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CHAPTER I

INTRODUCTION

Pneumonic pasteurellosis is a disease of feedlot and stocker cattle that is

responsible for considerable economic loss to beef producers and consumers (Allan et ai,

1985; Yates, 1982). Caused by Pasteurella haemolytica, the disease is characterized by

acute fibrinopurulent pneumonia involving massive accumulation of neutrophils (Yates,

1982), which are responsible for much of the lung pathology (Slocombe et aI, 1985;

Breider et al, 1988; Frank, 1989). Infiltrating neutrophils do not provide an effective host

defense response, but undergo degranulation and lysis, releasing lysosomal enzymes and

reactive oxygen products that aggravate tissue damage.

Eicosanoids, including leukotriene B4 (LTB4), are considered to be important

chemotactic agents responsible for influx of neutrophils into infected lungs (Clarke et aI,

1994). Leukotoxin (LKT), a protein exotoxin produced by log-phase P. haeI11o!ytica,

stimulates the release of LTB4 and other 5-lipoxygenase products from bovine

neutrophils (Clinkenbeard et ai, 1994; Henricks et ai, 1992). This toxin is a member of

the family of RTX pore-forming cytolysins, which are characterized by tandemly

arranged repeats of a nine amino acid sequence (Welch, 1991). At low concentrations,

LKT is a potent neutrophil activating agent (Czuprynski & Noel, 1990), but at high

concentrations it causes severe membrane defects and neutrophil lysis (Clinkenbeard et

aI, 1989b). Therefore, LKT contributes to the chemoattraction of neutrophils into sites of

P. haenwIytica infection as well as the impairment of neutrophil-mediated host defenses.

Exposure of bovine neutrophils to LKT causes a concentration-dependent increase

in intracellular calcium concentration ([Ca2+]i), which can be inhibited by the calcium

channel blocker, verapamil (Ortiz-Carranza &Czuprynski, 1992). Considering the effect

of [Ca2+]i on activities of enzymes responsible for release of arachidonic acid (AA) from
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phospholipid membranes (Mayer & Marshall, 1993) and subsequent oxidation of AA to

leukotrienes (Musser & Kreft, 1992), Ca2+ may serve as an important second messenger

in LKT-mediated inflammatory responses. Elucidation of the molecular pathogenesis of

LKT-induced eicosanoid synthesis will facilitate targeting of relevant signal transduction

mechanisms and use of specific anti-inflammatory agents to attenuate the severity of the

neutrophil-mediated inflammatory response and enhance the efficacy of concurrent

antibacterial therapy. Therefore, the objectives of this study were to determine whether

LKT-induced synthesis of LTB4 by bovine neutrophils is dependent on increased [Ca2+]i

and to study the mechanism of this response.
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CHAPTER II

LITERATURE REVIEW

Pathogenesis of Bovine Respiratory Disease

Mortality and high morbidity resulting from bovine respiratory disease (BRD) are

responsible for greater economic losses to the feedlot industry than any other disease in

North America (Wikse, 1990; Yates, 1982). This disease is usually characterized by

severe pneumonic signs, including; fever, dyspnea, respiratory rales, nasal discharge, and

depression. The most common pathological findings are fibrinopurulent pneumonia and

varying degrees of pluritis and pulmonary abscesses (Wikse, 1990; Hungerford, 1990;

Radostitis et al, 1994).

Several infectious agents have been implicated in BRD but Pasteurella haemolytica

serotype Al is considered to be the primary etiOlOgi~anism,with other bacteria, such as

Pasteurella multocida and Haemophilus somnus,being isolated less frequently (Wikse,

1990; Confer et ai, 1988; Yates, 1982; Radostitis et ai, 1994). P. haemolytica is a normal

inhabitant of the nasopharyngeal mucosa of many healthy cattle (Yates, 1982) and is

considered to be an opportunistic pulmonary pathogen of the normally sterile environment

of the lung (Wikse, 1990). When pulmonary defenses are depressed by stress, nutritional

deficiencies, and/or viral infections, P. haemolytica is able to colonize and proliferate, first

in the upper respiratory tract and then in the lung, producing severe acute fibrinopurulent

bronchopneumonia. This disease syndrome is also referred to as shipping fever, in

recognition of the role of transportation stress in its etiology (Frank et ai, 1987; Radostitis

et al, 1994; Wikse, 1990).

Neutrophils are recognized to be the primary effector cells of pulmonary injury in

BRD. Although alveolar macrophages constitute the first line of defense against P.

haemolytica in the lung, once these cells have been overwhelmed the predominant
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phagocyte is the neutrophil (Clinkenbeard et ai, 1992). Mter experimental intratracheal or

aerosol inoculation, neutrophils infiltrate the lung within 2 to 4 hours, causing a marked

increase in the neutrophil/macrophage ratio (Gosset et ai, 1984; Walker et ai, 1985; Lopez

et ai, 1986). Instead of eliminating invading organisms, infiltrating neutrophils contribute

to severe pathological changes. The destructive effect of neutrophil infiltration has been

demonstrated by Slocombe et ai (1985), who reported that neutrophil depletion of calves

prior to intratracheal inoculation of P. haemoiytica protects against development of severe

lung pathology. Breider et al (1988) subsequently reported that while neutrophil-deficient

calves inoculated with P. haemoiytica still had extensive intra- and inter-lobular edema,

intra-alveolar hemorrhage, atelectasis, and focal areas of alveolar septal necrosis, they did

not exhibit the severe fibrinopurulent alveolitis and bronchiolitis observed in calves with

normal numbers of circulating neutrophils. Therefore, it is apparent that neutrophil

chemotaxis into sites of P. haemoiytica infection does not result in a competent host

defense response but that reactive products released by degranulation and lysis of

neutrophils aggravate tissue damage (Whiteley et aI, 1992).

Role of Eicosanoids in Bovine Respiratory Disease

Although all of the chemotactic factors involved in neutrophil attraction into sites of

P. haemolytica infection have not yet been identified, eicosanoids are known to playa

major role. Synthesis of eicosanoids involves release of arachidonic acid (AA) from

membrane phospholipids by phospholipases and then oxidation of AA by cyclo-oxygenase

to produce thromboxanes and prostaglandins or by lipoxygenases to produce

hydroxyeicosatetraenoic acids and leukotrienes (Holzman, 1991; Higgins & Lees, 1984;

Moncada & Vane, 1979). Products of cyclo-oxygenase and lipoxygenases, collectively

referred to as eicosanoids, have many different functions that contribute to generation of an

inflammatory reaction (Holzman, 1991). Prostaglandins and thromboxanes, through their
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action on patency and permeability of peripheral vasculature, as well as sensitization of pain

receptors, are responsible for inducing most of the cardinal signs of inflammation;

including erythema, swelling, increased temperature, and pain (Higgins and Lees, 1984).

