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CHAPTER I

INTRODUCTION

"And we have made from water every living thing" (The Noble Qur'an, 21: 30).

Hydrology, which is the scientific study of the properties, distribution, and effects of

water on the earth's surface, is a very important subject, as water is considered to be the main

requirement for life on this earth. Water is essential for human use, crop production, industry

and so on. Man has been always concerned about the quality and quantity of the water

resources available. Hydrologists have been working to understand the systems of

hydrologic events taking place in nature. Hydrologic/Water Quality models have been

developed to represent natural hydrologic processes in a simple way and to help us

understand hydrologic systems, to be used as analysis and design tools, and to be used for

organizing and interpreting research (Barfield et aI., 1989). Many studies on different

aspects of the hydrologic cycle have been conducted. Some important natural hydrologic

variab'es are rainfan excess (runoff) and sediment loads. Nutrients in runoff and sediment

might be a source of water pollution. Therefore, models have been developed to analyze and

provide estimates of runoff water quality.

1
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HydrologiclWater Quality (H/WQ) models are a collection of physical laws and

empirical observations written in mathematical terms and combined in a way that produces

a set ofresults (outputs) based on a set of known and/or asswned conditions (inputs) (Haan,

1989). Models may be physically based, conceptual, empirical or a combination of these.

Regardless of how models are classified, they can be represented as

o = f ( i, p, t ) + e

where 0 represents the H/WQ responses, frepresents a collection of functional relationships

(composing the model), i represents model inputs, p represents the parameters of the model,

t is time, and e represents errors in the estimation of O. Model parameters must be estimated

from observed hydrologic data. There may be a number of data points to model using

several model inputs and producing several model outputs. Model outputs may be runoff,

sediment load, nitrate or phosphorus concentration, and/or other quantities of interest. The

validity and applicability of a model depend on the characteristics of the data used to

estimate the model parameters. The data used to estimate input parameters must be

representative of the situation in which the model is going to be used.

Statement of the problem

Models require as inputs weather data like rain and temperature, and other parameters

which must be estimated for the model to function. In hydrologic/water quality models,

input parameters are generally represented by average values. However, there is a great deal

of uncertainty as to the accuracy of the average values assigned to the parameters used.
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Naturally if the parameters of a model are uncertain, the output produced by the model will

be umcertain as well. Because of the randomness ofhydrologic events, one would naturally

think about dealing with the random variability of the various model pararn.eters so that their

uncertain behavior may be characterized through probability distributions (Ben Salem,

1986). These distributions express the modelers degree of beliefthat parameter values will

be in certain intervals in parameter space. There are two primary means for quantifying this

uncertainty. Monte Carlo Simulation and First Order Analysis. One of the problems

encountered in Monte Carlo Simulation is the form ofthe input parameter distribution. In

this study the focus will be on the effect of input parameter uncertainty on the uncertainty

of model outputs.

In fact this study is a continuation of a study conducted by Prabhu (1995). In his

study, Prabhu used the AGNPS (Agricultural NonPoint Source) model to illustrate a

statistical model evaluation protocol. Prabhu used one set ofprobability distributions for the

input parameters; however, he was not certain that the correct distributions had been selected.

The uncertainty that results in model outputs is logically dependent on the amount and form

of the uncertainty in the input parameters as reflected in the probability distributions of these

parameters. In this study the same input parameters used by Prabhu will be employed. To

assess the importance of the input parameter distributions, different combinations of input

parameter distributions and variances will be used. The impact of changing the distributions

and reduction of variances of input parameters on the uncertainty of model outputs will be

studied.



CHAPTER II

REVIEW OF LITERATURE

Literature reviewed in support of this study included works about model validation,

the importance ofuncertainty analysis to H/WQ models, sensitivity analysis, and methods

of estimating the uncertainty in model predictions.

Model Validation

Model validation can be defined as the process of demonstrating that a model, within

its domain of applicability, behaves with satisfactory accuracy consistent with the study

objectives (Balci, 1987). However, such an 'ideal' validation is difficult to achieve for

models simulating natural processes. In the case ofH/WQ models, such a level of validation

is impossible, because of the heterogeneous nature of the hydrologic media and the

uncertainties associated with spatial and temporal variability (Hassanizadeh and Carrera,

1992).

The qualitative validity of a model depends on the modelers or users judgment and

can help in terming the model as good, fair, poor or such. For some models, quantitative

4
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validation may not be feasible.. [n such a case, an attempt should be made to quantify the

uncertainties in the model predictions due to the error associated with each of the input

parameters (Prabhu, 1995). The problem in model validation, according to Ditmars et aI.,

(1987) is that as the number of model dimensions and variables increase, the nmnber of

possible combinations of predictions and data becomes very large. As for the output

analysis, when scattergram regressions are used, obtaining a regression coefficient of one is

clearly not sufficient to guarantee agreement between observed and predicted values. A

number of researchers (Lums and. McLaughlin, 1992; Martinec and Rango, 1989; Reckhow

et aL, 1990; Thomann, 1982; Loague and Green, 1991; Garrick et at, 1978; Chiew et aI.,

1993; Rekhow and Chapra, 1983) evaluated models on the basis of statistical tests. They

used various models for illustration.

Luis and McLaughlin (1992) state that the errors which contribute towards

differences in prediction from a model and the actual observations can be grouped into three

distinct sources. They illustrate this by using a model which predicts the moisture movement

through an unsaturated porous medium. The objective of the model is to predict the mean

distribution of moisture content over time and space. The three error sources in this context

are (i) measurement error or the difference between the measured and the true values of

moisture content, (ii) spatial heterogeneity or the difference between the large scale trend to

be predicted and the true small scale values of moisture content, and (iii) model error or the

difference between the model's prediction and the actual large scale trend.

They further note the difference between model validation, which addresses the

question ofwhether or not a model adequately represents observed phenomena, and accuracy
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assessment, which pertains to the larger question of how well a model will perfonn under

conditions that have not yet been observed. They observe that if the model's basic structure

(set ofgoverning equations) is correct, then the accuracy assessment reduces to an evaluation

of the effects of parameter estimation errors.

Uncertainty Analysis

Uncertainty analysis applied to H/WQ models is the process by which one evaluates

the impact of uncertainty in the model parameters and weather on the results produced by

models. Uncertainty analysis for hydrologic and water quality modeling is very important

when making management decisions concerning water resources, whether that decision deals

with quantities of water or water quality (Haan, 1995a).

The importance of incorporating uncertainty analysis into H/WQ models has been

emphasized by many authors (Beck, 1987; Reckhow, 1994; Haan et aI., 1995; Hession et aI.,

1995; Kumar and Heatwole, 1995). Several researchers have compared the accuracy,

applicability and computational demands of various sensitivity and uncertainty analysis

techniques. Thomas (1982) discussed the use of Latin Hypercube sampling as a means of

obtaining an output probability distribution function (pdt) and cumulative density function

(edt). Doctor (1989) summarized various sensitivity and uncertainty analysis procedures.

Usually, parameter values used as input to models are only estimates since the actual values

are not known with certainty. Rejeski (1993) referred to "modeling honesty" as the truthful

representation of model limitations and uncertainties. Beven (1993) and Haan (1995a)
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suggested that the inclusion ofuncertainty analysis in modeling activities can be interpreted

as intellectual honesty. Reckhow (1994) suggested that all scientific uncertainties must be

estimated and included in modeling activities.

Determining the uncertainty to assign to input parameters is one of the major hurdles

that must be addressed in overall evaluation of uncertainty associated with hydrologic and

water quality modeling. When estimating input parameters for a model, we might get some

guidance from the user manual ofthat model, from our own experience, or from the literature

and see what kind of variability might be present. Our goal is to come up with the following

quantities in order of priority: the expected value, the variance, and the distributional shape

(Haan, 1995b).

