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CHAPTER I 

INTRODUCTION 

Background 

Modern industry made use of many chemicals without knowing their full impact 

to the environment until the latter part of this century. Groundwater polluted by these 

chemicals is now recognized as a major environmental problem because approximately 

50 % of the United States population depends upon groundwater as its primary source of 

drinking water (Pye et aI., 1983). Among these chemicals are chlorophenols. 

Chloropheno)s are toxic aromatic organic compounds that are mainly used as biocides 

and fungicides in wood preservation (WHO, 1989). Chlorophenols are released into the 

environment from production sites, and are also introduced into the environment as 

unintentional by-products from industrial and municipal chlorination processes (WHO, 

1989). The United States Environmental Protection Agency (U SEPAl included 

chlorophenols on its priority list of the most common hazardous substances found in the 

United States (52 FR 12866, April 17, 1987; 53 FR 41279, October 20, 1988) and 

mandated a maximum contaminant level (MCL) in drinking water of 0.1 j.tg/liter for 

pentachlorophenol (40 CFR §141.61). Chlorophenois are toxic, have low taste and odor 

thresholds, bioaccumulate, and tend to be persistent in the environment (USEPA, 1980c). 
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Elevated concentrations of chlorophenols in groundwater are directly attributable to 

industrial pollution caused from spills and leaching. Isolated levels as high as 100 mg/L 

of chlorophenols in groundwater have been reported (Valo et a1., 1990). Therefore, 

contamination of groundwater by chlorophenols is of concern and remediation is 

warranted. 

New and effective groundwater remediation technologies are needed to remove 

or biodegrade chlorophenols. There are two basic objectives in groundwater 

remediation: (1) containment and (2) removal (Rael et aI., 1995). Some of the more 

conventional remediation technologies being used singularly or in combination to meet 

these objectives are pump and treat, soil vapor extraction, air sparging, ajr stripping., 

granulated activated carbon, slurry wall containment, and in situ bioremediation (Olsen 

and Kavanaugh, 1993). 

In situ permeable barriers are a relatively new "cost-effective" technology that can 

be used in groundwater remediation of shallow aquifers (Thompson et aI., 1991). The 

barrier medium would allow the flow of water, but would sorb or react with the 

contaminant, preventing further migration. . Crushed limestone, peat, and powdered 

activated carbon are several effective barrier mediums that have been used to adsorb or 

precipitate contaminants (Rael et al., 1995). This study proposes to examine the 

feasibility of using polyvinyl alcohol beads containing immobilized bacteria as an 

alternative permeable barrier media that would create a "bio-trench" or "bio-curtain" to 

biodegrade chlorophenols in situ from groundwater. The "bio-trench" concept (Figure 

1) consists of a permeable barrier of PV A-immobilized cells placed in a trench. The 
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PV A-immobilized cells create a porous and permeable barrier designed to biodegrade 

contaminants as groundwater flows through the medium. 

CONTAMINANT 

SOURCE 

Water Table 

CONTAMINANT 

PLUME 

Groundwater Row 

Figure 1. Bio-trench concept. 

'810-TRENCH" 

PERMEABlE BARRIER 

Immobilized cells are an established technique used in the wastewater treatment 

field that could be appl icable to in situ groundwater treatment (Yang et al., 1989; Stormo 

and Crawford, 1994). One of the more widely used techniques for cell immobilization 

is cell entrapment. Microorganisms are enclosed within a porous polymeric matrix which 

allows the diffusion of substrate to and products from the entrapped microorganisms (WU 

and Wisecarver, 1992). This technique has been recognized as a promising method for 

the biological removal of chlorophenols which are known to be recalcitrant (Sofer et aI., 

1990). Bettmann and Rehm (1984) determined that entrapped microorganisms were 

better protected against toxic chemicals than free cells. Sofer et al. (1990) further 
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demonstrated that entrapped microorganisms could withstand higher concentrations of 

toxic organic compounds than free cells. 

This study consisted of immobi1izing microorganisms in polyvinyl a:lcohol (PV A) 

and then dropping the mixture into a boric acid solution to form 3-5 mm diameter beads. 

Since this was an initial feasibility study to evaluate PYA beads as a permeable barrier 

media the physical characteristics of the beads were needed essential information. 

Therefore. this study included characterizing a packed bed of beads as to its 

compressibility, porosity, and permeability. A diffusion study was conducted to 

determine the rate of 2,4,6-trichlorophenol (TCP) diffusion into PYA beads. The batch 

study included placing various masses of blank beads in groundwater spiked with a 

constant concentration of TCP for the purpose of developing an isotherm to determine 

adsorption. . A kinetic study was conducted to determine the substrate utilization rate of 

the mixed bioculture as free cells and as immobilized cells. In the initial column study, 

groundwater spiked with a constant concentration of 10.0 mg/L of TCP was fed into a 

column with a packed bed of PV A beads containing immobilized bacteria between layers 

of aquifer sand. The purpose of this column study was to simulate a "bio-trench" and 

determine the biodegradation rate of TCP by the continuous flow reactor. This study 

continued for 45 days. In the final column study, groundwater spiked with a constant 

concentration of 10.0 mg/L of TCP was fed into two columns of varied sizes with packed 

beds of PYA-immobilized cells. The purpose of this study was to compare different 

hydraulic retention times and removal efficiencies. This column study was monitored 

for 14 days. 
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Objectives 

Chlorophenols are toxic organic compounds that have been found in various 

groundwater supplies. They pose a serious threat to the environment and warrant 

remediation. This study investigated an innovative method to biodegrade TCP in situ. 

The proposed method included using PYA-immobilized cells as an alternative permeable 

barrier media that would create a "bio-trench" to biodegrade chlorophenols in situ from 

groundwater. The objective of this feasibility study was to evaluate permeable barrier 

technology as an in situ groundwater remediation tool using PYA-immobilized cells by 

(1) studying the physical characteristics of PYA beads as a permeable barrier media; and . 

(2) studying the ability of this biological carrier system to biodegrade TCP. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

A background of current research is helpful in evaluating permeable ' barrier 

technology as an in situ remediation tool using PV A-immobilized cells asa medium 

designed to biodegrade TCP from groundwater. Physical and chemical characteristics 

of TCP are presented to give a better understanding as to its toxicity , its ability to 

degrade, and its effect on · the environment. Different approaches to remove 

chlorophenols from groundwater have been evaluated as to their effectiveness, including 

biodegradation. Various methods and matrixes used to immobilize cells are described. 

Several different diffusion models are reviewed for their applicability in determining 

diffusivity coefficients. Finally, permeable barriers are reviewed as to their applicability 

for in situ remediation along with a comparison of different mediums used. 

Chlorophenols 

Chlorophenols (CPs) are organic chemicals formed from phenol by the 

substitution of one or more atoms of chlorine on the phenol ring. Nineteen congeners 

are possible (WHO, 1989). The following are some congeners formed from the direct 
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chlorination of phenol and are found polluting groundwater (WHO, 1989): 2-

monochlorophenol (2-MCP), 2,4-dichlorophenol (DCP), 2,4.,6-trichlorophenol (TCP), 

2,3,4,6-tetrachlorophenol ,(TeCP) and pentachlorophenol (PCP). The compound TCP 

was concentrated on in this study because it was the highest chlorinated phenol available 

at the time this study began. TCP was determined to be carcinogenic to rats and mice 

(NCI, 1979; USEPA, 1980c) and human exposure should be kept to a minimum (WHO, 

1989). 

Pure chlorophenols are soJid, colorless crystals at room temperature, except for 

2-MCP which is a liquid (WHO, 1989; USEPA, 198Oc). CAS numbers, common 

names, abbreviations, molecular formulas, and common synonyms and trade names for 

MCP, DCP, Tep, TeCP, and PCP are listed in Table 6, Appendix A. Chlorophenols 

have strong pungent odors and their taste and odor thresholds are so low that acceptable 

concentrations for drinking water are based on organoleptic rather than toxicological 

criteria (WHO, 1989). Hoak (1957) reported that the odor threshold increases as 

chlorination increases (e.g., from O.33/Lg/L for DCP to 12,000 /Lg/L for PCP). 

Solubility varies from 2.1 X 10-1 molelliter for 2-MCP to 7.9 X 10-4 mole/liter for 

2,3,4,6-TeCP (USEPA, 198Oc). WHO (1989) reported that acidity increases in 

chlorophenols as chlorination increases. pH is an important factor in chlorophenol 

adsorption onto soils and they are inversely related. Volatility decreases as chlorination 

increases. The n-octanol-water partition coefficient increases with chlorination, which 

indicates a tendency for higher chlorophenols to bioaccumulate. Physical and chemical 

properties are identified in Table 7, Appendix A. 
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Large quantities of chlorophenols are used in wood preservation as biocides, 

fungicides and mold inhibitors and in lesser amounts in the production of antiseptics and 

disinfectants. They are also used as intermediates in the production of herbicides, dyes 

and drugs (WHO, 1989~ USEPA, 198Oc; USEPA, 1980). 

Chlorophenols are released into the environment from production sites, during 

transportation, incineration, industrial wastes from wood preservation sites, saw mills, 

pulp and paper mills. Chlorophenols are generated unintentionally as by-products from 

municipal and industrial chlorination processes (WHO, 1989; USEPA, 198Oc). 

Chlorophenols strongly adsorb onto acidic and/or organic soils, but minimal 

adsorption occurs in alkal ine conditions (WHO, 1989). Therefore, chlorophenols leach 

into the groundwater from soils that are alkal ine or have low organic content or through 

material that can percolate readily (WHO, ' 1989). 

Methods to Remove Chlorophenols from Groundwater 

Litchfield et al. (1994) used a biotreatment-train approach for in situ 

bioremediation of a pentachlorophenol (PCP)-contaminated site. Recovered groundwater 

that had been pumped to the surface was passed through an ultraviolet light/ozone system 

and then enhanced with nutrients (including nitrate). The treated groundwater was 

gravity fed to seepage beds. A 90% reduction of PCP was achieved. After 2 years a 

fluidized bed-activated carbon tower unit replaced the ultraviolet/ozone system. PCP 

reduction averaged 93. 1 %. They concluded that not only was the PCP removed by the 

ultraviolet system and the activated carbon tower, but that additional removal by 
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biodegradation resulted from the stimulation of indigenous microorganism by the 

nutrients. 

Biodegradation is an alternative remediation method that has successfully removed 

chlorophenols from groundwater (O'Reilly and Crawford, 1989; Jarvinen et al., 1994; 

Pitter, 1976; Haggblom et al., 1988). Jarvinen and Puhakka (1994) demonstrated that 

aerobic fluidized bed treatment was effective at low groundwater temperatures (4°C) for 

the biodegradation of chlorophenols. They reduced 2,4,6-TCP and 2,3,4,6-

tetrachlorophenol (TeCP) by more than 99 % and pentachlorophenol (PCP) by 83.5 % 

over a period of 22 days. Hydraulic retention time was held constant at 5.0 hours. 

Chloropheno]s were the only carbon source. The authors compared this method to 

biofilters with immobilized Rhodococci and physical adsorption onto activated carbon. 

They determined that the Rhodococci was not efficient at lower temperatures and that 

activated carbon reached its capacity in just a few weeks. An enrichment period of a few 

months was required to biodegrade PCP over 99 % using an aerobic fluidized bed 

treatment. They determined that aerobic fluidized bed treatment was effective for on-site 

bioreclamation of chlorophenol-contaminated groundwater at high flow rates and lower 

temperatures. 

Makinen et at. (1993) studied the bioremediation of simulated groundwater 

containing a chlorophenol mixture of TCP, TeCP, and PCP in a laboratory-scale aerobic 

fluidized-bed reactor. Chlorophenols were the sole source of carbon. They used a 

hydraulic retention time of 5.0 hours and a chlorophenol loading rate of 445 mg/L· d. 

They achieved a 99.7% reduction in chlorophenols and 94% of the theoretical mean 
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inorganic chloride release (lCI). The ICI increase and the decreases in pH from 7.2-7.3 

to 6.9-7.0 indicated mineralization of TCP. Expected oxygen consumption further 

supported mineralization. . They used the Microtox acute toxicity assay, where 

luminescent bacteria were exposed to the treatment effluent, to monitor the degradation 

of chlorophenols. The Microtox assay uses a suspension of the marine bacterium 

Photobacterium phosphoreum. The assay bacteria were fed known standard 

concentrations of chlorophenols to establish a dose-response curve. The Microtox test 

consisted of measuring the bioluminescence output of the assay bacteria ·and then 

comparing that to the bioluminescence output of bacteria not exposed to chiorophenois. 

They determined that toxicity increased with the degree of chlorination. To study the 

effect that an upset or disturbance had on the degradation performance, the aeration 

process was interrupted several times by withholding oxygen overnight. Two different 

chlorophenol feed mixtures were monitored: mixture #1, 25 mg/L of 2,4,6-TCP, 25 

mg/L of 2,3,4,6-TeCP, and 40 mg/L of PCP; and, mixture #2, 35 mg/L of 2,4,6-TCP, 

31 mg/L of 2,3,4,6-TeCP, and 27 mg/Lof PCP. It took 30-40 days to overcome the 

upset each time the oxygen was withheld. They monitored the upset by changes in the 

PCP concentration in the effluent. The PCP concentrations were directly measured by 

gas chromatography. They concluded that the Microtox assay responded to changes in 

chlorophenol concentrations as low as 0.1 mg/L for PCP and that it could be used as an 

easy indicator for system upsets. 

Jarvinen et al. (1994) studied the effect that low-groundwater temperatures had 

on the bioremediation of chlorophenol. They inoculated laboratory-scale, continuous 
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flow reactors with nonaccl imated activated sludge obtained from a chemi

thermomechanical pulp mill. They spiked the groundwater in the flow reactors with 

chlorophenol concentrations of 7-11 mg/L of 2,4,6-TCP, 32-36 mg/L of 2~3,4,6-TeCP, 

and 1.8-2.3 mg/L of PCP. The reactors were in a controlled-temperature incubator in 

the dark and the influent groundwater was at 4°C. A hydraulic retention time (HRT) of 

5.0 hours resulted in effluent concentrations of less than 0.003 mg/L of each of the 

chlorophenol concentrations. Chlorophenol biodegradation was 99.9%. They concluded 

that TCP and TeCP were readily biodegradable, but that the chlorophenol degrading 

microorganisms needed to be acclimated and enriched for approximately 1.5 months to 

get efficient PCP degradation. This system can be operated and maintained at low 

groundwater temperatures which would eliminate the expense of having to heat the 

groundwater. Biodegradation of chlorophenols could take place in situ even at these low 

groundwater temperatures. 

Immobilization of Cells for Biodegradation of Chloropheno]s 

The technique of using immobilized microbial cells as a biological wastewater 

treatment process has been used for many years. Examples of immobilized microbial 

systems for wastewater treatment include trickling filters, anaerobic fixed bed and 

fluidized bed systems. Entrapped microbial cells is another type of immobilization that 

has been studied because of its effective degradation of toxic organic compounds (Yang 

et al., 1989; Chibato and Tosa, 1977; Chibatoand Tosa, 1983). The immobilization 

method entraps microbial cells in a three-dimensional porous gel lattice. The pores are 
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small enough to confine the cells and large enough for the diffusion of substrate and 

products to and from the cell (Mattiasson, 1983). Yang et a1. (1989) investigated 

different carriers to entrap mixed microbial cells for removal of organics from 

wastewater. They operated their systems at different chemical oxygen demand (COD) 

loading rates and assessed the operational stability of the process. The polymeric 

materials tested included cellulose triacetate (mono-carrier), a combination of cellulose 

triacetate and calcium alginate (hi-carrier), polyacrylamide, and K-carrageenan. The two 

substrates used in the study were glucose and phenol. The bi-carrier was used to 

determine COD removal efficiency and effluent quality at various COD loading rates. 

The mono-carrier was used to determine long term "operational performance because it 

had better mechanical strength. Concentrations of COD, suspended solids and NH4-N 

were monitored. By using a scanning electron microscope, it was determined that "the 

bi-carrier was more porous than the monocarrier. Also, it was observed that the bi-

carrier was more elastic than the monocarrier. It was determined that calcium alginate 

was weak in mechanical strength, polyacrylamide was too complicated to prepare and it 

was also weak in mechanical strength. K-carrageenan was also weak in mechanical 

strength. Calcium alginate was determined to have better chemical oxygen demand 

(COD) removal efficiency and stable operational performance as compared to the other 

carriers tested. They did not investigate using polyvinyl alcohol (PYA) as a carrier. 

Microorganisms that have been immobilized have been found to be better 

protected against toxicity than free cells. Benman and Rehm (1984) entrapped the 

phenol-adapted Pseudomonas sp. in alginate and polyacrylamide-hydrazide (PAAH). An 
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airlift fermenter was used as a culture vessel. A sieve-like container within the fermenter 

held the immobilized cells. This process simulated entrapped microorganisms in a 

packed column. Continuous measurements of pH, optical density (OD).and O2 

concentrations were taken. They compared the phenol degradation activity and the cell 

growth of the entrapped microbial cells to those of free microbial cells. Results showed 

that free cells degraded phenol up to a concentration of 1.5 giL and the entrapped cells 

in both alginate and PAAH degraded phenol up to a concentration of 3 giL. They 

conduded that entrapment protects the microorganisms against the toxicity of pbenol. 

Keweloh et al. (1989) determined that the size of the microcolonies determines 

the extent of phenol tolerance. They supposed that the external cells wo~ld bind the 

phenol protecting the internal cells which continued to multiply without inhibition. 

O'Reilly and Crawford (1989) immobilized Flavobacterium cells in polyurethane 

to biodegrade pentachlorophenol (PCP) in a batch study. They compared the PCP c 
degradation activity of the immobilized cells to that of free cells at different 

concentrations. The experiments were performed in batch, semicontinuous batch; and 

continuous-culture bioreactors. Results showed that at initial concentrations below 100 

mg/L PCP differences in degradation activity of free and immobilized cells were not 

detected. Immobilized cells were able to mineralize an influent concentration of 200 

mg/L of PCP whhin 4 days, but the free cells were unable to mineralize PCP during the 

four-day course of the experiment. The semi-continuous batch experiment was fed a 

constant concentration of 10 mg/L PCP and ran for 150 days. An 86% removal of PCP 

was achieved during the first 15 day period, but the removal efficiency decreased to 12 % 
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by the last 15 day period (days 136-150). The authors did not give an explanation for 

this decrease in removal efficiency. A 93 % removal of PCP was achieved in the 

continuous-culture bioreactors within 30 days. The PCP influent concentration varied 

approximately from 5 mg/L to 15 mg/L. They concluded that twice the amount of PCP 

was degraded per gram of foam in the continuous-culture reactors than in the 

semicontinuous batch reactors. Polyurethane was determined to be an effective 

immobilization matrix as indicated by its protection against toxicity. 