Prostaglandins and thromboxanes also modulate platelet aggregation and blood clotting.

Although lipoxygenase products have been implicated in every phase of the inflammatory

response (Ford-Hutchison, 1985; Higgins, 1985), they are principally involved in

leukocyte-mediated mechanisms. In particular, leukotriene B4 (LTB4) is a potent

chemotactic agent (Clarke et ai, 1994; Heidle et ai, 1989) that binds with high affinity,

stereospecificity, and saturability to receptors on neutrophil cell membranes (Goldman et ai,

1982) and acts as both a chemokinetic and aggregating agent (Ford-Hutchison, 1980).

Indeed, LTB4 appears to be an important chemoattractant of neutrophils in BRD. In

studies conducted by Heidel et ai (1989), intradermal injection of LTB4 was followed by

rapid accumulation of bovine neutrophils. In another study (Clarke et aI, 1994), conducted

using a soft-tissue infection model established by inoculation of P. haem,olytica into

chambers implanted subcutaneously in cattle, an inhibitory effect of dexamethasone on both

neutrophil influx into inoculated chambers and concentration of LTB4 in infected chamber

fluids, together with the temporal relationship between these two events, strongly

suggested a chemotactic role for LTB4.

Calcium-Mediated Control of Leukotriene B4 Synthesis

Regulation of LTB4 synthesis occurs by modulation of signal transduction and

product feedback control and activation of 5-lipoxygenase (5-LO). Mammalian

lipoxygenases exhibit· regional specificity during interaction with a substrate and are

designated as 5-LO, 12-lipoxygenase, or 15-lipoxygenase. Each enzyme inserts an oxygen

molecule at carbon-5, -12, or -15, respectively. In resting cells, 5-LO exists in cytosol in a

dormant ferrous state. When activated by hydroperoxidases, ATP, and Ca2+, 5-LO



6

translocates to the cell membrane and associates with calcium activating proteins to oxidize

arachidonic acid to many products, including LTB4 (McMillin & Walker, 1992; Musser &

Kreft, 1992; Lewis et al, 1990; Rouzer et al, 1988). Further control is exerted via oxygen

radical products causing initial auto acceleration of enzyme activity and eventual self

inactivation (Holzman, 1991; Higgins & Lees; 1984; Moncada & Vane, 1979). In addition

to promoting translocation of 5-LO, Ca2+ also stimulates LTB4 synthesis by simulating

release of AA substrate from phospholipid membranes (Mayer & Marshall, 1993).

Release of AA from phospholipid membranes is accomplished by phospholipases,

particularly phospholipase A2 (PLA2). Several different types of mammalian PLA2

enzymes have been differentiated, based on structure and amino acid sequence (Mayer &

Marshall, 1993). Two of these, designated Type II and Type IV, are nonpancreatic

enzymes that metabolize phospholipids to lysophospholipids and fatty acids, including AA.

Type II PLA2 has a molecular mass of 14 kDa, may be extracellular or cell membrane

associated, and is activated by increased intracellular calcium concentration [Ca2+]i. Type

IV PLA2 has a molecular mass of 85 kDa, is arachidonoyl-selective, and is localized

intracellularly, but translocates to the cell membrane under the influence of increased

[Ca2+]i (Musser & Kreft, 1992). Thus, the activities of both types of PLA2 are either

directly or indirectly dependent on Ca2+, which appears to be the principle second

messenger responsible for stimulation of LTB4 synthesis.

Pasteurella haemolytica leukotoxin

P. haemolytica produces several virulence factors that are believed to contribute to

the development of severe pneumonic pasteurellosis (Confer et al, 1990). These include

fimbriae, a polysaccharide capsule, lipopolysaccharide, and leukotoxin (LKT), which has

particular relevance to the participation of neutrophils in the pathogenesis of disease.

Leukotoxin is a protein exotoxin that is produced during the logarithmic growth phase of P.
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haemolytica and is cytocidal only to ruminant leukocytes (Kaehler et ai, 1980) and platelets

(Clinkenbeard & Upton, 1991). At low concentrations, LKT causes neutrophil activation

and degranulation in similar fashion to that caused by standard activating agents such as

opsonized zymosan, as evidenced by the generation of oxygen radicals and the release of

lysosomal enzymes (Maheswaren et ai, 1992; Czuprynski et ai, 1991). At higher

concentrations, LKT is inhibitory or lethal to neutrophils, causing cell swelling, loss of

membrane ruffling, development of a finely porous surface, and formation of large

membrane defects prior to lysis (Clinkenbeard et ai, 1989a).

The importance ofLKT in the pathogenesis of BRD is illustrated by comparison of

pneumonias caused by P. haemolytica with those caused by P. multocida, which produces

endotoxin but no LKT. The pathology of the latter is characterized by suppurative

bronchopnemonia without necrosis and fibrin exudation (Ames et ai, 1985). This suggests

that LKT has a specific role in producing the characteristic lesions of P. haemolytica

pneumonia, which are principally neutrophil-mediated (Whiteley et ai, 1991).

Several studies have confirmed that generation of neutrophil chemotactic factors,

especially LTB4, is promoted by the action of LKT. Exposure of bovine neutrophil

suspensions to dilutions of crude LKT-containing culture supernatant caused increased

release of 5-, 12-, and 15-eicosatetraenoic acids and LTB4 in a dose-dependent manner

(Henricks et ai, 1992). Release of these eicosanoids was not due to decreased cellular

retention and occurred in the absence of exogenous AA, suggesting that LKT stimulates

synthesis of eicosanoids by promoting release of AA from phospholipid membranes. A

more recent experiment confmned the observations of Henricks et al (1992) and provided

further support for the primary role of phospholipases (Clinkenbeard et ai, 1994). The

results of this experiment indicated that LTB4 synthesis by bovine neutrophils was closely

correlated with LKT-induced membrane damage and lysis and that both of these effects

could be inhibited by neutralizing monoclonal anti-LKT antibody. Furthermore, when

neutrophils were incubated with exogenous AA, LKT-induced synthesis of LTB4 occurred
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more rapidly and to a greater degree than when exogenous AA was not provided. Thus,

the release of AA from phospholipid membranes by phospholipases appears to be the rate

limiting step in LKT-induced eicosanoid synthesis. Considering the importance of Ca2+ in

activation of PLA2 and 5-LO, LKT-induced synthesis of LTB4 probably involves calciurn

mediated signal transduction.