Sensitivity Analysis

It is very clear that considerable work may be involved in gathering the data required

to characterize the uncertainty in each input parameter and the parameters as a whole.

Therefore, one should identify the parameters that are important to the process being

modeled. Procedures to identify the parameters that have the greatest impact on model

predictions include sensitivity analysis. The application ofsensitivity analysis to hydrologic

problems has been examined by several researchers. Most sensitivity studies were conducted

using complex hydrologic models.

A number of methods have been employed by researchers for sensitivity analysis.

The most commonly used method was proposed by Coleman and Decoursey (1976). When



8

sensitivity with respect to one parameter is being determined, the other parameters win be

held constant at values determined to be the most appropriate for the watershed being

studied. Majkowski et 311. (1981) argue that sensitivity analysis and its extensions enable the

modelers to examine the influence of input parameter errors on predictions made by the

model. The acceptanoe level of output uncertainty depends on the system under

consideration, the modeling objectives and the modeler's knowledge of the system.

Majkowski et al. (1981) extend the sensitivity analysis to parameter estimation by

means of so called addictive sensitivity analysis. They analyzed the uncertainties in outputs

produced by the uncertainties in the input parameters and defined the deviance measure, D.

Using linear theory, the variance of the distribution of the logarithm of D can be found.

They contend that by comparing the magnitude of the components of the variance, the

particular input errors which contribute to total variance can be found. This will lead to

identifying parameters which require more accurate determinations of their values.

Tiscareno-Lopez et 311. (1993) conducted stochastic sensitivity analysis on the WEPP

model. They argue that for any assessment situations, model parameters are best represented

by a frequency distribution (or range) ofvalues. They performed multiple Ii near regression

analysis using model inputs generated by the MCS method and model outputs. The

uncertainty in model parameters was finally assessed from the regression coefficients of the

linear equation.

Deer-Ascough and Nearing (1994) performed a sensitivity analysis on the WEPP

model using parameters for three soil types and three different management practices. They

used a deterministic sensitivity analysis. They contend that with this approach, the absolute
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sensitivity coefficient, while still reflecting linear response, would provide a better

examination of the nonlinearity of responses between series of input and output parameters.

Nofziger et al. (1993) evaluated a number of unsaturated vadoze zone models for

important parameters using sensitivity and uncertainty analysis. They defined the sensitivity

coefficient S, as

s=ao
aJ

where 0 represents the output of interest and I represents the input parameter. S gives the

absolute change in 0 for a unit change in 1. Obviously for most hydrologic and water quality

models, numerical procedures must be used since analytic partial derivatives can not be

obtained. Thus, one has to approximate the above derivatives by the difference equation

S=AO
Al

The value of S calculated from these equations has units associated with it. This

makes it difficult to compare sensitivities for different input parameters. This can be

overcome by using the relative sensitivity, Sr, given by

AO J
Sr=-*-

AI 0

where Sr represents the% change in 0 for a one% change in I. The relative sensitivity
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coefficients are preferred smce they are dimensionless and can be compared across

parameters directly. Paranleters can be ranked on the basis of their relative sensitivity

coefficients and only the most sensitive ones retained for further analysis. Here the

sensitivity coefficients reflect the change in output function due to a single input parameter.

Uncertainty analysis may be used to incorporate simultaneous changes in more than one

parameter and variability of the parameters (Nofziger et aI., 1993).

Methods of Estimating Uncertainty

Uncertainty analysis methods appropriate for use with spatially correlated input

variables included first and second order approximations, MeS, and "deterministic"

uncertainty analysis. There are two main categories of methods for estimating the

uncertainty in model predictions: Monte Carlo methods and first-order variance propagation

(Beck, 1987; Summers et at, 1993; Zhang et aI., ]993). A number of works address the

formulation of first order analysis procedures and the potential for errors in their use.

Dettinger and Wilson (1981) formulated the FOA approximation of the covariance matrix

and the second order approximation of the mean of a vector of time and space dependent

model outputs. They noted that the first and second order analysis procedure could be

applied to nonlinear systems with reasonably small coefficients of variation and cited the 0.2

limit for the coefficient of variation proposed in Benjamin and Cornell (1970).

Numerous studies have been completed in which the results of a FOA have been

compared with the results of a MCS. Song and Brown (1990) used the Streeter-Phelps
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equation as an example and compared the results ofMCS and FOA to estimate model output

variance when correlations between the model parameters were included or ignored in the

analysis. Huang (1986) looked at the uncertainty in the design of an open channel to carry

the flow through a sluice gate. He used triangular distributions for uncertain parameters,

such as gate coefficient, Manning's n, gate submergence coefficient, and various geometry

parameters, which were assumed to be independent. The FOA mean and variance of the load

(flow) and resistance (channd capacity) were calculated. The FOA of overall reliability

(probability of not failing) was computed as 0.987 for load and resistance normally

distributed and as 0.991 for load and resistance Lognomlally distributed. The result ofa MCS

was 0.997. The author did not speculate as to the cause of the difference. The n.eed to make

distributional assumptions was cited as a problem with both procedures.

It was found that the FOA techniques have a number oftheoretical shortcomings that

reduce their utility (Summers et aI., 1993). For example, FDA is restricted by assumptions

of linearity and the magnitudes of input parameter vari.ance (Gardner and O'Neill, 1983;

Summers et aI., 1993). First order approximation deteriorates if the coefficient of variation

of the model parameters is greater than 10-20 % (Zhang et aI., 1993). Therefore, given the

limitations of the FOA, Monte Carlo Simulation procedures are the preferred methods of

propagating uncertainty in complex, watershed-level models (Haan, 1989; Summers et ai.,

1993; Taskinen et at, 1994; Haan and Zhang, 1995; Kumar and Heatwole, 1995; Prabhu,

1995).

The Monte Carlo Simulation method is a stochastic method. In this method many

pseudo random observations have to be generated from an assumed parent probability
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density function (PDF). The Monte Carlo method is probably the most powerful and

commonly used technique for uncertainty analysis of a complex system (Carsel et aI.,

1988a,b). The technique requires knowledge of the statistical distribution (PDF) of each

independent variable together with its mean, variance, and correlation with other independent

variables. The subsequent simulations are based on the unbiased selection of values of the

independent variables from their respective statistical distributions. The process ends when

enough output has been obtained to yield a clear statistical description of the dependent

variable.

Booth (1989) generalized the Monte Carlo method into four steps. (i) Specification

of a parametric statistical model (PDF) for the joint distribution of the input vector, x, for a

random y chosen within the given classification. The PDF may come from the analysis of

real observations of the input vector, X, or from similar studies conducted in the past. (ii)

Estimation of the parameters of the specified PDF using either observed input vectors, Xl,

X2, Xn, at a sample of n sites within the given classification or the resulting parameters

estimated in similar studies. (iii) Generate many pseudo input vectors from the PDF in (i)

with parameters in (ii). (vi) Run the model for each pseudo input vector to obtain a

probability distribution for the output variability.

The Monte Carlo method has been widely employed in many disciplines in addition

to hydrology. Shaffer (1988) used the Monte Carlo method to estimate the confidence bands

for a soil-crop simulation model. Carsel et aI., (1988a,b) used a similar procedure to generate

PRZM model parameters for both the unsaturated and saturated zones in making regional

assessments of pesticide residue loading to ground water. The Monte Carlo technique can
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also be used to study the sensitivity of model prediction corresponding to the uncertainties

of a particular model parameter. Alcamo and Bartnicki (1987) used the method to detennine

the sensitivity of a sulfur-air transport model to its parameters under a prescribed 20%

coefficient of variation. Borah and Haan (1989) studied the uncertainties associated with

parameter estimation by introducing prescribed errors into each value of the precipitation and

synthetic runoff records of the USGS Precipitation Runoff Modeling System.



