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CHAPTER I 

INTRODUCTION 

Automation Using Robotics 

Traditional deburring and grinding of metal parts has been considered labor 

intensive, monotonous, and tedious work, occurring off-line, and often undertaken in dirty 

and noisy environments. Such manual clean-up operations usually increase costs and parts 

inconsistency. An alternative is to automate such operations, implemented by employing 

robots. Robots can be employed to good advantage in deburring and grinding because of 

the following properties: 

• They can operate three shifts per day. 

• They accurately reproduce repetitive motions. 

• They can process parts faster than humans. 

• They can work in noisy and dirty environments without degradation in 

performance. 

For many companies, the use of robots for automation has considerably reduced costs and 

improved qUality. 

Robots have been successfully employed in the foundry industry for grinding gates, 

risers, and flash, as well as for various chamfering of internal and external edges [1]. 



Other industries have successfully employed robotic operations for brushing, polishing, 

buffing, and grinding [2]. Automatic parts being deburred and finished with robots include 

transmission and steering knuckle housings, connecting rods, and plastic moldings [2]. 

Robots also have been used for automatic welding and spray painting [3]. 

Industrial robots have been used for various deburring and finishing operations, but 

most applications are dedicated to large quantities of a specific part with simple geometry, 

easily adapted for automatic operation. Unlike off-line manual operations, the use of 

robotic deburring and grinding requires considerable planning to ensure optimum results. 

In this thesis, we consider robotic deburring and grinding whereby a robot arm carries a 

grinding tool (end effector) to follow a desired trajectory. This involves motion of the end 

effector in both free space and in constrained space. Development of an effective and 

efficient position and force control strategy is the main focus of this research. In next 

section, the problems addressed by this application are described. 

Problem Background 

In many robot applications, manipulators are commanded in more or less 

unconstrained environments. An unconstrained or "free" environment is a 3 dimensional 

work space in which there is no contact between the moving robot arms and any other 

objects, and no external force, other than gravity. acts on the end effector or other robot 

moving parts. Control of the position of the end effector in such environments is relatively 

straightforward. More advanced robotic applications involve interaction between the 

robot end effector, or other moving robot links, and the environment. Robotic deburring 
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and grinding requires the end effector to follow a desired trajectory in both constrained 

and unconstrained space as illustrated in Figure 1.1. An important issue here is to design a 

controller to achieve stable contact transition and external force regulation with minimum 

impact and bouncing. Such a control strategy usually may be divided into three operation 

modes: free motion mode, transition or impact mode, and constrained motion mode [4]. 

In the transition and constrained motion mode, if a large burr is encountered, a sharp 

surface change may cause the end effector to leave the workpiece. Limit cycle response 

or instability may be excited. Therefore, appropriate control is important for efficient tool 

utilization and accurate production of desired finished profiles. A further concern in 

grinding is the potential of burning the workpiece or destruction of the tool if the grinding 

forces are excessive. This can be avoided by controlling the normal .and tangential 

grinding forces to lie below the burning or damage limits for the given cutting conditions. 

wor kp iece 

nomul 
f orce 

deSir ed 
surface 

unfinished 
surP o.ce 

grinding wheel cente r 

r obot ic end 
effector 

Figure 1. 1 Grinding an Edge 
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Various investigators [5,6, 7, 8] have proposed switching control strategies to 

handle the transition or impact modes. For example Marth, et al [8], employed position 

control in the unconstrained direction and force control in the constrained direction for a 

simple end effector probe contacting a smooth edge. However, such control approaches 

may not suitable for robotic deburring and grinding, because force control in a constrained 

direction requires tracking a desired force trajectory, which means a precise force model 

and known surface geometry are required. In robotic deburring and grinding, the end 

effector will encounter constrains in both tangential and normal directions, and we assume 

the geometry of the workpiece is not precisely known. Moreover force control in a 

constrained direction does not guarantee accurate production of a desired finished contour 

on the workpiece. 

Literature Review 

In this section, we briefly review some control strategies, proposed by previous 

investigators, including impedance control, hybrid position/force control, and hybrid 

impedance control. These control strategies deal with the control of a constrained 

manipulator, which may be suitable for robotic deburring and grinding. A more complete 

review is given by Hong [3]. We note, however, that these investigations typically 

. consider only contact by an end effector probe with a relatively smooth workpiece, and do 

not consider material removal of the workpiece by the end effector. 
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Impedance Control 

Impedance control was fust proposed by Hogan in 1985 [9]. His central idea was 

to assume a relationship between the position of the end effector and the contact force 

exerted by the constraining environment. This relationship can be modeled by a 

generalized linear impedance consisting of inertial, damping, and stiffness characteristics. 

Impedance control regulates the relationship between the end effector position and the 

contact force, called the mechanical impedance [10]. The fundamental relationship is 

given by 

Z(s) = Fe(s) 
Xes) 

( 1.1) 

where s is the Laplace operator and Fe (s), X (s), and Z(s) are the Laplace representations 

of the external force, position, and impedance, respectively. Typically, a generalized 

expression for the impedance is given by 

(1.2) 

where M d' B, and K represent desired inertia, damping, and stiffness, respectively. 

Impedance control has attracted a significant number of investigators, [11, 12, 13, 14], 

because it provides a stable and unified control structure for the three different regions of 

operation, namely, free motion, transition or impact, and constrained motion modes. On 

the other hand, unless the exact environment model is known and is integrated into the 

motion plan, the external force can not be independently regulated with impedance control 

after contact, such that, it is difficult to handle both position and force regulation in a 
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constrained environment [4]. However, proper design of an impedance controller can 

guarantee the stability of manipulators in contact with environments. Details of impedance 

control will be addressed more completely in Chapter ill, including stability analysis and 

controller design for robotic deburring and grinding. 

Hybrid .PositionIForce Control 

Hybrid position/force control, flrst proposed by Raibert and Craig [15], is a control 

strategy dealing with tasks requiring force control in some di~ections and position control 

in others. A hybrid position/force controller has the following three characteristics [16]: 

• Position control is employed in directions for which a natural force constraint 

exists. J • 

• Force control is employed in directions for which a natural position con traint 

exists. 

• Appropriate combinations of force and position control modes are employed 

along the coordinates of an arbitrary reference frame. 

Typically, a hybrid position/force controller is unable to regulate the relation between the 

end effector position and contact force because it neglects the manipulator'S impedance. 

Moreover, the position of the end effector and contact force along one degree of freedom 

(DOF) can not be controlled independently, such that for complex tasks like robotic 

deburring and grinding, such a controller is unsuitable. 
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Hybrid Impedance Control 

Hybrid impedance control combines impedance control and hybrid position/force 

control into one strategy [17]. It treats the contact environment as a linear impedance and 

assumes the manipulator can be effectively decoupled into single-DOF linear subsystems. 

Then, a duality principle is employed to decide which control should be used in each 

subsystem. In short, an inertial environment requires a position-controlled manipulator, a 

capacitive environment requires a force-controlled manipulator, and a resistive 

environment allows either force or position control [17]. Once the type of control method 

has been decided, the impedance of the end effector is chosen accordingly. Such a 

controller provides more flexibility than those mentioned earlier, and may be applied to 

robotic deburring and grinding. In Chapter III, we will further investigate and implement 

this control algorithm, and simulation results will presented in Chapter IV. 

Impact Control 

In robotic deburring and grinding, an impact force may occur when the end 

effector contacts the workpiece or encounters a large burr. This impulsive force may 

deviate the end effector off the workpiece. It could induce unstable dynamics and damage 

the end effector and workpiece. Strategies for impact control, or contact transition 

control,. to solve this problem have been studied by several investigators. Such 

investigations may be broadly classified into two categories, namely, impedance control 

and switching control [4]. Impedance control is appealing because it provides a stable and 
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unified control strategy for both free and constrained environments without the need for 

switching control algorithms on impact. Several switching (discontinuous) controllers 

have been investigated, mainly during the last five years. A common result is that while 

force can be regulated if contact is continuous, instability can arise if bouncing occurs after 

impact. Because of this, the overall contact stability problem has not been completely 

addressed for realistic deburring and grinding problems. Recently, Tam, et al [4], 

proposed a new control strategy using "positive acceleration feedback to control the 

transient force response to reduce the peak impulsive force and bouncing". The new 

method employs a position control to eliminate the unexpected bouncing and reestablish 

contact. Tarn showed that the number of bounces is finite and that the last bounce always 

corresponds to the transition from free space to constrained space. Stable contact is 

guaranteed. Tam's work may have potential for developing an improved control method 

for robotic deburring and grinding. In [18], Pagilla uses another approach for impact 

control. He assumes the end effector and environment are rigid, and there is no 

penetration. By employing a simple rigid body collision and coefficient of restitution to 

model impact, Pagilla experimentally and numerically shows that bouncing can be 

eliminated in finite time. 

While the work reviewed above may have relevance to our problem herein, we 

note a significant difference. For robotic deburring and grinding, the robot arm carries a 

grinding wheel or deburring tool rotating at high speed. When the workpiece is contacted, 

such tools will immediately cut into workpiece such that the "hard" surface assumed by 
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previous investigators immediately disappears. Accordingly, the impact force is likely 

much smaller in our operation, such that the approaches by Pagilla, Tarn, and others may 

not be suitable for robotic deburring and grinding. 

Objectives of This Study 

From our literature review, most proposed control algorithms for manipulators 

operating in constrained and unconstrained environments employ some type of force 

control for stable contact while tracking a desired trajectory. In the work herein, we seek 

high accuracy in the finished workpiece profile using robotic finishing. That is, we are 

interested in employing force control only when the normal or tangential forces exerted by 

the workpiece on the end effector exceed some pre-specified limits, at which point we are 

prepared to compromise on position accuracy, otherwise, we desire highly accurate 

position control. We assume that the actual geometry of the workpiece is unknown and 

we wish to finish workpieces of different materials. Employing a force-tracking strategy 

under these assumptions will be very difficult. On the other hand, impulsive forces may 

need to be regulated when the end effector contacts the workpiece or encounters a large 

burr. Such demands increase the difficulty in implementing robotic deburring and 

grinding. 

This research investigates position control and force regulation of a simple two­

arm SCARA robot carrying a powered tool at its end effector used for deburring and 

grinding. Based on Hong's work [3], we extend the grinding models to encompass easy 

to grind (ETG) materials and difficult to grind(DTG) materials. A new switched control 
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method is developed for this operation, and other control algorithms are investigated to 

compare performance for robotic deburring and grinding. The remainder of this thesis will 

describe system modeling, the new control approach for robotic deburring and grinding, 

and computer simulation results. Chapter II describes the dynamics of the robot and the 

force model for ETGIDTG materials. In Chapter III, a new switched controller is 

presented for position control and force regulation in robotic deburring and grinding. We 

also investigate impedance control and hybrid impedance control in this application. 

Chapter IV discusses surface characteristics for various surface irregularities and burrs. 

Simulation results for various controllers are presented, together with analysis and 

discussion. Chapter V follows with conclusions and recommendations. 
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CHAPTER II 

SYSTEM MODELING 

In this chapter, we first address the equations describing the dynamics of a 

manipulator having n links. We have elected to use as our simulation test bed, a model of 

a SCARA robot developed at UC-Berkeley [19] using NSK drives. The grinding forces 

for our study are derived from conventional grinding models. The stiffness of the robotic 

arm will also be discussed. Control strategies and simulations are based on the models 

developed here. 

