,879,433
N. W.Hammon 8/81 158,136 13,643,851
S. W.Hammon 8/80 243 932,128

Leedley 8/70 314,057 27,606,553
Stafford 3/82 175,503 12,157,233

Strong City 7/80 3,684,714 343,748,406
Putnam * 2/66 2,788,999 58632

South Trial 2/77 119,623 19,576
Squaw -Creek 10/64 204,671 792,693
Bridgeport- 9/69 47,024 6,089,241

South and West
Indianapolis 9/71 22,984 528,797

Geary 10/72 793,624 81,871,309
Watonga- 1/75 28,565 1,959,795

Chickasha Trend
South Thomas 4/76 2,983,624 81,871,309
East Clinton 6/80 477,818 42,582,124
Carpenter ** 1/82 10,100 459,066

* Total Production as of July, 1990 (After Anderson, 1992)
** After Udayshanker, 1985 and Johnson, 1984
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CHAPTER III

PREVIOUS INVESTIGATIONS

Depositional Environment of the Red Fork Sandstone

Due to its economic significance, numerous geologic studies have been conducted

on the Red Fork. Many of these studies have contributed to the understanding of the Red

Fork depositional environments. Some studies also addressed the geometry, petrology,

provenance and the diagenesis of the Red Fork Sandstone in the deep Anadarko basin as

well as on the northern shelf, and northeastern Oklahoma platform.

McElroy (1961) analyzed the Red Fork in north-central Oklahoma along the

Nemaha Ridge and determined that the Red Fork was fluvial and was affected by the

positive tectonic feature. Thalman (1967) studied the Red Fork in Oakfield field in

Woods and Major Counties, Oklahoma. He found that the Red Fork contained two

genetic units: Upper Red Fork and Lower Red Fork. Thalman (1967) interpreted the

Lower Red Fork Sandstone as channel-fill "bar finger" or "river bar" deposits. He also

concluded that the Upper Red Fork sandstones were delta plain or flood plain deposits.

More recent work suggests that the fluvial "river bar" interpretation is the more likely

Berg (1969) showed that the Red Fork was deposited in a distributary system in north



central north central and northeastern Oklahoma. He suggested that the Nemaha Ridge

may have acted as a barrier for sediment sources to the north and east. He based his

interpretation on the presence of thicker sandstone deposits on the east side of the

Nemaha Ridge. Lyon (1971) who studied the Red Fork in Alfalfa, Major, and Woods

Counties, Oklahoma, described the depositional environment as a fluvial system. He

divided the Red Fork into an upper, middle and lower intervals. Zeliff (1976) described

the Red Fork depositional environment as a fluvial system in Kingfisher County. Albano

(1975) and Pulling (1977) suggested that the Red Fork sandstones in central Oklahoma

were primarily deposited in deltaic distributary environments. Glass (1981) studied the

Wakita trend and determined that the depositional environment of the Red Fork was a

fluvial-dominated system

Johnson (1984) interpreted the Lower Red Fork Sandstone in the South Thomas

field as submarine type deposits. These lowstand accumulations occur beyond the delta

complex above the shelf-slope hinge line. Johnson suggested that the Upper Red Fork

was deposited by channels within deltaic environments or associated shallow marine

environments. Udayashankar (1985) interpreted the Red Fork in Dewey County,

Oklahoma as deltaic distributary channel. He also delineated an Upper and Lower Red

Fork based on a calcareous marker bed. Anderson (1992) focused on the distribution of

the Upper Red Fork in Beckham, Custer, Dewey, and Roger Mills, Counties, Oklahoma.

He showed that the Upper Red Fork sandstones were deposited in a variety of submarine

settings including upper, middle, lower parts of submarine fans and in the basin plain.



Seals and Compartmentation in the Anadarko Basin

Abnormal or anomalous formation pressures are defined as pressures that are

either higher (overpressure) or lower (underpressure) than the normal hydrostatic pressure

(Bradley, 1975). The normal hydrostatic pressure is 0.465 psi/ft. (10.52 kPalm).

According to Ortoleva (1994) a compartment is a domain of rock of relatively good

hydraulic conductivity and porosity surrounded by a shell-like domain of sufficiently low

permeability that the fluids within the compartment do not have appreciable exchange

with the outside environment for long periods of geologic time. This definition implies

that a compartment is primarily defined by its hydraulic potential, which is maintained by

a three dimensional feature , the seal, that prevents pressure equilibration to normal

hydrostatic pressure, by restricting fluids movement.

Compartments are easily recognized on pressure-depth profiles (PDP's) by their

departure from the normal hydrostatic gradient to the surface (Figure 9 ).

When a basin subsides and is buried, it becomes a chemical reactor of grand proportions

in which sediments and fluids (reactants) are continually being exchanged with the

environment. As a result, a variety of diagenetic reactions takes place. They involve

strongly coupled reactions, transport, and mechanical processes (RTM) which drive the

basin reactor from equilibrium conditions to far-from-equilibrium conditions, which they

maintain. Compartments and seals are manifestations of this far-from-equilibrium

dynamic (Ortoleva, 1994)..
Previous investigations in the deep Anadarko basin by : Powley, (1987), Tigert
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recognized abnormally pressured zones in the basin. Based on the examination or the

study of pressure-depth profiles (Figures 10, 11), cored seal intervals, pressure-depth

gradient maps of the Missourian/Virgilian, Red Fork, Morrow, and Hunton intervals, AI­

Shaieb et aI., (1994) demonstrated the existence of a basinwide, completely sealed

overpressured region within the Anadarko basin called the Megacompartment Complex

(MCC). That study demonstrated that the near- to normal pressure-depth gradients are

characteristic of the Missourian/Virgilian (Figure 12) and that near-to-normal pressure­

depth gradients are typical of the Hunton (Figure 13). The same study demonstrated that

the Morrow (Figure 14) and the Red Fork (Figure 15) pressure gradients increase

significantly from the shelf to basinal settings. Three levels of compartmentation were

distinguished in the Anadarko basin (AI Shaieb et aI., 1994) (Figure 2). Levell is the

basinwide overpressured volume of rocks that are completely enclosed by seals called

Megacompartment Complex (MCC). Multiple, district-, or field-sized configurations

within a particular stratigraphic interval are identified as Level 2 compartments. The last

level of compartmentation, Level 3, consists of a single small field or a particular

reservoir nested within Level 2.