Effect of Leukotoxin on Cell Membrane Permeability and Intracellular Calcium

Concentration

Pasteurella haenwlytica leukotoxin is a member of a family of widely deseminated

cytolytic toxins known as "repeats-in-toxin" or RTX toxins. These exotoxins share

extensive sequence homology, particularly in a region of tandem 9-amino acid repeats

(Strathdee et ai, 1987; Lo et ai, 1985). Studies conducted using Escherichia coli (l-

hemolysin, a RTX toxin that has been more extensively studied than LKT, have indicated

that the toxic mechanism of action involves the formation of functional pores that allow

electrolyte flux across the plasma membrane of the target cell. Exposure of erythrocytes to

this toxin leads to rapid influx of Ca2+ and low molecular weight sugars such as mannitol

and sucrose, as well as a rapid efflux of K+ (Bhakdi et ai, 1986). The effect of a-

hemolysin on membrane permeability characteristics has led to the hypothesis that a-

hemolysin damages membranes by partial insertion into the lipid bilayer and formation of a

discrete hydrophylic transmembrane pore with an approximate diameter of 3 nrn.

Clinkenbeard et al (1989a, 1989b) have reported similar effects of LKT on bovine

lymphoma cells and bovine neutrophils. Exposure to LKT caused leakage of K+, cell

swelling, and then formation of large membrane defects. Incubation in hypertonic media

containing carbohydrates with molecular weights ~ 505 kD prevented LKT-induced cell

swelling but not K+ leakage, suggesting existence of stable pores with a functional

diameter of approximately 0.9-1.2 nm. However, more recent studies of the moleculer
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pathogenesis of a-hemolysin have reported that membrane pore size may be dependent on

temperature, time, and toxin concentration, consistent with production of more

heterogenous membrane lesions than previously postulated (Moayeri & Welch, 1994).

Regardless of whether LKT forms discrete or heterogenous transmembrane pores,

it is clear that the permeability characteristics of membranes are changed, allowing

transmembrane flux of electrolytes, particularly cations. In an experiment involving

isolated bovine neutrophils, Ortiz-Carranza and Czuprynski (1992) determined that

sublethal concentrations of LKT caused dose-dependent increases in [Ca2+]i. Treatment

with verapamil, a calcium channel blocker, inhibited LKT-induced increase in [Ca2+]i as

well as luminol-dependent chemiluminescence response, thus suggesting the involvement

of voltage-operated calcium channels.

Several different types of calcium channels exist in different cell types, with those

in neurons and muscles being the best studied. Calcium-specific channels are classified

according to whether they are voltage- or receptor-operated (Spedding & Paoletti, 1992).

The former may be inhibited by calcium channel blockers such as verapamil, nifedipine,

and diltiazem. Verapamil is a phenylalkylamine that inhibits voltage-dependent L-type

channels by binding to la and Ib sites on calcium channel proteins. Nifedipine is a

dihydropyridine while diltiazem is a benzothiazepine, both of which have selectivity for

separate binding sites on the alpha-l subunit of voltage-dependent L channels. Although

the alpha-l binding sites of nifedipine and diltiazem are differen~ the sites are allosterically

linked (Spedding & Paoletti, 1992). Voltage-dependent calcium channels have been

reported not to occur in neutrophil plasma membranes (Spedding & Paoletti, 1992), raising

the possibility that the inhibitory effect of verapamil on LKT-mediated increase in [Ca2+]j

may result from inhibition of other types of verapamil-sensitive channels or from

interaction with voltage-dependent calcium channels located in intracellular organelle

membranes.
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Another calcium antagonist, lanthanum chloride (LaCI3), also inhibits

transmembrane flux of Ca2+, but in a manner that is distinct from the voltage-dependent

calcium channel blockers. Lanthanum chloride has a very high affrnity for calcium binding

sites and, therefore, competes with Ca2+ for several Ca2+ channels without being

transported across the plasma membrane (Thomson & Dryden, 1981; Gould et ai, 1982).

Lanthanum chloride was completely able to prevent the entry of extracellular Ca2+ into

Ca2+-depleted human neutrophils in contrast to verapamil, nifedipine and diltiazem

(Montero et ai, 1991; Rosales & Brown, 1992).

Potential Role of Anti-inflammatory Agents in Treatment of Bovine Respiratory Disease

More research is necessary to definitively detennine the role of neutrophil [Ca2+]i

and calcium channels in the molecular pathogenesis of leukotoxin-induced inflammation.

Once identified, calcium channels and calcium-mediated signal transduction pathways

would be logical targets for pharmacological agents used in the therapy of BRD.

Pharmacological inhibition of these calcium-mediated processes would inhibit the excessive

inflammatory reactions associated with BRD and improve the efficacy of concurrently

administered antibacterial agents.

Inflammation associated with pneumonic pasteurellosis has several implications

relevant to antibacterial efficacy. In vivo efficacy of antibacterial agents may be

compromised by binding to cell debris and other constituents of purulent exudates

(Vandaux & Waldovogel, 1980; Barza, 1981). Also, inflammation results in changes in

vascular penneability caused by inflammatory mediators and release of neutrophil-derived

proteolytic enzymes (Clarke et ai, 1989a; Clarke et ai, 1989b). Accumulation of fibrin and

exudate results in increased drug diffusional distances and lower drug concentrations in

infected tissue (Clarke et ai, 1992). Therefore, the rationale for using anti-inflammatory
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agents concurrently with antibacterial agents is to attenuate the detrimental effects of

inflammation on efficacy of antibacterial agents.