CHAPTER III

OBJECTIVE

As has been established, often considerable uncertainty exists in the values assigned

to the input parameters of a H/WQ model. Obviously the values assigned to the input

parameters have an impact on the results generated by the model.

The process by which one evaluates the impact of uncertain knowledge of model

parameters and weather data on the results produced by models is known as uncertainty

analysis. Uncertainty is often tbought of in qualitative terms. When it comes to modeling

and decision making, one mLlst be able to quantify uncertainty. This quantification is

generally done through the use of probabilistic statements and probability distributions.

One difficulty in uncertainty analysis is the determination of the correct probability

distribution to describe model input parameters. In his study using the AGNPS model,

Prabhu (1995) used one set of distributions to describe the input parameters. This set of

distributions was chosen based on a study of the literature and a rational analysis of the

problem. Uncertainty exists as to the proper pdf to use. Therefore, in this study distributions

for the AGNPS input parameters will be changed to determine the impact of this change on

the output pdfs from the model. Also the variances of the input parameters will be reduced

14
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and the impact of this reduction on the model results will be observed. The AGNPS model

will be used.

The objectiv,e of tIlls study is to investigate the impact of model input parameter

probability distributions on model output uncertainty predicted by Monte Carlo Simulation.



CHAPTER IV

DESCRIPTIONS OF THE MODEL AND THE DATASET

Description of the Model

The 92-500, Section 208 Federal Law, requiring all states to evaluate upland erosion

and determine its effect on water quality, the need for a unifonn method for evaluating

agricultural watersheds in Minnesota, and the importance of runoff from agricultural lands

as a nonpoint source of pollution, lead to the development of AGNPS (Young et aI., 1987).

The AGNPS (AGricultural Nonpoint Source) model was developed by the

Agricultural Research Service (ARS) in cooperation with the Milmesota Pollution Control

Agency (MPCA) and the Soil Conservation Service (SCS). The model was developed to

analyze and provide estimates ofrunoff water quality from agricultural watersheds ranging

in size from a few hectares to upwards of 20,000 ha (Young et aI., 1989). AGNPS is a

distributed parameter, single event based model, and works on a cell basis. These cells are

uniform square areas subdividing the watershed. Data required for each cell include land

use, soil, vegetation type and maturity, cultural practice, fertilizer application, SCS curve

number, slope, and other aspects (Summer et aI., 1990).

16
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The model simulates runoff, sediment, and nutrient transport from agricultural

watersheds. The nutrients considered include nitrogen (N) and phosphorus (P), both

essential plant nutrients and major contributors to surface water pollution. The basic

components of the model are hydrology, erosion, sediment transport, and transport of

nitrogen, phosphorus, and chemical oxygen demand. Accuracy of the results can be

increased by reducing the cell size, but this increases the time and labor required to run the

model. Conversely, enlarging the ceU size reduces time and labor, but the savings must be

balanced against the loss of accuracy resulting from treating larger areas as homogeneous

units (Young et aI., 1989).

Algorithm of the AGNPS model.

Hvdrology

RlU1offvolume and peak flow rate are calculated in the hydrology part of the model.

Runoffvolume estimates are based on the SCS curve number method. The basic equation

IS

Q (P-O.2S)2
P+O.8S

P~O.2S

where Qis the runoffvolume, P is the rainfall, and S is the retention parameter, all expressed

in the same dimensions oflength. Runoff will not occur until the precipitation is greater than
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0.2S. The retention parameter is defined in terms of a curve number (eN), as

s= 1000 -10
eN

The curve number depends upon land use, soil type, and hydrologic soil conditions. Peak

runoff rate for each cell is estimated using the following empirical relationship proposed by

Smith and Williams (1980).

where Qp is the peak flowrate in m 3 s -I ; A is the drainage area in km 2; CS is the channel

slope in mlkm; RO is the runoff volume in rom; and LWis the watershed length-width ratio,

calculated by L 2/A, where L is the watershed length.

Erosion and sediment transport

A modified form of the Universal Soil Loss Equation (USLE) is used to estimate

upland erosion for single storms as

SL = (EI) KLSCP (SSF)

where SL is the soil loss, EI is the product of the stonn total kinetic energy and maximum

30-minute intensity, K is the soil erodibility factor, which is a measure of a soiJ's resistance

to the erosive powers of rainfall energy and runoff. Experimentally, soil erodibility is the

soil loss per unit rainfall index on a standard erosion plot, LS is the topographic factor, Cis
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the cover and management factor, which accounts for above-ground effects, surface effects,

and below-surface effects, P is the supporting practice factor, which is used to evaluate the

effects of contour tinage, strip cropping, terracing, subsurface drainage, and dryland farm

surface roughening, and SSF is a factor to adjust for slope shape within the cell.

After nmoff and upland erosion are calculated, detached sediment is routed from cell

to cell through the watershed to the outlet. The basic routing equation is derived from the

steady-state continuity equation.

Chemical transport.

Transport ofN, P and chemical oxygen demand (COD) throughout the watershed are

estimated in the chemical transport part of the model. Chemical transport calculations are

divided into soluble and sediment absorbed phases. Nutrient yield in the sediment absorbed

phase is calculated using total sediment yield from a cell, as

where Nulled is Nor P transported by sediment; Nut! is Nor P content in the field soil; and

En is the enrichment ratio

where Q, (x) is sediment yield and Ij is a correction factor for soil texture. Soluble nutrient

estimates consider the effects of nutrient levels in rainfall, fertilization, and leaching.
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Soluble nutrients contained in runoff are estimated by

Nut oI=C /\Jut Qs nut ,. ex'

where Nut,ol is the concentration of soluble N or P in the fUllOff, e
llU1

is the mean

concentration of soluble N or P at the soil surface during runoff, Nutex1 is an extraction

coefficient of Nand P for movement ~nto runoff and Qis the total runoff.

Data Descriptions

Since the same site of study used by Prabhu will be used in this study, the

majority of the foHowing information was taken from Prabhu (1995). The data used in this

study are from a research field in northwestern Arkansas (Jat. 36 0 N long. 94 0 W). These

data were provided by researchers at the University of Arkansas and are explained in detail

in Edwards et a1. (1993). The data were collected from the field WA.

The area of the field is 3.61 acres, and it was considered as a single cell. The crop

cover for this field is predominantly taU fescue. The field has predominantly a Linker Loam

soil. The Linker series consist of well-drained, moderately permeable soils. The runoff is

medium and the erosion hazard is severe with these soils. The slopes arc usually 3 to 8

percent and have five layers of soil (Soil Survey, Washington County, Arkansas).

Since AGNPS is an event based model, a precipitation event of 3.74 inches on July

30, 1992 is used in this study. That rainfall event had a preceding event of0.39 inches on

July 28, 1992. It was assumed that antecedent condition would require that CN value to be
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changed. So the average value ofCN(I) and CN(II) conditions was used. The CN(I1) value

is 79 taken from Edwards et a1. (1993), and CN(I) was calculated using the following

equation from Haan et aL (1994).

CN(l) 4.2CN(Il)
1O-O.058CN(lJ)

So

CN(l)- 4.2*79 61.74
10-0.058 *79

The average value ofthese two conditions (79 and 61.74) is about 70 and that value is used

as eN. The event is assumed to be of24 hour duration. For peak flow calculations, AGNPS

option is chosen. For the hydrograph shape factor, which allows the user to choose the

method for calculating the triangular hydrograph, the K coefficient method is chosen and the

default value of 484 is chosen for K coefficient.

The shape of the slope is asslUl1ed to be unifonn, which takes the value of I. For the

soil parameters, the K-factor is estimated from the soil erodibility nomograph of Agriculture

Handbook number 537, "Predicting Rainfall Erosion Losses" (Wischmeier and Smith, 1978).

