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CHAPTER I 

INTRODUCTION 

Purpose 

This paper details the development of an improved method for representing the 

spectrum for sinusoidal speech coders. For voiced speech, sinusoidal coders require a very 

accurate representation of the underlying sinusoid amplitudes. An extremely popular class 

of sinusoidal coders is harmonic coders that model the harmonics as sinusoids tuned to 

interger mUltiples of the fundamental frequency. Accurate representation of the harmonic 

amplitudes is usually not compatible with the available bit rate in low rate coders. The 

method presented in this paper uses linear prediction in conjunction with a preprocessing 

stage to better model the hannonic amplitudes. 

In recent years, speech coders based on sinusoidal models of speech production 

have received increased attention, particularly at relatively mid and low bit rates (below 

8,000 bps). These sinusoidal coders belong to a class of speech coders known as 

vocoders. Vocoders use a parametric model to attempt to reproduce the sound of the 

original signal. Waveform coders represent another class of speech coders. These coders 

attempt to accurately reproduce the shape of the original wavefonn. As a general rule, at 

bit rates above 4,800 bps wavefonn coders outperfonn vocoders in the quality of the 

resulting synthetic speech. For bit rates below 4,800 bps, vocoders , particularly those 

based upon sinusoidal models, outperform waveform coding methods. In the recent testing 

by the United States Department of Defense Digital Voice Processing Consortium 



(DDVPC) for a new 2,400 bps speech coding standard, five of the eight test coders were 

based on sinusoidal models [1]. 

Sinusoidal coders require a fairly accurate model of the spectrum, particularly for 

the underlying harmonic structure of voiced speech. In the past, spectral representari.ons 

for hannonic coders have required large numbers of bits to achieve the desired quality. 

Inaccuracies in the modeling of the harmonic amplitudes are known to increase the 

reverberation and mechanical quality of the synthetic speech. The traditional method for 

spectral representation is to quantize and code the individual spectral amplitudes either 

individually or in a block wise fashion [2 and 3]. While this method is acceptable for bit 

rates at or above 4,800 bps, it is not efficient enough for low rate coiling. This paper 

details a modified spectral representation that allows for the necessary accuracy in 

representing the harmonic amplitudes, while using only a fraction of the bits previously 

used. 

The modified representation is based upon the well known linear predictive model. 

Linear prediction (LP) has a number of very desirable properties. The spectral envelope 

can be represented using a relatively small number of coefficients (typically 10-18). Using 

an alternate representation known as line spectral frequencies (LSF's), the model can be 

coded efficiently using either scalar or vector quantization (VQ) techniques. Essentially, 

the LP model attempts to march the spectral envelope in an overall minimum mean 

squared sense. While this fit follows the general shape of the speech spectrum well, it is 

somewhat lacking in the representation of the individual harmonic amplitudes. This type of 

fit is generally sufficient for waveform coders whi.ch are more interested in the overall 
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spectral shape and formant structure than the individual harmonic amplitudes. This paper 

presents a technique by which LP can model the harmonic amplitudes more accurately. 

The use of linear prediction for only the harmonic amplitudes is problematic, as will be 

shown in a later chapter. A much better method for emphasizing the hannonics is by 

interpolating the amplitudes between each harmonic, thus producing a slower varying 

spectral e~elope that LP can more accurately model. In addition, methods to increase the 
.-

perceptual quality of the resulting speech through spectral manipulation, such as spectral 

warping, and adaptive postfiltering are also included in this paper. 

The proposed enhancements in spectral modeling are not limited to a single type of 

sinusoidal speech coder. Any coder that relies on an accurate estimate of the amplitudes of 

the spectral peaks can use the methods developed in this paper. The postfilter presented 

later is also applicable to a wide range of speech coders, at numerous bit rates. 

Implementation 

The improvements in the spectral modeling have been incorporated into a test 

coder to detennine their validity and perceptual improvement over traditional methods. 

The test coder used is the Enhanced MultiBand Excitation Coder (EMBE) [4], developed 

at Oklahoma State University. The EMBE coder was a recent candidate in DDVPC tests 

for a new 2,400 bps voice coder. This coder is based upon improvements to the 

MultiBand Excitation (MBE) model, and enhanced methods of model parameter 

estimation. The MBE model will be explored in greater detail in a later chapter. In 

essence, the MBE model attempts to model speech with a combination of voiced and 
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unvoiced components for each frame. The input speech frame is divided into a set of 

frequency bands. with the voiced/unvoiced detennination being made for each band. 

Once the voicing decisions have been made for the speech frame the unvoiced 

portions are synthesized by using bandpass white noise, while voiced components are 

synthesized using a bank of sinusoidal oscillators tuned to harmonics of the fundamental 

frequency of the frame. The goal of the spectral model in MBE is to accurately represent 

the amplitudes of these sinusoidal oscillators and to fit the unvoiced segments in a mean 

squared sense. Thus the MBE model is an ideal candidate to test the proposed spectral 

model. 

Thesis Outline 

The remainder of this paper details the development of the improved method of 

representing the harmonic amplitudes. The use of postfiltering to improve the perceptual 

quality is also addressed in detail. A breakdown for the rest of this paper is presented in 

the following paragraphs. 

Chapter 2 provides the reader with a brief background on speech coding, including 

traditional wavefonn coders and vocoders. A more thorough discussion of sinusoidal 

coding with particular emphasis on MBE, is presented. 

Chapter 3 examines the various methods for representing the harmonic amplitudes. 

These methods include direct quantization along with various parametric models, such as 

cepstral modeling and linear predication. The limitations and coding issues of these 
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methods will also be discussed. Particular emphasis is placed on the linear predictive 

model. 

Chapter 4 explores the use of an interpolation function to improve the spectral fit 

obtained through linear prediction. The cubic spline interpolation function is discussed in 

detail. The complete process of computing a linear predictive model based on an 

interpolated spectral envelope is presented. Additionally, the use of specrral warping to 

improve the spectral match in perceptually significant areas is discussed. 

Chapter 5 focuses on the use of adaptive postfiltering to improve the perceptual 

quality of the synthetic speech signal. The discussion focuses on all-pole, as well as , pole

zero postfilters. A discussion on the adaptation of these filters to the speech signal is also 

included. 

Chapter 6 presents the results of the various proposed enhancements to the 

spectral model. Spectral distortion data is presented to evaluate the various improvements. 

Additionally, the computation considerati.ons of linear prediction are addressed. Finally, 

perceptual results based on the incorporation of the changes into the EMBE speech coder 

are also discussed. 

Chapter 7 provides the conclusion to this paper. A brief summary of the process of 

spectral interpolation and the effects on performance are presented. Finally, various 

suggestions for future research are also addressed. 
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CHAPTERll 

BACKGROUND 

Speech Coding 

The goal of speech coding is, simply, to produce the highest quality speech using 

the least amount of data. The roots of speech coding can be rraced back to the work of 

Dudley in the late 1930' s [5]. In the last twenty years there has been a dramatic increase in 

the field of speech coding. This increase has been fueled by the demand for higher quality 

speech at seceedingly lower bit rates. This chapter attempts to present a brief description 

and background of speech coding. The two major classes of speech coders, waveform 

coder and vocoders, will be examined. The sinusoidal model for speech production is also 

presented in some detail. 

Let us first get a feel for the breadth of the speech coding field. Speech coding has 

many diverse and numerous applications. These range from standard telephone 

applications to compression and encryption. The most obvious of these applications is in 

the telephone industry. By coding a speech signal prior to transmission, the required 

bandwidth for the signal is dramatically reduced. This allows a larger number of calls to be 

placed on a given communication channel. This is especially important in the cellular 

telephone industry as channel congestion is already a problem in some areas. As cellular 

telephones increase in popularity in the next few years, this congestion will only worsen. 

Speech coiling offers the promise of improved speech quality along with reduced 

bandwidth for these applications. To ensure interoperability among various users, speech 
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coding standards are being established. Digital cellular standards are already in place in 

Japan, the United States, and Europe. 

The use of speech coding for storage and compression is also increasing 

dramatically. Digital answering machines employ speech coding algorithms to store both 

incoming and outgoing messages. This reduces the amount of memory needed by the 

answering machine, thus reducing their cost. Multimedia applications for home personal 

computers also use speech codjng to efficiently store voice data, thus decreasing the 

amount of storage space needed by these applications. 

The most important area that speech coiling is being applied to, however, is in 

achieving secure communications. Digital data, in general, lends itself readily to encryption 

for security. A person can easily envision the use of digital speech for secure 

communications in a tactical environment, between embassies, in banking. or even for 

home use to prevent eavesdropping on personnel phone calls. 

These are only a few of the examples of the use of speech coding. A more 

thorough discussion of these applications is found in [6]. We will now explore two of the 

primary classes of speech coders: Wavefonn coders and Vocoders. 

Waveform Coders 

Most speech coders can be broken down into two categories: Waveform coders 

and Vocoders. Waveform coders attempt to match the actual speech waveform, while 

vocoders try to only preserve the waveforms essential perceptual qualities. Figure 1 [7] 

illustrates the traditional performance characteristics of waveform coders and vocoders. 
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Speech Quality 

excellent 

good wavefonn coders 

fair 

{X)or 
2 4 8 16 32 64 

Bit rate (Kbps) 

Figure 1 Performance of classes of speech coders 

It can be seen that at higher bit rates waveform coders deliver superior 

pert'ormance compared to vocoders. However as the bit rate drops, particularly below 

4,800 bps, vocoders significantly out perform waveform coders. The next generation of 

speech coders is expected to fill the gap between vocoders and waveform coders. 

Early waveform coders were the result of research into efficient methods of 

quantizing the speech signal. The earliest type is Pulse Code Modulation (PCM). PCM 

basically maps each speech sample to a discrete set of quantization levels. PCM is a 

speech coding standard at 64 Kbps (ITU G.711) [8]. Another early waveform coder is 

Delta Modulation (DM) [9]. OM oversamples the signal using a 1 bit quantizer to 

quantize the samples. The samples are then integrated to recover the desired sample value. 