Manipulator Dynamics 

A robotic manipulator can be considered as a set of n rigid bodies connected in a 

serial chain with friction acting at the joints. The equation describing the dynamics of such 

a device in free space can be expressed in "joint space" as [10]: 

M(q)q+ C(q,q)q+ Ff(q,q) + G(q) ='t (2.1) 

where q is an n x 1 joint variable vector, q is the time derivative of q, M(q) is an n x n 

inertia matrix, C( q, q) represents an n X n matrix that describes the centrifugal and 

Coriolis terms in the dynamics of the manipulator, G( q) is an n x 1 vector containing terms 
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arising from forces due to gravity, F J q) is an n x 1 vector that specifies the effects of 

Coulomb friction force in the joints, and 't is an n x 1 vector that defmes input torques 

from the actuators of the manipulator. 

Since the natural description of a desired trajectory and interaction force are given 

in "task space", it is desired to express the dynamics of a manipulator in task space as 

[3, 16]: 

(2.2) 

where F is a n x 1 force vector arising from actuator torque at the end effector, Ml q) and 

el q) are n x n matrices corresponding to the inertial matrix and centrifugal/Coriolis matrix 

in task space, and Glq) and Ffrlq, q) are n x 1 vectors of gravity and friction force terms in 

task space. For simplicity, we consider the task space to be the Cartesian (reference) 

space in this study. 

Note that the force term, F, arising from actuator torques at the end effector is 

applied by the actuators at the joints, using the relationship 

(2.3) 

where J(q) is the nXn manipulator Jacobian matrix written in the same frame as F and X. 

The Jacobian matrix is defined by [3] 

J(q) = iJL(q) 
iJq 
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where L( q) is a continuous function of the joint space vector found from manipulator 

kinematics and geometric relationships. It relates the n x 1 task space vector X to 

generalized joint coordinates q by 

X = L(q) (2.5) 

When the end effector contacts an object, such as a workpiece, a force term arises 

on the right of (2.1) due to the environment, such that (2.1) becomes 

M(q)q + C(q,q)q + Ff (q,q) + G(q) = 't - JT Fe (2.6) 

where Fe is the n x 1 vector that defines the task space force or torque acting on the end 

effector of the manipulator. Similarly, for such contact, (2.2) becomes 

M,(q)X + C,(q,q)X + Ff,(q,q) + G,(q) = F - Fe (2.7) 

We can derive the relationship between the terms of (2.6) and those of (2.7). First, 

premultiply (2.6) by the inverse of the Jacobian to obtain 

or from (2.3), 
r 

Now differentiate (2.5) twice with respect to time to obtain 

x = J(q)q 

X = J(q)q+ hq)q 

13 

(2.10) 

(2.11) 

/ ----



Eq. (2.10) is assumed to be nonsingular. Solving for q and q gives 

(2.12) 

(2.13) 

Substituting from (2.12) and (2.13) into (2.9) yields 

(2.14) 

from which we derive the expressions for the terms in the task space dynamics in (2.7) as 

Mr = ]-T(q)M(q)]-I(q) 

C{ = ] - T (q)[C(q,q)]-1 - M(q)] -' j(q)] - I(q)] 

F f t = ] - T (q)Ff(q,q) 

G{ = ] -T (q)G(q) 

(2.15) 

In practical applications, the control input, torques 't , are commanded in joint 

space, and encoders and tachometers are usually placed on the motor shafts, such that 

positions and velocities are measured in joint space. To obtain motion of the end effector 

in task space, "forward kinematics" is employed for transformation. Accordingly, we can 

derive a more convenient and useful expression for the manipulator dynamics by 

substituting from (2.13) into (2.6), which yields 

These new manipulator dynamics will be used to design the control laws for deburring and 

grinding in Chapter III. 
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UC-BerkeleylNSK SCARA Robot 

Detailed information on typical robot installations for deburring and grinding can 

not be readily obtained because of a certain degree of proprietary information surrounding 

many of these installations. This is because robot manufacturers desire to withhold 

information about their robots from their actual and potential competitors. Thus, detailed 

modeling information is typically not reported in trade publications, nor is such 

information provided by robot manufacturers to customers. In this study, we employ a 

UC-BerkeleylNSK SCARA robot, which consists of only four major mechanical parts, 

two direct drive motors from Nippon Seiko K.K. (NSK) and two aluminum links, as a 

benchmark for our simulations because the technical data for this robot have been 

published [19], and its configuration as a two axis robotic arm provides a planar 

workspace, appropriate for our study. 

In this work, we are concerned with end effector motion and force acting only in a 

horizontal plane, parallel to the planes of motion of the SCARA planar robot. We employ 

a model with only two degrees of freedom, namely rotations of the two main arms of the 

SCARA robot about their vertical axes, as shown in Figure 2.1. Because gravity has no 

effect in the horizontal plane, the gravity term in (2.6) vanishes, and the dynamic equation 

in joint space for this simple model reduces to a second-order nonlinear differential 

equation given by [19] 

M(q)ij + C(q,q)q + Ff (q,q) = 1: - JT Fe (2.17) 

where q, 1: and Fare 2 x 1 vectors as defined previously, and 
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Figure 2.1 Schematic Diagram of Two-Arm SCARA Robot 

with 

~I = PI + 2P2 COS(q2) 

~2 = ~l = P3 + P2 COS(q2) 

m22 = P3 

Cll = -2P2 sin(q2)42 

CI2 = - P2 sin(q2 )42 

C21 = P2 sin(q2 )ql 

C22 = 0 

where pI, p2, and p3 are constant terms dependent on the manipulator's geometric 

dimensions and masses of components, given by [19] 
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P2 = II i2c m l + lJ /2mp 

P3 = I) + 14 + I" + U;cm4 + li mp) (2.17c) 

P1 = II + 12 +I3c +11~m2 +L~(m3 +m4 +mp)+ P3 

In (2.17c) I, and 13 are rotor inertias of Motors 1 and 2; 12 and 14 are inertias of Links 

1 and 2 about their own gravity centers; 13c is the stator inertia of Motor 2; Ip is the 

payload inertia; Tn, and ~ are the masses of Motors 1 and 2; mz and m4 are the masses 

of Links 1 and 2; mp is the mass of the payload; IJ and l2 are the lengths of Links 1 and 

2; and l, c and L2c are the radii of gyration for Links 1 and 2. The Coulomb friction matrix 

is described by: 

if ki;1 > 0 

if Ittl = 0 and Iqil> th; i = 1,2 

if Ittl = 0 and Iq;1 ~ thl 

where thi is the magnitude (unitless) of the friction torque and i = 1,2. Note that thjs 

number th; is also used as the switch limit for Iq;l. 

Similarly, the dynamic equation in task space for this simple model can reduce to a 

second-order nonlinear differential equation from (2.7) as 

(2.18) 

with coefficient matrices defined by (2.15) and the appropriate matrices and vectors 

defined as for (2.17). For simplicity to implement dynamic analysis and control based on 

(2.18), we define the x-y horizontal reference system plane as identical with the task space 
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t-n, defined by two orthogonal axes normal and tangential to the surface at an idealized 

point of contact of the grinding tool. Thus, we assume a straight-line nominal surface 

edge aligned with the x axis. Considering the implications of following a curved edge, the 

task coordinate system changes as the tool contact point moves along an arbitrary curved 

edge in the reference system. At each time step in simulation, this requires two steps of 

transformation namely, from robot joint space to task space and from task space to 

reference space. A very fast and efficient computation will be an important issue in the 

design of a manipulator system used for such applications. 

Grinding Modeling 

In this section we model the grinding forces based on conventional grinding 

operations. The grinding conditions will be specified for calculating the grinding forces. 

Force limits to prevent damage to the workpiece and breakdown forces for a selected 

grinding wheel will also be discussed. Finally, we investigate the effects of different 

workpiece materials. 

Force Modeling 

In steady grinding operations, the grinding forces can usually be treated as two 

orthogonal forces: Fn normal to the contact surface and F/ tangential to the contact 

surface, as shown in Figure 2.2. Hahn and Lindsay [20] have experimentally investigated 

the grinding process and developed an empirical equation for the normal grinding force as 
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where 

F" = normal grinding force 

Zw = material removal rate 

A In = metal removal parameter 

By definition [3], 

F = Zw 
n A 

m 

(2.19) 

(2.20) 

where Vw is the workpiece feed rate, d is the depth of cut, and b is the width of cut. Hahn 

and Lindsay have also proposed an empirical equation to predict A m based on 

experimental data, which yields errors of +/- 20 % for easy-to-grind (ETG) materials [20]. 

n 

+-44 ____ ~t burrs 

wh eel 

y 

Figure 2.2 Robotic Grinding Schematic [3] 
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Robotic deburring and grinding differs from conventional grinding because of the 

compliant structure and mobility of the robot. Material feeding is accomplished by 

moving the robot relative to the workpiece rather than feed-in of the workpiece to a 

stationary grinding wheel as in conventional grinding. Hong [3] developed normal and 

tangential grinding force equations for robotic deburring and grinding by employing Hahn 

and Lindsay's experimental equations for conventional grinding forces, together with 

geometry and kinematics. His results yielded 

where 

FlI = [V, + (0.285D / d + l)v" ]db / Am 

F, = JlFlI , 

D = the wheel diameter 

( . 
d = depth of cut 

FlI = normal grinding force 

Ft = tangential grinding force 

Am = metal removal parameter 

b = width of cut 

~ = coefficient of grinding fiction, (0 ~ ~ ~ 1 ) 

VII = normal velocity of end effector 

VI = tangential velocity of end effector 

20 
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In our simulation work in Chapter IV, we will employ (2.21) to calculate grinding forces. 

In actual implementation, normal and tangential grinding forces would be measured 

directly by a force sensor at the end effector. 

ETG and DTG Materials 

The grinding wheel speed, workpiece hardness, dressing lead, and depth of dress 

are the four most important parameters affecting the metal removal parameter, Am. [20] . 

The workpiece hardness can usually be classified into two categories: easy-to-grind (ETG) 

and difficult-to-grind (DTG) materials [20]. Materials classified as ETG are chrome, cast 

iron, aluminum, and soft steel. DTG materials are many steels in the M and T categories 

of tool steels, titanium alloys, and high-nickel steels. In this section, we calculate the 

metal removal parameter, Am' for an ETG and a DTG material. 

For ETG materials, Am' the metal removal parameter can be predicted within 

20 % by a semi-empirical equation given by [20] 

Am = (0.021 (2.22) 

where 

Vw = workspeed, fpm 

Vs = wheel speed, fpm l = inch per wheel revolution 

De = conformity, or the equivalent diameter, inch 
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d = grain size in wheel, inch 

vol = approx. volume percent of bonding material in the wheel 

C = diametric depth of dress, inch 

Rc = value of Rockwell Hardness 

In (2.22), 
in 515/304 

. is used to cancel the power of units for A . The parameter vol can be 
lb m 

estimated from the empirical relationship given by 

vol = 1.33 Hd + 2.2 S - 8.0 (2.23) 

where 

Hd = wheel hardness, denoted by H, I, J, K, L, M, etc. with H = 0, 1= 1, J = 2, 

K=3,etc. 

S = wheel structure number, 4, 5, 6, etc. 

De, conformity, or equivalent diameter, is the degree to which the wheel surface fits or 

conforms to the workpiece surface. For surface grinding, De := D.(, grinding wheel 

diameter. For the workspeed, Vw, we will use the relative speed of workpiece to the end 

effector, which is chosen as 0.012 mls for our simulation later. As an example, we 

calculate the metal removal parameter, Am ' for an ETG material as follows [20, 21]. 

Material: R 60, AISI 52100 steel, width 10 mm. 