The Anadarko basin study demonstrated that the top of overpressuring (top seal)

is approximately 10,000 to 11,000 ft. (3,000 m) deep in the western and central parts of

the basin, but around 7,500 ft. (2,300 m) in the shelf setting. The top seal along the

eastern fringe of the basin dips slightly southwestward and coincides with the

argillaceous Mississippian carbonates and Pennsylvanian shale/sandstone sequences.
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Westward the top seal becomes flat-lying and cuts across stratigraphic boundaries into

younger Missourian-Virgilian rocks. The formation of the top seal is believed to be

diagenetically controlled (Tigert and AI-Shaieb, 1990; AI-Shaieb et aI., 1994). The basal

seal of the MCC is lithologically controlled and coincides with the Woodford Shale in the

northern and western parts of the basin, whereas in the southern part the basal seal may

coincide with the Mississippian Caney and/or Woodford shales. The nearly vertical

frontal fault zone of the Wichita uplift constitutes the southern lateral seal of the MCC.

The lateral seal along the northern, western, and eastern boundaries of the MCC is

stratigraphically controlled and formed by the convergence of the top and basal seals. AI­

Shaieb et aI., (1994) and Tigert and Al Shaieb, (1990) studied pressure seals in sand-rich

rocks as well as clay rich-rich rocks and indicated that these pressures seals exhibit

characteristic banding patterns which have a unique mineralogical and morphological

characteristics. Banding patterns are typically observed in rocks that were buried deep

enough to be overpressured and are noticeably absent in near to normally pressured rocks

that experienced shallow burial and did not enter the "seal window" (AI-Shaieb et aI.,

1994).

Pressures and Hydrodynamic properties of the Red Fork Interval

Pressure-depth gradient map (Figure 15 ) of the Red Fork shows that pressure­

depth gradients increase significantly from under- to normal gradients on the shelf to

overpressured gradients in the deeper basin. A transition zone separates the under-



zone tends to mimic the limit of deposition of the Red Fork. The comparison of two

pressure-depth profiles: (1) from the northern shelf of the Anadarko basin and (2) from

the deep western part of the basin, shows that the Red Fork is normally pressured on the

shelf (Figure 10) and overpressured (Figure 11) in the deep Anadarko basin. The

potentiometric diagram (Figure 16) of the Red Fork shows two major peaks representing

the two major overpressured Red Fork compartments. The two major pressure domains

referred to in this study are: (1) a deep overpressured domain located in west central

Oklahoma that is characterized by pressure-depth gradients greater than 0.5 psi and (2) a

shallow near-to-normally pressured domain located on the northern shelf with pressure­

depth gradients less than 0.5 psi.



§
.....
C'II

I
I

t: ~
Q
C

~
W
:z::

8
CoO

§
C")

0

Figure 16. Potentiometric diagram of the Red Fork.(After AI-Shaieb et al., 1994.)

•



CHAPTER IV

GEOLOGIC SETTING

Regional Structural Geology

The Anadarko basin, located in western Oklahoma and the northern Texas

Panhandle, is an elongated, asymmetric, west-northwest trending basin (Figure 1 ). Its

axis is close to the southern margin that separates the basin from the Wichita mountain

uplift. The maximum structural separation between the uplift and the basin floor is about

40,000 ft.(13,000 ft.) (Johnson, 1989). The basin covers an area of approximately 90,000

Km2 (35,000 mi2
). It is bounded to the east by the Nemaha Ridge, to the south by the

ancient eroded Amarillo-Wichita mountain front and the Marietta basin, to the southeast

by the Ardmore basin and the Arbuckle uplift and to the north and west by the northern

shelf (Cardot and Lambert, 1985).

The Anadarko basin is part of the southern Oklahoma aulacogen (Hoffman et aI,

1974). The rifting phase of the southern Oklahoma aulacogen began during Cambrian

time. The event produced normal faults and igneous rocks were emplaced in the area

occupied by the present Anadarko basin and Amarillo-Wichita uplift. Subsidence,

ascribed to cooling after a thermal event associated with Cambrian crustal thinning



(Feinstein, 1981; Denison, 1982; Gamer and Turcotte, 1984), occurred in the aulacogen

in several phases from Late Cambrian through Early Mississippian (Hoffman et aI. 1974;

Amsden, 1975; Webster, 1977, 1980; Brewer et aI., 1983). Relatively rapid rates of

subsidence are characteristic of the Cambro-Ordovician. A Late Mississippian to Early

Pennsylvalnian subsidence phase, which followed relatively slow rates of subsidence in

the Silurian, Devonian, and Early Mississippian, was characterized by an extremely rapid

rate of subsidence. This subsident phase coincides with the tectonic development of the

Anadarko basin and Wichita mountain uplift. Evans (1974) stated that "maximum rates of

subsidence were achieved in Morrowan and Atokan times and the major pulse of vertical

uplift occurred in Late Atokan time." Dickinson and Yarborough (1977), and Donovan et

ale (1983) illustrated the accelerated subsidence during the Late Mississippian to Early

Pennsylvanian using sediment-accumulation plots. By Early Pennsylvanian, the Wichita

orogeny raised vertical fault blocks in the Amarillo-Wichita uplift along reactivated zones

ofweakness produced during the initial graben stage. As the Amarillo-Wichita uplift was

elevated, it was eroded. As a result, by Early Pennsylvanian, some 3,000 m (10,000 ft.) of

Springer-Morrowan and Atokan rocks were deposited in the Anadarko basin. The rate of

subsidence was slowed from the Desmoinesian (Middle Pennsylvanian) through Permian

time due to 'thermal contraction' as the lithosphere returned to equilibrium (Garner and

Turcotte, 1984).



Red Fork Stratigraphy

The Red Fork Formation is part of the Krebs Group, the lowest group of the

Desmoinesian Series of the Pennsylvanian System (Oakes, 1953) (Figure 17). Haworth

and Kirk (1984) first used the term "Cherokee" for the sequence of black shales below the

Pennsylvanian "Oswego" (Fort Scott) Limestone and the top of the undulating erosional

Mississippian strata in Cherokee County, Kansas (Withrow, 1968). The term was applied

to same stratigraphic interval in Oklahoma. Oakes (1953) subdivided the Cherokee Group

of the northeastern and central Oklahoma into the "Krebs Group" and the "Cabaniss

Group". Howe (1956) readopted the term Cherokee Group and divided it into the Krebs

and Cabaniss Subgroups. In Oklahoma, the Krebs and the Cabaniss Groups are

informally referred to as the "Cherokee Group." The Cherokee Group consists of

interbedded sandstone and shale "packages" that are separated by limestone marker beds

(Jordan, 1957). These limestone marker beds represent extensive periodic transgressions

of the Cherokee Sea onto the platform, whereas interbedded sandstone and shale are

records of regressive episodes of the Cherokee Sea.

The Red Fork interval is defined as the interval from the base of the Pink

Limestone to the top of the Inola Limestone (Figure 17). The Red Fork Sandstone was

named by Hutchinson (1911) to describe a shallow oil-producing sandstone in the Red

Fork field near the town of Red Fork, southwest of Tulsa, Oklahoma. The stratigraphic

surface equivalent name of the Red Fork is the Taft Sandstone. Subsurface equivalents of

the Red Fork are the Earlsboro Sandstone ofPottawatomie County and Chicken Farm
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Sandstone of Oklahoma County (Jordan, 1957). The Red Fork consists of two genetic

units: the Lower Red Fork and the Upper Red Fork (Udayashankar, 1985) (Figure 17).