Several reports have described the use of non steroidal and steroidal anti

inflammatory agents in the treatment of BRD (Clarke et ai, 1992; Christie et ai, 1977;

Radostitis et ai, 1994). Unfortunately, the use of non steroidal anti-inflammatory drugs

(NSAIDs) has not resulted in favorable therapeutic outcomes, possibly because of their

incomplete inhibition of AA metabolism. The NSAIDs exert their anti-inflammatory effect

by inhibiting cyclo-oxygenase; they generally have negligible effect on production of

lipoxygenase products (Higgins & Lees, 1984). Indeed, increased availability of AA

substrate arising from inhibition of cyclo-oxygenase is believed to cause an increase in

leukotriene synthesis because of substrate diversion. Corticosteroid anti-inflammatory

agents indirectly inhibit the release of AA from membrane phopholipids by phospholipases

and, therefore, ultimately inhibit the synthesis of eicosanoids by both cyclo-oxygenase and

lipoxygenase (Higgins & Lees, 1984). However, corticosteroids also inhibit many other

important humoral and cell-mediated host defense reponses that contribute to the animal's

ability to erradicate P. haemolytica. In contrast, specific inhibition of calcium channels

and/or calcium-mediated signal transduction could block AA release and metabolism as well

as preserve the functional integrity of neutrophils by preventing damage to their

membranes.

Several studies have explored the possible use of calcium channel blockers as anti

inflammatory agents. Non infectious inflammation, induced by injection of formalin into

rat's paws, was inhibited by pretreatment with nitrendipine and nicardipine, both inhibitors

of L-type calcium channels (Gurdal et ai, 1992). However, in experiments involving

pretreatment of rabbits with calcium channel blockers prior to eye irritation with capsaisin,

results were mixed with diltiazem exhibiting the most anti-inflammatory activity and

verapamil the least (Gonzalez et ai, 1993).
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A possible impediment to using calcium channel blockers as anti-inflammatory

agents is the detrimental effect that they may have on host defense responses in general.

Calcium channel blocker therapy has been associated with iatrogenic gingival hyperplasia, a

disorder that is associated with immunosuppression (Lawrence et aI, 1994). Furthermore,

nitrendipine has been reported to significantly inhibit fMLP-induced adhesion of

neutrophils to endothelial cells as well as other critical functions of neutrophils (Perry et ai,

1993) and lymphocytes. In vivo studies involving viral infections in human subjects (Teitz

& Thompson, 1995) and protozoal infections in mice (Kalra et aI, 1993) have provided

further information concerning the potentially immunosuppressive effects of calcium

channel blockers. Although pneumonic pasteurellosis presents a suitable potential

indication for calcium channel blockers because the inflammatory response itself is a major

contributor to tissue damage, attenuation of the inflammatory reaction must be

accomplished without excessive suppression of beneficial host defense responses.
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CHAPTER III

EXPERIMENTAL OBJECTIVES

The hypothesis upon which this research was based is that LTB4 production and cell

membrane damage caused by exposure of bovine neutrophils to P. haemolytica LKT is mediated

by increased [Ca2+]i resulting from influx of extracellular calcium through voltage-dependent

calcium channels.

This hypothesis was tested by characterizing the effect of LKT on [Ca2+]i of isolated

bovine neutrophils and by examining the effect of different types of calcium antagonists on LKT

induced responses. To eliminate the potential contribution of other virulence factors of P.

haemolytica, responses to partially purified LKT were compared with those produced by

similarly purified culture supernatant of a LKT-deficient mutant of P. haemolytica. The specific

objectives were:

(1) to determine whether neutrophil LTB4 synthesis and membrane damage following

exposure to LKT were dependent on increased [Ca2+]i; and

(2) to investigate the role of voltage-dependent L-type calcium channels and exchange

of extracellular and intracellular calcium in LKT-induced increase in [Ca2+]i,

membrane damage, and LTB4 synthesis.
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CHAPTER IV

MATERIALS AND METHODS

Preparation of P. haemolytica Wildtype Leukotoxin

,Leukotoxin (LKT) preparations were made by P. Clinkenbeard, Department of

Pathology, Oklahoma State University from a P. haemolytica biotype A, serotype 1

wildtype strain (LKT) and an isotonic leukotoxin-deficient mutant strain A [LKT(-)],

produced by allelic replacement of lktA with ~-lactamase bla gene by Dr. George

Murphy and L. Whitworth, Department of Pathology, Oklahoma State University

(Murphy et aI, 1995) These strains were grown in 150 ml BHI broth to an OD6OOnm of

0.8-1.0. Bacteria collected from the BHI cultures were inoculated into 250 ml RPMI

1640 medium (pH 7.0, 2.2 gil NaHC03) containing 0.5% bovine serum albumin (A-6003

fraction V, essentially fatty acid free, Sigma Chemical Co., St. Louis, MO) to an

OD6OOnm of 0.25. The RPMI cultures were grown at 37OC, and 70 oscillations/min to an

OD600nm of 0.8-1.0, and the culture supernatants were harvested following centrifugation

at 8,000 x g for 30 minutes (Sorvall GS3 rotor, DuPont Co., Wilmington, DE). This and

all subsequent steps were conducted at 4°C. Culture supernatants were concentrated by

addition of solid ammonium sulfate (361 gIL) to yield 60% saturation and the precipitated

material was collected by centrifugation at 8,000 x g for 45 minutes (Sorvall GS3 rotor).

Precipitates were resuspended in 3 ml of 50 mM sodium phosphate, 0.1 M NaCI, pH 7.0

buffer, and then dialyzed against 500 ml of the same buffer overnight. Dialyzed

concentrated culture supernatants were stored frozen at -135°C. Control uninoculated

concentrated culture supernatants were similarly prepared.



15

Assay of P.haemolytica Wildtype Leukotoxin

P.haemolytica LKT activity was assayed by measuring cytoplasmic lactate

dehydrogenase (LDH) released from target cells. In each particular experiment, isolated

bovine neutrophils or tissue culture bovine lymphoma cells (BL3 cells, CRL 8037,

American Type Culture Collection, Rockville, MD) were exposed to LKT in 1.5 ml

microfuge tubes or 96-well round bottom microtiter plates at 37°C. Exposure was

terminated by centrifugation (2 minutes at 5,650 x g for microfuge tubes and 5 minutes at

700 x g for microtiter plates) and the concentration of extracellular LDH was assayed by

transfer of 100 Jll of incubation supernatant to wells of a flat bottom 96-well microtiter

plate. The plate was warmed to 37°C, 100 JlI LDH assay reagent [LD-L 228 - 50 ml,

(Sigma Chemical Co., St Louis, MO), rehydrated by addition of 25 ml H20] at 370C was

added, and the LDH activity was measured in a thermally-controlled kinetic microtiter

plate reader (Thermomax, Molecular Devices Palo Alto, CA) at 340 nm for 2 minutes at

