
AN EXPERIMENTAL ANALYSIS OF A NEW

MULTIDIMENSIONAL STORAGE AND

RETRIEVAL METHOD

By

YUNPENG ZHANG

Bachelor of Science
Shanghai JiaoTong University

Shanghai, China
1987

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the req uirements for
the Degree of

MASTER OF SCIENCE
December, 1996

AN EXPERIMENTAL ANALYSIS OF A NEW

MULTIDIMENSIONAL STORAGE AND

RETRIEVAL METHOD

Thesis Approved:

Thesis Adviser

Ii ~

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my graduate

adviser Dr. G. E. Hedrick. His support and guidance have been of great

benefi t in the completion of this research. I also would like to thank

Dr. H. Lu and Dr. K. M. George for serving on my graduate committee.

My fellow research assistants deserve a word of thanks for their

friendship and for their part in making the Computer Science

Department at Oklahoma State University a pleasant working place. I

also wish to extend my appreciation to Dr. R. A. DiVall for his very

useful comments and suggestions.

Finally, thanks to my dearest wife, Haiyan Liu. Her love, patience

and understanding made this possible.

iii

/

T ABLE OF CONTENTS

Chapter Page

I. LITERATURE REVIEW. 1

II. SP ARSE DATA REPRESENTATION 4

III. INTRODUCTION TO R_SPIN 6

Index conversion formula 6

Index in the R_SPIN function 8

The R_SPIN algorithm 10

Disadvantages of the R_SPIN algorithm 13

IV. INTRODUCTION TO H_SPIN 16

H_SPIN 16

Growth handling of the H_SPIN index 18

Partial matching using H_SPIN I g

The H_SPIN algorithms 20

The algorithm for partial-match searching 27

Brief comparison of H_SPIN and R_SPIN 32

V. EXPERIMENTAL COMPARISON OF R_SPIN AND H_SPIN 34

Testing Program 34

Discussion of the experimental results 38

VI. THE DEMONSTRATION PROGRAM FOR H_SPIN 45

Programmer's guide 45

User's guide ... 46

iv

VII. RESULTS AND DISCUSSION 51

BIBLIOGRAPHY. .. 53

APPENDIXES. .. 56

APPENDIX A. 57

APPENDIX B 78

APPENDIX C 83

v

LIST OF FIGURES

Figure Page

III-l. The layout of a multidimens ional array 8

III- 2. Layou t of the index of R_SPIN 12

III-3 The simplified layout of the index of R_SPIN 13

III-4. The layout of the index of the R_SPIN function in tree

representation. 15

IV-I. The layout of the H_SPIN index 17

IV -2. The improved layout of the H_SPIN for partial match 19

V-I Experimental results of insert operation on LINUX 39

V -2 Experimental results of search operation on LINUX 39

V -3 Experimental results of insert operation on LINUX 40

V -4 Experimental results of search operation on LINUX 40

V -5 Experimental results of insert operations on MS-DOS 4l

V - 6 Experimental resul ts of search operations on MS -DOS 42

V -7 Experimental results of search operations on MS -DOS 42

V-8 Experimental results of search operation on MS-DOS 43

VI-l The program prompts and the inpu t parameters 47

VI-2 The messages printed by the program 47

VI-3 The prompting menu 48

vi

zed

VI-4 The results of "List all" 48

VI-5 The results after inserting two permutations 49

VI-6 The results after partial-match searching 49

VI-7 The results after deletions 50

vii

-

Chapter I

Literature Review

Indexing methods always playa very important role in a database

system. Many methods such as hashing are limited to a one

dimensional data space. Some of today's database systems have become

more complicated than the early systems in requiring efficient retrieval

In a multidimensional data space.

In 1984, Guttman[8] introduced the R-tree, a dynamic indexing

method for searching data spaces. In his paper, Guttman[8] presented

an efficient index mechanism which allows rapid data retrieval

according to the spatial locations of the data. Lomet and Salzberg[ll]

in 1990 provided another dynamic multi-attribu te indexing method, the

hB-Tree. Inter-node searching and growth handling characteristics of

hB-trees are precisely analogous to the corresponding processes in B-

trees. Both of them employ pointers to navigate within their index

trees.

In contrast to the dynamic implementations using pointers,

Coburn[2] (approximately 1989) presented a static multidimensional

indexing method which he named SPIN (Single Point Index Network).

In his paper, Coburn introduced three basic SPIN functions: C_SPIN,

1

S_SPIN and R_SPIN. The purpose of all three functions is to convert

multidimensional indexes into a single index that can be used to locate

data items in consecutive storage blocks easily_ Among the three

functions (C_SPIN, S_S PIN and R_SPIN), the time complexity analyses

of the C_SPIN and S_SPIN search and insert operations are relatively

trivial: both should have constant running time, since these two

functions use no index trees. Access to the nodes within the same level

requires the same number of calculations. However, because C_SPIN

and S_SPIN simply convert multidimensional subscripts into a one

dimensional index, both functions sacrifice storage whenever

multidimensional subscripts are not consecutive. This disadvantage

makes both C_SPIN and S_SPIN unattractive. Compared with C_SPIN

and S_SPIN, R_SPIN can handle sparse multidimensional data, making

R_SPIN more practical. In 1995. Zhang, et al. [18] performed

experimental and pattern analyses to the index of R_SPIN, and

indicated: "Both successful and unsuccessful insertion and search

operations in the R_SPIN function have an average running time of

either 0(1) when the index of the R_SPIN function is implemented on

disk, or is O(log(n») if the index is implemented in main storage [Zhang,

et aI., 1995]."

Even though the ability to handle sparse data representations in

R_SPIN suggests a new potential multidimensional indexing method.

the very restricted index structure and the overflow problem of R_SPIN

2

still limit its use in actual storage and re trieval applications. In this

paper, we combine the SPIN technique and the hashing method to

introduce a new multidimensional storage and retrieval method,

H_SPIN, which has very flexible growth handling and good t ime

performance. Unlike the S_SPIN algorithm which involves several very

large size hashing tables (one table on each level), H_SPIN uses a small

size hashing table on each level, and it also can handle sparse data

representations. In order to compare H_SPIN with R_SPIN. we also

perform the analysis of the time complexities of H_SPIN and R_SPIN

using the experimental method.

3

Chapter II

Sparse Data Representation

Since sparse data handling is one of the most important purposes in

the design of the original R_SPIN function algorithm, we must

understand sparse data representation before we get into the details of

R_SPIN and H_SPIN. According to Coburn, the sparse data

representation is defined as " ... a set of indices at one level of a

multidimensional array are, in reality, mapped to only a very few

indices of the next level, the array is said to be sparse at that level

[Coburn, 1989]."

An example demonstrates this. Suppose there is a small airline

network, which runs among a total of fifteen cities. Also suppose that

each airline route contains four cities in addition to the originating

city, and each city in this network is maximally connected to five other

cities. If we index of the fifteen cities and name them according to

their indexes from 0 to 14, we easily can identify an airline route by

using the combination of the city's index numbers. For instance, the

airline route from a given city through the four cities numbered 4-12-5-

11 is represented by the index combination of [4][12][5][11].

4

Now, let us consider the implementations of this airline network by

using different indexing methods. When using a conventional

multidimensional array, the array must be defined as

"int L[15][15][15][15]," and the total number of storage locations for

this array is 15 X 15 X 15 X 15 = 50625 . However, since each city is

connected to no more than five other cities (The maximum size in each

dimension is five), the maximum number of storage locations which can
).

be used from the 50625 allocated is 5 X 5 X 5 X 5 = 625.

Consequently, 50000 (50625 - 625) storage locations are unused.

Clearly, the conventional multidimensional array does not handle sparse

data representations very well. An alternate option is either the

R_SPIN method , or the H_SPIN method, which we will discuss in the

later chapters. With either of these two methods, all the possible

airline routes, such as 4-12-5-11, can be mapped into a storage block

which maximally has the size of 5 X 5 X 5 X 5 = 625, when each city is

connected to at most five other cities.

5

Chapter III

Introduction to R SPIN

The application of an R_SPIN function includes two parts: first, a

multidimensional subscript combination is mapped to a set of one

dimensional index values by the R_SPIN function; second, a data record

(or data item (datum) is inserted or found in a storage block according

to one of these one dimensional indexes. In fact, the second part is

extremely easy to implement given the one dimensional indices.

Index conversion formula

Coburn introduced a formula which converts multidimensional

indices into several one dimensional indices on each level. It not only

calculates the index values in one dimensional storage block, but also

computes an identification value for each node in the R_SPIN function's

index file. This formula plays a very important role in the R_SPIN

algorithm. It is:

rec_number[i+l]=rec_number[i]xlO ex [j] +k[i+l]-rec_number[i]xkr[i] ... (1)

where,

rec_number[i+l] = the index for the i+lst level.

6

rec_number[i] = the index for the previous level or iteration.

max[i] = the number of indices in the ith dimension.

ex[i]s are exponents ' computed as follows:

ex[i] = 1, for 0 < max[i+l] :::; 10.

ex[i] = 2, for 10 < max[i+l] :::; 100.

ex[i] = 3, for 100 < max[i+l] :::; 1000.

etc.

k[i] = the value of the multidimensional subscript within the ith

dimension.

kr[i] s are values computed as follows:

kr[i] = 10 - max[i+l], for 0 < max[i+l] :::; 10

kr[i] = 100 - max[i+l], for 10 < max[i+l] :::; 100

kr[i] = 1000 - max [i+ 1], for 100 < max[i+ 1] :::; 1000$

etc.

In this paper a level is defined as "one less than the number of the

dimensions within a multidimensional array[Coburn, 1989]." For

example, in the array "L[4][12][5][11]," level 0 refers to the first

dimension "L[4]," level 1 to the first two dimensions "L[4][12]," and

so on.

An example of the use of formula (l) is in figure III-I. This figure

shows the layout of a multidimensional array with the definition of

"L[2][2][2][2]." In fact, figure III-l is a forest containing two trees .

The four nodes marked with "*,, in each level represent an instance with

7

multidimensional subscripts of [1][0][1][0] . According to the subscript

information of this instance, formula (1) can compute the instance's

indexes on each level, which are rec_number[O] = 1 on the level 0,

rec_number[1] = 2 on the levell, rec_numbe r [2] = 5 on the level 2 and

rec_number[3] = lOon the level 3.

Figure III-I. The layout of a multidimensional array

Index in the R SPIN function

The example in figure III-I, shows that the indexes converted by

formula (l) are consecutive. Formula (l) cannot handle sparse data

representations. In fact, all the sparse multidimensional subscript

combinations (permutations) are stored as an index of the R_SPIN

function indirectly .. The layout of this index is similar to what is

shown in figure III-I, except the size in each dimension is not limited

to 2. The location of each node within this index can be computed

according to the formu] a:

8

(t, J. x K. + j x K; + k) x sizeo! (V) .. (2)

where:

i = level number (i.e. ith level).

j = the index value on level i-I.

k = the storage location in the jth entry of level i-I.

Kn = dimensional size on the level n.

J n = the total entries on the level n-1.

v = the value stored in each node.

For example, let us consider the node lOin level 3 in figure III-I.

In this case,

i = 3, j = 5, k = 0

2

IJnXKn=12
n=l

Therefore, the location of this node in the index IS

12+5x 2+0= 22,

if sizeof(V) is assumed to equal to 1. Neither node 0 nor node I on the

level 0 in figure 111-1 is stored in the index, rather they are used as the

indices of trees in the forest.

9

The R_SPIN algorithm

Step RF 1 [Initialization]

Compute the parameters for the formula (l).

Set level i ::; O.

Create an integer array "krec" to con tain the index values returned.

Locate the tree to be retrieved by using the subscript on level O.

Step RF 2 [Go down one level]

Within this tree (or subtree, if not on level 0) with its root named "T,"

go to the next level by incrementing i by 1.

Set k ::; 0 for retrieval through the immediate children of the root "T."

In case i is greater than the maximum level number, terminate R_SPIN

function and return the integer array "krec."

Step RF 3 [Compute the node identifier]

On level i, Use formula (1) to convert the sparse multidimensional

subscripts into a one dimensional index value, "V." This index is used

as the unique identifier for this sparse subscript combination, but it is

not the real index on this level.

Step RF 4 [Checking nodes]

On level i, use formula (2) to locate the kth child node of root "T," and

read the node value into a temporary buffer "temp."

10

If "temp" is 0, then go to Step RF 5.

If "temp" equals the value of "V," then go to Step RF 6 .

If the value of k is greater than the dimensional size on level i (which

is 2 for all levels in figure 111-1), then go to Step RF 7.

Otherwise, go to Step RF 8.

Step RF 5 [Empty node]

A value of 0 indicates that this node is empty. In this case, deposit the

value "V" computed in Step RF 3, and compute the index value to be

returned, "krec[iJ ," from this level by using formula (1) and by using

the node's real location in the tree. Then choose this node as root "T"

and go to Step RF 2.

Step RF 6 [Matching]

This sparse subscript combination has already been recorded in the

index. In this case, just calculate the returned index value "krec[iJ" for

this level by using the formula (1) and by using the node's real location

in the tree. Then choose this node as root "T" and go to Step RF 2.