Johnson (1984), using isopach maps of the entire Red Fork interval, showed that the Red

Fork thickens markedly from the northern shelf of the Anadarko basin to the deep part of

the basin.
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CHAPTER V

CORE DESCRIPTION

Introduction

The Red Fork Sandstone was deposited in variety of environments from fluvio­

deltaic to submarine fan.

In the shallow near-to-normally pressured northern shelf and transition zone, the

Red Fork is interpreted as fluvio-deltaic sandstones and shales (McElroy, 1961; Thalman,

1967; Withrow, 1969; Berg, 1969; Lyon, 1971; Zelif, 1976; Glass, 1981; Udayashankar,

1985).

In the deep overpressured part of the basin (Beckham, Custer, and Roger Mills

Counties, Oklahoma) the Red Fork is interpreted as deltaic, shallow marine, and deeper

marine including submarine canyon, submarine fan (upper, middle and lower fan) and

basin plain sandstone or shale (Johnson, 1984; Anderson, 1992).

The purpose of this chapter is to review the internal features in cores of the Red

Fork taken from the deep overpressured basin and from the near to normally pressured

northern shelf. Three of the five cores studied in this thesis are from the deep

overpressured basin while the remaining cores are from the northern shelf. Locations of

wells these cores were taken from are shown on Figure 7. The summary of internal
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features identified in these cores is shown in Table 2.

Internal Features of the Deep Overpressured Basin

Representative cores from the overpressured domain are the Tenneco Lester 6

(Sec. 6, T. 13 N., R. 21 W., in Roger Mills County, Oklahoma), the Internorth Smith-B­

21-1 (Sec. 21, T. 14 N., R. 20 W., in Custer County, Oklahoma), and the Davis Herring

No.1 (Sec. 17, T. 14 N., R. 14 W. in Custer County, Oklahoma). The core interval in the

Tenneco Lebster 6 is from 12,731 to 12,771 ft. Form the Internorth Smith-B-21-1 the

core interval is from 12,210 to 12,531 ft. These two cores were described by Anderson

(1992) in his study covering the distribution of Red Fork submarine fans in the Anadarko

basin. The cored interval in the Davis Herring No 1 is from 10,857 to 10,916 ft.; and was

described by Johnson (1984). Petrologs of the cores are found in Appendix B.

The Red Fork sandstone interval in overpressured domain of the Anadarko basin

consists of interbedded sandstone, siltstone and shale. In approximate order of abundance

the most commonly observed internal features are: (1) horizontal or parallel laminae and

bedding, (2) ripple and wavy laminae, (3) horizontal discontinuous and lenticular

bedding, (4) through cross bedding, (5) flaser bedding, (6) soft-sediment deformed

bedding (convoluted beds, evidence of flowage, and slump features), (7) burrows and

bioturbated rocks, (8) tabular planar cross bedding, (10) massive bedding (11) diagenetic

overprints, (12) microfaults, and (13) flame structures.
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Table 2: Comparative Table of Sedimentary Structures Occurence in Deep
Overpressured and Near to Normal Pressured Domains.

Sedimentary Structures Deep Overpressured Near to Normal Pressured
Domain Domain

Horizontal or Parallel
Laminae Bedding X X
Ripple and Wavy Laminae X X
Horizontal Streaky and
Lenticular Bedding X -
Trough Cross-Bedding X X
Inclined Laminae and
Tabular Planar Cross- X X
Bedding
Burrowing and Bioturbation X X
Graded Bedding X X
Soft Sediment Deformation
Features X X
Microfaults X X
Flame Structure X -
Diagenetic Bands X -
Zones of Intense Diagenetic
Cementation X X
Scour or Erosional
Reactivation Surfaces - X
Rip-Up Shale Clasts - X

•
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Horizontal or Parallel Laminae and Beddin~

Horizontal or parallel lamination and bedding are the most common sedimentary

structures observed in the three cores (Figure 18). They are common in siltstone/shale

beds and sandstone beds as well.

Ripple and Wavy Laminae

Ripples and wavy laminae (Figure 19) are the second most observed sedimentary

structure type of the described cores. They mainly are in interlaminated to interbedded

shale, siltstone, and sandstone intervals. They are particularly abundant in the Intemorth

Smith-B-21-1 Red Fork core.

Horizontal Streaky and Lenticular Beddin~

Horizontal streaks and sandstones lenses are in siltstone/shale beds. Sandstones

lenses are generally cross bedded (Figure 20). They are in cores from the Internorth

Smith-B-21-1, the Davis Herring No.1, and the lower shale unit of the Tenneco Lester 6.

Trou~h Cross Beddin~

Medium- to small-scale trough cross bedding (Figure 21) are present in all cores.

They are mainly observed in sandstone beds but also occur in interbedded sandstone and

shale/siltstone beds. They are generally associated with discontinuous wavy and ripple

laminae, and flaser bedding.
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Figure 18. Horizontal laminae. Getty Tract No.1, 16/WSW, 4833 ft.

(After Glass, 1981.)
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Figure 19. Climbing ripples associated with trough cross bedding. Internorth
Smith-B-21-1, 12,228 ft. (After Anderson, 1992.)
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Figure 20. Lenticular bedding associated with small-scale tabular planar
cross bedding. Internorth Smith-B-21-1, 12,243'9".
(After Anderson 1992.)
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Flaser Beddih~

Flaser bedding is mainly in sandstone beds of the Intemorth Smith-B-21-1 core

(Figure 22). This sedimentary structure is generally associated with through cross

bedding and/or ripple and wavy laminae.

Soft-Sediment Deformation Features

Soft-sediment deformation features in the described cores included convolute

bedding, evidence of flowage, and slump features. All of these features are present in the

Intemorth Smith-B-21-1 (Figure 23). However, convolute bedding is dominant. In

Tenneco Lester 6, the most common soft-sediment deformation is the slump feature.

Burrows and Bioturbated rocks

Burrows and bioturbated rocks were observed in all cores. In the Tenneco Lester

6, burrows are mostly in the fossiliferous upper black shale where they are filled with

pyrite (Figure 24A). In the Intemorth Smith-B-21-1 (Figure 24B) burrows are present in

all types of lithologies: sandstone, siltstone, and shale. A completely bioturbated

sandstone bed appears in the Intemorth Smith-B-21-1 at 12,249 ft. In the Davis Herring

No.1 burrows occur in the upper interlaminated to interbedded sandstone and

shale/siltstone interval.
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B

, Figure 22. (A) Flaser bedding associated with ripples. Internorth Smith-B-21-1
12,225'10". (B) Tabular planar bedding, possible medium- to large-scale
trough cross bedding. Tenneco Lester 6, 12,270'. ( After Anderson, 1992.)
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Figure 23. Flowage structure. Intemorth Smith-B-21-1, 12,225'10".
(After Anderson, 1992.)
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Inclined Laminae and Tabular Planar Cross Bedding

Inclined laminae and tabular planar cross bedding are in all cores. Inclined

laminae are numerous in the Intemorth Smith-B-21-1 core, whereas tabular planar cross

bedding is mostly in sandstone of the Davis Herring No.1 and Tenneco Lester 6.