Sofer et at. (1990) studied the biodegradation of 2-chlorophenol (2-CP) using 

immobilized activated sludge. The activated sludge was a mixed microbial population 

that was acclimated to phenol over a period of 10 days. They were immobilized in 

sodium alginate and dropped into a calcium chloride solution to form 3 to 3.5 mm 

diameter beads . They used an air-sparged reactor to study system response and a 

recirculation reactor to study kinetic parameters. Physical removal of 2-CP, mainly by 

stripping, was monitored by control runs under identical conditions as immobilized cells, 

but without biomass. The rate constant for the physical removal by air stripping (K3) 

was evaluated to be 0.085 hr- I for the air sparged reactor and 0.057 hr- l for the 

recirculation reactor. The temperature activity coefficient (0) was 1..16 indicating a 

high temperature dependence. The rate of biodegradation decreased as the spiking 

concentration of 2-CP increased. The maximum substrate utilization rate (K.J decreased 

from 14.58 to 9.63 mg/L' hr corresponding to concentration increases from 50 to 100 

mg/L. I n the recirculation reactor, as the 2-CP concentration decreased, the pH 

decreased. As 2-CP concentrations decreased from 110 mg/L to a mg/L, pH values 
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correspondingly decreased from 5.5 to 4.2 pH. The authors did not explain the reason 

for the pH decrease. At a constant 2-CP concentration of 50 mg/L and at various 

biomass loadings from 30 g to 50 g, the corresponding Km values were 3.8 to 8.3 mg/L. 

The half velocity coefficient (KJ ) was 3 mg/L. They used the Monod expression for 

substrate utilization and modified it to include physical removal of substrate by stripping. 

Valo et al. (1990) immobilized the chlorophenol-mineralizing Rhodococci bacteria 

on a polyurethane carrier. The polyurethane, seeded with Rhodococci, was placed in a 

glass column to form a biofilter. A concentration of 130 mg/L technical grade 

chlorophenol containing 2,3,4,6-TeCP, 2,4,6-TCP, and PCP was fed through the biofilter 

with added nutrients. The biofilter was aerated with pressurized air. , The study 

compared the mineralization of PCP in a seeded biofilter and an unseeded biofilter. 40 % 

of the PCP 'was recovered as CO2 in the seeded biofilter and less than 1 % of the PCP 

was recovered in the unseeded biofilter. They concluded that chlorophenols were 

degraded by immobilized bacteria without any additional carbon source and that the 

treated groundwater could be returned to the aquifer. 

Hashimoto and Furukawa (1987) developed an inexpensive and effective new 

method for the immobilization of activated sludge. This new method is known as the 

polyvinyl alcohol (PV A)-boric acid method. The preparation of this method involved 

mixing one portion of concentrated activated sludge (mixed microbial cell population) 

with one portion of PV A aqueous solution. This mixture was dropped into a gently 

stirred saturated boric acid solution to form spherical beads. The beads were cured in 

the solution for 15-24 hours and then washed with tap water. The activated-sludge cells 
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were entrapped within a monodiol-type PV A-boric acid gel lattice. Monodiol-type PV A 

was shown as a single PV A compound with two hydroxyl groups. The beads produced 

were very durable with elastic, rubber-like properties. Continuous-treatment experiments 

were conducted using a synthetic wastewater to determine removal rates of total organic 

carbon (TOC) and total nitrogen (T-N) . They also recorded the weight changes of the 

PV A-immobilized activated sludge beads. The TOC removal was 93 % and T-N removal 

was 30-40%. The N03-N was denitrified in the anaerobic portion of the immobilized 

activated-sludge beads (aerated denitrification). Aerated denitrification was the 

contributing factor to the high removal rates of nitrogen. They thought the reason was 

because nitrifiers were also entrapped and could be maintained stably in the aeration tank 

due to being immobilized. The beads increased in weight as the loading increased, 

indicating growth of the microorganisms in the beads. In conclusion they determined that 

[he PV A-boric acid method was inexpensive compared to other methods and that it was 

possible to operate an immobilized cell system at 2-3 times the loading rate of 

conventional systems. They did not address the problem of the tendency for the : PV A 

beads to agglomerate. Also, they thought that the microbial activity was not reduced 

because of the low pH during the immobilization process where the beads are cured in 

the boric acid solution (pH 4) for 24 hours. Their reasoning was that activated sludge 

cells become surrounded by extracellular polymer, allowing them to withstand condition 

changes. 

Wu and Wisecarver (1992) investigated and modified the PV A-boric acid method 

developed by Hashimoto and Furukawa (1987). They prepared the PV A beads using the 
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same method but added a small amount of sodium alginate to prevent or minimize the 

tendency for the beads to agglomerate. They entrapped a pure strain of phenol-degrading 

Pseudomonas. They demonstrated the viability of the immobilized cells by utilizing them 

in a fluidized bed bioreactor for a period of two weeks. Influent phenol concentrations 

from 250 to 1300 mg/L were continuously fed through the bioreactor achieving 100% 

removal. They determined that the removal of phenol was due almost entirely to 

biodegradation. Physical removal of phenol by stripping was measured by diverting the 

off gas through a NaOH solution and measuring the absorbed phenol. Physical removal 

was found to be less than O. 1 % of the total phenol degraded. They tested the bead 

integrity in an 8-L fluidized bed column. The column was sparged with air at a rate of 

1.4 Llmin. The beads were able to withstand high shears with no sign of breakage. The 

authors suggested that this technique might be applicable to a wide variety of other 

microorganisms. 

Stormo and Crawford (1994) developed a method to encapsulate bacteria and their 

nutrients in microbeads small enough to travel through aquifer material. They 

encapsulated Flavobacterium cells in agarose, forming microbeads with diameters of2-50 

JLm. Aquifer material was packed into 24 columns. Some of the columns were sterilized 

by irradiation. In some of the columns free Flavobacterium cells were mixed with 

aquifer material. others had agarose microimmobilized Flavobacterium cells mixed with 

the aquifer material. Other columns had free Flavobacterium cells or agarose 

microimmobilized Flavobacterium cells injected into the aquifer material at 10 mL day-I. 

The columns were all fed pentachlorophenol (PCP)-contaminated groundwater at various 
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in situ flow rates of 5.0 mL/day, 2.0 mLiday, and 12 mL/day. Effluent PCP levels were 

kept at near-detection limits by introduced bacteria until influent PCP concentrations 

exceeded 150 mg/L. The results showed that no noticeable difference oCCurred in the 

degradation rates between free and encapsulated cells in sterile or native aquifer material. 

The agarose carrier used to encapsulate the cells provided nutrients, a moisture reserve, 

and isolated them from predators. They concluded that immobilized cells' long-term 

survivability was enhanced over free cells. 

Hanaki et al. (1994) investigated the applicability of using cells immobilized by 

the PV A-boric acid method in an anaerobic treatment process. They immobilized 

acetate-utilizing methanogens that are used in the anaerobic treatment process. These 

bacteria are sensitive to fluctuations in their environments, especialJy to influent quantity, 

wastewater constituents, toxic materials, and pH. Batch experiments were conducted 

under anaerobic conditions to determine the effect of toxic substances to the PYA 

immobilized methanogens. Various concentrations of toxic substances were added to 

vials containing the immobilized methanogens. The toxic substances used were phenol, 

sodium oleate (oleic acid), NiCI2 (nickel), NazS (sulfide), propionic acid (propionate), 

and NH4Cl (ammonia). They prepared the beads at different pHs by adjusting the pH 

with NazC03' The pHs ranged from 4.0 to 6.0. At a pH of 4, the initial lag phase prior 

to the active methane production was prolonged. The lag phase shortened as pH 

increased. The beads prepared at pH 4 .. 0 began methane production after continuously 

feeding with acetate for 20 days. The beads made at pH 6.0 lost gel strength and had 

poorer durability. Therefore, they concluded that the production of beads at pH 4.0 was· 

18 

c 

, 



the better immobilizing condition. The toxic effects of phenol, oleic acid and nickel were 

reduced and the authors concluded it was due to the adsorption of these substances by 

the bead material. The authors speculated that a pH gradient occurs within the beads, 

protecting the bacteria from acidic substances such as sulfide and propionic acid. The 

inhibitory effect of ammonia as compared to free cells was not reduced by either 

adsorption or formation of a pH gradient. It was observed that by increasing the 

ammonium concentration from 2000 to 6000 mg/L as nitrogen, retardation of methane 

production by unacclimated methanogens occurred in both the free and immobilized 

systems. The immobilized system had no advantage over the free cell system for the 

prevention of ammonia toxicity because a higher pH within the bead does not relieve the 

inhibitory effect by free ammonia. 

Permeable Barriers and Different Mediums Used 

Thomson et al. (1991) examined the concept of designing permeable barriers to 

stabilize, remove, or degrade groundwater contaminants in situ. Permeable barriers were 

applicable to either shallow aquifer systems ( < 20 m) which are accessible by trenching 

equipment, or deep aquifer systems which are accessible by wells. Permeable barriers 

constructed by trenching had two advantages: 1) accessibility of the medium placement 

and 2) ease of recovery of medium by re-excavation. Permeable barriers were further 

classified as either passive or active. An active barrier required continuous operation and 

maintenance. A passive barrier required little or no operation or maintenance once the 

medium is in place. Two trench-based permeable barriers were analyzed. An in situ air 
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stripper was an active barrier and consisted of a perforated pipe placed in the bottom of 

the trench and then the trench was filled with crushed limestone. Air was bubbled 

through the groundwater a~d limestone, stripping volatile compounds. The authors 

compared in situ air stripping with conventional packed tower air stripping and 

determined that l) the trench-based stripping need high pressure air compressors, but no 

water pumping equipment was needed, making operating costs less and 2) biostimulation 

did occur from the oxygen, resulting in a combined air stripping and biodegradation of 

volatile organic contaminants. A geochemical barrier for immobilizing metals from 

uranium milling tailings was described as an example of a passive permeable barrier. 

This permeable barrier concept consisted of using limestone and peat as the barrier 

medium that neutralized the acidic leachate solution. The soluble inorganic contaminants 

were immobilized on the medium. Upon exhaustion it was re-excavated and disposed 

of as a hazardous waste. The authors concluded that the permeable barrier concept had 

several advantages which include reduced capital, .and operations and maintenance costs, 

improved reliability. and less volume of treatment by-products. Another advantage the 

barrier treatment process had over conventional surface processes was that it operated 

at much lower process loading rates due to low groundwater velocities and low 

contaminant concentrations in groundwater. Therefore, the authors determined that low 

cost natural medium materials such as gravel, limestone, and peat could be utilized to 

achieve treatment. This paper focused more on physical and chemical means rather than 

biological. 

Morrison and Spangler (1993) further explored the concept of using chemical 
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barriers as a low-cost means to protect groundwater. They described a chemical barrier 

as a passive in situ water-treatment system. Chemicals used in the barrier were placed 

in the subsurface either by lining a disposal site, by trench and fill , or by injection. 

Dissolved contaminants became part of the immobile solids of the aquifer, by either 

precipitation or adsorption, as the contaminated groundwater passed through the chemical 

barrier. They conducted column studies on a precipitation barrier and a sorption barrier 

to remove metals from uranium milling tailings. They determined that a high pH was 

needed to precipitate heavy metals as hydroxides. They concluded that accurate 

groundwater characterization was more critical in determining the performance of 

sorption barriers than precipitation barriers, because each contaminant has its own pH 

for optimal adsorption. Removal was the result of a chemical reaction, not a biological 

reaction. 

Morrison (1995) conducted laboratory batch and column studies on chemical , 
reactive barriers for the purpose of evaluating the applicability for in situ remediation of 

uranium tailings. He examined sorption capacities of various contaminants under aquifer 

flow conditions on barriers containing low cost materials. Removal rates for uranium 

and molybdenum were greater than 99% and 96%, respectively. It was determined that 

ferric oxyhydroxide can immobilize metals and uranium and that it is (1) inexpensive, 

(2) injectable, (3) remained immobile after emplacement, and (4) did not reduce the 

aquifer's permeability. This was described as an abiotic system and removal was 

attributed to sorption. There was no investigation as to the possibility of biological 

removal. 
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Rumer and Ryan (1995) determined that trench excavation was usually to a depth 

of 20-30 meters using a backhoe. The backhoe created a trench 0.5-2.0 meters in width. 

The backhoe was the least costly method and the most rapid. A dragline or clamshell 

attached to a crane was used for trenches to depths of 50 to 75 meters, respectively. The 

clamshell created a trench 0.3-2.0 meters in width and the dragline created a trench 1.0-

3.0 meters in width. The clamshell and dragline were slow and used for wide, deep 

excavations . 

Rael et al. (1995) investigated the feasibility of an in situ permeable barrier to 

remove benzene from groundwater by adsorption onto a variety of medium materials. 

This technology was limited to the depth accessible by trenching equipment and therefore 

was applicable to shallow aquifer systems of less than 30 meters. The author suggested 

that, if necessary, slurry walls or sheet piles could be strategically placed to funnel the 

contaminant plume through the permeable barrier. It was concluded that a mix of 

powdered activated carbon (PAC) and sand would be a successful media. The barrier 

medium allowed the flow of water but adsorbed with the contaminant preventing further 

migration. The authors stated when the barrier reached its treatment capacity it can be 

replaced with fresh media. 

O'Hannesin (1995) field tested an in situ semipassive permeable reaction wall in 

which nutrients were introduced to enhance biodegradation of organics. The wall was 

installed across the path of a plume contaminated with trichloroethylene (TCE) and 

carbon tetrachloride. A stable anaerobic microbial popUlation was produced some 

distance downgradient from the wall. The carbon tetrachloride was removed by the 

22 

c 



anaerobic microorganisms but the TCE was not removed. This is an ongoing study and 

it is being further researched. No study was done on an aerobic system. 

Diffusion Models for Polymer Matrixes 

Tanaka et al. (1984) investigated the diffusion characteristics of several substrates 

with different molecular sizes into and out of calcium alginate beads. They used Crank's 

(1975) equation for diffusion into a sphere. The diffusion coefficients were obtained 

from the change in concentration of the substrates in a well-stirred solution. Diffusion 

values for substrates with molecular weights less than 2 X 10" agreed with those in the 

water system and could diffuse freely into and out of the gel beads. But no diffusion into 

the bead was observed from substrates with higher molecular weights such as albumin 

(MW = 6.9 X l(4), -y-globulin (MW = 1.54 X lOS) and fibringer (MW = 3.41 X lOS). . ' 

Chen et al. (1993) used a I inear adsorption model (LAM) to calculate diffusivities 

of Cu2+ in calcium alginate gel beads. They ran batch studies on calcium alginate beads 

prepared from 2 %, 3 %, 4 %, and 5 % sodium alginate solutions. Each different density 

bead was exposed to solutions containing concentrations of 0.01 M KCI, 0.001 M Ca2+. 

and 0.001 M Cu2+. The LAM model assumed that the reaction or exchange rate was 

faster than the rate of diffusion and that a dynamic equilibrium was established at every 

point throughout the bead. They compared the results from the LAM to the shrinking 

core model (SCM). The SCM was based on the observation that when examining a cross 

section of a partly reacted solid particle that the unreacted core of material was 

surrounded by an outer layer of reacted material. The metal ions diffused through the 
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transformed shell material to an unreacted core that was progressively shrinking. The 

authors concluded that the SCM and LAM took diffusion and chemical reaction into 

account, but found some critical differences . The assumptions in the SCM were: 1) 

chemical reaction rate exceeded the metal ion diffusion rate; 2) the concentration of 

diffusing metal ions approached zero at the surface of the shrinking core where the 

reaction took place; 3) the outer reacted shell is inert to the diffusing meta] ions; 4) the 

shrinkage of the unreacted core is slower than the mass transfer of metal ions toward the 

core. The LAM assumed that: 1) the chemical reaction rate exceeds the metal ion 

diffusion rate; 2) absorption is linear; and, 3) some unoccupied reaction sites are 

available for immobilization. The LAM was applied to spherical beads and the authors 

advised that it was not limited to this situation and could be applied to metal ions in ion 

exchange resins. 

Jang (1994) reevaluated the SCM calculating the diffusivity of Cu2+ in calcium 

alginate beads and compared those results to the LAM results. He determined that Chen 

et a1. (1993) had not evaluated the SCM slope correctly. Rao and Gupta (1982) reported 

that in using the SCM that data points at large times deviate from the initial straight line. 

They thought that the deviation was caused by (1) the increasing sensitivity of F(X) = 

1 - 3(i - X)2/3 + 2(1 - X) as the value of X approached 1 and that any introduced 

experimental error contributed to the uncertainty of F(X); and, (2) as the reaction front 

moved toward the unreacted core of the sphere, the reacted outer she]] thickens and 

became increasingly difficult for a new concentration profile to develop without a time 

delay. The value of X was described as the extent of the reaction, [Co - C]/[Co - c.",], 
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where C was the concentration of free metal in solution, Co was the initial concentration 

of free metal in solution, and Coo was the concentration of free metal in solution at 

equilibrium. Jang (1994) concluded that the SCM was easier to apply than'the LAM and 

that the SCM gave good approximate diffusivity values. 
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CHAPTER III 

MATERIALS AND METHODS 

Experimental Approach 

This study focused on evaluating PV A-immobilized cells as a permeable barrier 

medium for in situ bioremediation of TCP contaminated groundwater. Beads were 

prepared in accordance with the PV A-boric acid method (Hashimoto and Furukawa, 

1987; Wu and Wisecarver, 1992) using various molecular weights (MW) of PYA to 

obtain a porous, rubber-like, elastic bead for the purpose of immobilizing cells and using 

it as a permeable barrier medium. A bed of beads was characterized with its density, 

porosity, permeability, and compressibility or deformation. Batch studies were 

conducted to obtain necessary data to determine the rate of Tep diffusion into the PV A 

beads, adsorption properties of the beads, and the substrate-use rate of the mixed 

bioculture as free cells and as immobilized cells. An initial column study was conducted 

with a constant concentration of Tep fed at a constant flowrate into a column with a 

packed bed of PYA-immobilized cells. The bed of PYA beads was located between 

layers of aquifer sand. The purpose of this experiment was to simulate a "bio-trench" 

and monitor the biodegradation rate of TCP. A final column study was conducted with 

a constant concentration of Tep fed at a constant flowrate into two columns. The two 
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columns varied in size to provide different hydraulic retention times (HRT) to show the 

effect on biodegradation rates. 

Chemicals 

Polyvinyl alcohol (MW 88,000, 98% hydrolyzed; MW 115,000, 97.7% 

hydrolyzed; MW 126,000, 98% hydrolyzed) was obtained from Scientific Polymer 

Products, Inc., Ontario, NY. Alginic acid, sodium salt (low viscosity) was obtained 

from the Sigma Chemical Co., St. Louis, MO. 2,4,6 trichlorophenol (fCP) was 

obtained from Fluka Chemical Corp., Ronkonkoma, NY. 2,4,6 tribromophenoJ (TBP) 

was obtained from Acros Organics, New Jersey. Ethyl acetate and methanol were 

obtained from Fisher Scientific. Potassium bromide was obtained from 1. T Baker 

Chemical Co., Phillipsburg, NJ. All chemicals used in this study were reagent grade. 

A dilute solution of TCP was prepared by dissolving 10.0 g of 2,4,6-TCP in 0.02 

N NaOH to make a 1.0 liter solution with a final concentration of 10.0 giL. The 0.02 

N NaOH solution was prepared with distilled water (Standard Methods, 1975). A dilute 

solution of TBP was prepared by dissolving 5.0 g of 2,4,6-TBP in a 0..02 N NaOH to 

make a 1.0 liter solution with a final concentration of 5.0 giL. 