OM is used extensively in such applications as compact disc players. Adaptive Delta Pulse 

Code Modulation (ADPCM) is yet another early waveform coding technique. ADPCM 

uses a low order predictor to reduce some of the redundancies in the speech signal and an 

adaptive quantizer to quantize the residual. ADPCM is a speech coding standard at 32 

Kbps (ITU G.721) [10]. 
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Adaptive Predictive Coding, or APC, is a broad category of early wavefonn 

coders that uses a combination of long and shan tenn predictors to code the speech 

signal. The long tenn predictor represents the pitch or the fundamental frequency of the 

vocal chord vibration, while the shan tenn predictor models the shape of the vocal rract. 

APC fonns the basis of the next class of waveform coder that will be discussed, analysis-

by-synthesis coders. 

Analysis-by-Synthesis 

Analysis-by-synthesis coders attempt to match a synthetic (or coded) signal to the 

original signal by means of an iterative process. This iterative process typically attempts to 

minimize the mean squared error between the synthetic and a perceptually weighted 

version of the original signal. Perceptual weighting is an attempt to reduce the 

quantization noise in the synthetic speech by shifting it into regions in which it will be 

masked by the speech signal. The entire process is illustrated in Figure 2. 

Spectral 
Analysis 

Synthesis · -

Minimize 
Error 

sen) 

+ 

Perceptual 
It----i 

Weighting 

Figure 2. Analysis-by-synthesis structure 
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One of the fIrst major analysis-by-synthesis coders was Multipulse Linear 

Predictive Coding (MPLPC) [11]. Multipulse attempts to model the spectral envelope 

through linear prediction (LP), while modeling the excitation as a sequence of pulses. The 

position and amplitude of the pulses are chosen so to minimize the error criterion. 

Typically four to eight pulses per 5 rns subframe are sufficient to produce high quality 

speech. An example of a speech wavefonn generated by MPLPC is shown in Figure 3b, 

with the corresponding original displayed in Figure 3a. 

The limited number of pulses needed for mid to low rate coders poses problems 

for higher pitched speakers. These higher pitches require a larger number of pulses for the 

excitation than is typically available at these bit rates. The next type of ana]ysis-by

synthesis coder, Codebook Excited Linear Prediction or CELP, overcomes this through 

the use of a table of excitations[ 12]. 

x 104 

,r-----~------~------~~ 

0.5 

0 ....... ..,. 

-0.5 

., 
-1.5 '----____ --'-______ -'-______ 6...---1 

o 500 1000 1500 

Figure 3a Original speech signal 
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-1 .5 L--__ --'-___ -'--___ -'-----' 
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Figure 3b MPLPC synthetic speech 

x 104 

1r-----~------~------r-__, 

-1 

-1 .5 L...-____ --'-______ -'-______ ~--I 

o 500 1000 1500 

Figure 3c CELP synthetic speech 

The CELP speech coding algorithm represents a major advancement in speech 

coding. CELP is similar in structure to MPLPC and can be viewed as a somewhat natural 

evolution of it Instead of choosing a set of pulse amplitudes and locations to represent the 

excitation, CELP uses a codebook of excitations and simply chooses the best entry and 

transmits the corresponding code book index to the synthesizer. As in MPLPC, a set of 

linear prediction coefficients is used to represent the short tenn structure, i.e. the 

spectrum, of the speech signal. The long term periodic structure of the speech signal, is 

modeled using a simple one or three tap pitch predictor. Some CELP coders, such as the 

II 
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Federal Standard 1016 [13]. incorporate an adaptive codebook to model the long tenn 

correlation instead of using a long term predictor. Once the contributions of the pitch 

predictor, or adaptive codebook, are removed from the signal, the remaining signal is 

modeled using a stochastic codebook. This codebook typically contains gaussian 

distributed noise that is used to model the aperiodic structure of the speech signal. Due to 

the presense of this underlying model, CELP and MPLPC are sometimes thought of as 

quasi-hybrid waveform coders. An example of a speech waveform processed with the 

CELP algorithm is shown in Figure 3c. Notice that compared to MPLPC shown in Figure 

3b, the CELP wavefonn is closer in appearance to the original. 

The success of CELP is apparent from the number of speech coding standards 

based on it. These include FS1016 at 4,800 bps, the North American TDMA standard and 

Japanese digital cellular standards, both of which are based on CELP variants. Also 

international standard 1111 G.728 [14], G.723 [15], and G.729 [16] were recently adopted 

at 16 Kbps, 6.2 Kbps, and 8 Kbps, respectively. AU of these standards are based on the 

CELP model. A much more thorough investigation of these coders as well as speech 

coding in general can be found in [17,7 and 5]. 

Vocoders 

Vocoders, as mentioned previously, do not try to reproduce the original waveform 

shape, but instead only its perceptual qualities. Vocoders rely on a parametric model of the 

speech production process to code the speech signal. The earliest vocoders include the 

channel vocoder[18] and the phase vocoder[19]. The channel vocoder is basically the 
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same as the original coder used by Dudley in the late 30' s. The channel vocoder separates 

the input speech signal into frequency bands using a set of bandpass filters. The output of 

these filters are then quantized and transmitted along with a voicing decision and a pitch 

value. Thus we can see that the parametric model that fonns the basis of the channel 

vocoder includes a model for the spectrum and excitation. 

An extremely popular parametric model for the speech production process is 

shown below in Figure 4. As can be seen, the speech wavefonn is modeled as the result of 

passing an excitation sequence through a time varying filter that represents the shape of 

the vocal tract. The excitation is chosen to represent either voiced or unvoiced speech. 

Voiced speech is characterized by the quasi-periodic vibration of the vocal chords, and is 

modeled as a pulse train. Unvoiced speech is the result of turbulent airflow through a 

constriction without the vocal chords vibrating, usually modeled as white noise. A voicing 

decision switch is used to control which excitation sequence is used. The time varying 

vocal tract filter is most often chosen to be an autoregressive model. 

voiced 

II 1I 11 II 
Pulse train \ 
~...,.......I ---'-I.' 1--.--'/0 

i 

White noise 

r vuv 
switch 

unvoiced 

Vocal tract 
Filter 

~-~s(n) 

Figure 4. Simple vocoder speech production model 

A speech coder based on the above parametric model, known as LPC-lOe, is a 

federal standard at 2,400 bps (FS-IO 15) [20]. LPC-l De, uses a 10th order linear predictive 
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model to represent the spectrum, thus giving it it's name. LPC-lOe has been incorporated 

into a number of systems, many providing secure conununications for military and non-

military personnel. 

While simple LPC type coders provide very intelligible speech, the quality leave 

much to be desired. These coders tend to sound mechanical and anificiaL As can be een 

from Figure 4, the LPC model makes a single decision as to whether a frame is voiced or 

unvoiced. This is a gross simplification of the speech production process . It is known that 

speech, in general, exhibits a combination of both voiced and unvoiced excitations. It is 

believed that the binary voicing decision present in the LPC-lO model, introduces excess 

periodicity into the speech, which results in the reverberant, mechanical quality of the 

synthetic speech. Thi s binary voicing decision is the reason that this type of coder is often 

referred to as a "buzz/hiss" coder. Additionally, errors in pitch estimation or voicing lead 

to annoying "anomalies" in the reconstructed speech signal. Numerous models have been 

proposed to attempt to alleviate this. One of the more recent models is the sinusoidal 

model, presented below. 

Sinusoidal Coders 

The development of speech coders based on sinusoidal models for speech 

production have increased dramatically in the last few years. Sinusoidal coders are based 

on the assumption that speech can be represented as a sum of sinusoids as given in (2. 1). 

L 

sen) = I.. AU) cos(co In + a I) n=O,l, .. . ,M-l (2.1) 
1=1 
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In (2.1), A( J) represents the amplitude of each sinusoid, M is the number of samples in the 

frame, L is the number of hannonics in the frame, rot is the frequency of each sinusoid 

(not necessarily harmonically related), and 61 represents the phase of each component sine 

wave. Figure 5a shows the spectrum of a frame of voiced speech. It is easy to see how a 

sinusoidal model can be intuitively derived from this by letting 0)/ be harmonics of the 

fundamental frequency with A(l) representing the llh harmonic amplitude. Figure 5b shows 

a frame of purely unvoiced speech. Here it is not intuitive that a sinusoidal model can 

accurately represent this. By assigning random phases to each sinusoid it is possible , 

given enough sinusoids, to represent unvoiced speech. In fact spacing the sinusoids 100 

Hz apart is sufficeint to model unvoiced speech [21]. 

10' ,-----.----r-----,----.-----.., 10'.-----.---.,------,----.-----.., 

10' 10' 

10' 

10' 

lO''---~--~-~--~-__::_'"' 
50 100 ISO 200 250 

1O. L--........ --~-~--~-~ 
so ISO 250 100 200 

Figure Sa. Voiced speech spectrum Figure 5b. Unvoiced speech spectrum 

The sinusoidal model for speech production has several advantages over the LPC 

model previously discussed. The sinusoidal model does not constrain the speech signal to 

a single voicing state. By manipulating the phase function of the individual sinusoids, 

variable amounts of voicing can be introduced. This allows the model to follow both the 

l5 



periodic and aperiodic components present in most frames of speech. Sinusoidal coders 

have been shown to be capable of producing extremely high quality speech. 

Two of the most popular sinusoidal coders are sinusoidal transform coding (STC) 

[21J , and the MultiBand Excitation (MBE) model [22]. STC is a direct application of 

equation 1. The analysis phase in STC consists of a peak picking algorithm that detennines 

the amplitudes , frequencies, and phases of the underlying sinusoids using the shan time 

fourier transform (STFT) of the input frame. The synthesizer in STC reconstructs the 

speech waveform by generating the resultant sinusoids in the time domain. A cubic 

interpolation function is used to maintain phase continuity across successive frames. It is 

known that slightly altering the phase relationship between sinusoids dramatically affects 

the perceptual quality of the reconstructed waveform. Thus, the interpolation procedure is 

critical for achieving high quality speech. 

