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Chapter ¥

Introduction

In recent years, there has been a radical shift from analog systems to digital
systems paralleling the advent of digital computing. Signal processing in these digital
systems has impacted virtually all aspects of life even remotely concerned with
electronics. Common applications include clear sounding compact discs, multimedia
computer applications, pocket cellular telephones. digital networking. innovative high
definition television, and more. Moreover, developing process technologies have
provided an inexpensive, high-speed medium for the proliferation of digital systems at the
integrated chip (IC) level. Since the ‘real world’ interacts in an analog environment. there
exists formidable tasks in converting everyday analog signals into accurate digital signals

for a digital system to process and vice versa.

These transformations, termed as Analog-to-Digital Conversion (A/D) and
Digital-to-Analog Conversion (D/A), are vital for human related interaction with
electronic communication systems. But, in order to satisfy consumer application
demands, these conversion tasks are compounded by the electronic industry's ever
growing need for faster, more precise, and higher bandwidth A/D and D/A conversion. In

addition, there is a demand for single chip solutions that provide an increase in overall



reliability, an easier integration of mixed-mode systems, and the use of lower tolerance
components. Unfortunately, the precision of scaled IC components limits the attempted
accuracy of Nyquist-rate A/D converters (ADC) and D/A converters (DAC) to about 10
to 12 bits of digital resolution using traditional approaches, like successive approximation
and flash converters[Van De Plassche, 1994]. This hindrance is one reason for the recent

increase in research of innovative higher resolution ADC techniques.

Today, in systems where feasible operating clock rates are well above signal
bandwidth requirements, oversampled A/D conversion techniques produce an overall
reduction of noise power. In addition, noise-shaping methods have been employed to
further reduce noise power by attenuating the noise floor in the frequency band of interest
while augmenting the floor outside the band. During the past 15 years, an oversampled.
noise-shaping technique known as Sigma-Delta (£A) Modulation has become popular due
to its resilience to limited device matching accompanying its increase in high resolution
conversion performance over conventional ADCs [Boser, 1988: Candy, 1985 Nadeem,

1994 ].

Implementation of these XA ADCs from theory to IC has been hindered by
inefficient or insufficiently accurate simulation programs. Currently, after the initial
design of a XA architecture, verification through simulation has been very time-
consuming. Current commercially available simulation packages are either too slow, like
SPICE, or do not include sufficient behavioral analysis, like SwitCAP, to deduce accurate
ADC performance measures in a timely manner. To overcome this obstacle, two

proprietary simulators are known to have been developed at other universities to aid their



design centers. The first is MIDAS, a mixed-mode, sampled-data simulator developed at
the Center for Integrated Systems, Stanford University, California [Boser, 1988]. The

second was developed at the Massachusetts Institute of Technology to study nonlinear |

circuit effects in ZA architectures [Chao, 1990].

Thus, the motivation for this work was the development of a simulation package
which behaviorally models ZA ADC architectures for use by the Advanced Analog VLSI
Design Center, Oklahoma State University, Oklahoma (AAVDC) in its ZA design efforts.
This package, also referred to as the ZA toolbox, allows for the limited inclusion of

component non-idealities which are known to significantly hamper A/D conversion [Van
De Plassche, 1994]. The use of this toolbox will aid the designer in rapid prototyping and

behavioral insight of a variety of A architectures. The toolbox has been used in the
design and verification of novel A architectures being developed by the AAVDC for the

Naval Research and Development Division (NRaD) of the Naval Command, Control, and

Ocean Surveillance Center (NCCOSC) in San Diego, California.

1.1 Urg,an,{za tion

Following this introduction, various aspects of £A A/D conversion are covered.
Chapter 2 develops a basis for understanding of £A ADCs by investigating the

fundamental types of A/D conversion: Nyquist rate conversion and Oversampled

conversion. This analysis allows for an introduction to the concepts involved in A/D



conversion and as a foundation for evaluating the worth of XA A/D conversion.
Theoretical performances of the fundamental A/D conversion types will be given for

comparison to £A A/D conversion.

In Chapter 3, modeling and simulation of A A/D conversion is thoroughly

examined. Behavioral aspects and theoretical performance formulas for the conversion
process are discussed in detail. Throughout the discussion, simulations from the A

toolbox verify the purported theoretical behavior and performance. Crucial non-idealities
are considered and included in simulations to gain understanding of their role as limiting

factors in ZA A/D conversion. Lastly, two higher-order architectures being developed by
the AAVDC are developed and analyzed to exhibit the use of the ZA toolbox. They are a
3" order Residual Scaling TA architecture which employs a quantization error

cancellation technique, and a 3™ order Interpolative £A architecture based on an

architecture developed by S. Nadeem [Nadeem, 1994].

A summary of the results of this research and the possibilities for future research

are summarized in Chapter 4.
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Analog-to-Digital (A/D) conversion transforms a continuous-time, continuous-
amplitude signal (analog signal) into a discrete-time, discrete-amplitude signal (digital
signal) by two fundamental operations, sampling and quantization. The conversion’s
ability to produce accurate digital information is primarily limited by the Analog-to-
Digital converter's (ADC) sampling speed and by the preciseness of quantization.
Sampling defines the extent of the signal bandwidth: while quantization introduces noise.
The ADC’s A/D conversion resolution must be at least equal to the required resolution of
subsequent digital signal processes. Meeting this requirement maintains the prescribed
digital resolution essential to those digital systems irrespective the amount of noise added
by the ADC. This chapter focuses on the above limitations and how they affect the
resolution of two basic A/D conversion processes: Nyquist-rate converters and

Oversampled converters.

The first section describes the effects of quantization noise in Nyquist-rate
converters. After a theoretical analysis of the resolution of these converters, the next
section illustrates oversampling and the resolution improvement it provides. Throughout
this chapter, ideal behavior is considered for performance evaluations. That is.

performance measurements are only limited by quantization noise. Further description of



other significant non-idealities is considered in Chapter 3. Overall, this chapter provides

a good foundation for the following chapter discussing Sigma-Delta ADCs.

20 N ygm’st-Ra te ADCs

A block diagram of a typical Nyquist-rate ADC is shown in Figure 2.1. The input
to the system is a real world analog signal, x(t), which is continuous in time and in
amplitude. This signal is pre-filtered by an analog, low-pass anti-aliasing filter (AAF).
The filter prevents aliasing of sampled frequencies by limiting the input frequency range
to the maximum frequency of the ADC’s band-of-interest. fg [Oppenhiem, 1989]. This
band-limited signal, x’(t), is then sampled at the ADC's sampling frequency, fs, in
uniform time intervals. Thus, it transforms the signal into a discrete-time signal, x(kTs)
where Kk is an integer. Nyquist’s sampling theorem states that the minimum fs (also
known as the Nyquist rate) must be at least twice the Nyquist frequency, fx, in order to
prevent loss of information during sampling [Oppenhiem, 1989]. Nyquist-rate converters
use a fs that is slightly greater than 2f, (by letting fg = fy) to exploit the slowest fg
required to satisfy the theorem. After sampling, the quantizer processes the discrete-time
signal, x(kTs), into a fully digital signal with discrete levels, y(kTs). A simple description
of the quantizer is an ideal transfer function with additive quantization error or noise,
eq(kTs), as illustrated in Figure 2.1. Lastly, this digital information may be digitally
encoded into binary for proper usage by subsequent digital signal processing. Specifying
the number of bits desired in this binary mapping is a convenient and often used practice

when defining the resolution of an ADC.
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Figure 2.1 Block Diagram of a Nyquist-Rate ADC




Often, the signal-to-quantization-noise-ratio (SNR) of an ADC is given in terms
of the number of digital bits resolution to determine an ADC's performance. So. an
analysis of the quantization error introduced by the quantizer will aid in examining the
performance of an ADC. The transfer function of a typical uniform mid-riser quantizer is
given in Figure 2.2. The output is seen to be granular in that it is confined in discrete
levels. In a uniform quantizer, there exists only two parameters: the number of decision
levels and the quantization step size, A [Rabiner, 1978]. The number of levels is usually
of the form 2%; where B is the number of bits in the quantizer and also relates to the
desired B-bit binary code words. Between each of these levels, the quantization step size

is determined by

Ves
A=—— (2.1)
oB

where Vs is the peak-to-peak amplitude of the quantizer. With these two parameters in
place, the quantizer transfer function of Figure 2.2 can be simply described as

y(kTs) = x(KTg) + eq (kTs) (2.2)
The noise, e o(kTs), is dependent on the amplitude of x(kTs) contrary to the usual signal-

plus-noise models in communication theory [Gersho, 1977]. As seen in Figure 2.3,

eq(kTs) is bounded in the following fashion:

A A
——<enkT.)s— 2.
> a(kTs) 5 (2.3)
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Figure 2.3  Quantizer Error Introduced by a Mid-Riser Quantizer.
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Due to the non-linearity of the quantization noise, clearly revealed in Figure 2.3, a
statistical approach is commonly used to investigate quantization effects. A statistical
model, known as the Bennett noise model [Williams, 1992], treats eq(kTs) as a stationary

white noise process. It has been developed assuming the following:

I. the quantizer input does not exceed the signal range of the quantizer, i.e. no

quantizer clipping or overloading occurred,

(0]

the quantizer has a large number of quantization levels, A is small relative to the

input signal level, and

3. the joint probability between two quantizer input signals is smooth.

These conditions are necessary to affirm that the quantization noise and quantizer input
signal are uncorrelated, and that the quantizer is being used to its fullest potential without
overloading. As a result, the statistical model has an approximately uniform probability

distribution for the quantization error, i.e.,

1 —-A A
- —_— S. eo | T

pe(eq) = A 2 < (2.4)
0, otherwise

Quantizers using 5 or more bits, meaning 32 or more quantization levels, have been
shown to satisfy the above conditions and to fulfill this probability density function
[Rabiner, 1978; Van De Plassche, 1994]. With this statistical description, the quantizer

can be modeled as a unity linear gain with additive white noise having a variance of
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2

T A
ce’ = [ eq’-pe(eq) deq =15 (2.5)

—ea

Although many ADC systems may not achieve all the above required conditions, a white
noise approximation of Bennett noise model furnishes the means for derivation of

important ADC performance measurements.

2.11 Nyquist-Rate ADC Performance Measures

Two important ADC performance measures are the ADC's SNR and the ADC's

useful signal range or dynamic range (DR). SNR is defined as the ratio

Sxx
See

SNR =

(2.6)

where. Sy, is the input signal power, and S.. is the output noise power. The DR is defined

as the ratio

DR = i"JﬁL (2.7)
S“'SNR=1

where, S,lgs is the largest input signal power which does not permit quantizer clipping,

and Sxlsyr=; 1 the input signal power at which the SNR is unity.

For a Nyquist-rate ADC, the average output noise power is equal to the
quantization noise variance. The input signal power can be assumed to be the input

signal variance. For most performance calculations, a sine wave input to the ADC is
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assumed. If the input is (Vs /2)sin(®t), then the output signal power excluding noise is

(Vgs)*/8. Note that the maximum input voltage is limited to the maximum quantizer
voltage, Vgs/2, to fulfill the first assumption of Bennett’s Noise Model. Using these
observations along with (2.5) and (2.6), the signal-to-quantization-noise-ratio of a

Nyquist-rate ADC is

2
SNRyyquist = 22 = —%5 = — (2.8)

Substituting (2.1) into (2.8), the SNR in decibels becomes

SNRNyquist = % 228 = (602-B+176)dB (2.9)

where, again, B is the number of bits in the quantizer. This equation implies that each
additional bit added to the quantizer yields approximately 6 dB of SNR improvement in
Nyquist-rate ADCs. The number of bits required for Nyquist-rate A/D conversion is a
common benchmark for comparison of other A/D conversion methods. Hereafter,
reference to the number of bits resolution for a particular system will be synonymous to

the equivalent number of bits resolution for a Nyquist-rate A/D conversion.

The DR performance equation for a Nyquist-rate converter can be developed by
noting that the largest input amplitude is basically (Vgs /2) meaning the largest input
signal power is (Vgs)*/8. The input signal power at which the SNR is unity is found by

observing (2.8) at very small input amplitudes. Although this violates the Bennett
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model’s rule that A should be small relative to the input signal level, it provides a useful

performance measurement for further comparisons later in this thesis. So,

VFsz/z
2
DR - SxxIFS - /8=§‘VFS (2.10)
Nyquist Sxx ‘ — See 2 A2

Once again, using (2.1) by substitution into (2.10), the DR in decibels for a Nyquist-rate

ADC is

DRnyquist = %-228 =(6.02-B+176)dB (2.11)

This equation also implies that each additional bit added to the quantizer enhances the

DR of a Nyquist-rate ADC by approximately 6 dB.

(2.9) and (2.11) are important measurements for Nyquist-rate ADCs. They show
that the theoretical performance estimation for the SNR and DR of an ADC is only
proportional to the number of bits or decision levels used in the quantizer. Due to
quantizer limitations in the number of achievable quantization levels and in the
consistency of decision making, there are definite SNR and DR restrictions in the

possible amount of resolution a Nyquist-rate ADC may accomplish.