Groundwater Analysis 

Groundwater was obtained from a water wel1 located in the NE/4 NE/4 NE/4 

Section of 9-TI6N-R2E, Lincoln County, Oklahoma. The groundwater was initially 
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analyzed by the State of Oklahoma, Department of Environmental Quality, Water 

Laboratory. and the Total Organic Carbon (TOC) was analyzed by The Stover Group, 

Analyticalffoxicology Laboratories, Stillwater, Oklahoma. Standard EPA analytical 

methods were used in accordance with federal regulations (40 CFR 136). The 

groundwater analysis is given in Table 8, Appendix B. 

Preparation of PV A Beads 

The polyvinyl alcohol (PV A)-boric acid method developed by Hashimoto and 

Furukawa (1987) and modified by Wu and Wisecarver (1992) was used to prepare 

"blank" PYA beads. The "blank" beads were prepared without microorganisms for the 

purpose of comparing beads made with different molecular weights of PV A. Distilled 

water was added to 43.7 g of PYA (MW 88,000; MW 115,000; and MW 126,(00) to 

obtain a 330 mL solution. A 13% w/v (43.7 g/330 mL) ratio was maintained as 

recommended by Hashimoto and Furukawa (1987) and by Wu and Wisecarver (1992) for 

best bead strength and formation. The solution was heated to 60°C and stirred constantly 

until the PYA was dissolved. A 3.5 mL volume of a 2 % sodium alginate solution was 

added to the 330 mL PV A solution. The 2 % w/v sodium alginate solution was made by 

adding distilled water to 0.5 g of alginate acid (sodium salt) to obtain a 25 mL solution. 

The 2 % sodium alginate solution was continuously stirred for about 30 minutes until 

dissolved. The PYA-sodium alginate solution was cooled to 35°C. A 30 mL volume 

of distilled water was added to the solution and stirred thoroughly. The solution was 

then drawn through tygon tubing ([D 3.1 mm) by a peristaltic pump (Cole-Parmer 7553-
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30) and extruded through a tubing connector with a 1.0 mm diameter opening inserted 

into the end of the tubing. As droplets formed. they fell into a gently stirred boric acid 

solution to form beads. The boric acid solution was made by adding hoi water (40°C) 

to 250 g H3B03 and 20 g CaCl to obtain a 1.0 liter saturated solution. The saturated 

boric acid solution was then cooled to room temperature. Some boric acid did precipitate 

out. This ensured a saturated solution. The beads were cured in the gently stirred boric 

acid solution for 24 hours. The beads were then rinsed thoroughly in distilled water 

severa] times to remove a]] of the boric acid solution. The beads were left soaking for 

about an hour, rinsed again in distilled water, and then drained. 

Microorganisms 

Activated sludge obtained from the Georgia-Pacific Leaf River Pulp Mill, New 

Augusta, Mississippi, was used in this study. The mill operation included a bleaching 

process. According to WHO (1989) chlorophenols can unintentionally be produced from 

a chlorine bleaching process in pulp and paper-mills. Microorganisms from this type of 

mill were assumed to have had some exposure to chlorophenols and therefore capable of 

being quickly acclimated for the purpose of this project. The activated sludge was 

obtained from the recirculation line where there was a high cell concentration. The 

activated sludge was shipped and received within 24 hours. The microorganisms were 

acclimated by feeding them 10.0 mg/L TCP as their sole carbon source over a period of 

10 days with continuous aeration and addition of nutrients. 1 mL of each of the 

following nutrient solutions was added to each liter of activated sludge (Standard 

29 



Methods, 1975; Method 507): 

• Phosphate buffer solution. 8.5 g KH2PO .. , 21.75 g K2HPO .. , 33.4 g 
N~HP04' 7H20, and 1.7 g NH .. CI were dissolved in distilled water and 
then diluted to 1 liter. 

• Magnesium sulfate solution. 22.5 g MgSO .. · 7H20 were dissolved in 
distilled water and then diluted. to 1 liter. 

• Calcium chloride solution. 27.5 g CaC12 were dissolved in distilled water 
and then diluted to 1 liter. 

• Fern'c chloride solution. 0.25 g FeCI3 ' 6H20 were dissolved in distilled 
water and then diluted to 1 liter. 

A standard ratio of the weights of carbon (C), nitrogen (N), and phosphorus (P) 

was used to ensure that microorganisms were receiving minimal amounts of nutrients and 

carbon for growth. The standard ratio used for C:N:P was 100: 10:3 (Beltrame et al., 

1984). The amounts of carbon, nitrogen and phosphorus provided to the 

microorganisms in this study are shown in Table 1 and the weight ratio of C:N:P was 

100:18:188. 

TABLE 1. 

NUTRIENT REQUIREMENTS 

Amount 
Amount Amount from 

from from Nutrient Total 
TCP Groundwater Solution Amount 

Nutrients (rng/L) (mg/L) (rng/L) (mg/L) Ratio 

Carbon Source (C) 3.65 1.5 0 5.15 100 

Nitrogen Source (N) 0 0.5 0.4449 0.9449 18 

Phosphorus Source (P) 0 0 9.7 9.7 188 
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Cell Immobilization 

The activated sludge was centrifuged using an International Equipment Co. 

Clinical Centrifuge for 10 minutes at 4000 rpm to obtain biomass for immobilization. 

To determine the amount of volatile suspended solids (VSS) from the centrifuged sludge, 

5.2805 g centrifuged wet weight of biomass was ignited at 550°C in a muffle furnace for 

30 minutes, cooled to room temperature in a desiccator and then weighed (Standard 

Methods, 1975; Method 208E). 

The polyvinyl alcohol (PVA)-boric acid method. developed by Hashimoto and 

Furukawa (1987) and modified byWu and Wisecarver (1992) was used to immobilize 

43.7 g centrifuged biomass .. The procedure is outlined in Figure 2. Distilled water was 

added to 43.7 g of PYA (MW 88,(00) to obtain a 330 mL solution. The solution was 

heated to 60°C while stirring constantly until the PV A was dissolved. A 3.5 mL volume 

of a 2 % w/v sodium alginate solution was added to the PV A solution. The PV A-sodium 

alginate solution was cooled to 35°C. The centrifuged cells (43.7 g wet weight) and 10 

mLs distilled water mixed with J.3 mLs of nutrient medium were added to the cooled 

PV A-sodium alginate solution and stirred thoroughly. The solution was then drawn 

through tygon tubing (lD 3.1 mm) by a peristaltic pump (Cole-Parmer 7553-30) and 

extruded through a tubing connector with a 1.0 mm diameter opening inserted into the 

end of the tubing. As droplets formed, they fell into a gently stirred boric acid solution 

to form beads. The beads were cured in the gently stirred boric acid solution for 24 

hours. The beads were then rinsed and soaked thoroughly in distilled water several times 

to remove all of the boric acid solution. 
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I Activated Sludge I I 13 % PV A Solution I 

I Centrifuged Sludge I I Heat to 60°C I 

I Biomass I I Add 2 % Sodium Alginate Solution I 

I Add Nutrients I I Cool to 35°C 

I Mix I 
I 

I 
Drop into Saturated Boric Acid and Calcium Chloride Solution 

l 
I Rinse with DistiUed Water I 

J 
I PV A-Immobilized Beads I 

Figure 2. PV A-boric acid method to immobilize cells. 

Characterization of a Packed Bed 

Specific Gravity Determination 

The density (mass/unit volume) of a bed of beads and water were determined at 

22°C by weighing 100 mLs of drained beads and 100 mLs of water. The expression to 

determine the specific gravity of the bed of beads was given as (Smith, 1979): 

Specific gravity = Deru'1ty of Substance 
Density of Water 
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Porosity 

The porosity of a bed of beads was determined by adding 100 mLs of drained 

beads to 100 mls of water in a graduated cylinder. The water and beads were displaced 

to 175 mLs. The expression to determine the percent porosity of the bed of beads was 

given as (Smith, 1979): 

[ eVl+V2)-V3]< 00 Total Void Volume(IOO) 
% Porosity = VII) = 

Total Volume 

Where 
VI = volume of beads 
V 2 = volume of water 
V 3 = volume of displacement 

(2) 

The aquifer sand was obtained from the Oklahoma State University Agronomy 

Research Station and its particle size was determined to be between 20-40 U.S. Standard 

sieve size. The porosity of a bed of sand was determined by packing 160 g of sand into 

a 100 mL volume in a graduated cylinder. A volume of 100 mLs of water was added 

to the graduated cylinder. Equation (2) was used to determine the porosity of the sand. 

The water and sand were displaced to 170 mLs. 

Compressibility Study 

An oedometer (or consolidation test apparatus) was used to determine the 

compression behavior of a packed bed of PV A beads. The oedometer cell was 70 mm 

in diameter and 9 mm in height (Figure 3). The bottom of the cell was lined with a 
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sheet of clear plastic wrap. The cell was packed with PV A beads (Figures 4 and 5) and 

distilled water was added to the cell to simulate beads in a saturated zone. A sheet of 

clear plastic wrap was place;d on top of the PV A beads in an attempt to contain the water 

within the cell. The cell was placed under the initial vertical load of the oedometer 

(Figure 6). The applied force was gradually increased to 1.28 tons/fe over a period of 

500 minutes to simulate the overburden pressure equivalent to that found at the bottom 

of a 40.0 ft trench filled with PYA beads. Consolidation of the bed was q~tified in 

inches and read from the oedometer gauge in 1.0 minute increments. Figure 7 shows 

the compressed bed of beads after the load was removed. The compression index was 

calculated from the expression (Smith, 1979): 

Where 
Cc = Compression Index 
Ll V = Change in Volume of Bed 
V = Initial Volume of Bed 

C=AV 
c V 
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Figure 3. Oedometer cell. 

Figure 4. Packing PV A beads into oedometer cell. 
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Figure 5. Placing packed oedometer cell into ring. 
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Figure 6. Vertical load was placed on oedometer cell. 
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Figure 7. Compressed bed of PYA beads after load 
removed. 

Permeability Study 

The fall ing head permeameter test was used to determine the permeability 

coefficient (K) of a packed bed of PYA beads (Smith, t979). An illustration of the 

falling head permeameter is shown in Figure 8. PYA beads were drained and packed 

into the bottom portion of a column for the length of sample (L). Two (2) copper 

screens were placed above and below the layer of beads . A shallow layer of washed 

gravel was placed on top of the beads to hold them in place. A graduated cylinder was 

placed below the column to catch the flow of water. Water was added to the column to 

a certain height (h[). The valve was opened at the bottom and the stop clock was started. 

After a measured time (t), the height to which the water had fallen (h2) was determined. 
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Figure 8. Falling head permeameter test. 

The permeability coefficient was determined by ~he expression (Smith, 1979): 

~ere 

K = permeability coefficient 
L = )ength of sample 

= time 
hI = height of water 

L hi 
K=2.3 -Log -

t 10 hz 

h2 = height of which water level has fallen 

(4) 

The falling head permeameter test was used to determine the permeability 

coefficient (K) of a packed bed of aquifer sand (Smith, 1979)_ Sand was packed into the 
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bottom portion of a column at a density of 1.6 g/cm3 for the length of sample (L). Two 

(2) copper screens were placed above and below the layer of sand. A shallow layer of 

washed gravel was placed on top of the sand to hold the grains in place. A graduated 

cylinder was placed below the column to catch the flow of water. Water was added to 

the column to a certain height (h1). The valve was opened at the bottom and the stop 

clock was started. After a measured time (t), the height to which the water had fallen 

(h2) was determined. Equation (4) was used to determined the permeability coefficient 

for the sand. 

Batch Studies 

Batch studies were conducted to obtain necessary data to determine the rate of 

TCP diffusion into PYA beads, adsorpti,?n properties of the beads, and the kinetic 

substrate use rate of the mixed bioculture as free cells and as immobilized cells. 

Adsorption Studies 

Blank beads made with PYA (MW 88,(00) were prepared as previously described 

and cured for 24 hours. The beads were thoroughly rinsed in distilled water. The beads 

were soaked in distilled water and then rinsed again. An initial equilibrium study was 

cond~cted on 50.0 g of blank PV A beads in a continuously stirred 500 mL volume of 

20.0 mg/L TCP solution. Samples of the solution were taken over a 24 hour period and 

analyzed for TCP concentrations to establish an equilibrium time. The adsorption study 

consisted of adding varying masses of drained beads (0.0 g, 1.0 g, 5.0 g, 10.0 g, 15.0 

g, and 20.0 g) to 5 glass flasks of 250 mL volumes. A 100 mL volume of a 24.0 mg/L 
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TCP solution was poured into each flask. Flasks were covered to prevent photolytic 

degradation and were shaken for 24 hours. 3.0 mL samples were taken from each flask 

at 0.0 hours and at 24.0 hours to measure TCP concentrations. Data were analyzed by 

plotting as an isotherm. 

An adsorption study was conducted on the 200-sieve mesh copper screen used in 

both the initial and final column studies. A 5.0 cm diameter circle of copper screen was 

placed in 100 mLs of 10.0 mg/L TCP solution and was shaken for 24 hours. 1.0 mL 

samples were taken at 0.0 hours, 3.0 hours, 7.0 hours, 12.0 hours, and 24.0 hours to 

measure TCP concentrations. 

An adsorption study was conducted on the aquifer sand used in the initial column 

study. A flask containing 100 g sand and 100 mLs of 10.0 mg/L TCP solution was 

shaken for 24 hours. 2.0 mL samples were taken at 0.0 hours, 3.0 hours, 7.0 hours, 

12.0 hours, and 24.0 hours to measure TCP concentrations. 

Diffusivity Study 

Blank beads were prepared as previously described and cured for 24 hours. The 

beads were thoroughly rinsed in distilled water. The beads were soaked in distilled water 

and then rinsed again. A reactor was set up as shown in Figure 9 by placing a 1.0 liter 

. 
glass beaker into a water bath. 499.5 mLs of groundwater was poured into the reactor. 

A 50.0 g weight of blank beads (732 beads) occupied a volume of 70 mLs. The average 

diameter of 10 PYA beads was 3.8 ± 0.36 mm (SD). The 50.0 g of blank beads were 

added to the groundwater in the reactor. The beads and water were gently stirred 

continuously throughout the experiment. The solution was brought to equilibrium by 

41 



maintaining a constant temperature of 28°C, conductivity of 1040 ILmhos/cm, and a pH 

of 7.8 for a period of 6.0 hours. A conductivity meter and probe were used to measure 

the conductivity. Conductivity of a solution is a measurement of its .ability to conduct 

a current which is attributable to the ions in solution (Sawyer etaJ., 1994). The constant 

conductivity measurement ensured that the groundwater and beads had reached 

equilibrium including any osmotic pressure that could effect the rate of diffusion. A 0.5 

mL volume of the 10 giL TCP solution was added to the reactor and mixed thoroughly 

and quickly to ensure an initial TCP concentration of 10 mg/L. Samples of the solution 

were taken at various times over a 300 minute period to measure TCP concentrations. 

The reactor and collected samples were kept covered to prevent degradation by 

photolysis. 

II 

--

Figure 9. Schematic diagram of reactor system. (1) water bath; (2) thermometer; (3) 
motorized stirrer; (4) pH electrode; (5) conductivity meter;. and, (6) glass vessel. 
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Kinetic Studies 

Immobilized CeLls 

A batch culture of activated sludge had been acclimated for 60 days by feeding 

it 10 mg/L of TCP and nutrients each day. The culture was continuously aerated. The 

activated sludge was then centrifuged to concentrate the biomass. An International 

Equipment Co. Clinical Centrifuge was used to centrifuge the sl udge at 4000 rpm for 

10.0 minutes. The wet centrifuged biomass weighed 7.2 grams. The VSS of the 

centrifuged biomass was approximately 259 mg. This approximation was made from the 

previous analysis where 0.1905 g VSS was determined from 5.2805 g of centrifuged 

biomass (0.036 g VSS/g centrifuged biomass). The biomass was entrapped in 1I6th of 

the PV A recipe used to immobilize cells as previously described, keeping a 1; 1 ratio of 

cells to PYA. The immobilized cells were cured for 24 hours. The immobilized ceUs 

were not fed any TCP during this period. The beads were rinsed in distilled water. 

A batch study was set up by placing the immobilized cells in a flask. A 1.0 L 

feed solution made with groundwater spiked with 10.0 mg/L TCP and added nutrients 

was aerated for 15 minutes. The aerated feed solution was added to the flask. The flask 

was covered to prevent photolytic degradation and gently shaken. Samples of the 

solution were taken at various times to measure TCP concentrations. The experiment 

was conducted until 100% removal of TCP was reached, which took a period of 72.0 

hrs. At the end of 72.0 hours the PV A-immobilized cells were drained and rinsed with 

groundwater. The experiment was conducted a second time by adding a fresh 1.0 L 

volume of 10.0 mg/L TCP aerated feed solution to the rinsed beads. Samples of the 
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solution were taken at various times to measure TCP concentrations. A 100% removal 

of TCP was reached within 24 hours. At the end of 24.0 hours the PYA-immobilized 

cells were drained and rinsed. The experiment was conducted a third time by adding a 

fresh 1.0 L volume of 10.0 mg/L TCP aerated feed solution to the rinsed PVA

immobilized cells. Samples of the solution for the third experiment were taken at 0.0 

hrs, 1.0 hrs, 3.0 hrs, 5.0 hrs, and 8.0 hrs to measure TCP concentrations. The same 

experiment was conducted three times in a series because it took the bacteria several days 

to overcome the effects of the immobilization process. 

The PV A-immobilized cells were drained and placed back into their original flask 

and a fresh aerated feed solution was added to the beads in the flask. A 50.0 mL 

sample volume was taken at 0.0 hrs, 1.0 hrs, 3.0 hrs, 5.0 hrs, and 8.0 hrs to measure 

the inorganic chloride ions (lCI). The inorganic chloride ion concentrations were 

determined by titration using the 408B Mercuric Nitrate Method from Standard Methods 

(1975). 

The PV A-immobilized cells were drained and rinsed with groundwater. The 

PYA-immobilized cells were placed into a 300 mL BOD bottle to measure oxygen 

consumption. A 300 mL volume of 10.0 mg/L TCP aerated feed solution was added to 

th.e beads in the BOD bottle. A glass stopper and plastic cap were placed on the BOD 

bottle. The dissolved oxygen (DO) was measured at 0.0 hrs, 1.0 hrs, 3.0 hrs, 5.0 hrs, 

8.0 hrs, and 24.0 hrs using an ORION Research Analog pH Meter (Model 301) and an 

O2 electrode (ORION Model 97-08-00). 

The PV A-immobilized cells were drained and placed back into their original flask. 
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A fresh aerated feed solution with TCP was added to the flask. The feed solution was 

changed daily for the remainder of the 45 day experiment. The batch study was 

terminated after 45 days tq examine the beads with a scanning electron microscope 

(SEM). 