MBE, on the other hand, is technically not a pure sinusoidal coder. MBE 

represents the speech signal as a combination of voiced and unvoiced frequency bands. 

Voiced frequency bands are generated using a bank of sinusoidal oscillators, while 

unvoiced frequency bands are generated from bandpass white noise. MBE constrains the 

sinusoidal model by limiting the sinusoids to be harmonics of a fundamental frequency. 

The model is further constrained by the introduction of a set of voicing decisions for 

various frequency bands of the speech signal. MBE, traditionally, has outperformed pure 

sinusoidal coders, such as STC. 

The analysis phase of an MBE coder estimates a pitch, voicing decisions, and 

spectral model for each frame of speech. The pitch value is typically determined on a 
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coarse grid and subsequently refined to sub-sample accuracy. The reason for the high 

degree of accuracy in the pitch estimate is in making the voicing decisions. Once the pitch 

estimate is obtained, a synthetic, all voiced speech signal is generated. The voicing 

decisions are made by comparing the match between the original and synthetic spectra on 

a harmonic by harmonic basis. An error in the pitch estimate will be multiplicative in 

frequency causing the harmonics at higher frequencies to be farther and farther from the 

location of the original harmonics, possibly resulting in large voicing errors. 

Once the voicing decisions for the harmonics have been made they are grouped 

together into frequency bands. A binary decision is then assigned for each band. The 

voicing decision for each band represents the majority of the voicing decisions of the 

harmonics in the band. As many as 12 bands are used to relate the voicing states. Figures 

6a-c illustrates the voicing decisions for a frame of speech. As can be seen from Figure 6c 

the fixed nature of the band structure has grouped some voiced harmonics into a 

frequency band in which the overall majority of the harmonics are unvoiced. This is one of 

the drawbacks of a fixed band structure. This can be partially compensated for by allowing 

the width of the voicing bands to adjust based on the current pitch of the speech signal [4]. 

10·r----~-~~------....., 10',--~-~----~--"" 

10' '---~----------___ -~--~ 
a 50 100 150 :000 250 

1 0' '--_---.:_--'-'-L-J---L~_~ __ ....., 
o 50 100 ISO 200 250 

Figure 6a Original speech spectrum Figure 6b All voiced synthetic speech 

17 

< 



pi 

10' ,o·..----~-~--......__-_--....... 
voiced 

'0' 

10' 

10' 

'0' 

, 0 
, 
0 50 , 00 150 200 250 lO' O~--5~O -~'00--~150::-----200---:-:-'250 

Figure 6c Voicing decisions for speech Figure 6d Reconstructed speech spectrum 

The final stage of the analysis phase is the estimation of the spectrum. As 

previously mentioned MBE requires an accurate representation of the harmonic 

amplitudes for voiced speech, and an average fit to the spectrum, for unvoiced speech. 

The methods of this estimation and various improvements to it are the subject of the 

remainder of this paper. 

Synthesis of the speech waveform in MBE is accomplished in two separate stages. 

For voiced frequency bands, a method similar to the one used in STC is employed. 

Sinusoids are generated in the time domain with the appropriate amplitudes and 

frequencies needed to represent the harmonics declared voiced in the analysis phase. The 

transmitted harmonic phases are used as the initial starting phases of the sinusoids. The 

phase is then continually tracked as long as the harmonics are declared voiced. Again 

phase continuity is maintained between the frame boundaries. Unvoiced frequency bands 

are generated using bandpass white noise. The resulting voiced and unvoiced signals are 

then summed to produced the output speech signal. Figure 6d shows the spectrum of the 

resulting speech waveform. 
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A variant of the MBE coder, known as Enhanced Mulriband Excitation (EMBE), 

developed at Oklahoma State University, is discussed in greater detail later in this paper. 

As can be seen from equation (2.1), the parameters used to represent speech 

include the individual sinusoid amplitudes, frequencies and phases. This large number of 

parameters is not conducive to a low bit rate coding scheme. A method of reducing this 

infonnation while maintaining the accuracy of the sinusoidal model is the subject of the 

this paper. The next chapter presents a brief overview of current methods of representing 

and coding the spectrum. 
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CHAPTER ID 

CURRENT SPECTRAL MODELS 

Scalar Quantization 

As was mentioned in the previous chapter, the parameters needed for a sinusoidal 

coder include the individual sinusoid amplitudes, frequencies and phases. This large 

number of parameters poses a problem for implementations of these coders at low bit 

rates. Methods must be devised to reduce the total number of bits required. 

The bulk of the parameters in a sinusoidal coder correspond to the amplitudes and 

phases of the individual harmonics. Using scalar quantization, these parameters can be 

coded using between 94 and 184 bits per frame [23]. While this number of bits may be 

acceptable at 8 Kbps and above, at lower bit rates it is not feasible. The phases of the 

hannonics can be discarded by using a quasi -random initial phase for each hannonic and 

subsequently tracking the phases across frames to insure continuity. This considerably 

reduces the number of raw parameters needed to represent the spectrum. The two 

standards based on MBE, namely APea [2J and INMARSAT-M [3] , use this assumption 

along with an improved method of coding the harmonic amplitudes to represent the 

spectrum using only 76 bits per frame. This improved method of coding the harmonic 

amplitudes involves the use of the Discrete Cosine Transform (OCT) to exploit the 

redundancies that exist between the hannonic amplitudes in time as well as frequency [23]. 

Even with these changes , the resulting bit rate is still excessive for low bit rate coders, i.e., 
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2,400 bps and below. Typically, a parametric model is used to represent the spectrum at 

these low bit rates. 

Parametric spectral models are capable of representing the spectrum using a small 

number of coefficients. These models usually fit the spectral envelope using as few as 10 

to 20 coefficients, thus allowing them to be quantized very efficiently. In the following 

sections two such parametric models, namely cepstral modeling and linear predictive 

coding, will be examined. 

Cepestral Modeling 

Cepstral modeling represents a way to parametrically represent both the magnitude I .. 
and phase spectra through the use of the complex cepstrum. The complex cepstrum is an 

outgrowth of a larger area of signal processing known as homomorphic processing. The 

goal of homomorphic processing is to apply a genelic superposition operator to linear 

systems in order to provide a linear mapping between input and output signals [24]. For 

the case of convolution, the log operator is one such function capable of doing this. The 

general idea is illustrated in (3.1-3.4) below, wherei(n) , y(n), and h(n) refer to the inverse 

Fourier transforms of (3.3). 

y(n) = x(n) * h(n) (3.1) 

Y(ro) = X (co )H (co ) (3.2) 

10g[Y(ro)] = log[ X (co )]+ log[ H(w)] (3.3) 

y(n)=x(n)+h(n) (3.4) 
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The usefulness of these concepts can be seen by considering the case of voiced 

speech. Voiced speech is the result of passing a periodic impulse train through a vocal 

tract filter, as depicted in (3.1). By taking the log of the various terms, we can convert the 

convolution operation to a summation. It is known that the vocal tract filter is a low pass 

filter, thus a simple linear low pass filter could now be used to separate the vocal tract 

response from the excitation. This linear filtering in the log domain is referred to as 

liftering, a play on the word filtering. While this example is an oversimplified view, it 

serves to illustrates the goals of homomorphic processing. 

Let us examine the cepstral model in more detail. Assume that the vocal tract 

response is given by (3.5) below. The complex cepstrum (CC) is defined as the inverse Z 

transform of the complex log spectrum. The result of the complex log operation is shown 

in (3.6), where Hs(w) corresponds to the vocal tract transfer function, As(eo) is the 

magnitude response, and <1>(0) is the phase response of the vocal tract. 

Hs(w) = As (ro)ei<t>(W ) 

log[HsCw)] = log[As(w)] + j<l>(w) 

(3 .5) 

(3.6) 

The complex cepstrum differs from the real cepstrum (RC), or more commonly 

just the cepstrum, in that the RC is the inverse Z transform of only the magnitude 

spectrum. Thus we see that the RC doesn't contain any phase information due to the 

magnitude operation, while the CC preserves the phase infonnation. The computation of 

the cepstral coefficients is shown in (3.7). This equation applies for both the real and 

complex cepstral coefficients. The difference is that for the real cepstrum the log operator 

that is used is the traditional one, and for the complex cepstrum, the log operator used is 
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the one defined in (3.6). Note that the equation is given for the real cepstral coefficients, 

designated by c(n), instead of the complex cepstral coefficients yen), for illustration 

purposes only. Also note that the amplitude spectrum, Alro) , used in (3.7), is a smoothed 

amplitude spectrum, obtained by interpolating the data between the harmonic peaks. 

11=0,1 ,2 , ... (3 .7) 

For the complex cepstrum, the calculation of the phase information is an involved 

process. Special care must be taken to "unwrap" the phase to obtain the correct value 

[24]. If however, the vocal tract system function is assumed to be minimum phase [25], 

then the computation of the complex cepstral coefficients, yen), can be simplified greatly. 

Minimum phase systems contain poles and zeros which all lie within the unit circle. These 

systems have the property that the phase spectrum can be obtained directly from the 

magnitude spectrum. This is illustrated below in (3.8) where we see that the complex 

cepstral coefficients are obtained from the real cepsrral coefficients. 

yen) = ern) 

= 2c(n) 
=0 

for n = 0 
for n > 0 
for n < 0 

(3 .8) 

The procedure described above forms the basis of the use of cepstral coefficients 

to represent the spectrum [26]. Equations (3.9-3.13) show the exact fonn of this 

representation, where (3.10) results from the minimum phase assumption and the 

substitution of (3.8), and (3.12-3.13) result from comparing (3.11) to (3..6). 

~ 

log[H. (00)] = I y ",ej{J)m (3.9) 
m=---ctoO 
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.. 
log[Hs(w)] = Co +2LcmejWnl (3.10) 

m=l 

GO .. 

log[Hs(w)] = Co + 2 L.,cm cos(mffi ) - 2jLc", sin(mw) (3.11 ) 
m=1 m= 1 

GO 

log[AsCw)] = Co +2L.,cm cos(mffi ) (3 .12) 
m=! 