Step RF 7 (Overflow]

If k value is greater than the dimensional size in level i (the

dimensional size is 2 for all levels in figure III-I), then assign -1 to

"krec[iJ," and terminate the R_SPIN function, and return the integer

array" krec."

11

Step RF 8 [Go to next sibling]

Increment k by 1 and go to Step RF 4.

Step RF 4 and Step RF 8 of the above algorithm, show when the

children of a root "T," are retrieved, the retrieval always starts from the

leftmost child, i, of "T" and proceeds to the right. Therefore, the

layout of the index of the R_SPIN function can be converted from what

is in figure III-l to what is shown in figure 1II-2.

Level 3

Figure III·2. Layout of the index of R_SPIN

From further pattern analysis (figure III-2), the paths from the root

to the nodes which are at the same level will go through the same

number of vertical edges. These vertical edges will contribute to the

constant part of the average running time of R_SPIN. After we remove

these vertical edges from figure 111-2, we create a simplified pattern for

the index of R_SPIN. Figure III-2 shows the simplified pattern

converted from the first tree in figure 111-2. Since all the vertical edges

and the upper level nodes have been removed, the nodes in figure 111-3

are the nodes of the final level in figure 111-2. The edges in the pattern

12

of figure I11-3 will contribute to the variable part of the average

running time of R_SPIN.

Figure 111-3 The simplified layout of the index of R_SPIN

Disadvantages of the R_SPIN algorithm

Since R_SPIN stores everything in a single space and it is a very

restricted structure, it has some disadvantages in space management and

growth handling. These disadvantages are:

1. Some space is wasted due to the restricted dimensional size on each

level. For examples, there are two high school classes, which have

twenty and sixty students respectively. We can use a two-level

R_SPIN structure to implement this model: the first level represents

the class number and the second level represents the students. In

this case, the dimensional size of the second level should be sixty.

13

However, to the class which just has twenty students, forty storage

locations will be wasted.

2. Overflow handling causes extremely high cost in storage space. In

R_S PIN, every sub-tree on a certain level is identical to the others

and this restriction will bring troubles when we handle the overflow

situation. For example, in figure III-4, if an overflow occurs among

the children of the node 0 on the levell, we need to increase the

number of the sub-trees of the node 0 from 2 to 3. In addition, we

mu st do the same thing to the other nodes on the levell, no matter

whether the additional increases are necessary or not.

Overflow handling is very time consuming. Since in the R_SPIN

algorithm, the connections between the parent and its children are the

locations, and all the elements of the R_SPIN index are aligned in a

sequential order in a single space, the moving of an element will not

only cause its children to move, but also cause the movement of all the

eleme<nts after it. This is extremely time consuming.

14

Figure 111-4. The layout of the index of the R_SPIN function

in tree representation

15

Chapter IV

Introduction to H SPIN

H SPIN

If we use a hashing table on each level, instead of using the very

restricted array structure of R_SPIN, we can avoid R_SPIN's

disadvantages. Also, the time complexities of insertion and search

operations can be improved from O(log(n)) to 0(1). With this new

method, we still use some of the SPIN knowledge, and we can expect

that H_SPIN can do whatever R_SPIN does. We name this new method

H_S PIN, which means the combination of SPIN and hashing techniques.

Figure IV -1 shows the rough idea of the H_SPIN. In figure IV.l,

each level is represented by a hashing table which can be an open

hashing, or a closed hashing, or etc. The H_SPIN algorithm can be

easily explained by using an example.

16

'---__ ~-------.. =--.-~--' Level 0, hJx)

Levell, hdx)

Level 2, h2Cx)

Figure IV -1. The layout of the H_SPIN index

Suppose the sparse representation in our example is N [a} [b}[c]. In

figure IV -I, the value of Vo is equal to the index value a, and the

values of VI and V2 represent the unique identifiers computed using

the formula (1). The functions of ho(x), hdx) and h2 (x) in figure IV-l

are the hashing functions on each level.

From formula (1), the unique identifier on a certain level can be

computed using the sparse index on this level and the identifier of the

immediate upper level. In our example, Vo = a, VI = f(Vo, b) and V2 =

f(V1, c). Once we know the unique identifier on a level, by using the

hashing function which is associated to this level, we can hash this

identifier to a position in the hashing table on this level. In addition,

since the hashed positions of a sparse representation are known on all

levels after these hashing operations discussed above, the H_SPIN

function can also return the actual positions (or the indexes) for all

levels as we did using the R_SPIN function.

17

Growth handling of the H_SPIN index

Since the hashing tables of each level are independent tables, they

can be expanded or compacted without affecting the other tables.

Consequently, the number of the elements on each level of the H_SPIN

index can be adjusted flexibly.

In the H_SPIN algorithm. the connection between the two immediate

levels is associated only with the unique identifi ·er and the sparse index

value. instead of being associated with the locations of the parent and

the child on two levels. For example, in figure IV -1, when we expand

the hashing table of the levell, we need to rehash all the elements in

this table. Let us look at the element VI on level 1 (i.e. on the second

dimension) as an example. VI may be rehashed to another location

when the table is expanded. However, after the expansion, we can still

use the value of Vi and the sparse index value of the third dimension to

uniquely locate the node V2 on level 2.

Partial matching using H_SPIN

The method above works well for exact-match searching. but it

cannot implement partial - match searching since the parent itself does

18

not store its children's identifiers. In order to deal with partial-match

searching, we can attach a linked list to each parent. Let us see an

example which has three permutations, N{allb]{c], N{al[bJ{clJ and

N[all b] [C2J. As shown in figure IV -2, the element VJ on the level 1

has three children on the level 2, which are V~ , V~I and V~2. The

sparse index values of the level 2 can be put into the linked list as

shown in figure IV -2.

Level 0, h£ix)

Level 2, hix)

Figure IV -2. The improved layout of the H_SPIN for partial

match

Suppose that we have a partial-match search query such as

N [aJ [b][1]. After we reach levelland find the position using the

identifier of VI, we can follow the linked list attached to this node and

compute the identi fiers for the next level. In this way, the permutations

of N{aJ[b][c], N[aj[b][clJ and N{aJ[bllc2] can be retrieved easily .

19

The H_SPIN algorithms

In this section, we will introduce the H_SPIN package, including

some basic functions such as insertion, search and deletion, and also

some advanced functions such as growth handling (rehashing) and

partial-match searching. All the programs (or functions) introduced in

this section are listed in Appendix A.

Closed hashing method is employed in this paper. Since a node in a

closed hashing table can be in empty, legitimate or deleted state, in

main function, a numeration type "enum kind_of_entry {legitimate,

empty, deleted}" is defined to indicate the three states for each node.

The h_spin(...) function

The h_spin(...) function is capable of doing three basic operat ions:

insertion, exact-match search and deletion. A parameter, "mode",

passed to this function can control which of the three operations the

h_spin(...) function performs. The insertion mode, the search mode and

the deletion mode are respectively represented by three single

characters: "p", "s" and "d."

20

Step HF 1 [Initializa.tion]

Compute the parameters for the formula (l).

Set level i = O.

Create an integer array "krec" to contain the index values returned.

Step HF 2 [Compute the node identifier]

On level i, use formula (1) to convert the sparse multidimensional

subscripts into a one dimensional index value, V. This index value is

the unique identifier for this sparse subscript combination.

Step HF 3 [Perform operations]

• If the h_spin(...) function is in the insertion mode, call the function

insert(. ..) and pass i and the identifier V to it.

Then assign the return value of the insert(...) function to krec[i}.

• if the h_spin(...) function is in the search mode, or in the deletion

mode, call the function search(. ..), and pass i and the identifier V to

it. Then check if the status of the node found by the search(... }

function is legitimate. If legitimate, assign the return value of the

search(...) function to krec[i), then go to next step. If not

legitimate, assign -1 to krec[O] and terminate the h_spin(. ..)

function by returning krec.

21

Step HF 4 [Go down one Level]

Go down to the next level by incrementing i by 1. In case i is greater

then the maximum level number, go to next step. Otherwise, go to Step

HF 2.

Step HF 5 [Perform deletion and terminate]

If the h_spin(...) function is in the deletion mode, call the deletion(...)

function and pass it the permutation found in Step HF 3. Otherwise,

return the integer array krec and terminate this function.

The insert(...) function

This function is called within the h_spin(...) function and is the

actual insertion engine.

Step HIN 1 [Check load factor]

Check the load factor of the hashing table on level i (i is passed from

the h_spin(...) function).

The load factor can be computed as:

number _of _nodes_ in_legitimate_state + number _of _nodes_ in_deLeted_state

table_size

If the load factor is greater than 0.5, call the rehashing(. ..) function and

pass it the hashing table to rehash.

22

Step HIN 2 [Get hash position]

Use the hashing function on level i and the unique identifier V (passed

from the h_spin(...) function) to get a tentative hash position on level

for the inserted node. Then pass this tentative hash position and the

identifier V to the searchJor _insert(... } function to get a final hash

position.

Step HIN 3 [Store the node information on level i and level i-I]

On level i, check the status of the node in the final hash position.

If the nqde is legitimate, the inserted node has already been in this node

and nothing will be done.

If the node is not legitimate, store the V value in the node found in Step

HF 3, change the node to be legitimate, and insert the index value of

dimension i to the beginning of the linked-list attached to the parent

node of the permutation on level i - J.

Step HIN 4 [Terminate]

Return the final hash position on level i. and terminate this function.

The search(...) function

This function just handles exact-match searching, and is called

within the h_spin(...) function.

23

Step HSE 1 [Get a tentative hash position]

Use the hashing function on level i and the unique identifier V (i and V

are the parameters passed from the h_spin(...) function) to get a

tentative hash position on level i for the searched node.

Step HSE 2 [Compute the final hash position and terminate]

Check the node state and the key value stored in this node. If the node

is not empty and the key stored in this node is not equal to the V value

(collision situation), use the quadratic probing method to go to the next

position and then repeat checking. Repeat this step and update the hash

position until either a empty node is found, or a matched key value is

found. Then, return the final hash position on level i and terminate.

The deletion(...) function

As we discussed in the h_spin(...) function, before deletion, the

search(... } function is used to search for the deleted permutation.

Therefore, the permutation passed to the deletion(...) function is

guaranteed to be the one found in the H_SPIN hashing tables. "lazy

deletion" is employed in this function.

Step HDE 1 [Mark the node]

Set cnt = the index value of the final level.

24

On level cnt, change the state of the deleted node to deleted. Then,

delete the index value from the linked-list attached to its parent node

on level cnt-1.

Step HDE 2 [Go up one level]

Decrement cnt by 1.

Check the I inked-list attached to the deleted node on level cnt.

If the linked-list is empty, change the state of this node to deleted.

Then, delete the index value from the linked-list attached to its parent

node on level cnt-1 .

If the linked-list is not empty, this node has some children on the next

level and nothing will be done.

Repeat this step until cnt = 0, and then terminate.

The rehashing(...) function

This functions handles the expansion of a hashing table of H_SPIN.

Step HRH 1 [Choose new table size]

Get the total number of the nodes in legitimate state (i .e.

number _of _nodes_in_legitimate_state) from the hashing table passed to

25

this function. Make the new table size as:

4x number _of _nodes_ in_Legitimate_state.

Step HRH 2 [Create, initialize and load new table]

Create a new hashing table with the table size calculated in last step.

Initialize all the nodes in this new hashing table. Then. call the

searchJor _insert(. ..) function to hash all the nodes in legitimate state

in the old hashing table to the new hashing table.

Step HRH 3 [Terminate]

Free the space of the old hashing table. Return the pointer pointing to

the new hashing table and terminate this function.

The searchJor _insert(...) function

This function is designed to search for an empty position for

insertions.

Step SFI 1 [Collision handling]

Check the state of the node in the tentative hash position (this position

is passed from the calling function outside). If the node is legitimate

and the key stored in this node is not equal to the searched key value

(this position is passed from the calling function outside), use the

quadratic probing method to go to next position and then repeat

26

checking. Repeat this step and update the hash position until either a

empty node is found, or a matched key value is found. Then, return the

final position and terminate this function.

The algorithm for partial-match searching

Since the results of partial-match searching has a bunch of

permutations, instead of a single permutation, a linked-list,

"RETURN_LIST" is defined to contain the searching results and is

passed to the two functions which we will introduce in this section.

"RETU RN _LIST" has two integer arrays: permu which stores the found

permutation and permu_ptr which stores the permutation's

corresponding positions in the hashing tables of H_SPIN.

As all the valid indexes of a permutation must be greater than or

equal to 0, the invalid index value "-}" is used to indicate the partial­

match searching request on a level. Therefore, a partial-match search

query can be determined by the index values that a permutation contains

(no matter valid or invalid). In case that users pass a permutation as a

search query with all valid indexes on all levels, the search operation

performed by the following two functions becomes an exact-match

search.