Free Cells 

A batch culture of activated sludge had been acclimated for 60 days by feeding 

it 10 mg/L of Tep and nutrients each day. The culture was continuously aerated. Prior 

to beginning the kinetic study on the free cells, an initial volatile suspended solids (VSS) 

analysis was conducted according to Method 20SE, Standard Methods (1975). As a 

result of a VSS analysis of 4376 mg/L VSS, it was determined that the activated sludge 

needed to be diluted for the kinetic study. A 1. 0 L volume of the activated sludge was 

poured into an 8.0 L bottle and diluted by adding 2.0 L of tap water. The 3.0 L batch 

culture was aerated continuously. The 3.0 L batch of free cells were fed 10.0 mg/L Tep 

and nutrients. A 100.0 mL sample volume was taken at 0.0 hour, 3.0 hours, 6.0 hours, 

9.0 hours, 14.0, hours, and 22.0 hours. Each 100 mL sample was filtered under vacuum 

using a Whatman glass fiber filter. A 25.0 mL volume of the filtered sample was used 

for solid phase extraction for GC analysis. A 50.0 mL volume of the filtered sample was · 

used for Ie] analysis. The filtered residue was used for VSS analysis. Each of these 

analytical methods are further described later in this chapter under" Analytical Methods. " 
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Column Studies 

Initial Column Study 

This experiment was carried out in a cylindrical acrylic column, and was set up 

as an aerobic, continuous flow packed-bed reactor (Figure 10). The column had an 

inside diameter of 5.0 crn and a height of 20.0 cm. The column had 5.0 cm beds of 

aquifer sand above and below a 10.0 cm packed bed of drained PY A-imrnobil~ ceUs. 

The sand was packed at a density of 1.6 g/cm3 to simulate a density similar to aquifer 

densities. The PYA-immobilized cells were packed at a density of approximately 0.9869 

g/cm3• A 5.0 cm diameter 200-sieve mesh copper screen was placed between the beds 

of sand and beads. A peristaltic pump (Cole-Parmer 7553-30) with a head (Model 7013) 

and tygon tubing (10 0.8 mm, No. 6409-13) was used to pump the groundwater into the 

EFFWENT 

+ 
.. 

_!i.Oem _ 

groundw.ter 

r'~ 
T .- 5;Ocm 

eeJll[r ... · ..1 

.'-.mII I 
2O.'Ocm CELlS 

10.0 em 

1 1~ T 
..... D 5.0 em 

, ICPlfIl!N-· 1 

i<lb 01, 

10.0 mg/L rep 

INFLUENT 

o Immobilized cell. o AquiferMnd 

Figure to. Schematic diagram of initial column study. 
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columns. TCP spiked groundwater was prepared in 25.0 liter glass bottles and covered 

with aluminum foil to prevent photolytic degradation. Groundwater was spiked with 

TCP to a final concentration of 10.0 mg/L. Nutrients were added in the amount of 1.0 

mL per liter of each of the following solutions previously described: phosphate buffer 

solution; magnesium sulfate solution; calcium chloride solution; and, ferric chloride 

solution. The feed solution was aerated for 15 to 20 minutes every three or four days. 

The flow rate was maintained constant at 1.0 mL/minute. The solution was pumped into 

the base of the column, up through the bed of beads (upflow column). Samples of the 

influent and effluent were taken and concentrations of DO, TCP, ICI, and pH were 

measured. The column study was terminated after 45 days to examine the beads with 

a scanning electron microscope (SEM). 

Final Column Study 

These experiments were carried out in two cylindrical acrylic columns, and were 

set up as aerobic, continuous flow packed-bed reactors (Figure 11). The columns had 

an inside diameter of 5.0 cm and heights of column #1 and #2 were 8.0 cm and 20.0 cm, 

respectively. Both columns were packed with drained PYA-immobilized cells at a 

density of approximately 0.9869 g/cm3 • A 5.0 cm diameter 200-sieve mesh copper ' 

screen was placed at the top and bottom of each of the columns. A peristaltic pump 

(Cole-Parmer 7553-30) with two heads (Model 7013) and tygon tubing (ID 0.8 mm, No. 

6409-13) was used to pump the groundwater into the columns. The TCP-spiked 

groundwater was prepared in 25.0 liter glass bottles and covered to prevent photolytic 
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degradation. Groundwater was spiked with TCP to a final concentration of 10.0 mg/L. 

Nutrients were added in the amount of 1.0 mL per liter of each of the following solutions 

previously described: phosphate buffer solution~ magnesium sulfate solution; calcium 

chloride solution; and, ferric chloride solution. The feed solution was aerated for 15 

to 20 minutes every three or four days. The flow rate was maintained constant at 1.0 

mLiminute. The solution was pumped into the base of the columns, up through the bed 

of beads (upflow column). Samples of the influent and effluent were taken and 

concentrations of DO, TCP, ICI, and pH were measured. The column study was 

monitored for 14 days. 
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Figure 11. Schematic diagram of final column study. 

48 



Tracer Study 

Initial Tracer Study 

A step tracer study for nonideal flow, as described by Levenspiel (1962), was 

conducted on the column containing a 10.0 cm bed of beads between layers of aquifer 

sand used in the the initial column study to predict its flow behavior as a reactor. This 

technique also gave the column's flowrate and dispersion. 

Potassium bromide (KBr) was used as the tracer. Groundwater was added to 

148.9 mg of KSr and 1.0 mL of each of the nutrient solutions to make 1..0 liter of 

brom ide tracer solution. The molecular weight of KBr is 119.0 g and Br has a molecular 

weight of 79.9 g. Br was 67.14 % of a mole of KBr. Therefore, 148.9 mg of KBr was 

needed to obtain 100.0 mg of Br. The measured concentration of Sr in the tracer 

solution was 82.0 mg of Sr rather than 100 mg Sr. To initiate the tracer study the 

influent tubing was taken out of the feed bottle and placed into the tracer solution. 

Samples were taken every 12.0 minutes. Samples were taken for three theoretical 

hydraulic retention times (HRT), 324 minutes, to ensure enough time for full recovery 

of the Sr concentration. Sr concentrations were measured using a Dionex Series 

2000i/SP ion chromatograph. 

Final Tracer Study 

A pulse tracer study for nonideal flow (Levenspiel, 1962) was conducted on 

columns #1 and #2 used in the final column study. Column #1 contained an 8.0 cm bed 

of beads and column #2 contained a 20.0 cm bed of beads. The pulse tracer study was 
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to predict the flow behavior of each column as a reactor. This technique also gave the 

columns' flow rate and dispersion. 

Potassium bromide (KBr) was used as the tracer. Groundwatei' was added to 

297.9 mg of KBr and 1.0 mL of each of the nutrient sol utions to make 1.0 liter of 200 

mg/L bromide tracer solution. The molecular weight of K is 39.1 g and for Br the 

molecular weight is 79.9 g. A mole of KBr is 119.0 g. Br is 67.14% of a mole of 

KBr. Therefore 297.9 mg of KBr was needed to obtain 200.0 mg of Br. To start the 

tracer study the influent tubing for columns #1 and #2 were taken out of the feed bottle 

and each placed into 2.0 mLs of the 200 mg/L bromide tracer solution until it was gone. 

The influent tubing was then placed back into the feed bottle. Samples for column #1 

were taken every 4.0 minutes and for column #2 were taken every 10.0 minutes. 

Samples were taken from each column for three HRTs to ensure that all of the bromide 

tracer solution was recovered. Samples were taken for 120 minutes for column #1 and 

300 minutes for column #2. Br concentrations were measured using a Dionex Series 

2000i/SP ion chromatograph. 

Analytical Techniques 

Multiple extraction methods and gas chromatograph (GC) analytical techniques 

were used in analyzing the chlorophenol concentrations. 

The Voss (1981) method which was modified by Makinen (1993) for analysis of 

small volumes was used to extract chlorophenols from aqueous samples. Samples of 1.0 

mL each were acetylated with 25.0 ilL of acetic anhydride using 25.0 JLL of 5.2 M 
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K2C03 as the buffer and 25.0 ILL of 2,4,6-tribromophenol (5.0 mg/L solution) as the 

internal standard. The sample was shaken vigorously for 2.0 minutes, the cap was 

loosened, and then left to stand for 1.0 hour. The acetylated derivatives were extracted 

by adding 1.0 mL of n-hexane. A 1.0 ILL extract was used for injection. A five-point 

(0.1 mg/L, 1.0 mg/L, 5.0 mg/L, 10.0 mg/L, and 20.0 mg/L) standard calibration curve 

was prepared for the Hewlett-Packard 5890 Series II gas Chromatograph (GC) to analyze 

TCP by electron capture detector (ECD). 

The Hewlett-Packard 5890 Series 11 GC was equipped with a 63Ni electron capture 

detector (ECD) and a J&W Scientific fused silica DB-5m column (30 m, 0.32 mm i.d .• 

0.25 }Lm film thickness) . Carrier gas was helium with a flow rate of 1.3 mL/minute. 

The oven temperature program was 3.0 minutes at 65°C, ramp at lOoC/minute to 

185°C, and hold for 15 minutes at 185°C. The injector temperature was 225°C, and the 

detector temperature was 250°C. 

To identify any breakdown products analyses were performed using a GC-mass 

spectometry (MS) Hewlett-Packard 5890-5970 MSD. The GC-MS was equipped with 

a DB-I capiJ1ary column (30 m long , 0.25mm i.d. , 0.25 I'm film thickness). Helium 

was the carrier gas with a linear velocity of approximately 40 cm/s. The injection was 

1 ~L. The injector was at 250°C, and the detector was at 250°C. The oven temperature 

was 3.0 minutes at 65°C, ramped at lOoC/minute up to 230°C. for a total run time of 

20 minutes . The samples were analyzed by Dr. Dilip Sensharma, Mass Spectometry 

Laboratory, Department of Chemistry, Oklahoma State University, Still water , Oklahoma. 

ENVI-Chrom P SPE tubes (6 mLl250 mg) were used for solid phase extraction 
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of chlorophenols. The ENVJ-Chrom P SPE tubes were obtained from Supelco, Inc., 

Bellefonte, PA. The resin in the tubes was composed of nonionic, highly crosslinked 

styrene-divinylbenzene copolymer, the particle size was 8-160 #Lm, the surface area was 

800-950 m2/g, and the mean pore size was 110-175 A. The tubes were conditioned 

sequentially by washing with 6.0 mLs of ethyl acetate, 6 mLs methanol, and 6 mLs of 

deionized water. A 25 mL sample .was added to the tubes with vacuum suction. The 

tubes were dried for 5 minutes with the vacuum on. The vacuum was turned off and 

volumetric flasks were placed under the tubes. 2 mLs of ethyl acetate was added to the 

tube and allowed to wet the packing and soak for 2 minutes. The vacuum was turned 

on and the tube was washed with an additional 2 mLs and 1 mL of ethyl acetate until 5 

mLs of eluant was collected in volumetric flask. Supelco Technical Support Application 

Note 32 showed ENVI-Chrom P SPE tubes have a mean recovery percent of 103.9 ± 

2. 1 for the extraction of TCP. A series of standards were analyzed and a four-point 

calibration curve (1.0 mg/L; 5.0 mg/L; 10.0 mg/L; and 15.0 mg/L) was developed for 

the Hewlett-Packard 5890 Series II GC to analyze TCP by flame ionization detector 

(FlO). 

The Hewlett-Packard 5890 Series II GC was also equipped with an FlO and a 

Supelco GP 10% SP-2100 on 100/120 Supelcoport 1.8 m X 3.2 mm stainless steel 

column. The column had a maximum temperature limit of 350°C. The oven 

temperature setting was isothermal at 200°C. The injection temperature was 275°C and 

the detection temperature was 275°C. The carrier gas was helium with a flow of 20-30 

mLs/minute at 60-80 psi. 2 .0 JLL of extract was used for injection. 

52 



Bromide concentrations from the tracer study were determined with a Dionex 

Series 2000i/SP ion chromatograph (lC) equipped with an Ionpak AS4A-SC 4mm 

analytical column and an Ionpak AG4A-SC 4mm guard column. 0.4 mL samples of the 

effluent were injected into the IC. The IC eluent consisted of 1.8 mM N~C03 and 1.7 

mM NaHC03 • A solution of 25 mM H2SO. was used as a column regenerant. A series 

of standards were analyzed (1.0 mg/L; 2.0 mg/L; 3.0 mg/L; and, 4.0 mg/q and a four

point calibration curve was developed. 

Inorganic chloride ion concentrations were determined by titration using the 408B. 

Mercuric Nitrate Method from Standard Methods (1975). 

The pH was measured with a Fisher Scientific Accumet 900 pH meter and probe, 

model no. 13-620-108. 

Dissolved oxygen (DO) was measured with an ORION Research Analog pH 

meter/model 301 and an ORION model 97-08-00 O2 electrode. 

Volatile suspended solids (VSS) were analyzed by Method 208E. Total Volatile 

and Fixed Residue at 550°C, Standard Methods, 1975. 

Electron Micrographs 

Scanning electron microscopy samples were prefixed with 1.6% (v/v) 

glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) for 2.0 hours at room temperature 

and washed 3 times in the same buffer. The samples were postfixed for 2.0 hours .in a 

buffered 1 % (w/v) osmium tetroxide (OsO.) . solution and dehydrated in a graded series 

of ethanol. The specimens were mounted on aluminum specimen stubs and coated with 
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gold and palladium. A leol lSM 35U scanning electron microscope operating at 25 kV 

was used for examination of the samples. The samples were prepared and examined by 

Ginger Baker, Electron Microscopy Lab Manager, College of Veterinary Medicine, 

Oklahoma State University, Stillwater, Oklahoma. 

Nuclear Staining and Fluorescence Microscopy 

PV A beads containing immobilized cells were fixed in 1.6% glutaraldehyde in 0.1 

M phosphate buffer (PH 7.2) for 2 hours at room temperature. Samples were washed 

3 times in same buffer solution. The samples were dehydrated in a graded series of 

ethanol: 50, 70, 90, 95, 100, 100, 100. The samples were washed three times in 

propylene oxide. The samples were placed in a 1: 1 propylene oxide-spurrs medium 

overnight at room temperature. Samples were uncapped and placed in a vacuum 

dessicator for 7 hours and then embedded in 100% spurrs. The samples were placed in 

an oven at 60°C for 2 days. Samples were cut with a glass knife into thin sections using 

an RMC MT 6000 at 70 nm and placed on a glass slide, a drop of 2 ILg/mL of dissolved 

4,6-diamidino-2-phenylindole (DAPI) was added (Shimada et aI., 1993). The samples 

were observed with a NIKON Optiphot-2 epifluorescence microscope. The thin sections 

of the samples were prepared by Ginger Baker, Electron Microscopy Lab Manager, . 

College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma. The 

samples were stained with DAPI and examined by Dr. David H. Demezas, Department 

of Microbiology, Oklahoma State University, Stillwater, Oklahoma. 
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Summary 

Table 2 summarizes the studies and experiments conducted, specific objectives for 

each study, information expected from each study, and how that information reJates to 

the evaluation of permeable barrier technology using PVA-immobilized cells. 
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Experiment/ 
Study 

(I) Porosity test 

(2) Falling head 
permeameter test 

(3) Compression test 

(4) Diffusion study 

(5) Adsorption study 

TABLE 2. 

SUMMARY OF EXPERIMENTS/STUDIES 

Specific Expected 
Objectives Information 

Measure the ability or • specific gravity 
capacity of the packed 
bed of beads to take up • density 
groundwater into its pore 
spaces. • porosity percent 

Measure the ability of the • permeable coefficient (k). 
packed bed of beads to 
transmit groundwater. 

Measure the amount a • deformation percent 
packed bed of beads 
compresses as load is • compressibility index (Co) 
increased. 

Measure the rate at • diffusion coefficient (D) 
which TCP diffuses into 
PYA beads. 

Measure the amount of • adsorption capacity (K) 
TCP that is adsorbed 
onto the copper screen • adsorption intensity (lIn) 
and onto the PV A beads. 

How expected results relate 
to evaluation of permeable barrier technology 

The porosity percent is needed to determine if the porosity 
percent is similar or compatible to the aquifer material so that 
the flow of groundwater would not be impeded by a less 
porous material. 

, r 

Permeability is needed to determine if the groundwater will 
flow through the bed of beads and if at a compatible rate to 
that of the aquifer to avoid the bed of beads acting as a dam. 

The load applied is equivalent to the weight of a saturated 
bed of beads at 40 feet in depth. This will indicate if the 
beads are strong enough at the bottom of the ditch or if the 
deformation will effect its performance as a permeable 
barrier medium. 

. 
The diffusion rat.e is needed to know how fast the TCP 
molecules diffuse into the PV A bead to get substrate to the 
entrapped organisms. 

It is important to know amount of TCP that is physically 
removed so that any other removal will be contributed to 
biological degradation. 

I 
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TABLE 2 - Continued. 

Experiment/ Specific 
Study Objectives 

(6) Kinetic study Measure the amount of 
TCP degraded, DO 
conswned, and ICI 
released by the free cells 
and the immobilized 
cells. 

(7) Column study Simulate a "bio-trench" 
using PV A immobilized 
cells as a permeable 
barrier media 

(8) Tracer study Measure the rate at 
which the feed solution 
travels through the 
columns and the 
residence time in the 
columns. 

Expected 
Information 

• substrate utilization rates 
(r,J of the free cells and 
the immobilized cells 

• growth rate (r,) of the 
free cells. 

• biodegradation rate of 
TCP by the continuous 
flow reactor 

• effect of biodegradation 
rate by different 
hydraulic retention times 

• flowrate (Q) 

Ii reactor dispersion number 
(DlpL) 

How expected results relate 
to evaluation of permeable barrier technology 

The batch study will show that the free cells are active, 
growing, and utilizing the TCP as substrate prior to 
immobilizing them. The immobilized cells will show that 
they too are capable of utilizing TCP as a substrate. The ICI 
increases tend to confirm that dehalogeoation of TCP is 
occurring. DO consumption will verify that it is an aerobic 
system. 

The column study wiu show the applicability of PV A 
immobilized cells as a permeable barrier medium and its 
capability as a biological carrier for TCP degradation. ~. 

The tracer study will show the flow behavior and amount of 
time that the feed solution is in contact with the immobilized 
cells for degradation of TCP. 

UI 
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TABLE 2 - Continued. 

Experiment! Specific Expected 
Study Objectives Information 

(9) DAPI stain Verify that organisms • Fluorescence of the 
were immobilized organisms under an 

epi fluorescence 
microscope 

(10) Electron Verify that organisms • bacteria population 
micrographs were immobilized and to 

show any changes that • immobilization sites 
occurred over time. 

• morphology 

• colonies 

• physical changes 

(11) GC-MS Identify chlorinated • analysis of chlorinated 
compounds and support compounds 
dehalogenation of TCP. 

._--

How expected results relate 
to evaluation of permeable barrier technology 

Will verify that organisms were immobilized prior to setting 
up column study. . ' , 

Verifies that organisms were immobilized. It will show where 
the organisms are immobilized within the bead. It will show 

I the morphology and ilny colonization of the organisms. I 

The micrograph will show physical changes of the beads over 
time. 

= . ? ~ , 
,-" 
~-\ 

Will identify TCP and any intermediate compounds that may 
develop as TCP degrades. These results will tend to support 
dehalogenation of TCP. 

--- ---- ----
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

Experiments were conducted as part of this feasibility study to test PVA

immobilized cells for the purpose of being used as a permeable barrier media. Two 

aspects of using the PV A-immobilized cells as a permeable barrier medium were 

assessed: 1) physical characteristics of the PV A beads; and, 2) ability as a biological 

carrier system. An examination of the physical characteristics of the beads included 

preparing blank beads with different molecular weights of PV A. The beads were 

evaluated and compared as to ease of production, elasticity, and firmness. Porosity, 

permeability, and compressibility of a packed bed of beads were the physical parameters 

evaluated for applicability as a medium in a permeable barrier. Batch studies were 

conducted to measure adsorption, diffusion, and substrate utilization. Adsorption studies 

of the beads were studied to determine if any physical removal of TCP was occurring. 

