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In recent years, there has been a radical shift from analog systems to digital 

systems paralleling the advent of digital computing. Signal processing in these digital 

systems has impacted virtually all aspects of life even remotely concerned with 

electronics. Common applications include clear sounding compact discs, multimedia 

computer applications, pocket cellular telephones, digital networking, innovative high 

definition television, and more. Moreover, developing process technologies have 

provided an inexpensive, high-speed medium for the proliferation of digital systems at the 

integrated chip (IC) level. Since the 'real world ' interacts in an analog environment. there 

exists formidable tasks in converting everyday analog signals into accurate digital signals 

for a digital system to process and vice versa. 

These transfonnations, tenned as Analog-lo-Digital Conversion (AID) and 

Digital-to-Analog Conversion CD/A), are vital for human related interaction with 

electronic communication systenls. But, in order to satisfy consumer application 

demands , these conversion tasks are compounded by the electronic industry's ever 

growing need for faster, more precise, and higher bandwidth AID and D/A conversion. In 

addition, there is a demand for single chip solutions that provide an increase in overall 



2 

reliability, an easier integration of mixed-mode systems, and the use of lower tolerance 

components. Unfortunately, the precision of scaled Ie components limits the attempted 

accuracy of Nyquist-rate NO converters CADC) and DI A converters (DAC) to about 10 

to 12 bits of digital resolution using traditional approaches , like successi ve approx imation 

and flash converters[Van De Plassche, 1994]. This hindrance is one reason for the recent 

increase in research of innovative higher resolution ADC techniques. 

Today, in systems where feasible operating clock rates are well above signal 

bandwidth requirements, oversampled NO conversion techniques produce an ove rall 

reduction of noise power. In addition, noise-shaping methods have been employed to 

further reduce noise power by attenuating the noise floor in the frequency band of interest 

while augmenting the floor outside the band. During the past 15 years, an oversampled, 

noise-shaping technique known as Sigma-Delta (1:.6.) Modulation has become popular due 

to its resilience to limited device matching accompanying its increase in hi gh resolution 

conversion performance over conventional ADCs [Boser, 1988; Candy, 1985: Nadeem, 

1994 ]. 

Implementation of these I..6. ADCs from theory to IC has been hindered by 

inefficient or insufficiently accurate simulation programs. Currently, after the ini tial 

design of a 1:~ architecture, verification through simulation has been very time­

consuming. Current commercially available simulation packages are either too slow, like 

SPICE, or do not include sufficient behavioral analysis, like SwitCAP, to deduce accurate 

ADC performance measures in a timely manner. To overcome thi s obstacle, two 

proprietary simulators are known to have been developed at other universities to aid their 
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design centers. The first is MIDAS, a mixed-mode, sampled-data simulator developed at 

the Center for Integrated Systems, Stanford University, California [Boser, 1988]. The 

second was developed at the Massachusetts Institute of Technology to study nonlinear • 

circuit effects in IL1 architectures [Chao, 1990]. 

Thus, the motivation for this work was the development of a simulation package 

which behaviorally models I~ ADC architectures for use by the Advanced Analog VLSI 

Design Center, Oklahoma State University, Oklahoma (AA VDC) in its IL1 design effo rts. 

This package, also referred to as the IL1 toolbox, allows for the limited inclusion of 

component non-idealities which are known to signiflcantly hamper AID conversion [Van 

De Plassche, 1994]. The use of this toolbox will aid the designer in rapid prototyping and 

behavioral insight of a variety of IL1 architectures. The toolbox has been used in the 

design and verification of novel IL1 architectures being developed by the AAVDC for the 

Naval Research and Development Division (NRaD) of the Naval Command, Contro l. and 

Ocean Surve illance Center (NCCOSC) in San Diego, California. 

Following this introduction, various aspects of IL1 AID conversion are covered. 

Chapter 2 develops a basis for understanding of I~ ADCs by investigating the 

fundamental types of AID conversion: Nyqui st rate conversion and Oversampled 

conversion. This analysis allows for an introduction to the concepts involved in AID 
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conversion and as a foundation for evaluating the worth of L~ AID conversIOn. 

Theoretical perfonnances of the fundamental AID conversion types will be given for 

comparison to L~ AID conversion. 

In Chapter 3, modeling and simulation of L~ AID conversIOn IS thoroughl y 

examined. Behavioral aspects and theoretical perfonnance fonnulas for the con version 

process are discussed in detail. Throughout the discussion , simulations from the L~ 

toolbox verify the purported theoretical behavior and perfonnance. Crucial non-idealit ie 

are considered and included in simulations to gain understanding of their role as limiting 

factors in L~ AID conversion. Lastly, two higher-order architectures being developed by 

the AA VDC are developed and analyzed to exhibit the use of the LLl toolbox. They are a 

3rd order Residual Scaling LLl architecture which employs a quantization error 

cancell ation technique, and a 3rd order Interpolative L~ architecture ba ·ed on an 

architecture developed by S . Nadeem [Nadeem, 1994]. 

A summary of the results of this research and the possibilities for future re earch 

are summarized in Chapter 4. 



N)V(Cf!'Ufllstt-l/{tCll tre (all[Jud 

O\Vre'lr§(811m P) Ired A~l[JJ (al !(O~g;= to)=> 

lD igd't((]1 I CO) l[Jl\Vre'lrtre'lr§ 

5 

Analog-to-Digital (ND) conversIOn transfonns a continuous-time , continuou -

amplitude signal (analog signal) into a discrete-time, discrete-amplitude signal (digital 

signal) by two fundamental operations, sampling and quantization . The conver ion 's 

ability to produce accurate digital infonnation is primarily limited by the Analog-to-

Digital converter 's CADe) sampling speed and by the preciseness of quantization . 

Sampling defines the extent of the signal bandwidth ; while quantization introduces noise . 

The ADC's ND conversion resolution must be at least equal to the required resolution of 

subsequent digital signal processes. Meeting this requirement maintains the prescrib d 

digital resolution essential to those digital systems irrespective the amount of noise added 

by the ADC. This chapter focuses on the above limitations and how they affect the 

resolution of two basic NO conversion processes : Nyquist-rale converter and 

Oversampled converters . 

The first section describes the effects of quantization noise In Nyquist-rate 

converters. After a theoretical analysis of the resolution of these converters, the next 

section illustrates oversampling and the resolution improvement it provides. Throughout 

this chapter, ideal behavior is considered for performance evaluations. That is, 

perfonnance measurements are only limited by quantization noise. Further description of 
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other significant non-idealities is considered in Chapter 3. Overall , th is chapter provides 

a good foundation for the following chapter discussing Sigma-Delta ADCs. 

A block diagram of a typical Nyquist-rate ADC is shown in Figure 2. 1. The input 

to the system is a real world analog signal , x(t), which is continuous in time and in 

amplitude. This signal is pre-filtered by an analog, low-pass anti-aliasing filter (AAF). 

The filter prevents aliasing of sampled frequencies by limiting the input frequency range 

to the maximum frequency of the ADC's band-of-interest, fB rOppenhiem, 1989]. This 

band-limited signal , x '(t), is then sampled at the ADC's sampling frequency , fs, in 

unifonn time intervals . Thus, it transfonns the signal into a discrete-time signal , x(kT s) 

where k is an integer. Nyquist 's sampling theorem states that the minimum fs (al 0 

known as the Nyquist rate) must be at least twice the Nyquist frequency, [N, in order to 

prevent loss of infonnation during sampling [Oppenhiem, 1989]. Nyquist-rate converters 

use a fs that is slightly greater than 2fb (by letting fB = fN) to exploit the slowe t fs 

required to satisfy the theorem. After sampling, the quantizer processes the di crete-time 

signal , x(kTs), into a fully digital signal wi th di screte levels , y(kTs). A simple description 

of the quantizer is an ideal transfer function with additive quantization error or noise, 

eQ(kTs), as illustrated in Figure 2.1 . Lastly, this digital infonnation may be digitally 

encoded into binary for proper usage by subsequent digital signal processing. Specifying 

the number of bits desired in this binary mapping is a convenient and often used practice 

when defining the resolution of an ADC. 



Pre-Filtering Sampling n-Bit Quantization Digital Encoding 

x(t) 

11 ~b H fs=2~=~ H =F H Digital 

I Digital Analog 
Processor 

Input 
from 

x'(t) x(kTs) t 
Output 

y(kTs} for 
Real World eQ{kTs} DSP 

Figure 2.1 Block Diagram of a Nyquist-Rate ADC 

...... 
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Often, the signal-to-quantization-noise-ratio (SNR) of an ADC is given in terms 

of the number of digital bits resolution to determine an ADe's perfonnance. So, an 

analysis of the quantization error introduced by the quantizer will aid in examining the 

performance of an ADe. The transfer function of a typical uniform mid-riser quantizer i 

given in Figure 2.2. The output is seen to be granular in that it is confined in discrete 

levels . In a uniform quantizer, there exists only two parameters: the number of decision 

levels and the quantization step size, ~ [Rabiner, 1978]. The number of levels is usually 

of the form 2B; where B is the number of bits in the quantizer and also relates to the 

desired B-bit binary code words. Between each of these levels, the quantization step size 

is determined by 

(2 .1 ) 

where VFS is the peak-lo-peak amplitude of the quantizer. With these two parameters in 

place, the quantizer transfer function of Figure 2.2 can be simply described as 

(2.2) 

The noise, e Q(kT s), is dependent on the amp!i tude of x(kT s) contrary to the usual signal-

plus-noise models in communication theory [Gersho, 1977). As seen in Figure 2.3, 

eQ(kTs) is bounded in the following fashion: 

(2 .3) 
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y(kT.) 

7aA. 

;~ 
- ... 

~L 

J 
-4a -3a -u -a 2 

~ x(kTs) 
-a 6 26 3t. 4t. 

"2 

-3t. 
"2 

- Sa 

••• J-~ 

Figure 2.2 Transfer Function of a Mid-Riser Quantizer. 

Figure 2.3 Quantizer Error Introduced by a Mid-Riser Quantizer. 
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Due to the non-linearity of the quantization noise. c1ear1y revealed in Figure 2.3. a 

statistical approach is commonly used to investigate quantization effects. A statistical 

model, known as the Bennett noise model [Williams, 1992], treats eQ(kT s) as a stationary 

white noise process. It has been developed assuming the following: 

I. the quantizer input does not exceed the signal range of the quantizer. I.e. no 

quantizer clipping or overloading occurred, 

J the quantizer has a large number of quantization levels, ~ is small relative to the 

input signal level, and 

3. the joint probability bet\\'een two quantizer input signals is smooth. 

These conditions are necessary to affirm that the quantization noise and quantizer input 

signal are uncorrelated, and that the quantizer is being used to its full est potential without 

overloading. As a result , the statistical model has an approximately uniform probability 

distribution for the quantization error, i.e. , 

1 

11 

0, 

-L\ 11 
-sea s-
2 2 (2.4) 

otherwise 

Quantizers using 5 or more bits, meanIng 32 or more quantization levels, have been 

shown to satisfy the above conditions and to fulfill this probability density function 

[Rabiner, 1978; Van De Plassche, 1994] . With this statistical description, the quantizer 

can be modeled as a unity linear gain with additive white noise having a variance of 
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(2.5) 

Although many ADe systems may not achieve a]) the above required condition , a white 

noise approximation of Bennett noise model furni shes the means for derivJtion of 

important ADC perfonnance measurements. 

:2.1.1 Ny!{uisc-Race A~DC Performance Jilfeasures 

Two important ADe performance measures are the ADC's SNR and the ADC's 

useful signal range or dynamic range (DR). SNR is defined as the ratio 

SNR = Sxx 
See 

(2.6) 

where, Sxx is the input signal power, and See is the output noise power. The DR i defined 

as the ratio 

DR = SXXIFS 

SXXISNR=1 

(2.7) 

where, SxxlFS is the largest input signal power which does not pennit quantizer clipping, 

and SxxIS NR =l is the input signal power at which the SNR is unity. 

For a Nyquist-rate ADC, the average output noise power IS equal to the 

quantization noise varIance . The input signal power can be assumed to be the input 

signal variance. For most perfonnance calculations, a sine wave input to the ADC is 
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assumed. If the input is (VFS 12)'sin(O>t), then the output signal power excluding noise is 

(VFS)2/8. Note that the maximum input voltage is limited to the maximum quantizer 

voltage, VFSl2, to fulfill the first assumption of Bennett' s Noise Model. Using these 

observations along with (2.S) and (2.6), the signal-to-quantization-noise-ratio of a 

Nyquist-rate ADe is 

S cr 2 12 (~2J 
SNRNyquist = SXX = ~ = A2 

ee ere U 

Substituting (2.1) into (2.8), the SNR in decibels becomes 

SNRNyquist = 3 . 22B = ( 6.02 . B + 1.76) dB 
2 

(2.8 ) 

(2.9) 

where, again, B is the number of bits in the quantizer. This equation implies that each 

additional bit added to the quantizer yields approximately 6 dB of SNR improvement in 

Nyquist-rate ADCs. The number of bits required for Nyquist-rate NO conversion i a 

common benchmark for comparison of other NO conversion methods. Hereafter. 

reference to the number of bits resolution for a particular system will be synonymous to 

the equivalent number of bits resolution for a Nyquis t-rate AID conversion. 

The DR perfonnance equation for a Nyquist-rate converter can be developed by 

noting that the largest input amplitude is basically (VFS 12) meaning the largest input 

signal power is (VFS) 2/8. The input signal power at which the SNR is un ity i found by 

observing (2.8) at very small input amplitudes. Although this violates the Bennett 
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model's rule that ~ should be small relative to the input signal level, it provides a useful 

performance measurement for further comparisons later in this thesis. So, 

SXXIFS 
DRNyquist = S I 

xx SNR=1 
= 

2 i 

VFS / 
/ 8 3 VFS2 

=-~--

2 ~2 
(2.10) 

Once again, using (2.1) by substitution into (2.10) , the DR in decibels for a Nyquist-rate 

ADC is 

3 28 
DRNyquist = -·2 = ( 6.02 · B + 1.76) dB 

2 
(2.1 1) 

This equation also implies that each additional bit added to the quantizer enhances the 

DR of a Nyquist-rate ADC by approximately 6 dB. 