27

The h_spinJar _search(...) function

In the previous sections, we discussed that we not only store the

identifier of a node in the hashing table on the current level, but also

store the permutation index value of this node on its parent level for

the later on partial-match search operations. Since the hashing table on

level 0 dose not have its parent level, the implementation of the partial­

match searching on level 0 is different from the other levels. On level

0, the program goes through the whole level, instead of going through

a small portion of a hashing table on the other levels ..

The h_spin_par _search(.. .) function is the one that handles the

partial-match searching case on level O. A partial-match search

operation must begin with this function.

Step HSPS 1 [Check index value]

Check the level 0 index value of the searched permutation.

If it is less than 0, go to the next step.

If it is greater than 0, go to Step HSPS 3

Step HSPS 2 [Partial-match search on level 0]

Set i = O.

Check the state of node i. If it is legitimate, call the

h_spin_partia/(...) function, and pass an instance of "RETURN_LIST"

28

and 0 (the level number) to it to begin tbe search operation on level O.

Increment i value by 1 and repeat this s tep until i is equal to the table

size of level O. Then terminate this function.

Step HSPS 3 [Go down one level]

Call the h_spin_partial(...) function, and pass an instance of

"RETURN_LIST" and 0 (the level number) to it to begin tbe partial-

match search operation on level O. Then terminate this function.

The h_spin_partiaZ(...) function

This function is the actual partial-match searching engine of

H_SPIN. It is called within the h_spin_par _search(.. .) function to

process the partial-match search operations from level 0 to the final

level.

This is a recursive search function. Before calling this function, set

level number "x" to 0, and create a link-list "rtn_list", an instance, of

"RETURN_LIST." Then, call this function on level ° (i.e. pass level

number "x" to this function), and pass rtn_Iist to this function.

Step HSP 1 [Initialization]

Compute the parameters by using the formula (1) .

29

'I

"

..

Create two temporary integer arrays: int_per which contains the indexes

of a found permutation, and int_str which contains the corresponding

positions of this permutation in all the hashing tables of H_SPIN.

Step HSP 2 [Check index value on level x]

On level x, check the index value of the permutation passed in as a

partial-match search query.

If it is greater than or equal to 0, go to Step HSP 3.

If it is less than 0, go to Step HSP 6.

Step HSP 3 [No partial-match search requested]

On level x, Use formula (1) and the index values of the permutation to

convert the sparse multidimensional subscripts into a one dimensional

index val ue, V.

Step HSP 4 [Store temporary values]

Assi gn the index val ue of level x to int_pe r[xl.

Pass V to the search{ ...) function and assign the return value to

int_str[xl.

Step HSP 5 [Check the level number x]

Check the level number x.

If the final level is reached, assign int_per and int_str to a temporary

"RETURN_LIST" node, then insert this node into rtn_Iist and then

terminate this function.

30

If the final level is not reached, call the h_spin_partiaZ(. .. J recursi veJy

on level x+ 1.

Step HSP 6 [Partial-match search requested]

Use int_str[x-1] to locate a node in the hashing table on level x-I,

assign the pointer "next" in the head of the linked-list that is contained

in this node to a temporary pointer p_mark.

Step HSP 7 [Check the linked-list]

If p_mark is equal to NULL, terminate this function.

If p_mark is not equal to NULL, go to the next step .

Step HSP 8 [Calculate identifier]

Use formula (I) and the index val ue stored in the node pointed by

p_mark to compute the identifier for level x.

Assign the index value to int_per{xJ.

Locate a node on level x using this identifier and the search(...)

function.

Assign the return value of the search(. ..) function to int_str[xJ.

Step HSP 9 [Check the level number "x"]

Check the level number "x."

If the final level is reached, assign int_per and int_str to a temporary

"RETURN_LIST" node, insert this node into rtn_list and then go to next

step.

31

If the final level is not reached, call the h_spin_partial(...) recursively

on level x+ 1.

Step HSP 10 [Go to the next node]

Assign p_mark->next to p_mark.

Brief comparison of H_SPIN and R_SPIN

1. Both H_SPIN and R_SPIN can handle sparse representations.

2. Both H_SPIN and R_SPIN can return the indexes for all levels.

3. Both H_SPIN and R_SPIN can implement partial-match searching.

Advantages of the H_SPIN algorithm

1. H_SPIN (Oen)) has much better time complexity than R_SPIN (

OCJog(n)). Since the hashing table on each level has constant time

behavior, H_SPIN will also have constant time complexity, while our

experiments and pattern analysis showed that R_SPIN has

logari thmic time complexi ty.

2. H_SPIN totally avoids the overflow situation. Instead, H_SPIN has

collision problems. However, there are many existing good

32

...

solutions that can handle the collision problems very well [Weiss,

1993].

3. The growth handling of H_SPIN is much better and more flexible

than the one of R_SPIN.

Disadvantages of the H_SPIN algorithm

1. The range search of H_SPIN is inefficient. Since in each hashing

table of H_SPIN, the nodes are not stored sequentially according to

the magnitude of their identifiers, range search can not be

implemented consecutively on each level.

2. Since each parent node of H_SPIN keeps its children's information

for partial-match searching, this makes H_SPIN possibly need more

space than R_SPIN.

33

Chapter V

Experimental Comparison of R_SPIN and

H SPIN

In order to compare R_SPIN and H_SPIN on the same bases and

conditions, both of the indexes of R_SPIN and H_SPIN are implemented

in the main storage. The testing program introduced in this chapter is

listed in Appendix B.

Testing Program

Using randomly generated multi-dimensional index permutations,

the testing program experimentally examines the average time

complexi ties of R_S PIN and H_SPIN. The insert operati ons of both

R_SPIN and H_SPIN are tested repeatedly using the same permutation

array, and so are the search operations of them. The steps of this

program are:

34

,..

Step TP 1 [Generate Permutations]

Recursively generate distinct multidimensional subscrip t combinations

(or permutations), which to be used during testing. In order to access

these experimental data quickly , they are stored in main storage.

Step TP 2 [Set total times]

Set a number "N" for the total number of testing cycles . In each testing

cycle, a permutation is passed to the R_SPIN function, or the H_SPIN

function.

Step TP 3 [Indexing Permutations]

In order to retrieve the sparse test data , an index of the permutat ions I S

established . This index is used to order the permutations passed to the

R_SPIN function, or the H_SPIN functions, it is di fferent from the

index used in the R_SPIN function, or the hashing tables in the H_SPIN

function. The implementation of this index can be accomplished by

using an integer array. A random number generator randomly generates

an integer, and passes the integer to a program to check. If thi s number

is not in the integer array, then append it to the tail of the array. If it is

already in the array, repeat this step with a new value. The integer

array is guaranteed to contain distinct indexes of permutat ions.

35

...

Step TP 4 [Initialize R_SPIN and H_SPIN]

Since many static parameters are involved in the R_SPIN function and

the H_SPIN function, and their computation takes some time, t he

R_SPIN function and the H_SPIN functions must be initialized before

testing begins.

Step TP 5 [Measure the overhead for insertions]

Since this program tests the average time behaviors of R_SPIN and

H_SPIN, the R_SPIN function and the H_SPIN function are repea ted

within a testing loop. In this step. a loop is implemented with all the

necessary instructions except the functional call to R_SPIN or H_SPIN.

The running time of this loop is recorded and will be subtracted from

the running times of the following two loops.

Step TP 6 [Insertion loop for R_SPIN]

This loop tests the necessary instructions and the function call to

R_SPIN. During execution time of this loop, the program proces ses the

integer array created in Step TP 3 and passes each permutation to the

R_SPIN function in each cycle. Since all the permutations i n the

integer array are distinct, each functional call to R_SPIN within the

loop is the insertion operation of one permutation. The total running

time of this loop is recorded.

36

Step TP 7 [Insertion loop for H_SPINJ

This loop is identical to Step TP 6, except that the R_SPIN function is

replaced by the H_SPIN function in the inserting mode.

Step TP 8 [Re-indexing permutations]

Use the same method as discussed in Step TP 3 to generate some

distinct index numbers from the integer array created in Step TP 3.

Store these distinct indexes in another integer array.

Step TP 9 [Measure the overhead for searches]

This step is almost as the same as Step TP 5, except going through the

integer array created in Step TP 8.

Step TP 10 [Search loop for R_SPIN]

This step is almost as the same as Step TP 6, except going through the

integer array created in Step TP 8. Since all the permutations involved

in this step are already inserted in Step TP 6, each functional call to

R_SPIN in the loop is a search operation of one permutation. The total

running time of this loop is recorded.

Step TP 11 [Search loop for H_SPIN]

This loop is identical to Step TP 9, except that the R_SPIN function is

replaced by the H_SPIN function in the searching mode.

37

-

Discussion of the experimental results

Both the H_SPIN and the R_SPIN functions were tested on the

LINUX (UNIX-like) and the MS-DOS operating systems, which both are

installed on a IBM-compatible PC platform. In order t o measure the

running time accurately, all the hashing tables in the testing programs

are created with a table size large enough to avoid the rehashing

problem. The testing program on LINUX is listed in Appendix A.

Since MS-DOS has 640K megabytes primary main storage and heavy

use of the main storage always causes space allocation failure, the

testing program on MS-DOS does not involve the linked-lists for t he

usage of partial-match searching. Because this program is just the

simplified version of the testing program on LINUX, it is not listed in

listed, rather together with the other programs, it is filed in the

Computer Science Department at Oklahoma State University.

Testing results on LINUX

The testing results of two experiments on LINUX are shown from

figure V-I to figure V -4. Each experiment involved the tests of insert

and search operations. The upper curves in these figures represent the

insertion or search average times of R_SPIN, and the lower curves

represent the ones of H_S PIN .

38

I
I
• J
l

0.00035

0.0003

0.00025

Average 0.0002
Time
(sec.) 0.00015

0.0001

0.00005

--+- r _spin insertions

_ h_spin insertions

-Log. (r_spin insertions)

- Linear (h_spin insertions)

y = 2E-05Ln(x) + 0.0002

R2 = 0.8925

y = -9E-09x + 0 .. 0003

R2 = 0.349

On LINUX
5 Dimensions
Dimensional Size: 6

o +-----~-----+----~------+---~
o 500 1000 1500 2000 2500

Total No. of Permutations

Figure V-I Experimental results of insert operation on LINUX

0.0006

0.0005

0.0004

Average
Time 0.0003
(sec.)

0.0002

0.0001

.... -,

y = 3E-OSLn(x) + 0.0003

R2 = 0.7803

On LlNUX
S Dimensions
Dimensional Size: 6

- 'J!IIIII·' • war !- .. Y = 7E-09x + 0.0002

R2 = 0.On9

0 +---------~-------4---------+--------~

o 500 1000 1S00 2000

Total No. of Permutations

Figure V-2 Experimental results of search operation on

LINUX

39

) ...

0.0003

0.0002S

0.0002

Average
Time 0.0001S
(sec.)

0.0001

O.OooOS

-+- cspin insertions

_ h_spin insertions

- Log. (r_spin Insertions)

- Linear (h_spin insertions)

y = 2E-DSLn(x) + 0.0001

R2 = 0.86n

y = -1 E-09x + 0.0002

R2 = 0.0096

On LlNUX
4 Dimensions
Dimensional Size: 8

O +-----~------~------r_----_+----~

o Soo 1000 lSoo 2000 2Soo

Total No. of Permutations

Figure V -3 Experimental results of insert operation on LINUX

o.OOOS

0.00045

0.0004

0.00035

Average 0.0003

Time 0.00025

(sec.) 0.0002

0.00015

0.0001

--+- r _spin sea rches
_ h_spin searches

- Log. (r_spin searches)
- Linear (h_spin searches)

.-rI''j''-rI',.-... .

y = 5E-05Ln(x) + 7E-05

R2 = 0.8966

On LlNUX
4 Dimensions
Dimensional Size: 8

y = 4E-l0x + 0.0002

R2 = 0.0004

0.00005

0 +-----------1-----------_+-----------1

o SOD 1000 1500

Total No. of Permutations

Figure V -4 Experimental results of search operation on

LINUX

40

Testing results on MS·DOS

The testing results of two experiments on MS-DOS are shown from

figure V-5 to figure V-S.

0.009

0.008

0.007

0.006

Average 0.005
Time
(sec.) 0.004

0.003

0.002

0.001

-.- r_spin insertions
___ h_spin insertions

-Log. (r_spin insertions)

- Linear (h_spin insertions)

y = O.OOOBLn(x) + 0.0035
R2 = 0.9719

y = 3E-07x + 0 .. 0054

R2 = 0.3549

On MS-DOS
5 Dimensions
Dimensional Size: 4

o +--------+--------+--------+------~
o 200 400 600 800

Total No. of Permutations

Figure V -5 Experimental results of insert operations on MS-

DOS

41

0.016

0.014

0.012

0.01
Average

Time 0.008
(sec.)