Diffusion studies were conducted to evaluate the rate of TCP diffusion into the PYA 

beads. Kinetic studies were conducted to determine the substrate utilization rate of free 

cells and immobilized cells and the growth rate of free cells. Column studies were 

conducted to simulate the concept of PVA-immobilized cells being used as a biological 

permeable barrier system. 
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Beads Prepared with Different Molecular Weights of PV A 

Beads prepared with different molecular weights (MW) of PV A (MW 88,000; 

MW 115,000; and, MW 126,000) were evaluated qualitatively as to ease of production, 

elasticity, and firmness. The beads prepared with PV A (MW 126,(00) formed a very 

viscous solution that was difficult to extrude through the tygon tubing (ID 3: 1 mm). The 

beads were too firm, almost hard, and were not very elastic. Beads prepared with PYA 

(MW 115,000) also formed a very viscous solution that was difficul t to extrude. The 

beads were very firm and not very elastic. Beads prepared with PYA (MW 88,(00) 

formed a solution that could easily be extruded through tygon tubing (lD 3.1 mm). 

Beads were rubber-like, and elastic. The qualitative observations made and the results 

of the evaluation are shown in Table 3. 

MW (g) 

126,000 

115,000 

88,000 

TABLE 3. 

COMPARISON OF BEADS PREPARED WITH 
DIFFERENT MOLECULAR WEIGHTS 

OF POLYVINYL ALCOHOL (PV A) 

Ease of 
Making Elasticity Firmness Uniformity 

difficult, too not very hard good 
thick, very elastic 

viscous 

difficult, too not very too firm good 
thick, very elastic 

VISCOUS 

easily extruded rubber-like firm excellent 
and elastic 
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Bead size 
(mm) 

3 - 5 

3 - 5 

3 - 5 



PYA (MW 88,000) was chosen for bead preparation for the adsorption and 

diffusion studies and for cell immobilization because of .its ease in making beads and its 

rubber-like and elastic properties. A batch of beads made with 43.7 g PYA (MW 

88,(00) as described previously produced a 350 mL volume of beads which contained 

approximately 4272 beads with diameters of 3 mm to 5 mm (Figure 12) . 

Figure 12. Bead size (3mm-5mm) . 

Characterization of PV A Beads 

The results of the characterization of a packed bed of PV A beads are shown in 

Table 4 and Figures 13 and 14. The pH of the saturated beads in groundwater was taken 

prior to setti ng up the columns. The pH of the saturated beads was 8.1. The density of 

drained beads at 22°C was 0.9869 g/cm3 and density of water was 0.9793 g/cm3 . The 

bead density was slightly greater than water which would eliminate problems with water-
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saturated beads floating. The measured porosity at 22°C for the drained beads was 25 %. 

The porosity of the beads is comparable to average porosities of aquifer materials 

composed of gravel and sand (Linsley, Jr. et al., 1982). The permeabil ity' coefficient (K) 

obtained from the falling head permeameter test for the beads at 22°C was 0.1425 cm/s. 

This permeability coefficient (K) is comparable to typical permeability values found for 

coarse sand to fine gravel (Smith, 1979). Ten beads used in the permeameter test were 

selected at random. The diameter of each bead was measured as follows: 3.7 mm, 3.3 

mm, 4.5 mm, 4.3 mm, 3.8 mm, 3.9 mm, 4.1 mm, 3.5 mm, 3.8 mm, 3.6 mm. The 

average particle size of the beads was 3.8 ± 0.36 mm (SD) which can be classified as 

a uniform rounded fine gravel (Means and Parcher, 1963). 

An oedometer (or consolidation test apparatus) was used to determine the 

compression behavior of a packed bed of flY A beads. The amount of compression in 

inches was read directly from the oedometer guage. The stress, time, and consolidation 

are recorded in Table 9, Appendix B. Figure 13 shows the percent cumulative strain that 

occurs at different depths and predicted pressures. The bed of beads compressed 48 % 

with an overburden pressure equivalent to that found at the bottom of a 40 ft ditch. The 

curve shows that a rapid increase in strain was followed by a slower rate for the 

remaining test. This means there was a significant amount of compression relatively 

quickly at shallow depths and less compression as depth increased. The compressibility 

index (Cc) is a standard measurement used in soil mechanics to determine the volumetric 

strain of a soil per the unit pressure applied. The compressibility index (CJ of a 

saturated bed of PYA beads was determi'ned to be 4.08 X 10-3 m2/kN which is 

62 



comparable to a soft clay (Smith, 1979). Figure 14 shows the consolidation of a bed of 

beads over time (Means and Parcher, 1963). The greatest amount of consolidation, 

0.170 inches, took place early on in the test as stress was increased to 1.28 tonslfe over 

a 107 minute period. As stress was held constant at 1.28 tons/fe the bed of beads 

consolidated an additional 0.019 inch over a 400 minute period. Therefore, 89% of the 

total consolidation of 0.189 inches took place during the fIrst 107 minutes as stress was 

increasing and only 11 % during the last 400 minutes as stress was held constant. The 

beads had compressed into a cake that adhered together when removed from the 

oedometer cell. The beads were placed in water and within 24 hours had expanded to 

their original volume. 

Characterization of Aquifer Sand 

The results of the characterization of a packed bed of aquifer sand is shown in 

Table 4. The pH of the saturated sand was taken prior to setting up the column in the 

initial column study. The pH of the saturated sand was 6.4 to 6.9. The air dried ·sand 

was packed into the column with a density of 1.6 g/cm3 to simulate actual densities found 

in alluvial aquifers (Mandel and Shiftan, 1981). The'measured porosity at 22°C for the 

sand was 30%. The porosity of the sand was comparable to an average porosity of 

aquifer sand (Linsley, Jr., et al., 1982). The permeabilitY 'coefficient obtained from the 

permeameter test for the sand at 22°C and density of 1.6 g/cm3 was 0.0162 cm/s. The 

permeability coefficient was comparable to a medium grained sand (Smith, 1979). The 

sand was sieved and the average particle size was 0.4 mm (40 mesh size) and can be 
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classified as a uniform rounded medium sand (Means and Parcher, 1963). The 

compressibility index (CJ value of 2.87 X 10-5 m2lkN for the sand was obtained from 

Smith (1979). 

TABLE 4. 

CHARACTERISTICS OF PV A BEADS 
AND AQUIFER SAND 

Packed Bed Packed Bed 
Parameters PYA Beads Aquifer Sand 

pH 8.1 6.4-6.9 

Specific Gravity· 1.008 1.634 

Density· (P) (g/cm3) 0.9869 1.6 

Porosity (%) 25 30 

Permeability Coefficient (K) 0.1425 0.0162 
(cm/s) 

Compressibility Index (CJ 4.08 X 10-3 2.87 X 10-5 

(m2/kN) 

Particle Size (mm) 3.8 .4 

Soil Classification uniform uniform 
rounded fine rounded 

gravel medium sand 

·Density of water at 22°C was 0.9793 g/cm3 . 
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Figure 13. Compressibility of PYA Beads. 
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Batch Studies 

Adsorption Studies 
Copper Screen 

The initial concentration of Tep in the solution in contact with the copper screen 

was 10.0 mg/L. Samples of the Tep solution were taken at 0.0 hrs, 3.0 hrs , 7.0 hrs, 

12.0 hrs, and 24.0 hrs with no change in Tep concentration (Table 10, Appendix B). 

Figure 15 shows no change of Tep concentration indicating that the copper sc~een did 

not adsorb any Tep within 24.0 hours. 

Aquifer Sand 

The initial concentration of Tep in solution in contact with the sand was 10.0 

mg/L. Samples of the Tep solution were taken at 0.0 hrs, 3.0 hrs, 7.0 hrs, 12.0 hrs, 

and 24.0 hrs (Table 11, Appendix B). The effect of sorption of Tep onto the aquifer 

sand is shown in Figure 16. It was observed that the Tep concentration decreased to 9.6 

during the first 3 hours of the experiment. The Tep concentration then increased to its 

original concentration within 24.0 hours indicating that the sand did not physically 

remove any Tep. 
PYA Beads 

An initial equilibrium study was conducted on 50.0 g of blank PV A beads in a 

continuously stirred 500 mL volume of 20.0 mg/L Tep solution. Samples of the 

solution were taken at various times during a 24 hour period to analyze Tep 

concentrations (Table 12, Appendix B, and Figure 17). It was observed that the Tep 

concentration reached an equilibrium concentration of 14.5 mg/L within 3.0 hours of the 
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experiment. As a result of the equilibrium test the adsorption study was conducted for 

24.0 hours. This study consisted of adding varying masses of drained beads (0.0 g, 1.0 

g, 5.0 g, 10.0 g, 15.0 g, ~nd 20.0 g) to 5 glass flasks of 250 mL volumes. A 100 mL 

volume of a 24.0 mg/L TCP solution was poured into each flask. Flasks were covered 

to prevent photolytic degradation and were shaken for 24 hours. The data from the batch 

study (Table 13, Appendix B) were plotted and the resulting Freundlich isotherm is 

shown in Figure 18. Data were also plotted on other isotherms, but the Freundl~ch had 

the best correlation. The following linearized form of the Freundlich equation was used 

to evaluate adsorption capacity (Sawyer et aI., 1994): 

Where 
q = X/M (mg/g) 

Log q = Log K + ..!. Log C 
n 

X = amount of adsorbate (mg/L) 
M = mass of adsorbent at equilibrium (g) 
C = liquid-phase concentration (mg/L) 
K = measure of adsorption capacity (L/g) 
lin = adsorption intensity 

(5) 

A regression analysis of the data resulted in a l.inear fit within an r-squared of 

0.96, a slope of lin and an intercept Log K at Log C = 0 (C=l). The slope (lIn) was 

determined to be 11.1. The intercept Log K was determined to be -14.3 and by 

computing the antilog the K value was 5.01 X 10-15 (L/g). Figure 18 shows that fora 

10.0 mg/L TCP solution and a 20.0 mg/L TCP solution the q = X/M values are 6.31 

X 10-4 mg/g and 1.5 mg/g, respectively. As the TCP concentration increased in solution 

the adsorption capacity of the PV A beads also increased. The.refore, minimal adsorption 

occurred from the 10.0 mg/L TCP solution used in the batch and column studies. 
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Figure 15. Sorption of TCP onto Copper Screen. 
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Figure 16. Sorption of TCP onto Aquifer Sand. 
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Figure 17. Equilibrium Study for PV A Beads and TCP. 
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Diffusion Study 

The diffusion of TCP from solution into blank PYA beads is shown in Figure 19 

with the diffusion data presented in Table 14, Appendix B. The greatest amount of 

diffusion occurred during the first 45 minutes of the experiment as evidenced by the 

sharp drop in the curve from 10.0 mg/L TCP to 6.6 mg/L TCP. The curve reached an 

equilibrium concentration of 5.5 mg/L TCP at 90 minutes. The diffusion coefficient (D) 

was determined by using the shrinking core model (SCM). The SCM is described by the 

following equation (Chen et al., 1993): 

1 - 3(1 - X)2/3 + 2(1 - X) = 6D rot Cdt 
R2CO Jl 

(6) 

The extent of reaction (X) was determined by the following expression (Chen et al., 

1993): 

[Co - C] 
X= ----

[Co - C..1 
(7) 

The average binding site density of PYA (CO) was determined by the following 

"expression (lang, 1994): 

CO = [C - C ] [VOlume of reactor 1 
o .. volume of spheres 

(8) 

The values for F(X) = 1 - 3(I_X)2/3 + 2(1 - X) were calculated (Exhibit C) and are 

presented in Table 15, Appendix B. The integration of S Cdt was evaluated by the 

trapezoid rule and calculations are shown in Exhibit C. Determined values are presented 

in Table 15, Appendix B. The slope was obtained from the curve of F(X) = 1 - 3(1-
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X)213 + 2(1 - X) VS S Cdt (Figure 20). A regression analysis of the data resulted in 

a linear fit within an r-squared of 0.94. 

Diffusivity (D) was determined from the following equation (Chen et al., 1993): 

[Slope]CO R2 D = ...::.-.....:-.-=---- (9) 
6 

Where 

C = concentration of TCP in solution at a given time (mg/L) 
Co = initial concentration of TCP in solution (mg/L) 
Ceo = concentration of TCP in solution at equilibrium (mg/L) 
CO = average binding site density of PV A (mg/L) 
D = diffusion coefficient (cm2/s) 
R = radius of bead (cm) 
t = time (s) 
X = extent of reaction 

The average binding site density of PV A was determined from Equation (8) to be 

32.1 mg/L (Appendix C). The concentration ofTCP in solution at equilibrium (Ceo) was 

5.5 mg/L. The volume of the reactor was 500 mLs and the volume of spheres was 70 

mLs. -The slope of the curve of F(X) _ = 1 - 3(1-X)2/3 + 2(1 - X) vs r edt was 

determined to be 0.9625 X 10-3 L/mg·min. _ The average radius (R) of the beads was 

0.19 cm. The D coefficient was determined from Equation (9) to be 3.1 X 1O~ cm2/s 

(Appendix C). This was similar in comparison to rates of diffusion into other bead 
I 

materials. Jang (1994) reported a similar D coefficient of 1.18 X 10-5 cm2/s for 

diffusivity of Cu2+ into 2 % alginate beads. Tanaka (1984) reported a D coefficient of 

6.8 X 10-6 crn2/s for diffusivity of glucose into 2% Ca-alginate gel beads. 
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Kinetic Studies 

Free Cells - Biodegradation of Tep 

This batch experiment was conducted to determine the growth rate of the free 

cells and the substrate utilization rate for TCP as the sole carbon source. A batch cultUre 

of the activated sludge obtained from the pulp mill was aerated and fed 10.0 mg/L of 

TCP per day including additional nutrients. The biodegradation of TCP by the free cells 

is presented in Table 16, Appendix B. Figure 21 shows a 55 % removal of TCP within 

6.0 hours and a 100% removal within 9.0 hours. A concentration of 10.0 mg/L of TCP 

biodegraded within 9.0 hours giving a substrate utilization rate (r,J of 1.11 mg/L' hr. 

The rate of growth of bacterial cells for a batch culture can be defined by the 

following expression (Tchobanoglous and Burton, 1991): 

dX 
r =-

g dt 
(10) 

Where 
rg = rate of bacterial growth, mg/L'hr 
X = concentration of microorganisms, mg/L 
t = time, hr 

The results of the VSS analysis are presented in Table 16, Appendix B. The VSS 

increased from 888 mg VSS/L to 923 mg VSS/L within 9.0 hours. From Equation 10 

this gave a growth rate (rg) of 3.9 mg VSS/L' hr. 

The following stoichiometric equation for aerobic mineralization of TCP shows 
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that 3 moles of HCI are produced per mole of TCP (Makinen, et aI., 1993). 

(11) 

The theoretical increase of inorganic chlorides was predicted to be 5.39 mg/L for 

dehalogenation of 10.0 mg/L of TCP as follows: 

10 mg/L TCP (3 moles Cl-) 35.5 g/mole CI- = 5.39 mg/L CI- (12) 
197.5 g/mole TCP mole TCP 

Theoretical inorganic chloride releases based on TCP concentrations were predicted and 

are presented in Table 16, Appendix B. Measured inorganic chloride releases had an 

overall increase of 8.0 mg/L (550 mg/L - 558 mg/L) over a period of 9.0 hours in which 

10.0 mg/L was removed. The 8.0 mg/L ICI increase tends to confrrm dehalogenation 

of TCP. Measured ICI data are presented in Table 16, Appendix B. Theoretical and 

measured Ie] releases are compared in Figure 22. The theoretical and the measured 

inorganic chloride increases were very close in value, but with measured values being 

slightly higher. These small differences in value could result from human error. 

Influent samples (groundwater with 10.0 mg/L TCP and added nutrients) were 
" 

spiked with known ct- concentrations of 0.0 mg/L, 3.0 mg/L, 5.0 mg/L, and 7.0 mg/L. 

Each sample was analyzed using the 408B. Mercuric Nitrate Method from Standard 

Methods (1975). The tota] concentrations of ct- for each samp]e were determined to be 

162 mg/L, 165 mg/L, 167 mg/L, and 169 mg/L, respectively. The results showed that 

an increase as low as 3.0 mg/L Cl- was detected using this method of analysis. 
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Immobilized Cells - Biodegradation of TCP 

This batch experiment was conducted to determine the substrate utilization rate 

of TCP as the sole carbon ~ource. The wet centrifuged biomass used in this experiment 

for immobilization weighed 7.2 grams. The VSS of the centrifuged biomass was 

approximately 259 mg. This approximation was made from a previous analysis where 

0.1905 g VSS was determined from 5.2805 g of centrifuged biomass (0.036 g VSS/g 

centrifuged biomass). Therefore, approximately 259 mg VSS was immobilized in PV A 

beads. The biodegradation of TCP by the immobilized cells is presented in Table 17, 

Appendix B. The experiment was done three times in a series. The removal rate was 

progressively faster for each subsequent experiment. Figure 23 shows that it took 72 

hours after the cells were first immobilized for 100% removal. The second time it took 

24 hours for 100% removal and the third time it took 5.0 hrs for complete removal of 

TCP. 

Different methods to determine the rate of growth of the bacteria were researched 

and evaluated. Such methods considered were optical density, weighing th.e beads, and 

measurement of protein. These methods were not used because they could not be 

reliably applied to bacteria immobilized in PV A. The activated sludge used in this study 

was a mixed bioculture containing particles of sand and grit which would distort optical 

density results. Weighing the beads to determine any increase in mass which could be 

attributed to bacterial growth was considered as a viable method. The potential problem 

with this method was accuracy because of the extremely small weight changes. 

Measuring the protein was another method considered, but the PYA beads could not be 
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dissolved without destroying the bacteria. Therefore the rate of growth of bacteria inside 

the beads was not determined. 

The substrate utilization rates (raJ were determined for the ftrst, second, and third 

experiments to be 0.139 mg/L' hr, 0.417 mg/L' hr, and 2.0 mg/L' hr, respectively. 

The rlU was progressively faster for each subsequent experiment which suggested that the 

immobilized cells needed time to overcome the effects of immobilization, such as low 

pH conditions. The DO and ICI releases were measured during the third experiment. 

Inorganic chloride releases were measured and are presented in Table 18, 

Appendix B. Figure 24 shows the theoretical increase in ICI that was determined for the 

dehalogenation of to.O mg/L TCP as compared to -the measured increases in ICI from 

the immobilized cells. The measured ICI value of 7.0 mg/L at 5.0 hours for the 

complete dehalogenation of 10.0 mg/L TCP was slightly higher than the 5.39 mg/L 

theoretical ICI value. The measured increases in ICI tend to confirm that complete 

dehalogenation of TCP occurred. 

Theoretical oxygen consumption was predicted from Equation (11) to be 0.89 

. mg/L oxygen per 1.0 mg/L TCP biodegraded. To biodegrade 10.0 mg/L TCP 

approximately 8.9 mg/L oxygen would need to be consumed. There was a 2.6 mg/L 

decrease in dissolved oxygen (DO) (8.6 mg/L - 6.0 mg/L) over a period of 5.0 hours. 