Massive Bedding

Massive bedding is present in all cores, in sandstone beds (Figure 25) and

shale/siltstone beds as well.

Graded Bedding

In the Intemorth Smith-B-21-1 core, graded bedding occurs as small-scale fining

upward.

Penecontemporaneous Microfaults

Microfaults are minor sedimentary structures observed in interlaminated to

interbedded sandstone and shale/siltstone intervals of the Internorth Smith-B-21-1 core.

They appear as micro normal faults with offsets that range from 0.5 to 1 em.

Flame Structures

Flame structures are minor and localized sedimentary structures observed only in

the Intemorth Smith-B-21-1 core.
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F·gur 25. Massive bedding. Int morth mit - -21-1,12,323'6". (Anderson, 1992.)
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Dia~enetic Overprints: Type 1 and Type 2

Two types of diagenetic overprints are present in the three cores. The first type of

diagenetic overprint, type 1 banding, is represented by diagenetic bands that appear to

have formed independently of sedimentary features (AI Shaieb et aI., 1994). This type of

banding occurs mostly in the upper shale/siltstone intervals of the Red Fork cores. In the

Tenneco Lester 6, type 1 banding is seen as repetitive small to medium scale (0.5-6 in.)

lustrous dark gray to yellowish gray bands. Similarly, repetitive small- to medium-scale

reddish dark brown to dark brown diagenetic bands are in the Internorth Smith-B-21-1

core and seem to have occurred independently of sedimentary features (Figure 26).

The second type of diagenetic overprint, type 2, is zones of intense cementation

occurring as low-porosity dark gray colored zones. In sandstone intervals, these zones

alternate with porous light-colored zones. These cemented zones were observed in

sandstone intervals of the Internorth Smith-B-21-1 and Davis Herring No.1 cores where

light gray sandstone zones alternate with highly cemented dark gray ones. In the Tenneco

Lester 6, this type of banding occurs as very light gray colored zones.

Internal Features of the Near-to-Normally Pressured Northern Shelf Sandstones

Internal features of the near-to-normally pressured northern shelf and transition

zone were studied from the following two cores: the Ferguson Grabow No. 1 located in

Sec. 9, T. 19 N., R. 12 W. in Blaine County, Oklahoma, and the Getty Tract No.1,

16/WSW located in Sec. 21, T. 27 N, R. 4 W. in Grant County, Oklahoma.
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Figu e 26. dish dar brown dia en tIC bands. ntemorth mith-B-21-1
,2468 ft. (Aft r Ande son, 199 .)



The cored interval of the Ferguson Grabow No.1 is from 7,601 to 7,638 ft. The Ferguson

Grabow No.1 was described in the OCGS-OSU core workshop book (1995). On the

Getty Tract No 1, 16/WSW the described core interval is from 4,755 to 4,837 ft. Glass

(1981) analyzed the Getty Tract No.1, 16/WSW in his study of the Wakita trend.

The Red Fork sandstone of the near to normal pressured northern shelf commonly

consists of two units: a lower sandstone unit, overlain by an upper siltstone/mudstone as

in the Getty Tract No. 1,16/WSW, or a lower shale /mudstone unit overlain by a

sandstone unit as in the Ferguson Grabow No 1. The common internal features in

approximate order of abundance is 1) horizontal or parallel laminae and. bedding, 2)

inclined laminae and tabular planar cross bedding, (3) massive bedding, (4) trough cross

bedding, (5) ripple and wavy laminae, (6) rip-up shale clasts, (7) flaser bedding, (8)

mottled structure, (9) scour or erosional-reactivation surfaces, (10) microfaults, (11) soft

deformation features: flowage features, (12) graded bedding, and (13) diagenetic

overprints.

Horizontal or Parallel Laminae and Beddin~

Horizontal or parallel lamination and bedding are present in both cores. They

commonly occur in sandstone intervals and in interlaminated to interbedded

shale/mudstone, siltstone, and sandstone intervals as well.

Inclined Laminae and Tabular Planar Cross Beddin~

Inclined laminae and tabular planar cross bedding, the second most important
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sedimentary structures, are present in both cores. They generally next above either

massive bedding or horizontal bedding.

Massive Beddin~

Massive bedding is in sandstone and shale/siltstone intervals of both cores.

Trou~h Cross Beddin~

Small scale trough cross bedding is in the interlaminated sandstone, siltstone and

shale of the Getty Tract No.1, 16 /WSW core where it is usually associated with ripples

and wavy laminae.

Ripple and WavY Laminae

Ripple and wavy laminae are mostly in the Getty Tract 16/WSW core. They are in

interlaminated sandstone, siltstone and shale intervals and are associated with trough

cross bedding and/or flaser bedding.

Rip-up Shale Clasts

Rip-up shale clasts (0.25-1.25 in.) are present in the Ferguson Grabow No 1 and

Getty Tract No.1, 16/WSW cores. In the Ferguson Grabow No.1 rip-up shale clasts form

a channel lag near the bottom of the sandstone. They are in several places in the Getty

Tract No.1, 16/WSW core.
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Flaser Beddini:

Flaser bedding is in the Getty Tract 16/WSW core where it is associated with

trough cross bedding and some places with ripples.

Mottled Structure

Mottled structure was observed only in the Getty Tract No.1, 16/WSW core.

Mottling presumedly was caused by burrowing.

Microfaults

Microfaults are in the interlaminated sandstone, siltstone and shale section of the

Getty Tract No.1, 16/WSW core (Figure 27).

Graded Beddini:

Small-scale graded bedding (fining upward) is in sandstone unit of the Getty Tract

No.1, 16/WSW core (Figure 28).

Scour or erosional-reactivation Surfaces

Scour or erosional-reactivation surfaces are at several positions in the

interlaminated sandstone, siltstone and shale section of the Getty Tract No.1, 16/WSW

core (Figure 29).
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ure 7. Microfault associated with flas r b ddin. ot small seal
bedding in the low r part of the pictur . Getty Tract o. 1
4,780 ft. (After Glass 1981.)