The percentage of silt is 35.6. The percentage of the very fine sand is assumed to be

negligIble.. The percentage of sand is 56.3. The percentage oforganic matter is assumed to

be 2 as the soil is brown in color (Soil Survey, Washington County, AR). The soil structure

has a medium granular structure and has moderate permeability (Soil Survey, Washington



22

County, AR). With these conditions the K value is derived from the soil erodibility

monograph as 0.24.

From Table 10 (Agriculture Handbook 537, Wischmeier and Smith, 1978) for I1tan

weeds or short bushes" category and a percent cover of 50% and ground cover of 80%, the

C value is assumed to be 0.012 for grass. The P value is assumed to be 0.9 (Prabhu, 1995).

For the surface condition constant, good pasture is assumed with a value of0.22. For

the chemical oxygen demand (COD) factor, the pasture value of60 is used as input. The soil

texture number for 56% of sand and 35% of silt is 3. For this soil texture a munber ofdefault

values regarding the soil Nitrogen, the soil P, Nitrogen (N) and the Phosphorus (P)

coefficients were accessed. The value of the soil N is 0.001 lb Nllb soil. The N extraction

coefficient for runoff is 0.05, the N extraction coefficient for leaching 0.25. The soil P is

0.0005 lb Pilb soil, P extraction coefficient for runoff is 0.025, and the P extraction

coefficient for leaching is 0.25. The channel type is taken as the one without a definitive

channel. Prabhu (1995) can be consulted for more detail on these parameter values.



CHAPTER V

Sensitivity Analysis and Simulation Procedure

Sensitivity Analysis

It is very difficult to collect the data required to characterize the uncertainty in the

input parameters ofa model. One would not want to go to all this work unless the parameter

was important to the process being modded. If a parameter has little or no effect on the

output of a model, one would not want to spend a lot of time estimating that parameter or

worrying about uncertainty in that parameter.

In order to identify the irnpoliant parameters of a model, sensitivity analysis may be

used to determine the sensitivity of model outputs to changes in values for model inputs.

There are two types of sensitivity coefficients. One is called an absolute sensitivity

coefficient or the sensitivity coefficient and the other a relative sensitivity coefficient. The

coefficients are defined as

GOs=­ap

23

aop
Sr=-­apo
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where 0 and P represent particular model outputs and parameters (inputs) respectively. S

gives the absolute change in 0 for a unit change in P while Sr gives the% change in 0 for

a 1% change in P (Haan, 1995 b). When the sensitivity with respect to one parameter is

being determined, the other parameters are held constant at values detennined to be the most

appropriate for the watershed under study. In this study the results of the sensitivity analysis

on AGNPS performed by Prabhu (1995) will be used. Prabhu conducted the sensitivity

analysis of AGNPS using 28 parameters. The analysis indicated the curve number (CN),

slope, the P-factor (erosion control practice factor), the K-factor (soil erodibility factor), the

C-factor (cover and management factor), soil nitrogen, nitrogen extraction coefficient for

runoff, and nitrogen extraction coefficient for leaching are the most sensitive parameters.

Parameter uncertainty can be quantified using variances and/or probability

distributions on the model parameters. For the Monte Carlo Simulation technique, the

probability distribution of the parameters must be specified.

The selection of the most appropriate pdf to use for a particular parameter remains

a challenge. The form of the probability distribution function often arises trom the

fundamental properties of the quantities we are attempting to represent. Often, distributions

are selected on an empirical basis, because they provide a reasonable representation of the

observed data (Morgan and Henrion, 1992). In his study Prabhu used the data published in

the literature to determine the appropriate pdfs for the various parameters. He used the

Kolmogorov-Smimov test to evaluate the probability distributions that were selected. Based

on the results of the test, Prabhu indicated the distributions and coefficient ofvariations (Cv),

given in table 5-1, for the various parameters used in his study.
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After detennining the input parameters and their probability distributions, the

probability distributions for the model outputs were determined by Prabhu (1995) using

Monte Carlo Simulation (MCS). The Monte Carlo analysis is useful in characterizing the

uncertainties due to the parameters. MCS can be performed by sampling the multivariate

input distribution and perfonu!ng a model simulation with the sampled parameter values to

produce estimates of model output.

The output results of the simulation runs conducted by Prabhu were tested for

goodness of fit for various distributions. The Chi-square goodness of fit test was used.

Based on the results of these tests, Prabhu found the following distributions for the model

outputs: for runoff it is normal; for sediment, nitrogen in runoff, nitrogen in sediment, and

for phosphorus in sediment it is lognormal.

Once pdfs are determined, confidence intervals (CIs) can be placed on the model

predictions. The width ofthese CIs depend on the level of significance and the applicable

pdf. If the purpose of he study is to evaluate the model, predictions are compared with

measured watershed responses. If the measured data fall within the CIs, the model may be

considered to have performed satisfactorily from a statistical point of view. If the CIs are

so wide they will be oflittle use to judge the model predictions, even though the predictions

are within the CIs, the model may not be acceptable. This means that a statisticaUy

acceptable solution might be unacceptable in application (Haan et aI., 1993).

There is also uncertainty associated with the measured responses of a watershed.

This uncertainty can also be quantified in the form of a pdf. If the pdfs of the model

response and the watershed measured values are plotted together, the degree of overlap of
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the pdfs indicates the predictive ability ofthe model. ]f some criteria ofmodel acceptability

is given, then it is possible to detennine the probability that the model will fulfill that criteria

(Haan et aI., 1993).

Simulation Procedure

The Monte Carlo Simulation method is a stochastic method, which requires the

generation of a number of random observations from the assumed parent multivariate

probability density function. The random observations used in this study were generated

using the random number generation function from Microsoft Excel. The parameters were

assumed to be independent. For all parameters which have a normal or lognormal

distribution, random observations were generated from a normal distribution and then

transfonned to the corresponding distribution if necessary. For parameters which have a

uniform or triangular distribution, random observations were generated from uniform

distribution on the interval 0 to I and then transformed to the appropriate distribution.

Different seeds were used when generating these random numbers.

In Monte Carlo Simulation the number of simulation runs is very important. To

determine the required number of runs, Prabhu (1995) conducted simulations that involved

treating only the curve number as a random variable. The curve number was selected,

because it is the most significant parameter affecting runoff as defined by the sensitivity

analysis. The means of these runs were determined. The analysis was confined to a single

event of 3.74 inches of precipitation on July 30, 1992. The results based on runoff were
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obtained. Based on these results, it was found that the mean stabilized with about 1500

simulations. Therefore, it was decided that 1500 simulations were adequate to define the

output distributions. The next step was to take the parameters given in table 5-1, make the

required changes and perform 1500 simulation runs. There were two major types ofchanges,

the rust was changing the distribution of the input parameters (simulation runs number 1, 2,

3, 5 and 7). The second change was represented by a reduction of the variances of the

parameters. The variance was reduced by reducing the Cv's of the parameters used in the

first run by 0.5 in run number 4 and by 0.25 in run number 6. The computer program used

in this study to produce the AGNPS input data files is given in Appendix A. A total of

seven different combinations of distributions and variances of input parameters were

investigated.

The types of the probability distribution functions lIsed in this study are considered

to be of the most common and useful distributions. These distributions with some of their

properties are discussed below.

Normal Distribution

The normal, or Gaussian, distribution arises in many applications, in part because of

the central limit theorem, which states the general result that if X is made up of the sum of

the many small effects, then X might be expected to be normally distributed. Similarly if X

is equal to the product of many small effects, then In X can be expected to be normally

distributed (Haan, 1977). The normal distribution is also commonly chosen because it is
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well studied and frequently used in dassrcal statistics. The nomml distribution is commonly

employed to represent uncertainty resulting from unbiased measurement errors. The

normally distributed random variable takes on values over the entire range of real numbers.