0.006

0.004

0.002

y = 0.0018Ln(x) + 0.0026
R2 = 0.8652

~ r_spin searches On MS-DOS
--h_spin searches 5 Dimensions
-Log. (r_spin searches) Dimensional Size: 4
-Linear (h_spin searches) -.. •..... • - y = 1 E-06x + 0.0052

R2 = 0.3895

o +-------+-------~----~~----~
o 100 200 300 400

Total No. of Permutations

Figure V -6 Experimental results of search operations on MS-DOS

0.008 Y = 0.0018Ln(x) - 0.0036

0.007
R2 = 0.9873

0.006

0.005
Average

Time 0.004
(sec.) • y = 6E-07x + 0.0032

0.003 • R2 = 0.4448
~ r _spin insertions

0.002 __ h_spin insertions On MS-DOS

-Log. (r_spin insertions) 3 Dimensions
0.001 Dimensional Size: 10

- Linear (h_spin insertions)

0

a 200 400 600 BOO

Total No. of Permutations

Figure V -7 Experimental results of search operations on MS-DOS

42

..

, .

0.014

0.012

0.01

Average 0.008
Time
(sec.) 0.006

0.004

0.002

0

0

_ h_spin searches

- L . r soin searches)

1I<jt>' .."" III ••• - ' ••

y = 0.0029Ln(x) • 0.005

R2 = 0.9747

On MS-DOS
3 Dimensions
Dimensional Size: 10

y = 1 E-06x + 0.003

R2 = 0.3982

100 200 300 400

Total No. of Permutations

Figure V -8 Experimental results of search operation on MS-

DOS

Discussion

Our experiments show that both insert and search operations of

R_SPIN have an average running time of O(1og(n)). The fitted curves

for the R_SPIN operations in the figures from figure V -1 to V -8 also

demonstrated that the running time of R_SPIN consists of two parts: the

logarithmic variable part and the constant part. The constant part of

the average running time of R_SPIN should not be less than zero. The

negati ve constants (-0.0036 and -0.005) of the lower fitted curves In

figure V-7 and V-8 are due to inaccurate experimental data .

43

..

On the LINUX operating system, our test results indicate the

constant running behavior of H_SPIN, which perfectly matches the

analytical solution of hashing methods.

However, the tests in the figures from figure V -5 to V -8 show that

on MS-DOS operating system, the H_SPIN operations (insertions and

searches) have linear behavior with a small slope. The reason for this

linear performance of H_SPIN is possibly due to the increasing number

of collisions within the H_SPIN hashing tables when some of the

hashing tables are close to half full (the approximate maximum load

factor to obtain constant time complexity in closed hashing is 0.5)

[Weiss, 1993] . Since these slopes are very small and the small slopes

make the H_SPIN operations increase their average running time
I

slowly, we still can consider that the time complexity of H_SPIN is i
•

close to constant. Careful calculations indicate that in the figures from

figure V -5 to V -8, the linear curves will not be greater than the

logarithmic curves until the number of permutations increases to about

44

Chapter VI

The Demonstration Program for H_SPIN

The purpose of this program is to demonstrate users the H_SPIN

package, including the insertion function, the search function, the

deletion function, the rehashing function (self-growth handling) and the

partial-match search function. This program is listed in Appendix C.

ProgrammerJs guide

I

This program provides four optional actions to users, which are l
4

"Insertion," "List all," "Search" and "Deletion." "Insertion" lets users

to insert one permutation to the H_SPIN hashing tables. "List all" will

have the program list all the stored permutations. "Search" lets users

perform either partial-match or exact-match searching. Users can

delete a permutation from the H_SPIN hashing tables by selecting the

option "Deletion." The implementations of them are introduced in this

subsection.

"Insertion" and "Deletion" are implemented by calling the

h_spin(...) function in insert mode and delete mode respectively. The

45

rehashing(. ..) function is automatically called when the load factor in

any of the hashing tables of H_SPIN reaches 0.5 .

Both "List all" and "Search" are performed by calling the

h_spin_pa r _search(...) function. When users choose "List all," the

program will automatically assign "-}" to all the indexes of the

permutation input to the h_spin_par _search(...) func tion. This will

cause partial-match searching on every level. "Search" can conduct

partial-match searching according to the user's request. In case that

users input "-}" on all the levels after "Search" is chosen, "Search"

becomes "List all". On the other hand, if users input valid indexes

(non-negative integers) on all the levels after "Search" is chosen,

"Search" becomes exact-match search operation.

User's guide

The procedures of using this demonstration program can be easily

illustrated by an example.

When the program is invoked, it asks users to input the number of

dimensions, the dimensional size, the initial number of distinct

permutations created by the program and the initial table size on each

level. Suppose we want 3 dimensions and dimensional size of 3, and let

the program maximally generate 10 permutations for us. Figure VI-l

shows the program prompts and the input parameters from users.

46

•

-

Please input the number of dimensions (>= 2): 3

Please input size of dimension (>= 2): 3

Please input the total number of initial permutations: 10

Please input the hashing table size for each level 0: 5

Please input the hashing table size for each level 1: 10

Please input the hashing table size for each level 2: 10

Figure VI-! The program prompts and the input parameters

After all the necessary parameters are typed in, the program starts to

maximally generate 10 distinct permutations, and then inserts them into

the H_SPIN hashing tables. Since we input small table sizes just now,

the program also prints out the rehashing messages, including the level

number on which the hashing table is expanded, the load factor before

rehashing and the new table size after rehashing. Figure VI-2 shows

these messages.

Generating permu tations

Begin insertions using randomly-ordered permutations.

hashing table 0 expansion; load factor: 0.57; table size: 15.

hashing table 2 expansion; load factor: 0.55; table size: 23.

hashing table 1 expansion; load factor: 0 . .55; table size: 23.

Figure VI-2 The messages printed by the program

Figure VI-3 shows the option menu which is prompted after the

program finishes the initial insertions. Now, let us select option 2,

"List all" to see what are stored in the hashing tables. The figure VI-4

shows the results of "Li s t all." Please note that figure VI-4 just shows

47

•

--

8 distinct permutations, instead of 10. This is because the number of

the distinct permutations generated by the program may be less than the

initial maximum number.

Insertion

List all............ 2

Search 3

Deletion 4

Exit 5

Choose: 2

Figure VI-3 The prompt menu

The permutations found: The positions on each level:

2 2 1 2 12 15

2 0 2 10 5

2 1 0 2 11 9

1 0 2 1 5 4

1 0 0 1 5 2

1 1 2 6 10

0 1 0 0 6

0 0 0 0 0 0

Figure VI-4 The results of "List all"

48

«

Insert two permutations of [1][1][1] and [2][2][2] by sel e cting

option 1 twice, and then select option 2 to list all the permutations

stored in the hashing tables. The results of the three actions are shown

i n figure VI-5.

The permutations found: The positions on each level:

2 2 1 2 12 15

2 2 2 2 12 16

2 0 I 2 10 5

2 1 0 2 1 1 9

I 0 2 1 5 4

1 0 0 1 5 2

1 1 2 1 6 10

1 1 1 1 6 8

0 1 0 0 6

0 0 0 0 0 0

Figure VI-5 The results after inserting two permutations

Next, let us try a partial-match search by selecting option 3 and then

input the partial -match query of [2][-1][-1]. The results are shown in

figure VI-6.

The permutat i ons found:

2

2

2

2

2

2

o
2

1

o

The positions on each level:

2 12 15

2 12 16

2 10 5

2 11 9

Figure VI-6 The results after partial-match searching

49

Finally, delete the two permutations of [1][1][1] and [2][2][2 } by

selecting option 4 twice, and then list all the permutations . The re s ults

are shown in figure VI-7.

The permutations found: The positions on each level:

2 2 1 2 12 15

2 0 1 2 10 5

2 I 0 2 1 1 9

1 0 2 1 5 4

0 0 5 2

1 1 2 1 6 10

0 1 0 0 1 6

0 0 0 0 0 0

Figure VI-7 The results after deletions

50

-

Chapter VII

Results and Discussion

In the experiments discussed in this paper, all the insertions and the

searches are successful operations. Unsuccessful insertions and

searches cause both the R_SPIN and the H_SPIN functions to terminate

at some node between level 0 and the final level. The path leng th of an

unsuccessful operation is shorter than the path length of a successful

one. Therefore, we can conclude that:

• Both successful and unsuccessful insertion and search operations of

R_SPIN have an average running time of O(log(n)) when the index of

R_SPIN are implemented in main storage.

• Both successful and unsuccessful insertion and search operations of

H_SPIN have an almost constant average running time when the

hashing tables of H_SPIN are implemented in main storage.

• H_SPIN is a faster and more flexible storage and retrieval method

than R_SPIN.

Finally in order to apply H_SPIN in database systems, substantial

additional research work is needed. The possible topics of the future

research of H_SPIN may focus on:

• Search for the hashi ng method which is the best fit to H_SPIN.

51

-

• Reduce the collision ratio by designing and coordinating the hashing

parameters and the SPIN parameters.

• Further the research on and perform the implementation of H_SPIN

in object-oriented database.

52

-

BIBLIOGRAPHY

1. Bentley, J. L. Multidimensional Binary Search Trees in Database

Applications. IEEE Transactions on Software Engineering , Vol. SE-

5, No.4, pages 333 -- 340, July 1979.

2. Brothels, E. and Rotem, D. Database Design with the Constrained

Multiple Attribute Tree. Information Systems, Vol.10, No.1, pages

47-56,1985.

3. Coburn, Ty C. C SPIN toolkit (program documentation).Oklahoma

City, OK: Ty Coburn, c 1991.

4. Coburn, Ty C. An introduction to SPIN hashing: an approach to

managing multidimensional spaces (Unpublished program

documentation). Tinker AFB, OK: Oklahoma City Air Logistics

Center.

5. Date, C. 1. An Introduction to Database Systems. Addison-We sley

Publishing Company. Sixth Edition, c 1995.

6. Harbron, T.R. File systems: structures and algorithms. Englewood

Cliffs, NJ; Prentice Hall, Inc. c1987.

7. Hedrick, G., Fan, M., Zhang, Y., DiVall, R. A review of a new

spatial data indexing technique. Technical Report #OSU-CS-TR-95-

02, Stillwater, OK; Computer Science Department, Oklahoma St ate

University, 1995.

53

-

8. Guttman, A. R-Trees: A Dynamic Index Structure For Spatial

Searching. ACM SIGMOD, pages 47 -- 57, June 1984.

9. Kriegel, H. P. Performance Comparison of Index Structures for

Multi-Key Retrieval. Proc. ACM SIGMOD, Boston, Massachusetts,

pages 186 -- 196, 1983.

10.Knuth, D.E. The art of computer programming: V.l/Fundamental

Algorithms. Addison-Wesley Publishing Company. c 1975.

11.Lomet, David B. and Salzberg, B. The hB -Tree: A Multiattribute

Indexing Method with Good Guaranteed Performance. ACM

Transactions on Database System, Vol.15, 4, pages 625--658, Dec.

1990.

12.Moret, B.M .E. Algorithms from P to NP (Vol. 1). Red wood Ci ty,

CA; The Benjamin/Cummings Publishing Company, Inc. c 1991.

13.Nievergelt, J. The Grid File: An Adaptable, Symmetric Multikey File

Structure. ACM Transactions on Database Systems, Vol. 9, No. I,

pages 38 -- 71, March 1984.

14 .Ro binson, 1. T. The K-D-B Tree: A Search Structure for Large

Multidimensional Dynamic Indexes. Proc. ACM SIGMOD, pages 10

-- 18, 1981.

I5.Scheuermann, P and Ouksel, M. Multidimensional B-trees for

Associative Search in Database Systems. Information Systems,

Vol.7, No.2, pages 123-137, 1982.

54

16 .Servio Corporation. GemStone Reference Manual. Beave r ton, Ore.

1990 .

17 .Weiss, M. A. Data structure and algorithm analysis in C. Redwood

Ci ty, CA; The Benj amin/Cummings Publish ing Company . Inc.

c1993.

I8.Zhang, Y., DiVall, A. , Fan, M., Hedrick, G. An experimental

analysis of a new multi-dimensional storage and retrieval method.

Technical Report #OSU -CS -TR-95 -04, Still water, OK; Compute r

Science Department, Oklahoma State Uni versi ty, 1995.