Grinding wheel: Ds = 2 inch, Vs = 18000 fpm 

type: 80K5V, grain size (d): 0.01 inch 
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dress lead (I): 0.004 ipr 

dressing compensation (C): 0.001 inch 

Vw = 2.362 fpm (0.012 mls) 

(2.362 )3/19 (1 + 2.0.001). (.004)"119 .18000 
18000 3 . 0.004 Am = (0.021) ~43::":::/3=04~------::""""':"":"":""::""':"--:-:-:::----::-::-:---:-:--:-

2 . (1.33 · 3 + 2.2·5 - 8)°.47 .0.01 5/38 .6027119 

= 0.00871 in3/(min, lb) = 5.3484x 10-10 m3/(sec, N) 

For DTG materials, we have been unable to locate a suitable equation to calculate 

Am' Thus we use values from experimental data and assume that grinding conditions, 

wheel dressing, and rotary speed are the same as described for experiments in [20]. For 

an Rc 64, M4 material, the value for Am ranged from 0.000035 to 0.0028 in3/(min, lb) 

[20]. As a reasonable example, we choose Am = 0.002 in3/(min, lb) (1.228 X 10-10 

m3/(sec-N)) to simulate the grinding force for a DTG material. 

Eq. (2.21) and the value for Am developed here for an ETG and a DTG material 

will be used for computer simulations in Chapter IV. 

Grinding Force Limits 

In considering possible limits to applied grinding forces, we consider potential 

thermal damage to the workpiece and breakdown forces of the grinding wheel. Thermal 

damage to a workpiece may be caused by excessive grinding temperature and can be 

classified into three common types: workpiece bum, workpiece tempering, and induced 
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residual stresses in the workpiece [22]. Workpiece burn and tempering have apparently 

not been studied extensively in grinding operations, perhaps because induced residual 

stresses are more commonly encountered. Accordingly, we focus on induced residual 

stress as the major concern for thermal damage in this work. 

The grinding process invariably produces residual stresses in the vicinity of the 

finished surface. When residual tensile stresses exist, a workpiece surface is thermally 

damaged because such stresses lead to reduced fatigue strength and cracking. Although 

residual compressive stresses can also be generated, their magnitudes are much smaller 

than residual tensile stresses. Usually, residual compressive stresses are induced after 

grinding by cold working operations. There are three principal means to reduce thermal 

damage: decrease contact time by increase grinding speed, decrease force intensity and 

wheelspeed, and maintain wheel sharpness. 

The normal grinding force to cause thermal cracking for an ETG material with 

Am= 0.0064 in3/(min, lb) and work surface speed = 1200 fpm is about 320 lblin (56.04 

N/mm) [20]. The normal grinding force to cause thermal cracking for our ETG materials 

will be larger than 320 lb/in because our value for Am is greater than 0.0064 in3/(rnin, Ib). 

However, the normal grinding force to cause thermal cracking for our DTG material is 

unavailable from the literature. Our workpiece width is 10 mm, such that the normal 

grinding force to cause thermal cracking is at least 560.4 N for our ETG material. 

Following [21], we select a grinding wheel designated 80KSV for our ETG and DTG 

materials, for which the breakdown force is 483 N (48.3 N/mm x 10 mm). Since this 

wheel breakdown force is lower than our workpiece thermal damage limiting force, we 

24 



will use the breakdown force as a force limit in our simulation in Chapter IV. 

Motor and Robot Ann Stiffness 

The stiffness of the UC-Berkeley NSK SCARA robot is not given in the available 

literature. In this section, we estimate the stiffness of the NSK motors and our robot links 

for worst-case conditions, which will allow us to determine if our robot is sufficiently rigid 

to justify i.gnoring robot arm flexibility. The robot links are made from aluminum, and the 

specifications are given in Table 1 [19]. 

Table 1 Robot Links Specifications 

,~ 

~ 
'>. ....... 1,. t 

Length Inertia 

Link 1 0.360 kg m2 0.36m 

Link 2 0.051 kg m2 0.24m 

.- " 

The two robot joint motors used are made by NSK, Model 1410 for the first 

(lower) axis and Model 608 for the second (upper) axis. The moment rigidities of these 

two motors are: Motor 1 (first axis), Mid = 3.27 X 106 N - m / rad, and Motor 2 (second 

axis), Mk2 = 2.80 X 105 N - m / rad [23]. Motor specifications from [23] are given in 

Appendix A. The most compliant configuration for the motors and robot arms is that for 

which both links lie along a straight line in the fully extended position, illustrated in 
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Figure 2.3(a). 
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Figure 2.3 Motor and Arm Configuration for Stiffness Calculation 

We assume there is no reduction gear, such that the robot arm joints are directly coupled 

to the rotors of the motors. By considering Figure 2.3(b), it can be seen that including the 

deflections of Motor 1, Link 1, Motor 2, and Link 2, the total deflection Mis 

(2.24) 
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where &bl and Lllb2 are the deflections due to bending of Links 1 and 2, respectively, 

and &91' and &92 are the deflections due to motor rotation for Links 1 and 2, 

respectively. Dividing (2.24) by P, we obtain the overall stiffness Ke as 

(2.25) 

where KI and K2 are the stiffnesses of Links 1 and 2, respectively, and Kml and Km2 are the 

stiffnesses of Motors 1 and 2, respectively, as seen from the far ends of their respective 

links. From (2.25), we can see that overall stiffness Ke of the assembly may be modeled as 

four springs in series. With the moment rigidity Mk given, the stiffness for a motor can be 

calculated by referring to Figure 2.3, as shown below. Assume a point force F acts at the 

end of Link 2, and that Link 1, Motor 1, and Link 2 fonn a rigid assembly. Then the 

stiffness (as seen by F) of Motor 2, Km2 , is defined by assuming the rigid assembly rotates 

through small angle ~8 , displacing the end of Link 2 by distance Lll02. Then we have for 

Now assuming the small angle approximation 

together with the definition of motor rigidity [23] for Motor 2, we obtain 

M = P'[2 
k2 ~e 
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Employing (2.28) and (2.27) in (2.26) yields 

K = Mu 
m2 1 2 

2 

(2.29) 

Using a similar development for the stiffness of Motor 1 (as seen by F and T in Figure 

2.3b), we obtain 

(2.30) 

Using the rigidity values above for the two motors and the lengths of the two robot arms 

given in Table 1, we obtain KmJ = 1.51 x107 N I m and Km2 = 4.86 X 106 N 1m. 

To determine KJ and K2, we assume that each link is a cantilever beam fixed at its 

left end with a point load applied at the free end on the right of Link 1, and a point load 

and moment load applied at the free end on the right of Link 2. We consider two cases of 

area section for each link: a circular ring and a square tubular section. The end deflection 

of a cantilever beam with a point load at the free end is given by [24] 

FL3 
Ax =-

b 3EI 
(2.31) 

where Axb is the free end deflection, F is end load, L is length, E is modulus of elasticity, 

and I is moment of inertia. The stiffness K can then be defined as 

(2.32) 

Therefore K2 is given by 
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K = 3EI2 

2 I 3 
2 

(2.33) 

For Link 1, there is a moment, T, applied at the free end, in addition to the point load F. 

The deflection fum caused by this moment is given by [25] 

fu = T·l/ 
m 2EI 

1 

(2.34) 

where T = F X l2' Then, the stiffness of Link 1 is 

KI = F = 6EI1 

Lhm + Llxb 211
3 + 3l21/ 

(2.35) 

The mass density, p, of aluminum is 2800 kg/m3 and the link inertia, I, is 0.36 kg m2 for 

Link: 1 and 0.051 kg m2 for Link 2. The equation for ann inertia is given by 

(2.36) 

where m is the link mass and r is the link radius of gyration, which from Figure 2.3 i 0.18 

m for Link 1 and 0.12 m for Link 2. The mass can be calculated by 

m=pAL (2.37) 

where A is the link section area and L is the link length. From (2.32), (2.33), and given 

parameters, we obtain A, = 0.011 m2 and A2 = 5.27 X 10.3 m2 for Link 1 and Link 2, 

respectively. With these values for Ai, the stiffness for different cross sections of each link 

can be calculated as shown below. 
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Case I: Circular Ring Cross Section 

Assume d; = 0.8D; 

A = 1C(D/ -d/) 
I 4 

DJ = 0.1972 m, d/ = 0.1578 m 

D2 = 0.1365 m, d2 = 0.1092 m 

The modulus of elasticity, E, for aluminum is 70 x 109 N/m2 and the moment of inertia, I, 

for a circular ring is defined as [24] 

(2.38) 

Then (2.38) and (2.35), (2.33) yield K/= 9.8564 x 107 N/m, K2= 1.5284 x 108 N/m. 

Case II: Square Tubular Section 

Assume d l = 0.8D, 

I 
Ai = D/ - d/ = 0.36 D/ 

r-/"71~- - --+-- -

I 
D/ = 0.1748 m, d/ = 0.1398 m 

D2 = 0.1210 m, d2 = 0.0968 m 

The moment of inertia, I, for a square tubular section is [24] 
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(D4 _d4) /. = I I 

I 12 (2.39) 

Combining (2.39) and (2.35), (2.33) yields K/ = 1.0346 X 108 N/m, Kz = 1.602J X J08 

N/m. 

Comparing the two types of beams, we see that the square tubular section has the 

largest stiffness. We therefore use the values for KJ and Kz for a square tubular section in 

(2.25), together with the previously determined values for Kml and Km2, to obtain the 

equivalent stiffness Ke for the most compliant robot arm orientation as 

Ke = 3.4735 X 106 N/m = 19836.58 lb/in 

For a maximum normal force of 450 N, which we will employ in Chapter IV, this 

corresponds to a "worse-case" end deflection of 0.1296 mm. For a more reasonable robot 

configuration than worst case, we assume that 112 of this value is more representative, 

namely 0.0648 mm. As we shall see, such deflection is small compared to most position 

errors in our simulations. We conclude that this value of Ke is sufficiently large to ignore 

robot flexibility. However, this prediction may not truly represent overall robot 

compliance because the drive train may introduce more flexibility than the links. To 

predict a more accurate stiffness of more realistic structural elements is beyond the scope 

of this study. 

We have developed equations describing the dynamics of a two-link SCARA robot 

and modeled the grinding forces for robotic deburring and grinding. In the next chapter, 

we will employ these models to investigate and design control methods for these 

operations. 
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CHAPTER III 

CONTROL APPROACHES 

In this chapter, several control approaches are investigated. A well known 

feedback lineaJization method is used to linealize manipulator dynamics. Based on 

feedback linealization, several control laws are developed for robotic deburring and 

grinding. A new switched control method is proposed for this operation to improve 

position accuracy and force regulation. 

Feedback Linealization 

Feedback linealization is an approach used to control nonlinear systems, which has 

attracted considerable study recently. The basic idea of feedback linealization is to 

transform a nonlinear dynamic system into a linear one, in order that linear control theory 

can be applied to the transformed dynamic system. It is achieved by "exact state 

transformations and feedback, rather than by linear approximations of the dynamics" [27J. 

The nonlinear control used to produce the transformation is constructed by feedback 

linealization and is called inner loop control [10]. The designer can then design an outer 

loop control using c1assicallinear control approaches by specifying performance such as 
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tracking, disturbance rejection, and robustness. 