37°C. Data were reported as mOD/minute. Maximal LDH leakage was determined by

replacing LKT with Triton xl00 (final concentration was 0.1 % v/v), and background

LDH leakage was determined by replacing LKT with appropriate buffer control. Percent

specific leakage of LDH was calculated using the formula:

% specific leakage LDH =
(LKT-induced LDH leakage - background LDH leakage) x 100

maximal LDH leakage - background LDH leakage

Quantitation of Leukotoxic Activity

The amount of leukotoxic activity used in experiments was quantified as toxic

units (TV) using BL3 cells. These cells were cultured at 37°C and 5% C02 in 50%

Leibovitz L-5 and 50% Eagle minimal essential medium containing 10% fetal bovine
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serum, 2 mM L-glutamine, 50 mg/l gentamicin, and 2.2 gIl NaHC03 as described

elsewhere (Clinkenbeard et ai, 1989b). LKT was serially diluted, leukotoxic activity

measured by LDH leakage as described above, and the reciprocal of the dilution causing

50% maximal leakage of LDH determined graphically. One TV caused leakage of 50%

LDH from 4 x 105 BL3 cells in 200 JlI at 37°C in 1 hour. Each assay was conducted in

triplicate and the TU were determined for each experiment.

Preparation of Neutrophil Suspensions

Whole bovine blood was collected in 1% sodium citrate by venipuncture and then

centrifuged in 50 ml polypropylene conical tubes (Coming Incorporated, Corning, NY) at

600 x g for 30 min at 4°C. The plasma, buffy coat, and the top portion of the red cell

column were aspirated to leave 10 ml of cell suspension, which was then subjected to two

cycles of hypotonic lysis (Weiss et ai, 1989). In the first cycle, 20 ml of sterile, distilled

water was added to the red cell suspension, which was mixed for 60 seconds and tonicity

was then restored by adding an equal volume of double-strength phosphate buffered

saline (PBS). Suspensions were then centrifuged (Sorvall RC5C, HS-4 rotor, DuPont

Co., Wilmington, DE) for 10 min at 200 x g and the supernatant discarded. Neutrophils

were resuspended with 5 ml of PBS and subjected to the second cycle of hypotonic lysis

in which 10 ml of sterile distilled water was added, the cell suspension was mixed for 60

seconds, and 10 ml of double strength PBS added to restore isotonicity. Thereafter, cells

were resuspended in 5 ml of CaCl2-free Hank's balanced salt solution (HBSS) (Sigma

Chemical Co., St Louis, MO) containing 0.5 mM MgCl2 (Sigma Chemical Co., St Louis,

MO) and 50 J..LM EGTA (Sigma Chemical Co., St Louis, MO). Cells were enumerated by

hemocytometer and viability was assessed by trypan blue exclusion. Differential counts

were conducted on stained smears (Diff-Quik, Baxter Healthcare Corp., Miami, FL).
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Preparations were then diluted to a final concentration of 6 x 106 viable neutrophils/ml

HBSS.

Neutrophil Loading with Fluorescent Calcium Indicator

Intracellular calcium concentration was measured using the membrane-permeable

acetoxymethyl (AM) ester of the fluorescent calcium indicator, Fluo-3 (Molecular Probes

Inc., Eugene, OR). Membrane permeable Fluo-3 AM diffuses across the neutrophil

membrane, but is retained within the cytosol after it is hydrolyzed intracellularly to the

membrane impermeable free acid (Kao et aI, 1989). Neutrophil suspensions contained in

50 ml polypropylene conical centrifuge tubes (Corning Incorporated, Corning, NY) and

protected from light were incubated with Fluo-3 AM for 30 minutes at 22°C while

constantly mixing on a cell rotator (Angenics, Cambridge, MA). Sufficient Fluo-3 AM

(in DMSO containing 0.14% pluronic acid) was added to the cell suspensions to achieve

a final concentration of 5 JlM. Loaded cells were then centrifuged at 200 x g and 4°C for

10 minutes, the supernatant was discarded, and the cells were resuspended in 10 ml PBS

before centrifuging again at 200 x g and 4°C for 10 minutes. After discarding the

supernatant, cells were resuspended in 3 ml HBSS, enumerated by hemocytometer and

then resuspended in HBSS to 1 x 107 cells/ml.

Exposure of Isolated Neutrophils to Leukotoxin

The effects of LKT and other stimulators on [Ca2+]i, neutrophil membrane

damage, and LTB4 synthesis were tested in 96-well flat bottom microtiter plates (Corning

Glass Works, Corning, NY). Ten microliters of 25 mM CaCl2 (Sigma Chemical Co., St.

Louis, MO) and 2 JlI antifluoroscein antibody (Molecular Probes, Eugene, OR), diluted

1:5 in PBS, were added in sequence to 250 JlI of cell suspension. The antifluoroscein
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antibody quenched fluorescence of extracellular indicator. Thereafter, 25 JlI of diluted

LKT, LKT-deficient control, 40 JlM 4-bromo A23187 (Sigma Chemical Co., St. Louis,

MO) in DMSO, 0.5% Triton xlOO, or PBS were added to wells, lids were placed on the

plates, and the plates were incubated at 37°C. Fluorescence (490 nm excitation, 523 nm

emission) was measured at times indicated for each specific experiment, using a

spectrofluorometer (Cytofluor 2300 Fluorescence Measurement System, Millipore Corp.,

Bedford, MA). Experiments were terminated by centrifugation at 200 x g at 4°C for 5

minutes and aliquots of supernatants were removed for assay of LDH and LTB4. All

experiments included triplicate wells for each of the treatments.

Intracellular Calcium Dependence of Leukotoxin-Induced Neutrophil Membrane Dama~e

and Synthesis of Leukotriene B~

The effects of LKT on [Ca2+]i, neutrophil membrane integrity and LTB4 synthesis

were investigated by exposing neutrophil suspensions to dilutions (1:10, 1:50, 1:100, and

1: 1(00) of LKT or LKT-deficient control, measuring fluorescence and then incubating

for 120 minutes before harvesting samples for assay of LDH and LTB4.