Figur 28. Sma -seal upward fining with medium seal ta ular pI n r ra s bedding.
G tty Traet o. 1 16/WSW 4 796 ft. (A r Glass 1981.)
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Figllre 29. Mottled structure shown in the upper 0 th pictur and rosional­
reactivation surfaces near the bottom of the photograph. G tty Tract No.1,
16/WSW 4 775 ft. (After Glass 1981.)
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(1) Alternating light gray and dark gray beds in the upper sandstone interval, results of

different episodes of cementation. The dark gray sandstone beds are zones of where

cementation intensive.

(2) Abundant burrows; a completely bioturbated sandstone bed is at 12,249 ft.

(3) A number of microfaults between 12,390 and 12,395 ft.

The contact of this unit with the overlying unit is sharp.

Unit 3: (12,227-12,265 ft.): Interlaminated to interbedded sandstone and

shale/siltstone. The upper part (12,227 to 12,12243 ft.) moslty is light gray sandstone.

The middle zone is dominantly dark gray shale/siltstone. TIle lower part is banded

shale/siltstone. Sedimentary structures include:

(1) Ripple and wavy laminae, cross bedding, flaser bedding, soft sediment deformation

(flowage and slump structures), tabular planar cross bedding, and massive bedding which

is in sandstones;

(2) Horizontal streaky and lenticular bedding, diagenetic bands occurring mainly in

shale/siltstone beds. A zone of intense cementation is present at 12,227 ft.;

(3) Horizontal laminae and burrowing are observed in all lithologies. Contact with the

overlying unit 4 is gradational.

Unit 4: (12,209-12,227 ft.): Banded shale/siltstone. This unit consists of

repetitive small-scale reddish-dark brown to dark-brown diagenetic bands. Contact of

bands with host rock generally is gradational and bands are of uniform thickness and flat.

A few bands (at 12,223 and 12,224 ft.) are concretionary in appearance with irregular

thickness. The upper part of the unit is mostly shale and grades progressively into thinly
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interlaminated siltstone at the bottom. Other features of the unit include horizontal

laminae, wavy laminae, massive bedding, slump structures, burrows, and mineral-filled

vertical fissures.

Davis Herrini: No.1: (Sec. 17, T. 14 N.:, R. 14 W.)

The cored interval (10,857-10,916 ft.) consists of three major genetic units: a

shale/siltstone unit at the bottom that is overlain by a sandstone and an upper

interlaminated to interbedded sandstone and shale/siltstone unit. The lowermost shale

(10,915-10,916 ft.) is massive. Contact with the overlying sandstone unit is sharp. The

sandstone (10,878-10,915 ft.) contains: medium-scale tabular planar cross bedding below

massive bedding, ripples, small-scale trough cross bedding, flaser bedding, horizontal

laminae, flowage structures and wood fragments. A concretionary zone of intense

diagenetic cementation is present at 10,887 ft. Contact with the overlying unit is

gradational. The interlaminated to interbedded uppermost unit (10,857-10,877 ft.)

contains sandstone from 10,864 to 10,871 ft. Sedimentary structures include horizontal

laminae, ripples, horizontal sandstone streaks and lenticular bedding, small-scale trough

cross bedding and burrows. The sandstone is flaser bedded, and contains small scale cross

bedding, and a thin (0.25 in) dark brown hematitic band, and a dark gray zone of intense

diagenetic cementation (17 em) at 10,868 ft.
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Fer~uson Grabow No. 1: (Sec. 9, T. 19 N.;I R 12 W.)

The cored interval, from 7,601 to 7,638 ft., consists of two major genetic units: a

shale/siltstone unit at the bottom and a sandstone. The shale/siltstone unit (7,637-7,638 ft)

is structureless and contains brachiopods. The boundary between the shale/siltstone and

sandstone is sharp. The sandstone unit (7,638-7,601 ft.) has two sections: a lower section

characterized by abundant rip up shale clasts (0.25-2.5cm) and upper section (7,632-7,632

ft.) of fine-grained sandstone with medium-scale tabular, planar cross bedding, horizontal

laminae, thin coal streaks, massive bedding, and inclined laminae.

Getty Tract No. 1;1 16/WSW: (Sec. 21;1 T. 27 N.;I R 4 W.)

The cored interval (4,755-4,838 ft.) consists ofa lower sandstone unit overlain by

siltstone /mudstone. The lower unit (4,782-4,838 ft.) is fine grained sandstone that

contains medium tabular cross bedding, horizontal bedding, ripples, repeated upward­

fining (graded bedding) and massive bedding. Rip-up clasts are at: 4,793, 3,797, 4,801

and 4,817 ft. Concretionary zones of intense cementation (about 15 em thick) are at 4,814

and 4,828 ft. Hematitic laminae are at 4,790 ft. In its upper part, the sandstone is very fine

grained and contains ripples, horizontallamnae and small-scale cross bedding. Contact

with the overlying unit is sharp.

The siltstone/mudstone unit consists of a lower interlaminated sandstone,

siltstone, and shale section (4,760-4,789 ft.) that contains: horizontal laminae, ripples,

small-scale trough cross laminae, flaser bedding and burrowing. Mottling or intense

burrowing is at 4,779 ft. Scour or erosional-reactivation surfaces are at several locations
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On the shallow near-to-normally pressured area of the Anadarko basin, Type 2

diagenetic overprint, zone of intense cementation, is in sandstone intervals. However,

they are less pronounced than in similar zones that occur in rocks from the deep

overpressured domain.

The differences in diagenetic overprints occurring in deep overpressured and

shallow near-to-normally pressured domains accentuate the importance of depth of burial

in the alteration of rocks. Diagenetic bands is well pronounced in overpressured rocks

that were buried more than 11,000 ft. deep. Diagenetic bands develop at great depths of

burial in shale/siltstone or clay-rich intervals of the Red Fork. Consequently, they are

noticeably absent in equivalent lithologies that were buried to less than 11,000 ft. On the

other hand, zones of intense cementation are in sandstones that were buried to both

shallow and great depths, but they are more abundant in deeply buried rocks. The

importance of diagenetic bands as a sealing mechanism has been well demonstrated by Al

Shaieb et aI., 1991, and AI-Shaieb et aI., 1994. Diagenetic bands in shale/siltstone were

not observed in the Davis Herring No.1 which is located in the deep overpressured

domain, however, zones of intense cementation are present in the Davis Herring No.1.