The dynamic equations of a two degree of freedom SCARA robot are nonlinear 

and coupled. Feedback linealization is employed to linealize the manipulator dynamics by 

inner loop control before considering the design of position and force controllers by outer 

loop control. Computed-torque control [16] is a special application of feedback 

linearization for manipulator dynamic nonlinearities, which has been widely applied in 

robot control. This approach amounts to canceling the nonlinearities of a nonlinear system 

so that the closed-loop dynamics become linear. In this project, we employ this method to 

construct an inner loop control structure before designing the outer loop controllers. The 

manipulator dynamic equation given by (2.16) is repeated here as 

(3.1) 

The problem of controlling a complicated system such as described by (3.1) can be 

handled by a partitioned controller [16], with torque 't given by 

t = at' + p (3.2) 

where 't is the n x 1 vector of joint torques, 't I is the "servo" portion of the control law 

and is based on outer loop considerations, and a and ~ are functions chosen to decouple 

and cancel the nonlinear terms in the complete dynamic system. The control law given by 

(3.2) is the model-based portion of the controller [16], which establishes an inner control 

loop as shown in Figure 3.1. Following Craig [16], we choose 

a = M(q)Fl (q) 

~ = -M(q)r1 (q)j(q)q + C(q,q)q + F,(q,q) + G(q) + JT F: 
(3.3) 
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In Figure 3.1, the inner loop feedback term N(q, q) is given by 

N(q, q) = -M(q)J-J (q)j(q)q + C(q, q)q + F/q,q) + G(q) (3.3a) 

Substituting (3.3) into (3.2), the model-based portion of the control law becomes 

Now employing the right of (3.4) for 't in (3.1) yields 

X=t' (3.5) 

Eq. (3.5) shows that the acceleration of the end effector is equal to the servo portion of 

the control law , which can be designed to achieve design specifications, such as minimum 

tracking error and (desired) disturbance rejection. If we design the servo controller for t' 

properly, the desired motion of the manipulator can be achieved from the computed 

torque control law (3.4), assuming available motor torque does not saturate. 

In order to employ (3.4), it must be assumed that the manipulator dynamics are 

known exactly with perfect sensors for the measurement of forces, positions, and 

velocities. However, in practice there exist modeling and measurement errors, which may 

cause inexact cancellation of dynamics of the nonlinearities in (3.4). It is possible that a 

lack of robustness could arise from inexact cancellation of dynamics of the nonlinearities, 

but treatment of this problem is beyond the scope of this research. We are concerned here 

mainly with outer loop design in the absence of inner loop uncertainty. In the following 

sections, we design and analyze some outer loop controllers, based on the control 

structure developed above. 
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Figure 3.1 Diagram of Control Structure [3] 

Impedance Control 

Impedance control regulates the relation of position to force and changes the 

dynamic behavior of the system. It may be suitable for robotic deburring and grinding to 

track a desired trajectory while accommodating the cutting forces produced by the cutting 

process. To implement impedance control, the first step is to specify the desired behavior 

of the target impedance. Hogan [9] points out that the target impedance consists of some 

inertial, damping, and stiffness characteristics that describe the relation between the 

position of the end effector and the force exerted by the environment. Typically, this 

impedance can be expressed as 

(3.6) 
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where s is the Laplace operator, Z( s) is the 2 x 1 impedance matrix, and M d' B, and K 

represent 2 x 2 desired inertia, damping, and stiffness matrices, respectively. According to 

Ho gan [11], the effect of the target impedance approach can be represented in the time 

domain by 

Md X + B(X - Xd )+ K(X -Xd ) =-~ (3.7) 

where X is the position vector in task space, Xd is the desired position vector in task 

space, and Fe is the external force acting on the end effector. Because the external force 

produced by the constrained environment opposes the motion of the end effector, we use 

a minus sign for Fe in (3.7). Solving for X gives 

Substituting the right side of (3.8) for X in (3.1) yields the control law torque as 

where we have defined errors tlX and LlX by 

tlX = Xd - X 
LlX = Xd - X 

and nonlinear "gains" GI' G2 , G3 , and G4 by 

GJ =JT(q)-G2 

G2 = M(q)rlM~J 

G3 = G2M d 

G4 = C(q, q)q + Ft(q, q) + G(q) 
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Eg. (3.9) has been developed containing both joint and task space terms to 

facilitate implementation, instead of developed solely in task space [3]. This is because 

robot positions and velocities are measured in joint space, while desired positions and 

velocities are given in task space. Essentially, the impedance control law amounts to a 

proportional plus derivative (PD) position controller, augmented by external force 

feedback. Note that if the manipulator moves in free space with no external force acting 

on the end effector, the impedance becomes zero. Conversely if a manipulator is 

motionless in constrained space for any applied torque, the impedance is infinite. 

Therefore, pure position and pure force control are considered as special cases of 

impedance control. 

Hong [3] and McCormick and Schwartz [12] discuss an alternate impedance 

control strategy described by 

(3.10) 

where Fd is a desired force vector (required for material removal during grinding jn our 

case). Solving for X and substituting in (3.1) yields a control law torque given by 

(3.11) 

This alternate impedance control strategy commands desired forces along with desired 

positions and velocities for robotic deburring and grinding operations. If the needed 

grinding force Fd is modeled well and surface geometry is known, desired forces may be 

COITlmanded to increase the performance of impedance control. We will evaluate these 

two types of impedance controllers in Chapter IV. 
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System stability using impedance control is dependent on the target impedance 

parameter matrices, manipulator dynamics, and the constrained environment. If the target 

impedance matrices M d , B, and K are selected as symmetric, positive definite matrices, 

Kazerooni, et al [14], show the linear impedance control is stable in contact with any 

directly coupled, stable, linear environment. Colgate and Hogan [13] use the Nyquist 

criterion to show the stability of the feedback linearlized impedance controller (differents 

from local linear approximation), which is employed here, in contact with a linear, passive 

environment. The drawback of these analyses is the modeling of contact interactions as a 

directly coupled linear system. Such a model of interactions is extremely restrictive. 

McCormick and Schwartz [12] observed that contact dynamics cause instability when the 

level of force feedback is sufficiently increased. Based on the small gain theorem, 

Kazerooni, et al [26], presented an input/output stability proposition for bounded force 

feedback gain, but two difficulties arise. First, an accurate model of the force environment 

must be known in order to insure certain necessary conditions, and second, a design based 

on given sufficient conditions may result in an overly conservative control law [12]. In 

general, achieving a guarantee of global stability of an impedance control law is very 

diffi.cult in practice. 

Hybrid Impedance Control 

Hybrid impedance control (HIC) was proposed by Anderson and Spong (17), 

combining impedance control and hybrid position/force control. It treats the contact 

environment as a linear impedance and assumes manipulator dynamics can be decoupled 
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into single-DOF linear subsystems in task space, which in our deburring and grinding 

operation is described by directions tangential with and normal to the surface. The main 

idea of HIC is to employ a duality principle to decide which control should be used for 

different environments in each subsystem. Before using this "duality principal", the 

environment must be modeled. The scalar impedance Ze defined here is the ratio of the 

Laplace transforms of scalar force F and scalar velocity V. It can be represented by a 

complex number with real part R(w) and imaginary part X(w) for any given frequency was 

Ze(w) = R(w) + jX(w) (3.12) 

According to Anderson and Spong [17], the impedance of the environment can be 

classified into three categories: inertial, resistive, and capacitive impedances given by 

Inertial impedance 

Resistive impedance 

Capacitive impedance 

where 0 < C < 00. In Laplace notation, Ze is given by 

Md S 

Ze(s) = Mds + B 
K 

Md S + B+­
S 

Inertial impedance 

Resistive impedance 

Capacitive impedance 

(3.13) 

(3.14) 

where Md, B, and K represent desired scalar inertia, damping, and stiffness, respectively. 

By the duality principle, if the environment is capacitive, a force-controlled manipulator 

with noncapacitive impedance is required; if the environment is inertial, a position-

controlled manipulator with noninertial impedance is applied; and if the environment is 
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resistive, either a force-controlled manipulator or a position-controlled manipulator with 

nonresistive impedance may be applied. 

In our deburring and grinding task, the environment is inertial when the end 

effector moves in free space before contact. According to the duality principle, the inertial 

environment requires a position-controlled manipulator. Thus, we choose a capacitive 

manipulator impedance as 

(3.15) 

The corresponding differential equation is 

( Md(X - Xd )+ R(X - Xd )+ K(X - Xd ) =-F (3.16) 

which is an impedance control identical to that in (3.7), except that the external force, F, is 

zero in free space. As for impedance control, we obtain our outer loop control from 

(3.16) with F= 0 as 

(3.17) 

for the manipulator with unconstrained motion. After contact, we consider the 

environment to be capacitive in the normal direction (assuming the material to be deburred 

acts like a spring in the normal direction), and resistive in the tangential direction [3]. 

Based on the duality principle, we use a force-controlled manipulator with noncapacitive 

impedance in the normal direction. For the resistive environment in the tangential 

direction, either position control or force control should be applied. Considering the 

nature of the deburring and grinding task, we prefer a position control with a capacitive 
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manipulator impedance in tangential direction [3]. Based on (3.14), we can select our 

target manipulator impedances as 

normal direction 

tangential direction Z, = Md1S + B, + K, (3.18) 
s 

A force control in the normal direction needs to command a desired normal force Fdll and 

a position control in the tangential direction needs to command desired tangential position 

Xdr, velocity Vdh and acceleration adt. Then, in the time domain, the corresponding 

differential equations are 

normal direction 

(3.19) 

where a, v, and x represent scalar acceleration, velocity, and position, respectively, 

subscripts n and t denote normal and tangential directions, respectively, subscript d shows 

desired quantities, M, B, and K are positive scalars of desired mass, damping, and stiffness, 

respectively, and F is external force. Now rearrange (3.19) to fit the servo portion of the 

control law in (3.2), which yields 

.. [a,] , X= ='t 
all 

(3 .20) 

where 

41 



Eq. (3.20) is the outer loop control in Figure 3.1. Combining (3.20) and (3.4), we obtain 

the control law for hybrid impedance control, as illustrated in Figure 3.2, for the 

manipulator with constrained motion, which fits the general structure given in Figure 3.1. 

q F or warcl x 
L-__ -----l q Kinel'1Q. tiC x 

lin 

'-___ ...L-___ ~ __ ___=____ __ ___L.:._=_____l En vir on r'l e nt ~--~------I 

Figure 3.2 Hybrid Impedance Control Diagram 

In robotic deburring and grinding, it is intuitive to design the manipulator with a 

large impedance (small compliance) in the normal direction and small impedance (large 

compliance) in the tangential direction. A large impedance in the normal direction can 
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cause the end effector to remain insensitive to the grinding forces and remain very close to 

the commanded (desired) trajectory. A large impedance implies that a position control 

should be applied in the normal direction. This contrasts with force control used in the 

hybrid impedance control law developed above. Although using force control in the 

normal direction may provide stable contact with the workpiece, since displacement in this 

direction is adjusted indirectly by force control, large position errors may occur with this 

approach. However, the force environment for the deburring and grinding task is more 

complicated than mere contact or loss of contact, and can not be represented by a simple 

linear impedance. For simple tasks such as edge-following or "peg-in-hole" operations, 

where non-zero contact force exists in the normal direction and zero contact force is 

assumed in the tangential direction, a hybrid impedance control strategy may be suitable. 

We will evaluate this type of control by simulation in the next chapter. 

Stability analysis of hybrid impedance control has not been properly addressed in 

the literature, probably because the design strategy is so intuitive. If the target 

(manipulator) impedance matrices are real, symmetric, and positive definite, the target 

dynamics are stable. However, this does not guarantee stability of the complete system. 

Moreover, hybrid impedance control developed for deburring and grinding operations 

involves switching control after contact because of the change of environment. Contact 

stability is a difficult problem, which we discuss in the stability analysis of the next section. 