.. 
Q) s(w) = -2L Cm sin (mffi ) (3.13) 

m=1 

The determination of the cepstraI coefficients is performed using (3.7). The 

magnitude and phase spectra are then obtained from (3.12-3.13). It is reported that 40 

cepstral coefficients can accurately represent the spectrum [26]. An example of this is 

shown below in Figure 7, with the resulting amplitude spectrum superimposed upon the 

OFf. 
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Figure 7. Magnitude spectrum using 40 cepstral coefficients 
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As can be seen above, the overall fit achieved using 40 cepsrral coefficients is faid y 

accurate in representing the harmonic peaks. However, this number of coefficients is not 

conducive to a low bit rate application. One alternative is to reduce the number of cepsrral 

coefficients, which reduces the quality of the fit considerably. Figure 8 shows how the fi r 

degrades when the number of cepstral coefficients is reduced to 12. 
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Figure 8. Magnitude spectrum using 12 cepstral coefficients 

From Figure 8 it is obvious that 12 cepsrral coefficients is only moderately 

successful in modeling the harmonic amplitudes. The use of other parametric models may 

be more appropriate for low bit rate coders. The most common method of representing 

the spectrum at low bit rates is Linear Prediction (LP), the topic of the next section. 
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Linear Prediction 

Linear Prediction (LP) attempts to model the shape of the vocal tract using an 

autoregressive model. The vocal tract is generally modeled as the concatenation of 

nonunifonn lossless tubes. This tube model is considered a resonant cavity and is 

approximated using an all pole model, such as LP. These resonances suggest that the 

speech signal exhibits significant correlation from one speech sample to the next. LP 

attempts to predict the current speech sample based on a weighted linear combination of 

past samples. The use of LP modeling in speech coding is well known , with a number of 

low bit rate speech coders incorporating it in one fonn or another, i.e. LPC-l De [20] and 

EMBE [4]. An excellent discussion of LP modeling can be found in [27 and 28]. 

• 
Linear prediction coefficients can be coded efficiently using either scalar or vector 

quantization techniques. Typically, however, LP coefficients are first converted to an 

alternate representation, known as Line Spectral Pairs (LSP's), or Line Spectral 

Frequencies (LSF's) [29]. LSP's are known to be less sensitive to coding errors than LP 

coefficient's. An error in one line spectral coefficient affects the spectrUm only near the 

associated frequency. In other words, the LSP's are frequency selective, a trait not directly 

possessed by LP coefficients. 

Typically a fairly moderate order LSP spectrUm, between lOth and 18th order, can 

be coded using a small number of bits. As an example the EMBE coder mentioned in 

chapter 2, uses a vector quantization scheme to code an 18th order LP model (represented 

as LSP' s), using only 39 bits. 
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Let us examine how the LP model is obtained. Our derivation will be based upon a 

frequency domain approach instead of the more common time domain approach. While 

these two approaches produce identical results, the frequency domain version gives a 

better intuitive feel of what is happening in the context of spectral modeling. This follows 

the derivation presented in [28]. 

Assume that the vocal tract can be represented using an all pole form, given by 

(3.14) 

(3 .14) 

where G represents a gain factor , U k is the kth LP coefficient, and P is the model order. 

The frequency domain approach for computing the LP model attempts to minimize the 

ratio between the power spectrum of the original signal and that of the model. The power 

spectrum of the LP model is given by (3.15). 

(3. 15) 

To determine how accurately the model spectrum, P'p((/',), matches the original 

power spectrum, PCt!), the error criterion in (3.16) is used. The model coefficients, Uk. 

can be obtained by minimizing the error with respect to each coefficient. This operation is 

shown below in (3.17). It can be shown that (3.18) follows from (3 .15) and (3 .16). Rk 

represents the klh autocorrelation coefficient, given by (3.19). 

0.16) 
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dE =0 

dCt 
I 

1 it 

Rk = - f P((f)cos(kro)dw 
21t 

-it 

(3.17) 

(3.18) 

(3 .19) 

The solution for the LP coefficients and the gain are given by equations (3.20) and 

(3.21). Efficient methods ex.ist to solve (3.20), such as the Levison-Durbin recursion [18]. 

p 

L<xkRF- KI = -Rj (3.20) 
k=1 

P 

C 2 = Ro + I<X kRl: (3 .21) 
k=1 

Figure 9a below illustrates the LP spectral fit of a lOth order model to a given 

voiced frame. Figure 9b shows the resulting fit for an unvoiced frame. As can be seen 

from these figures, the LP model fits the spectrum in a general sense. While this is 

sufficiently accurate for unvoiced speech, this type of fit is often not accurate enough for 

voiced speech. As previously mentioned, sinusoidal coders, in particular, require a very 

accurate estimate of the harmonic amplitudes. Inaccuracies in these will lead to significant 

reverberation and an increased amount of buzziness in the reconstructed speech. 
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Figure 9a. 10th order LPC fit to voiced frame 
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Figure 9b. 10th order LPC fit to unvoiced frame 

29 

sC 



p:z 

The overall spectral fit can be improved by increasing the model order. It is we]] 

known that the autocorrelation function of a segment of speech, R(m), and the 

autocorrelation function of the impulse response of the model, RsCm), are equal for the 

flIst P+ 1 values [18]. Thus by increasing the model order P, the autocorrelations of the 

speech signal and the model will match for a larger amount of data. In fact , any spectrum 

can be arbitrarily closely approximated by an aU pole model simply by increasing the model 

order. Most sinusoidal coders increase the model order so as to improve the spectral 

representation. Figures 10 and 11 ill ustrate the improvements for a 14th order and 18th 

order model respectively. 

106~-------.--------.--------'---------r--------T1 

101L-------~--------~------~~------~--------~ 
o 50 100 150 200 250 

Figure 10. 14th order LPC fit to a voiced frame 

30 



fjiSE 

106.--------,--------,-----__ ~~------_r--------~ 
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o 50 100 150 200 250 

Figure 11. 18th order LPC fit to a voiced frame 

Thus we can see that the 14th and 18th ord.er LP fits are far superior to the 10 th order LP fit 

for voiced speech. 

The gain value computed in (3.21) is designed to provide an accurate overall 

match to the energy of the original signal. For harmonic coders, however, the gain should 

match the harmonic amplitudes primarily, not the overall spectrum. For female speakers in 

particular, the overall match presented in (3.21) can lead to an inaccurate gain leve.l for the 

spectra of voiced speech. This is due to the relatively wide spacing of the harmonics and 

the small amount of inter-harmonic energy. A more accurate gain measure is shown in 

(3.22) [4], where COo corresponds to the fundamental frequency and P(k) and P1p(k) are the 

original and model power spectra. 
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I P2(ro ok) 
G 2 = _~_=.;....l ___ _ (3.22) 

Ip \ (w ok) 
k=l 

Here the gain is determined as the ratio of the energy of the spectra, sampled at the 

harmonics. This provides a better match to the original spectrum for voiced speech. Thi s is 

illustrated in Figure 12 below, where the dotted line corresponds to the gain calculation 

from (3.21), and the solid line represents the new gain value from (3.22). 
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Figure 12. Gain based on sampled spectrum 

Ideally for a harmonic coder, such as MBE, we would like to have an accurate fit 

at the harmonic amplitudes. In essence, the model would not need to represent the 

continuous spectrum, but a discrete spectrum containing only the hannonic amplitudes. 

However, fitting an LP model to a discrete spectrum is problematic [30]. 
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A new spectral model, known as Discrete All Pole modeling (DAP) [31], attempts 

to overcome this problem. It is demonstrated in [31] that minimizing (3.16), for a discrete 

spectra, translates into crying to fit a continuous LP spectrum to a discrete specrrum. This 

results into equating the first P continuous autocorrelation coefficients with the ftrst P 

discrete autocorrelation coefficients. The discrete autocorrelation, R(i), is an alia ed 

version of the continuous autocorrelation, R co7lr(i) as is shown in (3.23) . 

.. 
R(i) = 'IRcon/Ci-IN) (3.23) 

I=~ 

It is evident from (3.23) that as the number of discrete frequencies, N, decreases, the 

aliasing will get worse. This in tum implies that as the pitch increases, the aliasing 

increases. 

The underlying reason for this can be traced back to the error criterion used in 

computing the coefficients of the all pole filter. The error criterion used in equation (3.16), 

possesses a "cancellation of errors" property [27]. That is, errors with P(w) > PileD) tend 

to cancel the errors where P(w) < Pliw). This is somewhat easier to visualize in the 

following scenario. Taking the log of (3.16) and assuming that P(w) is smooth in relation 

to P1p(W). This yields a new error criterion, £ ' , shown below in (3.24). 

E'= ~ j log pew) dw 
2n -J[ ~p (w ) 

(3.24) 

From this equation we see that these types of specrral errors are capable of cancellation. 

Numerous alternate error measures have been proposed, such as the Itakura -

Saito error measure [32]. This is the error measure that DAP is based on. DAP uses an 
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iterative technique to obtain the correct spectral representation for discrete spectra. The 

final spectral envelope is arrived at using a gradient descent technique. Due to it' s 

computational complexity, this iterative technique is one of the major drawbacks of the 

DAPalgorithm. In the following chapter an alternate method for improving the spectral fit 

of LP for harmonic coders is presented. This method is based on the use of spectral 

interpolation prior to calculation of the LP modeL 
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CHAPTER IV 

SPLINES AND SPECTRAL WARPING 

Spectral Interpolation 

In the previous chapter we saw some of the problems that are inherent in 

performing linear prediction on discrete spectra. These problems are due to the aliasing 

that occurs in the autocorrelation domain. This aliasing can be partially avoided by 

interpolating the discrete points to obtain a smoother, more correlated spectral envelope. 

This chapter will examine the effects of interpolation on the linear prediction model, with 

particular emphasis on the cubic spline interpolation function. 