2.1.2 Nyquist-Rate ADC Performance Limitations
There are two primary drawbacks to most Nyquist-rate ADCs: resolution
limitations and AAF implementation. Resolution limitations arise from the fact that A/D

conversion resolution of a Nyquist-rate converter is directly proportional to the number of
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bits in the quantizer. Considering an ADC with a desired SNR of 95 dB, (2.9) states that
the quantizer must have approximately 16 bits. This implies that the quantizer must have
2'® or 65536 quantization levels with a level separation of A = 31 uV, from (2.1) with Vs
=] V. The quantizer is commonly comprised of (25-1) comparators which develop the
digital signal by comparing the quantizer input signal to the (2-1) reference levels.
Matching between any two of these comparators must be to the same resolution of the
ADC, i.e. one part in 2'% or approximately 0.002%. Current MOS comparator
technology permits a minimum comparison of roughly 10 mV due to the comparator’s
inherent offset voltage[Van De Plassche, 1994]. This is obviously greater than the A
required for a 16-bit quantizer. Implementation of Nyquist-rate ADCs beyond
approximately 10-bits of resolution 1is virtually unattainable in current process
technologies without using some sort of calibration techniques, like laser trimming. In
addition, as the number of bits in the quantizer grows to the 10-bit maximum, it is

difficult to maintain an accurate step-size, A. This introduces greater integral non-

linearity into the conversion process.

Another deficiency in these ADCs is the implementation of the AAF. To remove
extraneous signals outside the ADC’s band-of-interest, hereafter known as the ADC's
pass-band, the AAF’s stop-band for a Nyquist-rate ADC must begin at the Nyquist
frequency, fs/2. But, for all of the frequencies in the pass-band to be processed, the pass-
band for the AAF must end at the same Nyquist frequency. Therefore, the AAF's

transition-band must be very narrow and have a very steep response. This requires a

CATR ITNTUR RO Y™
rixzs UANAVINANDLLE I



complex filter with several precisely placed poles which is difficult to implement as an

analog circuit.

Sensitivity to these ADC limitations can be partially overcome by a techmque
called oversampling. Today, sampling frequencies in very large scale integrated circuit
(VLSI) technology have risen far above what is required for popular signal processing
applications, such as for audio signals. The oversampling method uses this excess

process bandwidth to enhance the DR and SNR of an ADC.

2.2 Oversamp(ed ADCs

Oversampled ADCs sample an input signal in excess of the minimum required
Nyquist rate. A block diagram of a typical oversampled ADC is presented in Figure 2.4.
The input to the system is again a real world analog signal, x(t), which is continuous in
time and in amplitude. This signal is pre-filtered by the analog, low-pass AAF. For the
oversampled ADC, the filter uses a pass-band for frequencies within the band of interest,
i.e., less than fg. The transition band extends from the edge of the pass-band to the
beginning of the stop-band at a frequency fsg. After filtering, this band-limited signal,
x'(t), is uniformly sampled at the ADC’s fs, which is greater than the Nyquist rate. Thus,
the sampling transforms the signal into a discrete-time signal, x(kTs) where k is an
integer. For a conventional oversampled ADC, the sampled signal is simply quantized

into a fully digital signal, y(kTs). Chapter 3 discusses the replacement of the quantizer
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Figure 2.4 Block Diagram of an Oversampling ADC
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with a modulator. Lastly, the signal is post-filtered, decimated back to the Nyquist rate.
and encoded into binary code words to produce digital information, y(kTx), for further
digital processing. Since the sampling rate of an oversampled ADC is higher than the
Nyquist rate, a new term is introduced as the oversampling ratio, M, which is defined as

follows:

Mz 1S (2.12)
2'fb

where 2*fg can be equated to the Nyquist frequency of the input signal (not to be confused

with the Nyquist frequency of the sampled signal).

2.2.1 Oversamph’ng ADC Enhancements

There are two primary advantages of oversampled ADCs over conventional
Nyquist-rate ADCs. The first is a relaxation of the narrow transition band restriction for
the AAF, as seen in Figure 2.5. Since the converter samples the input signal at M times
the signal’s Nyquist frequency, the transition band of the AAF can utilize a larger
frequency range from fg to fsg = (fs - fg) = fg'(2:-M-1). Although setting this fsg allows
for aliasing of transition band frequencies, pass-band frequencies are not affected. This
loosening of the AAF restriction sanctions a lower order AAF with less need for accurate
pole placement. However, during post-filtering of the digital signal, a digital filter with a
narrow transition band is required during decimation. Implementing such a digital filter

is definitely easier than an analog filter at the VLSI level. Digital design of such a filter is

e
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Figure 2.5 Frequency Responses of AAFs
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easily accomplished using a hardware development language, such as VHDL. In
addition, by easing the AAF's complexity, lower fabrication costs and overall increased

system reliability are attained.

A second enhancement of oversampled ADCs over Nyquist ADCs is an overall
reduction of quantization noise throughout the frequency range of the pass-band. If the
white noise approximation for the quantization noise is used, the quantization noise
power at the quantizer output, y(kTs), will be evenly distributed throughout the sampling
frequency bandwidth. The low-pass post-filtering attenuates the noise present outside the
pass-band such that the noise power at the output, y(kTy), becomes

M

2 1,
e fdf =
fs )

See = (2.12)

Again, assuming a system input of (Vgs /2)'sin(wt), the signal-to-quantization-noise-ratio

for the oversampling ADC improves to

Sy _

SNROversampled = See = o 2/ =W A2 (2.13)
e
M

Substituting (2.1) into (2.13) and realizing that the maximum input voltage is Vgs/2 for

operation without quantizer clipping, the SNR becomes

3 .
SNRoversampled = M'E'22B =[6.02-B+176+10-log,o(M) ] dB (2.14)

: Atargsl
3 3IAtA Y kbl
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Thus, oversampling improves the Nyquist-rate ADC’s SNR by M times. In addition, the

DR is effected in the same manner yielding

2
Vo2 Ves ]
FS /
Sxxles /8
DROversampled = S S =12-M. > (2.15)
”‘ISNR 1 ee A
Lastly, using (2.1) by substitution into (2.15), the DR for an oversampled ADC is
DR oversampled = M % 228 _[§02.B+176+10-logo(M) ] dB (2.16)

Thus, an oversampling ADC’s DR is also greater than the Nyquist-rate ADC’s DR by M

times.

Over the past 20 years, oversampling ADCs have been preferred over Nyquist-rate
ADCs precisely for these enhancements. Unfortunately, quantizer limitations in the
number of achievable quantization levels and in the consistency of decision making still
arise. Better performance can be accomplished using refined oversampling, noise-

shaping techniques. One of these recently investigated methods is Sigma-Delta (£A)
Modulation. This technique is used in ZA ADCs to produce even greater conversion

resolution than conventional oversampling ADCs with a reduced number of bits required

in the quantizer.
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Chapter
3 | Sigrma-Delta Modulators:
AW@d@ng and Sitmulation

During the last 15 years, there has been a growing interest in ZA modulation and

its implementation in £A ADCs. The theoretical noise-shaping properties of these
converters sanction a higher resolution in A/D conversion over conventional Nyquist-rate
and oversampled ADCs. Currently, inefficient commercial simulation packages have
been available for theoretical analysis of £A designs. This has been an obstacle in speedy
design and verification of a particular theoretical A architecture. These simulators
undertake investigation of A architectures in either too much detail or too little detail.
For example, SPICE is a well-known transistor-level circuit simulator. But due to its
transient analysis, meaningful simulation of a simple ZA modulator would take several
hours or more. On the other hand, SwitCAP is a simulation package dealing with
switched-capacitor circuits that are commonly found in ADCs. This simulator is known
to take less time for simulation runs. But, it does not allow for the incorporation of some
crucial XA circuit non-idealities, such as Op-Amp harmonic distortion effects and
component mismatch errors. Two other simulators are known to have been developed at
Stanford University, California [Boser, 1988] and at the Massachusetts Institute of

Technology, Massachusetts [Chao, 1990] for the use of their design centers in the
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investigation of sampled-data systems. Therefore, the basis of the research behind this
work was the development of a A simulation package for the AAVDC that would be
fairly efficient in simulation and could include the effects of important non-ideal
behaviors.  This simulator was developed by describing typical XA modulator
components as modular block functions written in Matlab code. Matlab was chosen due
to its advanced matrix manipulation properties. These properties are ideal for operating
on intermediate node in sampled-data systems. Overall, the simulator, hereafter known as

the ZA toolbox, allows for rapid prototyping and useful insight into a variety of XA

architectures.

Thorough investigation of the behavioral aspects of ZA modulators was performed
during the development of the toolbox and the subsequent incorporation of significant
non-idealities. This chapter details these ideal and non-ideal behavioral aspects along
with simulated performance measures for a few ZA architectures. Initally, ZA
modulation, which is the fundamental approach for A/D conversion in ZA ADCs, is
described in detail. As in Chapter 2, ideal aspects are considered in the first section, i.e.,
only quantization errors are considered. With this resulting background, ideal theoretical
performance measures are developed for typical cascaded ZA architectures and contrasted
with Nyquist-rate and oversampled ADC measures found in Chapter 2. An explanation

of the primary components in typical £A modulator designs and their development as

modular block functions in the XA toolbox ensues. Simulation results for a 1*-order ZA
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modulator are then given to verify theoretical behavior and theoretical performance

measures.

The second section discusses notable non-idealities that hamper performance of
TA modulation. Particularly, these non-ideal behaviors are identified as integrator
harmonic distortion errors, block component settling errors, switch charge injection
errors, circuit common-mode errors, clock jitter errors, and circuit component mismatch
errors. Once defined, the effects of these non-idealities are examined by use of the TA
toolbox on the 1¥-order modulator example. With the 1*'-order A modulator example

complete, the remaining portion of the chapter investigates a couple of higher order

modulators.

The third section analyzes a 3“order residual scaling ZA architecture being
developed by the AAVDC for NRaD. This architecture is stated to give 16 bits of A/D
conversion resolution in a 62.5 MSPS band-of-interest performing at 8 times
oversampling by utilizing digital error correction functions. By use of simulations from

the ZA toolbox, the architecture is enhanced and verified.

The last section considers a 3"-order interpolative architecture based on a design
developed by S. Nadeem [Nadeem, 1994]. This architecture refines the ZA modulation
process to shape the quantization noise power into a Chebyshev Type II form. By using
this interesting concept, 18-bits of A/D conversion resolution is proposed for a band-of-

interest of 10 kSPS performing at 64 times oversampling. Again, the ZA toolbox is used
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to aid the initial design of the architecture and to verify the expected A/D conversion

performance.

The ZA toolbox simulations throughout the chapter briefly show the potential for
the ZA toolbox. As a whole, the simulator proved to be an excellent tool in the rapid
design and prototyping of XA architectures being designed and developed by the

AAVDC.

31 S{'g'ma-ﬂel ta Modulation

ZA modulation is an oversampling, noise-shaping A/D conversion method that
uses feedback to enhance the effective conversion resolution. The increase in A/D
conversion resolution is achieved by replacing the quantizer in an oversampled ADC with
a ZA feedback modulation network. This method, which induces noise-shaping, alters the
uniform behavior of the quantization noise throughout the oversampled frequency

spectrum into a nofn-linear manner.

Noise-shaping is a technique used where quantization noise is attenuated in the
modulator’s pass-band and increased outside the pass-band. Figure 3.1 displays the
noise-shaping characteristic in relation to Nyquist-rate and oversampled quantization
noise attributes. A qualitative view of quantization noise power is shown for each of the

A/D conversion methods.
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As discussed in chapter 2, the quantization noise power for a Nyquist-rate ADC
displayed from dc to the end of the pass-band, which is also the Nyquist frequency,
occurs from simple quantization. Oversampling is achieved by sampling at a higher
frequency than the Nyquist rate. This allows for the same quantization noise power to be
spread over a larger frequency range. In-band quantization noise is reduced in
oversampled ADCs by decimation and low pass, post-filtering of frequencies outside the
pass-band. Thus, this digital filtering effectively removes much of the quantization noise
power. Oversampling causes a distinct reduction by M in quantization noise power
within the pass-band in contrast to the Nyquist-rate ADC. The resolution of an
oversampled, noise-shaping ADC is increased over conventional oversampling by
effectively shifting quantization noise power to higher frequencies in a non-linear fashion.
Again, the digital decimation filtering that follows this refined oversampled modulation
process greatly attenuates the higher frequencies. Consequently, this removes a larger
amount of quantization noise power from the pass-band in contrast to both the Nyquist-

rate and conventional oversampled ADCs. This fact alone obliges the investigation of LA
modulators. The remainder of this chapter distinguishes the development of XA

modulators, their interesting improvements to standard A/D conversion, and their

implementation within the ZA toolbox.
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3.1.1 Behavioral Mode[ing of Sig'ma-DeIta Modulacors

There are a variety of high gain functions that may be implemented as TA
modulators. The classical transfer function for a cascaded A modulator is comprised of
a linear combination of integration stages that differentiate the quantization noise. This
particular implementation is well suited for VLSI circuits. A block diagram of a typical
ZA modulator circuit that satisfies such a transfer function is shown in Figure 3.2. The
forward path consists of delaying integrators followed by a B-bit quantizer. For this ideal
case, only the quantization error, e¢(kTs) introduced by the quantizer is considered. The
digital output of the quantizer, y(kTs), is a thermometer encoded estimate of the analog

input signal, x(kTs). The digital output signal is fed back through a digital-to-analog

e(kTs)
x(kTs) + - + !l— Y(I\T‘i}
I(z) [(Z)> e e @ I(z) - >
o soe o 4 DAC

Figure 3.2 A Typical £A Modulator Block Diagram.

converter (DAC) to be subtracted from the input signal as well as the outputs of each

subsequent integrator. The number of integrators used in the design defines the
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modulator order, L, of a A modulator. Since the z-domain transfer function of a
delaying integrator is

Z—I

|-z

(z) = (3.1)

and assuming an ideal DAC, the baseband output of a cascaded L"-order £A modulator in

the z-domain is
Y(2)=2z" X(z)+(1-27")" -Eq(2) (3.2)

The output is simply a L"" sample delay of the input with a L™ order quantization noise
difference term. This differencing of the noise causes the high-pass, noise-shaping

characteristic of ZA modulation. Systems utilizing a higher modulator order perform a

higher ordered differencing operation on the quantization noise, thus providing a stronger
attenuation of quantization noise at lower frequencies. Further analysis of this equation

provides quantitative theoretical performance measures for cascaded A modulation.