43 



Switching Control 

In this study, we seek high accuracy in the finished workpiece profile using robotic 

deburring and grinding. We assume that the actual geometry of the workpiece is 

unknown, and we wish to finish workpieces of different materials. From our literature 

review, most proposed control methods for manipulators operating in constrained and 

unconstrained environments employ some type of force control to obtain stable contact 

while tracking a desired trajectory. To employ a force-tracking strategy under our 

assumptions would be very difficult because the surface geometry is unknown and a 

precise force generation model is required. Moreover, impulsive forces need to be 

considered when the end effector contacts the workpiece or encounters a large burr. Such 

demands increase the difficulty in implementing robotic deburring and grinding. 

We have reviewed in Chapter I previous work on impact controL Pagilla, et al 

[18], employed a simple rigid body collision and coefficient of restitution to model impact 

to demonstrate that bouncing can be eliminated in finite time. However, this approach i 

not suitable when penetration of the workpiece occurs, as in our deburring problem. 

Tarn's work [4] may have potential for developing an improved control method for 

robotic deburring and grinding. In the problem at hand, we consider position control and 

force regulation of a simple two-arm SCARA robot carrying at its end effector a powered 

tool used for deburring and grinding. This tool rotates at high speed, while the end 

effector moves at low speeds in directions tangential with and normal to the nominal 

surface of the workpiece. When the workpiece is contacted, such tools immediately cut 
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into workpiece, such that the "hard" surface assumed by previous investigators, [4, 8, 18], 

immediately disappears. Accordingly, impact forces are likely much smaller in our 

operation, assuming the grinding and robot motor torques can accommodate such forces 

and provide stable contact. Consider a grinding or deburring tool in contact with a large 

burr, which suddenly ends, such that the tool momentarily looses contact with workpiece 

material. We assume that the normal distance from this point to the next point of surface 

contact is sufficiently smaIl and that the normal distance to the desired trajectory is also 

small such that the normal velocity of the end effector, under position control in free 

space, does not become large. This implies that the tool approaches the next surface 

contact with a relatively low normal velocity. A low approach velocity, coupled with the 

material removal capacity by the tool, is expected to eliminate bouncing of the tool. A 

further concern in grinding and deburring is the potential of burning the workpiece or 

. 
damage to the grinding or deburring tool if the material removal forces are excessive. 

This can be avoided by controlling the robot such that norma] and tangential forces lie 

below the burning or damage limits, which were addressed in Chapter II. Based on these 

considerations, we examine a new switching control to implement deburring and grinding. 

First, we divide our deburring and grinding operations into two phases, namely free space 

motion and constrained space motion. In free space, a position controller is used to 

follow a desired trajectory. After contact, when the material removal forces are below the 

force limits developed in Chapter II, we employ the same position controller to guarantee 

high accuracy of workpiece edge position. When the grinding forces approach the force 

limits, force control will be employed to maintain material removal forces below the 
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grinding force limit. This control strategy is different from Hong's approach [3], which 

under simultaneous position (PD) and force (PI) control will degrade the position 

accuracy of the workpiece edge and require the command of a desired (but difficult to 

determine) force. 

A position controller can be easily implemented using proportional and derivative 

control [4]: 

(3.21) 

or 

(3.22) 

where Kd and Kp represent derivative and proportional position gain matrices, respectively, 

and the position and velocity error matrices e p and e p are defined by 

ep = Xd - X 
ep = Xd - X 

(3.22a) 

This position controller will be employed for position control in free space and constrained 

space if the material removal forces are below the force limits. 

Based on Tarn's work [4], force control using measured position acceleration, X , 

can be developed as 

(3.23) 
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where Kf and Kfi are proportional and integral force gain matrices, respectively, and ef is a 

force error matrix defined by 

(3.24) 

where subscriptj indicates a vector component and Fjlim is a force component limit. We 

avoid a force time derivative in (3.23) because it is difficult to obtain a noise-force time 

derivative from a force sensor, which typically contains high frequency components in its 

measurements. Implementing position acceleration feedback can be difficult, and it adds 

an acceleration sensor, which will increase hardware cost and typically would provide a 

very noisy signal. As a tradeoff, we propose eliminating the position acceleration 

feedback in (3.23), such tbat the force controller becomes 

(3.25) 

Eq. (3.4) combined with (3.22) and (3.24) establishes our proposed new switching 

controller. To implement such a control strategy requires measurements of joint position, 

velocity, and force acting on the end effector by the environment. We assume encoders 

and tachometers exist on the shafts of the actuators to measure tbe position and velocity 

of each joint. A 2-axis force sensor mounted at the end effector on the second link is 

assumed for force measurements. 

Stability Analysis 

Stability of Position Control. For the position tracking we use a PD controller, as 

given by (3.21), which after introducing (3.22a) yields the equation for error dynamics as 
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(3.26) 

From (3.26), it can be seen that epj = 0 is an asymptotically stable eqUilibrium point for 

the closed-loop system when Kd and K p are positive diagonal matrices. 

Stability of Force Control. Once the external forces Fj equal FjLim , we switch to PI 

force control to insure normal and tangential forces remain below their limits to avoid 

damage to the workpiece and tool. If we employ Tarn's [4] force control in (3.23), where 

position acceleration feedback is introduced to cancel the effect of acceleration in c1osed-

loop dynamics, we substitute the right side of (3.23) in (3.5) to obtain 

(3.27) 

for each degree of freedom because the components en of vector ef are decoupled. Kjj and 

Kfij are the non-zero elements of diagonal matrices Kfand Kfi. respectively. Obviously, the 

equilibrium point is e D = O. We assume (i) the trajectory remains in the constrained space 

and (ii) the gains are positive. Because of decoupling, choose Lyapunov functions .\tj a 

(3.28) 

Since we know e fj < 0 except at the equilibrium point, VJ is positi ve and Vj -7 00 as 

lieD 11-7 00 • Differentiating the right side of (3.28) with respect to time and employing 

(3.27) gives 

(3.29) 

Thus, we see that ~ is negative definite and the system is asymptotically stable [27]. 
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Now suppose we eliminate X in (3.23) to obtain a force control in (3.25) that is 

easier to implement. The error dynamic equation then becomes 

(3.31) 

While we have not been able to prove stability for (3.31), extensive simulations show that 

the results of this force controller are very close to those of Tam's controller with 

acceleration feedback. In what follows, we consider switching between position and force 

control by partitioning the problem into the two areas of concern, namely, switching 

stability at contact and switching stability in constrained space. ) 

Stability at Contact. If the material removal forces are below the force limits after 

contact, our pure position controller is employed for both free space and constrained 

space. The grinding forces are treated as undesired disturbances and there is no controller 

switch. The nominal stability of the position control has been established, above, by 

assuming the grinding and robot motor torques can accommodate such forces and provide 

a stable contact. If the torques exceed saturation limits, which means robot nonlinearities 

cannot be properly canceled, multiple deburring passes will be needed to insure torques 

remain under the limits. However we have been unable to prove stabiJity under torque 

saturation. 

If at contact the material removal forces exceed the force limits during contact, 

switching occurs from position control to force control. This is similar to Tarn's problem 

[4], if acceleration feedback is used. His and our switching control strategy employ a 

position control in free space to eliminate unexpected bouncing and reestablish contact. 
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Our employment of material removal at contact is expected to soften any bouncing 

tendency. Tarn has showed that the number of switches is finite and that the last switch 

always corresponds to the transition from free space to constrained space [4, 8]. In 

implementation, this requires that the sampling rate of measurement be higher than the 

bouncing frequency . Without acceleration feedback as proposed by Tam, we have no 

contact stability guarantee. 

Switching Stability in Constrained Space. First consider that a single switch from 

position control in steady state to force control occurs in constrained space and that the 

trajectory remains in constrained space, meaning no loss of contact or "bounce-off'. A 

non-oscillatory force transient response can be achieved, if the integral gain is small 

enough. Even for relatively large integral gain, a desired non-oscillatory transient 

response can still be obtained by an appropriate choice of K f and K ft' such that no loss 

of contact occurs after switching [4]. Therefore, a single switch from a steady state of 

position control to force control may remain stable. A single switch from steady state 

force control to position control is stable if gains are properly chosen. Now, considering 

frequent switching between the two controllers around Flimir , while our simulations 

indicate stability and good dynamic behavior with suitable gains choices, we have been 

unable to prove stability of the complete system. While such proof is important, it is 

beyond the scope of this work. 

In this chapter, we have discussed and proposed several controllers which may be 

suitable for robotic debuITing and grinding. In next chapter, we will use computer 

simulation to test and evaluate the performance of these approaches. 
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CHAPTER IV 

COMPUTER SIMULATIONS 

In this chapter, we numerically evaluate several control approaches for robotic 

deburring and grinding using the Berkeley two-arm SCARA robot described in Chapter II. 

Several types of burrs have been generated numerically to simulate rough edges, and a 

motion plan has been designed for computer simulations. The simulation results are 

presented for different controllers for an "easy-to-grind" (ETG) and a "difficult-to-grind" 

(DTG) material. We assume that the computations can be performed quickly enough that 

the continuous time assumption is valid. 

Simulation Parameters and Motion Plan 

A UC-Berkeley/NSK SCARA robot [19] has been employed as a benchmark for 

our simulations because its configuration as a two axis robotic arm provides a planar 

workspace, and because the technical data for this robot are available. The manipulator 

parameters used in (2.17) for this robot are given as [3]: 

II = 0.2675 kg m 2 , 12 = 0.36 kg m 2 , 13 = 0.0077 kg m 2 , 14 = 0.051 kg m 2 , 

13e = 0.04 kg m 2 , II' = 0.046 kg m 2 ; 

m1 = 73 kg, m2 = 10.6 kg, m3 = 12 kg, and m4 = 4.85 kg, mp = 6.81kg; 

L1 = 0.36 m, [2 = 0.24 m, Lle = 0.139 m, and 12c = 0.099 m; 
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thl = 5.5 N - m, and th2 = 0.9 N -m. 

The maximum torques for motors 1 and 2 are 245.0 N-m and 39.2 N-m, respectively. 

These torque limits are used in a saturation function in computer simulations to avoid 

overloads of the robot actuators. 

The ETG and DTG workpieces to be deburred, or ground, in our examples are 

metal plates of Rc 60, AISI 52100 steel and Rc 64, M4 alloy, respectively, with a thickness 

of 10 nun. We propose to grind the edges of these plates, such that we take this thickness 

as the active width of cut b. The diameter of grinding wheel is 50.8 mm (2 in.). We 

assume the grinding wheel diameter is large compared to the peak heights of burrs, and 

that the thickness of the grinding wheel is greater than the thickness of workpiece. The 

grinding wheel and grinding conditions are described in Chapter n. The values of the 

metal removal parameter Am are repeated here as 0.00871 in3/(min,lb) (5.3484 x 10-10 

m3/(sec, N)) for the ETG material and 0.002 in3/(rnin, lb) (1.228 x 10-10 m3/(sec, N)) for 

the DTG material. For simplicity, in the simulations of this study, we set the grinding 

friction coefficient at I-l = 0.7. Note from (2.21) that this reasonably high friction 

coefficient means that the tangential grinding forces will be relatively large, although this 

could be reduced by employing lubricating coolant. 