A number of different interpolation functions have been proposed for use in 

spectral modeling [30]. These include simple linear interpolation, parabolic interpolation 

functions, and cubic spline interpolation functions. The later approach has recently been 

taken by a number of speech researchers [33, 34 and 35]. The cubic spline is the 

mathematical equivalent of the mechanical splines that draftsmen use to smoothly connect 

points. Cubic splines, in this case, are used to smoothly connect the harmonic amplitudes, 

so as to improve the resulting fit obtained by an all pole model. Cubic spline interpolation 

can be viewed as a preprocessing stage before the application of linear prediction. 

First, we need to more formally present the spline. The spline functions will not be 

derived here, only presented. The spline model used in this paper is obtain by a pragmatic 

approach that emphasizes performance more than mathematical vigor [36]. For a more 

mathematical treatment of splines, the reader is directed to [37]. 
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The starting point for this approach is the simple cubic polynomial function, given 

in equation (4.1) 

s.(x ) =ax3 +b.x 2 + c.x +d. , I ~ , I i = 1, .. ,L (4.1 ) 

where Si(X) represents the ilb spline connecting points (Xi,Yi) and (Xi+I,Yi+l). Note thal L in 

the above equation represents the total number of individual spline segments. These 

individual spline functions are specified by four coefficients (ai, bi, Ci, d j ) which are solved, 

based on a set of constraints. These constraints are used to tailor the spline to our 

particular use as an interpolation function between hannonic amplitudes. The first 

constraint is fairly obvious, the spline must pass through points (Xi ,Yi) and (Xi+hYi+l). The 

spline is also required to bend smoothly around these points. In other words, we require 

the first and second derivatives at (Xi,Yi) and (Xi+l,Yi+l) to match. The spline equations are 

given in (4.2-4.5) below. These equations represent the contraints on the general cubic 

polynomial given in (4.1 ). These contraints are chosen to enforce continuity and 

smoothness at the polynomial boundaries. Equation (4.6) results from expressing the 

general spline equation (4.1) in an alternate fonn and enforcing smoothness of its first 

derivatives [36]. The unknowns in the equations include the spline coefficients ai. bi• Ci , 

and di, as well as the second derivatives of the each spline segment, Xi . Two more 

conditions are needed to solve this system of equations, namely the conditions on the 

derivatives at the 1 st and L th spline segments. These are shown below in (4.7-4.8). 

s (I) = a.[.3 +b.[2 +c./. +d = y(/.) 
i ' I I 'J I I J I 

(4.2) 

(4.3) 

s "(I) = 6a./. + 2M2 = P 
i I I I I I I 

(4.4) 
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" ( ) ? S I 1 = 6a./ I + 2b/. 1- = p. 1 i ,+ I J+ I r+ ,+ (4.5) 

(4.6) 

6[ Y(!i+! ) - Y(( ) _ y(t; ) - Y((-l )] 
f)-I. I-/' ) ,+ I I 1-

PI = 0 (4 .7 ) 

(4.8) 

The actual solution to this system of equations is gi ven in [36]. From (4.1) we see 

that the entire spline function is the superposition of these smaller splines connecting [he 

harmonic amplitudes. An implementation of this procedure is also found in [36]. 

Now that the basis for cubic splines has been presented, we turn our attention to 

the specific task of fitting a cubic spline model to a speech spectrum. In the previous 

chapter it was mentioned that linear prediction performed acceptable for unvoiced frames, 

but was not as effective for voiced frames. Thus, the use of spline preprocessing will be 

restricted to voiced frames only. 

The splines require a set of control points, or knots, to control the positioning of 

the spline itself. The knots are chosen as harmonic amplitudes, since these are the values 

we wish to model. Figure 13 illustrates the entire procedure of using cubic splines in 

conjunction with LP modeling to accurately fit the harmonics. It is assumed that the 

speech is already segmented into frames in which the speech waveform is quasi-stationary, 

denoted by s(n). The output of this procedure is the enhanced model spectrum SIP(k). 
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s(n) Compute Sample Harmonic Fi t Cubic 
------t STFT of spectrum for r-----t Compression r-----t Spline Model 

---speech frame Harmonic Lo Spectrum 

Perceptual axis Fit All-Pole Perceptual axis Silk) 
~ scaling Model LO ~ Ie-scali ng 

Spline 

Figure 13. Interpolation procedure for voiced speech 

The first block represents the traditional estimate of the short time spectrum of 

speech signal. This is typically accomplished using the Discrete Fourier Transform (OFf). 

Implicit in this block is the windowing operation that must precede the DFT. A Hamming 

window of 15-30 msec is typically used. Longer duration windows yield a higher 

frequency resolution at the expense of temporal resolution. The calculation of the DFT is 

shown below in (4.9) where, N is the size of the DFT, sen) corresponds to the speech 

signal for the current frame and w(n) is the window used. 

N- l - 2ItjJ:n 

S(k)= l:s(n)w(n)e-N- O~k<N-l (4.9) 
n=O 

As previously mentioned, the goal of the spectral representation for a harmonic 

coder is the accurate representation of the harmonic amplitudes. The second block in 

Figure 13 represents the sampling of the spectrum for these amplitudes. 

The locations of the harmonics are obtained based on the pitch value previously 

calculated for the frame. This calculation is not shown in Figure 13 and is assumed to have 

taken place in a previous stage. A high degree of accuracy is required for this pitch 

estimate. Inaccuracies in the pitch estimate will introduce errors in the sampling of the 
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spectrum that worsen as frequency increases. As an example, consider a speech signal 

sampled at 8 KHz, with a fundamental frequency of 200 Hz. This translates into a pitch 

period of 40 samples. If the pitch estimate is off by 1 sample, sayan estimate of 41 

samples, this will translate into an error of roughly 100 Hz at the upper end of the 

spectrum. These small errors will alter the sampling points of the spectrum. This will 

introduce inaccuracies in the spectral envelope generated by the spline interpolation. 

The founh block compresses the hannonic amplitudes. A logarithmic compression 

function is used to reduce the dynamic range of the amplitudes. The form of this 

compression function is given below in (4.10), where A( I) is the DFr magnitude spectrum 

sampled at the harmonics, Ac(l) is the compressed harmonic spectrum, and L is the number 

of harmonics in the frame. 

1~1 ~L (4.10) 

This is similar to the approach taken in scalar quantizers, such as ~law . It has been I 

I 
• 

reported [30], that the use of harmonic compression improves the overall spectral match. 

In chapter 6 a quantitative evaluation of this procedure is presented. 

The blocks labeled perceptual axis scaling and perceptual axis rescaling refer to the 

warping of the traditional frequency axis onto a perceptually more meaningful scale, such 

as the bark or mel scales. These scales are based roughly on the frequency response 

characteristics of the human ear. These concepts will be explored later in this chapter. 

The two remaining blocks represent the bulk of the work: Fitting a spline to the 

compressed harmonic amplitudes and generating a linear predictive model based on the 
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spline envelope. It is these two blocks that form the foundation for much of the upcoming 

discussion. 

The actual fitting of the cubic spline to the hannonics amplitudes is accomplished 

using (4.2-4.8), where the y(li) corresponds to the hannonic amplitude located at DFf 

index point I;, where Ii is a mUltiple of the pitch, and L is as previously defined. 

Figures 14a and b show the result of fitting a cubic spline to a voiced frame for a 

male and a female speaker. As mentioned previously, all of the hannonic amplitudes serve 

as control points for the spline. 

106.--------.------~--------,_------_,--------~ 

101~------~------~~-------L------~--------~ 
o 50 100 150 200 250 

Figure 14a Spline envelope for voiced frame, male speaker 
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Figure 14b. Spline envelope for voiced frame, female speaker 

Once the spline envelope is obtained, the envelopes are expanded using the inverse 

of the compressing function. A LP model is then fitted to the envelope using the 

techniques discussed in the previous chapter. No special care is needed when fitting a LP 

model to an unwarped spline envelope. If a warping function is fust applied to the spline 

function to emphasize the perceptually important frequency ranges, then special care must 

be taken when fitting the LP model. This topic will be explored more thoroughly later in 

this chapter. Figures 15a and b show the effect of fitting a 14th order LP model to the 

spline envelope. The original LP model is also shown in each plot as the dashed curve. 
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Figure 15a. Spline enhanced LP model, male speaker 
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Figure 15b. Spline enhanced LP model, female speaker 
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As can be seen from the above figures, the spline preprocessing stage improves the 

spectral fit obtained through linear prediction. The most noticeable improvement appears 

in the lower half of the spectrum, around and below the first and second fonnant. This 

area is perceptually important, since errors at the low frequency end of the spectrum are 

more noticeable than errors in the upper frequencies. 

Quantitative results of spline preprocessing are presented in chapter 6. At this 

point it is interesting to examine the underlying assumptions in generating the spline 

envelope. As presented, the cubic spline interpolation function is matched equally to all the 

harmonic amplitudes. In other words, the cubic spline envelope is not biased toward any 

particular spectral region. This approach allows an LP model to better represent the 

spectral amplitudes as a whole. However, it is well known that each harmonic is not 

perceptually equal. As just mentioned, errors in the low frequency, high energy harmonics 

are much more noticeable than errors in higher frequency, lower energy harmonics. Thus it 

may be advantageous to weight the spline model to track the lower frequency harmonics 

better. Alternatively, the LP model can be biased toward the lower frequency harmonics. 

The latter is the approach taken in this paper. The biasing that is used involves mapping 

the spectrum onto a more perceptually meaningful scale. in this case, the mel scale. 

Spectral Warping 

Spectral warping involves the transformation from one frequency axis to a 

different frequency axis. The warping function that will be examined in this paper is the 

mel warping function [25]. The mel scale is the result of a set of psychoacoustic 
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experiments into the way pitch is perceived. The mel itself.is a unit of perceived pitch. In 

these experiments the frequency of 1000 Hz was arbirrarily assigned a value 1000 mels. 