(2.9) and (2.11) are important measurements for Nyquist-rate ADCs. They show 

that the theoretical performance estimation for the SNR and DR of an ADC i only 

proportional to the number of bits or decision levels used in the quantizer. Due to 

quantizer limitations in the number of achievable quantization levels and m the 

consistency of decision making, there are definite SNR and DR restrictions In the 

possible amount of resolution a Nyquist-rate ADC may accomplish. 

2.1.:2 NYCful§~-Rat:e A\DC Performance Llml~a~lon§ 

There are two primary drawbacks to most Nyquist-rate ADCs: resolution 

limitations and AAF implementation. Resolution limitations arise from the fact that AID 

conversion resolution of a Nyquist-rate converter is directly proportional to the number of 
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bits in the quantizer. Considering an ADC with a desired SNR of 95 dB , (2.9) states that 

the quantizer must have approximately 16 bits. This implies that the quantizer must have 

216 or 65536 quantization levels with a level separation of Ll ~ 31 ~V, from (2. 1) with VFS 

= ±1 V. The quantizer is commonly comprised of (28 -1 ) comparators which deve lop the 

digital signal by comparing the quantizer input signal to the (28 _1 ) reference levels. 

Matching between any two of these comparators must be to the same resolution of the 

ADC, i.e., one part in 2 16 or approximately 0.002%. Current MOS comparator 

technology permits a minimum comparison of roughl y 10 mV due to the comparator' s 

inherent offset voltage[Van De Plassche, 1994]. This is obviously greater than the Ll 

required for a 16-bit quantizer. Implementation of Nyquist-rate ADCs beyond 

approximately to-bits of resolution IS virtually unattainable in current process 

technologies without using some sort of calibration techniques, like laser trimming. In 

addit ion , as the number of bits in the quantizer grows to the lO-bit max imum, it is 

difficult to maintain an accurate step-size, Ll. Thi s introduces greater integral non-

linearity into the conversion process. 

Another deficiency in these ADCs is the implementation of the AAF. To remove 

extraneous signals outside the ADC's band-of-interest, hereafter known as the ADC' 

pass-band, the AAF's stop-band for a Nyquist-rate ADC must begin at the Nyquist 

frequency, f512. But, for all of the frequencies in the pass-band to be processed, the pas -

band for the AAF must end at the same Nyquist frequency. Therefore, the AAF's 

transition-band must be very narrow and have a very steep response. Thi s requires a 
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complex filter with several precisely placed poles which is difficult to implement as an 

analog circuit. 

Sensitivity to these ADC limitations can be partially overcome by a technique 

called oversampling. Today, sampling frequencies in very large scale integrated circuit 

(VLSI) technology have risen far above what is required for popular signal processing 

applications, such as for audio signals. The oversampling method uses this excess 

process bandwidth to enhance the DR and SNR of an ADC. 

Oversampled ADCs sample an input signal in excess of the minimum required 

Nyquist rate. A block diagram of a typical oversampled ADC is presented in Fi gure 2.4 . 

The input to the system is again a real world analog signal, x(t), which is continuous in 

time and in amplitude. This signal is pre-filtered by the analog, low-pass AAF. For the 

oversampled ADC, the filter uses a pass-band for frequencies within the band of interest, 

i.e. , less than fB. The transition band ex tends from the edge of the pass-band to the 

beginning of the stop-band at a frequency fs8 . After filtering, this band-limited ignal, 

x'(t) , is uniformly sampled at the ADC's fs, which is greater than the Nyquist rate. Thus, 

the sampling transforms the signal into a discrete-time signal, x(kTs) where k is an 

integer. For a conventional oversampled ADC, the sampled signal is simply quantized 

into a fully digital signal, y(kT s). Chapter 3 discusses the replacement of the quantizer 
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with a modulator. Lastly, the signal is post-filtered, decimated back to the Nyquist rate. 

and encoded into binary code words to produce digital infonnation , y(kT N), for further 

digital processing. Since the sampling rate of an oversampled ADC is higher than the 

Nyquist rate, a new tenn is introduced as the oversampling ratio, M, which i defined a 

follows: 

(2.12) 

where 2'f8 can be equated to the Nyquist frequency of the input signal (not to be confused 

with the Nyquist frequency of the sampled signal). 

2.2.1 O\versarnpllng ADC EnhanceU1ents 

There are two prImary advantages of oversampled ADCs over conventional 

Nyquist-rate ADCs. The first is a relaxation of the narrow transition band restriction for 

the AAF, as seen in Figure 2.5. Since the converter samples the input sign al at M times 

the signal's Nyquist frequency, the transition band of the AAF can utilize a large r 

frequency range from f8 to fS8 = (fs - f8 ) = fs ·(2·M-I ). Although setting this fS8 allows 

for aliasing of transition band frequencies , pass-band frequencies are not affected. Thi s 

loosening of the AAF restriction sanctions a lower order AAF with less need for accurate 

pole placement. However, during post-filtering of the digital signal, a digital filter with a 

narrow transition band is required during decimation . Implementing such a digital filter 

is defi nitely easier than an analog fi iter at the VLSI level. Digital design of such a fi Iter is 
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Figure 2.5 Frequency Responses of AAFs 

(a) Nyquist-Rate, (b) Oversampled. 

18 

f 



19 

easily accomplished usmg a hardware development language, such as VHDL. In 

addition, by easing the AAF's complexity, lower fabrication costs and overall increased 

system reliability are attained. 

A second enhancement of oversampled ADCs over Nyquist ADC. is an overall 

reduction of quantization noise throughout the frequency range of the pass-band. If the 

white noise approximation for the quantization noise is used, the quantization noi se 

power at the quantizer output, y(kT s), will be evenly distributed throughout the sampling 

frequency bandwidth. The low-pass post-filtering attenuates the noise present outside the 

pass-band such that the noise power at the output, y(kT N), becomes 

(2.12) 

Again , assuming a system input of (V FS 12)' sin(wt), the signal-to-quantization-noi se-ralio 

for the oversampling ADC improves to 

12.(VFS2 J 
Syy cr 2 8 

SNRoversampled = -_ = ~x = M. 
See a 2 /::.2 e 

M 

(2.13) 

Substituting (2.1) into (2.13) and realizing that the maximum input voltage is V FS/2 for 

operation without quantizer clipping, the SNR becomes 

SNRoversampled = M· 3 .228 = [ 6.02· B + 1.76 + 1 0 .10910 (M) ] dB 
2 

(2.14 ) 

.. 
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Thus, oversampling improves the Nyquist-rate ADC's SNR by M times. In addition, the 

DR is effected in the same manner yielding 

SXXIFS 
DRoversampled = S I 

xx SNR=1 

Lastly, using (2.1) by substitution into (2.15), the DR for an oversampled ADC is 

DRoversampled = M . 3 .22-8 = [ 6.02·8 + 1.76 + 10· 10910 (M) ] dB 
2 

(2 .15) 

(2. 16) 

Thus, an oversampling ADC's DR is also greater than the Nyquist-rate ADC s DR by M 

times. 

Over the past 20 years, oversampling ADCs have been preferred over Nyquist-rate 

ADCs precisely for these enhancements. Unfortunately, quantizer limitation in the 

number of achievable quantization levels and in the consistency of decision making slill 

anse. Better performance can be accomplished using refined oversampling, noi se-

shaping techniques. One of these recently investigated methods is Sigma-Del ta (1:6) 

Modulation. This technique is used in 1:£1 ADCs to produce even greater conversion 

resolution than conventional oversampling ADCs with a reduced number of bits required 

in the quantizer. 
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During the last 15 years, there has been a growing interest in ILi modulation and 

its implementation in ILi ADCs. The theoretical noise-shaping properties of the e 

converters sanction a higher resolution in AID conversion over conventional Nyquist-rate 

and oversampled ADCs. Currently, inefficient commercial simulation packages have 

been available for theoretical analysis of ILi designs. This has been an obstacle in speedy 

design and verification of a particular theoretical 1:6 architecture. These imulators 

undertake investigation of ILl architectures in either too much detail or too little detail. 

For example, SPICE is a well-known transistor-level circuit simulator. But due to its 

transient analysis, meaningful simulation of a simple ILi modulator would take several 

hours or more. On the other hand, SwitCAP is a simulation package dealing with 

switched-capacitor circuits that are commonly found in ADCs. This simulator is known 

to take less time for simulation runs. But, it does not allow for the incorporation of some 

crucial I.Li circuit non-idealities, ~uch as Op-Amp harmonic distortion effects and 

component mismatch errors. Two other simulators are known to have been developed at 

Stanford University, California [Boser, 1988] and at the Massachusetts Institute of 

Technology, Massachusetts [Chao, 1990) for the use of their design centers in the 
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investigation of sampled-data systems. Therefore, the basis of the research behind this 

work was the development of a I~ simulation package for the AA VDC that would be 

fairly efficient in simulation and could include the effects of important non-ideal 

behaviors. This simulator was developed by describing typical I~ modulator 

components as modular block functions written in Matlab code. Matlab was chosen due 

to its advanced matrix manipulation properties. These properties are ideal for operating 

on intermediate node in sampled-data systems. Overall , the simulator, hereafter known as 

the I~ toolbox, allows for rapid prototyping and useful insight into a variety of III 

architectures. 

Thorough investigation of the behavioral aspects of I~ modulators was performed 

during the development of the toolbox and the subsequent incorporation of significant 

non-idealities. This chapter derail s these ideal and non-ideal behavioral aspects along 

with simulated performance measures for a few I~ architecture Initially, III 

modulation , which is the fundamental approach for AID conversion In I~ ADCs, i 

described in detail. As in Chapter 2, ideal aspects are considered in the first section, i.e., 

only quantization errors are considered. With this resulting background, ideal theoretical 

performance measures are developed for typical cascaded III architectures and contrasted 

with Nyquist-rate and oversampled ADC measures found in Chapter 2. An explanation 

of the primary components in typical III modulator designs and their development as 

modular block functions in the I~ toolbox ensues. Simulation results for a 1 51-order I~ 
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modulator are then given to verify theoretical behavior and theoretical performance 

measures. 

The second section discusses notable non-idealities that hamper performance of 

:E.1 modulation. Particularly, these non-ideal behaviors are identified a integrator 

harmonic distortion errors, block component settling errors, switch charge injection 

errors, circuit common-mode errors, clock jitter eHors, and circuit component mismatch 

errors. Once defined, the effects of these non-idealities are examined by use of the :E6 

toolbox on the 1s t-order modulator example. With the 1St-order :E.1 modulator example 

complete. the remaining portion of the chapter investigates a couple of higher order 

modulators. 

The third section analyzes a 3rd-order residual scaling :E6 architecture being 

developed by the AAVDC for NRaD. This architecture is stated to give 16 bits of AID 

conversion resolution in a 62.5 MSPS band-of-interest performin g at 8 time 

oversampling by utilizing digital error correction functions. By use of simul ations from 

the :E6 toolbox, the architecture is enhanced and verified. 

The last section considers a 3rd-order interpolative architecture based on a de ign 

developed by S. Nadeem [Nadeem, 1994]. . This architecture refines the :E.1 modulation 

process to shape the quantization noise power into a Chebyshev Type n form. By using 

this interesting concept, 18-bits of AID conversion resolut ion is proposed for a band-of­

interest of 10 kSPS performing at 64 times oversampling. Again, the E.1 toolbox is used 
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to aid the initial design of the architecture and to verify the expected AJD conversion 

perfonnance. 

The L~ toolbox simulations throughout the chapter briefly show the potential for 

the L~ toolbox. As a whole, the simulator proved to be an excellent tool in the rapid 

design and prototyping of L~ architectures being designed and developed by the 

AAVDC . 

L~ modulation is an oversampling, noise-shaping AID conversion method that 

uses feedback to enhance the effective conversion resolution. The increase in AID 

conversion resolution is achieved by replacing the quantizer in an oversampled ADC with 

a LL1 feedback modulation network. This method, which induces noise-shaping, alters the 

unifonn behavior of the quantization noise throughout the oversampled frequency 

spectrum into a non-linear manner. 

Noise-shaping is a technique used where quantization noise is attenuated in the 

modulator's pass-band and increased outside the pass-band. Figure 3.1 di splays the 

noise-shaping characteristic in relation to Nyquist-rate and oversampled quantization 

noise attributes. A qualitative view of quantization noise power is shown for each of the 

AID conversion methods. 
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As discussed in chapter 2, the quantization noise power for a Nyquist-rate ADC 

displayed from dc to the end of the pass-band, which is also the Nyquist frequ ency, 

occurs from simple quantization. Oversampling is achieved by sampling at a hi gher 

frequency than the Nyquist rate. This allows for the same quantization noi se power to be 

spread over a larger frequency range. In-band quantization noise is reduced in 

oversampled ADCs by decimation and low pass, post-filtering of frequ encies outside the 

pass-band. Thus, this digital filtering effectively removes much of the quantization noi se 

power. Oversampling causes a distinct reduction by M in quantization noise power 

within the pass-band in contrast to the Nyquist-rate ADC. The resolution of an 

oversampled, noise-shaping ADC is increased over conventional oversampJing by 

effectively shifting quantization noise power to higher frequencies in a non-linear fashion. 