The desired position and velocity of the grinding trajectory are given in Cartesian 

space. The total simulation time is set at 10 seconds, and the workpiece edge to be 

ground is aligned in the x direction of Cartesian space and is designated by 

0.1 m ~ x ~ 0.2 m. The desired motion plan for simulations is as follows: 
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• . [0.012] Desired velocity Xd = ° rnls 

• [
0.08 + 0.012 t] 

Desired position Xd = m 
0.4 

• Desired acceleration X, ~ [~] mis' 

where the matrix notation [;] indicates components in the x and y directions, and t is the 

[ 0.08 ] current simulation time. The starting point of the end effector is ffi. Figure 4.1 
0.399 

illustrates a sample of end point motion of the robot reaching the desired trajectory in 

Cartesian space. 
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Figure 4.1 End Point Motion of Robot to Desired Trajectory 
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A scaled line drawing of the robot link. positions at the beginning and end of the desired 

trajectory is given in Figure 4.2. For force control, we employ an absolute force limit of 

483 N, as developed in Chapter II. In our simulations, we employ a somewhat smaller 

value of 450 N to provide a small margin for error. 

Motion History of Two-Ann SCARA Robot 
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~ 
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end effector 
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X-Axis (mm) 

300 350 

Figure 4.2 Motion History of Two-Arm SCARA Robot 

Burr Simulation 

400 

BUITS are unwanted irregUlarities on the edge surface of a workpiece. In practice, 

we assume they are unpredictable and unmeasurable, causing variations in the cutting 

force. In this section, we numerically generate three different types of burrs, namely 
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random-height sinusoidal, large upset, and scallop to simulate rough surfaces of 

workpieces. 

A typical burr is highly variable. Kazerooni, et al [28], generated a geometric 

model of a burred workpiece edge from statistical data based on the burr height and root 

thickness measurements made on aircraft engine parts. In this work, average burr height 

ranged from 0.25 to 0.75 mm (0.01 to 0.03 in.) and the thickness varied from 0.025 to 

0.075 rnrn (0.001 to 0.003 in.). In our study herein, the thickness of all burrs is taken to 

be the thickness of the workpiece b = 10 mm. For a smooth edge, we assume a desired 

depth of cut he of 0.5 rnm. For sinusoidal burrs, we used burrs with height hb varying 

from a to 0.1 mrn with an average height ha of 0.05 mm and a nominal desired depth of 

cut he of 0.5 mrn. The spatial frequency ofburrsjb was chosen as 2 burrs/mm. We use a 

sinusoidal function to generate an individual burr, with the magnitude generated by a 

uniform random number [3] 

Yburr = hd rand) x sin(21t jb x,) 0::; X, ::; 0.5 mm (4.1) 

where 

Ylmrr = y-coordinate of burr edge 

hb( rand) = burr height randomly generated every 0.5 mrn 

Examples of burr geometry and the sinusoidal burr edge are illustrated in Figure 4.3a and 

b, respectively. 
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Figure 4.3 Geometry of Sinusoidal Burrs 

For large upset burrs, we begin with a rough surface modeled by random-height sinusoidal 

burrs with average burr height ha = 0.04 mm and burr frequency /b = 2 burrs/mm. On this 

surface, we superimpose 3 step-up, step down pulses of beight 0.6 mm and width 20 mm, 

separated by 10 mm, as illustrated in Figure 4.4. This was handled in the simulations by 

step changes in the nominal desired depths of cut from he = 0.4 to he = 1.0 mm, and back. 
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Figure 4.4 Illustration of Large Upset Burrs 

Some automobile parts are produced by a ball-shaped end mill tool [3], which can leave a 

surface with a regular "scallop-shaped" contour. The size and frequency of scallops are 

dependent on the tool dimension and the number of passes per unit width of surface. In 

this study, we examine scallop-shaped burrs by assuming the diameter of the ball-shaped 

mill is 30 mm, with a 5 m.m span of tool passes. This can produce a 0.21 nun scallop 

height hb and a frequency fb 200 scaHops per meter, illustrated in Figure 4.5. 
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Figure 4.5 Illustration of Scallop Burrs 

Several artificial surfaces have been developed to investigate robotic deburring 

and grinding here. In next section, we use computer simulation to employ different 

controllers in grinding these artificial surfaces. In our simulations, we will investigate 

three issues: (i) dynamic behavior of contact between the end effector and the workpiece, 

(ii) achievable perfonnance with and without motor torque limits, and (iii) ability to 

accommodate large upset burrs. All source code is written in MA TLAB 4.2c [29], and 

simulations are completed by SIMULINK 1.3c [30J using the automatic step size, Runge-

Kutta 45 algorithm. Figure 4.6 presents a block diagram of the SIMULINK code. 
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Figure 4.6 SIMULINK Block Diagram 
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Simulations for Impedance Control 

In this section, we investigate five simulations of impedance control for robotic 

deburring and grinding: 

Simulation 1: Smooth Straight Edge 

• The desired workpiece trajectory was a straight edge, from (0.1,0.4) m to (0.2, 0.4) m 

in reference space. 

• The "rough" surface was modeled by a smooth edge with a desired depth of cut he = 

0.5 mm, and the workpiece material was ETG. 

• The target impedance control matrices for the impedance control law in (3.7) were 

selected as: 

[10 0] [7746 0] [1500000 0] Md = kg, B = N - s I m, K = N I m o 10 0 8000 0 1600000 

These values were chosen after a number of trials because position accuracy could be 

improved by increasing parameter values in matrices K and B. 

• Results showing position errors, external forces, and motor torques are given in 

Figures 4.7-4.9. The external forces applied to the end effector are positive, such that 

the torques applied to the workpiece are negative. 

Simulation 2: Random-Height Sinusoidal Burrs 

• The same simulation conditions as in Simulation 1 were used, except the smooth edge 

was replaced by a rough surface described by sinusoidal burrs with average burr height 
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ha = 0.05 rom and burr frequency /b = 2 burrs/rom. The nominal desired depth of cut 

he is 0.5 mm and the workpiece material was ETG. 

• Results showing position errors, external forces, and motor torques are given in 

Figures 4.10-4.12. 

Simulation 3: Random-Height Sinusoidal Burrs with Desired Force Compensation 

• In this simulation, we used the same simulation conditions as in Simulation 2, except 

we employed an alternate impedance controller, described by (3.10), by including 

desired contact forces at the desired trajectory. The desired contact forces were 

obtained from Eq. (2.21) for desired velocity and desired depth of cut. 

• Results showing position errors, depth of cut and remaining depth of cut, external 

forces, and motor torques are given in Figures 4.13-4.16. Remaining depth of cut is 

defined by the end point position of the end effector after grinding minus desired 

position. 

Simulation 4: Large Upset Burrs 

• The same simulation conditions as in Simulation 1 were used, except the rougb surface 

was modeled as large upset burrs, as in Figure 4.4. The material was ETG. 

• Results showing position errors, depth of cut and remaining depth of cut, external 

forces, and motor torques are given in Figures 4.17 -4.20. 
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Simulation 5: Large Upset Burrs with Desired Force Compensation 

• In this simulation, we used the same simulation conditions as in Simulation 4, except 

we employed the alternate impedance controller, described by (3.10), by including 

desired contact forces at the desired trajectory. 

• Results showing position errors, depth of cut and remaining depth of cut, external 

forces, and motor torques are given in Figures 4.21-4.24. 
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Discussion and Analysis for Impedance Control 

The results of Simulations 1-5 indicate that impedance control is able to achieve 

stable performance if the impedance parameter matrices are positive definite. Steady state 

can be reached quickly if impedance parameters are selected properly. Large steady state 

position errors exist in Simulation 1,2, and 4 because impedance control does not control 

the position directly, but instead regulates the relationship between the end effector 

position and the contact force. Steady state position errors can be improved by an 

alternate impedance controller (3.10), with a commanded desired force term. 

In Simulation l, we investigated grinding performance on a smooth straight edge, 

with desired depth of cut he = 0.5 rnm, to test the performance of impedance control. The 

results show that steady state is reached quickly and steady state position errors occur in 

both tangential and normal directions after contact with the workpiece. By trial and error, 

a set of target parameter matrices were selected. High values for the position gains in the 

K matrix were chosen to increase position accuracy in both normal and tangential 

directions .. Position accuracy could be improved by increasing parameter values in 

matrices K and B, with Md fixed, but this requires more time for simulation with only slight 

increases in the performance. Practical limits in implementation exist for these values, and 

attaining zero steady state error is not possible with finite values. 

In Simulation 2, we investigated impedance control with random-height sinusoidal 

burrs on a straight edge. The results are similar to these in Simulation 1, except small 

irregular variations occur,. caused by the contact force variations from random-height 

sinusoidal burrs. Our simulation results show that approximately 86 % of unwanted 
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materials are removed by grinding, which is different from Hong's results [3] that show 

the end effector barely contacting the workpiece. We believe Hong's work is in error. In 

Simulation 3, an alternate impedance control (3.10) is employed to deburr the same 

surface as in Simulation 2. Simulation results, Figure 4.13-4.16, show that in contrast to 

results from Simulation 2, position errors remain close to zero, and external contact forces 

in steady state remain close to the commanded forces, namely those required to remove 

materials to reach the desired edge trajectory. These results indicate that if surface 

geometry is known and the needed grinding force Fd is modeled well, desired forces may 

be commanded to increase the performance of impedance control. However, in real 

operations, burrs are highly irregular, and it is difficult to model the desired grinding 

forces precisely. 

In Simulations 4 and 5, we simulate impedance control in deburring an edge with 

large upset burrs illustrated in Figure 4.4. Simulation results show that the maximum 

depth of cut that can be reached by this robot for the ETG workpiece material is about 0.6 

mm because the torque of motor 2 saturates. This torque limit also causes large position 

errors for large upset burrs. To improve position accuracy, either a larger torque motor or 

multiple passes of cut should be employed. An alternate impedance control can improve 

the performance of robotic deburring and grinding only when the motor torques do not 

saturate. 

Compared to Hong's results [3], our results show significant improvement in 

steady state position error in the normal direction. Hong's results show large steady state 

errors in the nonna! direction that are approximately equal to the deviation of the average 

82 



rough edge position from the desired normal position. This is probably caused by 

programming mistakes. Our simulation results show that 86 % or more of desired depth 

of cut can be reached by an impedance controller. 

Based on these results, we conclude that an impedance controller provides a well­

behaved controller for both free space and the constrained environment. It may be 

suitable for "rough" deburring and grinding operations or edge following tasks. If the 

surface geometry is known and desired grinding force Fd is modeled well, desired forces 

may be commanded to increase the performance of impedance control. 

Simulations for Hybrid Impedance Control 

The hybrid impedance control law of (3.17), (3.20), and (3.4), with position 

control in unconstrained space and in the tangential direction after contact, and force 

control in the normal direction after contact, is investigated in this section. The following 

simulation were employed: 

Simulation 6: Smooth Straight Edge 

• The desired workpiece trajectory was a straight edge starting from (0.1,0.4) m to 

(0.2,0.4) m in reference space. 

• The "rough" surface was modeled by a smooth straight edge with a desired depth of 

cut he = 0.5 mm and the workpiece material was ETG. 
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• After some initial trials, impedance parameters for constrained space were chosen for 

Eq. (3.20) as fit = 5kg, bt = 200 N-s/m, kt = 30000 N/m, mn = 100 kg, bn = 50000 N-

s/m. For unconstrained space, the impedance matrices for Eq. (3.17) were selected as 

[ 5 0] [2000 0] [30000 0] M d = kg. B = N - s I m, K = N I m o 5 0 2000 0 30000 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, position history, and motor torques are given in Figures 4.25-4.29. 
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Discussion and Analysis for Hybrid Impedance Control 

After some trial simulations, we were able to obtain results showing small 

oscillation and steady state position errors, as illustrated in Figures 4.25-4.29. From 

simulation results, we found that zero steady state could be reached before contact, but 

after contact, large transient force and position oscillations occur. This is caused by 

switching from position control to force control in the normal direction at contact. 