The DO consumption of 2.6 mg/L gave evidence of aerobic activity occurring, but too 

low to prove complete aerobic biodegradation of 10.0 mg/L TCP. 

This batch culture of immobilized cells was continued for 45 days by feeding it 

10.0 mg/L of TCP, including additional nutrients daily. Samples of the TCP solution 
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were collected on the 45th day of operation. Samples were extracted using the Voss 

(1981) method as previously described. The Voss extraction method produced acetylated 

derivatives of the original chlorinated compounds. The samples were analyzed by GC

ECD which showed an initial TCP concentration of 10.0 mg/L at 0.0 hours and a final 

TCP concentration of 0.0 mg/L at 5.0 hours. The same samples were analyzed by GC

MS and the resulting chromatographs for the samples at 0.0 hours and 5.0 hours are 

shown in Figures 25 and 26, respectively. The chromatograph in Figure 25 for the 

sample at 0.0 hours, with a known concentration of 10.0 mg/L TCP, shows a peak at 

11.1 minutes. A mass spectrum scan was completed on this peak and it was identified 

as 2,4,6-trichlorophenyl acetate. 2,4,6-trichlorophenyl acetate was the acetylated 

derivative of 2,4,6-TCP. The chromatograph in Figure 26 for the sample taken at 5.0 

hours shows no peaks for TCP or any intermediate chlorinated compounds which further 

supports the complete dehalogenation of 10.0 mg/L of TCP. 

This batch study was terminated after 45 days of continuous operation to examine 

changes to the beads. The beads appeared to be resilient, firm, and structurally sound. 

81 



paz 

14 

12 -...I -c::n 
E -c 
0 
:= ca .. -c 
CP 
() 
C 
0 
0 
Q. 4 
0 
~ 

2 

0 
0 5 10 15 20 ' 25 

Time (hrs) 

Figure 21. Biodegradation of TCP by Free Cells. 

82 



559 

558 

._------_ .. __ ._-
---._-.... 

::J' - 557 en 
E - 556 CD 

"C 
'i: 555 .2 
.c 
0 554 
u -c 553 as 
en .. 

552 0 
c 

551 

5 10 15 20 25 
Time (hrs) 

I ~ Theoretical ICI --_. Measured ICI 

Figure 22. Inorganic Chloride Released by Free Cells_ 

83 



::J -= E -c 
o 
;:; 
as 
~ -c 
C» 
u 
c 
o 
o 
D. 
o 
t-

12~--------~--~======~=====---~~====~~ 

8 

6 

4 

2 

\,. 
~\ 
~ 
\ 
\. 
~ 

\ 
\ , .. 

\ 

\'b." 
...... 

" 
O+---~h-----~~--~----~----~~--~----~~~~ 

o 10 20 30 40 50 60 70 80 
Time (hrs) 

I ....... 1 st Feeding -8-' 2nd Feeding --- 3rd Feeding 

Figure 23. Biodegradation of TCP by Immobilized Cells. 

84 



168~----------------------------------------~ 

167 
:::r -0) 166 
E -cu 165 

"C 
i: o ::c 164 
o 
£ 163 c 
as 
0) .. 
o c 

162 

./'Ili 
/' 

./ 
.i 

161 / 

.. ,. / 
.,-' 

.' 

.--
-"" 

-,., 

" .. ,l' · 

,.,,,,, 

.... -
/ 

.~." ,,' 

.-~ .... ,. ~. 

_...-..•.. 

160.;r/--~----~----~--------~----~--~----~ 
o 1 2 3 4 

Time (hrs) 
5 

1-8- Theoretical ICI ~- Measured ICI 

6 7 

Figure 24. Inorganic Chloride Released by Immobilized Cells. 

85 

8 



undance--------------TIC~lfo30560-i"_:·b--· ·· -

""" 1 
10000 i 

"o:L~._ 
ime --, 5 .00 

l 
I ~; 

10.00 
I 

15. 00 

Fundance Scan 35 9 (11.128 min) : EOJ0 5601.D ( ~) 

43 1 8 

5000 

238 

36 53 
0 

m/ z--> 40 60 BO 100 120 140 160 180 20 0 220 240 
undanc e # 99074 : 2,4,6-trichl orophenyl acetate ( . ) 

4 

5000 19 8 

/ z -- > 

Figure 25. GC-MS chromatograph of initial concentration of 10.0 mg/L 
TCP from batch study of immobilized cells. 

Abundanc e 
I 8000 

I 
I 
I 
I 

6000 

400 0 

2000 

TIC: EOJ05 602 .D 

OL-~~I-~~~~-'I-~_~~-'I~-~_~-rl -'~----'I-~_~-r-ri ~-~Y-
ime~ - > 5.00 10 . 00 15. 00 20 . 00 25.00 30.00 

Figure 26. GC-MS chromatograph of sample from batch study of 
immobilized cells taken at 5.0 hr5. 

86 



Tracer Studies 

Initial Tracer Study 

A step tracer study was conducted on the column used in the initial column study. 

This column contained a 10.0 cm bed of PYA-immobilized cells between 5.0 cm beds 

of aquifer sand. The volume of the reactor (Vr). which included beads and sand, was 

392.7 cm3• The measured concentration of Br in the influent tracer solution was 82.0 

mg/L of Br. The effluent Br concentrations and volumes taken are presented in Table 

19, Appendix B. 

The mean residence time of the fluid in the column was determined by the 

following (Levenspiel, 1962): 

V.w.l_ . 
't' = - = mean re~lUCnce time 

v 

and the reduced time was determined by the following (Levenspiel, 1962): 

t a = - = reduced time 
"t' 

"Where 
t = time, min 
., = mean residence time, min 
V = volume of the reactor occupied by fluids, mL or cm3 

JI = volumetric flow, mL/min 

(13) 

(14) 

The volumetric flowrate for the column was determined by taking the volume of 

effluent collected during the tracer study and"dividing by the number of minutes the study 
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lasted. The average volumetric flow for the column was determined to be 0.973 

mL/min. The volume of the reactor occupied by fluids (V) was determined by 

mUltiplying the volume of the reactor (Vr) by the the void space or porosity of the 

column. The column was composed of 50% sand with a porosity of 30% and 50% PYA 

beads with a porosity of 25 %. The overall void space within the column was 27.5 % of 

the Yr' By using Equation (13) the mean residence time for the column was determined 

to be 111.1 minutes. This residence time (7) was used to determine the reduced time (0) 

for each data point from Equation (14). Tracer data are presented in Table 19,. Appendix 

B. 

The area under the curve of a plot of Effluent Bromide Concentrations vs. 

Effluent Volumes was the amount of Br recovered during the tracer study. The area 

under the curve in Figure 27 was 'determined by counting squares. The resulting area 

equalled 10.8 mg of Br. A mass balance of the Br concentration was determined by 

substracting from the total effluent volume of 349.75 mLs the volume of pore water 

displaced (108 mLs) and the volume of .Br tracer solution remaining (l08 mLs) in the 

column. The 133.75 mL influent volume of 82.0 mg/L Br solution resulted in a total 

input Br mass of 10.97 mg. This column had a 98 % Sr recovery. 

The F curve (F=C/Co vs. 8) was plotted from the data in Table 19, Appendix B, 

and is shown in Figure 28. The F curve had three slopes which may have indicated the 

flow of Br through three different media zones within the column. Theoretically, this 

could be explained as follows: the first slope represents the flow through the first bed of 

sand; the flat area of the curve represents the flow through the layer of beads; and, the 
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was the flow through the upper bed of sand. The inflection points of the curve represent 

the interfaces between each bed. The fIrst and third slopes were similar, indicating the 

same amount of dispersion. The second slope, which was almost flat, indicated a very 

large amount of dispersion. The vessel dispersion number DIILL was approximated to be 

0.2 by comparing the slopes of the curve from Figure 28 to those predicted by 

Levenspiel (1962). The lower incline of the slopes indicated a large amount of 

dispersion within the column. The first segment of the curve reached its point of 

maximum slope at (J = 1.0; the second segment of the curve reached its point of 

maximum slope at (J = 1.75; and, the third segment of the curve reached its point of 

maximum slope at (J = 2 .. 5. 
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Final Tracer Study 

The bromide concentrations analyzed from the pulse tracer study for columns #1 

and #2 are presented in Tables 20 and 21, Appendix B. The final column study used two 

columns containing PYA-immobilized cells only. Column #1 had a volume of 157 cm3 

and column #2 had a volume of 392.7 cm3 • The volumetric flowrate for each column 

was determined by taking the volumes of effluent collected during the tracer study and 

dividing by the number of minutes the study lasted. Column #1 and #2 had average 

flowrates of 1.05 and 1.02 mL/min, respectively. 

The area under the curve of a plot of Effluent Bromide Concentrations vs . . 

Effluent Volumes was the amount of Br recovered during the tracer study. The areas 

under the curves in Figures 29 and 30 were determined by counting squares. The 

resulting areas equalled 0.398 mg and 0.386 mg for columns #1 and #2, respectiveJ.y. 

An influent pulse of 2.0 mL volume of 200 mg/L Br gave a total input Br mass of 0.4 

mg. Column #1 had a 99.5% Br recovery and column #2 had a 96.5% Br recovery. 

The following expression gives the total amount of bromide tracer added .in the 

pulse input (Levenspiel, 1962): 

Where 
C = bromide concentration (mg/L) 
t = time 

EC At (IS) 

The mean residence time was determined from the expression (Levenspiel, 1962): 
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't - ~ = mean. residence time 

Where 
T = mean residence time (min) 

and 

and 

Ec 

t e = - = reduced time 
't 

'tC E=---Ec Ilt 

(16) 

(17) 

(18) 

E, EC At, T, and (J were calculated and the values are listed in Tables 20 and 21, 

Appendix B. A plot of E vs (J for columns #1 and #2 are in Figures 31 and 32, 

respectively. The area under each of the curves in Figures 31 and 32 were determined 

by counting squares to be equal to 1.0. 

The vessel dispersion number DI ~L was calculated from the following expression 

(Levenspiel, 1962): 

(19) 

and 

(20) 
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The second term on the right of Equation 20 was ignored because its value was very 

small and an approximation was made: 

,. - (21) 
~L 2 

Correcting for the term ignored, the value of DlpL was found by trial and error. 

Column #1 had a large amount of dispersion, as shown in Figure 31 and from the DII'L 

value of 0.1933 (Levenspiel, 1962). Column #1 had rapidly risen to apeak where {/ was 

1.0, but then the peak broadened on its down slope with the curve tailing to the right. 

Column #1 was 5.0 cm in diameter and 8.0 cm in height. The shortness of the column 

in relationship to its diameter gave it some characteristics of a mixed reactor. This was 

evidenced by the broad base of the curve indicating that mixing occurred within the 

column. Column #2, had an intermediate amount of dispersion as shown in Figure 32 

and from the DlpL value of 0.0632 (Levenspiel, 1962). A walling effect potentially 

occurred in column #2 as evidenced in Figure 32 by the very low slope fluctuating about 

. the 0.5 E value. The curve then rapidly rose to a steep peak that was symmetrical about 

the point where {/ equals 1.1. The steep symmetrical curve was similar to that of a plug-

flow reactor. 
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Column Studies 

Initial Column Study 

The column in the initial column study contained a 10.0 cm bed of PV A

immobilized cells between two 5.0 cm beds of aquifer sand. This column was used to 

test the removal efficiency of TCP. The results of the study are presented in Table 22, 

Appendix B. Figure 33 shows that the influent concentration of TCP ranged between 

10.0 mg/L and 11.5 mg/L over a 45 day period. The influent concentration of TCP was 

measured to be 11.5 mg/L on the 6th day of operation and the effluent concentration was 

measured to be 6.9 mg/L. This was a 40 % reduction in TCP concentration. The TCP 

concentration was reduced by 86% on the 12th day and further reduced to ,100% by the 

14th day. The column was monitored for 45 days and continued to have 100% removal 

of Tep. 

On the 45th day of operation the lei, pH, and DO were measured. 

Stoichiometric Equations (11) and (12) showed that for the dehalogenation of 10.0 mg/L 

of TCP to occur, a release of.5. 39 mg/L cr- and a consumption of 8.9 mg/L oxygen was 

required. The ICI influent concentration was measured to be 160 mg/L and the effluent 

concentration was measured to be 167 mg/L. This was an lei increase of 7 mg/L (160-

167). The ICI increase supports the dehalogenation of TCP. 

A pH curve was prepared by titrating a 1.0 L sample of 10.0 mg/L TCP influent 

feed solution with 0.1 N Hydrochloric Acid (He)) solution (Table 23, Appendix B). The 

0.1 N HCI solution was prepared by adding 8.3 mLs of concentrated HCI to distilled 

water to make a 1.0 liter solution (Standard Methods, 1975). The pH measurements of 
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the feed solution were plotted against the milliliters of 0.1 N HCl used in the titration 

(Figure 34). Each mL of titrant contained 3.55 mg CI- as follows: 

0.1 N BCI = 0.1 M BCI = 0.1 mOle(35.5 g Cl-) = 3.55 mg CI- (22) 
L mole Bel mL titrant 

The influent had a pH of 8.3 and the effluent had a pH of 7.8. Figure 34 shows 

that a 2.0 mL volume of titrant (0.1 N Hel) was required to obtain this same pH 

decrease for a 1.0 L sample of influent feed solution. The 2.0 mL volume of titrant 

needed per 1.0 L sample had a concentration of 7.1 mg/L of Cl- (2.0 milL X 3.55 

mg/mO. The 7.1 mg/L Cl- needed to decrease the pH matched the 7.0 mg/L CI-

concentration liberated by the dehalogenation of TCP. This further supports the complete 

halogenation of TCP. 

The influent had a DO of 8.6 mg/L and the effluent had a DO of 2.5 mglL. The 

decrease in DO indicated aerobic activity. The 300 mL samples for DO measurement 

took 5.0 hours to collect. The samples were exposed to the air during the 5.0 hours 

which gave higher measured oxygen concentrations than were determined 

stoichiometrically. This was the only available method to measure DO. 

Influent and effluent samples were collected on the 45th day of operation and 

extracted using the Voss (1981) method as previously described. The Voss extraction 

method produced acetylated derivatives of the original chlorinated compounds. The 

samples were analyzed by GC-ECD which showed an influent TCP concentration of 10.0 

mg/L and an effluent TCP concentration of zero. The same samples were analyzed by 

GC-MS and resulting chromatographs for the influent and effluent are shown in Figures 
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35 and 36, respectively. The chromatograph in Figure 35 for the influent sample, with 

a measured concentration of 10.0 mg/L TCP, shows a peak at 11.1 minutes which was 

identified as 2,4,6-trichlor.opheny\ acetate. 2,4,6-trichlorophenyl acetate was the 

acetylated derivative of 2,4,6-TCP. The chromatograph in Figure 36 for the effluent 

sample shows no peaks for TCP or any intermediate compounds which supports 

dehalogenation of the 10.0 mg/L TCP. 

This column study was terminated after 45 days of continuous operation to 

examine changes to the beads. The beads appeared to be resilient, firm, and structurally 

sound .. 

Final Column Study 

The final column study was conducted for the purpose of comparing removal 

efficiencies of TCP between two columns that varied in size. A DAPI stain was first 

conducted on thin sections of PYA-immobilized cells. The bacteria fluoresced under the 

epifluorescence microscope. This verified that organisms containing DNA were 

immobilized within the beads prior to setting up columns #1 and #2. Column #1 had a 

bed height of 8 em, a diameter of 5 em, a volume of 157 cm3 , a porosity of 25 %, and 

a theoretical hydraulic retention time (HRT) of 39 minutes. Column #2 had a bed height 

of 20 cm, a diameter of 5 cm, a volume of 392.7 cm3 , a porosity of 25 %, and a 

theoretical hydraulic retention time (HRn of 98 minutes. The results of the studies are 

presented in Table 24, Appendix B. Figure 37 shows the influent concentration and 

effluent concentrations over a period of 14 days. The influent TCP concentration ranged 
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from 10.0 mg/L to 11.0 mg/L. It took a period of time (8-1O days) for the columns to 

reach zero concentrations in the effluent. Column #1 had 100% removal within 10 days 

and column #2 had 100% removal within 8 days. 

The ICI concentrations were measured in the influent and effluent of column #1 

and #2, and are shown in Figure 38. The 14th day of operation shows the ICI influent 

concentration was measured to be· 158 mg/L and the effluent concentrations were 

measured to be 164 mg/L for both column #1 and #2. This was an ICI increase of 6 

mg/L (158-164). The measured increases were very close in value to theoretical ICI 

values predicted from TCP concentrations. Figures 39 and 40 compare the theoretical 

and measured ICI increases from columns #1 and #2 to the % TCP removal. The curves 

are both very close in value, which tend to confirm that dehalogenation of TCP was 

occurring. 

The influent feed solution had pH ranges from 8.1 to 8.3. Column #1 and #2 had 

effluent pH values from 7.5 to 7.8. A comparison of pH values are shown in Figure 41. 

From the pH curve, Figure 34, the drop in pH from 8.3 in the influent to 7.5 pH in the 

effluents shows that a 3.0 mL volume of 0.1 N HCI would be required. This is a 10.65 

mg/L CI- concentration (3.0 mL/L X 3.55 mg/mL) which was similar in value to the leI 

cdncentration of 6.0 mg/L released from the dehalogenation of 10.0 mg/L TCP. This 

tends to support the dehalogenation of TCP. 

The influent had DO measurements ranging from 8.4 mg/L to 8.6 mg/L for both 

columns. The effluents had DO measurements decreasing to 6.6 mg/L and 7.5 mg/L, 

for columns #1 and #2 respectively, and are shown in Figure 42. The decrease in DO 
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indicated aerobic activity. Both curves steadily decreased over time. The 300 mL 

samples for DO measurement took 5.0 hours to collect. The samples were exposed to 

the air during the 5.0 hours, which gave higher measured oxygen concentrations than 

determined stoichiometrically. This was the only method available to measure DO. 
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Micrographs of PYA Beads and Immobilized Cells 

Figures 43 and 44 show the surface and shape of a freshly made PV A bead 

without microorganisms. The outer surface of the bead is smooth and is spherical in 

shape. The bead was magnified 30X and is approximately 2.5 mm in diameter. Figure 

44 has been magnified 72X. Figure 45 has been magnified 15,OOOX in order to see the 

network of pores on the outer surface of the bead. Figure 46 has been magnified 860X 

to show the inner surface of the PV A bead without microorganisms. 

Figures 47 and 48 show the surface and shape of a freshly made PYA bead with 

immobilized microorganisms. The bead in Figure 47 is spherical and was magnified 

30X. The size of the bead in Figure 47 is approximately 2.7 mm in diameter. The bead 

in Figure 48 was magnified 72X. Figure 49 is a cross-section of a freshly made PV A 

bead with immobilized microorganisms magnified 32X. Figure 50 was magnified 

15,OOOX in order to see the network of pores on the outer surface. Tep in solution 

diffuses into the beads through these pores. Figure 51 was magnified 860X to show the 

inner surface of the bead. Tiny star-shapes can be seen on the inner surface of this bead. 