3-1.2 Sigrma-Delta Performance Measures

Performance measures for £A modulation are usually in terms of the system’s output

SNR. For the cascaded ZA modulator, the quantization noise power within the pass-band
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is found from the quantization noise contribution to (3.2), i.e., the noise transfer function

(NTF). The NTF for an L"-order ZA modulator is
He(z)=(1-z7")" (3.3)

The spectral distribution of the quantization noise after noise-shaping is the product of the
NTF spectral density and the quantization error spectral density introduced by the
quantizer. So, the quantization noise power spectral density is found using (3.3) and

converting to the Fourier domain:

z=exp

2
Seelf) = IHE(Z)|2 [J 2_,”1 e [j_;] (3.4)
)

Substitution of (3.3) into (3.4) and using the white noise approximation of Bennett's
noise model gives the following equation for the power spectral density of the

quantization noise at the output of a cascaded A modulator:

See(f)=(2-sin [_’_‘f_lD . [%W (3.5)
S s

Integration over the entire pass-band gives the quantization noise power over the band-of-
interest. This is also approximately the quantization noise power found at the output of

the ADC after decimation. Thus, the inband quantization noise power is

n3k 1

: (3.6
(2-L+1) M2L+T .

A
Po = [Seelf) df = o2
-4
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This average noise power floor is an essential value to determine the modulator’s SNR.

As in chapter 2, the cascaded A modulator’s SNR can be found assuming a
modulator input of (Vs /2)'sin(@t). Since the output signal power excluding noise is

(Vgs)*/8, the SNR for an oversampled, Lth-order cascaded £A modulator is

2 adia
SNHM=VFS b .3 2L+ yoier 528 (

8 / 9 16 g2t

sd
<

where again M is the oversampling ratio and B is the number of bits in the quantizer. An
interesting item to note is that the SNR is proportional to the 2L+1 power of the
oversampling ratio, M, which 1s a much greater improvement over conventional
oversampling. Due to this strong relationship to M, the number of bits required to attain
a prescribed SNR is much less for ZA modulators than Nyquist-rate or conventional
oversampled ADCs. Figure 3.3 shows these benefits by plotting the SNR versus M for
XA modulators of orders L = 1, 2, and 3 and quantization bits, B = 1. The number of bits
required for a conventional Nyquist-rate ADC to achieve the same SNR is shown on the
right of the graph. Even by using a £A modulator containing a 1-bit quantizer,
comparatively high resolution is attained when compared to a Nyquist-rate converter. In
addition, an increase in the number of bits in the quantizer does have the same effect in
ZA modulation as in both Nyquist-rate and conventional oversampled converters.
Equation (3.4) showed that the quantization error spectral density plays a distinct role in
the quantization noise power spectral density. Increasing the number of bits in the
quantizer reduces the quantization noise power by 6 dB per additional bit. Thus, each

curve in Figure 3.3 is effectively raised by an additional 6 dB for each additional bit
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Figure 3.3 Cascaded ZA Modulator SNR vs. M for a 1-Bit Quantizer.

added to the quantizer. Figure 3.4 shows this by plotting the SNR versus M for TA

modulators of orders L = I, 2, and 3 and quantizer bits, B = 4. Therefore, by increasing
the number of bits in the quantizer, a lower oversampling ratio may be used to attain an
equivalent 1-bit modulator A/D conversion resolution. This property gives a simple

method for the reduction of the digital power consumption in low-power ZA ADC
designs. Thus, simple cascaded ZA architectures apparently perform A/D conversion

more effectively than Nyquist-rate or conventional, oversampled ADCs.

It is difficult to gain an intuitive feel for how XA modulation can actually attain

such high resolution from such a small number of quantizer bits. In the next section, the
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Figure 3.4 Cascaded XA Modulator SNR vs. M for a 4-Bit Quantizer.

above theoretical observations are investigated and verified by use of the £A toolbox.
After a discussion of the basic building blocks in the ZA toolbox, a 1™-order TA

modulator is developed to gain some insight in the ZA modulation process.

3.1.5 Implementation of XA Modulators using the 2A
Toolbox

As seen in Figure 3.2, the basic building blocks for a £A modulator are delaying

integrators, summation nodes, single or multi-bit quantizers, and DACs. In addition,
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higher order modulators also use amplifiers or gain stages to modify the modulator’s
noise-shaping characteristics. In this section, it is helpful to consider a 1*-order
modulator example when discussing these basic components. A block diagram of a 1%
order £A modulator is shown in Figure 3.5. The ZA toolbox implements each of these
basic blocks in an individual, modular fashion. Before the toolbox can be used. an
architecture must be theoretically developed in a block diagram form using the above
mentioned building blocks. Once a ZA architecture 1s developed, an architecture file is
written in Matlab which specifies the vital components for each block and the basic
clocking sequence of blocks. The ZA toolbox iterates a simple loop for each input sample
by calling each block function in the succession specified by the architecture file. In
typical architectures and in the 1%-order example of Figure 3.5, the beginning of the
iterated loop starts with the input voltage to the system and its transition into the

integrator.

In a typical circuit implementation, the summation node and the integrator are
treated as a single entity. The ZA toolbox models them in somewhat the same manner. A
clocked, differential switched-capacitor, MOSFET operational transconductance
amplifier (OTA) continuous-time integrator implementation is used for integration. A
basic diagram for a single-sided switched-capacitor continuous-time MOSFET integrator,

which the ZA toolbox uses as a model, is shown in Figure 3.6. This circuit has three
basic parts which need to be defined in the XA toolbox. These are the OTA’s open-loop

gain, Ao, the sampling capacitor, Cy;, and the OTA’s integrating capacitor, C;n.  The

switched-capacitor circuit uses a two-phase non-overlapping clock. During the sampling,
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Figure 3.6 Switched-Capacitor Continuous-Time Integrator.
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phase 1, ¢;, of a clock cycle the charge from the input, Vi, is transferred to C;,. During
the integration, phase 2, 2, a charge proportional to the difference of the voltage being

fed-back from the DAC. Vpac, and Vi, is -mirrored onto C, for integration. The

integrator output, w(kTs), is modeled as:

A Csi
wik-Tg) = 1+;°' W((k=1-Ts) + ==

vol int

' [Vi"(k =1 Ts) = Vieedvack (K = 1) Tg ]] (3.8)

C./C specifies the closed-loop gain of the integrator. ~An important design
consideration is that in most cases this closed-loop gain should ensure that the integrator
output is within the full-scale voltage of the quantizer, Vs, to prevent quantizer clipping.
The leakage of this integrator is identified in equation (3.8) to be approximately 1/A,, of
the integrated value which is lost in each clock cycle. This leakage is on the same order
as that in a continuous-time integrator. Overall, equation (3.8) suffices as a model to

implement the integration operation in the ZA toolbox.

The ZA toolbox separates (3.8) into an integrator block function and a summation

node block function. This allows for the intermediate node, in addition to the input,
feedback, and output nodes to be viewed after the simulation. The differential behavior
of the integrator is simulated by simply copying the single-sided circuit using a negative

version of the input signal.

During ¢, the integrator output, w, is fed to the quantizer for conversion from an
analog signal to a digital signal. A uniform mid-riser quantizer was implemented in the

ZA toolbox. The A/D conversion is accomplished in hardware by using a string of
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comparators, as shown in Figure 3.7. The number of decision or quantization levels
define the number of comparators. For a B-bit quantizer, there are (2%-1) comparators
which develop the digital signal by comparing the quantizer’s analog input signal to the
(2B-1) reference levels. The toolbox accomplishes this conversion by a simple ‘if-then’
comparison between the input to the quantizer and the appropriate quantization level
which are uniformly positioned between +Vgg/2. This produces a thermometer encoded
digital output of (28-1) lines which is subsequently fed back into the DAC. This digital

data is also the output of the A modulator. It may be further encoded and decimated by

a digital post-processor as mentioned in Chapter 2.

The thermometer encoded, digital data is fed back through a DAC to the analog
summation node in order to complete the LA modulation loop. A basic schematic
diagram of the DAC is presented in Figure 3.8. The (2°-1) lines of output from the
quantizer 1s used to create an equivalent analog signal. This is accomplished by charging
the appropriate number of feedback capacitors, Cg,, and combining their voltages into a 1-
line, analog DAC output. During the first portion of sampling ¢,, all the capacitors are
discharged to ground. During the second portion of phase ¢, all the capacitors except for
the initial Cq, are pre-charged to the appropriate DAC reference voltages, =V pac.
Finally during the conversion phase, ¢,, certain capacitors depending on the quantizer

output information, Vg, are connected to ground while the others remain at V. pac.
While converting, the charge is redistributed over the capacitors and an equivalent analog

voltage is fed through the voltage follower as the output of the DAC. Vpac. The DAC
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conversion is implemented in the ZA toolbox by scaling the output of the quantizer by

the following formula:

(3.9)

This accounts for the redistributed charge in all the Cp terms and scales Vpac

appropriately to match Vgs.

The last of the building blocks considered in the A toolbox is an amplification
block. This block is used at various nodes in many higher order ZA architectures which
try to optimize the noise-shaping process. The amplification block is similar to the
integrator block toolbox function as seen in Figure 3.9. The architecture file specifies the
essential values for the amplifier: the amplifier’s open-loop gain, A, the input resistor,
R, and the amplification resistor, Rynp. There are essentially two differences between

the amplifier and the integrator. One is that a delay is not required since a switched-

Ramp
\
Vm Rs; W
e W\ & | A\:ol
OTA

Figure 3.9 Basic Amplifier Schematic.
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capacitor arrangement is not present. The second being that the closed loop gain is
attained by a resistor ratio, Ry /Ramp, specified in the architecture file rather than a
capacitor ratio. In typical analog VLSI amplifier implementaions the amplifier
arrangement of Figure 3.9 is not commonly used. Amongst other forms of amplification
the following methods are used, single-stage class A, two-stage class A, and single-stage
class AB amplifiers [Williams, 1993]. In addition, simple integer fraction switched-
capacitor ratios are commonly used as gain stages, as will be seen in Section 3.4.
Nevertheless, the model in Figure 3.9 provides a more intuitive method including the
basic features required to accurately implement amplification at a block level within the

ZA toolbox.

With each of these blocks defined, a simulation is performed by using the desired
architecture file. The beginning of the ZA toolbox architecture file states a variety of
required values for the overall system. These include the following constants: the
sampling frequency, freq_samp, the desired input frequency, freq_des, the oversampling
ratio, over_ratio, the number of cycles desired, num_cycles, the number of quantizer bits,
num_bits, and the maximum input voltage, max_in. The following formula is used to

determine the desired number of samples:

freq_samp

Nuber of S =
er of Samples freq. dos

-num_ cycles (3.10)
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These values are passed onto an input generation function which generates a specified
input voltage waveform for the number of desired samples. These input samples are
subsequently operated on by each of the sequentially specified block functions in the
architecture file’s iteration loop. The loop is iterated for the specified number of samples

while saving the variety of node values for each iteration.

Once a simulation of an architecture is completed, the toolbox allows for a
performance evaluation of the resulting, undecimated, digital data. A variety of
intermediate nodes are available for plotting to gain insight in the behavior of the desired
architecture. In addition, the SNR for the system may be calculated by using a post-
simulation function. This function computes the toral noise power in the same manner as
described in equations (3.3) through (3.7) above. The difference is that the simulated
combination, He(z)*Eq(z) 1s used to calculate the total noise power by noting that the

noise-shaped term, NSTerm, is:
NSTerm(z) = He(2)-Eq(2) = Y(2) — Hy(2) - X(2) (3.11)

This noise-shaped term actually accounts for other noise contributions beyond
quantization noise, considered in the next section. Before simulation, the right-hand side
of (3.11) must be converted to its sampled time-domain representation in the architecture
file. Then, the resulting NSTerm can be used to find the shaped noise contribution in the

output of the desired modulator. The noise power spectral density is calculated by the ZA

toolbox using the Fast-Fourier Transform, FFT, on the simulated NSTerm:
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Ses(f) =| INSTerm(z)® /., (3.12)
z=exp[’ t-T:- ]
The calculation continues by finding the total noise power by:
fB
Pus =2 [ Seelf) df (3.13)
0

Lastly, the toolbox function gives the simulated SNR by taking the ratio of the simulated
output signal power to the simulated Pns. An initial view of the XA toolbox's
performance measurement capabilities is accomplished by simulating the 1¥-order A

modulator described in Figure 3.5.