Again , the digital decimation filtering that follows this refined oversampled modulation 

process greatly attenuates the higher frequencies . Consequently, thi s removes a larger 

amount of quantization noise power from the pass-band in contrast to both the Nyqui st-

rate and conventional oversampled ADCs. This fact alone obliges the investigation of Ld 

modulators. The remainder of this chapter distingui shes the deve lopment of Ld 

modulators, their interesting improvements to standard AID conversion, and the ir 

implementation within the Ld toolbox. 
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Figure 3.1 Quantization Noise Power Comparisons between Nyquist-Rate, 
Oversampling, and Oversampled, Noise-Shaping ADCs. 
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3.1.1 Behavioral Modellng- of Sig'IIla-Delta Modulators 

There are a variety of high gain functions that may be implemented as L~ 

modulators. The classical transfer function for a cascaded L~ modulator is comprised of 

a linear combination of integration stages that differentiate the quantization noise . This 

particular implementation is well suited for VLSI circuits. A block diagram of a typical 

L~ modulator circuit that satisfies such a transfer function is shown in Figure 3.2. The 

forward path consists of delaying integrators fol1owed by a B-bit quantizer. For this ideal 

case, only the quantization error, e(kTs) introduced by the quantizer is considered. The 

digital output of the quantizer, y(kT s), is a thermometer encoded estimate of the analog 

input signal, x(kTs). The digital output signal is fed back through a digital-to-analog 

e(kTs) 

y(kTs) 
l(z) • • • l(z) 

• • • __ -----lDAC 

Figure 3.2 A Typical LL1 Modulator Block Diagram. 

converter (DAC) to be subtracted from the input signal as well as the outputs of each 

subsequent integrator. The number of integrators used in the design defines the 
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modulator order, L, of a L~ modulator. Since the z-domain transfer function of a 

delaying integrator is 

Z-I 

I(z) = -I 
1- z 

(3.1 ) 

and assuming an ideal DAC, the baseband output of a cascaded Ch -order L~ modulator in 

the z-domain is 

y(z) = Z-L . X(z) + (1- Z-1)L . Eo (z) (3 .2) 

The output is simply a Ch sample delay of the input with a Ch order quantization noi se 

difference tenn. This differencing of the noise causes the high-pass, noi se-shaping 

characteristic of L~ modulation. Systems utilizing a higher modulator order perform a 

higher ordered differencing operation on the quantization noise, thus providing a stronger 

attenuation of quantization noise at lower frequenci es . Further analysis of this equation 

provides quantitative theoretical performance measures for cascaded L~ modul ation. 

3 ,·}.2 Si'g-llla-Delt:a Performance lII4easures 

Performance measures for L~ modulation are usually in terms of the sy tern' s output 

SNR. For the cascaded L~ modulator, the quantization noise power within the pass-band 

j 
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is found from the quantization noise contribution to (3.2), i.e., the noise transfer function 

(NTF). The NTF for an Ch -order L~ modulator is 

(3.3) 

The spectral distribution of the quantization noise after noise-shaping is the product of the 

NTF spectral density and the quantization error spectral density introduced by the 

quantizer. So, the quantization noise power spectra) density is found us ing (3 .3) and 

converting to the Fourier domain: 

(3.4) 

Substitution of (3.3) into (3.4) and using the white noise approximation of Bennett 's 

nOIse model gIves the following equation for the power spectral densit y of the 

quantization noi se at the output of a cascaded L~ modulator: 

(3.5) 

Integration over the entire pass-band gi yes the quantization noise power over the band-of-

interest. This is also approximately the quantization noise power found at the output of 

the ADC after decimation. Thus, the inband quantization noise power is 

fa n: 2L 1 
Po = fS (f) df "" (j2. .--

-fa ee e (2· L + 1) M2'L+1 
(3.6) 
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This average noise power floor is an essential value to determine the modulator' s SNR. 

As in chapter 2, the cascaded U modulator' s SNR can be found assuming a 

modulator input of (VFS 12)·sin(wt). Since the output signal power excludin g noi e IS 

(VFS)2/8 , the SNR for an oversampled, Lth-order cascaded LL1 modulator is 

SNR = VFS 2 ~ =~. (2·L + 1) .M2.L+1.22.S 
Ll1 8;r Q 16 1t2 .l 

(3.7) 

where again M is the oversampling ratio and B is the number of bits in the quantizer. An 

interesting item to note is that the SNR is proportional to the 2L+ I power of the 

oversampling ratio, M, which is a much greater improvement over conventional 

oversampling. Due to this strong relationship to M, the number of bits required to attain 

a prescribed SNR is much less for LL1 modulators than Nyquist-rate or conventional 

oversampJed ADCs. Figure 3.3 shows these benefits by plotting the SNR ver u M for 

I~ modulators of orders L = 1. 2, and 3 and quantization bits, B = 1. The number of bits 

required for a conventional Nyquist-rate ADC to achieve the same SNR is shown on the 

right of the graph. Even by using a LL1 modulator containing a I-bit quantizer, 

comparatively high resolution is attained when compared to a Nyquist-rate converter. In 

addition, an increase in the number of bits in the quantizer does have the same effect in 

I~ modulation as in both Nyquist-rate and conventional oversampled converters. 

Equation (3.4) showed that the quantization error spectral density plays a distinct role in 

the quantization noise power spectral density. Increasing the number of bits in the 

quantizer reduces the quantization noise power by 6 dB per additional bit. Thus , each 

curve in Figure 3.3 is effectively raised by an additional 6 dB for each additi onal bit 
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added to the quantizer. Figure 3.4 shows this by plotting the SNR versus M for 1:6 

modulators of orders L = 1, 2, and 3 and quantizer bits, B = 4 . Therefore, by increas ing 

the number of bits in the quantizer, a lower oversampling ratio may be used to attain an 

equivalent I-bit modulator AiD conversion resolution. This property gives a simple 
( 
• 
... 

method for the reduction of the digital power consumption in low-power 1:6 ADC 

designs. Thus, simple cascaded 1:6 architectures apparently perform AiD conversion 

more effectively than Nyquist-rate or conventional, oversampled ADCs. 

It is difficult to gain an intuitive feel for how 1:6 modulation can actually attain 

such high resolution from such a small number of quantizer bits . In the next section, the 
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above theoretical observations are investigated and verified by use of the L~ toolbox . 

After a di scussion of the basic bui lding blocks in the L~ toolbox, a 1 I-order I.~ 

modulator is developed to gain some insight in the I..6. modulation process. 

3 .1.3 Implernencacion of 1:'L1 }.'v[odulacor§ usinC the' 1:.1 
Toolbox 

As seen in Figure 3.2, the basic building blocks for a 1:.6. modulator are delaying 

integrators, summation nodes, single or multi-bit quantizers, and DACs. In addition, 
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higher order modulators also use amplifiers or gain stages to modify the modul ator' s 

noise-shaping characteristics. In this section, it is helpful to consider a 151- order 

modulator example when discussing these basic components. A block diagram of a I SI_ 

order Lt. modulator is shown in Figure 3.5. The LLl toolbox implements each of these 

basic blocks in an individual, modular fashion. Before the toolbox can be used, an 

architecture must be theoretically developed in a block diagram fonn using the abO\ e 

mentioned building blocks. Once a LLl architecture is developed, an architecture file is 

written in Matlab which specifies the vital components fo r each block and the basic 

clocking sequence of blocks. The Lt. toolbox iterates a simple loop for each input sample 

by calling each block function in the succession specified by the architecture file. In 

typical architectures and in the 151 - order example of Figure 3.5, the beginning of the 

iterated loop starts with the input voltage to the system and its transition into the 

integrator. 

In a typical circuit implementation, the summation node and the integrator are 

treated as a single entity. The Lt. toolbox models them in somewhat the same manner. A 

clocked, differential switched-capacitor, MOSFET operational transconductance 

amplifier (OT A) continuous-time integrator implementation is used for integration . A 

basic diagram for a single-sided switched-capacitor continuous-time MOSFET integrator, 

which the III toolbox uses as a model, is shown in Figure 3.6. This circuit has three 

basic parts which need to be defined in the III toolbox. These are the OTA's open-loop 

gain, A vol , the sampling capacitor, C si , and the OTA' s integrating capacitor, C inl. The 

switched-capacitor circuit uses a two-phase non-overlapping clock. During the sampling, 
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phase I, $1> of a clock cycle the charge from the input, V in , is transferred to C;i' During 

the integration, phase 2, $2, a charge proportional to the difference of the voltage being 

fed-back from the DAC, VDAC, and Vin is ~mirrored onto Cinl for integration. The 

integrator output, w(kT s) , is modeled as: 

CJCnt specifies the closed-loop gam of the integrator. An important design 

consideration is that in most cases this closed-loop gain should ensure that the integrator 

output is within the full-scale voltage of the quantizer, VFS , to prevent quantizer dipping. 

The leakage of this integrator is identified in equation (3.8) to be approx imately 1/ Avol of 

the integrated value which is lost in each clock cycle. This leakage is on the same order 

as that in a continuous-time integrator. Overall , equation (3.8) suffices as a model to 

implement the integration operation in the I~ toolbox. 

The I~ toolbox separates (3.8) into an integrator block function and a summation 

node block function. This allows for the intermediate node, in addition to the input. 

feedback, and output nodes to be viewed after the simulation. The differential behavior 

of the integrator is simulated by simply copying the single-sided circuit using a negative 

version of the input signal. 

During $2, the integrator output, w, is fed to the quantizer for convers ion from an 

analog signal to a digital signal. A uniform mid-riser quantizer was implemented in the 

I~ toolbox. The NO conversion is accompli shed in hardware by using a string of 

( 

.. .... 
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comparators, as shown in Figure 3.7. The number of decision or quantization levels 

define the number of comparators. For a B-bit quantizer, there are (2 8 _1) comparators 

which develop the digital signal by comparing the quantizer's analog input signal to the 

(28 -1) reference levels. The toolbox accomplishes this conversion by a simple 'if-then' 

comparison between the input to the quantizer and the appropriate quantization level 

which are uniformly positioned between ±VFsf2. This produces a thennometer encoded 

digital output of (28 -1) lines which is subsequently fed back into the DAC. This digital 

data is also the output of the L~ modulator. It may be further encoded and decimated by 

a digital post-processor as mentioned in Chapter 2. 

The thennometer encoded, digital data is fed back through a DAC to the analog 

summation node in order to complete the L6. modulation loop. A basic schematic 

diagram of the DAC is presented in Figure 3.8. The (28_1) lines of output from the 

quantizer is used to create an equivalent analog signal. Thi s is accompli hed by charging 

the appropriate number of feedback capacitors , C Ib, and combining their voltages into a 1-

line , analog DAC output. During the first portion of sampling <1>1 , all the capacitors are 

discharged to ground. During the second portion of phase <1>1 , al .1 the capacitors except for 

the initial C ib are pre-charged to the appropriate DAC reference voltages, ±VreCDAC. 

Finally during the conversion phase, <1>2, certain capacitors depending on the quantizer 

output information, Vqout. are connected to ground while the others remain at ±VreCDAC. 

While converting, the charge is redistributed over the capacitors and an equivalent analog 

voltage is fed through the voltage follower as the output of.the DAC, VDAC. The DAC 
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Figure 3.7 Basic B-Bit Quantizer Schematic. 
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Figure 3.8 Basic B-Bit DAC Schematic. 
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conversion is implemented in the U toolbox by scaling the output of the quantizer by 

the following fonnula: 

VFS CSi 2 V 
VDAC = 2· -c . 28 _ 1· qout 

fb 

(3 .9) 

This accounts for the redistributed charge in all the Ctb tenns and scales V DAe 

appropriately to match V FS . 

The last of the building blocks considered in the LLl toolbox is an amplification 

block. This block is used at various nodes in many higher order LLl architectures which 

try to optimize the noise-shaping process. The ampl ification block is similar to the 

integrator block toolbox function as seen in Figure 3.9. The architecture fil e specifies the 

essential values for the amplifier: the amplifier ' s open-loop gain, A vol, the input resistor, 

R h and the amplification resistor, R amp. There are essentially two difference between 

the amplifier and the integrator. One is that a delay is not required since a sw itched-

R amp 

\_--. 

A vo) 

OTA 

Figure 3.9 Basic Amplifier Schematic. 

w 
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capacitor arrangement is not present. The se~ond being that the cl osed loop gain is 

attained by a resistor ratio, Rs/Ramp, specified in the architecture file rather than a 

capacitor ratio. In typical analog VLSI amplifier implementaions the ampli fier 

arrangement of Figure 3.9 is not commonly used. Amongst other forms of amplification 

the following methods are used, single-stage class A, two-stage class A , and single-stage 

class AB amplifiers [Williams, 1993]. In addition, simp.Je integer fraction switched-

capacitor ratios are commonly used as gain stages, as will be seen in Section 3.4. 

Nevertheless , the model in Figure 3.9 provides a more intuitive method including the 

basic features required to accurately implement amplification at a block level within the 

L~ toolbox. 

With each of these blocks defined, a simulation is performed by using the des ired 

architecture fil e. The beginning of the L~ toolbox architecture file states a variety of 

required values for the overall system. These include the followin g constants: the 

sampling frequency, freq_samp, the desired input frequency, freq_des , the oversampling 

ratio , over_ratio, the number of cycles desired, num_cycles, the number of quanti zer bits, 

num_bits, and the maximum input voltage, max_in. The folJowing formula is used to 

determine the desired number of samples: 

freq_ samp 
Nuber of Samples = f d . num_ cycles 

req_ es 
(3 . 10) 
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These values are passed onto an input generation function which generates a specified 

input voltage wavefonn for the number of desired samples. These input samples are 

subsequently operated on by each of the sequentially specified block func tions in the 

architecture file's iteration loop. The loop is iterated for the specified number of samples 

while saving the variety of node values for each iteration. 

Once a simulation of an architecture is completed, the toolbox allow for a 

performance evaluation of the resulting, undecimated, digital datu. A variety of 

intermediate nodes are available for plotting to gain insight in the behavior of the desired 

architecture. In addition, the SNR for the system may be calculated by using a post­

simulation function. This function computes the total noise power in the same manner as 

described in equations (3.3) through (3.7) above. The difference is that the simulated 

combination. HE(z)*EQ(z) is used to calculate the total noise power by noting that the 

noise-shaped tenn , NSTerm, is: 

NSTerm(z) = HE(z) ·Eo(z) = Y(z) - Hx(z)· X(z) (3 .11 ) 

This noise-shaped term actually accounts for other noise contributions beyond 

quantization noise, considered in the next section. Before simulation, the right-hand side 

of (3.11) must be converted to its sampled time-domain representation in the architecture 

file. Then, the resulting NSTerm can be used to find the shaped noise contribution in the 

output of the desired modulator. The noise power spectral density is calculated by the 1:.11 

toolbox using the Fast-Fourier Transform. FFT, on the simulated NSTerm: 



The calculation continues by finding the total noise power by: 

fa 

PNS = 2 · J See (f) df 
o 
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(3.12) 

(3.13) 

Lastly, the toolbox function gives tbe simulated SNR by taking the ratio of the simulated 

output signal power to the simulated PNS . An initial view of tbe L.1 toolbox' s 

performance measurement capabilities is accomplished by simulating the 151-order L.1 

modulator described in Figure 3.5. 