The star-shapes were magnified to ll,OOOX in Figure 52 and further magnified to 

20,OOOX in Figure 53. The cross linking of the polymer and the pores can be seen behind 

the star-shapes. The star-shapes are approximately 2.2 X 10-3 mm to 4.0 X 10-3 mm in 

length. These star-shapes were not seen in the PYA beads without microorganisms. It 

was speculated that the star-shapes were bacteria that aggregated together, because they 

were only visible in the beads containing immobilized bacteria. It is further speculated 

that the method and chemicals used for immobilization caused the microorganisms to 
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aggregate together, forming star-shapes. The immobilization process was conducted 

twice, with the same results. Figure 54 shows the mixed culture of microorganisms that 

were immobilized in the PV A beads. Figure 54 is magnified 20,OOOX. 

PV A-immobilized cells were used in a batch experiment and in a column study 

for 45 days. Figure 55 shows a whole bead from the batch study, 45 days old, 

magnified 30X. Figure 56 shows a cross-section of an immobilized bead ~nified 26X 

from the batch experiment after 45 days. The outer surface has become more porous. 

The inner area appears to have more channels and pockets than the freshly made beads. 

Figure 57 is a cross-section of an immobilized bead magnified 32X from the batch 

experiment in which a pocket of spherical shaped cells has been enlarged by 660X in 

Figure 58. The same pocket was further enlarged 3600X in Figure 59 to better show the 

cells, pores, and cross-linking. · The organisms are approximately 1.4 X 10-3 mm to 4_0 

X 10-3 mm in diameter. 

Figure 60 shows the whole bead, 45 days old, magnified 32X, from the column 

study. The bead is not as smooth as the bead from the batch experiment. Figure 61 is 

a cross-section of a bead from the column study that was magnified 32X. It appears to 

have more channels and pockets than the freshly made beads. Figure 62 is an 

enlargement of the designated area on Figure 61. It was magnified 3600X and shows 

cells, cross-linking, and pores inside the bead. The cells are approximately 8.3 X 10-4 

mm to 2.2 X 10-3 mm in diameter. There were no star-shaped bacteria seen in the beads 

after 45 days. Figure 63 is the outer surface of the bead magnified 11,OOOX showing 

that microorganisms are attached to the outer areas of the beads. 
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Summary 

The purpose of the initial feasibility study was to evaluate PV A beads as a 

permeable barrier media. The two aspects of using the PV A beads as a permeable 

barrier were assessed: 1) physical characteristics of the beads; and, 2) ability as a 

biological carrier system. The results of the preliminary studies, batch studies, and 

column studies that were conducted for this research are summarized and evaluated in 

Table 5. 
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Figure 43. PYA bead without microorganisms (30X). 

Figure 44. PYA bead without microorganisms (72X). 
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Figure 45. PYA bead without microorganisms - outer 
surface (15,OOOX). 

Figure 46. PYA bead without microorganisms - inside 
surface (860X). 
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Figure 47. PV A bead with microorganisms 2 days old 
(30X). 

Figure 48. PYA bead with microorganisms, 2 days old 
(72X). 
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Figure 49. Cross-section of PYA bead with 
microorganisms 2 days old (32X) . 

Figure 50. Surface of PYA bead with microorganisms, 2 
days old (1 5 ,OOOX) . 
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Figure 51. Inner surface of PV A bead with 
microorganisms , 2 days old (860X). 

Figure 52. Inside of PV A bead with microorganisms shows 
star-shaped clusters, 2 days old (ll,OOOX). 
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Figure 53. The same star-shaped clusters as shown in 
Figure 47 enlarged (20,OOOX) . 

Figure 54. Centrifuged biomass prior to immobilizing into 
PYA beads (20,OOOX). 
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Figure 55. PYA bead with microorganisms from batch 
experiment, 45 days old (30X) . 

Figure 56. Cross-section of PV A bead with microorganisms 
from batch experiment, 45 days old (26X). 
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Figure 57. Cross-section of PV A bead with microorganisms 
in which the designated area is a pocket of cells (32X). 

Figure 58. Pocket of cells en]arged from Figure 57, 45 
days old (660X). 
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Figure 59. A further magni fication of the same cells as 
shown in Figure 58, (3600X). 

Figure 60. PV A bead with microorganisms from the 
column study, 45 days old (32X). 
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Figure 61. Cross-section of PYA bead with microorganisms 
from the column study, 45 days old (32X). 

Figure 62. Population of cells inside the PYA bead from 
the column study, enlarged from designated area in Figure 
61, 45 days old (3600X). 
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Figure 63. PYA bead with microorganisms from the 
column study showing immobilized cells on the outer 
surface, 45 days ol.d ( 11 ,OOOX). 
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TABLE 5. 

SUMMARY OF RESULTS 

jEx----- u I --.. J ---~-l I Experiment/ I 

Study __ _ _._ Results __ Evaluation _ i 

(I ) 

(2) 

(3) 

Porosity test 

Falling head 
permeameter test 

Compression test 

• specific gravity @ 22°C 
- beads 

• density @ 2rC 
- beads 
- water 
- sand 

• porosity percent 
-beads 
- sand 

• permeable coefficient (k) 
-beads 
- sand 

• defonnation percent of beads 

• compressibility index (CJ 
- beads 
- sand 

1.008 

0.9869 g/cml. 
0.9793 g/cml 
1.6 gtcm3 

25% 
30% 

0.1425 cmls 
0.0162 cmls 

48% 

4.08 X 10-3 m' /lcN 
2.87 X 10-' m2/lcN 

The 25 % porosity of the bed of beads was comparable to 
aquifers composed of gravel and sand and would not impede the 
flow of groundwater. 

The density of the beads was greater than water, which 
eliminated flotation problems. . 

. _ . .r. 

The permeability coefficient fot the bed of beads was 
comparable to values for course sand to fine gravel and would 
allow the flow of water through the "bio-trench· at a compatible 
rate. 

The bed of beads had similar compressibility properties as a 
very soft clay. The bed of beads compressed 48 % with an 
overburden pressure equivalent to that found at the bottom of a 
40 ft ditch. Its porosity and permeability could be effected with 
increased depth. The compressed bed returned to its original 
size within 24.0 hours with ~ apparent permanent deformation. 

-N 
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TABLE 5 - Continued. 

Experiment/ 
Study Results Evaluation 

(4) Diffusion study • diffusion coefficient (D) 3.1 X 1O~ cm2/s TCP was able to diffuse into the PYA bead at a rate similar to 
that in other bead materials used to immobilize bacteria. 

(5) Adsorption study • adsorption capacity (K) 5.01 X 10.13 Llg The adsorption capacity was so low that virtually no physical 
removal of TCP by adsorption ~ook place. Therefore any TCP 

• adsorption intensity (lin) 11.1 removal was attributed to biodegradation. 

(6) Kinetic study • Free Cells The substrate utilization rate and growth rate of the free cells 
substrate use rate (r..,) 1.11 mg/L' hr showed that the bacteria were active. growing. and utilizing the 
growth rate (r,) 3.9 mg VSS/L· hr TCP as substrate prior to immobilization. The immobilized 
ICI released 8.0 mg/L cells utilized TCP as a substrate. The lCI increases tend to 

suppon that debalogenation of TCP occurred. GC-MS 
• Immobilized Cells analyses on samples taken from the immobilized cell study 

substrate use rate (r..,) further suppon the debalogenation of TCP. The DO 
consumption veri fied that it was an aerobic system. 

1st) 0.14 mg/L' hr 
! 2nd) 0.47 mg/L' hr • , '.~ L~:. :~O c.J L:-:::::-~.:~ -:._ 

t. 3rd) 2.0 mg/L' hr \, < , .. .. - ci, .. .., .,.n., r:: ..... ,·J'·r"--·;,' 
, ... .1 . <~ ~ " . __ ._,J L.~~ _~" C ~. 

1;. , I K "l .. . . l ,,' .. ? i.' t.:::: 1 L l "~i"_~ t~~"]- ~ ~ 
ICI released 7.0 mg/L 

, . 
, ~ : Ll':"~"'- j. 

-~ 
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TABLE 5 - Continued. 

(7) 

Experiment/ 
Study 

Tracer studies 

Results 

• Initial Tracer Study 

tracer study 
flowrate (Q) 
dispersion (D/",L) 
HRT 
% Br recovery 

• Final Tracer Study 

Column #/ 
tracer study 
flowrate (Q) 
dispersion (D/",L) 
HRT 
% Br recovery 

Column 112 
tracer study 
Oowrate (Q) 
dispersion (D/",L) 
HRT 
% .Br recovery 

step/F curve 
0.973 mL/min 
0.2 
111.1 min 
98% 

. pulse/E curve 
1. 05 mLlmin 
0.1933 
39 min 
99.5% 

pulse/E curve 
1.02 mL/min 
0.0632 
98 min 
96.5% 

Evaluation 

The column in the initial column study had a large amount of 
dispersion taking place. The F-curve had three slopes which 
indicated that the flow traveled through three different mediums 
(lower bed of sand, beads, and upper bed of sand). The 
inflection points on the curve represented the interfaces between 
the different mediums. The first maximum slope occurred at the 
point where (} equals 1.0 and the second maximum slope 
occurred at the point where (J equals 1.75, and the third 
maximum slope occurred at the point where (} equals 2.25. 

Column # I displayed a large amount of dispersion. Bromide 
concentrations showed up at the effluent port immediately and 
peaked at the point where (} equals 1.0. The E curve had a 
broad base indicating a large amount of dispersion similar to a 
completely mixed reactor. 

Column #2 displayed an intermediate amount of dispersion. The 
E curve showed that a walling effect took place and then a sharp 
peak occurred at the point where (} equals 1. I. The sharp peak 
was similar to a plug flow reactor. 

I 

-N 
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TABLE 5 - Continued. 

(8) 

Experiment/ 
Study 

Colwnn Studies 

Results 

• Initial Column Study (10.0 cm of beads with sand) 

% removal 
ICI increase 
pH decrease 
DO decrease 

• Final Column Study 

100% within 14 days . 
160 mg/L to 167 mg/L 
8.3 to 7.8 
8.6 mg/L to 2.5 mg/L 

ColuTTUl III (8.0 em of beads) 

% TCP removal 100% within 10 days 
ICI increase 158 mg/L to 164 mg/L 
pH decrease 8.3 to 7.5 
DO decrease 8.6 mg/L to 6.6 mg/L 

ColuTTUl 112 (20.0 cm of beads) 

% TCP removal )00% within 8 days 
ICI increase 158 mglL to 164 mg/L 
pH decrease 8.3 to 7.5 
DO decrease 8.6 mg/L to 7.5 mg/L 

Evaluation 

The initial colwnn study had 100% removal within 14 days. An 
increase in ICI, with a concomitant decrease in pH, tends to 
support dehalogenation of TCP. A GC-MS analysis further 
supported dehalogenation of TCP. 

Column #1 had 100% removal ofTCP within 10 days. 
Thereafter, it was as efficient as column #2 in removing TCP. 
An increase in ICI, with a concomitant decrease in pH, tends to 
support dehalogenation of TCP. 

Column #2 had 100% removal within 8 days. An increase in 
ICI, with a concomitant decrease in pH, tends to support 
dehalogenation of TCP. 

..-
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TABLE 5 - Continued. 

l Experiment! 
Study Results Evaluation J 

(9) 

(10) 

(II) 

DAPI stain 

Electron 
micrographs 

GC-MS analysis 

• Organisms fluoresced under the epifluorescence 
microscope 

• bacteria population 

• immobilization sites 

• morphology 

• colonies 

• physical changes to beads 

• mineralization of TCP 

The thin sections of beads containing immobilized bacteria 
fluoresced under the epifluorescence microscope. This verified 
that organisms containing DNA were immobilized within the 
beads prior to setting up the column studies. 

The micrographs verified that the organisms were immobilized 
within the beads. The centrifuged sludge, prior to 
immobilization, contained rod-shaped bacteria. The bacteria 
were speculated to be star-shaped after immobilization. The 
bacteria were spherical after 45 days. The spherical shaped 
bacteria were found congregated in pockets within the beads. 
There were some bacteria on the surface of the beads taken 
from the initial column study. No colonies were seen in the 
micrographs. 

The beads containing immobilized bacteria appeared to be more 
porous and the channels and pockets inside the beads appeared 
larger after 45 days of operation. The beads appeared to be 
resilient, firm, and structurally sound after 45 days of operation. 

The GC-MS analysis for the influent and effluent samples 
obtained from the initial column study showed that no 
intermediates developed from the removal of 10.0 mg/L TCP. 
This supported complete dehaiogenation of TCP. 
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CHAPTER V 

CONCLUS.lONS 

Based on this investigation, the results demonstrated that PV A-immobilized cells 

would be a successful permeable barrier media for use in a bio-trench to remove TCP 

in situ from groundwater. Other findings are were follows: 

1. The concept of a bio-trench using PV A-immobilized cells as a permeable 

barrier media to remove TCP from groundwater appears ta be feasible as demonstrated 

in the initial column study. The column was composed of a bed of PV A-immobilized 

cells situated between layers of sand. The column was designed to simulate a bio-trench 

system. The column had 100% removal of TCP within 14 days of operation and 

continued with the same efficiency for the remainder of the 45 day experiment. 

2. A comparison of removal efficiencies between two columns of varied sizes 

containing PYA-immobilized cells demonstrated the effect of HRTs . .It took 8 days far 

the 20 cm column to achieve 100% removal of TCP and 10 days for the 8 cm column 

to achieve 100% removal. But, once the 100% removal was reached there was no 

difference in efficjency thereafter. Both columns continued to have 100% removaL. 

3. Acclimated bacteria were able to use TCP as their sole carbon source, as 

evidenced by the free cells and immobilized cells biodegrading TCP in batch and column 

experiments. 
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4. Batch studies showed that immobilized cells needed time to overcome effects 

of immobilization, such as low pH conditions. The immobilized cells recovered from 

the effects within only 96 hours and were then capable of biodegrading 10.0 mg/L of 

TCP within 5.0 hours. 

5. Dehalogenation ofTCP by the PYA-immobilized cells in the batch and column 

studies was evidenced by the chloride increases and pH decreases. Dehalogenation of 

TCP was further supported by GC-MS analysis. 

6. After 45 days of operation, the beads appeared to be resilient, firm, and 

structurally sound. The micrographs of the beads showed them to be more porous. The 

channels and pockets within the beads appeared larger. 

7. Scanning electron micrographs showed changes in the morphology of the 

bacteria. Rod shaped bacteria were found in the centrifuged biomass prior to 

immobilization. Star-shapes were found inside PV A-beads within two days after the 

immobilization process. The star-shapes were speculated to be bacteria since they were 

only found in those beads in which centrifuged biomass was immobilized. The star

shapes were not found in the plain beads. After 45 days of operation in a batch study 

and a column study spherical bacteria were found inside the beads. 

8. It was observed that beads made with PYA (MW 88,(00) were more rubber

like and had greater, elasticity than beads made with higher molecular weights. 

9. Data obtained from the diffusion study were applied to the shrinking core 

model (SCM). It was determined that the diffusion of TCP into PYA beads was 3.1 X 

10-6 cm2/s. This diffusion value was similar in comparison to rates of diffusion into other 
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bead materials. 

10. A bed of PV A beads was characterized as to its porosity, permeability, and 

compressibility. The bed of beads had properties that were comparable to soils. Its 

compressibility was similar to a very soft clay, and porosity and permeability were 

comparable to a coarse sand and a fine gravel. Therefore, the beads used as a permeable 

barrier would not impede the flow of groundwater. 

11. The compressibility study showed that the bed of PV A beads had a 48 % 

deformation from the overburden pressure at a depth of 40 feet. Deformation could 

effect the flow of groundwater at lower depths. 

12. The adsorption capacity of PYA beads was virtually non-existent. The 

adsorption capacity (K) of the beads was 5.01 X 10-15 and 'the adsorption intensity (lIn) 

was 11.1. The very low K value and high lin value showed that minimal physical 

removal was attributed to adsorption. 
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CHAPTER VI 

SUGGESTIONS FOR FUTURE STUDY 

Based on the findings of this study, several suggestions are presented for future 

studies involving using the PV A-immobilized cells for removal of groundwater 

pollutants: 

1. Conduct batch and column studies to evaluate the removal of other pollutants 

including tetrachlorophenol and pentachlorophenol. 

2. Conduct the same batch and column experiments at ground depths that would 

be expected in its application as a bio-trench to see effects under different pressures. 

3. Conduct same experiments at different flow rates and different concentrations 

to see the removal efficiency and effect of toxicity to the immobilized cells. 

4. Conduct further studies on the star-shaped phenomena that occurs upon 

immobilization of the cells using the PV A boric-acid method. 

5. Conduct diffusion studies on aged beads containing bacteria to see effect that 

immobilization and microbial activity would have on diffusion. The microorganisms 

would need to be destroyed prior to the diffusion study to eliminate any uptake of TCP 

by the bacteria. 

6. Evaluate different methods to measure growth rate of bacteria within the 

beads. 
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7. Conduct further studies on the oxygen consumption of the immobil ized 

bacteria. 

8. Compare the PV A beads containing immobilized bacteria to other permeable 

barrier mediums. 

9. Conduct a field study using PYA immobilized cells as a permeable barrier 

medium in a "bio-trench." 
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TABLE 6. 

INFORMATION ON THE IDENTITY OF CHLOROPHENOL CONGENERS 

CAS 
Number 

95-57-8 

120-83-2 

88-06-2 

58-90-2 

Common Name 

2-monochlorophenol 

2, 4-dich lorophenoI 

2,4,6-trichlorophenol 

Abbreviation 

2-MCP 

2,4-DCP 

2,4.6-TCP 

2,3,4,6-tetrachlorophenol 2,3,4,6:-TeCP 

pentachloride PCP 

Source: WHO, 1989. 

Molecular Formula 

C6H3CIO 

C6H4C1 20 

C6H3CI30 

C6H2Cl40 

C6CIsOH 

Common Synonyms 

o-chlorophenol 
ortho-chlorophenol 

l-chloro-2-hydroxybenzene 

NCI-C55345 

NCI-C02904 

Trade 
Names 

Dowicide 
2S; Omal; 
Phenachlor 

Dowicide 6 

...... 
~ 
w 



TABLE 7. 

PHYSICAL AND CHEMICAL PROPERTIES OF CHLOROPHENOLS 

Compound Relative Density Boiling Point Melting Point Flash Vapor Log n-
Molecular CC at 760mm) (OC at 760mm) Point Pressure octanol/water 

Mass (OC) (mm) partition 
(temperature) coefficient 

2-MCP 128.56 1.2634 174.9 9.0 63.9 1(12.1°C) 2.15 

2,4-DCP 163.0 1.28 210.0 45 .0 62.0 1(76.5°C) L.. , 3.06 

2,4,6-TCP 197.45 1.49 246.0 69.5 113.9 

2,3,4,6-TeCP 231.98 1.6 150.0 70.0 1 (100°C) "~ 4.10 : 

(15 mm) 

PCP 266.35 1.978 309-310 190-191 0.12(100°C) 5.01 

Source: WHO, 1989. 

...... 
t 
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TABLE 8. 