Evaluation of the CDF requires numerical approximation of the integral of the PDF, but

solutions are commonly found in statistical tables and available computer subroutines. The

parameters of the distribution are directly related to the first and second moments, and the

skewness coefficient is zero due to the symmetry of the distribution. The parameters of the

distribution are estimated from the sample mean and standard deviation.

Lognormal Distribution

The lognormal distribution results when the logaritlun of the random variable is

described by a normal distribution. That is, if X is lognormally distributed, then

Y = In X is normally distributed. The properties of the lognormal distribution follow

directly, and probability computations are made on the normal variable Y, with subsequent

transfom1ation to the corresponding value of X = exp Y. The lognormal distribution is often

found to provide a good representation for physical quantities that are constrained to being

non-negative, and are positively skewed. The lognormal distribution is particularly

appropriate for representing large uncertainties that are expressed on a multiplicative or

order-of-magnitude basis. The parameters of the distribution are equivalent to the mean and

standard deviation of Y = In X.
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Unifonn Distribution

The uniform distribution provides one of the simplest means of representing the

uncertainty in model input. Its use is appropriate when we are able and willing to identify

a range of possible values, but unable to decide which values within this range are more

likely to occur than others. Parameters may be estimated from observed data using the

method of moments, but are often determined using physical or subjective reasoning to

determine minimum and maximum possible values for the random variable.

The values of the minimum, maximum and the mode of uniformly distributed

parameters are given by

&=x-{3S

P=x+..[3S

C=,&+P
2

where x is the mean, S is the standard deviation, &; is the minimum, pis the maximum and

C is the mode.

Triangular Distribution

The triangular distribution is claimed to represent a least-biased assumption when the

true distribution is unknown. For certain model input parameters, values toward the middle
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of the range of possible values are considered more likely to occur than values near either

extreme. When this is the case, the triangular distribution provides a convenient means of

representing uncertainty. When uncertainties are large and asymmetric, both the uniform and

triangular distributions can be modified to yield loguniform or logtriangular distributions,

in which Y = In X is assumed to have the indicated distribution. Computations and

parameter estimation are based on Y, with subsequent transformation to the desired random

variabk by X = exp (Y).

For a triangular distribution the mean and variance are given by

1 A A

Il=-(a +P+C)
3

where /..l is the mean, a is the standard deviation, &: is the minimum, pis the maximum and

C is the mode.

For a symmetric triangular distribution the minimum, maximum and the mode of the

parameter are given by

&:=x-..[6S

c=&:+P
2
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where x is the mean, S is the standard deviation, Ii is the minimum, ~ is the maximum and

C is the mode.

For a non-symmetric triangular distribution with C given, and minimum (ft) assumed

to be 0, the maximum ( ~ ) is calculated from

J3 =3/l-C

where ~ is the maximum, Il is the mean and C is the mode.

The first simulation run can be considered the base run. The pdfs were the ones used

by Prabhu (1995) and are shown in table 5-1. The second run used a uniform distribution

for aU parameters except the S- value. The third run was similar to the second except the S­

value was also considered to be uniform. The fifth simulation run was similar to the first

except the normal distribution was substituted for the lognormal and the uniform for the

triangular. The seventh run used the triangular distribution for all parameters. The same

means and variances were used for the parameters in nms 1,2,3,5 and 7.

Runs four and six were similar to run number one except the Cv on the parameters

was reduced by 0.5 for run four and another 0.5 (a total of0.25) for run six.

Thus runs 1, 2, 3, 5, and 7 used the same means and variances, but diflerent

distributions. While runs 1, 4, and 6 used the same distributions, but different variances.

Tables 5-2 through 5-8 summarize the distributions, their means and variances.



Table 5-1. AGNPS input parameters with their distributions and values of Cv.

(Taken from Prabhu, 1995).

PARAMETER DISTRIBUTION Cv

Retention parameter (S) Lognormal 0.5

Slope Lognormal 0.3

K - Factor : Triangular 0.14

C - Factor Triangular 0.2

P - Factor Triangular 0.05

Soil Nitrogen, lbs/ac Lognormal 0.5

Nit. runoff coeff. Lognormal 0.5

Nit. leaching coeff. Lognormal 0.5
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Table 5-2. Input parameters and their distributions used in the first run.

Parameter . Distribution Mean ' Cv Min. Max. Mode
;

S -Value Lognormal 2.66 0.50

Slope Lognormal 4.00 0.30
i

K-Faetor Triangular 0.24 10.14 0.158 0.322 0.24
I

C-Factor : Triangular 0.012 0.20 0.006 0.018 0.012

P-Factor Triangular 0.90 0.05 0.80 1.00 0.93

Soil N Lognormal 0.001 0.50

N RO Coeff. Lognormal 0.05 0.50

N Leach. Coeff. Lognormal 0.25 0.50

Table 5-3. Input parameters and their distributions used in the second run.

Parameter Distribution Mean Cv Min. Max Mode

S-Value Lognormal 2.66 0.50

Slope % , Uniform 4.00 0.30 1.92 6.08 4.00
I

Uniform 0.24 0.14 0.] 8 0.30 0.24
I

K-Factor ,

C-Faetor Uniform 0.012 0.20 0.008 0.016 0.012

P-Faetor Uniform 0.90 0.05 0.82 0.98 0.90

Soil N Uniform 0.001 0.50 0.000] 3 0.0019 0.001

N RO Coeff. Uniform 0.05 0.50 0.0067 0.093 0.05

N Leh. Coeff Uniform 0.25 0.50 '0.0335 0.467 0.25
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Table 5-4. Input parameters and their distributions used in the third run.
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Parameter Distribution Mean Cv Min. Max. Mode

S-Value Uniform 2.66 0.50 0.36 4.96 2.66
i

Uniform 4.00Slope % , 0.30 1.92 6.08 4.00

K-Factor Uniform 0.24 0.14 0.18 0.30 ,0.24

I C-Factor Unifonn 0.012 0.20 0.008 0.016 0.012

P-Factor Uniform 0.90 0.05 0.82 0.98 0.90

Soil N Uniform 0.001 0.50 0.00013 0.0019 0.001

N RO Coeff. Uniform 0.05 0.50 0.0067 0.093 0.05

N Leach. Coeff. Uniform 0.25 0.50 0.0335 0.467 0.25

Table 5-5. Input parameters and their distributions used in the fourth run.

Parameter Distribution Mean Cv Min. ' Max. Mode

S-Value Lognormal 2.66 0.25

Slope % Lognormal 4.00 0.15

K-Factor Triangle 0.24 0.07 0.199 0.281 0.24

C-Factor Triangle 0.012 0.10 0.0091 0.0149 0.012

P-Factor Triangle 0.90 0.025 0.845 0.955 0.90

Soil N Lognormal 0.001 0.25

N Runoff Coeff. Lognormal 0.05 ' 0.25
I

N Leach. Coeff. Lognormal 0.25 0.25



Table 5-6. Input parameters and their distributions used in the fifth run.
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Parameter Distribution Mean Cv Min. Max. Mode

S-Value Nonnal 2.66 0.50 I
!

Slope Normal 1,4.00 0.30
::

K-Factor Uniform 0.24 0.14 0.18 0.30 0.24

C-Factor Uniform 0.012 0.20 0.008 0.016 0.012

P-Factor Uniform 0.90 0.05 0.82 0.98 0.90

Soil N Normal 0.001 0.50

NRO Coeff. Normal 0.05 0.50
,

N Leach. Coeff. Normal 0.25 0.50

Table 5-7. Input parameters and their distributions used in the sixth run.

Parameter Distribution Mean Cv Min Max Mode
II

S-Value Lognormal 2.66 0.125

Slope Lognormal 4.00 0.075

K-Factor Triangular 0.24 0.035 0.219 0.261 0.24

C-Factor Triangular 0.012 0.05 , 0.011 0.0135 0.012
I

P-Factor Triangular 0.90 0.0125 0.872 0.928 0.90

Soil N Lognormal 0.001 0.125 I

N RO Coeff. Lognormal 0.05 0.125 I

N Leach. Coeff. Lognormal 0.25 0.125



Table 5-8. Input parameters and their distributions used in the seventh run.
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Parameter Distribution Mean Cv Min Max Mode
!