55

Appendixes

56

Appendix A

1* Appendix A includes the header file, and the necessary subprograms for the H_SPIN package. In order
to run the testing program and the demonstration program listed in Appendix B and C, users must create a
library file with the functions listed in the appendix, and include the created library file. *1

#incIude <stdlib.h>
#incIude <stdio.h>
#include <math.h>
#include <string.h>
#include <time.h>

#define MAXSTRING 100

enum kind_oCentry{legitimate, empty, deleted};

typedef struc! node *node_ptr;
1* structure of linked-list attached to the cell node in a hashing table *1
struct node {

unsigned intelement;
node_ptr next;

} ;

typedef node_ptrLIST;
typedef node_ptr LIST]OS;

typedef struct return_TIode *return_node_ptr;
1* linked-list containing return information from the h_spin search *1
struct return_node {

} ;

int *
int *
return_node_ptr

permu;
permu_ptr;
next;

typedef return_node_ptr RETURN_LIST;
typedef return_node_ptr RETITRN_LIST_POS;
1* cell node structure of a hashing table *1
struct hash_entry {

} ;

int
enum
LIST
int
node_ptr

element;
kind_oCentry info;
Iiscptr;
p_flag;
p_mark;

typedef int position;
typedef struct hash_entry cell;

1* hashing table structure */
struct hash_table {

unsigned int table_size;

1* integer array containing permutations *1
1* integer array containing positions */

1* the unique idenfier *1
1* node status information *1

1* pointer of the linked list attached to this node *1
1* partial-match search flag */

1* position marker for partial-match searching *1

57

};

unsigned int
unsigned int
cell

table_load_cnt;
table_legiccnt;
II<the3ells;

typedef struct hash_table *HASH_TABLE;

HASH_TABLE* initialize_hash_tables(unsigned int *, unsigned int);
unsigned int next-prime(unsigned int);
int search(HASH_TABLE, int);
int insert(HASH_TABLE *, int, int, int, unsigned int *);
void lisUnsert(HASH_TABLE, int, int);
void deletion(HASH_TABLE *, int, int *. unsigned int *);
unsigned int hashing(unsigned int, unsigned int);
HASH_TABLE rehashing(HASH_ TABLE);
int searchjor_insert(HASH_TABLE, int, int);
int h_spin_pacsearch(HASH_TABLE *, RETURN_LIST. unsigned into \

unsigned int, unsigned int *. int 11<, int);
void free_hash_tables(HASH_TABLE *, int);
int * h_spin(HASH_TABLE *, unsigned int, unsigned int, \

unsigned int *, unsigned int *, into char);
int inpuUntO;
int inpuCpositive_int(int);
unsigned long int *r_spin{long int *, unsigned int, unsigned into \

unsigned int *, unsigned int *, unsigned int *. char. int);
int
int
int

inpuUntO;
inpucpositive_int(int);
pop_menuO;

1* This program is the h_spin function *1

#incIude "spin.h"

int *h_spin(HASH_TABLE *H, unsigned int N, unsigned int L, \

register int
static unsigned long int
static unsigned int
static int
unsigned long int
long int
int

int
int
void

if(control == 'f) {

unsigned int *max, unsigned int *k. int control, char mode)

y,u;
*kr,*rect;
*ex;
ncontrol=O. *krec;
kstore.hold, temp_sub;
*temp_str;
lascleveLpos;

insert(HASH_T ABLE *, int, into int • unsigned int *);
search(HASH_TABLE, int);
deletion(HASH_TABLE *, into int *, unsigned int *);

1* free the space if in 'f mode */
/* FREE POINTERS FOR NEW ARRAY *1
free(kr);
free(krec);
free(rect);
free(ex);
return krec;

58

if(control != ncontrol) {

1* SET CONTROL *1
ncontrol = control;
1* ALLOCATE MEMORY TO POINTERS */
reet = (unsigned long int *)calloc(N,sizeof(long int);
if(rect = NULL) {

}

puts("allocation error in function r_spin 1\n");
exit(O);

kr = (unsigned long int *)calloc(N, sizeof(long int»;
if(kr == NULL) {

}

puts("allocation error in function r_spin 2 \nn);
exit(O);

ex = (unsigned *) calloc(N-I,sizeof(int»;
if(ex = NULL) (

}

puts("allocation error in function cspin 3\n");
exit(O);

krec = (int ") calloc(N. sizeof(int»;
if(kree = NULL) (

}

puts("allocation error in function r_spin 4\n");
exit(O);

1* COMPUTER PARAMETERS */
for(y=l;y<N;y++) (

if(*(max+y) > 0 && *(max+y) <= 10) {
*(ex+y-l) = 1;
(kr+y-l) = Cunsigned long int)9-(max+y)+1;

} else ifC*Cmax+y) > 10 && *(max+y) <= 100) {
*(ex+y-1) = 2;
(kr+y-l) = (unsigned long int)99-(max+y)+ I;

} else if(*(max+y) > 100 && *(max+y) <= 1000) {
*(ex+y-l) = 3;
(kr+y-l) = (unsigned long int)999-(max+y)+ 1;

} else if(*(max+y) > 1000 && *(max+y) <= 100(0) {
*(ex+y-l) = 4;
(kr+y-l) = (unsigned long int)9999-(max+y)+ 1;

} else {
*(ex+y-1) = 5;

'" shut down the access to this block *1
I" after the first access "/

*(kr+y-l) = (unsigned long int)99999L-*Cmax+y)+1;

I
)

}
1* if it is in initial mode *1
ifCmode == 'i') {

}

forCy=O; y < L; ++y)
krec[y] = -1;

return krec;

1* COMPUTE RETURN VALUE */
if(L < III L > N-l) {

puts("I1Iegal level value in function r_spin\n");

59

)

krec[L-l J = (unsigned long) -1;
return krec;

for(y=O;y < N;y++) (
if(*(k+y) > "'(max+y)-l) {

}

putsC"subscript out of range in function cspin\n");
krec[L-l] = (unsigned long) -1;
return krec;

if(y = 0) {
"'reet = "'k;
last_level_pos = 0;

I'" initialize for the search and insert *1

} else "'(rect+y) = *(rect+y-l)*pow«double) 10, (double)*(ex+y-l»+*(k+y)-*(rect+y-l)"' *(kr+y-l);
kstore = *(rect+y);

switch(mode) (

)
}

case 'p' : krec[y] = insert(H, y, lasUevel_pos, kstore, k);
lasUevel_pos = krec[y];
break;

case's': krec[y] = search(H[y], kstore);
if(H[y]->the_cells[krec[y]].info != legitimate) {

1* if the index value is not on this level *1
*(krec) = (unsigned int)-l;
return krec;

)
break;

case 'd': kree[y] = searchCH[y], kstore);
if(H[y]->the3eIls[krec[y]] .info 1= legitimate) {

/* if the index value is not on this level *1
*(kree) = (unsigned int)-l;
return krec;

if(mode = 'd')
deletion(H, N, krec, k);

return krec;

/* this is the program for the partial-match search of h_spin *1

#inc1ude "spin.h"

1* for insert*!

/* for search *1

I'" search fail * /

I*search for deletion*/

/* deletion fail *1

/*begin deletion if it is in delete mode*!

int h_spin_pacsearchCHASH_TABLE *H, RETIJRN_LIST rtn_li.st, unsigned int N, \
unsigned int L, unsigned int *max, int *k, int control)

int i, j;
int *kk;
int h_spin_partialCHASH_TABLE *, RETURN_LIST, unsigned int, \

unsigned int, unsigned int "', int *, int, int);

60

if(k[O] < 0) { '* go through level 0, if user requests so. *'
for(i=O; i < H[O]->table_size; ++i) (

}

if(H[O]->the_cells[i].info == legitimate) {
kk = (int*) maIloc(sizeof(int)*N);

}

kk[O] = i;
for(j=l;j < N; ++j)

kk[j] = k[j];
h_spin_partial(H,rtn_list,N ,L,max,kk,control,O);
free(kk);

} else 1* no partial-match search requested by user ",,/
h_spin_partial(H,rtn_list,N,L,max,k,control,O);

return 0;

1* this is the actual engine of the partial-match searching *1
int h_spin_partiaJ(HASH_TABLE *H, RETURN_LIST rtn_list, unsigned int N, \

unsigned int L, unsigned int *max, int *k, int control, int x)

register int y,u;
*kr,*rect;
*ex;

static unsigned long int
static unsigned int
static int
unsigned long int

ncontrol=O, *krec, *incstr, *int_per;
kstore,hold, temp_sub;

long int *temp_str;
int lasUevel_pos, temp_k;
RETURN_LIST temp_list;

int search(HASH_TABLE, int);

if(control == 'f') {
1* FREE POINTERS FOR NEW ARRAY */
free(kr);
free(krec) ;
free(rect);
free(ex);
free(inCper);
free(int_str);
return 1;

if(control != ncontrol) (

1* SET CONTROL *1
ncontrol = control;
1* ALLOCATE MEMORY TO POINTERS */
rect = (unsigned long int *)caIloc(N,sizeof(long int));
if(rect == NULL) {

I

puts("allocation error in function cspin 1\0");
exiteO);

kr:;; (unsigned long int *)caIloc(N, sizeof(long int»;
if(kr == NULL) {

puts("allocation error in function r_spin 2 \0");

61

1* shut down the access to this block *1
1* after the first access *1

}

exit(O);

I
ex = (unsigned *) calloc(N-l,sizeof(int»;
if(ex = NULL) {

}

puts("allocation error in function T_spin 3\n");
exit(O);

krec = (int *) caUoc(N, sizeof(int»;
if(krec = NULL) l

}

puts("allocation error in function r_spin 4\n");
exit(O);

incstr = (int *)calloc(N, sizeofCint»;
if(incstr == NULL) (

}

puts("allocation error in function r_spin 4\n");
exit(O);

int_per = (int *) calloc(N, sizeof(int»;
ifCincper = NULL) {

}

puts("allocation error in function cspin 4\n");
exiteO);

1* COMPUTER PARAMETERS *1
for(y=1;y<N";y++) (

if(*(max+y) > 0 && *(max+y) <= 10) (
*(ex+y-1) = 1;
(k:r+y-l) = (unsigned long int)9-(max+y)+ 1;

} else if(*(max+y) > 10 && *(max+y) <= 1(0) {
*(eHy-1) = 2;
Ckr+y-l) = (unsigned long int)99-(max+y)+ 1;

} else if(*(max+y) > 100 && *(max+y) <= 10(0) {
*(ex+y-l) = 3;
Ckr+y-l) = (unsigned long int)999-(max+y)+ I;

} else if("'(max+y) > 1000 && *(max+y) <= 100(0) (
*(ex+y-l) =4;
(kr+y-l) = (unsigned long int)9999-(max+y)+ 1;

} else {

)
}

*(ex+y-l) = 5;
(kr+y-1) = (unsigned long int)99999L-(max+y)+1;

rect[O] = k[O);

1* COMPUTE RETURN VALUE *1
if(L < 1 II L > N-l) (

}

puts("IlIegallevel value in function r_spin\n");
return -1;

if(k[x] >= 0) { 1* no partial-match serach needed *1
/* if this is the level 0, no calculation needed */ if(x == 0)

kstore = k[x];
else { I'" if this is not level 0, calculation is necessary *1

*(rectH) = *(rect+x-l)*pow«double) 10, \
(double)*(ex+x-l»+*(k+x)-*(rect+x-l)**(kr+x-l);

62

kstore = *Creet+x); 1* store is the unique idenfier *1
}
incper[x] = k[x]; 1* array storing permutation index values *1

1* array storing positions *1 incstr[x] = search(H[x], kstore);
if(H[x]->the_cells[inUtr[x]J .info != legitimate)

return -2;
if(x == L) (1* if we reach the terminating level *1

1* space allocation for the return linked list */
temp_list = (RETURN_LIST) malloc(sizeof(struct return_node»;
if(temp_list = NULL) {

printf("Memory allocation error \010);
exit(O);

temp_list->perrnu = (int*) malloc(sizeof(int)*N);
if(temp_list->permu = NULL) (

printf("Memory allocation error \0");
exit(O);

temp_list->permu-ptr = (int*) malloc(sizeofCint)*N);
if(temp_list->permu_ptr = NULL) {

printf("Memory allocation error \oil).;
exit(O);

}
for(y=O; y <= L; ++y) {

temp_list->perrnu[y] = inCper[y];
temp_list->perrnu_ptr[y] = inUtr[y] ;

1* add the newly found permutation into return list *1
temp_list->next = rtn_list->next;
rtn_list->next = temp_list;

1* assign values to the arrays *1

return 1; 1* adding successfully *1
} else 1* if this is not the terminating level, go on *1

h_spin_partial(H, rtn_list, N, L, max, k, control, HI);
} else (1* if partial-match search is requested by users *1

1* set flag for partial-match search on this level *1
if(H[x-l]->the_cells[inCstr[x-1 n.p_flag == 0) (

1* mark the search position in the linked list *1
H[x-l]->the_cells[incstr[x-1]].p_mark = \
H[x-l]->the_cells[incstr[x-l]] .liscptr->next;
H[x-1]->the3ells[incstr[x-l]).p_flag = I;

)
1* begin partial-match browing on the last level */
while(H[x-I]->the_cells[incstr[x-llJ.p_mark != NULL) (

temp_k = H[x-I]->the_cells[inCstr[x-1]] .p_mark->element;
*(rect+x) = *(reet+x-l)*pow«double) 10, (double)*(ex+x-l)+temp_k-*(rect+x-l)**(kr+x-l);
kstore = *(reetH); /* kstore is the unique identifier *1
int-per[x] = temp_k;
inCstr[x] = search(H[x], kstore); 1* search on this level *1
if(H[x]->the3e1ls[inCstr[xJl.info != legitimate) (

printf("System error \0"); 1* this should not occur *1
return -2;

I
H[x-l]->the3ells[incstr[x-1]].p_mark = H[x-l]->the_ceUs[incstr[x-1]]'p_mark->next;
if(x = L) (1* if we reach the terminating level *1

temp_list = (RETI1RN_LIST) malloc(sizeof(struct return_node»;