The following simulations use a sampling rate of fs = 1 GSPS , Csi = 30 pF, Cint = 

32 pF, and a unit Ctb = 0.4 pF. First, consider the modulator utilizing a I-bit quanlizer 

with a VFS = ± I Volt. If a ramp voltage is input into the system at 32 times 

oversampling, M = 32, the simulator predicts the output as in Figure 3.10. Notice the 

local averaging characteristic of L.1 modulation. That is , while the input is at ±! V. , the 

modulator output is also ±1 V. As the input rises to 0 Y., the output begins to oscillate 

around 0 V. In fact, the local average of the output waveform is zero when the input 

voltage crosses 0 V. This behavior is common in L.1 modulators utilizing a I-bit 

quantizer[Candy, 1992]. 

If a sine wave is input into the same modulator at M=8 and B= I, the theoretical 

SNR from (3.7) predicts a ratio equal to 20.67 dB. After simulating the modulator with 
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these new specifications using 32,000 samples, the rLi toolbox gave the simulated SNR 

of 20.95 dB, shown in Figure 3.11. The upper graph gives the simulated inband 

quantization noise power spectra1 density. Notice the noise-shaping characteristic for th is 

151- order LLi modulator. The quantization noise power has definitely been shaped to 

attenuate the noise power in the passband. The lower graph gives the simulated output 

spectrum for the modulator. A major spike occurs at fs , which was the frequency of the 

input sine wave. The amplitude of the spike has been slightly distorted by the use of a 

Hamming window for better a FFf. Not windowing the time-domain data before using 

the FFf has the same effect as using a rectangular window. A rectangular window does 

not have sufficient sidelobe attenuation for calculation of the noise power. In later 

examples , the LLi toolbox uses a Kaiser window since it provides a much lower sidelobe 

auenuation than the default rectangular window[Oppenhiem, 1989]. This is important for 

viewing the spectral content of :LLi modulators having a resolution nearing 20 bits. 

Therefore, the graphs are meant more as qualitative views for LLi modulator behav ior. 

Quantitative results are shown to the right of the bottom graph. These fi gures are fairly 

con sistent with the theory . 

Next, consider the same modulator operating at a higher oversampling rate of M = 

32. Theory from (3.7) dictates that the SNR should be 38.73 dB. Fi gure 3.1 2 gives the 

s imulated performance measurements again using 32,000 samples. Once again , noise­

shaping is seen in the upper plot of the noise power spectral density. The output of the 

modulator and the SNR is shown in the lower plot. An interesting observation is that the 

general shape of the output spectrum is similar to Figure 3.11 . The higher SNR comes 
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Inband Noise Power Spectral Density for 1 sl-0rder Modulator with 1-bit Quantizer and M=8 
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Inband Noise Power Spectral Density for 1 sl-Order Modulator with l-bit Quantizer and M=32 
-60~~~,-~~~~~--~~~~~.-~~~~,-~--~ 

co 
~ 

c 

S 
Q) 
Q) 

-80 

fJ) -100 

-10 
co 
~ -20 c 
Q) 

~ -30 :::J 

-50 

· . I I IIII . I 

· . , I 

I I I I" I I , I 

IIII 

• II . , 
t ' " , , II I , till 
ti l l 

, 
I I I tli 

I' "~I 
I I I til 
I I I III 

-1-r- .... I'-I1'r-- - - .... -""-~., .... ~I" - - - .. - -I--~-~~~~H~---~-~-. 
I I I I • I I I I ~ I I t I , I I I' I I II I I I · I IIII I • I I 11 I 

I I I I I .. I 

I . 1III I I .. I 

I I 1III IIII 

I I I j' ll 
-~~-14~H- - -~--~-~~~~11~---~-1-

t I I I IIII I I I 1"111 I 
I I I , III J 1, I I I II 
I I j ~ I I I • I I I I II 

I I I I It l • I , I I II 

105 106 107 10& 
Output Spectrum for 1 st-Order Modulator with 1-bi! Quantizer and M=32 

I t I I II t I I I " I I I III 
-,- ... r- 1-1+ .... - - - r- - ~ - ... l' .... M1" - - - .,. - -1- ... -1-1-''1 ,,-t--

I I I I I' I t I I 1 I II I t I I t I I I • 

, I 11111 

I f I I II I 

I I J IIII 

I I Illtl 

-1- ............ ,1',.. - - - I'- - .. - ~ ...... r-," - - - l' - -1- ., -t -, - , ., ,... - -

I I 11111 

I I I I I It 

i:.t. Toolbox by AKL 

I I J I II I I I 

107 

Frequency 

Q_HS floor = ·44.12 dB 

SIG_PWR = ·0 .20 dB 

SHR = 37 .92 dB 

Figure 3.12 Perfonnance Specifications of a 1 S(-Order:E6. Modulator with a 
I-Bit Quantizer at M=32 with a Sine Input Voltage. 
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solely from a higher oversampling ratio. The simulated SNR of 37.92 dB is again fairly 

close to the theoretical behavior. The L.1 toolbox. seems to give respectable simulations 

for the LL\ modulator using a I-bit quantizer at different oversampling rates. Before 

continuing, a quantitative comparison between the oversampled LL\ modulation technique 

and conventional oversamp.ling can be made. 

The SNR for a 15!-order Lt.. modulator using a i-bit quantizer was seen to be 

about 21 dB with 8 times oversampling. Using equation (2.14) , a con ventional, 

oversampled technique also perlonning at 8 times oversampling would require a _-bit 

quantizer to achieve the same SNR as the LL\. modulator. If the U modulator is clocked 

at a higher 32 times oversampling and still utilizing a I-bit quantizer, a SNR of about 39 

dB was seen. But for a conventional, oversampled ADe to achieve a comparable SNR, 

its oversampJing ratio would have to be increased to about M = 330 using the 2-bit 

quantizer or the number of bits in its quantizer would have to be increased to about 4-bits 

performing at M = 32. So again. these quantitative values show that the Lt.. modulator 

definitely has distinct advantages over conventional, oversampled ADCs. 

Continuing with the simulator example of the 1st-order LL\ modulator in Figure 

3.5, consider the perfonnance effects of using a multi-bit quantizer. Figure 3.13 

demonstrates the use of a 4-bit mid-riser quamizer. The lower plot is the quantized, 

digital output for the LL\ modulator with a I V. sine wave input at 8 times oversampling. 

The uneven behavior at the modulator output is due to the mid-riser quantizer's property 

of having no zero level and also due to the low oversampling ratio. Nevertheless, the 

simulator produces an output that has the one sample delay that was expected from the 
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Figure 3.13 Output of a 1 st-Order ~~ Modulator with a 4-Bit Quantizer at 
M=8 with a Sine Input Voltage. 
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signal transferfunction, STF, in (3.2). 

Figure 3.14 gives the simulated performance characteristics for thi s architecture 

using a multi-bit quantizer using 32,000 samples. The reason for the relatively flat noise 

power spectral density in the upper graph is due to the small quantization step size. 6.. 

which accompanies the greater number of bits in the quantizer. The flattening arises 

when the smalJ 6. contributes to the EQ(z} when multiplied by the NTF. HE(Z), in (3.11). 

Since the 1:.1 toolbox uses the resulting NSTerm rather than just the NTF when plotting 

performance measures, the prominent noise-shaping characteristic produced by HE(z) i 

not easily seen, although it still exists. Again , the lower graph shows the output spectrum 

of the 1:.1 modulator. Theoretically from (3.7), the modulatOr should produce a SNR of 

38.73 dB. The simulator predicts a relatively equal SNR of 39.12 dB. Note that this is 

approximately the same SNR predicted in Figure 3.11 , i.e., the SNR for the I6. modulatOr 

using a I-bit quantizer and M = 32. An increase in the number of quantizer bit has 

allowed for the reduction of the sampling rate by 4 times, which corresponds to a 

reduction in overall modulator power dissipation. 

Overall , the ILi toolbox seems to provide accurate performance measure for an 

ideal lSI-order 1:.1 modulator with varying oversampling ratios and number of quantizer 

bits. Simulation times for each of these modulators were fairly fas t. Initial simulations 

were used to verify system parameters and to check for quantizer or integrator clipping. 

The performance measures presented are for 32,000 sample simulations and 32,000 point 

FFTs. The simulations were performed on an IBM-compatible 486DX2-66 computer 
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Inband Noise Power Spectral Density for 1 st-Order Modulator with 4-bit Quant izer and M=8 
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with 16 Mbytes of memory. On this relatively slow computer, each 32,000 sample 

simulation was completed in about 2.5 hours. Since each simulation stored each 

intermediate nodes waveform, the simulation time could be drastically reduced by 

specifying desired node waveforms to save. Thus, for simple L.1 architectures. rapid 

prototyping is easily achieved on a basic computer system. 

Overall, the above simulations prove the validity of the L.1 toolbox and its ideal 

performance measurements. But, to gain further insight into more realistic performance 

measurements, significant non-idealities of AID conversion must be addressed by the 

toolbox. The next section discusses 6 different non-idealities which are included in the 

L.1 toolbox. The inclusion of these non-idealities provides more meaningful performance 

measurements when considering higher ordered :E.1 modulators which have inherent 

instability considerations. 

In the development of the theoretical models discussed in this work thus far, an 

assumptions were made to the circuit ideality of each component. The resulting 

theoretical perfonnance measurements based on these assumptions are therefore optimal 

and sometimes unrealistic. The only error considered in the aforementioned development 

of :ELl modulator performance measures was the error introduced by the quantization 
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process of the quantizer. Although this is the most formidable error introduced in ~ 

AID conversion, there are a variety of other circuit non-idealities which limit the ideal ED. 

AID conversion process, particularly in high-fidehty ADCs. In order to extend the 

usefulness of perfonnance measurements, the ED. toolbox has accounted for 6 significant 

non-idealities. This section describes the models used in the LD. toolbox for each of (he 

following non-idealities: integrator harmonic distortion errors, block component 

settling errors, MOSFET switch charge injection errors, clock jitter errors, circuit 

component mismatch errors, and circuit common-mode errors. These non-ideali[ies 

are common in the physical implementation of the most crucial component in ED. 

modulator, the integrator. Their inclusion will provide mere realistic simulations which 

may aid in the rapid prototyping of a desired architecture. The toolbox defines each of 

these errors individually such that their effects can be viewed independently or 

cumulatively. After the description of each error model , their effec ts on the I I-order 

example of Figure 3.5 will be seen. 

The first non-ideality that is considered is integrator harmonic distortion effects. 

The most important component in a general LD. modulator is the continuous-time 

MOSFET integrator. The accuracy of ED. modulation is largeJy dependent on how precise 

the modulator input signal can be replicated at the output of the integrator. Therefore any 

errors introduced by the integrator will have significant consequences in the overall AID 

conversion process. Hannonic distortions are primarily due to the inherent non-linearities 

of the MOS components comprising a MOSFET OTA continuous-time or switched-
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capacitor integrator. To account for these harmonic distortion effects, the L~ toolbox 

models the integrator of Figure 3.6 as a distortion-free integrator with a distorted signal at 

its input after the switched-capacitor stage. If the input to the integrator is Vint(kTs). the 

distorted input signal Vint(kT s)' is modeled as 

~nt (kTs)'= Vint(kTs)+ao[Vint(kTs)r +al[Vint(kTs)t· · 

+ aJ V:nt (kTs) r + a3 [ V,n! (kTs) r (3.14) 

where £10, a i, a2, and a3 are the 2nd, 3rd , 4th , and 5th distortion coefficients. This equation is 

used in the LL'l toolbox integrator block function. The distortion coeffici ents are 

determined from prescribed harmonic distortion measurements of the MOSFET 

integrator being considered for a particular L~ architecture. The coefficients are 

calculated using an elementary trigonometric form of (3.14). That is , if a sine wave of 

amplitude V A is assumed as the input to the integrator, the distortion coefficients become 

:2 ·HD, 
au = V -

A 

4 ·HD 3 

g·HD, 
a2 = V 3 -

A 

(3.15 ) 

(3 .1 6) 

(3.l7) 

(3. 18) 
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0.3 in a 1 sl-Order L~ Modulator Performing at M = 32. 
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Although it is widely excepted the 2nd and 3 rd hannonic distortion terms are the most 

prominent, the III toolbox allows up to the Slh hannonic distortion term to be included in 

a simulation. Figure 3.15 shows the effect of the 1 SI and 2nd harmonic distortions in the 

I sl-order I~ modulator example with a 4-bit quantizer. ao = 0.15 and al = 0.3 while V A = 

I V., fs = 1 GSPS, and M=32 for this simulation. The top graph displays the output of the 

integrator without harmonic distortion effects. The lower plot gives the effects of 

harmonic distortion. A close look shows distortion of the higher frequenc y components 

in the integrator output. These harmonic distortions are primarily due to spurious 

harmonic frequencies. 

Figure 3.16 gives the Fourier spectrum for a 151 - order ILl modulator example with 

a 4-bit quantizer. This figure can be compared with Figure 3.17 which displays the 

Fourier spectrum of the same system with the aforementioned harmonic distortion 

contributions. Figure 3.18 and 3.19 enlarge pertinent areas of Figures 3. J 6 and 3.17. 

respectively. Spurious harmonic frequencies are easily seen in Figure 3.19 when 

contrasted to Figure 3.) 8. In addition, the lobes adjacent to the center frequency are 

reduced by a couple dB when harmonic distortion is considered in Figure 3.19. Although 

these distortions should not have a very drastic effect in a I-bit quantizer implementation. 

they could have an effect on the performance of III modulators using multi-bit 

quantizers. This idea should be noted when considering higher order III modulators, 

such as the one discussed in Section 3.4, which depend on higher frequency components 

for a more precise representation of the modulator input. If the harmonic distortion terms 

2 11 
== .. - • •• • t 
~ , t 
~ C I 
.:l C I 
:: a .... - ... . ~ .. : :) 
"It : - ., 
:z : .. , 
" J' 
1" 4 .: f , .- ) 
- I 

f 
~I 

1 



co 
u 
c 
Q) 
u 
.2 
a. 
E 
<t: 

-10 

-20 

-30 

-40 

-50 

I •• 

· 
I I I I I 

I 1 I I I 

I , I I I II I I j I I I t J 
____ I ___ L_~_~_ I_L~~~ _____ I ___ L_J_~_L~~~L __ _ 

I 1 I I I I I . 