The absence of diagenetic bands and the presence of zones of intense diagenetic

cementation in the o~erpressured Davis Herring No.1 might suggest these zones of

intense diagenetic cementation at the depth of burial of the core (10,850 ft., which is close

to 11,000 ft., the seal window for diagenetic bands formation), might be important in

keeping the Davis Herring No. 1 pressure gradient (0,602 psi) high. The Davis Herring

No.1 is believed to assure the transition between overpressured diagenetic banded rocks

and near-to-normally pressured non banded rocks.
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CHAPTER VI

PETROGRAPHY AND DIAGENESIS OF THE RED FORK

Introduction

The purpose of this chapter is to examine the mineralogical constituents, the

textural fabric, and diagenetic modifications that characterize the Red Fork from deep

overpressured and near-to-normally pressured northern shelf domains and that affect

porosity and permeability within the Red Fork reservoirs. Thirty-five thin sections were

examined under polarizing microscope to determine the petrography and diagenetic

history of the Red Fork.. Of the 35 thin sections, six were from the Tenneco Lester 6,

eight from the Woods Switzer-C-5-1 core that is not described in this study but in

previous studies (Anderson, 1992), nine from the Davis Herring No.1, three from the

Ferguson Grabow No.1 and 9 from the Getty Tract No.1, 16/WSW. Thin sections from

wells of the overpressured domain were represented by the Tenneco Lester 6, the Woods

Switzer-C-5-1 and the Davis Herring No.1. Thin sections from near-to-normally

pressured rocks were from the Ferguson Grabow No.1 and the Getty Tract No.1,

16/WSW. Thin-section examination was supplemented by x-ray diffraction of the

diagenetic bands and host shale rocks. QRF (quartz, rock fragments and feldspars) were

used to determine to classify rocks. Red Fork of the deep overpressured domain are

mostly very fine to fine grained, well sorted sublitharenites to litharenites, whereas
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sandstones from the near-to-normally pressured northern shelf Red Fork are coarser, and

classified as fine to medium grained, moderately to well sorted, sublitharenites to

Iitharenites.

Detrital Constituents

Quartz, rock fragments and feldspar constitute the dominant detrital constituents

in rocks from both pressure domains. Quartz, predominantly monocrystalline quartz

(Figure 31), average 75 % of the framework grains. Rock fragments, mostly low grade

metamorphic, make up about 30 % of the framework grains. Feldspars, mostly orthoclase

and plagioclase, average 7.5 % of the framework grain. Some quartz are corroded.

Corrosion of quartz is more important in extensive poikilotopic calcite cement and is

more evident in thin sections from rocks of the near-to-normally pressured northern shelf

(Figure 32). Other quartz grains contain evidence of stress, showing Boehm lamellae or

strong undulose extinction. Inclusions of rutile, tourmaline and zircon are common in

quartz. An organic matter coating is observed around many quartz grains (Figure 33).

Rock fragments are low-grade metamorphic rocks , carbonate rocks , chert, and shale

clasts. Low-grade metamorphic rock fragments are the most abundant type. Ductily

deformed metamorphic rock fragments and shale clasts form the pseudomatrix (Figure

34) which was observed in all thin sections. Some metamorphic rock fragments are

partially replaced by authigenic chlorite (Figure 35) or in rare cases transformed to

chlorite by retrograde metamorphism. Micritic carbonate rock fragments are found in

organic material seams or in stylolites (Figure 36). Feldspars are usually altered to sericite
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Figure 32. Corroded quartz in extensIve poikilotopic ca cite cement. lOX, XN.
(A): Ferguson Grabow No.1 7,635 ft. Note chert fragm nt in center of
picture, abundant pseudomatrix and feldspar overgrowth in the right upper
corner. (B): Getty Tract No.1 16/WSW 4 838 ft.

68



Figure 33. Organic matt r coating and cement.
lOX PPL, Tenneco Lester 6 12,745 ft.
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Fi u e 34. Ps udomatrix. ote synta ial quartz overgrowths patchy calcit and h
absence of porosity. lOX, XN, Tenneco L ster 6 12 766 ft.





(Figure 37) or replaced by calcite (Figure 38), dolomite (Figure 37), siderite (Figure 38)

or kaolinite (Figure 39). However, other feldspars were found unaltered. Replacement of

feldspars by siderite is more common in rocks of the near-to-normally pressured northern

shelf. Moreover, dissolution features of feldspars such as honeycomb (Figure 40) are in

thin sections of rocks from both domains. Accessory constituents include muscovite,

pyrite, detrital chlorite, biotite, polycrystalline quartz and sandstone rock fragments.

Locally, muscovite is ductily deformed to form pseudomatrix (Figure 41). Pyrite and

micritic fragments are also present in stylolites. Zircon and tourmaline are the most

common detrital heavy minerals in these rocks (Figure 31). Glauconite occurs in trace

amounts. A detrital matrix (less than 5 %, a mixture of illite, chlorite and micrite) was

observed in some rocks. Clayey matrix of more than 5 % is associated with organic­

matter seams or stylolites (Figure 36). In the near-to-normal pressured domain some

rocks contain fossil fragments that are replaced either by calcite, chert, pyrite or

combination of more than one cement. Trace amounts of apatite as replacement of fossils

(Figure 42) and a collophane fragment (Figure 43) were observed in the Ferguson

Grabow No.1. Rip-up shale clasts observed in some cores of the near-to-normally

pressured terrane consist of large illitic grains (Figure 44).

Diagenetic Constituents

Red Fork sandstones have undergone extensive diagenetic modifications, \\Thich

have greatly altered their original mineralogic composition, texture, porosity and

permeability. Indeed, porosity and permeability reduction is due mainly to diagenetic
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Figlrre 36. Stylolit s. ate micritic fra ments associated with stylolit s and th
pr s nc 0 abu t d trit 1c ay y m trix. 10X PPL Davis Herrin

No.1 10 868 ft.
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Figure 38. Feldspars replacing cern nts: (A) Plagioclas partially replac d by ca c·t .
Davis H rring o. 1 10 883 ft. (B) Plagioclase partially replaced b
siderit . Note pore-lining siderit r ombohedra. lOX, PPL Davis
Herring o. 1, 10 914 ft.
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Figu 40. Fel spar dissolve along leava plan s: initial stage offonnation ofth
hon ycomb texture. Note por -Ii ·ng c 10 It d rt"aIIy dissolv d
pseudo atrix. lOX, XN Davis Herrin No.1, 10,914 ft.
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Figure 41. Ductily deformed muscovit . Not presenc of detrital chlorit . 10 XN
Davis Herring No.1 10 883 ft.
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Figur 42. Fossil fragm nt r laced by apatite. at pore-filling Kaolinite in
adjacent pore pac . lOX, rguson Grabow 0.1 7 625 ft.
(A) P (B) XN
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Igur 43. Fossil fra men r p aced by collophane. lOX F rguson Grabow 0.1
7 635 ft. (A) PPL (B) XN
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Figure 44. llitic mat ix of a ip-up sh 1 clast. lOX XN Ge y ract No.1 4 787 ft.
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constituents such as silica cements, carbonate cements and authigenic clays.