The following simulations use a sampling rate of fs = 1 GSPS, C;; = 30 pF. C;y =
32 pF. and a unit Cyp, = 0.4 pF. First, consider the modulator utilizing a 1-bit quantizer
with a Vgs = £ | Volt. If a ramp voltage is input into the system at 32 times
oversampling, M = 32, the simulator predicts the output as in Figure 3.10. Notice the
local averaging characteristic of ZA modulation. That is, while the input is at =1 V., the
modulator output is also £1 V. As the input rises to 0 V., the output begins to oscillate
around 0 V. In fact, the local average of the output waveform is zero when the input
voltage crosses 0 V. This behavior is common in XA modulators utilizing a 1-bit

quantizer[Candy, 1992].

If a sine wave is input into the same modulator at M=8 and B=lI, the theoretical

SNR from (3.7) predicts a ratio equal to 20.67 dB. After simulating the modulator with
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Ramp Input to 1st-Order Modulator with M=32
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Figure 3.10 Output of a 1"-Order £A Modulator with a 1-Bit Quantizer at
M=32 with a Ramp Input Voltage.




43

these new specifications using 32,000 samples. the ZA toolbox gave the simulated SNR

of 20.95 dB, shown in Figure 3.11. The upper graph gives the simulated inband
quantization noise power spectral density. Notice the noise-shaping characteristic for this
1*-order A modulator. The gquantization noise power has definitely been shaped to
attenuate the noise power in the passband. The lower graph gives the simulated output
spectrum for the modulator. A major spike occurs at fg, which was the frequency of the
input sine wave. The amplitude of the spike has been slightly distorted by the use of a
Hamming window for better a FFT. Not windowing the time-domain data before using
the FFT has the same effect as using a rectangular window. A rectangular window does
not have sufficient sidelobe attenuation for calculation of the noise power. In later
examples, the ZA toolbox uses a Kaiser window since it provides a much lower sidelobe
attenuation than the default rectangular window[Oppenhiem, 1989]. This is important for

viewing the spectral content of £A modulators having a resolution nearing 20 bits.
Therefore, the graphs are meant more as qualitative views for £A modulator behavior.

Quantitative results are shown to the right of the bottom graph. These figures are fairly

consistent with the theory.

Next, consider the same modulator operating at a higher oversampling rate of M =
32. Theory from (3.7) dictates that the SNR should be 38.73 dB. Figure 3.12 gives the
simulated performance measurements again using 32,000 samples. Once again, noise-
shaping is seen in the upper plot of the noise power spectral density. The output of the
modulator and the SNR is shown in the lower plot. An interesting observation is that the

general shape of the output spectrum is similar to Figure 3.11. The higher SNR comes
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Inband Noise Power Spectral Density for 1st-Order Modulator with 1-bit Quantizer and M=32
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solely from a higher oversampling ratio. The simulated SNR of 37.92 dB is again fairly
close to the theoretical behavior. The ZA toolbox seems to give respectable simulations
for the £A modulator using a 1-bit quantizer at different oversampling rates. Before
continuing, a quantitative comparison between the oversampled A modulation technique

and conventional oversampling can be made.

The SNR for a 1*-order ZA modulator using a 1-bit quantizer was seen to be
about 21 dB with 8 times oversampling. Using equation (2.14), a conventional,
oversampled technique also performing at 8 times oversampling would require a 2-bit
quantizer to achieve the same SNR as the £A modulator. If the ZA modulator is clocked
at a higher 32 times oversampling and still utilizing a 1-bit quantizer, a SNR of about 39
dB was seen. But for a conventional, oversampled ADC to achieve a comparable SNR,
its oversampling ratio would have to be increased to about M = 330 using the 2-bit
quantizer or the number of bits in its quantizer would have to be increased to about 4-bits

performing at M = 32. So again, these quantitative values show that the ZA modulator

definitely has distinct advantages over conventional, oversampled ADCs.

Continuing with the simulator example of the Ist-order ZA modulator in Figure
3.5, consider the performance effects of using a multi-bit quantizer. Figure 3.13
demonstrates the use of a 4-bit mid-riser quantizer. The lower plot is the quantized,
digital output for the ZA modulator with a 1 V. sine wave input at 8 times oversampling.
The uneven behavior at the modulator output is due to the mid-riser quantizer’s property
of having no zero level and also due to the low oversampling ratio. Nevertheless, the

simulator produces an output that has the one sample delay that was expected from the




Amplitude

Amplitude

Sine Input to Modulator with 4-bit Mid-Riser Quantizer and M=8

S T [ ——— | S———————

r
______________ Lccccaddacacaccabac oot oo
1
1
1

r

35 40 45 50 55 60 65

35 40 45 50 85 60 B5
Sample

47

Figure 3.13 Output of a 1*-Order A Modulator with a 4-Bit Quantizer at

M=8 with a Sine Input Voltage.
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signal transfer function, STF, in (3.2).

Figure 3.14 gives the simulated performance characteristics for this architecture
using a multi-bit quantizer using 32,000 samples. The reason for the relatively flat noise
power spectral density in the upper graph is due to the small quantization step size. A,
which accompanies the greater number of bits in the quantizer. The flattening arises
when the small A contributes to the Eq(z) when multiplied by the NTF, Hg(z), in (3.11).
Since the ZA toolbox uses the resulting NSTerm rather than just the NTF when plotting
performance measures, the prominent noise-shaping characteristic produced by Hg(z) is
not easily seen, although it still exists. Again, the lower graph shows the output spectrum
of the ZA modulator. Theoretically from (3.7), the modulator should produce a SNR of
38.73 dB. The simulator predicts a relatively equal SNR of 39.12 dB. Note that this 1s
approximately the same SNR predicted in Figure 3.11, i.e., the SNR for the £A modulator
using a 1-bit quantizer and M = 32. An increase in the number of quantizer bits has
allowed for the reduction of the sampling rate by 4 times, which corresponds to a

reduction in overall modulator power dissipation.

Overall, the ZA toolbox seems to provide accurate performance measures for an
ideal 1*-order £A modulator with varying oversampling ratios and number of quantizer
bits. Simulation times for each of these modulators were fairly fast. Initial simulations
were used to verify system parameters and to check for quantizer or integrator clipping.

The performance measures presented are for 32,000 sample simulations and 32,000 point

FFTs. The simulations were performed on an IBM-compatible 486DX2-66 computer
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with 16 Mbytes of memory. On this relatively slow computer, each 32.000 sample
simulation was completed in about 2.5 hours. Since each simulation stored each
intermediate nodes waveform, the simulation time could be drastically reduced by
specifying desired node waveforms to save. Thus, for simple A architectures, rapid

prototyping is easily achieved on a basic computer system.

Overall, the above simulations prove the validity of the ZA toolbox and its ideal
performance measurements. But, to gain further insight into more realistic performance
measurements, significant non-idealities of A/D conversion must be addressed by the
toolbox. The next section discusses 6 different non-idealities which are included in the
ZA toolbox. The inclusion of these non-idealities provides more meaningful performance
measurements when considering higher ordered £A modulators which have inherent

instability considerations.

3.2 Significant 2A Modulator Non-Idealities

In the development of the theoretical models discussed in this work thus far, an
assumptions were made to the circuit ideality of each component. The resulting
theoretical performance measurements based on these assumptions are therefore optimal
and sometimes unrealistic. The only error considered in the aforementioned development

of ZA modulator performance measures was the error introduced by the quantization




process of the quantizer. Although this is the most formidable error introduced in TA
A/D conversion, there are a variety of other circuit non-idealities which limit the ideal £A

A/D conversion process, particularly in high-fidelity ADCs. In order to extend the
usefulness of performance measurements, the ZA toolbox has accounted for 6 significant
non-idealities. This section describes the models used in the XA toolbox for each of the
following non-idealities: integrator harmonic distortion errors, block component
settling errors, MOSFET switch charge injection errors, clock jitter errors, circuit
component mismatch errors, and circuit common-mode errors. These non-idealities
are common in the physical implementation of the most crucial component in XA
modulator, the integrator. Their inclusion will provide mcre realistic simulations which
may aid in the rapid prototyping of a desired architecture. The toolbox defines each of
these errors individually such that their effects can be viewed independently or
cumulatively. After the description of each error model, their effects on the 1*-order

example of Figure 3.5 will be seen.

The first non-ideality that is considered is integrator harmonic distortion effects.
The most important component in a general A modulator is the continuous-time
MOSFET integrator. The accuracy of £A modulation is largely dependent on how precise
the modulator input signal can be replicated at the output of the integrator. Therefore any
errors introduced by the integrator will have significant consequences in the overall A/D
conversion process. Harmonic distortions are primarily due to the inherent non-linearities

of the MOS components comprising a MOSFET OTA continuous-time or switched-
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capacitor integrator. To account for these harmonic distortion effects, the ZA toolbox
models the integrator of Figure 3.6 as a distortion-free integrator with a distorted signal at
its input after the switched-capacitor stage. If the input to the integrator is V,,(kTs). the

distorted input signal Vi (kTs)" is modeled as

Vi (KTo)' = Vi (KTo) + 20 [ Vi (KT6) || +2,[ Vi (KTS)] -

(3.14)
+ 8, [ Vi (KTo)] + [V (KTe)]

where ag, a;, a,, and a; are the 208 3“', 4™ and 5™ distortion coefficients. This equation is
used in the XA toolbox integrator block function. The distortion coefficients are
determined from prescribed harmonic distortion measurements of the MOSFET
integrator being considered for a particular ZA architecture. The coefficients are

calculated using an elementary trigonometric form of (3.14). That is, if a sine wave of

amplitude V4 is assumed as the input to the integrator, the distortion coefficients become

a = (3.15)
] VA
4-HD,
a, =—— (3.16)
V.’
‘HD,
a, = 8 - (3.17)
Vo
16-HD,
a,=——— (3.18)



Integrator Output without Harmonic Distortions for 1st-Order Modulator with M=32
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Figure 3.15 Integrator Harmonic Distortion Effects with ag = 0.15 and a,
0.3 in a 1*-Order £A Modulator Performing at M = 32.
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Although it is widely excepted the 2™ and 3" harmonic distortion terms are the most

prominent, the A toolbox allows up to the 5™ harmonic distortion term to be included in

a simulation. Figure 3.15 shows the effect of the 1* and 2™ harmonic distortions in the
1*-order £A modulator example with a 4-bit quantizer. ag=0.15 and a; = 0.3 while V5 =

1V., fs =1 GSPS, and M=32 for this simulation. The top graph displays the output of the
integrator without harmonic distortion effects. The lower plot gives the effects of
harmonic distortion. A close look shows distortion of the higher frequency components
in the integrator output. These harmonic distortions are primarily due to spurious

harmonic frequencies.

Figure 3.16 gives the Fourier spectrum for a 1*-order £A modulator example with
a 4-bit quantizer. This figure can be compared with Figure 3.17 which displays the
Fourier spectrum of the same system with the aforementioned harmonic distortion
contributions. Figure 3.18 and 3.19 enlarge pertinent areas of Figures 3.16 and 3.17.
respectively.  Spurious harmonic frequencies are easily seen in Figure 3.19 when
contrasted to Figure 3.18. In addition, the lobes adjacent to the center frequency are
reduced by a couple dB when harmonic distortion is considered in Figure 3.19. Although
these distortions should not have a very drastic effect in a 1-bit quantizer implementation,

they could have an effect on the performance of XA modulators using mult-bit
quantizers. This idea should be noted when considering higher order ZA modulators,

such as the one discussed in Section 3.4, which depend on higher frequency components

for a more precise representation of the modulator input. If the harmonic distortion terms
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Figure 3.17 Performance Specifications of a 1*-Order £A Modulator using

a 4-Bit Quantizer at M=32 with Harmonic Distortion.
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are large enough, they may cause improper comparator decisions in the quantizer which
may have an adverse effect in overall ZA modulation performance. Another non-ideality
which may cause the same problem is incomplete settling of ZA modulator component

blocks.

Each component block in 2 A modulator has an associated settling time. If each
component does not completely settle within its allotted clock phase time, incorrect block
outputs are fed through the ZA modulation loop. This may also be detrimental to the A/D
conversion process. Thus, component settling time issues are included in the £A toolbox
by calculating the settling time constant for each individual ZA modulator block. The
toolbox can incorporate the settling time error in the output of each block using the
calculated time constants. The most difficult time constant calculation is for the
integrator. Appendix A details the mathematical development of the integrator’s
effective settling time error by employing a two-pole, small-signal circuit MOSFET
model in the Laplace domain. Figure 3.20 describes the schematic diagram for this

integrator model.