Because force control attempts to achieve desired forces, the dynamic effect of impact 

causes fluctuations in position, external forces, and depth of cut. 

From (3.19), Hong [3] shows that 

where 

V n = normal velocity Fn = normal grinding force 

Bn = damping parameter Fdn = desired normal grinding force 

Thus the impact velocity can be reduced by increasing the value of Bn. At steady state, 

Fdn-Fn is close to zero, such that the normal velocity should also approach zero jf Bn is not 

small. Increasing the values of ml> b" and k/ improves motion tracking in the tangential 

direction, which is why large values were selected for the position control in the tangential 

direction. However, position control in the tangential direction will be degraded by the 

force control in the normal direction, because the force control adjusts position in the 
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normal direction to control the normal force. 

To implement hybrid impedance control in robotic deburring and grinding is 

difficult, because including desired forces requires a known surface geometry and accurate 

grinding force modeling. Displacement in the normal direction is adjusted indirectly by 

force control, such that large position errors may occur with this approach. Moreover the 

force environment for the deburring and grinding task is more complicated than mere 

contact or loss of contact, which cannot be represented by a simple linear impedance. For 

simple tasks such as edge-following or "peg-in-hole" operations, where non-zero contact 

force exists in the normal direction and zero contact force is assumed in the tangential 

direction, a hybrid impedance control strategy may be suitable. We conclude, however, 

that it is unsuitable for deburring and grinding. 

Simulations for Switching Control 

In this section, we employ simula60ns using different materials and rough edges to 

investigate the performance of our proposed new switching control. Results for this 

control, as described by (3.4), (3.21), and (3.25), are presented for the following 

simulations: 

Simulation 7: Random-Height Sinusoidal Burrs, ETG Workpiece 

• The desired workpiece trajectory was a straight edge, from (0.1, 0.4) m to (0.2, 0.4) m 

in reference space. 
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• The rough surface is modeled by sinusoidal burrs with average burr height ha = 0.05 

mm and burr frequency jb = 2 burrs/mm. The nominal desired depth of cut he is 0.5 

mm, and the material is ETG. 

• After some initial trials to tune the controller, the proportional and derivative gain 

matrices were chosen for position control (3.21) as: 

[900 0] I 
Kp = ° 9OO~' 

Similarly, the proportional and integral gain matrices for force control (3.25) were 

chosen as: 

:[0.005 0]1 m 
Kf = ° 0.005 52 N' 

[0.00006 0] 1 m 
Kfi = . ° 0.00006~· N 

• Simulation results showing position errors, external forces, and motor torques are 

given in Figures 4.30-4.32. 

Simulation 8: Random-Height Sinusoidal Burrs. DTG Workpiece 

• The same simulation conditions as in Simulation 7 were used, except the workpiece 

material was changed to DTG. 

• Simulation results showing position errors, external forces, and motor torques are 

given in Figures 4.33-4.35. 
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Simulation 9: Random-Height Sinusoidal Burrs. DTG Workpiece. No Torgue Limits 

• The same simulation conditions as in Simulation 8 were used, except torque limits on 

the motors were removed. 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, and motor torques are given in Figures 4.36-4.39. 

Simulation 10: Large Upset Burrs. ETG Workpiece 

• The same simulation conditions as in Simulation 7 were used, except the rough surface 

was modeled as large upset burrs, as in Figure 4.4. 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, and motor torques are given in Figures 4.40-4.43. 

Simulation 11: Large Upset Burrs. ETG Workpiece, No Torgue Limits 

• The same simulation conditions as in Simulation 10 were used, except torque limits on 

the motors were removed. 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, and motor torques are given in Figures 4.44-4.47. 

Simulation 12: Large Upset Burrs, DTG Workpiece. No Torque Limits 

• The same simulation conditions as in Simulation 11 were used, except the workpiece 

was changed to DTG material. 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, and motor torques are given in Figures 4.48-4.51. 
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Simulation 13: Scallop Burrs, ETG Workpiece 

• The same simulation conditions as in Simulation 7 were used, except the rough surface 

was modeled by scallop burrs, as illustrated in Figure 4.5. 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, and motor torques are given in Figures 4.52-4.55. 

Simulation 14: Scallop Burrs, DTG Workpiece. No Torque Limits 

• The same simulation conditions as in Simulation 13 were used, except the workpiece 

was changed to DTG material and torque limits on the motors were removed. 

• Simulation results showing position errors, depth of cut and remaining depth of cut, 

external forces, position history, and motor torques are given in Figures 4.56-4.59. 

94 



Tangential Position Error 
0.15 

0 .1 -E I 

E J -- 0.05 ..! .... 

~ 
0 i .... .... 
Cl) 

0 

-0.05 
0 2 3 4 5 6 7 8 9 10 

time (sec) 

Normal Position Error 
1.5 

-E 
.s .... 0.5 
o .... .... 
Cl) 

o \~-----------------------------------------------

-0.5 L...-__ ----L ____ ..l....-__ ----L ____ ...l...-__ ----L ____ --L-__ ----l ____ ---L..-____ L----..:....~ 

o 2 3 4 5 6 7 8 9 10 
time (sec) 

Figure 4.30 Results of Simulation 7 with Switching Control: Position Errors 

Random-Height Sinusoidal Burrs, ETG Workpiece 
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Figure 4.31 Results of Simulation 7 with Switching Control: External Forces 

Random-Height Sinusoidal Burrs, ETG Workpiece 
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Figure 4.32 Results of Simulation 7 with Switching Control: Motor Torques 

Random-Height Sinusoidal BUITs, ETG Workpiece 
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Figure 4.34 Results of Simulation 8 with Switching Control: External Forces 

Random-Height Sinusoidal Burrs, DTG Workpiece 
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Figure 4.48 Results of Simulation 12 with Switching Control: Position Errors 
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Discussion and Analysis for Switching Control 

The position control parameters are chosen by considering the scalar characteristic 

equation of a position controller, 

ms2 +bs+k = 0 (4.2) 

where b, m, and k are scalar gains quantities representing friction, mass, and stiffness, 

respectively, and s is Laplace operator. By selecting b2 = 4mk , we obtain critically 

damped response [16], which yields the fastest possible non-oscillatory response. The 

proportional and integral gains for force control are chosen very small in order to obtain 

non-oscillatory force transient response. Simulation result show that steady state can be 

reached quickly without oscillatory response for position and force control. 

Simulation 7 has the same conditions as Simulation 2 for impedance control in 

order to compare the results of two controllers. Simulation results show that our new 

controller provides significant improvement, and the tangential and normal position errors 

are eliminated by this new control. Figure 4.30 illustrates very accurate position tracking 

using this control approach. In Simulation 8, we examined deburring a DTG material 

under the same conditions as in Simulation 7. From Figure 4.35, we see that Motor 2 

reached its torque limit at numerous times throughout the simulation, which is the cause of 

large position errors in Figure 4.33 in both the tangential and normal directions. No 

controller can overcome this torque saturation situation, and in order to solve this 

problem, either smaller depth of cut should be commanded, or a higher-torque motor 

should be employed. We assume there are no motor torque limits in Simulation 9, and the 
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results show a large improvement in Figure 4.36. However non-zero errors continue to 

occur, because the normal force limit was reached at numerous times, dictating switches 

to force control and giving up position accuracy, as shown in Figure 4.38. The force 

control regulated the normal grinding fome reasonably well to the limit of 450 N as shown 

in Figure 4.38. The high-frequency force variations were caused by the irregularity of 

burrs, which were random-height sinusoidal in this simulation. In this case, smaller desired 

depth of cut in multiple passes of deburring and grinding should be employed in order to 

avoid the potential burning of workpiece or tool damage. Note from Figure 4.38 that 

switches between position and force control occur with high frequency in this case. 

Although, our simulation results do not indicate a potential stability problem with this 

frequent switching between two control modes, we have not developed a proof to 

guarantee stability for all deburring situations and all choices of controller gains. 

In Simulations 10, 11, and 12, we employed large upset burrs to test the 

performance of our controller. Simulation results in Figure 4.40 for Simulation 10 with an 

ETG workpiece show that the grinding process did not reach the desired contour for large 

upset burrs because the torque of Motor 2 saturated at its limit for each upset, indicated in 

Figure 4.43. Again, we could employ smaller desired depths of cut or a higher-torque 

motor for Joint 2 to improve. This is demonstrated in Simulation 11, where we removed 

the torque limits on both motors. Figure 4.44 shows that a precise contour is achieved for 

the finished workpiece. In simulation 12, with torque limits removed, the grinding process 

reached the normal force limit when large upset burrs were encountered for a DTG 

material, requiring switching to force control, as seen in Figure 4.50. We have assumed in 
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our modeling that cutting is instantaneous upon contact with a surface, such that impulsive 

forces and torques appear in our simulation results when the grinding wheel encounters 

large burrs. When the grinding wheel "jumps off' large burrs, it re-reaches the workpiece 

surface quickly, as seen in Figures 4.48 and 4.49. 

Finally, we simulate our controller with scallop burrs for ETG and DTG 

workpieces in Simulations 13 and 14, respectively. Figure 4.52 shows periodic non-zero 

position errors for the ETG material, caused by torque saturation of Motor 2, shown in 

Figure 4.55. For the DTG workpiece with torque limits removed, Figure 4.56 shows 

larger position errors than for the ETG material. This is caused by reaching the normal 

force limit immediately, with force control in place throughout the simulation, as shown in 

Figure 4.58. 

From our simulation results, we conclude that our controller can achieve an 

accurate finished workpiece edge for robotic deburring and grinding, but also provide the 

ability to control grinding forces to avoid potential damage to the workpiece and grinding 

tool. This controller appears to be more effective than controllers using impedance and 

hybrid impedance control. Like all controllers, however, the physics of the system prevent 

achieving accurate finishing on a single pass when force and torque limits are encountered. 

In the next chapter, we present conclusions of this work and recommendations for further 

study. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Summary and Conclusions 

In this study, we have focused on the control for position accuracy under force 

limits for a SCARA robot used for deburring and grinding. The following is a summary 

and relevant conclusions: 

1. Based on traditional grinding mechanics, a grinding model previously developed for 

robotic deburring and grinding was employed. The grinding conditions were specified 

to calculate grinding forces for an easy-to-grind (ETG) and difficult-to-grind (DTG) 

workpiece material. Realistic force limits to prevent heat damage to the workpiece 

and tool breakdown for a selected grinding wheel were also determined and employed 

in simulations. 

2. Stiffness calculations were conducted for the prototype robot employed in this study, 

the DC-Berkeley NSK SCARA robot, because this infonnation was not available from 

the literature. The stiffness of the joint motors and robot links were estimated for 

worst-case conditions, which were then used to determine that the robot was 

sufficiently rigid to justify ignoring robot arm flexibility. 
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3. Two common control approaches for manipulators operating in constrained motion 

were investigated for robotic deburring and grinding. Simulation results showed that 

impedance control, which provides a stable and unified control structure for both free 

and constrained motion, may be suitable for "rough" deburring and grinding or edge 

following tasks. If the desired grinding force Fd is modeled well and surface geometry 

is known, desired forces may be commanded to increase the performance of 

impedance control. In contrast, hybrid impedance control, which provides 

independent force and position control in two orthogonal directions, produces large 

position errors, because displacement in the nonnal direction is adjusted indirectly by 

force control. For simple tasks such as edge-following or "peg-in-hole" operations, 

where non-zero contact force exists in the normal direction and zero contact force is 

assumed in the tangential direction, a hybrid impedance control scheme may be 

appropriate, but such control is unsuitable for robotic deburring and g.rinding. 