Neutralization of LKT activity by murine antileukotoxin monoclonal antibody

MM601 (gift from S.Srikumaran, University of Nebraska) was tested by first

preincubating 25 JlI undiluted and 1:100, 1:10,000; and 1:1,000,000 dilutions of LKT

with 25 JlI of 1:500 diluted MM601 ascitic fluid or irrelevant murine IgG 1 monoclonal

antibody (Sigma Chemical Co., S1. Louis, MO) at 4°C for 30 min, as previously

described (Gentry & Srikumaran, 1991). Thereafter, 25 JlI aliquots of preincubated LKT

were added to neutrophil suspensions to achieve final LKT dilutions of 1:20, 1:2,000,

1:200,000, and 1:20,000,000, fluorescence was measured and plates were incubated for

120 minutes before assay ofLDH and LTB4.
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Time dependent effects of LKT were examined by incubating neutrophil

suspensions exposed to 1: 100 or 1: 100,000 dilutions of LKT for 5, 30, 60, 90, and 120

minutes. Separate plates containing all duplicates of LKT dilutions and relevant controls

were used for each incubation period. At the end of each incubation period, fluorescence

was measured, plates were centrifuged and supernatants were harvested for assay of LDH

and LTB4. This experiment was repeated using more closely spaced incubation times; 5,

15, 30, 45, and 60 minutes.

Exchan~e of Extracellular and Intracellular Calcium in LKT-Induced Increase in

Intracellular Calcium Concentration and the Role of Voltage-Dependent L-Type Calcium

Channels

The dependence of LKT-induced responses on extracellular calcium was

investigated by altering the concentration of calcium in the neutrophil suspension media.

Neutrophils were suspended in calcium-free HBSS, HBSS with 1 mM CaCI2, HBSS with

1 mM EGTA, or HBSS with 3 mM CaCl2 and 1 mM EGTA. Additional CaCl2 was not

added as in previous experiments. Fluorescence was measured immediately after

addition of 25 JlI 1:100 LKT and LDH and LTB4 assays were performed after 120

minutes of incubation.

The involvement of voltage-dependent calcium channels was explored using the

specific calcium channel blockers, verapamil and nifedipine. Furthermore, the role of

extracellular calcium was studied using LaCI3, which inhibits exchange of extracellular

and intracellular calcium. Twenty five microliters of either 5 mM, 0.5 mM, 50 JlM, 5 JlM

or 0.5 JlM verapamil in DMSO, nifedipine in DMSO, or LaCl3 in water were added to

neutrophil suspensions, which were then incubated for 20 minutes before adding 25 JlI

1:100 LKT. Fluorescence was measured and suspensions were then incubated further for

120 minutes before concentrations of LDH and LTB4 were measured.
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The effect of verapamil on neutrophils subjected to plasma membrane

perturbation by an agent other than LKT was studied. Neutrophil suspensions received

25fJ,1 of 0 mM, 5 fJ,M, 10fJ,M, and 5mM verapamil dilutions in DMSO, were incubated for

20 minutes, and were than stimulated by addition of 25fJ,1 of 100 mM digitonin solution in

DMSO. Fluorescence was measured and suspensions were then incubated further for 120

minutes before concentrations of LTB4 were measured.

Determination of Intracellular Calcium Concentration

Cytosolic calcium was determined using the formula (Kao et ai, 1989):

[Ca2+]i =

Maximum fluorescence (Fmax) was determined by exposing control cells to 4-bromo

A23187, measuring fluorescence after quenching by addition of 20 fJ,1 20 mM MnCl2

(FMn), and then using the formula:

Fmax =

where Fbkg is the fluorescence emitted by Fluo-3 - loaded cells in the absence of an

excitation beam. Minimum fluorescence (Fmin) was detennined using the formula:

Fmin =

The Ca2+-Fluo-3 dissociation constant (I<d) was determined by M. Shelton at Oklahoma

State University by using a commercially prepared kit (Molecular Probes, Eugene, OR)

which measured the fluorescence of 4-bromo-A23187 exposed bovine neutrophils
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suspended in a range of EGTA-containing Ca2+ buffers at pH 7.2 and 22°C. The

calibration curve for Fluo-3 was linear and indicated a Kd of 358 nM (Figure 1).

Leukotriene B4 Immunoassay

Concentrations of LTB4 were determined using a commercially prepared

radioimmunoassay kit (NEN Research Products, Du Pont, Medical Products Department,

Boston, MA) that has been previously validated (Clinkenbeard et aI, 1994).

Statistical Analyses

Data were analyzed using SYSTAT intelligent software for the Macintosh,

Version 5.2 (SYSTAT Inc, Evanston, IL) (Wilkinson, 1992). Unpaired t-tests were used

to compare each response variable at each LKT dilution in studies comparing LKT to

LKT (-) mutant as well as in studies comparing LKT incubated with irrelevant IgG 1 to

LKT incubated with MM601. General linear analyses of variance followed by separation

of means using Scheffe's test for each variable were used to evaluate the effects of

extracellular calcium concentration. Time-dependent trends in response variables were

identified using the method of orthogonal polynomials. The effects of verapamil,

nifedipine and LaCl3 on LKT-induced effects as well as the effect of verapamil on

digitonin-induced effects were analyzed using the general linear model. Thereafter, each

drug treatment was compared with its relevant control using Dunnet's test. Differences

between means and order of polynomials were considered significant at the P < 0.05

level.
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CHAPTER V

RESULTS

Exposure of isolated bovine neutrophils to P. haemolytica wildtype LKT resulted

in significant increases in [Ca2+]i' LTB4 production, and LDH release at all LKT

dilutions tested compared to the LKT deficient controls (Figure 2). All LKT dilutions

were highly lytic and produced similar increases in [Ca2+]i and LTB4 synthesis.

Leukotoxin was effectively inactivated by pre-incubation with the anti-LKT monoclonal

antibody, MM601, except for the 1:20 dilution of LKT, which overwhelmed the

neutralizing effect of the antibody (Figure 3). Leukotoxin preparations pretreated with

irrelevant murine IgG control produced concentration-dependent effects on [Ca2+]i' LTB4

synthesis, and LDH release.

Exposure of neutrophils to the 1: 1,000 dilution of LKT caused an immediate

increase in [Ca2+]i' followed within 15 minutes by rapid and parallel increases in LTB4

synthesis and LDH leakage, which continued to increase over the 60 minute incubation

period (Figure 4). Neutrophils exposed to a concentration of LKT that was too low to

cause significant LDH release (1:100,000) still increased synthesis of LTB4, although at

lower levels than observed when higher concentrations of LKT were used (Figure 5).