I I I ~ It t 
I I I , 1 , 1 '1 

, I I I I '. 
I I I I I I I I , . , 
, .. 
• , I 

I I I I I l 

I I I 1' 1 
I r I , I 1' 1 I I I f I I I I 

__ __ 1 ___ ..L. _ J _ J _ 1_ 1. 1. 1. L _____ , _ _ . _ L _ .J _ J _ t.. .. J, J. L __ 
I I 1 I I I · , · · , , 

· , 
· , , · , . , I , I , , I I I , , , , . . . , . , , I , , , , . , , , · , , . , , , I 

I I r I I I I I I I I I , • I I I I 

- - -----r-~-7-I- iri;-----I---i-~-1-r r7 T r --

I I I I I t I 

I I I I t I I t I II 
I I I I I ti t I I I 

I I I I I I I I I ' 

I , I J I I 

I , I I I I 

- - - -,- - - .,. - .... - "t - , - .... ~ '" ~ - - - -,- - -

, I I t I' 

I I I I 

I I I I I I 

I I I I , , 
· , 

I I I I' 

I I' I I 

I I I I 
I , 

• , I 

• , I 

, , 
• I I I f I I I I _ I ___ L_~_~_L~~ A ~ _____ I ___ ~_~ 

• ... 
•• I 

, , , , 
L I I " I 

I I + I I I I I I I I I 
_ 1 ___ L_~_J_ L LlJL _____ I ___ l_~ 

, I I 'I I I 

, , . -,---.--,-
I , 

I I .. . , 
I 

-60~--~~~~~~--~~~~~~--~~~~~~--~~~ 

105 1 Oil 107 108 

re.. ToolboxbyAKf Frequency 

55 

Figure 3. 16 Performance Specifications of a 1 51-Order L.6. Modulator using 
a 4-Bit Quantizer at M=32 without Hannonic Distortion. 
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Figure 3.17 Performance Specifications of a 1 51-Order Lil Modulator using 
a 4-Bit Quantizcr at M=32 with Hannonic Distortion. 
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Figure 3.19 Enlarged View of Perfonnance Specifications Figure 3.16 with 
Hannonic Distortion. 
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are large enough, they may cause improper comparator decisions in the quantizer which 

may have an adverse effect in overall r~ modulation perfonnance. Another non-ideality 

which may cause the same problem is incomplete settling of rt.. modulator component 

blocks . 

Each component block in a r~ modulator has an associated settli ng time. If each 

component does not completely settle within its allotted clock phase time, incorrect block 

outputs are fed through the r~ modulation loop. This may al so be detrimental to the AID 

conversion process. Thus, component settling time issues are included in the r~ toolbox 

by calculating the settling time constant for each individual r~ modulator block. The 

toolbox can incorporate the settling time error in the output of each block using the 

calculated time constants. The most difficult time constant calculation is for the 

integrator. Appendix A details the mathematical development of the integrator's 

effective settling time error by employing a two-pole, small-signal circuit MOSFET 

model in the Laplace domain. Figure 3.20 describes the schematic diagram for thi s 

integrator model. 

The 2 time constants are obtained from the mathematical representation of the 

integrator's voltage gain, Av. Applying Kirchhoff's Current Law at the gate and drain 

nodes gives the following two equations: 

(v'-v . ) . y + v' ·C·s+ (v'-v ) · (s ·C +Y ) =0 
In g l o . f l (A. I ) 

(A.2) 
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Figure 3.20 Schematic of Two-Pole, Small-Signal Integrator Model. 

where, Vin is the switched-capacitor input voltage; y ' is the gate to source voltage; Vo is 

the output voltage; C' is the OT A input parasitic capacitance; C x is the gate to output 

parasitic capacitance; CLI is the load capacitance; gml is the OTA's effective 

transconductance; Yg1 IS the switch's admittance; Y fI is the integration capacitor's 

admittance; and s is the Laplacian operator. Equations (A. I ) and (A.2) are used to find 

Avo Solving these equations , substituting for the full form of the Yg1 and YfI: 
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(A.6) 

(A.7) 

where, Rgl is the effective switch resistance; Cg1 is the effective sampling switch 

capacitance; and Cint is the integration capacitor. Simplifying by removing insignificant 

terms, Av is found to be 

The denominator for this equation is used to determine the 2 time constants fo r the 

integrator. The L~ toolbox substitutes the prescribed values for each of the variables in 

the denominator of (A.8). It then finds the roots of this numerical form of the 

denominator. The roots are of the structure: 

(A. I 0) 

where PI and P2 are the calculated poles of the denominator. The final result for the 

settling time constants 1] and 12 becomes: 

(A. I I ) 
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(A. 12) 

These time constants are used to determine if incomplete settling occurs for the integrator 

during the integration phase of the clock cycle. The LLl toolbox accounts for a poss ible 

integrator settling error by including the time constant contributions at the output of the 

integrator for a specified phase time. The toolbox uses (3.19) 

( [ ph_ time) (Ph_ time )) w = Vin,-out' 1 - exp - 't) - exp - 't
2 

(3.19) 

where w is the output of the integrator including settling error, Vint_out is the output of the 

integrator without settling error, and ph_time is the integration phase time in seconds. 

The settling error of the quantizer and DAC blocks is included in a less tedious manner. 

The toolbox requires that the values for the equivalent capacitances and 

resistances must be included in the desired III modulator architecture file . The 

respective time constant for each block is calculated as follow s: 

l' block = Req.block . C eq.block (3.20) 

where 'tblock is the block ' s time constant, Req.block is the block's equivalent 

resistance, and Ceq.block is the block ' s equi valent capacitance. Using (3.20), the output for 

each block becomes: 

VOUI .bIOCk = V out ' (1 - exp( - ,--Ph ___ ti_m_e) J 
'tblock 

(3.2 1) 
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where Vout.block is the output of the block including settling error, YOUI is the output of the 

block without settling error, and ph_time is the integration phase time in seconds. A 

simulation of the 1 sl-order 2:Ll modulator can show the effects of incomplete settling of its 

block components. Figure 3.21 displays the integrator outputs for a simulation 

performing at fs = 1 GSPS and M=32. The upper plot gives the ideal integrator output. 

while the lower plot is for the integrator output with incomplete block component 

settling. In the simulation, the :Ell toolbox calculated the following time constants from 

the specified data for each block component: 8.6x 10. 11 sec-I and 3.8x 10- 12 sec-I for the 

integrator, lxlO- 11 sec· 1 forthe quantizer, and lxlO- 11 sec· 1 for the DAC. A close look at 

the graph shows how settling errors cumulatively distort the integrator output. 

Figure 3.22 gives the enlarged output frequency spectrum for the same system. 

This figure can be compared to the undistorted output frequency spectrum of Figure 3.18. 

The 3rd through 7th harmonics are similar in amplitude on both Figures 3.16 and 3.22. 

But, higher harmonic frequency amplitudes of Figure 3.22 are inconsistent with their 

corresponding undistorted harmonic frequencies of Figure 3.16. Once again , higher 

frequency contributions have been adversely effected by the non-ideality. In tum, settling 

errors may be detrimental to the important local averaging process of I:Ll modulation. As 

seen in the last section, local averaging aids in a more accurate digital representation of 

the analog input to the modulator. Also, settling errors may have an unfavorable effect on 

AID conversion accuracy when considering higher order III modulators , such as the one 

discussed in Section 3.4, which depend on higher frequency components at the integrator 

output for increased AID conversion resolution . Along with the two aforementioned non-
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idealities, another error that has a direct effect on the integrator output is switch charge 

injection or charge feed-through . 

Charge injection is an inherent problem with switched-capacitor sampling circuits 

[Wegmann, 1987]. Referring to Figure 3.6 showing the switched-capacitor continuous-

time integrator, the switches are typically implemented by MOSFETs. Figure 3.22 

displays a circuit model of the MOSFET sampling switch just preceding the integrator. 

The diagram models the middle portion of the switched-capacitor integration circuit 

around the $2 dependent switch just before the intennediate node of Figure 3.6. The 

system of Figure 3.22 consists of the sampled difference signal to be integrated. Vin. the 

sampling capacitor, Csi , the MOSFET switch transistor, and the integration capacitor, Cim . 

The transistor' s gate voltage, V G, controls the on/off state of the transistor during the 

integration phase $2. Charge injection limits the accuracy of the integration process by 

introducing an error charge , ~QG , onto Cinr each time the transistor is turned off. 

The error charge is due to carriers released from the switch 's conduction channel 

and due to coupling through the gate-to-diffusion parasitic overlap capacitance. Cgd. This 

has an adverse consequence on the output voltage of the integrator. A simplified circuit 

model of this MOSFET switch for charge injection analysis is given in Figure 3.23. This 

model assumes that there is a relatively long fall time associated with the switch and the 

capacitances, Csi and Cint. are much larger than the gate oxide capacitance, Cox. The 

transistor's Cox is considered as a distributed oxide capacitance associated wi th the 

switch's time-varying channel conductance representation, g[V get)]. If these assumptions 
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Figure 3,22 Simple Circuit Model for Charge Injection Analysis, 

g[Vg(t)] 

Figure 3.23 Simple Circuit Model for Charge Injection Analysis. 
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are satisfied, a linear decrease of V g with slope 'a' across Co~ is equi valent to a constant 

current source of (aCox)flowing symmetrically to both ends of the transistor. g[V g(t)J can 

be modeled as 

(3.22) 

where ~ is the transistor current-gain. Vg,ON is the gate voltage required to tum on the 

transi stor, 'a' is the slope of the slope of the gate's on loff transition voltage. t is time and 

VIE is the effective threshold voltage determining the onloff state of the transi tor. The 

transistor current gain, ~, is modeled as 

(3.23) 

where W is the width of the transistor, L is the length of the transistor, and J.l is the 

transistor 's carrier mobility; while the slope of the gate 's on loff transition voltage. 'a'. i 

determined by 

0.8· Vg.ON a "" ---"'---
ttall 

(3.24) 

where tfall is the fall time associated with the onloff transition voltage of the transistor. 

With these models defined, Figure 3.23 is resolved into the following normalized 

differential equation: 

d V [[ Cin1 J Cinr ] - = (T - 8) . 1 + - . V + 2 . T . - - I 
dT C~ C~ 

(3.25) 



where the normalized terms are 

Normalized Voltage Error: 

Normalized Time: 

Normalized Switching 
Parameter: 

t 
T = ffi ' and Cint 

a·p 
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(3 .25a) 

(3 .25b) 

(3.25c) 

The L~ toolbox uses these equations and an initial condition of V = 0 to calculate the 

charge injection error added to each sample being integrated. The toolbox calculates V 

by inserting the required data values and integrating (3.25) from 0 < T < B. This V is 

finally substituted into (3.25a) to find the charge injection error voltage, ~ V g. ' For the 1 s!_ 

order L~ modulator example, a charge injection error of -0.000638 V. was detemlined 

using the following parameters: Csi = 30 pF, Cin! = 32 pF. W = 10000 !lm. L = 22 Ilm. 

Vg•ON = 1 V .. VTE = 0.5 V. , Il = 500 cm2N .. Cox = 6.8XIO'8 F/cm:!, fs = I GSPS, and M = 

8. Although many other switches exist in the clocked switched-capacitor network and the 

clocked DAC block, the L~ toolbox only determines charge injection error for the switch 

just preceding the integrator ' s intennediate node. Charge injection in the other switches 

are usually fed to ground when turned off. 

The fourth non-ideality considered, clock jitter error, is also associated with the 

MOSFET switching circuits. Clock jitter error arises from the sampling time uncertainty 

, t, , 
, '0' . r 
~:! I 
'~I ... . ... 
« 
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in the clocked blocks of the lLl modulator. This uncertainty is due to random thennal 

noise introduced into the clocking network. The lLl toolbox uses a very simple model for 

this error. Normally, the toolbox uses ideal uniform time-sampled data from the created 

modulator input wavefonn to be operated upon during each lLl loop iteration . For 

example, a sine wave with a maximum voltage VA is ideally created by the toolbox as 

V(sample) = VA' sin( 2·1t· f;:, . sample J (3 .26a) 

where sample is an integer number from 1 to the number of samples desired. The l.1 

toolbox introduces a unit amplitude noise term scaled by a user defined clock jitter 

percentage to account for the non-unifonn time-sampling. That is, (3.26a) becomes " I 

" 
I 
r 

V( sample) = VA . sin ( 2 . 1t. f~, . sample · (I + jitter_err· rand( I)) J (3.26a) 

where jittecerr is the user defined maximum percentage time deviation around an ideal 

time-samples sample, and rand( 1) is the Matlab term that generates a random noise term 

with a maximum amplitude of ±l. Figure 3.24 shows how a jitrer_err of 2% effects the 

input wavefonn created by the toolbox used as an input to a lLl modulator. Once again , 

this input wavefonn is applicable to the 1 sl-order lLl modulator example performing with 

fs = 1 GSPS and M=32. The upper plot gives the sine waveform for an ideal time-

sampled input. The lower plot graphs the effects of improper sampling in the time-

domain. The:ELl toolbox di storts the input waveform to account for clock jitter effects 
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effectively representing the non-uniformity or uncertainty at uniformly sampled data 

points. 

The fifth non-ideality the 2:;1 toolbox includes is block component mismatch errors . 