S-Value Triangular 2.66 1 0.5 0 6.293 1.687

Slope Triangular 4.00 0.3 1.061 6.939 4

K-Factor Triangular 0.24 0.14 0.158 0.322 0.24

C-f'actor Triangular 0.012 0.2 0.00612 0.018 0.012

P-Factor Triangular 0.90 0.05 0.79 1.01 0.90

Soil N Triangular 0.001 0.5 0 ! 0.0024 0.00064

N RO Coeff. Triangular 0.05 0.5 ,0 0.118 0.0318
I

N Leach. Coeff. Triangular 0.25 0.5 0 0.591 0.159



CHAPTER VI

RESULTS, CONCLUSIONS AND RECOMMENDAnONS

Results of the Simulation runs

If one assumes that the AGNPS model is valid, the uncertainty in model outputs is

due to uncertainty in input parameters. A measure of parameter uncertainty is the coefficient

ofvariation (Cv), which is a function of the mean and standard deviation. The output results

of the 1500 simulation runs were obtained and analyzed. Statistical properties of the outputs

for each simulation run are given in tables 6-1 through 6-7.

Table 6-1. Descriptive statistics of the first simulation run.

STATS RUNOFF, SED.,tons RUNOFF II SED.N, SED. P,
!

inches N,lbs/Ac Ibs/Ac Ilbs/At:
,

MIN 0.150 0.050 0.010 0.050 0.060

MAX 3.070 1.570 17.930 3.930 0.940

MEAN 1.827 0.283 2.200 0.463 0.230

VAR 0.280 0.034 4.986 0.131 0.014

STDDEV 0.529 0.184 2.232 0.362 0.117

Cv 0.290 0.650 1.013 0.781 0.510
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Tab~e 6-2, Descriptive statistics of the second simulation run.
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,
I,

STATS RUNOFF, SED., tons RUNOFF SED. N, SED.P,

inches N,lbs/Ac lbs/Ac lbs/Ac

MIN 0.150 0.060 0.010 0.020 0.070

MAX 3.070 0.960 18.150 2.030 0.630
I I

MEAN 1.827 0.291 2.460 0.483 0.236

VAR 0.280 0.030 8.867 0.126 0.013

STD DEV 0.529 0.173 2.980 0.354 0.112

Cv 0.290 0.595 1.211 0.733 0.475

Table 6-3. Descriptive statistics of the third simulation run.

STATS RUNOFF, SED., tons RUNOFF SED.N, SED. P,

inches N, lbs/Ac lbs/Ac lbs/Ac

MIN 0.930 0.060 0.050 0.020 0.070

MAX 3.280 0.990 22.410 2.320 0.640

MEAN 1.849 0.291 2.930 0.483 0.236

VAR i 0.441 0.030 14.187 0.125 0.013

STD DEV 0.664 0.173 3.767 0.353 0.112

Cv 0.359 0.595 1.286 0.731 0.475



Table 6-4. Descriptive statistics ofthe fourth simulation run.
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STATS RUNOFF, SED., tons RUNOFF SED.N, SED. P.

inches N,lbs/Ac Ilbs/AC Ibs/Ac

MIN 0.780 0.100 0.050 0.150 0.110

MAX 2.490 0.710 7.840 1.550 0.470

MEAN 1.748 0.257 1.383 I 0.436 0.215

, VAR 0.084 0.008 0.892 0.029 0.003

STDDEV 0.290 0.090 0.945 0.170 0.058

Cv 0.166 0.350 0.683 0.391 0.270

Table 6-5. Descriptive statistics ofthe fifth simulation run.

STATS RUNOFF, SED., tons RUNOFFN, SED.N, SED.P,

inches lbs/Ac Ibs/Ac Ibs/Ac

MIN. 0.55 0.03 -6.24 -0.14 0.04

MAX. : 3.74 1.15 50.41 2.44 0.73
I

MEAN 1.843 0.285 3.225 0.468 0.232

VAR 0.426 0.029 30.632 0.124 0.012

STDDEV 0.652 0.171 5.535 0.352 0.1] 1
I

Cv 0.354 0.601 }.716 0.753 0.477



Table 6-6. Descriptive statistics of the sixth simulation run.
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STATS RUNOFF, SED., tons RUNOFFN, SED.N, SED. P,

,
inches lbs/Ac Ibs/Ac lbs/Ac

MIN. 1.22 0.150 0.190 0.240 0.140
I

MAX. I 2.14 0..500 3.390 0.900 0.370
I

MEAN 1.725 0.255 1.135 0.435 0.217
I

VAR. 0.023 0.0025 0.186 0.008 0.001

STDDEV 0.15 0.050 0.431 0.090 0.034

Cv 0.087 0.198 0.380 0.208 0.159

Table 6-7. Descriptive statistics of the seventh simulation run.

STATS RUNOFF, SED., tons RUNOFF SED. N, SED. P,

inches N,lbs/Ac lbs/Ac lbs/Ac

MIN. 0.680 0.050 0.040 0.000 0.060

MAX. 3.620 1.130 28.290 2.870 0.720

MEAN 1.844 0.287 2.752 0.478 0.234
I

VAR. 0.392 0.095 12.937 0.123 0.012

STDDEV 0.626 0.172 3.597 0.351 0.111

Cv 0..340 0.598 1.307 0.743 0.474
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The following is a summary of all simulation runs regarding changes in means and

variances for each output parameter.

Runoff

The results of the first, second, third, fifth and seventh runs, showed similar means.

The fOUlih and sixth runs showed similar means, but lower than the values of the other runs.

The first and second runs showed similar variances. The third, fifth and seventh

simulation runs resulted in similar variances, but higher than other runs.

The fourth and the sixth runs indicated different values of variances (lower than those of the

other runs).

Sediment

The mean values of the sediment resulted from the first, second, third and fifth runs

were similar. The mean of the fourth and sixth runs were similar. The mean of the seventh

simulation run was the highest among mean values of other simulation runs.

The first, second, third, and fifth simulation runs resulted in similar values of

variances. The fourth and sixth runs resulted in lower values of variances. The seventh run

resulted in a different value of variance.

Nitrogen in runoff

The rust and second runs resulted in similar values of the mean. The third and

seventh runs resulted in similar values of the mean. The fourth and sixth runs indicated
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similar values of mean. The fifth run resulted in a higher value of the mean.

The results showed that each simulation run had a different value of variance.

Nitrogen in sediment

Results of the first, second, third, fIfth and seventh simulation nms showed similar

values for the mean. The fourth and sixth runs showed similar values of the mean, but lower

than the values of other nms.

The second, third, fifth and seventh runs resulted in similar values of variances. The

first nm had the highest value, the taurth run had the lowest value and sixth run resulted in

a different variance.

Phosphorus in sediment

The first, second, third, fifth and seventh runs showed almost similar values of the

mean of the phosphonls in sediment. The fourth and sixth runs resulted in similar values

of mean as well.

The first, second, third, fifth and seventh runs resulted in similar values of variances.

The fourth and sixth runs resulted in similar values of variances.

Probability plots of the outputs are given in figures 6-1 through 6-10. Recall that

simulations 1, 2, 3, 5 and 7 used different parameter distributions with the same means and

variances, while simulation runs I, 4 and 6 used the same pdfs with different variances.

The plots showed that the first, second, third, fifth and the seventh simulation runs

have similar results for all output parameters. The results of the fourth and the sixth runs
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were different.