Listeners were then asked to increase the frequency until the pitch that they perceived was 

twice the original. This frequency would be assigned the value of 2000 mels. The 

experiments continued in this manner. The results ind.icate that below roughly 1000 Hz, 

the frequency response of the ear is approximately linear, while above it the response is 

more logarithmic. A closed fonn expression for this mapping is given in (4.11), where,fh: 

represents the frequency in hertz andfmel$ corresponds to the warped frequency expressed 

in mels. This plot of this function is presented below in Figure 16. 
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Figure 16. Mel warping function 
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As was mentioned previously, the goal of mel warping is to better model the more 

perceptually important parts of the spectrum, such as the lower frequency , higher 

amplitude regions. A number of recent papers on the use of splines in conjunction with an 

all pole spectrum indicate that the use of spectral warping improves the quality of the 

resulting speech [33 and 34]. This improvement is usually characterized as a decrease in 

the amount of reverberation in the omput speech. 

Refening to Figure 13, we can see that the use of spectral warping occurs after the 

spline fit has been generated for the spectrum. This is the opposite of the usual method 

employed. The usual course of action is to warp the magnitude spectrum and then 

compute the spline fit to the warped spectrum. However, this approach has some potential 

problems. Since the spectrum is discrete data, some detail will get lost due to the warping. 

Higher frequencies will get mapped onto the same index points, thus causin g a los in 

data. This is particularly worrisome when the resulting spectrum will be sampled for the 

hannonic amplitudes as previously discussed. Thus a preferable solution is to warp the 

spline envelope instead. This greatly reduces the chance that data will be lost at higher 

frequencies, due to the smoother and slower varying nature of the envelope, compared to 

the original DFT magnitude spectrum. 

The actual mathematical process of warping the spline envelope, along with the 

discrete fonn of (4.11) is shown below in (4.12-4.13). The length of the warping , N' , is 

given by (4.14), Fs corresponds to the sampling frequency , and N is the length of the 

original OFT. 
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Figure 17 shows the result of warping the spectrum for a male speaker. Notice that 

there are now only 149 unique OFf indexes, compared to 256 for a 512 poim DFT. For 

illustration purposes only, the actual OFT has also been spectrally warped, along with the 

spline envelope. 
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Figure 17. Mel warped spline and spectrum 

46 



Special care must be taken when fitting a linear predictive model to a waIped 

specn-um. Refening back to (3.19), pew) is assumed to be spaced equally around the 

upper half of the unit circle from 0 to 1t. Before fitting an LP model to this data, the 

spectrum must be replicated so that it is an even function of frequency. Thus pew) will 

now range from 0 to 2n on the unit circle, with 0 to 1t being unique. Warping a spectrum 

effectively reduces the spacing between DFT coefficients and decreases the length of [he 

replicated spectrum. If an LP model is blindly fitted to the warped spectrum the resulting 

fit will be incorrect. Instead the LP model must be adjusted to follow the new frequency 

scale. As an example, for the unwarped spectrum N=512 (assuming a 512 point DFT), 

while the warped spectrum has N=298. Properly replicating the spectrum and adjusting the 

sampling, N, will allow the spectrum to be modeled by LP. These operations are shown 

below in (4.15-4.17), where N' is obtained from (4.14). 

(4.15) 

Osi s P (4.16) 

p 

'La. kRln-kl = -Rn 1sflsP (4.17) 
k= l 

Figure 18 below illustrates the effect of fitting an LP model to a waIped spectrum. 

The effect of unwarping the LP model back to the origillal frequency axis is shown in 

Figure 19 (dashed curve), along with the corresponding spectral fit obtained through LP 

without the use of spectral warping (solid curve). 
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Figure 18. LPC fit to warped spectrum 
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Figure 19. Warped LPC vs. Non-Warped LPC 
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As can be seen from Figure 19, warping the spectrum prior to fitting a LP model 

improves the match at lower frequencies, while sacrificing it at higher frequencies. The 

warping operation, in effect, increases the pole density at the low end of the spectrum 

while decreasing it at the high end. Perceptually, an accurate match at the lower end of the 

spectmm, where the energy is greatest, is more desirable than an even match acros the 

entire spectrum. Chapter 6 provides a detailed discussion of the results of spline 

preprocessing as well as spectral warping. 

In this chapter, two techniques for improving the spectral representation of the 

harmonic amplitudes through linear predictive analysis have been presented. The stated 

goal of a spectral model is to obtain an accurate representation of the harmonic amplitudes 

for voiced speech and an average fit for unvoiced speech. An interesting question ari ses as 

to whether an accurate fit in a signal-to-noise ratio sense results in the best perceptual 

quality of the resulting speech. This is the question is examined in the following chapter. 
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CHAPTER V 

POS1FILTERING 

It is known that while a processed speech signal may be close to the original in a 

signal-to-noise ratio sense, it may not sound like the original. Postfiltering attempts to 

alter the signal in such a way that while the signal-to-noise ratio may decrease, the 

perceived quality will increase. Numerous speech coding algorithms in use today employ 

some fonn of postfiltering to improve the synthetic speech quality. 

The reasons for this apparent contradiction between signal-to-noise ratio and 

perceived quality is based upon the theory of auditory masking. Auditory masking 

suggests that a signal at one frequency may be obscured by a larger signal at a nearby 

frequency, i.e., it would be masked by it. In the case of speech coders , noise in the 

spectrum resulting from quantization will be masked in the formant regions. where the 

energy is relatively high, but will not be masked in the valleys between formants , where 

the energy is relatively low. The noise in the formant valleys decreases the perceptual 

quality of the speech. Noise in one region of the spectrum can only be feduced by shifting 

it into another region of the spectrum. Thus the usual procedure is to shift the noise from 

the fonnant valleys to the formants themselves, where they are effectively masked by the 

larger amplitUdes. 

A typical filter used to accomplish this is based on the LP synthesis filter, with the 

poles moved radially toward the origin. This is accomplished by multiplying each predictor 

coefficient by a fraction that is exponentially weighted. This process is referred to as 
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bandwidth expansion, since it has the effect of broadening the formants. The fonn of this 

filter is given in (5.1) below. As before, N represents the size of the OFf. In the equation 

that follow it is assumed that k lies in the range 0:::; k < N - 1 . 
2 

(5.1) 

A typical value of 0.8 is used for u. This corresponds to roughly 570 Hz of bandwidth 

expansion. Figure 20 below illustrates the effects of this type of filtering on a typical 

spectral envelope for voiced speech. The solid line represents the original spline enhanced 

LP specnum and the dashed line represents the frequency response of the combined LP 

filter and the all pole postfilter, with a = 0.8. 

107~------~------~~------~------~~------~ 
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Figure 20. Effect of an all pole postfilter on a voiced spectrum 
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As can be seen from the above figure, the fust fonnant is amplified, decreasing the 

amount of perceived noise by increasing the domination of the fust formant in the resulting 

speech. While this does decrease the perceived noise level, the specrral tilt that is induced 

results in speech that is muffled and heavy. 

One solution to this is to use a pole-zero postfilter, such as the one proposed by 

Chen and Gersho [38]. This filter has the following fonn 

p - 2n:nk 

1- Iex"a"e-N [ . -21<nk] 
H (k ) = n=l ]-Ile N 

p -21<nk ~ 

1- L~"al1efl 

(5 .2) 

k=l 

where a and ~ determine the amount of filtering, and ~ controls the relative brightness of 

the resulting speech. Typical values for a, ~, and 11 are 0.5, 0.8, and 0.5, respectively. The 

denominator represents the traditional all pole postfilter as given in (5.1). The numerator 

of (5.2) is designed to reduce the specrral tilt introduced by the all pole postfilter. The 

numerator introduces zeros into the spectrum that have the same phase angles as the 

poles, but with smaller radii. As can be seen from (5.2) an additional high pass filter is 

used to further eliminate the low pass characteristics of the postfilter. Figure 21 illustrates 

the final postfiltered spectrum, with the solid and dashed lines corresponding to the LP 

spectral envelope and the postfiltered envelope. 
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Figure 21. Effect of pole-zero postfiiter on voiced spectrum 

As can be seen from Figure 21, the postfilter attenuates the regions between the 

formants, but preserves the formant peaks fairly well. The last fonnant shows some 

attenuation, but this is not as perceptually important as the fIrst two fonnants. The 

postfilter presented in (5.2) is one of the most popular forms of postfilters in use today. 

Numerous standards incorporate it or a slight variant of it. These standards include ITU -T 

G.723 [15], FSI016 [13] and ITU-T G.728 [14]. 

Previously it was stated that the reason for the use of a postfilter was to reduce the 

noise introduced through quantization. This is cenainly the reason it is used in the three 

speech coding standards just mentioned. However, in a sinusoidal coder the effects of 

quantization are not as pertinent, indicating the noise in the spectrum probably results 

from another source. The apparent noise level may be a result of the initial analysis of the 
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speech signal. It is reasoned that the side lobe amplitudes introduced by the initial 

windowing of the speech signal is a primary cause (34]. Most speech coders use a 

Hamming window to segment the speech signal. The window side lobes are approximately 

43 dB below the main lobe of the window. This, in effect, limits the available dynamic 

range of the input speech signal, resulting in fonnant valleys that have a higher amplitude 

than is present in the original speech signal. Therefore, a postfilter, similar to (5.2), could 

be used to attenuate these regions. 

An alternative fonn of postfiltering is presented in [30] and [34]. These postfilters 

are both oriented toward sinusoidal coders instead of wavefonn coders. The postfilter 

techniques are based on the ideas and observations presented earlier. The general form of 

this postfilter is shown below in (5.3-5.5). 

F(k) = IR(k)1 
iT(k)i 

F k _ F(k ) 
IWrm ( ) - max[F (k)] 

Pf (k) = [Fnorm (k) r 

(5.3) 

(5.4) 

(5.5) 

In equations (5.3-5.5), H(k) represents the spectral envelope, T(k) a spectral tilt 

correction function, F(k) the resulting flat spectrum, and F lIOrm(k) the gain normalized nat 

spectrum. In (5.5), y takes on values less than 1.0, corresponding to a compression 

function. The basic methodology in this type of postfiltering approach is to first compute a 

flattened spectrum shown in (5.3). This spectrum has the norrnal spectral tilt removed 

from it. The spectrum is then normalized to have a gain of unity, eq. (5.4), and the 

compression function is applied, eq. (5.5). Since the flat spectrum has been gain 
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nonnalized, the formants should have values close to 1.0, while the valleys between the 

formants are substantially less. Thus the compression function will reduce these valleys, 

while minimally altering the formants. 