These errors originate from process inaccuracies inherent to physical Ie layout of the 

variety of capacitors and resistors used in a 2:;1 modulator. The mismatch is most 

prominent during the computation of the closed-loop gain values for the integrator and 

any amplifiers in the circuit. For instance, if a process is known to have a capacitor 

mismatch error of 2%, the desired capacitor gain stage ratios may differ from the actual 

implemented gain ratio by as much as 4%. Since component mismatch errors are 

considered independent random variables, they sum in a root-mean-squared fashion , 

which further increases differences between actual physical gains and computed gains . 

Although the performance of many ADC' s are greatly effected by component mismatch 

errors, 2:;1 modulation is fairly resistant to them. 

The 2:;1 toolbox accounts for component mismatch erro rs in a simil ar 

approach to the inclusion of clock jitter errors. The toolbox adds a scaled vers ion of a 

unit noise term to each of the capacitances and resistances given in the desired 

architecture file. That is, the impedance of a particular component is modeled as 

(3.27) 

where Z'j is the new component impedance including component mi smatch error effects, 

mis3rr is the maximum process mismatch error percentage, rand( J) is the Matlab term 

which calculates a random value between ± 1, and Zj is the des ired component 
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Figure 3.24 Clock Jitter Error Effects of 2% on Modulator Input Waveform 
for a 1 51-Order L:~ Modulator Perfonning at M = 32. 
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impedance. The new resistances and capacitances are used in the iteration of the I Ll loop 

resulting in the inclusion of these mismatch errors. 

Figure 3.25 displays the effects of component mismatch errors on the integrator 

output of the I 51-order ILl modulator example performing at fs = I GSPS and M = 32. 

The upper plot shows the effects for a maximum mis_err = 2%, while the lower plot 

exhibits the effects for a maximum mis_err = 20%. Figure 3.26 shows the effects of 

component mismatch error over and above quantization error. The upper plot gives the 

effects for a maximum mis3rr= 2%, while the lower plot demonstrates the effects for a 

maximum mis_err = 20%. There is an obvious drop in performance in the case of 20% 

error when compared to the plot of 2% error. In addition to adding an additional amount 

of error over and above the quantization noise. the plot of 20% mismatch error begins to 

show a correlation to the input waveform. This observation is of concern since it violates 

Bennett 's noi se model discussed in Section 2.1. Figures 3.27 and 3.28 give the frequency 

spectrums for the output of the 151- order ILl example including component mi smatch 

errors of 2% and 20%, respectively. Once again , the 3rd through 71h harmonic frequencies 

are not highly affected . But, harmonic frequencies above the 71h order are affec ted. The 

graphs show the general resilience of ILl modulation to component mismatch errors. 

Although these errors should have less effect on a I-bit quantizer implementation , 

they can have a significant effect on the performance of ILl modulators using multi-bit 

quantizers by li miting the quantizer ' s effective DR. In addition , some of the 

aforementioned errors may be removed by the differential aspect of the integrator. 
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Order ::E~ Modulator Performing at M = 32. 
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Figure 3.27 Frequency Spectrum of 2% Component Mismatch Error Effects 
on the 1 51-Order 1:Ll Modulator Output Performing at M = 32. 
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Figure 3.28 Frequency Spectrum of 20% Component Mismatch Error 
Effects on the 1 st-Order I-L\ Modulator Output Performing at M = 32. 
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As mentioned in section 3.1.3, the L~ toolbox implements a differential integrator 

circuit to aid in the rejection of common-mode ' errors. Figure 3.29 displays a block 

diagram of a 1 51-order L~ modulator implemented in a differential form. The input to the 

differential modulator is fed to the +Input node, while its inverse is fed to the -Input node. 

The tool box iterates both modulation loops specified in the architecture fi Ie. The digital. 

quantizer output of the lower half of t~e diagram is subtracted from the quantizer output. 
,;: 

of the upper half to give the system's final output. The L~ toolbox uses thi s fact to 

validate common-mode error removal or non-zero common-mode gain. Common-mode 

errors arise when similarly signed errors are introduced to the upper and .lower halves of 

the differential circuit. Common-mode errors are thus reduced or eliminated by the final 

subtraction operation for the resulting modulator output. 

The non-idealities described in this section combine to give the L~ toolbox the 

ability to simulate Lt1 modulators more realistically. As seen by the plots in this section, 

these non-idealities do hamper the performance of Lt1 modulators, especial.1y for the 4-bit 

quantizer implementations. After a desired design is theoretically designed, the inclusion 

of the errors in simulations may validate the designer's expectations of the design's 

performance. If the errors tend to unexpectedly reduce the anticipated AID conversion 

resolution, the designer may redesign the modulator to take into account any performance 

degradation before the circuit is simulated with some other transistor-level simulator. 

This approach and use of the Lt1 toolbox will aid in the rapid prototyping of desired L~ 

modulators .. 
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Now with an understanding of 1st-order .~ modulator behavior and limitations, 

two higher order Lll modulators are discussed in the next. two sections of this work. 

Section 3.3 develops a 3fd-order U modulator which employs digital e rror correction 

functions to reduce the inband quantization noise power at the output of the modulator. 

The following section 3.4 explains a novel approach for reduction of the noise power by 

attempting to control the shape of the inband quantization noise power. This circuit. 

initiaHy proposed by Nadeem, shapes the quantization noise in a Cheby hev Type-ll 

transfer function form. Both these modulators are currently being investigaled by the 

AA VDC for NRaD. 

Higher ordered LD. modulators allow for greater noise-shaping realization. One 

higher order L6 architecture being developed by the AA VDC is a 3rd -order Residual 

Scaling modulator. It proposes a greater reduction in quantization noise power over 

typical 3rd -order 2:6 modulators by use of digital error correction functions. A block 

diagram of this innovative architecture is given in Figure 3.30. This modulator does not 

follow the typical cascaded form described in Figure 3.2. Instead, a parallel structure is 

implemented with 3 L6 loop stages. 

From the figure, it is seen that the difference between the first stage's input and its 

estimated analog output before quantization, Wj - XI, is amplified and fed as the input to 

I, 
I , 
• 
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the second stage X2. Thus, the input to the second stage is basically the amplified no.ise 

that has been added to the first stage during its one loop III modulation. Simil arl y, the 

noise added to the second stage by its one loop I6 modulation is again ampli fied and fed 

as the input to the third stage. The interstage gains are required to ampl ify the previous 

stage' s noi se in order to maximize its AID conversion process. That is. the interstage 

gains normalize the inputs to the second and third stages to utilize all of VFS. After each 

stage completes its III AID conversion, the individual stage' s digi tal signals. YI.~.3 . are 

fed through digital error correction functions , Hl.2.3 , and summed to produce the fin al 

system output, y: 

(3.27) 

When designed properly, these error correction functions tend to cancel the quantization 

noises form the first and second stages, e l.:! [Walden, n.d.]. The noise remaining at the 

output is a scaled version of the quantization error introduced by the third stage. Thi s 

error correction process is derived in Appendix B. The derived outputs of each stage are 

y 1 = q' x 1 +- ( 1 q ) . e 1 (B.I O) 

(1 - q)'e2 
(B.12) 

y 3= o· x 1 . O' e 1 
3 

q . 9 2' e 2 t (1 
(B.14) q}'e 3 
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Outpul 

Figure 3.30 Block Diagram of a 3rd -Order Residual Scaling LL1 Modulator 
using 4-Bit Quantizers and Digital Error Correction Functions. 
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where q = Z·I, Xi are the inputs to the ith stage, ei are the quantization errors a ociated 

with each ilh stage, and gl and g2 are the interstage gains. Along with these, the proper 

error correction functions are also derived in Appendix B: 

(B.19) 

(B.20) 

(B.2l) 

These functions when substituted into (3.27) yield the equation for the final output, y: 

3 
7 (1 - q) 

Y = q . x 1 + O' e 1 + O' e 2 + -. --' e 3 
(g f 9 2) (B.22) 

(B.22) describes the output of the system to be a 7 sample delay of the input signal to the 

system added with a scaled, 3rd-order, noise-shaped quantization error form the third 

stage. (B.22) verifies the removal of the 2nd and 3rd stages' quantization noise from the 

output by use of the error correction functions. 

From (B.22), the theoretical SNR for the system assummg an input of 

(VFs/2)sin(wt) is: 

( 3 2.B) ( )~ 7· M7 
SNRResidual = 16. 2 . 91 '92 .~ (3.28) 

This theoretical SNR formula denotes the Residual Scaling I~ architecture 's dependence 

on the number of bits in the quantizers, B, the oversampling ratio, M, and the interstage 
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gains, gl and g2. (3.28) is similar to a typical 3rd-order L~ modulator's SNR, calculated 

in (3.7), except that SNRResidual is reduced by the effect of the interstage gains , i.e .. 

(glgZi. This reduction is key to this architecture's proposed ability to further reduce the 

output's quantization noise power over a typical cascaded 3rd-order L~ modulator. 

This L~ modulator was specified to achieve 16 bits of ND conversion resolution 

utilizing 4-bit quantizers and operating with a sampling rate of I GSPS at 8 times 

oversampling. During the system-level design process, the only unspecified value were 

the interstage gams. These values were found by creating a Residual Scaling L~ 

architecture file and utilizing the U toolbox. Introducing a modulator input of ±V FS 

white noise, the input to the first interstage gain, gh was viewed. It is shown in the upper 

plot in Figure 3.31. In order to normalize the output of the first interstage gain to VFS , the 

inv.erse of the maximum error shown in the plot was determined. The maximum effective 

gain for gl was calculated from this to be 8. With thi new value inserted as the first 

interstage gain in the architecture file, the same method was used to determine the second 

interstage gain, gz. The lower plot in Figure 3.31 showing the input [0 the 2nd amplifier. 

g2, was analyzed. It too resulted in a maximum effective gain for g2 to be 8. 

Therefore, substituting B = 4, M = 8, and gl = g2 = 8 into (3.28) glVes the 

theoretical SNR for the 3rd -orcler Residual Scaling L6 modulator to be about 3 X 109 or 

94.77 dB. The Ld toolbox was used to verify this theoretical measurement. With all the 

system parameters prescribed, a 5000 sample ideal simulation was performed in 15 

minutes on the same 486DX2-66 computer. The simulated performance results are given 

in Figure 3.32. The upper plot of the inband noise spectral density demonstrates the large 
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Figure 3.31 Interstage Gain Inputs for Gain Calculations in the 3rd -Order 
Residual Scaling 1:L1 Modulator using 4-Bit Quantizers. 
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noise-shaping characteristic of a 3rd -order L~ modulator. This is also seen in the lower 

plot of the system's output spectrum. The simulated SNR of 93.80 dB matches the 

theoretical value to within 1 dB. The minor deviation between simulated and theoretical 

SNR values is probably the result of the limited number of sample points. A longer 

simulation of perhaps 32,000 sample points may allow the simulator to more preci e ly 

parallel the theoretical AID conversion performance measurements . 

As a whole, the L~ toolbox gave an accurate measurement for thi s multi-bit. 

higher order architecture. In addition, the toolbox ' s ability to show intermediate 

architecture nodes aided in the design of this particular L~ modulator. To complete the 

verification of the toolbox , one last higher order architecture is implemented in the next 

section. 

3 .. 4 A~ 3rd ·Ord(e"lr L.1l\'vj[od'Uflalltolr lBJal§(e:d Gln} It/h/fe" 

.( N,d/ d(e"(e'ml J' }fln, It(e'l'lpJO lallt it\vre' A~lrch iitt(e'c It lLJ[lrte" 

The previous section gave an example of a multi-bit, higher-order L~ architecture 

that greatly attenuated the quar..tization noise in the passband. But, due to its interstage 

gains and multiple quantizers, it did not have an area efficient or low-power 

implementation . The architecture discussed in this section is proposed to be a low-power 

L.6. modulator and is more area efficient than the Residual Scaling LLl modulator. The 
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Figure 3.32 Simulated Performance Measurements for the 3fd-Order 
Residual Scaling L~ Modulator using 4-Bit Quantizers and Digital 

Error Correction Functions. 
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AA VDC has just begun investigation of this architecture. A similar archilecture was 

introduced by S. Nadeem of the Massachusetts Institute of Technology that refine the 

noise-shaping process [Nadeem, 1994J. Common higher-order I.~ modulators designs 

have placed an the zeros of the NTF at 0 Hz and all the poles at f512. This architecture, 

shown in Figure 3.33, refines the NTF into a Chebyshev Type-II filter form by feeding 

back scaled node outputs to intermediate nodes . With the proper design. these feedback 

coefficients are used to place the poles and zeros to achieve a the desired Chebyshev 

Type-II NTF response in order to reduce the average noise power withi.n the band-of­

inlerest. Specifications for the design being investigated by the AA VDC are 18 bit of 

AID conversion resolution at 10 kSPS and 20 bits of resolution at 2 kSPS , using a 4-bit 

quantizer and a sampling rate of 1.28 MSPS with 64 times oversampling. 

Appendix C analyzes Figure 3.33 and develops the feedback gains, Ao.l.:! and Bo. 

Bo sets the zero, while a combination of Ao.I . ~ and Bo define the pole for the refined 

NTF. The integrator closed-loop gains also have a distinct effect on pole and zero 

placement. 

On the whole. the stability of the system is strongly dependent on the values of 

these gains. The first step in calculating the gains is the development of the Chebyshev 

Type-II transfer function desired for the NTF noise-shaping. An Elliptical 

implementation was developed for easier zero and pole placement. Elliptical transfer 

functions allows for ripple in both the passband and stopband by proper placement of 

zeros and poles. Conversely, Chebyshev Type-II transfer functions allow for ripple only 
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in the stopband by placement of zeros and no passband ripple by placing all pole at hal f 

the sampling frequency. Therefore, an Elliptical NTF with a 0.1 dB allowable ripple in 

x l ~®I---.I 
Input 

e1 Digital 
Output 

[I>~:=~ Y 

Figure 3.33 Block Diagram of 'Nadeem' Interpolative 1:.6. Modulator. 

the passband sufficiently models the Chebyshev Type-II NTF required for thi s design. 