The results of the fifth simulation run showed negative values for the nitrogen in

runoff (-6.24), and nitrogen in sediment (-0.14), which is not possible. The negative values

of the outputs obtained in this run were because the normal distribution was used. The range

on any random variable that is normally distributed is the entire real line (- co to +00). In order

for the normal distribution to result in positive values ofthe outputs, the mean of the random

variable should be 3 to 4 times greater than its standard deviation (Haan, 1977).

Statistical tests were conducted to determine if the means for the various simulations

were statistically significantly different than the mean of the first or the base run. The results

of these tests are presented in table 6-8.

Table 6-8. t- values resulting from statistical test on means.

Simulation Output Parameters

number RO Sed. N.inRO N. in SED P. in SED

2 0 ' -1.2 -2.71 -1.53 -1.4 ]

3 -1 : -1.2 -6.46 -1.53 -1.4]

4 5.07 4.9 13.05 2.61 4.46

5 1-0.74 -0.3 -6.65 -0.38 -0.48,
I

6 7.17 ' 5.67 18.13 2.91 4.11

7 -0.8 -0.43 -5.05 -l.15 -0.96

t> 1.645 is significant.
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These statistical tests may not be physically meaningful since the degrees of freedom

were so large (1499) that a very small physical difference ofthe tests statisticaUy significant

ly different. When in practice the difference is of no practical consequence.

Bartlett's test for homogeneity of variances was also conducted for runs 1, 2, 3, 5 and

7 for all outputs. Again the results indicate statistically significant difference when in

practice the differences may be of no physical significance.

Analysis of the simulation results

Confidence intervals (CIs) can be computed such that a given percent of the output

distribution is included in within these CIs. The upper and lower 95% confidence intervals

for the output parameters oflhe seven simulation runs are calculated from the spread sheets

containing the output values and the plotting positions corresponding to these values for the

different parameters, the lower 90% values were taken as the values of the outputs

corresponding to the 0.05 plotting position, and the upper 90% values were taken as the

values of the output parameters corresponding to the 0.95 plotting position. They are given

in table 6-9.



Table 6-9. The lower and upper 90% Cis of the AGNPS model outputs for all simulation

runs.

OUTPUT First run Second run Third run Fourth run

L90% U90% L90% U90% L90% U90% L90% U 90%

RO, (in) 0.88 2.67 0.88 2.67 0.99 3.07 1.28 2.23

Sd. (tons) 0.11 0.72 0.1 0.66 0.1 0.65 0.15 0.42

RON., 0.11 ,6.68 0.]2 8.76 0.09 11.02 0.29 3.27
I ,

(Ibs/ac) I
I

Sd. N., 0.14 1.23 0.07 1.l7 0.07 1.17 0.23 0.75

(lbs/ac)

Sd. P., 0.12 0.5 0.1 0.47 0.1 0.46 0.14 0.33

(lbs/ac) I

Table 6-9. Continued.

,

OUTPUT Fifth run Sixth run Seventh run

,

L90% U90% L 90% U90% L90% U90%

RO, (in) 0.99 3.17 1.47 1.98 0.93 2.97

Sd. (tons) 0.09 0.63 0.19 0.33 0.1 0.64

RON., 0.08 14.63 0.53 1.94 0.1 1O.45

,(Ibs/ac)

Sd. N., 0.05 1.15 0.3 ] 0.59 0.09 1.17

(Ibs/ac)
I

Sd. P., 0.1 0.45 10.17 0.27 0.1 0.46

(lbs/ac) I

45
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The observed average values of AGNPS outputs are presented in tabEe 6-10 for

comparison with the simulated results. Since the purpose of this study was not to evaluate

AGNPS, further discussion of the observed and calculated results will not be given.

Table 6-10. Observed average values of the outputs of AGNPS.

. OUTPUTS OBSERVED VALUES
I

Runoff, (inches) 1.13

Sed. , (tons) I 0.192

RunoffN., (lbs/ac) 0.117

Sed. N., (lbs/ac) 0.899

Sed. P., (lbs/ac) 0.566
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Conclusions and Recommendations

The purpose of this study was to investigate whether the type of the distribution of

the input parameters, or the variance of these parameters have an effect on the uncertainty

ofthe model outputs. The AGNPS model was used in this study. A total of seven different

simulation nms were conducted. The first, second, third, fifth and seventh runs used the

same mean and Cv values, but different pdfs. The first, fourth and sixth runs used the same

pdfs, but different values of Cv's. The results showed that changing the distribution of the

input parameters (runs 1,2,3,5 and 7) lead to minor changes in the ofev's for most of the

output parameters.

The results of the fourth and the sixth runs showed a drastic decrease in the values

of the Cv's compared to the value of the first run, because I reduced the values of the Cv's

ofthe input parameters used in the first nm. The decrease of the Cv value of the outputs was

proportional to the decrease of the Cv value used in the inputs.

In the fifth simulation run the means of some input parameters like the soil nitrogen,

nitrogen coefficient for runoff and nitrogen coefficient for leaching are not 3 times greater

than the standard deviation of these parameters. In this situation negative values for some

of the inputs were generated from the normal distribution which resulted in negative values

of the outputs. The mean ofa hydrologic variables should exceed 3 or 4 times the standard

deviation for these variables to be normally distributed.

In general one concludes that changing the type of the distribution of the input

parameters has little or no effect on output uncertainty. It was very clear that the variance
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of the input parameter distribution, has a significant impact on the uncertainty of the model

outputs.

It is recommended that more comprehensive studies are needed using different H/WQ

models and different distributional assumptions, to validate these results. It is also

recommended that future studies of this subject should concentrate on the values of the

variances of the input parameters rather than the type of distribution for these parameters, as

the variances have a great impact on the uncertainty of the model outputs.
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Figure 6-1. Runoff probability distribution for the 1st, 2nd, 3rd,
5th and the 7th simulation runs.
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Figure 6-2. Runoff probability distribution for the 1st, 4th and
the 6th simulation runs.
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Figure 6-3. Sediment probability distribution for the 1st, 2nd,
3rd, 5th and the 7th simulation runs.
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Nitrogen in runoff (Ibs/Ac)

Figure 6-5. Nitrogen in runoff probability distribution for the 1st, 2nd, 3rd,
5th and the 7th simulation runs.
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Nitrogen in sediment (Ibs/Ac)

Figure 6-7. Nitrogen in sediment probability distribution for the
1st, 2nd, 3rd, 5th and the 7th simulation runs.
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Phosphorus in sediment (Ibs/Ac).

Figure 6-9 .. Phosphorus in sediment probability distribution for
the 1st, 2nd, 3rd, 5th and the 7th simulation runs.
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10/3/95ccc agtst2.for
c
cc program to update AGNPS input data files
c
c ---- A "different" random number is used to update a parameter in a cell
c if NSIMTYPE = 1
c ---- The "same" random number is used to update a parameter for all the
c cells ifNSIMTYPE = 2
c
c datagnps.fil: master input file
c agnpsin: the input file name that AGNPS reads
c countin: the file name where the counter value is saved
c randomin: the name of the file containing the random values sets
c valout: the file where the values extracted from distributions
c are saved. This file will be generated to look at the
c distributions of each parameter(if needed later in the analysis).
c parin: the file where the characteristics of parameter distributions
c are saved
c nceD: # of cells in the watershed
c npar: # of parameters that will be updated
c idp: the I.D. # of the parameter
c idd: the I.D. # of the distribution
c avg: average value
c Cv: coefficient of varaition
c xmin: minimum value
c xmax: maximum value
c xmode: mode value
c rval: random value
c actval: the value found from the distribution
c ncount: counter defining the line where to read the random # from
c
c -- nsimtype = defines if 1 or multiple random numbers are used
c 1 ==> complete independence between the cells
c 2 ==> complete correlation between the cells
c

dimension avg(20,8),Cv(20,8),xmin(20,8),xmax(20,8),
* xmode(20,8),rval(20,8),actval(20,8)
integer idp(8),idd(8)
character agnpsin* 3O,countin*3O,randomin(8)*30

character valout(8)*3O,parin*3O,tmpch(8)*80
open( 1,file ='agnpstst.fil', status = 'old')
read(1,*) agnpsin,countin,parin
open(6,file = agnpsin,status = 'old')
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open(2,file = countin,status = 'old')
open(5.,file = parin,status = 'old')
open(7,file = 'filtmp',status = 'unknown')
read(1,*) nsimtype
do 130j=I,8

idp(j) = 0
iddG) = 0

do 130 i = 1,20
avg(i,j) = 0
Cv(i,j) = 0
xmin(i,j) = 0
xmax(i,j) = 0
xmode(i,j) = 0
actvalO,j) = 0
rval(ij) = 0