The 2 time constants are obtained from the mathematical representation of the
integrator’s voltage gain, Ay. Applying Kirchhoff's Current Law at the gate and drain

nodes gives the following two equations:

(V=vi) Y, +v-C-s+(v—v ) (s:C,+Y,)=0 (A.1)

Vu'(go +S.CL])+gml -V'+(vn _V')‘(S'Cx +Yf|)=0 (Az)

AIARL id & §
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Input = :
J?\ ‘
: OTA

Figure 3.20 Schematic of Two-Pole, Small-Signal Integrator Model.

where, v,, is the switched-capacitor input voltage; v’ is the gate to source voltage; v, is
the output voltage; C’ is the OTA input parasitic capacitance; C, is the gate to output
parasitic capacitance; Cp, is the load capacitance; gm is the OTA's effective
transconductance; Yy, is the switch’s admittance; Yy is the integration capacitor’s
admittance; and s is the Laplacian operator. Equations (A.1) and (A.2) are used to find

Avy. Solving these equations, substituting for the full form of the Y, and Yy:
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C
Yp=r— = g (A6)
| (F{g]-s-Cg,-{»l)
Rq e
gl
Ya =5:Cpy (A7)

where, Ry is the effective switch resistance; Cy is the effective sampling switch
capacitance; and Cj, is the integration capacitor. Simplifying by removing insignificant

terms, Ay is found to be

nt

CgI '(_gml +C ‘S)

A\_ — (Clnt 'gmi) - (AS)
(CLiCie "Ry Cp +C, -CR,, -Cp +Cy Ry 15 )87
C.-C+Cy, 'ng L S - 'Rgl 'Cgl SHC
+C|nl -CI + CL] .Cll'll + Clm ‘Cg!
C:nl'gml

The denominator for this equation is used to determune the 2 time constants for the
integrator. The ZA toolbox substitutes the prescribed values for each of the variables in

the denominator of (A.8). It then finds the roots of this numerical form of the

denominator. The roots are of the structure:

where p; and p; are the calculated poles of the denominator. The final result for the

settling time constants T, and T, becomes:

P1 (A.11)
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1
To=—
P2 (A.12)

These time constants are used to determine if incomplete settling occurs for the integrator
during the integration phase of the clock cycle. The XA toolbox accounts for a possible
integrator settling error by including the time constant contributions at the output of the
integrator for a specified phase time. The toolbox uses (3.19)

h_ tim h_time
W=V ou -{l - exp[-P—:T—'—e-J - exp[—- E_‘C—D (3.19)
1 -

where w is the output of the integrator including settling error, Vin_ou 15 the output of the
integrator without settling error, and ph_time is the integration phase time in seconds.

The settling error of the quantizer and DAC blocks is included in a less tedious manner.

The toolbox requires that the values for the equivalent capacitances and

resistances must be included in the desired XA modulator architecture file. The

respective time constant for each block is calculated as follows:

Torock = Reqpiock * Ceqblock (3.20)

where Thiock 1S the block’s time constant, Regpiock iS the block’'s equivalent
resistance, and Ceqpiock 1 the block’s equivalent capacitance. Using (3.20), the output for

each block becomes:

h_ time
Vout.block == Vout '[] = exp(— P—_____} ] (3.21)

\ Thiock

Adsddd is i



63

where Voubiock is the output of the block including settling error, Vo is the output of the
block without settling error, and ph_time is the integration phase time in seconds. A

simulation of the 1*-order A modulator can show the effects of incomplete settling of its

block components. Figure 3.21 displays the integrator outputs for a simulation
performing at fs = 1 GSPS and M=32. The upper plot gives the ideal integrator output,
while the lower plot is for the integrator output with incomplete block component
settling. In the simulation, the ZA toolbox calculated the following time constants from
the specified data for each block component: 8.6x10™"" sec” and 3.8x10™"* sec” for the
integrator, 1x10™"" sec” for the quantizer, and 1x10™"" sec”' for the DAC. A close look at

the graph shows how settling errors cumulatively distort the integrator output.

Figure 3.22 gives the enlarged output frequency spectrum for the same system.
This figure can be compared to the undistorted output frequency spectrum of Figure 3.18.
The 3™ through 7" harmonics are similar in amplitude on both Figures 3.16 and 3.22.
But, higher harmonic frequency amplitudes of Figure 3.22 are inconsistent with their
corresponding undistorted harmonic frequencies of Figure 3.16. Once again, higher
frequency contributions have been adversely effected by the non-ideality. In turn, settling
errors may be detrimental to the important local averaging process of ZA modulation. As
seen in the last section, local averaging aids in a more accurate digital representation of
the analog input to the modulator. Also. settling errors may have an unfavorable effect on

A/D conversion accuracy when considering higher order £A modulators, such as the one

discussed in Section 3.4, which depend on higher frequency components at the integrator

output for increased A/D conversion resolution. Along with the two aforementioned non-
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idealities, another error that has a direct effect on the integrator output is switch charge

injection or charge feed-through.

Charge injection is an inherent problem with switched-capacitor sampling circuits
[Wegmann, 1987]. Referring to Figure 3.6 showing the switched-capacitor continuous-
time integrator, the switches are typically implemented by MOSFETs. Figure 3.22
displays a circuit model of the MOSFET sampling switch just preceding the integrator.
The diagram models the middle portion of the switched-capacitor integration circuit
around the ¢» dependent switch just before the intermediate node of Figure 3.6. The
system of Figure 3.22 consists of the sampled difference signal to be integrated. Vin. the
sampling capacitor, Cs;, the MOSFET switch transistor, and the integration capacitor, Ciy.
The transistor’s gate voltage, Vg, controls the on/off state of the transistor during the

integration phase ¢,. Charge injection limits the accuracy of the integration process by

introducing an error charge, AQg, onto C,,, each time the transistor is turned off.

The error charge is due to carriers released from the switch’s conduction channel
and due to coupling through the gate-to-diffusion parasitic overlap capacitance, Cpy. This
has an adverse consequence on the output voltage of the integrator. A simplified circuit
model of this MOSFET switch for charge injection analysis is given in Figure 3.23. This
model assumes that there is a relatively long fall time associated with the switch and the
capacitances, Cs and Ci,, are much larger than the gate oxide capacitance, C,,. The
transistor’s Co 1s considered as a distributed oxide capacitance associated with the

switch’s time-varying channel conductance representation, g[V,(t)]. If these assumptions
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— Cint

Figure 3.22 Simple Circuit Model for Charge Injection Analysis.
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Figure 3.23 Simple Circuit Model for Charge Injection Analysis.
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are satisfied, a linear decrease of V; with slope ‘a’ across C, is equivalent to a constant
current source of (aCo)flowing symmetrically to both ends of the transistor. g[V,(t)] can

be modeled as
a[V,(t)] = B-(Vyon —a-t-Vre) (3.22)

where B is the transistor current-gain, V,on is the gate voltage required to turn on the
transistor, ‘a’ is the slope of the slope of the gate’s on /off transition voltage. t is time and
V1 1s the effective threshold voltage determining the on/off state of the transistor. The

transistor current gain, B, is modeled as
W
B=-1"nCu (3.23)

where W is the width of the transistor, L is the length of the transistor, and p is the
transistor’s carrier mobility; while the slope of the gate’s on /off transition voltage. ‘a’, 1s

determined by

08V, o

a= (3.24)

t1a||

where tg is the fall time associated with the on/off transition voltage of the transistor.
With these models defined, Figure 3.23 is resolved into the following normalized

differential equation:

9£=('l'—B)‘[[i+%)-\/+2-T‘C""

s 2

reTirTy
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where the normalized terms are

AV, )
Normalized Voltage Error: V= ——F—, (3.25a)
Cox a
2 B & Clnt
. . t
Normalized Time: T= " and (3.25b)
int

a-p
Normalized Switching B R
Parameter: B= (Vg.ON - Vq ) aC. (3.25¢)

nt

The ZA toolbox uses these equations and an initial condition of V = 0O to calculate the
charge injection error added to each sample being integrated. The toolbox calculates V
by inserting the required data values and integrating (3.25) from 0 < T < B. This V is
finally substituted into (3.25a) to find the charge injection error voltage, AV,. For the 1™-
order XA modulator example, a charge injection error of -0.000638 V. was determined
using the following parameters: Ci; = 30 pF, Ci, = 32 pF, W = 10000 pm, L = 22 pm.
Veon =1 V.. Vig = 0.5 V., u = 500 cm*/V., Coy = 6.8X10™® F/cm®, fs = 1 GSPS, and M =
8. Although many other switches exist in the clocked switched-capacitor network and the
clocked DAC block, the ZA toolbox only determines charge injection error for the switch

just preceding the integrator’s intermediate node. Charge injection in the other switches

are usually fed to ground when turned off.

The fourth non-ideality considered, clock jitrer error, is also associated with the

MOSFET switching circuits. Clock jitter error arises from the sampling time uncertainty
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in the clocked blocks of the £A modulator. This uncertainty is due to random thermal
noise introduced into the clocking network. The ZA toolbox uses a very simple model for

this error. Normally, the toolbox uses ideal uniform time-sampled data from the created
modulator input waveform to be operated upon during each ZA loop iteration. For
example, a sine wave with a maximum voltage V is ideally created by the toolbox as

f
V(sample) =V, -sin (2 ‘T %s- samp!e] (3.26a)
S

where sample is an integer number from 1 to the number of samples desired. The ZA

toolbox introduces a unit amplitude noise term scaled by a user defined clock jitter

percentage to account for the non-uniform time-sampling. That is, (3.26a) becomes

f
V(sample) = V, -sin (2-7:- ‘f’“ .sample- (1 + jitter _ err-rand(l))} (3.26a)
S

where jitter_err is the user defined maximum percentage time deviation around an ideal
time-samples sample, and rand(1) is the Matlab term that generates a random noise term
with a maximum amplitude of +1. Figure 3.24 shows how a jitter_err of 2% effects the
input waveform created by the toolbox used as an input to a ZA modulator. Once again,

]Sl

this input waveform is applicable to the 1"-order ZA modulator example performing with

fs = 1 GSPS and M=32. The upper plot gives the sine waveform for an ideal time-
sampled input. The lower plot graphs the effects of improper sampling in the time-

domain. The ZA toolbox distorts the input waveform to account for clock jitter effects
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effectively representing the non-uniformity or uncertainty at uniformly sampled data

points.

The fifth non-ideality the ZA toolbox includes is block component mismatch errors.
These errors originate from process inaccuracies inherent to physical IC layout of the
variety of capacitors and resistors used in a £A modulator. The mismatch is most
prominent during the computation of the closed-loop gain values for the integrator and
any amplifiers in the circuit. For instance, if a process is known to have a capacitor
mismatch error of 2%, the desired capacitor gain stage ratios may differ from the actual
implemented gain ratio by as much as 4%. Since component mismatch errors are
considered independent random variables, they sum in a root-mean-squared fashion,
which further increases differences between actual physical gains and computed gains.
Although the performance of many ADC’s are greatly effected by component mismatch

errors, £A modulation is fairly resistant to them.

The ZA toolbox accounts for component mismatch errors in a similar

approach to the inclusion of clock jitter errors. The toolbox adds a scaled version of a
unit noise term to each of the capacitances and resistances given in the desired

architecture file. That is, the impedance of a particular component is modeled as
Z' = (1+mis_err-rand(1))- Z (3.27)

where Z’; is the new component impedance including component mismatch error effects,
mis_err 1s the maximum process mismatch error percentage, rand(1) is the Matlab term

which calculates a random value between = 1, and Z, is the desired component
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Sine Input Waveform without Clock Jitter Error Used as Modulator Input

Amplitude

Amplitude

Figure 3.24 Clock Jitter Error Effects of 2% on Modulator Input Waveform
for a 1¥-Order A Modulator Performing at M = 32.
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impedance. The new resistances and capacitances are used in the iteration of the A loop

resulting in the inclusion of these mismatch errors.

Figure 3.25 displays the effects of component mismatch errors on the integrator
output of the 1*'-order A modulator example performing at fs = 1 GSPS and M = 32.
The upper plot shows the effects for a maximum mis_err = 2%, while the lower plot
exhibits the effects for a maximum mis_err = 20%. Figure 3.26 shows the effects of
component mismatch error over and above quantization error. The upper plot gives the
effects for a maximum mis_err = 2%, while the lower plot demonstrates the effects for a
maximum mis_err = 20%. There is an obvious drop in performance in the case of 20%
error when compared to the plot of 2% error. In addition to adding an additional amount
of error over and above the quantization noise. the plot of 20% mismatch error begins to
show a correlation to the input waveform. This observation is of concern since it violates
Bennett's noise model discussed in Section 2.1. Figures 3.27 and 3.28 give the frequency
spectrums for the output of the 1*-order £A example including component mismatch
errors of 2% and 20%, respectively. Once again, the g through 7" harmonic frequencies
are not highly affected. But, harmonic frequencies above the 7™ order are affected. The

graphs show the general resilience of £A modulation to component mismatch errors.

Although these errors should have less effect on a 1-bit quantizer implementation,
they can have a significant effect on the performance of ZA modulators using multi-bit

quantizers by limiting the quantizer's effective DR. In addition, some of the

aforementioned errors may be removed by the differential aspect of the integrator.
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Integrator Ouput of 1st-Order Modulator with Component Mismatches of 2%
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Figure 3.25 Effects of 2% and 20% Component Mismatch Errors in a 1*-
Order ZA Modulator Performing at M = 32.