The spectral flattening function , T(k) , can be computed using numerous methods. 

The two primary methods will be discussed here. The method presented in [30] simply 

uses a bandwidth expanded function, such as the one presented in (5.1), with 1-0.5, to 

flatten the spectrum. An alternative method is used in [34] to obtain T(k). In this method, 

a simple ftrst order predictor is used. The form of this predictor is 

T(k)= __ 1 __ 2-trk (5.6) 

1- pe N 

with p representing the fIrst normalized autocorrelation lag as shown below in (5.7 ). 

L 

I A(k) 2 cos(km 0 ) 

.1:=1 P=---L----

L A(k) 2 
k= l 

(5.7) 

In (5.7) A(k) refers to the e harmonic amplitude, L corresponds to the number of 

harmonics, and <Do represents the fundamental frequency. The compression factor, y, is 

chosen experimentally through listening tests to be 0.3. Figure 22 illustrates the effects of 

this postfilter on a frame of voiced speech. As in the past plots, the solid curve represents 

the original LP spectral envelope while the dashed curve represents the postfiltered 

envelope. 
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Figure 22. Postfilter for sinusoidal coders 

As can be seen from the above figure, the valleys between the formants are 

significantly attenuated at the expense of the last fonnant. An adaptive highpass filter can 

be used to reduce trus attenuation. The highpass fIlter should adapt based upon the 

spectral tilt present. For voiced speech, this is predominantly low pass in nature, while for 

unvoiced speech, the spectral tilt has a more highpass nature. Thus the adaptian should 

reduce significantly the contribution of the highpass filter for unvoiced speech. The fonn 

of the adaptive highpass filter is shown below in (5.8-5.9), where N corresponds to the 

length of the OFT, ~ is the adaption parameter, and K is a constant weighting factor. 

27tk 

H hp (k) = 1 - K M-e -N 
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(5.8) 



N 
- - I 

L p/ (k )COS(k 41t ) 
k =1 N 

11 = N 
- - 1 
2 

Ip/ (k) 
k= l 

(5 .9) 

The adaption coefficient in (5.9) is the first nonnalized autocorrelation coefficient. 

For unvoiced speech the function will take on values close to zero, while for voiced 

speech the function takes on values close to one. The adaption coefficient in (5.8) is 

weighted by a constant factor, K=O.2. to reduce it ' s effect. Figure 23 illustrates the effects 

of the adaptive highpass filter, where the dashed curve represents the original postfiltered 

spectrum, and the solid curve shows the effect of incorporating the adaptive highpa s 

filter. Notice that in this case the amplitude of the highest frequency fonnant is increased 

slightly at the expense of the lowest frequency fonnant. 
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Figure 23. Postfiltering with adaptive highpass filter 
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The postfilter described by (5.3-5.9) was incorporated into the EMBE speech 

coder. A brief description of this coder and the results of the inclusion of postfJltering are 

presented in the next chapter. 
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CHAPTER VI 

RESULTS 

The previous chapters have presented several ways to improve the spectral match 

obtained through linear prediction. As was addressed earlier, the goal of a spectral model 

for a sinusoidal coder, such as MBE, is to represent accurately the harmonic amplitudes. 

The results of the various modifications to linear prediction are presented in this chapter. 

Quantitative results will be presented fIrst followed by qualitative or perceptual results. 

Additionally, the computational considerations of linear prediction will also be discussed. 

To quantify the results of the various modifications to the spectral fit , a suitable 

error criterion must be chosen. The most popular error measure is the standard signal-to-

noise ratio (SNR). Other error measures, however, have been reported to give 

perceptually more significant results. One of these is the spectral distortion measure (SO) 

[39]. The form of this error measure is presented below in (6.1) where Fs is the sampling 

frequency and Sj and Pi represent the original and model spectra for the i lh frame. 

D2 = ~ f [lOlog(Sj(J)) -lOlog( P;(J))Y df 
Fs 0 

(6.1) 

Since the goal for a harmonic coder is the accurate representation of the harmonic 

amplitudes, the error criterion presented above should be modified to reflect this 

requirement. This is accomplished by computing the spectral distonion over only the 

harmonics, instead of the entire spectrum. To further constrain the error measure, the 

voicing decisions for the various harmonics, or bands of harmonics in the case of an MBE 

coder, should be included into the error measure. The reason for this is the fact that 
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harmonics that are declared unvoiced can be more grossly matched than voiced hanllonics . 

Thus they are not included into the error criterion. 

This new spectral distonion measure is shown below in (6.2), where M 

corresponds to the number of hannonics declared voiced, 0J0 the fundamental frequency, 

and S(mok) and P(wok) are the harmonic magnitudes. It should be noted that S(wok) and 

P(Wok) are restricted to the harmonics that are present in voiced bands only. 

(6.2) 

Now that a suitable error measure has been obtained, the results for the various 

improvements, aIterations , or modifications to the spectral modeling procedure are 

presented in Table I and Table II. 

Table I. Spectral distortion measures for increased LP orders 

Item Spectral Modification Spectral Distortion (SD) (dB) 

1. 10th order LP model 1.9618 

2. 14 lb order LP model 1.6607 

3. 18lh order LP model 1.5364 

4. 22nd order LP model 1.4199 
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Table ll. Spectral distortion measures for LP improvements 

Item Spectral Modification Spectral Distortion (SO) (dO ) 

l. 14th order LP + spline 1.3902 

2. 14th order LP + spline + compression 1.3514 

3. 14th order LP + spline + compression + warping 1.3910 

4. 18tb order LP + spline + compression 1.Q169 

Before discussion the meaning and significance of the various table entries, the 

spectral distortion numbers must be put into perspective. A common threshold used in 

speech coding is that an average spectral distortion of 1 dB is inaudible [40]. This does 

not mean that differences in errors of less than 1 dB are inaudible, just that 1 dB 

represents the bottom threshold, below which there appears no difference in perceptual 

quality. While these numbers do not strictly satisfy the 1 dB requirement for transparent 

quantization, they do illustrate the effects of the various changes. In fact, for the case of 

the 18th order spline preprocessed LP model, the results are effectively at the 1 dB 

threshold. 

Table I illustrates the effects of increasing the number of poles that are used to 

model the spectrum through linear prediction. This topic was discussed in Chapter 2, 

where it was shown that any spectrum can be arbitrarily matched by incfeasing the number 

of poles. This fact is supported by the table entries. An alternative viewpoint follows from 

the vocal tract model itself. A common assumption is that the human vocal tract is 

composed of resonances only. This is not entirely correct. Certain phonemes will 

introduce anti-resonances into the vocal tract, due to the coupling of the nasal cavity. 
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These anti-resonances will appear in the specrrum as zeros. Thus by increasing the number 

of poles, the zeros (anti-resonances) can be modeled. 

Table II relates the effects of the various proposed enhancements to the LP model. 

The fITst entry illustrates the effect of fining a LP model to a cubic spline envelope 

representing the hannonic amplitudes. As indicated by the table, the spline fit significantly 

improves the fit between the LP model and the original specrrum. This improvement 

allows a 14th order splined LP model to better represent the spectrum than an 22nd order 

non-splined LP model, in terms of spectral distortion. 

The second item in Table II shows the effect of initially logarithmically 

compressing the hannonic amplitudes prior to the calculation of the spectral model. This 

concept was discussed in Chapter 3. By comparing items 1 and 2, we can see that initially 

compressing the hannonics results in a slightly better spectral match, in terms of spectral 

distortion. It is not known that if the use of other compression functions, such as a square 

or cube root compressor would provide lower spectral distortion than a logarithmic 

compressor. 

The effect of spectral warping is illustrated by item 3 in Table ll. As can be seen 

from the table, the use of a warping function actually increases the overall spectral 

distortion. This is to be expected. The warping function maps the spectrum onto a scale 

that is linear below 1,000 Hz and logarithmic above that, thus some detail at higher 

frequencies will be lost. This procedure was presented in Chapter 4. It is generally agreed, 

however, that all frequencies are not perceptually equal. Frequencies with higher energy 

will tend to mask some of the lower energy frequencies. This concept is the basis for an 
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entire area of study, known as auditory masking. In the case of our spectral model , these 

higher energy frequencies correspond to the lower end of the spectrum, especially, the 

area around the fIrst formant, roughly below 1,300 Hz. To illustrate the performance of 

spectral warping, the distortion measure presented in (6.2) is recomputed based on two 

frequencies bands, one from 0 - 1,300 Hz, and the second from 1,300 Hz - 4,000 Hz. 

These results are presented below in Table Ill. It should be noted that the specific error 

measures are normalized based on the number of voiced hannonics in each band. with the 

combined error measure normalized to the total number of voiced harmonics. 

Table ill. Spectral distortion for warped frequency scale 

Item Specific Spectral Model SD below SD above Total SO 

1,300 Hz (dB) 1,300 Hz (dB) (dB) 

J. 14th order LP, spline, compo 1.2722 1.4856 1.3514 

2. Item 1. + wruping 0.95822 1.7454 1.3910 

As can be seen from Table ill, the warped spectral model has a lower spectral 

distortion for the first third of the spectrum, compared to the non warped model, and a 

higher distortion for the rest of the spectrum. It is believed that, perceptually, the lower 

frequency match is more important than an accurate match at the higher frequency 

harmonics. It is interesting to note that even the non-warped spectral model performed 

slightly better in the lower frequency region than in the higher frequency region. 

Returning to Table il, the last item corresponds to the use of an 18 th order spline 

preprocessed LP model with initial harmonic compression. As can be seen the resulting 

spectral distortion for this case is approximately at the 1 dB threshold. However, for low 
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bit rate coders, such as the 2,400 bps EMBE coder, this higher order model poses certain 

problems. These problems involve spectral quantization and computation complexities due 

to the model order. 