Mter the initial increase in LTB4 production, synthesis gradually declined over the 120

minute incubation period.

Exposing neutrophils to LKT in Ca2+-free buffer resulted in significantly smaller

increases in [Ca2+]i and LTB4 synthesis in comparison with responses observed when

neutrophils were exposed to LKT in buffer containing 1 mM CaCl2 (Figure 6). When 1

mM EGTA and no CaCl2 was added to the suspension buffer, further reductions in

increases in [Ca2+]i and LTB4 synthesis were measured.
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Inhibitory effects of verapamil on increase in [Ca2+]i and LTB4 synthesis were

only observed at the highest drug concentration tested (0.5 mM) (Table I). Lower drug

concentrations also inhibited LDH release but this effect was not consistent at the 50 JlM

drug concentration. Nifedipine inhibited LTB4 synthesis at the highest concentration

tested but did not significantly affect the other responses. In contrast to the calcium

channel blockers, LaCl3 caused relatively greater inhibition of [Ca2+]i and LDH release..

Although significant, the inhibitory effect of LaCl3 on LTB4 synthesis was relatively

small. The effects of verapamil on digitonin-induced increase in [Ca2+]i and LTB4

synthesis were similar to those observed when neutrophils were exposed to LKT: high

verapamil concentration (0.5 mM) significantly decreased both of these responses in

digitonin-exposed neutrophils (Figure 7).
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CHAPTER VI

DISCUSSION & CONCLUSIONS

A previous study demonstrated that LKT-induced synthesis of LTB4 by isolated

bovine neutrophils was dependent on extracellular Ca2+ and that this response was

closely correlated with neutrophil lysis (Clinkenbeard et al, 1994). Another study

reported that exposure of bovine neutrophils to sublytic concentrations of LKT caused an

increase in [Ca2+]i (Ortiz-Carranza & Czuprynski, 1992). The present study explored the

possible involvement of intracellular Ca2+ as a second messenger in LKT-induced

neutrophil plasma membrane damage and synthesis of LTB4.

Comparison between responses elicited by LKT and LKT-deficient control

preparations confirmed that increased [Ca2+]i, LTB4 synthesis, and cell lysis were all

caused by LKT and not by other constituents of the partially purified culture

supernatants, such as lipopolysaccharide. The LKT-deficient P. haemolytica mutant used

in the preparation of the negative control was produced by allelic replacement of the lkt A

gene, a mutation that had no effect on growth rate, lipopolysaccharide production, or

capsule formation (Murphy et ai, 1995). Therefore, except for the absence of the 102

kDa LKT protein, the LKT-deficient preparations were identical to those prepared from

wild-type culture supernatants. The neutralizing effect of the anti-LKT monoclonal

antibody, MM601, further confinned that LKT in purified P. haemolytica supernatant

was responsible for increased [Ca2+]i, LTB4 synthesis, and cell membrane damage.

Studies utilizing MM601-treated controls demonstrated a positive correlation

between LKT concentration, [Ca2+]i, and neutrophil responses (LTB4 synthesis and LDH

release), thus suggesting a signal transduction role for intracellular Ca2+. This

relationship was further investigated by examining the effects of LKT on bovine

neutrophils as a function of time. In studies involving exposure of neutrophils to lytic
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concentrations of LKT over a period of 60 minutes, the temporal relationship between the

initial increase in [Ca2+]i and subsequent synthesis of LTB4 and release of LDH are

consistent with the contention that both of these responses were dependent on increased

[Ca2+]i. This conclusion is consistent with the knowledge that intracellular calcium is

involved in the release of AA from membrane phospholipids by phospholipases as well

as the oxidation of AA by lipoxygenase to LTB4 (Holzman, 1991; Higgins & Lees, 1984;

Moncada & Vane, 1979). Simultaneous release of LDH and synthesis of LTB4 can be

explained by Ca2+-dependent translocation and activation of phospholipase A2, resulting

in generation of membrane-damaging lysophospholipids and release of the eicosanoid

precursor, AA. Further investigations involving the use of sublytic dilutions of LKT

indicated that LTB4 synthesis could be stimulated in the absence of significant LDH

release. This suggests either that intracellular Ca2+-dependent leukotriene synthesis and

plasma membrane damage may not necessarily result from activation of a mechanism or

enzyme common to both responses, or that sufficient arachidonic acid may be released

from mild membrane damage for a significant LTB4 production without significant LDH

leakage. Nevertheless, although not conclusive, all time-dependent studies supported the

hypothesis that LKT-induced synthesis of LTB4 and plasma membrane perturbation are

mediated via signal transduction involving intracellular Ca2+. The rapid decrease in

[Ca2+]i after initial exposure to lytic dilutions of LKT was surprising, considering the

abundance of Ca2+ in the extracellular medium and the loss of plasma membrane

integrity, as evidenced by leakage of LDH. It is possible that this decrease in [Ca2+]i

may have been artifactual or that plasma membrane damage could have resulted in

leakage of the fluorescent Ca2+ indicator prior to the detection of plasma membrane

damage by LDH leakage as the molecular weight of Fluo-3 is 1.1 kD and the molecular

weight of LDH is 160 leD.

The source of the calcium involved in the intracellular calcium signal was

investigated by altering the concentration of extracellular calcium available to the
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neutrophils. In comparison with neutrophils suspended in Ca2+-containing buffer,

neutrophils in Ca2+-free buffer produced significantly less LTB4, thus demonstrating

dependence of this effect on extracellular Ca2+. Addition of EGTA to the buffer caused

further reduction in LKT-induced effects, suggesting that release of Ca2+ from

intracellular stores may also contribute to increased cytosolic [Ca2+]i. Incubation of cells

in buffer containing EGTA not only chelates extracellular Ca2+, but also causes rapid

depletion of intracellular calcium stores as Ca2+ rapidly diffuses down a concentration

gradient from intracellular organelles to extracellular buffer (Rosales & Brown, 1992).

Therefore, both extra- and intra-cellular sources of calcium apparently contribute to

increased [Ca2+]i and the signal transduction event resulting from exposure to LKT.