4. A new approach to position and force control, called switching control, was proposed 

to increase accuracy in the finished workpiece profile using robotic deburring and 

grinding. This approach assumes that the primary requisite is highly accurate position, 

assuming the grinding forces remain below limits to protect workpiece and grinding 

tool. Otherwise, position accuracy is sacrificed to achieve force control to remain 

below these limits. This control approach is able to achieve good performance for 

grinding different types of burrs and materials. Position errors caused by insufficient 

motor torque can be addressed by using multiple passes of deburring with smaller 

depths of cut, or higher-torque motors. From simulation results, we conclude that this 
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controller can achieve an accurate finished workpiece edge for robotic deburring and 

grinding while providing a mechanism to regulate the grinding forces to avoid 

potential burning of the workpiece and damage of the grinding tool. It appears to be 

superior to impedance and hybrid impedance control. 

5. Although our simulations indicate stability and good dynamic behavior with suitable 

gain choices for switching control, we were unable to prove stability. It is possible 

that unstable behavior under torque saturation and frequent switching may occur. This 

requires further study. 

6. We assume the contact velocity between grinding wheel and workpiece is relatively 

small, such that no bouncing occurs on contact as material removal begins. For high 

contact velocities, "bounce off' may occur, and we have not been able to prove 

contact stability. More work is needed in this area. 
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Recommendations 

Further investigations following this study are recommended as follows: 

1. A detailed examination and model is needed to verify whether our assumptions 

regarding no bouncing at low contact velocities is valid and to determine conditions 

for stability at all contact velocities. 

2. A proof of stability for our proposed switching control should be developed. 

3. An experimental setup should be designed and a set of experiments conducted to 

verify the results of this study. 

4. The proposed approach should be appbed, both in simulation and in test, to follow a 

curved edge. 

5. Because an accurate model of the dynamics of the interaction between the manipulator 

and the environment during deburring and grinding is difficult, an adaptive controller 

with on-line estimates of material removal rates and other system parameters, 

combined with the control scheme developed in this study, may result in more robust 

and realistic control performance. Such an investigation should be undertaken. 
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PREFACE 

We would like to express our deepest gratitude for your interest in NSK products. 

For your convenience, NSK has edited the catalogs usually issued individually for 

Mechatronic Products, in order to integrate them into a general catalog of NSK 

Mechatronic Actuators. In addition, the technical expertise contained in this 

catalog is supported by the latest reserch and development, and information is 

offered beyond that in the usual product-only catalog. 

This catalog is divided into two product sections. 

A. Direct Drive(DD) Acuators 

B. High-Precision Linear Positioning Tables and Actuators 

The brief features of the products are as follows. 

A. DO Acuators 

Q)Megatorque Motor: Driving a load directly coupled without using a reduction 

gear. 

<:VMegathrust Motor: Linear Motor offering rapid and highly precise positioning. 

Q)Mega Indexer: Numerically controlled direct drive rotary table which is compact 

and indexes at high speed. 

B. High-Precision Linear Position ing Tables and Actuators 

Q)High-Precision Linear Positioning Tables : High-precision Linear Positioning 

Tables using NSK Ball Screw and NSK Linear guide. 

<:VRobot Modules: A wide variety of mono-axis linear positioning modules which 

is easy to combine into Cartesian robot. 

Q)Positioning Actuator: Compact linear positioning actuator which is economical 

and easy to operate 

G)Monocarrier C serise : Monocarrier M series with motor, cover and controller. 

Compact and rigid linear actuator. 

We hope this catalog is very helpful for your design needs. 

1994-9 
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1.5 Standard Product 
Series 

1.5.1 specifications 
Molor Model 0408, 0608, 0810,1010. 1410 a.e Slandard . 

Molor Model 0404. 0602. 0604. 0606. 0806 1006 

1413. 1420, are semi·slanuard. 

-~el 
lIems 

0404 0400 

Max. Torque' I (N·m) 3.9 9.B J 
Max. ClIrrenl/phase " 

3/1.5 6/ 3 
(A) 

Winding Vollage"(VDC) 

Max. Friclion Torque 

(N'm) 
I 

0002 

5.6 

-,-- -_. __ . 
Allowable Axial Load" 

1700 
iN) 

Allowable Momenl 
19 

(5 Load""" (N'm) 
(5 Axial Rig idily (mm/N) 2.55 x 10 " ~ 

Momenl Rigidily" 
3.06 x 10" 

(rad/ N'm) 

Rolor Inerl ia J(MR' ) 
0.002 0.0023 0.0036 

(kg· m') ----
Mass (kg) 4.5 6.5 9 

060" 0606 0608 

14.7 24 .5 39.2 

6/G 

165/ 330 

3 

37 29 

58 

4.00 ><10 " 
~ 

3.57 x 10" 
.' 

0 .005 0.007 0.0075 

11 12.S 14 

0806 

52.9 

Pholo 1.1 

Standard 
ProduCI 

Se ries 

08 10 

88.2 

7.5/ 7.5 

4.5 

4500 

76 

3.06 x 10 - ' 

2.SSX 10 - ' 

0.01 6 0.02 

20 24 

Environmenl condilions Operill iofl Temo. : O'C - dO'C ~I umic!ily : 20% - 00%. Indoor use only _ .. 
Basic Specificalions 

Rate : continuulIs, Proleclion : lolally Enclosed. Non·Vented 
Insulalion: F. Wincling In5'11alion Test: AC 1500V lor one minule 

compatible Driver 
EMO~ O-1 I EM0400 I EMOG02 I. EMOG04 I H vl0606 EMOG08 EMOB06 EM0810 

Unit Type EP081 0 

Main AC line Vo llago (yAe l 3+ / 1+ 220V : 10% 50/60Hz or 1", I 00- 120V SO/ 60Hz 

Conlcl AC line VolI:JQI!(VAC) If 90-240V SO/ 60Hz 

Oi Main AC Line Power "oJ ' 5/0.' I 'i~ 1/1.5 

I 
1/1.5 

I 
1/2 

I 
1.5/2 

> Cap."'" (KVA) 2 3 
~~ -
o:.a Max. Speed (rps) 4.5 3 
- ::> Resolver Resolu tion" 2 0 

409600/102400 614 4oo/ I S36OO .?-u 
(counls/rev) 

Resolver Accuracy 
:t 60 :!: 30 (;JrC-sec) - - --- - --- - ----- ------ - - - - --- -

Resolver Repealabilily" 
=3.2/ :!: 12.8 :!. ? 1/:!: 8.·1 (arc-sec) 

• I In ca~e 01 l1'le opc rai ion at l (! ro SDccd t(), long oe fieds- . sec Moy alormlc molor r "nil Syst~"' : r N = O. I 02kgl = O.22Slb I 
o ulpul torQue char;}Cle.iSlic5 (11.100 nagel IN'm =O.I02kgl ·m= O.738f1 · lb 

~2 r"e first 'ioule indical e ~ m;t i" "C lin!! IIOV. the 5ccond Indicalcs main AC lIoe ?20V. 
• J Tho second line j "d ic:'ll c ~ in elise IhAI IhC' comp" lib1e driver unil Is F.P I Yn~ . 
• " The lirsl figure I nd ica l e~ 12 bit Itsolver l e~o"l lio n. 1I1(! second IndlCil lcs 10 bil ,rsolulion 
... 5 When mOre IOii'd cao3c ily is reQuifed. the nddil ionn l 1J'!l:t,jng is nccc ss::tl)' Con~ IJ U ..... it h NSK 
iii 6 Allowa bla momenl load and mOmenl l igidily .trC mesutr.d In C", SC 01 the 010 101 mounlr(j Or! II IC' "Oid bi1 se. 
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NSK 

~el 
Items 1006 1010 1404 1410 14 13 1420 

Max. Torque"' (N'm) I 88.2 147 88.2 245 294 490 

Max. Current/phase" 
7.5/7.5 

IA) 

Winding Voltage" 
165/330 

(VDG) 

Max. Friction Torque 
5.4 7.9 

(N'm) 

Allowable Axial 
9500 19600 

Load" (N) 

Allowable Moment 
156 392 

0 Load ····· (N ' m) 
(5 

Axial Rigid ity ; (mm/N) 1.43 x 10-· 1.01 )( 10-· ::2 
l;;lonTl! nt -Ai gi d i ty· • 

1.53 x 10-· 3.06 )( 10-' 
(rad/N'm) 

Rotor Inertia J(MR') 
0.07 0.075 0.2 0.27 0.32 0.61 

(kg'm') 

Mass (kg) 31 40 39 73 90 150 

Environmental 
Operation Temp. : O'C ~40:C Humidity : 20%~BO% , Indoor use only 

Conditions 

Basic Specif ications 
Rale : Cont inuous. Protec tion: Totally Enclosed, Non-Vented 

Insulalion : F, Winding Insulation Test: ACI50QV for one minute 

Compatible Driver unit 
EMl oo6 EMI010 EM 1<104 EM1410 

type EPIOIO EPI410 EP14 13 EP 1420 

Main AC Line 
3<f,/ 1t/J 220V ± 10% SO/60Hz or 1 t/J 1 00-128V SO/60Hz 

Voltage (VAG) 

Contol AC Line 
1 t/J 90-240V SO/60Hz 

Voltage (VAG) 

Q; Main AC Line Power 1/2 1.5/2.5 1/2 1.5/2 
:> 

Cap.···' (I<VA) 3.5 3.5 3.5 <I (§gt 
~ra Max. Speed (rps) 3 
o:::l 

Resolver Resolution" ::28 614400/153600 
(counts/ rev) 

Resolver Accuracy 
±30 

(arc-sec) 

Resolver 
±2.1/±8.4 Reoeatablilily" larc-sec) 

.. , In case of the ooerDtlen at zero speed lor long periods. sec M egalofQUc moior I SI unit Syslem .: IN c O.l02kgf "' O.225Ib I 
output torQue characteristics 1"'00 page) 1 N'm =O.102kgf ·m =O.738f1·lb 

*2 The firsl figure indicates main AC line 110V, the second indicBles ma ~n AC line 220V. 
.:3 The second I!ne indicates in case that the comCrl1iblE' driver unit is EP type . 
• 4 The firs' figure indicates 12 bit resolver resolut ion, 1he second indicates 10 bit resolution 
.. 5 When more load capacUy is reQuired. the addit ional bC!3dng is necessary. Consult wilh NSK. 
.. 6 Allowable moment load and moment rigidity are measured in case or the motor mounted on Ihe rigid base. 
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1.5.2 Speed Torque Characteristics 
(1) Driven by EM Driver unit (AC220V) 

: ---...-.......... 

"U N 
U 

" ~ 

0408 

0404 

o 4.9/0.5 9 .8/1 

TorqlJe (N' m/kg/'m] 

o 'S .6/ 2 3S.2/~ 58.8/ 678.iTa- S8/JO 

Torque [N' m/kgf ·m) 

o 

M 

"U '" .. .. 
!!-

o 

060Z 0604 

9.8/1 19 .6/Z 29 .4/3 39:2/4 

lorque [ N·.m/kgl·m) 

(2) Driven by EP driver unit (AC220VJ 

o I 96iZ()"2'4sm 
lorque [N·m/ kgf·mJ 

F"tg.1.5 
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~ 

lorque [N·m/k g /om] 
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