Syntaxial Overgrowth Cements and Silica Cements

Syntaxial overgrowth cements are in two forms. Syntaxial quartz overgrowth, the

most common type, comprises about 2 % of the total rock. It is recognized by its optical

continuity with of the original quartz grain (the nucleus) that is surrounded by a clay

coating (chlorite/illite) called a "dust rim". Quartz with syntaxial overgrowth has straight

edges, an important clue in recognizing overgrowth on quartz lacking dust rims. Another

form of syntaxial overgrowth cement identified on thin sections is syntaxial feldspar

overgrowth (less than 1 %) which occurs on orthoclase and plagioclase as a "cleaner

outer rim" around a dirty feldspar nucleus (Figure 45). Microquartz cement as chalcedony

is in trace amounts as fibrous rim around detrital grains (Figure 46) or as pore-filling

cement. Equigranular microquartz is seen as pore filling cement in the near-to-normally

pressured rocks (Figure 47).

Carbonate Cements.

Carbonate cements consist of calcite, dolomite and siderite. Epitaxial sparry

calcite forms spots, patches, or where widespread, poikilotopic cement enclosing sand

grains. In deep overpressured rocks, calcite cement is not widespread and occurs as

patchy cement (Figure 31). In the near-to-normally pressured rocks, calcite is extensive as

poikilotopic cement (Figure 32). Zones of intense cementation recognized in cores are
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Figure 45. Syntaxial feldspar overgrowth. ote cleaner outer rim around dirtier
original rain. Also feldspar replaced by siderite (bottom of
the photograph). lOX, PPL Davis Herring No.1, 10 914 ft.
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Figure 47. Pore-filling equigranular microquartz. 1OX, Ferguson Grabow 0.1 ..
7,635 ft. (A) PPL (B) XN



generally calcite-cement rich in thin sections (Figure 32 B). Cemented vertical fissures

recognized in the Tenneco Lester 6 core are calcite filled (Figure 48).

Calcite cements formed in at least two stages: (1) an early microspar or finely

crystalline calcite cement, and (2) a late stage that led to the formation of poikilotopic

texture. Calcite is the dominant carbonate-type cement in near-to-normally pressured

rocks.

Dolomite cements are early small hypidiotopic rhombohedra that lined sand

grains or replaced feldspars or calcite cement. Dolomite also is void filling. Dolomite

cement formed by at least two episodes: (1) an early pore lining dolomite and

(2 ) late pore filling, feldspar-replacing, and patchy (Figure 49) or poikilotopic calcite­

cement replacement (Figure 50). Dolomite is the dominant carbonate-type cement in deep

overpressured Red Fork Sandstone.

Siderite cement occurs as isolated or as aggregates of euhedral rhombohedra

lining the grains or replacing feldspars (Figure 38), patchy calcite or dolomite(Figure 51).

It is commonly associated with micritic fragments. In some rocks of the Davis Herring

No.1, oxidation of siderite is common.

Authi~enic Clays

Authigenic chlorite, kaolinite and illite precipitated in place from solutions.

Chlorite was the most abundant authigenic clay observed in thin sections. It occurs as

pore lining, and pore filling (Figure 52). However, chlorite is more abundant in deep

overpressured rocks than in near-to-normally pressured rocks. Kaolinite appears mainly
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Figure 48. Fracture filled with calcite/chert in dark organic-rich chloritic band.
lOX, PPL, Tenneco Lester, 12,740 ft.
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Fi ure 49. Dolomite that replaced Patchy calcite. lOX (A) Tenn co L st 6
12 750 ft. Note glauconite. (B) Getty Tract o. 1 4 838 ft. ote syntaxial
quartz overgrowth.







Figllre 52. Por -filling ehlo it in rno die porosity. ote yntaxial qua Z ov r rowth.
lOX, Davis H rring No. 10,908 ft.
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as pore filling booklets in enlarged intergranular porosity or in moldic porosity (Figure

53). Kaolinite was found in some samples. It was in trace amounts at very great depths

and at very shallow depths. It was more abundant in highly porous rocks of the Davis

Herring No. 1 and the Ferguson Grabow No.1. Illite is in all rocks analyzed as pore

lining and pore bridging structure.

Evolution ofPorosity

Red Fork porosity is mostly secondary porosity (Figure 54) with trace amounts of

remnant primary intergranular porosity (Figure 55). Secondary porosity consists of

enlarged intergranular porosity, oversized pores, elongated pores, and moldic porosity.

Secondary porosity values range from 1 to 1 with an average of? Secondary porosity

appears to increase with grain size. Fine-grained, deep overpressured Red Fork

sandstones have much lower porosities than their fine to medium grained near-to­

normally pressured, northern-shelf counterparts. In thin sections, zones of high porosity

are adjacent to zones with low porosity. Porosity development appears to have been

related to the primary mineralogical composition of rocks. Indeed, zones of high porosity

(more than 15%) seem to be in rocks originally rich in rock fragments and feldspars

(20-30%), whereas strata primarily rich in quartz (70-80%) show low porosity. The early

diagenetic stage is dominated by compaction due to burial. In this stage, primary

intergranular porosity was virtually destroyed by formation of pseudomatrix, by silica

precipitated as syntaxial quartz overgrowths, by syntaxial feldspar overgrowths, and by
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igure 53. Pore-filling k olinite boo 1 ts in a partially dissolved MRF. at
replacem nt of partially disso v d MRF by pore-filling chlorite. 20X
Tenneco Lester 6 12 750 ft. (A) PPL (B) XN
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Figur 54. Secon ary porosity features: moldic porosity and enlarg dint granular
po osity. ot abun n pseu 0 ri and siderite that r pIa ed
plagio la ,in t e lower part of the pictur . lOX PPL Feu on Grabow
No.1 7,6 4 ft.
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i ure 55. Preserved primary int r ranular porosity d to iIlit -chlo i oatin. 10
P L Getty Tract o. 1 6/WSW 4 787 ft.
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Figure 56. Dissolution of or anie-matter seam creating s condary porosity. Note
abllndant illitic matrix assoc"ated with the s am. OX, Davis Herring No.1
10 873 ft. (A) PPL (B) XN
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Figure 57. Di solution:6 atur s of secol1dary-porosity development. (A) Dissolut'on
of qui ranular microquartz. lOX XN Ferguson Grabow No. 1 7,635 ft.
(B) D'ssolution of pyrite cement. lOX PPL Getty Tract 0.1
l6/WSW,4,838 .



early precipitation of clays (chlorite and illite) and hematite. Further porosity-occluding

episodes, such as late silica cementation, early and late calcite cementation, or

precipitation of authigenic clays accentuated porosity reduction. Development of

secondary porosity was initiated when corrosive fluids (carbonic acids, organic acids, and

sulfuric acids), most likely derived from hydrocarbon generation and migration, were

injected into the system, changing the chemistry of the formation water. Evidence of the

first hydrocarbon generation and migration is attested by the presence of thin organic­

matter coating between the syntaxial overgrowth of quartz and the original grain.