It is desired that a zero is placed at the passband frequency such that the NTF is 

attenuated at that point. This allows for a greater reduction of noi se power at the 

modulator's output with respect to placing that zero at 0 Hz. In addition, the design of 

the Elliptical transfer function assumes a I-bit quantizer implementation.. Therefore, the 

desired transfer function is designed for an attenuation of the quantization noi se floor of 

at least 15 bits or 90 dB. The remaining bits of resolution are accomplished using a 4-bit 
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quantizer. Appendix C illustrates the process by determining the following optimal z-

domain form from calculated Ell iptical poles and zeros: 

I , \ 

H \ Z3 - 2.9975 1 28z- + 2.99751 276727696: - .99999996727696 
D(z)= . --

(z3 _ .192246117l + .3945465385431 94H - 1.32584740537294 1934,ro J \ (C.3) 

Both the normal Elliptical form has an associated transfer function constant that should 

be multiplied by HoCz) . Unfortunately, this constant is not accounted for in Nadeem 's 

interpolative L.1. modulator. Thus, the transfer function' s constant mUltiplier is required 

to be unity. Using Figure 3.33 , the z-domain representation of the interpo lative 1:.1. 

modulator STF, Hx(z), and NTF, HE(z), are calculated to be the following: 

(C.4) 

(C. S) 

where Ao.1.2 and Bo are the feedback gains, and Ki is the closed-loop gain for the (i + 1 ) lh 

integrator. (C.S ) clearly shows that the interpolative design does not have a NTF constant 

multiplier factor. As will be seen, this has an adverse effect on the proposed AID 

conversion resolution. 
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The modulator' s HE(z) has a direct relationship with HD(z). Matching the 

numerator and denominator z-coefficient-terms ' from both functions and solvin o the 
o 

resulting equations give the feedback gains in terms of the integrator gains. That is, 

A :: 

· 1.2009745741378211 78' 

[ K1· (KJ.Ko)] 

- 3.007567071820154 12 

(K2·K1) 

· 2.80526665027696 

(CI O) 

(Cll ) 

The next step in determining the coefficient values is to determine appropriate 

integrator gains, Ko.I.2. The E.1 toolbox proved its usefulness in finding integrator gains 

which are suitable for (C.l 0) and (C. J J) and will not cause instability within the Ell 

modulator. By developing an interpolative :L.6. modulator architecture file using (CI 0) 

and (CI I) and iterating for different integrator gains, the following integrator cI a ed-loop 

gain s were found as proper values: 

39 39 40 
K =-·K =-·K. =­

o 40' I 40' - 40 
(C1 2) 

where, Ki is the (i+l)!h integrator's closed-loop gain. (C13) and (C14) gi ve the actual 

feedback coefficients after CCl2) has been substituted into (C 10) and (Cll ). These 

values become 

Ao = - 1.263 ; AI = - 3.085 ; A " = - 2.805 (CI 3) 
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Bo = -0.003 (C14 ) 

(Cl::n through (C.14) give the gain values required by the interpolative architecture to 

achieve the Chebyshev Type-IT NTF form . Note that these gains are u uall) limited to 

integer fractions for implementation as switched-capacitor ratio gain stages. Figures 3.34 

and 3.35 show the theoretical plots for the modulator's NTF and STF, respectively. by 

substituting (C12) through (C14) into (C4) and (C.S). Although the NTF plot of Figure 

3.34 clearly shows the Chebyshev Type-IT noise-shaping, the effects of forcing the 

transfer function's constant multiplier factor to unity is also evident. This theoretical 

NTF plot exhibits a gain greater than 0 dB at higher frequencies and a less pronounced 

attenuation around the zero placement at 10 kSPS. In addition , the STF plot also shows 

the unity multiplier's effect in a gain spike around 300 kSPS. Even with this problem . the 

theoretical solution developed seems to be optima1. This completes the derivation of the 

Interpolative L~ modulator[ 's feedback and integrator gains. But before continuing on to 

a simulation. the L~ toolbox requires an approximation for the STF of Figure 3.35 to 

determine the appropriate NSTerm to be integrated, as required by (3.11). An 11th-order 

power series expansion of (CA) is used as a good approximation for the STF, Hx(z), as 

seen in Appendix C: 

H x<z)=.950625z 2 i .1835181562& 3 _ .269579851185937f 4 _ . 124 1384723448827343ij 5 ... 

+ 5.99787460961057787500 2. z' 6 5.51560542046003683810 2.i 7 ... 

+. 6.87070206859835243880 3, z' 8 _ 1.985695108334112052S0-:"i 9 .. , 

+ 2.395623273907044933!0 3,z 10 (C.17) 
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With the approximate STF defined, the gains found in (C. 12) through (C.14) were 

substituted in the Interpolative I6. modulator 's architecture file. An ideal simulation was 

perfonned with a modulator input frequency of 2 kHz. The resulting output for each 

integrator and the final modulator output are respectively given in Figure 3.36. 3.37. 

3.38, and 3.39 for a couple of cycles. These plots exemplify how the Interpolative It. 

modulator operates. Each consecutive integrator attempts to interpolate between its input 

wavefonn's values corresponding to adjacent digital quantization sr.eps in an analog 

fashion. This process coupled with oversampling consequently produces a quanrizer 

output that interpolates between adjacent quantization levels. Thus, the modulator 's 

output provides a more precise estimation of the modulator input waveform. Also. the 

possible effects of the improper NTF multiplication factor is seen in these plots. As 

aforementioned, it is necessary that there is no integrator clipping in a I6. modulator. 

Even though Figures 3.36 through 3.37 do not show any clipping, the output ' of the lSI 

and 2nd integrators are not within the quantizer's full-scal e voltage set at I V. for thi s 

simulation. This may be a cause for the deviation of the simulated modulator' s SNR 

from the theoretical SNR seen below. 

To detennine this architecture 's simulated SNR for bandwidths of 2 kSPS and 10 kSPS , 

an ideal 32,000 sample simulation was perfonned with fs = 1.28 MSPS and M = 64. A 

modulator input of 50 kHz was introduced to reduce the simulation time and to rid the 

resulting performance plots of hannonic contributions around the desired bandwidths. 
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Figures 3.40 and 3.41 show the SNR plots for a 10 kSPS bandwidth and a 2 kSPS 

bandwidth. respectively. For both figures, the upper plot corresponds to the inband noise 

power density spectrum, while the lower plot shows the output pectrum for the 

modulator. The simulated SNR for a 10 kSPS bandwidth was 101.58 dB or 16.6 bits 

resolution. The simulated SNR for a 2 kSPS bandwidth was 108.13 dB or 17.7 bits of 

resolution. These values are much less than what was required for this architecture. In 

addition, the expected Chebyshev Type-II noise shaping characteristic is not seen in either 

plot, thus reducing desired SNR improvements to a simple oversampled improvement 

without noise shaping. The SNR difference between for the 2 kSPS system over the 10 

kSPS system, i.e. by a simulated 6.55 dB, is solely due to oversampling the system by 5 

times more. Using equation (2.14), oversampling a system by 5 times yields a 6.98 dB 

improvement which concurs with the above observation. The lack of performance from 

this architecture is due to the following reasons: 

• the NTF's constant multiplier is required to be unity for this architecture 

which causes a distorted Chebyshev Type-II response; 

• the performance plot showing the modulator' s NSTerm includes the effects of 

the 4-bit quantizer' s small error variance, Oe2, which may prevent easy 

viewing of the actual noise-shaping; 

Another, but very unlikely. possibility is that the specification for 18 bits of SNR exceeds 

the ability for this Interpolative modulator to perform Chebyshev Type-II noise-shaping at 
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Inband Noise Power Spectral Density for Interpolative Modulator for 10 kSPS Bandwidth 
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Inband Noise Power Spectral Density for Interpolative Modulator for 2 kSPS Bandwidth 
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M = 64 and fs = 1.28 MSPS. These toolbox results suggest further investigation and 

refinement of Nadeem' s Interpolative L.1 modulator is necessary to resolve the apparent 

problems. 

The L.1 toolbox aided the initial investigation of Nadeem ' s Interpolative L.1 

modulator. It verified that at least two problems to exist and that further system-level 

examination is required before actual Ie designs are implemented. This section along 

with the previous has proved the utility of the LLl toolbox. Higher-order architectures can 

be simulated and refined using the r..1 toolbox to detennine their ND conversion 

potential. 
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(C OJ inl (C l,urs iio) if7lS 

Interest in oversampled, I..tl. modulation has recently grown due to it reported 

increase in AID conversion resolution over conventional AID conversion methods. 

ADCs employing Ill. modulation are becoming commonplace due to their simpler design 

and resilience to limited device matching. The verification of the theoretical performance 

of novel Ill. modulators has been hindered by inefficient or incomplete simulations 

provided by common commercially available simulators. This research work described 

rh development of a new rapid-prototyping simulator, the III toolbox, that attempts to 

overcome these hindrances. 

After an introductory discussion of Nyquist-rate and conventional oversampled 

ADCs, L:.tl. modulation, its characteristic noise-shaping properties , and implementation of 

L:Ll. modulators in the Ill. toolbox was discussed. The toolbox can implement a variety of 

L:Ll. architectures by use of the follow ing modular component blocks: integrator, 

quantizer, DAC, summation node, and amplifier. Following the ideal description of each 

block, the effects of six significant non-idealities which hamper AID conversion were 

investigated. The non-idealities considered were: integrator harmonic distortion errors, 

block component settling errors , MOSFET switch charge injection errors, clock jitter 
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errors, circuit component mismatch errors, and circuit common-mode errors. The 

incorporation of these non-idealities allows for more realistic NO conversion 

performance measurements by the L.Ll toolbox. Each non-ideality's effect on III 

modulation was presented individually with a lSI-order U modulator example . 

Simulations from the L.6. toolbox were performed with respectable efficienc. on a IBM­

compatible 486DX2-66 computer. With the discussion of the basic simulator complete. 

the toolbox 's utility was seen in the initial investigations of two 3fd-order L.Ll modu!atoL 

being developed by the AA VDC for NRaD. 

The firs t higher-order architecture described was the 3rd -order Residual Scaling 

III modulator. This novel architecture uses digital error correction functions on the 

parallel , 3 rd -order 1:6. modulator to achieve a greater reduction in quantization noise 

power over a cascaded, 3rd -order 1:6. modulator. The I,6. toolbox was useful in the 

development of this design by providing both frequency and time-domain views of 

intermediate nodes. This was integral in defining the maximum values for the interstage 

gams. Also, the toolbox verified the derived error cancellation fun ctions and the 

modulator's theoretical SNR by use of simulated performance measurements. 

The second higher-order architecture presented was a 3rd -order Interpolative 1:Ll 

modulator similar to a design reported by S. Nadeem of MIT. This interesting 

architecture attempts to refine LLl modulation noise-shaping by modifying the NTF into a 

Chebyshev Type-ll form. After mathematical derivation of the architecture' s required 

feedback gains, the required integrator gains were found by viewing integrator outputs for 
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stability using the .t~ toolbox. A problem with the design was verified by the toolbox's 

simulation results. Thus, the .ttl toolbox once again proved its utility in the initial 

system-level design of L~ modulators. 

Noting the potential of this simulator along with the increa ed use of r~ 

modulators, a variety of future prospects for the L6 toolbox are poss ible. Fir L a 

graphical or user-friendly interface must be integrated into the simulator. Second, power 

measurements could be introduced. This could further aid the designer in refining 

potential low-power designs. Lastly, the simulator could be developed into a type of 

VLSI hardware description language in order to further provide even faster prototyping of 

potential designs . 
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A~pendi).'( A\ 

JD{e,\ve.f0pI11re'lf1/t of S(e'/tftlin..g Error for 7nvvo-JPole' 

JR.epre·§e·j{7ltati'on of an J!nte...grator 

Below is the two-pole, small-signal model used for the integrator in the l~ toolbox. By 

using this mathematical model, the time constants associated with the integrator may be 

found. 

+ 
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v C' 

Yfl 

OTA 

+ 
VO l 

: Integrator 
: Output 

Figure A.I Schematic of Two-Pole, Small-Signal Integrator Model. 
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These time constants are combined (0 detennine the settling time required for integration. 

Incomplete integration will cause an integration settling error which is accounted for in 

the L.6 toolbox. Using Kirchhoff's Current Law at the gate and drain nodes. (A. I. ) and 

(A.2) are found. 

( V' - y . ). Y + y' . C' . s + (y' - y ) ·(s . C + Y ) = 0 
In gt o. fl (A. I ) 

(A.2) 

where, Yin is the switched-capacitor input voltage; v' is the gate to source voltage: Vo is 

the output voltage; C is the OTA input parasitic capacitance; ex is the gate to output 

parasitic capacitance; eLi is the load capacitance; gml is the OTA's effective 

transconductance; Yg1 IS the switch's admittance; Yfl IS the integration capacitor' s 

admittance; and s is the Laplacian operator. 

(A.2) can be rewritten as : 

(A.3) 

(A. 1 ) can be rewritten as: 

(A.4) 

Substituting (A.4) into (A.3) gives, 
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which yields: 

'[(gml - S· C X - Yft ) . (S· C." + Yfl) + go + s· CLI + s· e, + yO] ' V ~ ... 
(Yg1 +s·C +s·C. +YfI ) 

=0 
(Y . v + v . C . s + v . Y ) ( C Y ) g l In 0 x 0 fl 

+ gml - S· x - fl' (Y . C· . C Y) 
gl + S + S x + fl 

Solving this equation for the integrator's vottage gain, Av. gives 

-Y~I 
(g - s· C - Y ). . 

ml • fl (Y . C '+ . C ·Y ) gl+s s.+ fl 

ex is neglected since it is much sma)]er than Cint. This simplification results in 

which may be rewritten as 



no 

Now, the full fonn for the admittance Yn & Yg1 are substituted into (A.5). Yg1 and Yn 

are 

(A.6) 

(A.7) 

where, RgJ is the effective switch resistance; C gJ is the effective switch parasi tic 

capacitance; and Cjnl is the integration capacitor. Thus (A.S) becomes: 

A = Y . (-gmt + C int . s) . ________ -= 

v gl [(~Ll 'C')'.S2 +~g~ 'C'+CL.,· Yg,. +CLI '~inl .~+C,nl ,C "S) 's.,.] 