Effects of Component Mismatch Error of 2% in Addition to Quantization Error of 1st-Order Example
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Frequency Spectrum of 1st-Order Modulator with Component Mismatch Error of 2%
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Frequency Spectrum of 1st-Order Modulator with Component Mismatch Error of 20%
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As mentioned in section 3.1.3, the ZA toolbox implements a differential integrator
circuit to aid in the rejection of common-mode errors. Figure 3.29 displays a block
diagram of a 1¥-order £A modulator implemented in a differential form. The input to the
differential modulator is fed to the +Input node, while its inverse is fed to the -Input node.
The toolbox iterates both modulation loops specified in the architecture file. The digital.
quantizer output of the lower half of tig diagram is subtracted from the quantizer output
of the upper half to give the system’s final output. The ZA toolbox uses this‘fact 1o
validate common-mode error removal or non-zero common-mode gain. Common-mode
errors arise when similarly signed errors are introduced to the upper and lower halves of
the differential circuit. Common-mode errors are thus reduced or eliminated by the final

subtraction operation for the resulting modulator output.

The non-idealities described in this section combine to give the ZA toolbox the
ability to simulate ZA modulators more realistically. As seen by the plots in this section,
these non-idealities do hamper the performance of ZA modulators, especially for the 4-bit

quantizer implementations. After a desired design is theoretically designed, the inclusion
of the errors in simulations may validate the designer’s expectations of the design’s
performance. If the errors tend to unexpectedly reduce the anticipated A/D conversion
resolution, the designer may redesign the modulator to take into account any performance
degradation before the circuit is simulated with some other transistor-level simulator.

This approach and use of the XA toolbox will aid in the rapid prototyping of desired ZA

modulators.
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Figure 3.29 Block Diagram of the Differential form of a 1*'-Order A
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Now with an understanding of 1¥-order £A modulator behavior and limitations,
two higher order A modulators are discussed in the next two sections of this work.
Section 3.3 develops a 3".order £A modulator which employs digital error correction

functions to reduce the inband quantization noise power at the output of the modulator.
The following section 3.4 explains a novel approach for reduction of the noise power by
attempting to control the shape of the inband quantization noise power. This circuit,
initially proposed by Nadeem, shapes the quantization noise in a Chebyshev Type-II
transfer function form. Both these modulators are currently being investigated by the

AAVDC for NRaD.

3.3 A 5rd Order Residual Scalfgg' 2A Modulator

Higher ordered A modulators allow for greater noise-shaping realization. One
higher order ZA architecture being developed by the AAVDC is a 3" order Residual
Scaling modulator. It proposes a greater reduction in quantization noise power over
typical 3™ order TA modulators by use of digital error correction functions. A block

diagram of this innovative architecture is given in Figure 3.30. This modulator does not
follow the typical cascaded form described in Figure 3.2. Instead, a parallel structure is

implemented with 3 XA loop stages.

From the figure, it is seen that the difference between the first stage’s input and its

estimated analog output before quantization, w, - Xy, is amplified and fed as the input to
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the second stage, x,. Thus, the input to the second stage is basically the amplified noise
that has been added to the first stage during its one loop ZA modulation. Similarly. the
noise added to the second stage by its one loop ZA modulation is again amplified and fed
as the input to the third stage. The interstage gains are required to amplify the previous
stage’s noise in order to maximize its A/D conversion process. That is. the interstage
gains normalize the inputs to the second and third stages to utilize all of Vgs. After each
stage completes its ZA A/D conversion, the individual stage’s digital signals. y; -3, are
fed through digital error correction functions, H; -1, and summed to produce the final

system output, y:
y=Hi-ys—Hz-ys +Hj-ys (3.27)

When designed properly, these error correction functions tend to cancel the quantization
noises form the first and second stages, ;> [Walden, n.d.]. The noise remaining at the
output is a scaled version of the quantization error introduced by the third stage. This

error correction process is derived in Appendix B. The derived outputs of each stage are
¥4=axq v (1-qreq (B.10)

3
yo=0x4 q-gqeq(1 q)ep (B.12)

-y, . 3‘ 2 *
y3=0xq 0eq g-gyep: (1 g)ej (B.14)
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Figure 3.30 Block Diagram of a 3™-Order Residual Scaling ZA Modulator
using 4-Bit Quantizers and Digital Error Correction Functions.



83

where q = 2", x; are the inputs to the i™ stage, e, are the quantization errors associated
with each i™ stage, and g, and g, are the interstage gains. Along with these, the proper

error correction functions are also derived in Appendix B:

Hi®S (B.19)
-1
Hz_qa.(q__)
91 (B.20)
2
9192 (B.21)

These functions when substituted into (3.27) yield the equation for the final output, y:

3
_{:_1. .q)c.e3
\9192) (B.22)

y=q7-x 1+0eqy-0eop+

(B.22) describes the output of the system to be a 7 sample delay of the input signal to the

system added with a scaled, 3rd-order, noise-shaped quantization error form the third

stage. (B.22) verifies the removal of the 2™ and 3" stages’ quantization noise from the
output by use of the error correction functions.

From (B.22), the theoretical SNR for the system assuming an input of

(Ves/2)sin(mt) is:

3
—.2
16

(3.28)

I.J
@

o
—_
2
(@]

L)
—

e
o

SNRge sigual = [

This theoretical SNR formula denotes the Residual Scaling A architecture’s dependence

on the number of bits in the quantizers, B, the oversampling ratio. M, and the interstage
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gains, g; and g>. (3.28) is similar to a typical 3" order £A modulator’s SNR, calculated

in (3.7), except that SNRResiqua is reduced by the effect of the interstage gains, 1Le..
(g122)°. This reduction is key to this architecture’s proposed ability to further reduce the

output’s quantization noise power over a typical cascaded 3"-order £A modulator.

This ZA modulator was specified to achieve 16 bits of A/D conversion resolution
utilizing 4-bit quantizers and operating with a sampling rate of 1 GSPS at 8 times
oversampling. During the system-level design process, the only unspecified values were
the interstage gains. These values were found by creating a Residual Scaling A
architecture file and utilizing the ZA toolbox. Introducing a modulator input of *Vgg
white noise, the input to the first interstage gain, g;, was viewed. It is shown in the upper
plot in Figure 3.31. In order to normalize the output of the first interstage gain to Vg, the
inverse of the maximum error shown in the plot was determined. The maximum effective
gain for g; was calculated from this to be 8. With this new value inserted as the first
interstage gain in the architecture file, the same method was used to determine the second
interstage gain, g». The lower plot in Figure 3.31 showing the input to the e amplifier,

g», was analyzed. It too resulted in 2 maximum effective gain for g- to be 8.

Therefore, substituting B = 4, M = 8, and g, = g = 8 into (3.28) gives the
theoretical SNR for the 3™-order Residual Scaling £A modulator to be about 3 X 10” or
94.77 dB. The ZA toolbox was used to verify this theoretical measurement. With all the
system parameters prescribed, a 5000 sample ideal simulation was performed in 15
minutes on the same 486DX2-66 computer. The simulated performance results are given

in Figure 3.32. The upper plot of the inband noise spectral density demonstrates the large
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Figure 3.31 Interstage Gain Inputs for Gain Calculations in the 3"-Order
Residual Scaling A Modulator using 4-Bit Quantizers.
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noise-shaping characteristic of a 3“-order £A modulator. This is also seen in the lower
plot of the system’s output spectrum. The simulated SNR of 93.80 dB matches the
theoretical value to within 1 dB. The minor deviation between simulated and theoretical
SNR values is probably the result of the limited number of sample points. A longer
simulation of perhaps 32,000 sample points may allow the simulator to more precisely

parallel the theoretical A/D conversion performance measurements.

As a whole, the ZA toolbox gave an accurate measurement for this multi-bit.
higher order architecture. In addition, the toolbox’s ability to show intermediate
architecture nodes aided in the design of this particular ZA modulator. To complete the

verification of the toolbox, one last higher order architecture is implemented in the next

section.

54 A 5rd Order 2A Modulator Based on the
‘Nadeem’ In trewpala tive Architecture

The previous section gave an example of a multi-bit, higher-order £A architecture
that greatly attenuated the quartization noise in the passband. But, due to its interstage
gains and multiple quantizers, it did not have an area efficient or low-power
implementation. The architecture discussed in this section is proposed to be a low-power

2A modulator and is more area efficient than the Residual Scaling £A modulator. The
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AAVDC has just begun investigation of this architecture. A similar architecture was
introduced by S. Nadeem of the Massachusetts Institute of Technology that refines the

noise-shaping process [Nadeem, 1994]. Common higher-order A modulators designs

have placed all the zeros of the NTF at 0 Hz and all the poles at fs/2. This architecture,
shown in Figure 3.33, refines the NTF into a Chebyshev Type-II filter form by feeding
back scaled node outputs to intermediate nodes. With the proper design. these feedback
coefficients are used to place the poles and zeros to achieve a the desired Chebyshev
Type-II NTF response in order to reduce the average noise power within the band-of-
interest. Specifications for the design being investigated by the AAVDC are 18 bits of
A/D conversion resolution at 10 kSPS and 20 bits of resolution at 2 KSPS, using a 4-bit

quantizer and a sampling rate of 1.28 MSPS with 64 times oversampling.

Appendix C analyzes Figure 3.33 and develops the feedback gains, Ag .~ and By.
By sets the zero, while a combination of Ap ;> and B, define the poles for the refined
NTF. The integrator closed-loop gains also have a distinct effect on pole and zero

placement.

On the whole. the stability of the system is strongly dependent on the values of
these gains. The first step in calculating the gains is the development of the Chebyshev
Type-II transfer function desired for the NTF noise-shaping. An Elliptical
implementation was developed for easier zero and pole placement. Elliptical transfer
functions allows for ripple in both the passband and stopband by proper placement of

zeros and poles. Conversely, Chebyshev Type-II transfer functions allow for ripple only
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in the stopband by placement of zeros and no passband ripple by placing all poles at half

the sampling frequency. Therefore, an Elliptical NTF with a 0.1 dB allowable ripple in

€ Digital
.‘ Output
ADC y1
— N
| DAC

Figure 3.33 Block Diagram of ‘Nadeem’ Interpolative ZA Modulator.

the passband sufficiently models the Chebyshev Type-II NTF required for this design.

It is desired that a zero is placed at the passband frequency such that the NTF is
attenuated at that point. This allows for a greater reduction of noise power at the
modulator’s output with respect to placing that zero at 0 Hz. In addition, the design of
the Elliptical transfer function assumes a 1-bit quantizer implementation. Therefore, the
desired transfer function is designed for an attenuation of the quantization noise floor of

at least 15 bits or 90 dB. The remaining bits of resolution are accomplished using a 4-bit
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quantizer. Appendix C illustrates the process by determining the following optimal z-

domain form from calculated Elliptical poles and zeros:

2 2.09751282° - 2.9975127672769G - .99999996727696
Hp(2)=——— PLISEDE ik A 999999961276

2 1922461177 + .39454653854319412 - 1.32584740537294193450 ° (C.3)

Both the normal Elliptical form has an associated transfer function constant that should
be multiplied by Hp(z). Unfortunately, this constant is not accounted for in Nadeem's
interpolative XA modulator. Thus, the transfer function’s constant multiplier is required
to be unity. Using Figure 3.33, the z-domain representation of the interpolative ZA

modulator STF, Hx(z). and NTF, Hg(z), are calculated to be the following:

KoK Kz
Hy(z)®—— -

24 A K- 3= KoK By )r .
+/ KK A+ KK B+ 2A,K + 3)z..
+ KoK KA - KoKA ALK, ] (C.4)
1 l
z 3-K/K:B )z (3¢t K K B }-z 1|

H(2)= - 210, _ 2710
z+ | A:'K,_, 3- K K|'Ba 7 ..
+ KyK/A + K-K-B,+ 2A,K, + 3)z
+ (KK KAy - KoKAA - AVK, _ (C.5)

where Ay, > and By are the feedback gains, and K; is the closed-loop gain for the (+1)"
integrator. (C.5) clearly shows that the interpolative design does not have a NTF constant
multiplier factor. As will be seen, this has an adverse effect on the proposed A/D

conversion resolution.
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The modulator’s Hg(z) has a direct relationship with Hp(z). Matching the
numerator and denominator z-coefficient-terms’ from both functions and solving the

resulting equations give the feedback gains in terms of the integrator gains. That is,

1.2009745741378211781

| K (K Ky) |

| 3‘[2075670_?1 83}! 5412
-'.Kz'Kl_
2.80526665027696

K
8 (C.10)

A

10°
B, - 248723272304

Pt (C.11)

The next step in determining the coefficient values is to determine appropriate
integrator gains, Ko 2. The XA toolbox proved its usefulness in finding integrator gains
which are suitable for (C.10) and (C.11) and will not cause instabiliry within the XA
modulator. By developing an interpolative ZA modulator architecture file using (C.10)
and (C.11) and iterating for different integrator gains, the following integrator closed-loop

gains were found as proper values:

40
40

Ko 1740 7 40

where, K is the (i+1)Ih integrator’s closed-loop gain. (C.13) and (C.14) give the actual
feedback coefficients after (C.12) has been substituted into (C.10) and (C.11). These

values become

A, =-1263; A, = —3085; A, = - 2805 (C.13)
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B, = —0.003 (C.14)