Injection of corrosive fluids triggered multiple dissolution processes of metastable grains

such as metamorphic rock fragments, feldspars, shale clasts, pseudomatrix (Figure 54)

and to a lesser extent dissolution of organic-matter seams (Figure 56), silica (microquartz

and chert) (Figure 57 A) and pyrite cement (Figure 57 B). Microporosity is preserved

between authigenic kaolinite booklets (Figures 38,53). The presence of pore lining and

pore bridging authigenic clays also decrease both primary and secondary porosities.

Diagenetic History

The Red Fork sandstone's mineralogical composition and texture were severely

modified by various diagenetic processes. These were mechano-chemical in nature and

occurred as several episodes related to compaction, cementation, and dissolution.

Mechanical processes were initiated shortly after deposition, by sediment-burial. The

resulting compaction (vertical stress induced diagenesis) during this early stage ductily

deformed low-grade metamorphic rock fragments and shale clasts to form pseudomatrix.
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Formation of pseudomatrix reduced primary porosity. With increased burial depth and

overburden stress, these feature developed: dust rims (chlorite/illite 7), early pore-lining

siderite cement, early silica cement as syntaxial quartz overgrowth and early calcite

cement as microspar. At the end of this diagenetic stage primary porosity was nearly

obliterated. Further increase in depth of burial and vertical stress increased compaction

and resulted in additional cementation and dissolution. Dissolution of feldspars, matrix

and pseudomatrix due to generation and migration of corrosive fluids in the system

occurred during this stage and changed the water chemistry into a more alkaline solution.

Dissolution of feldspars and matrix removed H+ ions from solution therefore increasing

the pH of the solution. The change in water chemistry resulted in precipitation of late

poikilotopic and/or patchy calcite, growth of authigenic chlorite, illite, and kaolinite and

dissolution of quartz and microquartz. Chlorite although an early constituent of dust rims,

was a late-diagenetic cement. Kaolinite is essentially a late-diagenetic pore-filling

mineral. Illite was a late-diagenetic pore-lining mineral. Also related to the late­

diagenetic stage is the precipitation of pyrite as poikilotopic cement and as replacement

of fossils. Pyrite precipitation is probably related to hydrocarbon migration. This is

suggested by the frequent association of pyrite with organic matter seams. The sequence

of diagenetic events is shown in figure 57 C.

Diagenetic Banding

Petrographic examination of diagenetic bands (dark gray to yellowish gray and

reddish dark brown bands) in cores revealed that the bands are fossiliferous and either
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Figure 57 C: Sequence of Diagenetic Events in Red Fork Sandstones





Figure 59. Calcite ri _hand. ot abundant fossil fra ill nt replaced by
calcit 1m'croquartz. Also note r place I1t of clay y matri by
silica c me 1. lOX Woods Swtiz r C 11,378 ft.
(A) PPL (B) XN
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were replaced by calcite, pyrite, or chert. Combination of two replacing cements such as

calcite/pyrite or pyrite/chert in fossils is common. The clayey matrix, more than 90%, is

chlorite-rich (Figure 58) or calcite-rich (Figure 59). Chlorite-rich bands commonly are

laminated. Fossil shells constitute the main detrital constituents and they commonly

composed of chlorite, illite, calcite, and small hypidiotopic dolomite (ankerite)

rhombohedra. Silica, as silt-sized quartz, grains is present as replacement cement of the

clayey matrix and fossil fragments. Porosity in diagenetic bands is almost nonexistent.

Boundaries between chlorite bands and the host shale rock are sharp to

gradational. X-ray diffraction of bulk samples of diagenetic bands taken from the

Tenneco Lester 6 and Intemorth Smith-B-21-1 cores confirms their mineralogical

composition described from thin sections (Figure 60: A, B, C, D, E, F). Previous studies

Power, (1991); AI-Shaieb et aI., (1994 a); AI-Shaieb et aI., (1994 b) related the origin of

chloritic bands to the diagenetic alteration of shale host rock by self-reorganization of

clay minerals (Orteleva, et aI., 1987). In this process, "the diagenetic banding arose

through the processes of differentiation from depositionally uniform to less-differentiated

sediment through feedback processes" (Orteleva et aI., 1987).
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CHAPTER VII

CONCLUSIONS

The comparative analysis of pressure gradients, morphology, mineralogical

composition, and texture of the Red Fork Sandstones yielded the following conclusions:

1- Examination of the pressure-depth gradient maps, pressure-depth profiles and

potentiometric diagram of the Red Fork shows that in the Anadarko basin, two distinct

pressure domains exist within the Red Fork: (1) a near to normally pressured northern

shelf setting, and (2) an overpressured deep basinal setting.

2- Sedimentary structures in deep-overpressured and near-to-normally pressured northern

shelf are similar. Minor differences between the sedimentary structures of the two

domains reflect the depositional setting of the Red Fork sandstones.

3- Deep overpressured Red Fork sandstones and near-to-normally pressured Red Fork

sandstones present distinct diagenetic overprints. Diagenetic bands and zones of intense

cementation are in rocks of the deep overpressured domain, whereas the near-to-normally

pressured Red Fork show only zones of intense cementation.

4- In thin sections, zones of intense cementation recognized in cores are highly calcite

cemented and present no porosity.
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5-Thin sections from diagenetic bands have no porosity and are either calcite-rich or

chlorite-rich and contain substantial amount of illite, dolomite, very fine-sized muscovite,

and silica cement as silt-sized quartz.

6-Silica replacement of the clayey matrix of the diagenetic bands is common and is

believed to enhance the sealing properties of diagenetic bands.

7- The noticeable absence of diagenetic bands in the Red Fork of the near-to-normally

pressured Red Fork and in the overpressured Davis Herring No.1 and their presence in

certain rocks of the deep overpressured domain suggest that the development of

diagenetic bands is a function of the depth of burial to which rocks were subjected.

8 -The Davis Herring No.1 is believed to be evidence of the diagenetic transition

between overpressured banded rocks and near-to-normally pressured non banded Red

Fork sandstones.

9- These diagenetic bands form an integral part of the seal structure that confines the high

hydraulic pressure of these rocks.

10- The set of criteria distinguishing deep overpressured Red Fork from that of the near­

to-normally pressured strata include:

a) In the deep overpressured domain the banded seal rocks are very fine grained,

well sorted sublitharenites to litharenites which include repetitive, diagenetic silica

cemented chlorite-rich and calcite-rich bands. Extensive syntaxial quartz overgrowth

mainly was responsible for occlusion of primary intergranular porosity, with abundant

authigenic chlorite. In addition, these rocks contain trace amounts of calcite cement,

kaolinite, and microquartz. Overpressured banded rocks have low porosities and
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Fi ure 61 (cont.). Internorth mith-B-21-1 (A) 12 274' to 12 313' (B) 12 313 to
12 346.8 . ( fier Anderson 1992.)
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