63

if(temp_list = NULL) (
printf("Memory allocation error \n");
exit(O);

temp_list->pennu = (int*) malloc(sizeof(int)*N);
if(temp_list->permu = NULL} (

printf("Memory allocation error \n");
exit(O};

temp_list->pennu_ptr = (int*) malloc(sizeof(int)*N);
if(temp_list->perrnu-ptr = NULL) (

printf("Memory allocation error \n");
exit(O);

}
for(y=O; y <= L; ++y) { 1* assign values to the arraies */

temp_list->pennu[y] = incper[y];
temp_Iist->pennu_ptr[y] = inCstr[y];

/* add the newly found permutation into the return list */
temp_list->next = rtn_list->next;
rtn_list->next = temp_list;

1* push to stack */

} else '* if this is not the terminating level *'
h_spin_partial(H, rtn_list, N, L. max, k. control. x+ 1);

}
H[x-Ij->the_cells[incstr[x-l]].p_flag = 0; 1* set down flag *1

return 0;

1* this program is for the expansion of a hashing table on a level (rehashing) *'
#include "spin.h"

HASH_TABLE rehashing(HASH_TABLE H)
(

int i,. pas;
HASH_TABLE temp;
LIST temp_ptr;

int
unsigned int

searchjodnsert(HASH_TABLE. int, int);
hashing(unsigned int, unsigned int);

'* create a new hashing table for substitution */
temp = (HASH_TABLE) malloc(sizeof(struct hash_table»;
if(temp = NULL) (

printf("Memory allocation error \n");
exit(O);

1* rechoose the table size according to the substituted table */
temp->table_size = nexCprime(4*(H->table_legiCcnt»;
temp->table_load3nt = H->table_legiccnt;
temp->table~legiccnt = H->table_legiCcnt;
temp->the3ells = (cell *) malloc(sizeof(cell)*lemp->table_size);
if(temp->the3ells == NULL) (

64

printf("Memory allocation error \n");
exit(O);

1* initialize the newly created hashing t.able *1
for(i=O; i < temp->table_size; ++i) {

temp->the_cells[iJ.info = empty;
temp->the3ells[i}.element = -1;
temp->the_cells[iJ.p_flag = 0;
temp->the_cells[iJ.lisCptr = (LIST) malloc(sizeof(struct node»;
if(temp->the_ceIls[iJ.lisCptr = NULL) I

printf("Memory allocation error\n");
exit(O);

temp->the_cells[iJ.liscptr->next = NULL;

/* transfer the data from old table to the new table *1
for(i=O; i < H->table_size; ++i) {

if(H->the3ells[i).info = legitimate) I 1* if data is vaJid *1
pos = hashing(temp->table_size, H->the_cells[i].element);
/* search for the position in the table */
pos = search_for_insert(temp, pos, H->the3ells[i].element);
temp->the_celIs[pos].info = legitimate;
temp->the_cells[pos].element = H->the_cells[il.element;
temp->the_cells[pos].IisCptr->element = H->the3e1\s[iJ .liscptr->element;
temp->the_cells[pos].lisCptr->next = H->the3ells[iJ.liscptr->next;
temp->the3ells[posJ.p_flag = H->the3eJLs[i].p_flag;

}
free(H->the3ells[iJ.list_ptr); /* free data space in old table *1

free(H);
return temp;

/* free the pointer pointing to the old table *1

/* this program includes some trival functions used in the spin demostration and testing programs *1

#include "spin.h"

/* create and initialize the hashing tables */

HASH_TABLE* initialize_hash_tables(unsigned int *table_sizes, unsigned int no_oCtables)
(

int 1, J;

unsigned int nexcprime(unsigned int);

/* allocate hashing table pointers */
h_tables = (HASH_TABLE *) malloc(no_oUables * sizeof(HASH_TABLE»;
if(h_tables == NULL) (

)

printf("Memory allocation error I \nU);
exit(O);

1* allocate the spaces for the hashing tables */

65

for(i=O; i < no_oUables; ++i) {

}

h_tables[i] = (HASH_TABLE) malloc(sizeof(stTUct hash_table»;
h_tables[i]->table_size = nexcprime(table_sizes[i]);
h_tables[i)->table_load3nt = 0;
h_tables[i]->table_legiCcnt = 0;
printf{"table size: %4d ", h_tables[i]->table_size);
h_tables[i]->the3ells = (cell *) malloc(sizeof(cell)*h_tables[i)->table_size);
if(h_tables[i]->the_ceUs = NULL) (

printf("Memory allocation error 2\n");
exit(O);

/* initialize the cell nodes in hashing tables *'
for(j=O; j < h_tabJes[i)->table_size; ++j) {

h_tables[i]->the_ceIls[j].info = empty;
h_tables[i]->the3ellsf.i].element = -I;
h_tables[i]->the_cells[j].IisCptr = (LIST) malloc (sizeof(struct node»;
h_tables[i]->the_cells(j].liscptr->next = NULL;
h_tables[i]->the3ells[j] .p_flag = 0;

printfC'\n");
return h_tables;

unsigned int nexcprime(unsigned int table_size)
(

unsigned int temp;

temp = table_size/4;
return (temp * 4 + 3); It. choose a prime number */

int search(HASH_TABLE H, int key)

key»

int i. currencpos;
unsigned int hashing(unsigned into unsigned int);

i = 0;
curren Cpos = hashing(H->table_size, key); 1* hash a position */
while«(H->the_cells[currenCpos).info != empty) && (H->the_ceIls[currenCposl.element !=

II (H->the3ells[current_pos).info == deleted» {
current-pos += 2*(++i) - I; 1* collision handling */
if(currenCpos >= H->table_size)

curren Cpos -= H->table_size;

return currenCpos; 1* return the position *1

int insert(HASH_TABLE *H. int level_no, int JasUevel_pos, int key_store, unsigned int *k)

position pos;

66

float

int
HASH_TABLE
unsigned int
void

temp, temp I, temp2;

search_for_insert(HASH_TABLE, int, int);
rehashing(HASH_ TABLE);
hashing(unsigned int, unsigned int);
IisUnsert(HASH_TABLE, int, int);

tempI = H[level_no)->table_load3nt + 1;
temp2 = H[leveLno)->table_size;
temp = tempI I temp2; 1* calculate the load factor *1
if{temp >= 0.5) (1* check the load factor *1

H[level_no] = rehashing(H[level_no]); /* rehashing, if necessary *1
printf{"hashing table %4d expansion, temp: %4.2f table size: %4d.\n", level_no, temp,

H[level_no]->table_size);
sleep(l); t* stay a little while for demo *1

pos = hashing(H[leveLno]->table_size, key_store);
pos = search3ocinsert{H[leveLno]. pos, key_store);

if(H[leveLno]->the_cells{pos].info != legitimate) {
/* ok to insert here *1
++(H[level_na] ->table_load3nt);
++(H[level_no]->table_legiccnt);
H[level_no]->the_cells[pos].info = legitimate;
H[leveLno]->the_celts[pos].element = key_store;

/* hashing *1
1* checking */

if(1evel_no != 0) 1* insert the index to the last level *1
lisUnsert(H[level_no-ll, lasUevel_pos, k[level_no));

return pos;

1* this function is just far the insertion *1

int search30r_insert{HASH_TABLE H, int pos, int key_store)

int i = 0;

while«H->the_cells[pas].info = legitimate) && (H->the_cells[pas].element != key_store» {
pos += 2*(++i) - 1;
if{pos >= H->table_size)
pos -= H->table_size;

return pos;

unsigned int hashing{unsigned int H_SIZE, unsigned int key)
{

return (key%H_SlZE);

1* deletion function *'
67

void deletion(HASH_TABLE *H. int N, int *krec, unsigned int *k)

int cnt;
LIST p. temp_cell;

cnt=N-I;

H[cnt]->the3ells[krec[cnt]J.info = deleted;
--(H[cnt]->table_legiCcnt);
p = H(cnt-l]->the3ells[krec[cnt-l]].liscptr;
while«p->next != NULL) && (p->next->element != k[cnt))

1* change node status */
1* decrement the node count *1

p = p->next; /* search for deleted node in linked list of parent *1

if(p->next == NULL)

else {
printf("system deletion error!\n");

temp_cell = p->next;
p->next = temp3ell->next;
free(temp_ceU);

1* this should not occur *1
1* begin to delete *1

cnt = cnt - 1;
while(cnt> 0) (1* check if parent node should be deleted of not *1

p = H[cnt]->the3ells[krec[cnt]].liscptr;
if(p != NULL) 1* if linked list of parent not empty. keep parent */

return;
else { 1* if Iisnked list of parent empty, delete parent *1

--cnt;

H[cnt]->the_cel1s[krec[cnt]].info = deleted;
if(cnt> 0) { /* check which level it is *1

P = H[cnt-l]->the_cells[krec[cnt-l]] .IisCptr;
while«p->next != NULL) && (p->next->element 1= krec[cnt)))
p = p->next;
if(p->next = NULL)

printf("system deletion error!\n"); f* should not occur .. /
1* begin to delete *1 else {

temp_cell = p->next;
p->next = temp3ell->next;
free(temp_cell);

68

1* decrement the level number *1

/* this function is used to insert node in the parent linked list *'
void IisUnsert(HASH_TABLE H, int lasUevel_pos, int in_value)

LIST list_header;
LIST temp_cell;

/* get the linked list attached to the parent *'
lisCheader = H->the_cel!s[lasUeveLpos].liscptr;
temp3ell = (LIST) malIoc(sizeof(struct node);
if(temp_cell = NULL) {

printf("Memory allocation error \n");
exit(O);

temp3e11->element = in_value;
temp_cell->next = NULL;

temp_cell->next = lisCheader->next;
IisCheader->next = temp3ell;

'* free the space of the hashing tables */

int i.j;
LIST p. temp;
cell *p_cel1;

/* allocate space */

/* assign the index value *'

/* insert to the top of list */

for(i=O; i < dim; ++i) (
for(j=O; j < H[iJ->table_size; ++j) {

/* first loop for free table pointers */
/* free cells in one table */

p = H[i]->the_cellsUJ.list_ptr->next;
H[i]->the3ellsUJ.liscptr->next = NULL;
while(p != NULL) { /* free the pointers in the linked Jist */

}
free(H);

temp = p->next;
free(p);
p = temp;

p = H[i]->the_cellsUJ.lisCptr;
free(p);

}
p_cell = H[i]->the_ceIls;
free(p_cell); /* free the pointer pointer to the whole tables */

/* this program is the original cspin function */

#include "spin.h"

69

unsigned long int *r_spin(long int *index_ptr, unsigned int N, unsigned int L, unsigned int *max, unsigned
int *catmax. unsigned int *k, char mode, int control)
{

register int Y,u;
static unsigned long int
static unsigned int
static int

*lcr,*lcree, *reet. *lcrcat,*krecat. *recat;
*ex,*excat;

ncontrol;
unsigned long int temp=O,kstore,hold. temp_sub;

*temp_str; long int
char e;

1* CHECK CONTROL NUMBER */
if(control != ncontrolll control = 0) {

/* this block after the fIrst access *1
,i,. DISPLAY COPYRIGHT *1
if(control = 0) (

}

puts("COPYRIGHT (c) 1988");
puts("by Ty K Coburn");
puts("AIl Rights Reserved");
exit(O);

1* FREE POINTERS FOR NEW ARRAY *1
if(ncontrol != 0) (

}

free(h);
free(lcree) ;
free(reet);
free(krcat);
free(kreeat) ;
free(recat);
free(ex);
free(excat);

1* SET CONTROL *1
ncontrol = control;
1* ALLOCATE MEMORY TO POINTERS *1
reet = (unsigned long int *)calloc(N,sizeof(long int»;
if(rect == NULL) {

}

puts("allocation error in function r_spin l\n");
exit(O);

kr = (unsigned long int *)calloc(N-l.sizeof(long int»;
if(lcr = NULL) {

}

puts("allocation error in function cspin 2 \n");
exit(O);

ex = (unsigned *) calloc(N-I,sizeof(int);
if(ex == NULL) {

}

puts("allocation error in function cspin 3\n");
exitCO);

lcrec = (unsigned long int *) calLoc(N-I,sizeof(long int» ;
if(krec == NULL) {

puts("allocation error in function cspin 4\n");
exiteO);

70

1* shut down access to *1

'''' COMPUTER PARAMElERS *1
for(y=l;y<N;y++) {

if(*(max+y) > 0 && *(max+y) <= 10) {
*(ex+y-l)= 1;
Ckr+y-l) = (unsigned long int)9-(max+y)+ 1;
} else if(*(rnax+y) > 10 && *(max+y) <= 1(0) {
*(ex+y-l) = 2;
{kr+y-l} = (unsigned long int)99-(max+y)+ 1;
} else if(*(max+y) > 100 && *(max+y) <= 1000) (
*(ex+y-l) = 3;
(kr+y-l) = (unsigned long int)999-(rnax+y)+ 1;
} else if(*(max+y) > 1000 && *(max+y) <= 10(00) {
*(ex+y-l) = 4;
(kr+y-l) = (unsigned long int)9999-(rnax+y)+ 1;
} else {
*(ex+y-l) = 5;
(kr+y-l) = (unsigned long int)99999L-(max+y)+ 1;