(C.12) through (C.14) give the gain values required by the interpolative architecture to
achieve the Chebyshev Type-II NTF form. Note that these gains are usually limited to
integer fractions for implementation as switched-capacitor ratio gain stages. Figures 3.34
and 3.35 show the theoretical plots for the modulator’s NTF and STF, respectively. by
substituting (C.12) through (C.14) into (C.4) and (C.5). Although the NTF plot of Figure
3.34 clearly shows the Chebyshev Type-II noise-shaping, the effects of forcing the
transfer function’s constant multiplier factor to unity is also evident. This theoretical
NTF plot exhibits a gain greater than 0 dB at higher frequencies and a less pronounced
attenuation around the zero placement at 10 kSPS. In addition, the STF plot also shows
the unity multiplier’s effect in a gain spike around 300 kSPS. Even with this problem. the
theoretical solution developed seems to be optimal. This completes the derivation of the

Interpolative £A modulator[ ‘s feedback and integrator gains. But before continuing on to
a simulation, the XA toolbox requires an approximation for the STF of Figure 3.35 to
determine the appropriate NSTerm to be integrated, as required by (3.11). An 11"-order
power series expansion of (C.4) is used as a good approximation for the STF. Hx(z). as

seen in Appendix C:

H (2)=.950625z 7 ¢ .1835181562% *  .2695798511859373 1 .12413847234488273438° ..
+5.99787460961057787590 >z © . 5.51560542046003683810 >z 7 ...
+ 6.87070206859835243880 >z *  1.98569510833411205250 >z * ...
+ 2.39562327390704493320 >z '° (C.17)
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With the approximate STF defined. the gains found in (C.12) through (C.14) were
substituted in the Interpolative ZA modulator’s architecture file. An ideal simulation was

performed with a modulator input frequency of 2 kHz. The resulting outputs for each
integrator and the final modulator output are respectively given in Figures 3.36, 3.37.
3.38, and 3.39 for a couple of cycles. These plots exemplify how the Interpolative TA

modulator operates. Each consecutive integrator attempts to interpolate between its input
waveform’s values corresponding to adjacent digital quantization steps in an analog
fashion. This process coupled with oversampling consequently produces a quantizer
output that interpolates between adjacent quantization levels. Thus, the modulator’s
output provides a more precise estimation of the modulator input waveform. Also. the
possible effects of the improper NTF multiplication factor is seen in these plots. As
aforementioned, it is necessary that there is no integrator clipping in a £A modulator.
Even though Figures 3.36 through 3.37 do not show any clipping. the output’s of the 1
and 2" integrators are not within the quantizer’s full-scale voltage set at 1V. for this
simulation. This may be a cause for the deviation of the simulated modulator’'s SNR

from the theoretical SNR seen below.

To determine this architecture’s simulated SNR for bandwidths of 2 kSPS and 10 kSPS,
an ideal 32,000 sample simulation was performed with fs = 1.28 MSPS and M = 64. A
modulator input of 50 kHz was introduced to reduce the simulation time and to rid the

resulting performance plots of harmonic contributions around the desired bandwidths.
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Figures 3.40 and 3.41 show the SNR plots for a 10 kSPS bandwidth and a 2 kSPS
bandwidth, respectively. For both figures, the upper plot corresponds to the inband noise
power density spectrum, while the lower plot shows the output spectrum for the
modulator. The simulated SNR for a 10 kSPS bandwidth was 101.58 dB or 16.6 bits
resolution. The simulated SNR for a 2 kSPS bandwidth was 108.13 dB or 17.7 bits of
resolution. These values are much less than what was required for this architecture. In
addition, the expected Chebyshev Type-II noise shaping characteristic is not seen in either
plot, thus reducing desired SNR improvements to a simple oversampled improvement
without noise shaping. The SNR difference between for the 2 kSPS system over the 10
kSPS system, i.e. by a simulated 6.55 dB. is solely due to oversampling the system by 5
times more. Using equation (2.14), oversampling a system by 5 times yields a 6.98 dB
improvement which concurs with the above observation. The lack of performance from

this architecture is due to the following reasons:

e the NTF's constant multiplier is required to be unity for this architecture

which causes a distorted Chebyshev Type-II response;

e the performance plot showing the modulator’s NSTerm includes the effects of

the 4-bit quantizer's small error variance, 6., which may prevent easy

viewing of the actual noise-shaping;

Another, but very unlikely, possibility is that the specification for 18 bits of SNR exceeds

the ability for this Interpolative modulator to perform Chebyshev Type-II noise-shaping at
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Inband Noise Power Spectral Density for Interpolative Madulator for 10 kSPS Bandwidth
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M = 64 and fs = 1.28 MSPS. These toolbox results suggest further investigation and

refinement of Nadeem'’s Interpolative £A modulator is necessary to resolve the apparent

problems.

The ZA toolbox aided the initial investigation of Nadeem's Interpolative IA

modulator. It verified that at least two problems to exist and that further system-level
examination is required before actual IC designs are implemented. This section along

with the previous has proved the utility of the A toolbox. Higher-order architectures can
be simulated and refined using the ZA toolbox to determine their A/D conversion

potential.
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Conclustons

Interest in oversampled, £A modulation has recently grown due to its reported
increase in A/D conversion resolution over conventional A/D conversion methods.
ADCs employing ZA modulation are becoming commonplace due to their simpler design
and resilience to limited device matching. The verification of the theoretical performance
of novel A modulators has been hindered by inefficient or incomplete simulations
provided by common commercially available simulators. This research work described
the development of a new rapid-prototyping simulator, the XA toolbox, that attempts to

overcome these hindrances.

After an introductory discussion of Nyquist-rate and conventional oversampled

ADCs, ZA modulation, its characteristic noise-shaping properties, and implementation of
ZA modulators in the ZA toolbox was discussed. The toolbox can implement a variety of
A architectures by use of the following modular component blocks: integrator,

quantizer, DAC, summation node, and amplifier. Following the ideal description of each
block, the effects of six significant non-idealities which hamper A/D conversion were
investigated. The non-idealities considered were: integrator harmonic distortion errors,

block component settling errors, MOSFET switch charge injection errors, clock jitzer
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errors, circuit component mismatch errors, and circuit common-mode errors. The
incorporation of these non-idealities allows for more realistic A/D conversion
performance measurements by the ZA toolbox. Each non-ideality’s effect on TA

is!

modulation was presented individually with a 1%-order LA modulator example.

Simulations from the ZA toolbox were performed with respectable efficiency on a IBM-
compatible 486DX2-66 computer. With the discussion of the basic simulator complete.
the toolbox’s utility was seen in the initial investigations of two 3"-order TA modulators

being developed by the AAVDC for NRaD.

The first higher-order architecture described was the 3“-order Residual Scaling
ZA modulator. This novel architecture uses digital error correction functions on the
parallel, 3"“.order A modulator to achieve a greater reduction in quantization noise
power over a cascaded, 3“-order A modulator. The TA toolbox was useful in the

development of this design by providing both frequency and time-domain views of
intermediate nodes. This was integral in defining the maximum values for the interstage
gains. Also, the toolbox verified the derived error cancellation functions and the

modulator’s theoretical SNR by use of simulated performance measurements.

The second higher-order architecture presented was a 3".order Interpolative A
modulator similar to a design reported by S. Nadeem of MIT. This interesting
architecture attempts to refine £A modulation noise-shaping by modifying the NTF into a

Chebyshev Type-II form. After mathematical derivation of the architecture’s required

feedback gains, the required integrator gains were found by viewing integrator outputs for
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stability using the ZA toolbox. A problem with the design was verified by the toolbox’s
simulation results. Thus, the ZA toolbox once again proved its utility in the initial

system-level design of ZA modulators.

Noting the potential of this simulator along with the increased use of XA

modulators, a variety of future prospects for the A toolbox are possible. First. a
graphical or user-friendly interface must be integrated into the simulator. Second, power
measurements could be introduced. This could further aid the designer in refining
potential low-power designs. Lastly, the simulator could be developed into a type of
VLSI hardware description language in order to further provide even faster prototyping of

potential designs.
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Devc-[apmreﬂt of Setding Error for Two-Pole

Representa tion of an [ntega'a tor

Below is the two-pole, small-signal model used for the integrator in the £A toolbox. By

using this mathematical model, the time constants associated with the integrator may be

found.

+.

Vlﬂ
Switched-
Capacitor

Input

+

"Ill)'

— : Integrator
Output

Figure A.l Schematic of Two-Pole, Small-Signal Integrator Model.
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These time constants are combined to determine the settling time required for integration.
Incomplete integration will cause an integration settling error which is accounted for in

the ZA toolbox. Using Kirchhoff’'s Current Law at the gate and drain nodes. (A.1) and

{A.2) are found.

(V=vy) Y, +v-Cs+(V-v,)(sC,+Y,)=0 (A1)
V, (8 +5C)+8m VvV +(v,—-V)(s:C,+Y,)=0 (A.2)

where, v, is the switched-capacitor input voltage: v’ is the gate to source voltage: v, 1s
the output voltage; C’ is the OTA input parasitic capacitance; Cy is the gate to output
parasitic capacitance: Cp, is the load capacitance; g, is the OTA’'s effective
transconductance; Yy is the switch’s admittance; Yy is the integration capacitor’s

admittance; and s is the Laplacian operator.
(A.2) can be rewritten as :

(B —SC, =Yg )V +[(gu +5-C,+s-C  + Y“)-vu]=0 (A.3)
(A.1) can be rewritten as:

XV Y CL 8V, <Y, )
Vi - : (A"‘”
(Y, +s-C'+s-C, +Y)

Substituting (A.4) into (A.3) gives,

(¥ ooV #9508 00, ¥y )

(8. —8-C,.—Yg):
Em . OXy FeCres:C, #Y)




which yields:

(s-C, +Y,)
(¥, +5:C'+s-C . +YXg)

|:(ng ~§:C, = Yu)-

(Y, V., +V, C_-5+v,Xy)
=Yy ) —

+(gm! _S'Ct
(Y, +s-C'+s-C, +Yy)

.

Solving this equation for the integrator’s voltage gain, Ay, gives

=YX
(grnl _S‘C; _YH). ' :
v (Yy +s5-C'+5:C, +Yy)

+g,+s-C,,+s-C, +Y, |"Var-
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(Y, +s:C'+5-C . +Y))

o (( C.-Yy)
lgmlh’s' T~ Inte

C, is neglected since it is much smaller than C,,. This simplification results in

(2. - Yo) _YS]
o " Y, +s-CTr YY) |
) (Y,))
(Zau=Yy3)" — +g, +s-C,+Y
l: Sml fl (Ygl +S’C +Y”) L1 il

which may be rewritten as

= (—8m +Y)
A\.—Yﬂ' -
§7Cy; -E'H(g, - C'+C,; - Y, #C - Y ¥ - C') 080
+8mi - Yy +8, 'Ygl +8, Yo + Yy 'Ygl

g, +s-C,, +s-C‘+Y“jt

(A.5)
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Now, the full form for the admittance Y¢ & Y, are substituted into (A.5). Yq and Yy

are
Yo = 1 2 Cq (A.6)
’ [ I J (Ry -s:Cy +1)
Ry 4 —r—
s-C,
YQI =s-Cy, (A7)

where, Ry is the effective switch resistance: Cg is the effective switch parasitic

capacitance; and Cjy, 1s the integration capacitor. Thus (A.5) becomes:

(_gml +C .S}

nt

A\ =Yg]‘ 3
(Cp,-C)-s' +(g, -C'+Cyy - Y, +Cy, -Cyy -5+Cpp -C-5) 5.