GROUNDWATER ANALYSIS 

EPA Method 
Parameter Concentration 40 CFR Part 136 

Specific Conductance 1045.66 #Lmhos/cm 120.1 

pH 7.9 std unit 150.1 

Alkalinity (total) 237.3 mg/L 310.2 

Solids, (total dissolved) 515.1 mg/L 160.1 

Nitrite-Nitrate as N 0.5 mg/L 353.2 

Hardness (total) 106.9 mg/L 130.1 

Chloride 143.9 mg/L 325.2 

Sulfate 32.9 mg/L 375.2 

TOC 1.5 mg/L 
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TABLE 9 . 

. COMPRESSIBILITY DATA 

Stress Time Consol idation Trench Cumulative 
(tons/ft2) (min) (in) Depth (ft) Strain (%) 

0.00 0.0 0.35 1 0 0 

0.05 5.0 0.329 1.6 6.3 

0.06 11.0 0.318 1.9 9.7 

0.08 18.0 0.296 2.6 15.7 

0.11 24.0 0.273 3.6 22.2 

0. 17 30.0 0.251 5.5 28.2 

0.23 35.0 0.245 7.5 30.2 

0.38 39.0 0.238 12.3 32.2 

0.51 42.0 0.233 16.5 33.3 

0.63 60.0 0.217 20.4 37.9 

0.89 65.0 0.211 28.9 39.9 

1.02 91.0 0.190 33.1 45.9 

1.28 107.0 0.181 41.5 48.1 

1.28 200.0 0.173 41.5 50.7 

1.28 300.0 0.170 41.5 51.6 

1.28 400.0 0.166 4l.5 52.7 

1.28 500.0 0.162 4l.5 53.8 
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TABLE 10. 

ADSORPTION DATA 
Copper Screen 

Time TCP 
(hrs) (mg/L) 

o 10.0 

3 10.0 

7 10.0 

12 10.0 

24 10.0 

TABLE 11. 

ADSORPTION DATA 
Aquifer Sand 

Time TCP 
(hrs) (mg/L) 

0 10.0 

3 9.6 

7 9.8 

12 9.9 

24 10.0 
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TABLE 12. 

EQUILIBRIUM STUDY DATA 
PV A Beads and TCP 

Time TCP 
(min) (rng/L) 

0 20.0 

2 18.9 

6 17.2 

15 15.9 

30 15.5 

90 14.9 

120 14.7 

180 14.5 

420 14.0 

720 14.0 

1440 14.0 
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TABLE 13. 

FREUNDLICH ISOTHERM DATA 
PYA Beads 

CiniliaJ CfiDal X M q=X/M Log 
(rng/L) (mg/L) (mg) (g) (mg/g) q Log C 

24.0 24.000 0 0 0 0 0 

24.0 21.361 2.639 1.0 2.64 0.42 1.33 

24.0 19.147 4.853 5.0 '0.971 -0.01 1.28 

24.0 18.606 5.394 10.0 0.539 -0.27 1.27 

24.0 17.918 6.082 15.0 0.405 -0.39 1.25 

24.0 17.925 6.075 20.0 0.304 -0.52 1.25 
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TABLE 14. 

DIFFUSION STUDY DATA 

TCP 
Time Concentration 
(min) (mg/L) 

0 10.0 

2 9.0 

4 8.5 

6 8.0 

8 8.0 

15 8.0 

20 7.5 

30 6.75 

45 6.6 

90 5.5 

120 5.5 

180 5.5 

300 5.5 
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TABLE 15. 

SHRINKING CORE MODEL 
Diffusion Data 

Time (t) TCP Concentration (C) S Cdt 
(min) (mg/L) X F(x) (mg/L111in) 

0 10.0 0 0.000 0 

2 9.0 0.222 0.016 19.0 

4 8.5 0.333 0.047 36.5 

6 8.0 0.444 0.087 53.0 

8 8.0 0.444 0.087 69.0 

15 8.0 0.444 0.087 125.0 

20 7.5 0.555 0.146 164.0 

30 6.75 0.722 0.284 235.0 

45 6.6 0.755 0.321 335.1 

90 5.5 1.000 1.000 607.4 

120 5.5 1.000 1.000 772.4 

180 5.5 1;000 1.000 1102.4 

300 5.5 1.000 1.000 1762.4 
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TABLE 16. 

BATCH STUDY DATA 
Free Cells 

Cl- Cl-
Time TCP Theoretical Measured VSS 
(hrs) (mg/L) (mg/L) (mg/L) (mg/L) 

0 10.0 550.00· 550· 888 

3 7.5 55l.34·· 552 897 

6 4.5 552.96 556 905 

9 0 555.39 558 923 

14 0 555.39 559 942 

22 0 555.39 558 989 

• This represents the background Cl- concentration in the samples . 

•• 0.539 mg/L Cl- is released per 1 mg/L TCP dehalogenated; therefore, 10 mg/L - 7.5 
mg/L = 2.5 mg/L TCP dehalogenated and 2.5 X 0.539 = 1.34 mg/L CI- increase 
expected. . 
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I ,.. 
Time 
(hrs) 

0 

1 

3 

5 · 

8 

12 

18 

24 

48 

72 

TABLE 17. 

TCP BIODEGRADATION 
Immobilized Cells 

First Feeding Second Feeding 
Period Period 

I '1 
TCP TCP 

(mg/L) I (mg/L) tJf 

10.0 10.0 

9.75 9.5 

9.5 8.0 

9.0 7.0 

8.5 5.0 

8.0 2.8 

7.5 0~9 

6.8 0.0 

2.6 

0.0 
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Third Feeding 
Period 

TCP 
(mg/L) 

10.0 

7.5 

4.0 

0.0 

0.0 



Time TCP 
(hrs) (mg/L) 

0 10.0 

1 7.5 

3 4.0 

5 0 

8 0 

12 0 

18 0 

24 0 

TABLE 18. 

BATCH STUDY DATA 
Immobilized Cells 

CI- CI-
Theoretical Measured 

(mg/L) (mg/L) 

160.0(t 160.0(t 

161.34·· 163.00 

163.23 166.00 

165.39 167.00 

165.39 167.00 

DO 
(mg/L) 

8.6 

8.2 

6.9 

6.0 

5.4 

3.3 

• This represents the background CI- concentration in the samples . 

•• 0.539 mg/L C]- is released per 1 mg/L TCP dehalogenated; therefore, 
10 mg/L - 7.5 mg/L = 2.5 mg/L TCP dehalogenated and 2.5 X 0.539 = 
1.34 mg/L Cl- increase expected. . 
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TABLE 19. 

INITIAL TRACER STUDY DATA 

Accumulative 
Time Volume Volume Bromide 
(min) 8 (mL) (L) (mg/L) F 

0 0 0 0 0 0 

12 0.108 12 0.0120 0 0 

24 0.216 11.5 0.0235 0 0 

36 0.324 12 0.0355 0 0 

48 0.432 12 0.0475 0.32 0.0039 

60 0.540 12 0.0595 0.35 0.0043 

72 0.648 11.5 0.0710 0.37 0.0045 

84 0.756 11.75 0.0827 0.95 0.0116 

96 0.864 12 0.0947 7.5 0.0915 

108 0.972 U.S 0.1062 14.5 0.1768 

120 1.080 11.5 0.1177 19.5 0.2378 

132 1.188 12 0.1297 24 0.2927 

144 1.296 11.5 0.1412 30.75 0.3750 

156 1.404 11.5 0.1527 35 0.4268 

168 1.512 11.5 0.1642 41 0.5000 

180 1.620 11.5 0.1757 43.5 0.5305 

192 1.728 11.5 0.1872 43.5 0.5305 

204 1.836 12 0.1992 43.5 0.5305 

216 1.944 11.5 0.2107 45 0.5488 

228 2.052 11.5 0.2222 46.5 0.5671 

240 2.160 11.5 0.2337 47.5 0.5793 

252 2.268 11.5 0.2452 52 0.6341 
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TABLE 19 - Continued. 

Accumulative 
Time Volume Volume Bromide 
(min) 6 (mL) (L) (mg/L F 

264 2.376 11.5 0.2567 55 0.6707 

276 2.484 11.5 0.2682 60 0.7317 

288 2.592 12 0.2802 65 0.7927 

300 2.700 11.5 0.2917 70 0.8537 

312 2.808 11.5 0.3032 73 0.8902 

324 2.916 11.5 0.3147 77 0.9390 

336 3.024 12 0.3267 77 0.9390 

348 3.132 11.5 0.3382 77 0.9390 

360 3.240 11.5 0.3497 77 0.9390 
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TABLE 20. 

FINAL TRACER STUDY DATA 
Column #1 

Time (t) C Ct 
(min) (mg/L) (mg/L 'I1l in) E (f (fE 

0 0 0 0 0 0 0 0 

4 0.90 3.60 0.1443 .0575 0.0208 0.0012 0.0044 

8 3.75 30.00 0.2887 .2396 0.0833 0.0200 0.0087 

12 9.50 114.00 0.4331 0'.6069 0.1875 0.1140 0.0127 

16 10.00 160.00 0.5774 0.6389 0.3334 0.2130 0.0170 

20 12.50' 250.00 0.7218 0'.7986 0'.520'9 0'.4160 0.0210 

24 14.50' 348.00 0.8661 0'.9264 0.7501 0.6950' 0'.0252 

28 17.50' 490.00 1.0'105 1.1181 1.0210' 1.1416 0'.0294 

32 13.33 426.60 1.1548 0'.8516 1.3336 1.1358 0'.0337 

36 7.OQ 252.00 1.2991 0'.4472 1.6878 0'.7548 0'.0'381 

40 5.00 200.00 1.4435 0'.3194 2.0'838 0'.6656 0'.0424 

44 4.75 20'9.00 1.5879 0'.30'35 2.5213 0'.7652 0'.0467 

48 2.90 139.20' 1.7322 0'.1853 3.0006 0'.5559 0'.0'511 

52 2.70' 140'.40' 1.8766 0.1725 3.5215 0'.6075 0'.0'553 

56 1.70' 95.20' 2.0'20'9 0.1086 4.0841 0'.4436 0'.0'595 

60 1.80' 108.00 2.1653 0.115 4.6884 0'.5392 0'.0'634 

64 0'.60 38.40' 2.30'96 0'.0383 5.3344 0'.2045 0.0'676 

68 0' 0' 2.4540' 0' 6.0'221 0' 0.0'718 

72 0' 0' 2.5983 0' 6.7514 0' 0'.0'758 

Totals 108.43 3004.36 6.9275 8.2726 
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TABLE 21. 

FINAL TRACER STUDY DATA 
Column #2 

Time C Ct Cum. Vol. 
(min) (mg/L) (mg/L11lin) () (L) 

0 0 0 0 0 

10 0.38 3.8 0.1262 0.0704 0.0159 0.0011 0.0105 

20 1.80 36.0 0.2525 0.3335 0.0637 0.0213 0.0208 

30 2.35 70.5 0.3787 0.4354 0.1434 0.0625 0.0310 

40 2.05 82.0 0.0505 0.3798 0.2550 0.0969 0.0415 

50 2.75 137.5 0.6310 0.5095 0.3985 0.2030 0.0517 

60 1.70 102.0 0.7575 0.3150 0.5738 0.1807 0.0618 

70 2.12 148.4 0.8837 0.3928 0.7810 0.3068 0.0723 

80 6.50 520.0 1.0100 1.2044 1.0200 1.2285 0.0823 

90 10.00 900.0 1.1362 1.8529 1.2910 2.3920 0.0925 

100 9.00 900.0 1.2625 1.6676 1.5938 2.6579 0.1013 

110 1.70 187.0 1.3887 0.3150 1.9285 0.6075 0.1118 

120 1.30 156.0 1.5150 0.2409 2.2951 0.5528 0.1218 

130 1.10 143.0 1.6412 0.2038 2.6936 0.5490 0.1318 

140 0 0 1.7674 0 3.1239 0 0.1424 

150 0 0 1.8937 0 3.5861 0 0.1525 

Totals 42.75 3386.2 7.9210 8.8599 

159 



TABLE 22. 

INITIAL COLUMN STUDY DATA 

d Influent Effluent 
Time I TCP Concentration TCP Concentration 
(days) (mg/L) (mg/L) 

0 U.S 10.0 

2 11.5 9.0 

4 11.5 8.5 

6 11.5 6.9 

8 11.5 5.2 

10 10.75 3.6 

12 10.75 1.5 

14 10.75 0 

16 10.75 0 

18 10.75 0 

20 10.0 0 

25 10.0 0 

30 11.0 0 

35 11.0 0 

40 10.0 0 

45 10.0 0 
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TABLE 23. 

pH CURVE DATA 

Titrant Titrant 
0.1 N HCI 0.1 N HCI 

pH (mL) pH (mL) 

8.4 0 6.8 17 

8.2 2.5 6.7 18 

7.7 5 6.6 20 

7.55 5.5 6.5 22.5 

7.45 6 6.4 25 

7.4 6.5 6.35 27.5 

7.35 7 6.1 30 

7.3 7.5 5.9 35 

7.2 8 5.7 45 

7.2 8.5 5.5 51 

7.1 9.5 5.25 55 

7 11.5 4.6 61 

6.9 13.5 3 70 
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Influent 

Columns #1 and #2 

Time TCP DO ICI 
(d) (mg/L) (mg/L) (mg/L) 

0 11.00 8.6 161 

2 11.00 8.6 158 

4 11.00 8.4 151 

6 10.75 8.4 153 

8 10.00 8.6 156 

10 10.00 8.6 155 

12 10.00 8.4 155 

t4 10.20 8.4 158 
- ~ 

TABLE 24. 

FINAL COLUMN STUDY DATA 
Columns # 1 and #2 

Column #1 

TCP DO ICt 
pH (mg/L) (mg/L) (mg/L) 

8.1 10.2 7.7 162 

8.1 9.25 7.5 159 

8.1 4.50 7.3 154 

8.1 1.75 7.0 157 

8.2 0.50 7.2 161 

8.1 0 7.1 162 

8.3 0 6.9 162 

8.3 0 6.6 164 

Effluent 

Column #2 

TCP DO ICt 
pH (mg/L) (mg/L) (mg/L) pH 

7.8 10.0 7.8 162 7.8 .... I 

""" 7.8 7.60 7.8 :; 160 7.8 ~ 

.' 
7.9 2.50 7.7 

'-! 
156 8.0 

7.6 0.10 7.5 160 7.7 

7.7 0 7.7 162 7.8 

7.5 0 7.7 161 7.6 

7.5 0 7.6 161 7.5 

7.5 0 7.5 164 7.5 
- . --~ 

-0\ 
N 
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EXAMPLE 1. 

Diffusion Study 

The extent of reaction (X) was determined from Equation (7): 

Time 
(min) 
o 
2 
4 
6 
8 
15 
20 
30 
45 
90 
120 
180 
300 

TCP 

miLL 
10 
9 
8.5 
8 
8 
8 
7.5 
6.75 
6.6 
5.5 
5.5 
5.5 
5.5 

x = [Co - C]/[Co - COD] 

x = [10.0 - 10.0]/[10.0 - 5.5] = 
X = [10.0 - 9.0]/[10.0 - 5.5] = 
X = [10.0 - 8.5]/[10.0 - 5.5] = 
X = [10.0 - 8.0]/[10.0 - 5.5] = 
X = [10.0 - 8.0]/[10.0 - 5.5] = 
X = [10.0 - 8.0]/[10.0 - 5.5] = 
X = [10.0 - 7.5]/[10.0 - 5.5] = 
X = [10.0 - 6.75]/[10.0 - 5.5] = 
X = [10.0 - 6.6]/[1,0.0 - 5.5] = 
X = [10.0 - 5.5]/[10.0 - 5.5] = 
X = [10.0 - 5.5]/[10.0 - 5.5] = 
X = [10.0 - 5.5]/[10.0 - 5.5] = 
X = [10.0 - 5.5]/[10.0 - 5.5] = 

F(X) was determined by the following expression (Chen et al., 1993): 

F(X) = 1 - 3(1 - 0.000)2/3 + 2(1 - 0.(00) 
F(X) = 1 - 3(1 - 0.222)213 + 2(1 - 0.222) 
F(X) = 1 - 3(1 - 0.333)2/3 + 2(1 - 0.333) 
F(X) = 1 - 3(1 - 0.444)2/3 + 2(1 - 0.444) 
F(X) = 1 - 3(1 - 0.444)2/3 + 2(1 - 0.444) 
F(X) = 1 - 3(1 - 0.444)213 + 2(1 - 0.444) 
F(X) = 1 - 3(1 - 0.555)2/3 + 2(1 - 0.555) 
F(X) = 1 - 3(1 - 0.722)213 + 2(1 - 0.722) 
F(X) = 1 - 3(1 - 0.755)213 + 2(1 - 0.755) 
F(X) = 1 - 3(1 - 1.(00)213 + 2(1 - 1.(00) 
F(X) = 1 - 3(1 - 1.000)2/3 + 2(1 - 1.000) 
F(X) = 1- 3(1 - 1.000)2/3 + 2(1 - 1.000)' 
F(X) = 1 - 3(1 - 1.000)2/3 + 2(1 - 1.000) 

= 0.000 
= 0.016 
= 0.047 
= 0.087 
= 0.087 
= 0.087 
= 0.146 
= 0.284 
= 0.321 
= 1.000 
= 1.000 
= 1.000 
= 1.000 
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o 
0.222 
0.333 
0.444 
0.444 
0.444 
0.555 
0.722 
0.755 
1.000 
1.000 
1.000 
1.000 



The average binding site density of PYA (CO) was determined from Equation (8): 

CO = [C - C ] [volume of reactor 1 
o - volume of spheres 

co = [10 - 5.5 mg/L][500 mLs]/[70 mLs] = 32.1 mg/L 

The integration of S Cdt was evaluated by the trapezoid rule as follows (Lewandowski 

and Roe, 1994): 

t C J Cdt 
(min) (m~/Ll (m~/L' min) 

0 10 - 0 

2 9 2-0 [10 + 9] - 19 
(2)(1) 

4 8.5 4-2 [9 + 8.5] + 19 - 36.5 
(2)(1) 

6 8 (2-4 [8.5 + 8.0] + 36.5 - 53.0 
(2)(1) 

8 8 8-(2 [8.0 + 8.0] + 53.0 - 69.0 
(2)(1) 

15 8 1~ - 8 [8.0 + 8.0] + 69.0 = 125.0 
(2)(1) 

20 7.5 20 - 15 [8.0 + 7.5] + 125.0 - 164.0 
(2)(1) 

30 6.75 30 - 20 [7.5 + 6.75] + 163.75 = 235.0 
(2)(1) 
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45 6.6 45 - 30 [6.75 + 6.6] + 235 - 335.1 
(2)(1) 

90 5.5 90 - 45 [6.6 + 5.5] + 335.12 - 607.4 
(2)(1) 

120 5.5 120 - 90 [5.5 + 5.5] + 607.37 = 772.4 
(2)(1) 

180 5.5 180 - 120 [5.5 + 5.5] + 772.37 - 1102.4 
(2)(1) 

300 5.5 300 - 180 [5.5 + 5.5] + 1l02.37 = 1762.4 
(2)(1) 

Diffusivity (D) was determined from the following equation (Chen et al., 1993): 

[Slope]Co R2 D = -=--...:.........::....--

6 

D = <0.9625 X 10-3 L/m&·min)(32.1 m&/U<O.19 cm)2(l min/60 sec) 

6 

- 3.1 X 1~ cm2/s 
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