I

feeat = (unsigned long int *)calloe(N.sizeof(long int»;
if(recat = NULL) (

puts("allocation error in function r_spin 5\n");
exit(O);

kreat = (unsigned long int *)calloc(N-l.sizeofOong int»;
if(krcat = NULL) {

puts("allocation error in function cspin 6\n");
exit(O);

exeat = (unsigned *) calloc(N-l.sizeof(int»;
if(excat == NULL) (

puts("allocation error in function cspin 7 \n");
exit(O);

krecat = (unsigned long int *) calloc(N-l.sizeofOong int»;
if(krecat = NULL) (

}

putsC"allocation error in function r_spin 8\n");
exit(O);

for(y=O;y<N-1 ;y++) (
if(*(catmax+y) > 0 && *(catrnax+y) <= 10) {
*(excat+y) = 1;
(krcat+y) = (unsigned long int)9-(catmax+y)+1;
} else if(*(catmax+y) > 10 && *(catmax+y) <= 1(0) {
*(excat+y) = 2;
(1crcat+y) = (unsigned long int)99-(catmax+y)+ 1;
Jelse if(*(catmax+y) > 100 && *(catmax+y) <= 10(0) {
*(excat+y) = 3;
(kr+y) = (unsi.gned long int)999-(catmax+y)+I;
} else if(*(catrnax+y) > 1000 && *(catmax+y) <= 100(0) {
*(excat+y) = 4;
(krcat+y) = (unsigned long int)9999-(catmax+y)+ 1;
} else {
*(excat+y) = 5;
(krcat+y) = (unsigned long int)99999L-(catmax+y)+ I;

71

}

}
if(y = 0) {
·recat = 0;
*(recat+l) = *(max)**(catmax);
hold = *(recat+l);
) else {
*(recat+y+ 1) = hold**(catmax+y)+*(recat+y);
hold = hold**(catmax+y);
}

1* SET AND INITIALIZE INDEX FILE .j
if(mode = 's') (

printf("The size of your index file is %lu bytes\n(press any character to continue.
e to EXlT)\n ... ·(recat+N-I)*sizeof(long int»;

e = getcharO;
if(e == 'e')

exit(O);
}
if(mode == 'n° II mode = 's') (

for(u=O;u<recat[N-l];uH) {
*(index_ptr+u) = (long int) temp;

1* COMPUTE RETURN VALUE *1
if(L < 1 II L > N-l) {

puts{" Illegal level value in function cspin\n");
krec[L-l] = (unsigned long) -1;
return lcrec;

*rect = *k;

if(mode=='n' II mode=='a' II mode=='s') {
for(y=O;y<L;y++) {

if(*(k+y) > *(max+y)-lll *(k+y+l) > *(max+y+l)-l) (
puts("subscript out of range in function r_spin\n");
krec[L-l] = (unsigned long) -1;
return krec;

}
*(rect+y+ 1) = *(rect+y)*pow«double) 10. (double)*(eny»+*(k+y+ 1)-*(rect+y)·*(kr+y);
kstore = ++*(rect+y+ 1);
*(rect+y+l) = *(recHy)*pow«doub\e)IO, \
(double)*(excat+y»-*(rect+y)* *(krcat+y);
for(u=O;u<+(catmaX+y);u++) {

*(rect+y)**(krcat+y);
*(recHy+ 1) = *(rect+y)*pow«double)lO, (double)*(excat+y»+u-

temp_sub = (unsigned long int)(*(rect+y+ 1)+*(recat+y»;
temp = *(index_ptr+temp_sub);
if(temp == 0) { 1* if empty, store here *1

*(index_ptr+temp_sub) = kstore;
*(lcrec+y) = *(recHy+l);
break;

I else if(temp = kstore) { I*if not empty*1

72

return krec;

(krec+y)=(rect+y+ 1);
break;

) else if(u=*(catmax+y)-l) { 1* overflow */
*krec = (unsigned long int)y ;
*(krec+L-l) = (unsigned long int)-l;
return krec;

printf("can we reach here?\n");
for(y=O;y<L;y++) {

if(*(k+y) > *(max+y)-lll *(k+y+l) > *(max+y+l)-1) (
puts("subscript out of range in function r_spin\n");
krec[L-l] = (unsigned long) -1;
return krec;
}

*(rect+y+ 1) = *(rect+y)*pow«double) lO.(double)*{ex+y»+*(k+y+ l)-*(rect+y)**(kr+y);
kstore = ++*(rect+y+ 1);
for(u=O;u<*(catmax+y);u++) {

*(rect+y+l) = *(rect+y)*pow{(doubJe)lO. (double)*(excat+y»+u-
*(rect+y)**(krcat+y);

temp_sub = (unsigned long int)(*(rect+y+ l)+*(recat+y»;
temp = *(index_ptr+temp_sub);

return krec;

if(temp == kstore) {
(krec+y)=(rect+y+ I);
break;

I else if(u == *(catmaHy)-I) {
*krec = (unsigned long int)y;
*(krec+L-l) = -I;
return krec;

/* input integer or positive integer. this program will give error message to the users if users type wrong
keys */

#include "spin.h"

int inpuUntO

int inpucflag;
int incval;
char dump_str[100];

do (
inpucflag = 0;
if(scanfC"%d", &incval) == 0) {

73

1* set down the flag */
/* if error occurs */

}

scanf("%S", dump_str);
input_flag = I;
printf("Input error, try again: ");

} while(inpuUlag);
return inc val;

/* dump the wrong characters *1
1* set up the flag *1
1* error message *1

int input_positive_int(int low_limit)

int input_flag;
int incval;
char dump_str[lOO];

do (
input_flag = 0;
if(scanf("%d", &int_val) == 0) (

scanf("%S", dump_str);
inpucflag = 1;
printf("Input error. try again: ");

} else ifCinC val < low_limit) {
inpucflag = I;
printf("Input error, try again: ");

} while(inpuU1ag);

return incval;

1* set down the flag *1
1* if error occurs *1

1* dunp the wrong characters *1
1* set up the flag *1
1* error message *1

1* if the input is lower *1
1* set up the flag *1
1* error message *1

1* this program includes some subroutines used in the h_spin and cspin testing *1

#include "spin.h"

1* function of permutation generation *1
unsigned int **sub...,generator(int dim. unsigned int *ckmax)
{

void
unsigned int
unsigned int
int

generator(unsigned int **, unsigned int *, int, int, unsigned int *);
temp_str; / temp string to transfor indexes *1
**sub; 1* pointor to the beginning of permutations in memory *1
i, j;

int totaLsub = 1; 1* total number of permutatios to create *1

temp_str = (unsigned int *) malloc(dim*sizeof(unsigned int»;

for(i=O; i < dim; ++i)
total_sub = total_sub * ckmax[i];

1* open space for pointer array of permutations *1
sub = (unsigned int **)malloc(total_sub*sizeof(unsigned int *»;
for(i=O; i < total_sub; ++i) {

1* open space for each permutation *1
sub[i] = (unsigned int *)malloc(dim*sizeof(unsigned int»;

forU=O; j < dim; ++j)

74

sub[i][j] = 0;

1* generate permutations recursively *1
generator(sub, ckmax, 0, dim, temp_str);

1* initi.alize each permutation *1

return sub; 1* return pointor to the beginning of permutations in memory *1

/* recursive function for generating permutations *1
void generator(unsigned int **sub, unsigned int *ckmax, int n, int N, unsigned int *temp_str)
{

static int cnt = 0; 1* static countor of permutations */
unsigned int 1, J;

for(i=O; i < ckmax[nJ; ++i) {
if(n >= (N-I» { 1* base case of recurrance */

I else (

forU=O; j <= {n-l); ++j) 1* transfor higher indexes to permutation*1
sub[cnt][j] = temp_str[j];

sUb[cntJ[n] = I; 1* assign sequential value *1
1* increment the permutation countor *1

1* recurrance step * /
++cnt;

temp_str[n] = I;
generator(sub, ckmax, n+ I, N, temp_str);

1* assign sequential value *1
/* call recursivelly *1

1* this function is used to generate randomly-ordered list for re-arranging the permutations tested *1

int list..generator(int *peclist, int total_sub, int EXP .-NO)
(

int sub_no, temp_len, IisClen = 0;
int i, j;

for(i=O; i < EXP _NO; ++I)
peclist[i] = -1;

sub_no = randO%total_sub;
pedist[O] = sub_no;
++lisUen;

for{i= 1; i < EXP ...NO; ++i) {
sub_no = rand()%total_sub;
temp_len = IisClen;

for(j=O; j < temp_len; ++j) (
if(per_list[j] == sub_no)

break;

1* initialize the array list *1

1* generate random numbers *1
1* assign the random number to the list "'I

1* generate random numbers *1

I*check if there is repeated number *1
1* if repeated, abandon *1

else if«per_list[j] != sub_no) && U == IisUen-I» (
per_Iist[j+ 1] = sub_no; 1* if not repeated, add to the list *1
++lisUen;

75

return Iisclen; 1* return the randomly-ordered integer list *1

76

Appendix B

1* This program tests the insertion and search operations of H_SPIN and R_SPIN *1

#include "spin.h"

typedef struct {
c1ock_t begin_clock, save_clock;
time_t begin_time, save_time;

} time_keeper;

1* time structure *1

static time_keeper tk; 1* instance of timer, known only to this file *1

void main(void)

unsigned int *Csize, *max, *rmax, *cmax, *ckmax;
unsigned int **sub_permu;
int dim, EXP_NO=LO, sz, total_sub=1;
int i, j, k, I, sub_no, sub, lisUen = 0;
int seclen, totaUndex, temp_hold;
char n='n';
double pm_timel, prn_time2;
int *list, *ser_list, *temp, *tempI;
HASH_TABLE *hash_tables;

*index-pointer; long int
FILE
char

*ofp, *ofpl, *ofp2, *ofp3;
fname[40], fnamel[40], fname2[40], fname3[40);

unsigned int **sub~enerator(int, unsigned int *);
void starUime(void);
double prn_time(void);
char* name~en(int);

int liscgenerator(int *, int, int);
HASH_TABLE* initialize_hash_tables(unsigned int *, unsigned int);
int* h_spin(HASH_ TABLE *, unsigned int, unsigned int, unsigned int *, unsigned

int *, int, char);
void free_hash_tablesCHASH_TABLE *, int);

printf("Type in file name for insertion testing output of H_SPIN: ");
scanf("%s", fname);
printfC'Type in file name for searching testing output of H_SPIN: ");
scanf("%s", fnamel);
printf("Type in file name for insertion testing output of R_SPIN: ");
scanf("%s", fname2);
printf("Type in file name for searching testing output of R_SPIN: ");
scanf("%s", fname3);

ofp = fopen(fname, "w");
of pi = fopen(fnamel, "WOO);
ofp2 = fopen(fname2, "w");
ofp3 = fopen(fname3, "WOO);

77

printf("Please input the number of dimensions: ");
dim = inpucpositive_int(2);
printf("Please input size of dimension: ");
sz = inpucpositive_int(2);

max = (unsigned int *) malloe(dim*sizeof(unsigned int»;
rmax = (unsigned int *) malloe(dim*sizeof(unsigned int»;
cmax = (unsigned int *) malloe«dim-l)*sizeof(unsigned int»;
ckmax = (unsigned int *) malloc(dim*sizeof(unsigned int»;
Csize = (unsigned int *) malJoe(dim * sizeof(unsigned int»;

for(i=O; i < dim; ++1)
max[i] = 97;

rmax[O] = sz;

1* input the max size of sparse data *1
1* representation for each dim *1

1* assign the max sizes for cspin function *1

1* assign the actual sizes in cspin *1

for(i= 1; i < dim; ++i)
rmax[i] = 97;

for(i=O; i < (dim-i); ++1)
cmax[i} = sz;

for(i=O; i < dim; ++1)
ckmax[i] = sz;

t_size[O] = 2*sz;

I*ckmax will be used in permutation generating*1

1* set the table sizes for each level *1
for(i=!; i < dim; ++i)

csize[i] = csize[i-I]*sz;
for(i=O; i < dim; ++1) 1* give the total number of permutations *1

total_sub = total_sub * ckmax[i];

total_index = 0; 1* calculate the total size of cspin index *1
for(i=O; i < dim-I; ++i) I

if(i = 0) {

) else {

total_index = ckmax[O]*ckmax[l];
temp_hold = total_index;

total_index = temp_hold*ckmax[i+l] + totaUndex;
temp_hold = temp_hold*ckmax[i+ 1];

printf("Generating permutions\n"); 1* permutation generating *1
sub_permu = (unsigned int **)sub~enerator(dim, ckmax);
srand(time(NULL»;

for(k=O; k < 30; ++k) { 1* start testings *1
1* create the hashings and index for h_spina nd cspin *1
hash_tables = initialize_hash_tables(Csize, dim);
index_pointer = (long int*)calloe(totaUndex+ I, sizeof(long int»;

list = (int *) maJ]oc(EXP ~NO*sizeof(int»;
if(1ist = NULL) {

printf("Jist calloe failure, exit(O)\n");
exit(O);