+g C 'S+go'Ygl+go.C|m'S+C|nl.Ygl'S

S mi nt

or,

C,

A\' = [_grni +C|nt 'S)' B : - P
(Cyy - Coi ~ Ry Ly ¥CCp Ry Gy #C € R yiC L )87

+ C"CLI +CLI 'Cgl +Can| 'gml 'Rgl 'Cgl +gn 'CI' Rgl ‘Cgb
+C|nl .C‘+CE.I 'Cinl +C|nt -gn 'Rgi ‘Cgl +le 'Cgl

+Cmt .gn +C1m 'gml +go lcl+go ‘Cgl

Deleting insignificant terms from this expanded equation gives the following equation

used to determine the integrator’s settling time constants:

8.,
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Cgl '(_gm! +Clm 'S)
A = — {Cll'll -gml) - (.AS)
(Cpi-Cn 'Rpa 'Cgl +Co 'CI'Ry ’ng +C,, - C 'Rgl 'Cgl}'s----
C,-C'+C, 'Cgl +Cip *8am ‘R, ‘Cgl
'i"C:a: 'C.+CLI 'Cm: +Cim 'Cgl

Cmt “Emi

-s+C

-
it Sml

The denominator of (A.8) is

(Cii Cua "RC, +Cy Ry, € #C,-C R - C ) 8w
CLI - +CLI -Cgl +Cw o -Rgl 'Cgl
-S+Cmt .gml
+le -C? +CL] ‘C-““ +le ng'l )
Cmt “Emi (A.9)

With each value provided in a particular A modulator architecture file inserted in (A.9),
the XA toolbox numerically solves for the Laplacian operator, s. The inverse of these

roots are the 2 settling time constants associated with the integrator. That is, (A.9) is

calculated 10 be of the form:
s Py)(s-po) (A.10)

where p; and p; are the calculated poles of the denominator. (A.10) gives the final result

for the settling time constants T, and T-:

: 1
=
P1 (A.11)
4
'[2=

P2 (A.12)
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These settling time constants are used to determine if complete settling of the integrator
output is achieved within the specified clock phase time as discussed in Section 3.2. If

not, a settling error arises and is incorporated in the output voltage of the integrator.
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Appendix B

Deelve&)pment of Residual Scaling Error
Removal Functions

The Appendix develops the Error Cancellation Functions. H;, H.. and Hj beginning with
the definition of each stage’s input, intermediate. and output equations. These equations
were entered and solved in Mathcad. Due to Mathcad’s habit of simplification of inverse

exponentials to fractions, the following substitution is used throughout the Appendix:

qQ =z
The intermediate node equations are
&9 '
L ey B &
LI (B.1)
q ’
W= 2T Vs
1-49 | (B.2)
qQ .
W3=-————'f)(3 Y3.’
t-g* (B.3)

Later, the following substitutions will be made to determine the effects of mismatches in

analog gains, ¥, and digital gains, g;:
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g4=y (18 9=y (1+8,

Initially, the development of each stage's input equations is done.
x; = input of the £A Residual Scaling Modulator (B.4)

X2=g1'q Wy Xqq) (B.5)

Substituting (B.1) and (B.4) into (B.5):

2
q - q
X =g .q. S S— q:.x g [ st S .y
281N (-g 7Y -7
3 X1 q
X =g q e S e g . _______.y
é ! (-1-q) 1 (1-q) 1 (B.6)
xg=aza(wa- x2) (B.7)
Substituting (B.2), (B.4), and (B.6) into (B.7):
2 | 2
q 3 X1 q q
X 3=G o' Q' gl 91q" — g1 ‘Yq| 0o y
R TR Wareg “tor 't ®Fe-q 78
5 Y1 6 X q2
X3® 9299y =t 8299y 5 92‘1 Y 2
(-1+q) (1°q) (1 q) (B.8)

Next, the output equations for each stage are developed:

Y1=W 4 €y (B.9)

Substituting (B.1) and (B.4) into (B.9) yields:

y1=axqeq eqq



Y 150X 4 - (1- Q)'e‘{ (B.10)

yoEwa v (B.11)

Substituting (B.1) - (B.6) into (B.11) gives:

3 3
q q 3
Y =G Q4 — -gq ‘Xxq1-9-'gyeq (1 qg)e
20 " 1e9 -9 ' 2
3
yp=0Ox4 q-gqyeq+(1-9g)ep (B.12)
ygewigrega (B.13)

Substituting (B.1) - (B.7) into (B.13) gives:

q \
ya= ——x3 yg re
T3 q 3 Y9 "3

y3=axgz- (1 q)eg

5 y" 5] X1 q2
y3=9 92Q°9y , 92079y , 92 Y2 (1 a)eg
| (1) (1+q) (1-q)
s (1 q) qQ | 3
| |
Yy3=aq goQ-gqy i) ‘919 a-g9zep (1 Qg)eg
. (1 q)
(1:q) |
3

y3=0x4: 0ey q-goep:(1 qg)eg (B.14)

The error cancellation functions H,, H,, Hj are chosen to cancel e; and e> errors. Using

the following equation

y=Hqyq-HpyatHgyg
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and the equations developed above

y1=ax 4 (1-q)req (B.10)
y2=0xq g gyeq - (1 a)ep (B.12)
y3=0xq-0eq q-gyey- (1 q)es (B.14)

we can create a final output equation:

y=H1-'q-x1 il o e q)-e1_‘ H2-L0-x1 - qa-g1-e1 (1 q)es
+Hg Oxq:0eq g-goep- (1 qleg

| a 1
y=H{4qxq+|Hq4(1-9q)+Hoyqg '91]|'e1
3
+ Hy(1-q) Hgzq'gs-eo+Hg(1-q)ej (B.15)

Beginning with a desired Hj, such that we have a 2 equation - 2 unknown system, we’ll

try to remove the quantization errors, €; and ex:

2
H 3=(_1 q)
971792 (B.16)
The coefficient for e; in (B.15): The coefficient for e; in (B.15):
Hy(1 a) Hyg gy =0 Hy(1 q) Hgqhgy =0

2 |

1 |

| "Hz(1-q) Lo ‘q>g 5 =0

| 91492



Given,
: s )
Hqy(1-q)-Hyg-gq =0

qs
Ho=(-1+q)—
91

Mathcad solves (B.16), (B.17), and (B.18), yielding:
H 1=qE

=q3_(q_- 1)

H
2
91

_(1 9

H
3
9192

Now. Let's trv with these H;. H,, and H, Functions.

Using (B.19) - (B.21) in (B.15) produces:
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(B.17)

(B.18)

(B.19)

(B.20)

[ 8\ g 3 -1 3
y='9 /- qgxq (1 qg)ey q-(-qg ). Oxq4 g-gqeq (1 Qq)ey ..
1
2
1 3
+( q)-0x1 Oeq-gq-goenp+ (1 q)-ea_
9192
3
y=q7-x1 r0eq+0egt ('1 q).’e
(9192)

Note that e, and e» really do drop out!

(B.22)
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Now, to consider mismatches in analog and digital gains, we insert the mismatch terms
9=y (1-8, 9=y, 1-3,)

into (B.10), (B.12), (B.14), and (B.19) - (B.21):

y1=axq+(1-q)ey

(B.23)
3 - \
yo=0x4 qryq1+8qe9-(1 q)ey (B.24)
yq=0x4+0 qa-*(g- 1-33:-92—(1 g)eq (B.25)
6
N (B.26)
1
H2=q3-(q‘ )
1 (B.27)
2
H (1 q)
Y172 (B.28)
Substituting (B.23) - (B.28) into (B.15) gives:
6 3 (q 1), . 3. ./1. 8 i (1 )-e
y='q,  qgx4q4 (1 qg)eqy Qq- Oxq g-yql1-04,€4 q)er
_ Y1
(1-9)° 3. T
+ 'O'X1'D QY215282 ( Q)Ea

Y1712
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& 3
7 6 3 g 22 1-

y®=q xq+q-8¢(-1+q)eg+-q (-1 +q)-—ep- (1-9) ‘eq
"1 I 172 (B.29)

*** Note: The &'s create the additional appearance of quantization errors form the 1™ and

2" stages, e ande,



120

Appendix C

D«evefopmemt of ‘Nadeem’ Intexpo(a tive
Architecture

This appendix develops the gains used in Nadeem’s Interpolative £A Modulator. The

equations throughout this appendix were entered and solved in Mathcad. Due to
Mathcad’s habit of simplification of inverse exponentials to fractions, the following

substitution is used throughout the Appendix:

Digital Specifications and variables needed for this Mathcad Worksheet are:

i 0..10C oAl 8 fg 10100 fg 1.2810°
II(] 10 f
R M -3 M =64 bits 15
oy 2fg
fs
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From Matlab, the filtering implementation gives the following elliptical zeros and poles

required to compute the feedback coefficients:

1 ' 0.003365857
|
zero - |0.9987564- j-0.049856 pole - 0.09444013 j-0.62047712
10.9987564- j-0.049856 10.09444013- j0.62047712 (C.1)

So, by modifying Nadeem's method, we'll develop all the coefficients from the elliptical
poles and zeros starting with the z-domain transfer function of the desired Chebyshev

Type-II transfer function:

f L N/ \
Iz~ zero, -(z - zero |-|z~ zero, |
e 0 W BT

(z po]cﬂ\l- z polel\_l--lz- polc:;'- (C.2)

Normally there is a constant gain associated with this transfer function. But, it is forced
to 1 since there is no way to implement it in Nadeem’s architecture. Substituting the
poles and zeros of (C.1) into (C.2) yields:

g 7 299751287 + 2.9975127672769G  .99999996727696
p(2)= _
71922461172 + 39454653854310412 - 1.32584740537294193450 (C.3)

(C.3) 1s the desired Chebyshev Type-II transfer function which must be matched with the
NTF, Hg(z), for Nadeem's modulator. For the 3rd-order interpolative system, the

following STF and NTF were derived:

K_’K -Z
Hy(2)= 2 Fi%

2 [AyK, -3 KoK (B
+( KyKA + KK Byt 240K, + 3)z..

+ KoK pKpAg - KKA - AGK - (C.4)
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z+[-3-K,
Hgz)=— & A E
Z+ [ A;K,-3-K:KB)Z ..
+ [ K;KFA + KoK B« 2A,K, + 32
K- KA, AN, =1 )
e 22 (C.5

There is a simple relationship between Hp(z) and Hg(z):

Hp(zi=H (2)

Using this relationship, the calculation of the feedback coefficients is accomplished by:

- K -KI-BU z 1

LR

2299751287 .. 3 i o
| T + { 3 K,’K;'BOI.'Z. + 3

z
+2.9975127672769G - 9999996727696 | _ >
Z - 192246117 ... - 2 [ A;K -3 KoK B2
+.39454653854319412 ... | f K 'I(_'){ . K.,'K-‘B " )’A K 4.3z
' i i - W M i e s
+ KoK KA KoKA ALK ]

'+ 1.32584740537294193450 °

Equating like 'z’ terms in the numerator and denominator creates the following 4 solvable

equations:
Given
(3+ K,K ‘B )=2.997512767276¢ (C.6)
Agks=3- KK By 19224617 (C.7)
CKyKA - KyK By« 24K, + 3=.304546538543194) (C8)
(C.9)

KoK KoAg+ KoK A - ALK - 1= 1.32584740537294193450 °

These equations can be solved simultaneously.



1.2009745741378211781

| Ky (K Ky) _
3.00756707182015412
. K, K,
Find/A_.A .A_ B> .
GOl 2,.80526665027696
K,
| , 10 |
|- 2.48723272304—
KK,
- 1.200974574137821178)
K,: \ K .1{0:.
13.00756707182015412
A I.KZ'KJ )
2.80526665027696
K, | (C.10)
10°?
B - 2.48723272304———
¢ (K.-K.)
2N (C.11)

Thus. these are the derived values for the feedback gains, Ay, A|, A-. and By, in terms of

the integrator gains, K, K;, and K3;. Assuming the following integrator gains,

[39 |

' 40 |

39

40

|40

1 40 | (C.12)

the overall gain of the modulator from input to output is

KO-KI-K: =0.951
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The derived coefficients to be used in the interpolative XA architecture with the

prescribed integrator gains are:

[-1.263|
A= 3085
|
-2.805/

B =-0.003

Let's check these coefficients in the STF and NTF.

R L U
2i)’ + (AyK, - 3- KyK,By) o)’ ...
+ (KK A, + KK By + 2A,K, + 3)-i) ..
+ KoKKyAg s KoKrAa - AyK -

i)'« 3 KoK By i)'+ (3 K KB zi) |
Hg(i) =>— \ < s s B

i)' [ A;K, 3 KK B)ai) ..

+[ KyKPA - KoK By - 2A,K, + 3)2(i) .

2.
+ (KK KoA ) KoKAA ALK

Hygp() 20log Hy(h) ) HEgp(h)  20log [Hg(i)

(C.13)

(C.14)
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These graphs show the effects of forcing the Chebyshev’s constant gain to 1. Figure C.1
has an error gain of greater than unity for higher frequencies. In addition. there is a gain

spike in the signal transfer function for higher signal frequencies.

Finally, the ZA Toolbox needs a power series approximation for the STF(z) in order to
integrate the NSTerm for an average inband SNR. This is done using the STF(z) found in
(C.4). Substituting (C.12), (C.13), and (C.14) into (C.4), the STF(q). where g = z-1.

becomes:

-q:;--K,-K}-KG":
H (q)= — S e e . =
‘1. 1200K,K K - 3.008K, K - 2805K,)-q" « (3.006K, K - 561K, 3)q ..

3. 2010 KK - 2805K.)-q -
L iy 200K, fa ] (C.15)

A 9th_order power series approximation of (C.15) is:

H (1) .9506252(i) >+ .1835181562%(i) * - .2695798511859374(1) * .124138472344882734381) ° .
+5.99787460961057787590 >z i) ® 1 5.51560542046003683810 *-2(i) ...
+ 6.87070206859835243880 *2(i) * (C.16)

An 11th-order power series approximation of (C.15) is:

Hofi) 9506252(i) * .1835181562%(i) * - 2695798511859375(1) *  .1241384723448827343811) ° ..
+5.99787460961057787580 *2(i) © - 5.51560542046003683810 - 2(i) " ...
+ 6.87070206859835243880 "2(i) ©  1.98569510833411205280 *.(i) * ..
+ 2.39562327390704493300 *-z(i) '° (C.17)

Finally, a comparison between the 9"-order series and the 11"-order series can be made:

H oy gp(i) - 20log(|H (i) ) H xo4p(1) 20|ogj Hydi)| )
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Figure C.3 9th-Order Approximation for Signal Transfer Function of
Interpolative 31d-Order ZA Modulator.

‘ | ‘ I[}:l[)"

L]

HX2 dB

0.1 1 10 100 110°
frequency (Hz)

Figure C.4 11th-Order Approximation for Signal Transfer Function of
Interpolative 3rd-Order £A Modulator.
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The 11™-order power series of (C.17) provides a better approximation of the STF for the

modulator. It is used in the architecture file for the ZA toolbox.
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