+oml C inl s+oo Yg1 +go C ml s+C inl Yg , s 

or, 

Cgt 
A v = (-gml + Cml ' s) , -;::--------------~'---------------= 

(C LI ,C ml ·Rg,'Cg, +C',C'nI' R gt .Cgt +C LI ·C'·R gt ·C g t)·S~ ... 

(
C'.Cu +. CLI 'Cg1 +C inl 'gml ' Rg, ,Cg1 +go · C ' · Rgt 'Cs,"') 

+ . S ... 
+Cinl ·C'+Ct.I ,Cint +Cinl · g o ·Rg,·Cg, +Cinl , Cg1 

+C inl ·go +C,m 'gml +go ·C'+go ,Cg1 

Deleting insignificant terms from this expanded equation gives the following equation 

used to determine the integrator's settling time constants : 
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The denominator of (A.8) is 

(A.9) 

With each value provided in a particu.iar 1:Ll modulator architecture file in erted in (A.9), 

the Z8 toolbox numerically solves for the Laplacian operator, s. The inverse of these 

roots are the 2 settling lime constants associated with the integrator. That is , (A.9) i 

calculated to be of the fonn: 

(A.ID) 

where PI and p:? are the calculated poles of the denominator. (A. to) gives the final result 

for the settling time constants 'tt and't2: 

(A.ll ) 

(A.12) 
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These settling time constants are used to determine jf complete settling of the integrator 

output is achieved within the specified clock phase time as discussed in Section 3.2. If 

not, a settling error arises and is incorporated in the output voltage of the integrator. 
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The Appendix develops the Error Cancellation Functions. HI , H 2, and H3 beginning with 

the definition of each stage' s input, intermediate, and output equations. These equation_ 

were entered and solved in Mathcad. Due to Mathcad 's habit of simplification of inverse 

exponentials to fractions . the following substitution is used throughout the Appendix: 

The intermediate node equations are 

- q ( w 1---' x 1 
1 q (B. I ) 

(B.2) 

(B.3) 

Later, the following substitutions will be made to determine the effects of mismatches in 

analog gains, ri , and digital gains, gi: 
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Initially, the development of each stage's input equations is done. 

x, = input of the L.1 Residual Scaling Modulator (B A) 

(B.5 ) 

Substituting (B. I ) and (8.4) into (B.5): 

x =9 .q. [ q _ q].x _ g' q2 'y 
2 1 (1 - q) 1 1(1 - q) 1 

3 X 1 q2 
X 2= - 9 l' q . - 9 l' . Y 1 

( - 1 . q) (1 - q) (B .6) 

(B.7) 

Substituting (B.2), (B.4), and (B .6) into (B.7): 

2 2 

9 ._ <1 _ 'y 
1(1 q) 1 

9 .. . q 'y 
2(1 q) 2 

5 Y 1 
x 3= 9 2· q ·91' ----2 

( - 1 q) 

2 

9 . _CL y 
2(1 q) 2 

(8.8) 

Next , the output equations for each stage are developed: 

Y1=W1 e1 (B.9) 

Substituting (B. 1 ) and (8.4) into (B.9) yields: 

y 1 = q' x 1 + e 1 - e f q 



y 2=w 2 + e 2 

Substituting (R n - (B.6) into (RIl ) gives: 

3 
q : 3 

- 9 f rx 1 - q -g 1' e 1 
q ) (1 - q) J 

Substituting (B.l) - (R7) into (Rl3) gives: 

y 3=q-x 3 " (1 - q)-e 3 

6 X 1 
9 2· q -9 f ----

2 
( 1 ~ q) 

5 

2 I 

q I 
92- - -Y2 j l (1 

(1 - q) 
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(B. 10) 

(B_1 I 

(B. L) 

(B.13) 

q) -e 3 

5 (1 q) q 3 
Y3=q' - 92' Q -g1- --- + 92---- -91 -e1 - q-g2'e2 ~ (1 q)'e3 

( 1 r q)2 (1 q) 

y 3= O· x 1 ' O' e 1 (B_14) 

The error cancellation functions HI. H2. H3 are chosen to cancel el and e2 errors_ Using 

the following equation 



and the equations developed above 

y ,=q'X , T (1 - q)'e , 

3 
Y 2= O' x 1 - q . 9 ,. e 1 .... (1 - q)' e 2 

3 
Y 3=0' x 1 + O' e 1 - q . 9 2' e 2 + (1 - q)' e 3 

we can create a final output equation: 

y=H d q' X 1 + (1 - q).e1 J - H 2 ' [ 0 'X 1 - q3' gfe1 r- (1 

+ H 3' [ O'x 1 + O' e 1 - q3. g 2' e 2 + (1 - q)·e 31 

y=H1'Q'X, ... [ H1'(1 - Q) H 2 ·q3. g ,].e,,,. 
+ l H 2' (1 - q) - H 3' q3. 9 2 ] ' e 2 + H 3' (' - q)' e 3 
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(B.IO) 

(B.12) 

(B .14) 

(B.15) 

Beginning with a desired H3 , such that we have a 2 equation - 2 unknown system, we' ll 

try to remove the quantization errors , el and e2 : 

2 
H _(1 - q) 

3-
91'92 (B .16) 

The coefficient for e1 in (B.15): The coefficient for e2 in (8 .15): 

[ 3 1 H 1'(' - q) ., H 2·q ' 9, ,=0 

r 

2 
(' - q) 3 

- H 2' (1 - q) - ---- . q . 9 2 = 0 
9 1·g 2 

I I 



Given, 

3 

H 2=( - 1 +- q}.~ 
9 1 

Mathcad solves (B.16), (B.17), and (B.18), yielding: 

Now. Let's trv with these HI' H~, and HJ Functions. 

Using (B.19) - (B.2l) in (B. 15) produces: 

2 

+ ~-.3.L. [ Q·x 1 O'e 1 - q3. g 2"e 2 I (1 q)·e 31 
9 (92 

7 
y= q . x 1 t Q. e 1 

Note that e, and e2 really do drop out! 
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(B .17) 

(B .18) 

(8.1 9) 

(B.20) 

(B.2 l) 

(B.22) 
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Now, to consider mismatches in analog and digital gains we insert the mismatch terms 

into (B.IO), (B.12), (B.14), and (B.19) - (B.21): 

y 1 =q ' x 1 + (1 - q)' e 1 

3(q - 1) 
H 2=q . 

Y 1 

Substituting (B.23) - (B.28) into (B.15) gives: 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B .27) 

(B.28) 

y= ( q6) .[ q' x 1 r (1 - q)·e 1 J - q3 l~L ]L[ O·x 1 q3. y 1' ( 1 r 0 1) ·e 1 j (1 q)-e 2 1 ·· · 
L Y 1 

2 1 
+ i~-=- .:!L. [ O·x 1 .. 0 - q3. y 2' ( 1 0 2) -e 2 i (1 - q) ·e 31 

'f 1'Y 2 



3 2 <5 2 
- q ·( - 1 + q) ·_ ·e 2 

1 1 

3 
(1 - q) 
----·e3 
(1 1"1 2i 
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(B.29) 

*** Note: The 8's create the additional appearance of quantization errors form the 1 SI and 
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This appendix develops the gains used in Nadeem ' s Interpolative L~ Modulator. The 

equations throughout this appendix were entered and solved in Mathcad. Due to 

Mathcad ' s habit of simplification of inverse exponential s to fractions, the following 

substitution is used throughout the Appendix: 

Digital Specifications and variables needed for thi s Mathcad Worksheet are: 

i - 0 .. lOe L · 3 fB = 1(}l tf fS 1.28- I d) 

-'- - 10 

f ( i) 
IT · IO to 

M 
fS 

M =64 bits 15 . - --- -
I 

2·IT· - H B 

fS 

z( i) 

( f( i ) \ 
j 2 lt ·fs} 

= e 
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From Matlab, the filterjng implementation gives the following elliptical zeros and pole 

required to compute the feedback coefficients: 

"'0 co O.99875~ j .O.049856) 

0.9987564- j·0.04985~ 

I 0.003365857 \ 

pole = 0.094440 [3 j·0.620477 12' 

\0.094440 13- j·0.62047712 (Cl ) 

So, by modifying Nadeern's method, we'll develop all the coefficient s from the elliptical 

poles and zeros starting with the z-domain transfer function of the desired Chebyshev 

Type-II transfer function: 

I · (z - zero ). (z - zero ). (z - zero~ ) 
HD(z)= 0 1 -

(z - poleo) ' (z - polel ) · (z - pole2) (C Z) 

Normally there is a constant gain associated with this transfer function. But, it is forced 

to 1 since there is no way to implement it in Nadeem 's architecture. Substituting the 

poles and zeros of (CI ) into (C Z) yields: 

( " \ 
HD(z)=---- ,( - 2.9975 ~28z- , 2 . 99751 276727696:~ .999999967~769jJ _ 

(z3 .1 92246117i -l ,394546538543194lZ - l.32584740537294 1934W 3) (C3) 

(C3) is the desired Chebyshev Type-ll transfer function which must be matched with the 

NTF, HE(Z), for Nadeem 's modulator. For the 3rd-order interpol ative system, the 

following STF and NTF were derived: 

K."K ,K 'z 
HX(z)= -- -----___ :: __ I _~ __ - ___ - _ . 

. j r (- A2·fS - 3 - fS ·K,'Bo) ·z2 ", 

+ (- K."K·A + K.,·K ,S , 2· A, ·K, t- 3) .z " _ 11 _1 0 __ 

+ K.,·K·K ·A + K., ·K ·A - A,.K., - 1 _1 0 0 _J J __ (CA) 
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(C.5) 

There is a simple relationship between HD(z) and HE(z): 

H D( z)=H P: z) 

Using this relationship, the calculation of the feedback coefficients is accomplished by: 

Z - 2.9975128z- ... r 3 ., . I I :)? ) 

\ +2.997512767276% - ,99999996727696 =l z + (. 3 - K2·K1·Bo) ·z- ( 3 .... K1'KI'Bo) '~ ~ I 
{ 

" J \ z.} - .! 92246117z- ... 
+ .394546538543194n ... \ 

\+ . l.325847405372941934iO· 3 J 

Equating like 'z' tenns in the numerator and denominator creates the follO\ving 4 solvable 

equations: 

Given 

(C6) 

(C7) 

(C8) 

(C9) 

These equations can be solved simultaneously. 
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- 1.200974574137821178 
, 

[K1·(KJ'KO) ] 

· 3.007567071820154 12 

find (AO, A 1, A2,BO) - > 
(IS'K1) 

- 2.80526665027696 

IS 

- 2.48723272301 
10-3 

(K1· K1) J 

r - 1.2009745741378211781 

[IS· (K1 ·Ko)] 

· 3.00756707182015412 
A -

(IS·KI ) 

· 2.80526665027696 

IS ec.IO) 

. J 

B - 2.4872327230 10 
0 (K2·KJ (C.ll) 

Thus. these are the derived values for the feedback gains, Ao. AI, A1. and Bo. in te rms of 

the integrator gains, K 1, K1, and K3. Assuming the following integrator gains, 

K 

39 

40 

39 

40 

40 

40 

the overall gain of the modulator from input to output is 

K·K·K =0,951 
0 11 

(eI2) 
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The derived coefficients to be used In the interpolative Lli arch itecture with the 

prescribed integrator gains are: 

(-1.263) 
A = - 30085 

- 20805 ec. 13) 

B = - 00003 (C.1 4 ) 

Let's check these coefficients in the STF and NTFo 

_ [ Z( i)3 ,- ( 3 - K20K1oBo) 0z(i)2 + (3+ K2, KIBo) 0z( i) 0 _IJ 
- r z(i) 3 r (- Ac. 0K2- -3 - K20K1oBo) 0z(i)2 000 I 

1+( Kc. °KloAI r K2o Kl oBo ' 20A20K2 t 3) oz( i) I 

1+ (K2oKloKOoAo) 1 K2oK IoA I A20K2 I 
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Figure C.l Quantization Noise Transfer Function for Interpolative 3rd_ 
Order L~ Modulator. 
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Modulator. 
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These graphs show the effects of forcing the Chebyshe ' s constant gain to 1. Figure CI 

has an error gain of greater than unity for higher frequencies. In addi tion. there is a gain 

spike in the signaJ transfer function for higher signal frequencies. 

Finally, the rl1 Toolbox needs a power series approximation for (he STF(z) in order to 

integrate the NSTerrn for an average inband SNR. This is done using (he STF(z) found in 

(C.4). Substituting (CI2), (C.13), and (C.14) into (C4), the STF(q), where q = z-I . 

becomes: 

(q2)'(KJ 'K .K ) 
H ( q )= ____ - 1 --'-'0 _____ _ 

x f ( 1 t- 1.20l·K2,K 1,Ko- 3.00SK2·K 1 2. 805KJ q3 t- (3.006K2,K1 - 5.61·K:! 3) ,q2 .. . \ 

. + ( 3 + 2.0 1O' 3' K 2' K1 .;.. 2.805K2)·q T 1 i (CIS) 

A 9th-order power series approximation of (CIS) is: 

H:d i) .950625z( i) 2 .J835181562&(i) ~ _ .269579851185931i(i) 4 .1241384723448827343il; i) 5 

+5.99787460961057787500 2·z(if6 5.515605420460036838w 2'z.(i) 7 ... 

+ 6.87070206859835243880-3·z( i) 8 (C.16) 

An II th-order power series approximation of (C.IS) is: 

.950625z(i f 2 i .1835181562&(i j"' - .269579851185931l(i) <I _ .J24138472344882734Ml: i) 5 ... 

+5.99787460961057787500 2· zli f 6 5.51560542046003683810 2z.(i) 7 . . 

+ 6.870702068598352438Bj 3 z( if 8 1.98569510833411205:2fff 2· z( i ) '} ... 

+ 2.3956232739070449331!J 3. z(if 10 (CI7) 

Finally, a comparison between the 9th-order series and the 11th -order series can be made: 
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Figure C.3 9th-Order Approximation for Signal Transfer Function of 

Interpolative 3rd-Order L~ Modulator. 
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The 11 th-order power series of (c. 17) provides a better approximation of the STF for the 

modulator. It is used in the architecture file for the LL1 toolbox. 
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