130 continue
read(S,*) ncell,npar
read(l,*,err=903) (randomin(k),k=l,npar)
read(l,*,err=902) (valout(k),k=1,npar)

C
read(S,*) (idp(k),idd(k),k=l,npar)
do 230 i = 1,ncelJ
do 230 j = l,npar

read(S,*) avg(ij),Cv(ij),xmin(i,j),xmax(i,j),xmode(i,j)
230 continue

read(6,31 O)tmpch(1)
write(7,3 11 )tmpch(1)
read(6,31 O)tmpch(1)
write(7,311)tmpch(l)
read(6,31 O)trnpch(1)
write(7,311 )tmpch(l)
read(6,3] O)trnpch(1)
write(7,311 )tmpch(1)
read(6,31 O)trnpch( 1)
write(7,311 )tmpch(1)
read(6,31 O)tmpch(l)
write(7,311 )tmpch(l )

310 format(A64)
311 format(tl,A64)

read(2,*)ncount
c

iun=lO
do 334 rnm=l,npar

66



67

OPEN(IUN,FILE=RANDOMIN(mm),STATUS='OLD')
if(ncount.gt.O) then

do 330 i = 1,l1count-l
read(iun,*)

330 continue
endif

read(iun,*)(rval(k,mm),k = 1,ncell)
close(iun)

334 continue
c

ncount = ncounH 1
rewind (2)
write(2,*) ncount

c

*

*

*

*

*

do 400 i = 1,ncell
do 400 j = 1,npar

if(nsimtype.eq.l) rvaltyp=rval(i,j)
if(nsimtype.eq.2) rvaltyp=rval(1 j)
if(idp(j).eq.l) then

call cn2out(idd(j),idp(j),avg(i,j),Cv(i,j),
xmin(i,j),xmax(i,j),xmode(i,j),rvaltyp,iCVA)
ACTVAL(l,J)=iCVA

endif
if(idpG).gt.l) then

if(idd(j).eq.l) call1ognorm(avg(i,j),cv(i,j),cva,
rvaltyp)

if(idd(j).eq.2) call triangle (xmin(i,j),xmode(i,j),
xmax(i,j),cva,rvaltyp)

if(idd(j).eq.3) call normal (avg(i,j),cv(i,j),cva,
rvaHyp)

if(iddG).eq.4) call uniform (xmin(i,j),xmax(i,j),
rvaltyp,cva)

ACTVAL(I,J)=CVA
endif

400 continue
c
c

iun=l1
do 430 mm=l,npar

OPEN(IUN,FILE=valout(mm),STATUS='unknown')
if(ncount.gt.l) then
do 426 i = 1,ncount-2

read(iun,*)



426 continue
endif
write(iun,427) (actval(k,mm),k=l ,neell)

427 format(f7.3,19(',',f7.3))
430 continue
c
c

do 450 k=l,ncell
read(6,*,err=901) i1,i2,i3,i4,i5,icn,slp,i8

c write(*,701) i1,i2,i3,i4,i5,icn,slp,i8
read(6,*,err=902) n1 ,p2,tk,fc,fp,p6,n7
read(6,310) tmpch(3)
read(6,703) tmpeh(4),exsn,tmpch(5)
read(6,*,err=903) exqn,t2,exfn,t4,k5
do 440 mm= 1,npar

if(idp(mm).eq.l) icn=actval(k,rnm)
if(idp(mm).eq.2) slp=actval(k,mm)
if(idp(mm).eq.3) fk=actval(k,mm)
if(idp(mm).eqA) fc=actval(k,mm)
if(idp(mm).eq.5) fp=actval(k,mm)
if(idp(mm).eq.6) exsn=actval(k,mm)
if(idp(mm).eq.7) exqn=actval(k,mm)
if(idp(mm).eq.8) exfn=actval(k,mm)

440 continue
write(7,70 1) i1,i2,i3,i4,i5,icn,slp,i8
write(7,702) n1,p2,fk,fc,fp,p6,n7

c write(7,311) tmpch(2)
write(7,311) tmpch(3)
write(7,703) tmpch(4),exsn,tmpch(5)
write(7,704) exqn,t2,exfn,t4,k5

c write(7,31l) tmpch(5)
read(6,310) tmpch(3)
write(7,31l) tmpch(3)
read(6,310) tmpch(3)
write(7,311) tmpch(3)
read(6,310) tmpeh(3)
write(7,311) tmpch(3)
read(6,310) tmpch(3)
write(7 ,311) tmpch(3)

701 fonnat(6i8,:f8.1 ,i8)
702 format(t9,i8,fS.3,:f8.2,fS.4,2f8.2,i8)
703 format(a8,f8.4,a24)
704 fonnat(t9,4fS.3,i8)
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450 continue
write(7,*)
rewind (6)

rewind (7)
do 500 i. = 1,10000

read(7,31 0,end=51 O)tmpch(l)
write(6,310)tmpch(1)

500 continue
510 continue

go to 904
901 write(*,*) 'error 901 ',k
902 write(*,*) 'error 902 ',k
903 write(*,*) 'error 903 ',k
904 continue

stop
end
Subroutine cn2out(nd,np,xav,xCv,xmn,xmx,xmd,rand,iCN)

c write(* ,*) 'in cn20ut nd=',nd
if(nd.eq.1) calliognorm (xav,xCv,sval,rand)
if(nd.eq.2) call triangle (xmn,xmd,xmx,sval,rand)
if(nd.eq.3) call normal (xav,xCv,sval,rand)
if(nd.eq.4) call uniform(xmn,xmx,rand,sval)
if(sval.lt.O) sval=O
icn= lOOO.O/(sval+lO.O)
return
end

c
Subroutine lognorm(avval, coefvar, logval,ranval)
Real avval,stddev,mn,mor,logval,coefvar
ybar = O.5*alog«avval**2)/«coefvar**2)+1)
stddev = sqrt(alog«coefvar**2)+ 1»
tranval=ranval
rnn = tranval
rnor = ybar + run '" stddev

c
C The random value rnor would be converted to the
c lognormal distribution by using exp function
c

logval = exp(rnor)
end

c
Subroutine norrnal(avval, coefvar, actval,Tanval)
Rea.! avval,stddev,rnn,mor,actval,coefvar
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ybar = avval
stddev = coefvar*ybar
tranval=ranval
nm = tranval
mor = ybar + rnn * stddev

c
C The random value mor would be converted to the
c lognormal distribution by using exp function
c

actval = mor
end

c
Subroutine triangle(al, a2, a3, val,ranval)

C* ** estimate paramter values from a triangular distribution
Real aI, a2, a3, val,ranval
tmp=a3-al
if(tmp.eq.O) tmp=-l
areal =(a2-al )/(a3-al)
If (ranval.le.areal) then

val = al + sqrt«a3-a1)*(a2-al)*ranval)
else

val = a3 - sqrt«a3-a2)*(a3-al )*(l-ranval»
endif
end

c
subroutine uniform(xmn,xmx,rand,sval)

c write(*,*) xmn,xmx,rand
sval=xmn+(Xl11x-xmn)*rand

end
c
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