1* create randomly-orderd list for permutations tested *1
list_len = Iist~enerator(list, total_sub, EXP _NO);
1* initialize the h_spin and cspin functions *1
sub = 0;

h_spin(hash_tables. dim. dim-I. max. sub...,:permu[sub]. 1. 'i');
r_spin(index_pointer. dim. dim-I. rmax. cmax. sub-permu[subl. n. I);

prinlf("Beginning of the %dthempty test(for insertion)\n". k+ I);
start_timeO; 1* start testing time *1
for(j=O; j < IisUen; ++j) { 1* testing the overhead *1

sub = lislm;

pm_time I = prn_timeO; /* end the testing time *1
printfC"Beginning of the %dth h_spin test(insertion)\n". k+ I);
start_time(); 1* start the testing time */
for(j=O; j < lisUen; ++j) { 1* this is the actual testing *1

sub = Jistlil;
h_spin(hash_tables. dim. dim-I. max. sub-pennu[subl. 1. 'p');

prn_time2 = prn_timeO; 1* end the testing time */
fprintf(ofp. "%6d %15.5If%15.5lf%15.51t\n".lisUen. pm_timel. prn_time2,

(pm_time2-pm_time 1)llisUen);

printf("Beginning of the %dth empty test(for insertion)\n", k+ 1);
start_timeO; /* start the testing time */
forO=O; j < lisUen; ++j) { /* testing the overhead */

sub = list[j];

prn_timel = prn_timeO; /* end the testing time *1
printf("Beginning of the %dth espin test(insertion)\n", k+ 1);
start_timeO; 1* start the testing time */
for(j=O; j < IisUen; ++j) (1* this is the actual testing *1

sub = list[jl;
espin(index_pointer,dim,dim-I ,rmax,cmax.sub-permu[sub],n, I);

prn_time2 = pm_time(); 1* end the tesing time */
fprintf(ofp2. "%6d %15.51f %15.5If %15.51f\n", IisUen, pm_timel, pm_time2,

(prn_time2-pm_time 1)llisUen);
1* recreate another randomly ordered list of permutations for search testing *1
seelist = (int *) malloc(JisUen*sizeof(int));
if(seclist = NULL) {

printf("Memory allocation error.\n");
exit(O);

seelen = list....generator(seelist, list_len, list_len);

printf("\n\n\n ");
printfC'Beginning of the %dth empty test(for searching)\n", k+ 1);
start_timeO; 1* start the testing time *1
for(j=O; j < seden; ++j) { 1* testing the overhead */

sub = Iist[ser_list[j]];

pm_time 1 = pm_lime(); 1* end the testing time *1
printfC"Beginning of the %dth h_spin test(searching)\n", k+ I);
start_tim eO; '* start the testing time *1
for(j=O; j < seclen; ++j) (1* this is the actual testing *1

sub = Iist[seelist[j]];
h_spin(hash_tables, dim. dim-I, max, sub_pennu[sub], 1, 's');

79

prn_time2 = pm_time(); '* end the testing test *'
fprintf(ofpl, U%6d %15.5If %15.5If%15.51f\n", seclen, pm_timel, pm_time2,

(prn_time2-prn_time 1)/seclen);

printf("Beginning of the %dth empty tesl(for searching)\n", k+ I);
start_timeO; '* start the testing time */
for(j=O; j < ser_Ien; ++j) ('* testing the overhead *1

sub = list[ser_Iist[j]];

pm_timel = pm_timeO; 1* end the testing time *'
printf("Beginning ohhe %dth r_spin test(searching)\n", k+l);
start_IimeO; 1* start the testing time *1
for(j=O; j < lisUen; ++j) { 1* this is the actual testing *1

sub = Iist[j];
cspin(index_pointer,dim,dim-l,rmax,cmax,sub~permu[sub],n, l);

prn_time2 = pm_timeO; 1* end the testing time *1
fprintf(ofp3, "%6d %15.5If%l5.5lf%l5.51f\n", secien, pm_timel, pm_time2.,

(prn_time2-pnUimel)/seT_len);

void

lisclen = 0; /* reinitialize testing parameters for next test *1
seT_len = 0;
free(list);
free(seclist);
free(index_pointer);
EXP _NO = EXP _NO + 100;
printf("\n\n");
free_hash_tables(hash_tables, dim);

h_spinChash_tables, dim, dim-I , max, sub_permu[O], 1, 'f);
fclose(ofp);
fclose(ofp]);
fclose(ofp2);
fclose(ofp3);

'* free the space */

starUime(void) 1* get system time for starting */

tk .save_cIock = clockO;

double prn_time(void)
{

1* get system time for ending and print durition time */

double clocks_per_second = (double) CLOCKS_PER_SEC;
double user_time;
user_time = (clockO - tk.save_c1ock) , c1ocks_per_second;
tk.save_clock = c1ockO;
return user_time;

80

Appendix C

!* This is a demonstration program of H_SPIN. It demonstrates the insertion, the search, the rehashing, the
partial-match search and the deletion operations of H_SPIN *!

#include "spin.h"

void main(void)

unsigned int
unsigned int

*Csize, *max. *ckmax, *se_prinCout;
**sub_permu;

int dim, sz, EXP _NO;
int
int
int
HASH_TABLE

total_sub = I, i, j, I, sub_no. sub, lisUen = 0;
ser_len, total_index, tempJlOld, run_flag=I;
*list, *ser_list, *temp, *templ, run_signa];
*hash_tables;

int *princarray, *permu;
RETIJRN_LIST rtn_list, nn_dump;

unsigned int
int

·*sub~enerator(int, unsigned int *);
list~enerator(int *, int, int);

HASH_ T ABLE* initialize_hash_tables(unsigned int *, unsigned int);
int* h_spin(HASH_TABLE *, unsigned int, unsigned int, unsigned int·, unsigned int

*, int, char);
void free_hash_tables(HASH_TABLE *, int);
int h_spin_par_search(HASH_TABLE·, RETURN_LIST, unsigned int, unsigned

int, unsigned int *, int *, int);
int inpuUnt();
int inpucpositive_int(int);
int pop_menuO;
1* input the parameters *1
printf("Please input the number of dimensions (>= 2): ");
dim = inpuCpositive_int(2);
printf("Please input size of dimension (>= 2): 10);
sz = inpuCpositive_int(2);
printf("Please input the total number of permutations inserted: ");
EXP _NO = input_positive_int(O);

max = (unsigned int *) malloc(dim*sizeof(unsigned int»;
ckmax = (unsigned int *) malloc(dim*sizeof(unsigned int»;
csize = (unsigned int *) malloc(dim * sizeof(unsigned int»;

for(i=O; i < dim; ++1) 1* input the max spin size for each dim */
max[i] = 97;

for(i=O; i < dim; ++i) (!* set the table sizes for each dim */
printf("Please input the hashing table size for each level %d:", i);
Csize[i] = input_positive_int(O);

for(i=O; i < dim; ++1)
ckmax[i] = sz;

/*ckmax will be used in permutati(n generating*!

81

for(i=O; i < dim; ++1) '* give the total number of testing loop *'
totaCsub = totaLsub * ckmax[iJ;

printf("Generating pennutions\n"); '* permutation generating *1
sub_permu = (unsigned int **)sub-$enerator(dim, ckmax);
princarray = (int *) malloc(sizeof(int)*dim);

srand(time(NULL»;
1* create the hashing tables for each level *1
hash_tables = initialize_hash_tables(csize, dim);
1* create randomly-orderd list for permutations stored in h_spin *'
list = (int *) malloc(EXP _NO*sizeof(int»;
if(list == NULL) {

printf("list calloc failure, exit(O)\n");
exit(O);

lisUen = Iist....generator(1ist. totaLsub, EXP _NO);

1* initialize the h_spinO *1
sub = 0;
h_spin(hash_tables, dim. dim-I, max. sub_permu[subJ. 1. ' j');
/* insert the randomly-ordered permutations into h_spin */
printf("Begin insertions using randomly-ordered permutations.\n");
for(j=O; j < lisUen; ++j) {

sub = IistUJ;
prinCarray = h_spinChash_tables.dim.dim-l.max.sub_pennu[sub], 1. 'p');

permu = (int*) malJoc(sizeofCint)*dim);
1* begin the demostration *1
while(run_flag) (

run_signal = pop_menuC);
switch(run_signal) (

case 1: for(i=O; i < dim; ++i) (1* for insertion */
printf("Input the index on level %d:", i);
pennu[i] = inpucpositive_int(O);

h_spin(hash_tables.dim,dim-I.max. (unsigned int*)permu, I,'p');
pri ntfnn ");
break;

case 2: for(i=O; i < dim; ++1) 1* for list all pennutations *'
permu[iJ = -1; /* assign -I for partial-match search *'

rtn_list = (RETURN_LIST) maJloc(sizeof(struct return_node»;
rtn_list->next = NULL;
h_spin_pacsearch(hash_tables,rtn_list.dim, dim-l,max,permu, 1);
if(rtn_list->next == NULL)

printfC"\nNo matching found\n");
else

printf("\nThe permutations found: ");
printfC" ");
printf("The positions on each level: \n");
while(rtn_list->next != NULL) {

for(i=O; i < dim; ++i)
printf(,,%6d". rtn_list->next->permu[ij);

printf("

82

searching, input -1):", i);

*)permu, l:d');

1* free space *1
lisUen = 0;
free(list);

for(i=O; i < dim; ++i)
printf("%6d", rtn_list->next->pennu_ptr[i));

printf("\n");
rtn_dump = rtn_list;
rtn_list = rtn_list->next;
free(rtn_dump);

}
printf("\n");
break;

case 3: for(i=O; i < dim; ++i) { 1* for search *1
printf("Input the index on level %d (for partial-match

permu[i] = inpuUntO;
}
rtn_list= (RETURR.USn \
malloc(sizeof(struct return_node»;
rtn_list->next = NULL;
h_spin_par_search(hash_tables,rtn_list,dim, dim-l ,max,permu,l);
if(rtn_list->next = NULL)

printf("\nNo matching found\n");
printf("\nThe permutations found: ");
printf(" ");
printf("The positions on each level: \n");
while(rtn_list->next != NULL) (

for(i=O; i < dim; ++i)
printf("%6d", rtn_list->next->permu[i));

printf{" ");
for(i=O; i < dim; ++i)

printf("%6d" , rtn_list->next->perrnu_ptr[iJ);
printf("\n");
rto_dump = rtn_list;
rtn_list = rtn_list->next;
free(rtn_dump);

}
printf("\n");
break;

case 4: for(i=O; i < dim; ++i) {
printf("lnput the index on level %d:", i);
permu[i] = input_positive_int(O);

1* for deletion *1

princarray = h_spinChash3ab\es,dim,dim-l,max, (unsigned int

if(princarray[O] == -1)
printf("\nDeletion fails!\n");
printf("'n");
break;

case 5: run_flag = 0;
break;

1* for exit *1

printf("\n\n ");
free_hash_tables(hash_tables, dim);

83

h_spin(hash_tables, dim, dim-], max, sub-pennu[O], 1, 'f');

int input_positive_int(int);

printf("\n ******* *** *** ** ******* * **** *\n ");
printf(" Insetion 1 \n");
printf(" List all 2\n");
printf(" Search 3\n");
printf(" Deletion 4\n");
printf(" Exit 5\n");
printf("* * ** ******** ** * ***** **** **** *\n ");
printf("Choose: ");
rtn_ val = input_positive_int(l);
return rtn~val;

84

VITA

Yunpeng Zhang

Candidate for the Degree of

Master of Science

Thesis: AN EXPERIMENTAL ANALYSIS OF A NEW
MULTIDIMENSIONAL STORAGE AND RETRIEVAL
METHOD

Major Field: Computer Science

Biographical:

Personal Data: Born in Jilin City, China,. on July 23, 1964, the
son of Jie Zhang and Shuhua Zhu.

Education: Graduated from Jilin TieLu High School, Jilin City,
China in July 1983; received Bachelor of Science degree in
Metal Material Engineering from Shanghai JiaoTong
University, Shanghai, China and a Master of Science degree
in Mechanical and Aerospace Engineering from Oklahoma
State University, Stillwater, Oklahoma in July 1987 and
December 1994, respectively. Completed the requirements
for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December, 1996.

Experience: Employed as a mechanical engineer by Shenyang
Electronic/Mechanical Research/Design Institute from
August, 1987 to December 1989; employed as a mechanical
engineer by China National Metals/Minerals Corporation
from December 1989 to December 1992; employed by
Oklahoma State University, Department of Mechanical and
Aerospace Engineering as a graduate research assistant

L

from May 1993 to December 1994~ employed by Oklahoma
State University, Department of Computer Science as a
graduate research assistant from June 1995 to May 1996;
employed as a software engineer by Measurex Corporation
(California) from July 1996 to present.