The problem of spectral quantization is a result of the coding of the LP model for 

transmission. As mentioned in Chapter 3, LP coefficients are first converted to an alternate 

representation, Line Spectral Pairs (LSP's), prior to transmission. These are then 

quantized to a small number of bits for transmission. As an example, the EMBE speech 

coder uses a vector quantizer to code the 18 LSP's using only 39 bits. The resulting 

spectral match does however exhibit some degradation due to this coding. This is caused 

by the limited number of bits used to represent the LSP's. By decreasing the original LP 

model order to 14th, a better quantization of the spectrum can be obtained with the bits 

available. Recent experiments have indicated that a 14th order LSP model, vector 

quantized to 37 bits exhibits significantly less degradation than the 18th order model at 39 

bits. An 18th order model, using more bits, would be better suited to a slightly higher bit 

rate, such as 4,800 bps. 

The use of a higher order model, such as 18th order, also poses somewhat of a 

problem for real time implementations. In a real time implementation of an MBE based 

speech coder using linear prediction, such as EMBE [4], the computation of the LP 

parameters represents a signifi.cant amount of computation time. By decreasing the model 

order by 4 coefficients, in tum reduces the time required to calculate the model. This 

decrease in execution time can be critical in a real time implementation. Based on these 
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two factors, quantization and computation complexity, the 14th order model was chosen 

over the 18th order for implementation. 

Computational Considerations 

In the previous sections we have examined the effects of the various improvements 

and alterations to the spectral fit obtained by linear prediction. We have not yet addressed 

any computational considerations of the calculation of the LP model. The model is 

calculated based on the discussion and equations presented in Chapter 3. It is known that 

the resulting spectral model may be ill-conditioned, thus leading to model instability. The 

reason for this ill-conditioning is due to the sometimes large spectral dynamic range that 

may be present in the speech signal [41]. 

The use of a white noise correction factor has been proposed in [41] to correct 

this. By multiplying the Oth autocorrelation coefficient in the model Ro, by a small delta, in 

this case 1/256, the ill-conditioning can be avoided. This has the effect of adding white 

noise to the spectrum 24 dB below the average value of the spectrum. Figure 24 below 

illustrates this effect 
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Figure 24. Whitened LP spectral fit (1/256) 

As can be seen in Figure 24, the use of a white noise correction factor limits the 

dynamic range of the speech spectrum. In the case of a correction factor of 1/256, the 

spectrum is limited to 24 dB below the average value. The use of white noise correction 

was originally proposed in conjunction with the lTU-T G.728, LD-CELP coder [14]. In 

this coder, the reduced spectral dynamic range is largely compensated by the excitation 

sequence. In sinusoidal coders, such as EMBE, the excitation does not compensate for 

this amount of white noise correction. Thus the resulting speech has an artificial noise 

signal added to it, introducing a roughness to the synthetic speech signal. 

Experiments have shown that this roughness can be eliminated, while still 

maintaining the stability of the LP model. Reducing the amount of white noise correction 

to 1/24576, white noise is added to the spectrum approximately 44 dB below the average 
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value. This appears sufficient to remove the ill-conditioning. Figure 25 below illustra tes 

the same spectrum as Figure 24, but with a white noise correction factor of 1/24576. 

105r-------~--------~------~--------_r--------., 
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Figure 25. Whitened LP spectral fit (1/24576) 

Table IV, below illustrates the spectral distonion resulting from the use of a white 

noise correction factor. All numbers are based on a 14m order LP model, using cubic 

spline and harmonic compression as a preprocessing stage. As can be seen the correction 

factor of (1/256) increases the spectral distortion dramatically. The factor of (1124576) 

increases the distortion only slightly, while maintaining the model stability. 
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Table IV. Spectral distortion introduced by white noise correction 

Item Conditi.on Spectral Distortion (dB) 

1. 14th order LP + spline + compresSIOn 1.3514 

., 
Item 1. + white (1(256) 2.3175 

3. Item 1. + white (1/24576) 1.3637 

Perceptual Results 

In the previous sections we have examined the effects of the various modification 

to the LP model in terms of spectral distonion. In this section the perceptual results will 

be discussed. To evaluate the perceptual effects, the above modifications were 

incorporated into the EMBE vocoder. This coder represents an enhanced version of the 

MBE model, operating at 2,400 bps. An LP model is used to represent the harmonic 

amplitudes which are vector quantized for transmission. The results obtained are through 

informal listening tests only. 

The first area that was examined involved simply increasing the model order. By 

increasing the model order, the speech takes on a much brighter more pleasing quality. 

The most prominent difference appears to be increasing the model order from 10lh order to 

14th order. An increase from 14th to 18 th order produced a more incremental improvement. 

The use of spline preprocessing and harmonic compression yields output speech 

that is smoother and has a 'better' spectral balance than the standard LP model. The 

resulting speech signal obtained through the preprocessed 14th order LP model is equal to 

if not slightly higher in quality than the 18 th non-preprocessed order LP mode1. An 18 th 
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order spline preprocessed LP model produced slightly better results than the 14th order 

preprocessed model. However, due to the implementation considerations discussed above , 

the 14th order model was finally chosen for incorporation into the EMBE coder. 

The addition of spectral warping increased the contribution of the low frequency 

region of the spectrum, however at the expense of the higher frequency region. The 

resulting speech signal is slightly heavier in quality, but otherwise indistinguishable from 

the non-warped spectral model. The use of a white noise correction factor of 1/256, 

makes the resulting speech noticeably rougher and unpleasant Reducing the white noise 

correction to 1/24576, makes the noise relatively inaudible. 

Finally, the postfilter described in the previous chapter was incorporated into the 

EMBE speech coder. The postfilter significantly reduced the overal l noise level, re ulting 

in a clearer, more natural sounding speech signal. The muffling effect present in some 

postfilrers was not apparent in this implementation. The inclusion of the adaptive highpass 

filter slightly improved the overall spectral balance by increasing the amplitude of the 

higher frequency fonnants , and slightly attenuating the lowest frequency fonnant. 
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CHAPTER VII 

CONCLUSION 

In this paper we have examined a number of possible improvement to the spectral 

fit obtained through linear prediction for the case of sinusoidal speech coders. These 

improvements include: Increased model order, spectral interpolation prior to model 

calculation, the use of spectral warping to perceptually improve the fit, and cenain 

computational considerations. Additionally, the use of adaptive postfiltering to improve 

the perceptual quality was also discussed. This chapter serves to briefly summarize and 

wrap up the work on improving the spectral match. 

It was shown that increasing the model order used for linear prediction resulted in 

an improved spectral match. This improvement was quantified by the use of the spectral 

distortion error criteria. Perceptually, the effect of increasing the model order resulted in a 

decrease in the mechanical, reverberant quality of the synthetic speech signal. The most 

substantial improvement came from increasing the model order from lOth to 14th, with a 

more incremental improvement resulting from increasing the order from 141h to 18 th . A 

discussion of the gain calculation showed that the traditional gain equation is not entirely 

accurate for harmonic coders. A gain measure based on the ratio of the original and 

synthetic spectra, sampled at the harmonics, appears more appropriate. 

The use of spectral interpolation as a preprocessing stage for linear prediction was 

also examined in depth. A cubic spline was used to interpolate between the individual 

harmonic amplitudes. These amplitudes are initially compressed using a logarithmic 
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compression rule, so as to reduce their dynamic range. An LP model was then fitted to the 

spline envelope using traditional techniques. The improvements to the spectral match 

indicate that a spline preprocessed 14th order LP model can fit the spectrum better than an 

unprocessed 22nd order LP model. The use of spectral warping to bias the LP model 

toward perceptually more important regions was also discussed. It was shown that while 

the overall spectral distortion increased, the distortion over the first third of the spectrum 

decreased significantly. This resulted in a synthetic speech signal that was slightly heavier. 

containing more low frequency contributions. 

Additionally, computational considerations of the LP model were briefly di cussed. 

The focus centered on the use of pre whitening to properly condition the LP model. 

Incorporating the traditional level of prewhitening (11256), while ensuring the model did 

not become ill-conditioned, resulted in a synthetic speech signal that had a noticeable 

increase in noise level and added harshness. A factor of 1/24576 appeared to also ensure 

that the LP model does not become ill-conditioned, while introducing no perceivable 

distortion into the output speech. 

Finally, the use of adaptive postfiltering to improve the perceptual quality of the 

output speech signal was also presented. It was stated that while postfiltering decreases 

the synthetic speech's signal-to-noise ratio, the synthetic speech was of higher perceptual 

quality. This higher quality can be characterized by an overall decrease in coder noise. 
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Future Research 

The results of the work presented in this paper leaves the door open for additional 

research into a number of related topics. These include the use of preprocessing to 

enhance the performance of other spectral models, the use of alternative warping 

functions, and better methods of postfiltering. 

The addition of a preprocessing stage for other spectral representations may yield 

improved performance over that obtained with linear prediction. Cepstral modeling, in 

panicular, is attractive as a method of spectral modeling due to the incorporation of a 

phase function. This phase function could improve the quality and naturalness of the 

synthetic speech signal. As was shown in Chapter 3, cepstral modeling alone does not 

yield a low enough model order for low bit rate coders. Future research could investigate 

the possibility that a preprocessing stage, such as that presented in Chapter 4, would allow 

a reduction in model order while maintaining sufficient accuracy. 

A second area that would benefit from additional research is the area of spectral 

warping. The warping function used in Chapter 4, involves warping the frequency axis 

onto the mel scale. Other perceptual scales exist, such as the bark scale, that may yield a 

better perceptual match to the spectrum. Additional research should address this issue . 

Finally, the area of postfiltering should also be investigated funher. In chapter 5, it 

was indicated that the need for postfiitering was a result of the windowing operation 

inherent in the analysis phase of the speech coder. Additional work has not been able to 

confirm this idea. It is possible that a more detailed investigation into why postfiltering is 
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beneficial for sinusoidal coders could result in an improved method of postfiltering,. or 

even alterations to the underlying model. 
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