Verapamil has been previously reported to inhibit the LKT-induced luminol

dependent chemiluminescence response of bovine neutrophils (Ortiz-Carranza &

Czuprynski, 1992), suggesting that influx of extracellular Ca2+ into the cytosol may

occur via L-type voltage-independent calcium channels. The present study also

demonstrated inhibitory effects of verapamil (and another inhibitor of calcium channels,

nifedipine), but only at drug concentrations that were much higher than those required to

inhibit Ca2+ flux across nerve and cardiac muscle plasma membranes. Either verapamil

inhibits calcium influx in a non-specific manner or the target L-type calcium specific

channels are inaccessible and only reached at high concentrations. The latter is most

likely considering the recent identification of L-type voltage-dependent channels on

neutrophil organelle membranes (Rosales & Brown, 1992) and the evidence indicating

that these do not occur in neutrophil plasma membranes (Tscharner et ai, 1986). The

inhibitory effect of verapamil on digitonin-induced increase in [Ca2 +]i and LTB4

synthesis could be used to further support to the suspicion that L-type calcium channels

located on intracellular membranes are involved as low concentrations of digitonin

perturb the plasma membrane in a non-specific manner allowing influx of extracellular

calcium. Apparently, the rise in [Ca2+]i is supplemented by additional Ca2+ flux through
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verapamil-inhibitable channels. Indeed, influx of extracellular Ca2+ can serve as a trigger

for release of Ca2+ from intracellular stores (Berridge, 1993), although this mechanism

involves ryanodine receptor-linked channels: the association between extracellular Ca2+

flux and L-type voltage-dependent channels on organelle membranes has yet to be

investigated.

Exposure to LaCl3 produced inhibitory effects that were different from those

caused by the calcium channel blockers. In contrast to the calcium channel blockers,

which primarily inhibited LTB4 synthesis, LaC13 had relatively more effect on LDH

release. Furthermore, 0.5 mM LaCl3 caused a 53% reduction in [Ca2+]i response versus

the 23% reduction caused by the same concentration of verapamil. Considering that

LaCl3 binds to calcium binding sites with higher affinity than Ca2+ and, therefore, is

recognized to inhibit Ca2+ flux accross the plasma membrane, (Weiss, 1974, Rosales &

Brown, 1992) influx of extracellular Ca2+ makes the major contribution to LKT-induced

increase in [Ca2+]i and is primarily responsible for plasma membrane damage and LDH

leakage. Assuming that the calcium channel blockers interact with calcium channels on

organelle membranes, leukotriene B4 synthesis, therefore, apparently relies upon the

contribution of intracellular Ca2+ stores for transduction of the activating signal. This

evidence in support of different Ca2+-dependent mechanisms for LKT-induced LTB4

synthesis and plasma membrane damage is consistent with the results of the time

dependent studies discussed above.

In conclusion, this study demonstrated that exposure of isolated bovine

neutrophils to P. haemolytica LKT induces an increase in [Ca2+]j followed by LTB4

synthesis and plasma membrane damage. Thus, changes in [Ca2+]i may constitute an

important stage in the signal transduction process responsible for LKT-induced

neutrophil lysis and inflammatory response. Furthermore, LKT-induced increase in

[Ca2+]i is dependent on the contributions of influx of extracellular Ca2+ and mobilization

of intracellular Ca2+ stores. Although LTB4 synthesis and plasma membrane damage are
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both Ca2+-dependent, the precise mechanisms responsible for these effects appear to

differ: membrane damage is primarily dependent on influx of extracellular Ca2+ whereas

LTB4 synthesis depends on supplementary Ca2+ released from intracellular organells via

L-type voltage-dependent channels.

Further studies are needed to better define the specific mechanisms whereby LKT

causes increase in [Ca2+]i before calcium antagonists can be suggested as possible

therapeutic agents for treatment of pneumonic pasteurellosis. Nevertheless, based on

these investigations, L-type calcium channel blockers are unlikely to be efficacious

because only high and potentially toxic concentrations are anti-inflammatory. At these

concentrations other host defense functions, such as those involving natural killer cells

and other leukocytes would be depressed (Teitz & Thompson, 1995; Gurdal et ai, 1992),

thus compromising the animal's ability to fight the infection. Enzymes responsible for

membrane damage and generation of lipid inflammatory mediators are likely to provide

better targets for anti-inflammatory therapies designed to depress neutrophil chemotaxis

and preserve phagocytic function.
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TABLE 1

EFFECTS OF VERAPAMIL, NIFEDIPINE, AND LANTHANUM CHLORIDE ON
LEUKOTOXIN-INDUCED INCREASE IN INTRACELULAR CALCIUM

CONCENTRATION ([Ca2+]i), LEUKOTRIENE B4 SYNTHESIS (LTB4), AND
PERCENT SPECIFIC RELEASE OF LDH (% LDH Release). ALL DATA ARE

PRESENTED AS MEAN ± SD.

[Ca2+]j (nM) LTB4 (pg/ml) % LDH Release

Verapamil

0.5mM 110.1 ± 26.5* 289 ± 69* 14.9 ± 7.9*

50flM 129.2 ± 17.0 2077 ± 503 17.9±3.4

5flM 130.2 ± 12.5 2815 ± 270 9.5 ± 1.4*

0.5 JlM 118.7±7.1 2624± 1269 13.7 ± 7.8*

50nM 137.5 ± 4.3 2854 ± 881 27.7 ± 5.3

DMSO solvent 143.1 ± 5.0 2188 ± 781 27.1 ± 5.1

Nifedipine

0.5mM 114.1±11.8 487 ± 45* 14.6 ± 8.7

50 flM 139.0± 0.7 1426±110 13.7 ± 4.8

5flM 127.4± 8.4 2140± 563 21.1 ± 3.0

0.5 flM 116.3 ± 9.6 2918 ± 415 21.0 ± 7.8

50nM 133.9 ± 4.0 2723 ± 677 17.1±0.3

DMSO solvent 120.2 ± 17.8 2188 ± 431 15.5 ± 0.8

LaCI3

0.5mM 64.9 ± 12.0* 1378 ± 154* 2.8 ± 1.0*

50JlM 125.7 ± 4.9 1694± 342 48.9 ± 2.4*

5flM 125.5 ± 8.4 1992 ± 665 51.7 ± 8.6*

0.5 JlM 120.9 ± 5.7 2183 ± 528 56.0± 5.5

50nM 139.1 ± 12.0 1870± 74 45.6 ± 7.2*

Water solvent 139.1 ± 10.4 2292 ± 284 62.7 ± 3.6

Buffer control 53.2 318 5.5

* Significantly different from corresponding solvent control value.
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