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Chapter 1 

Introduction 

Often during the fabrication process, when machining to size and following by ult ra­

fine finishing, surface and subsurface damage is imparted that can be det rimental to 

the component surface integrity. For semiconductor materials , subsurface integri ty is 

important in determining the perfonnance of the semiconductor devices. According 

to Puttick et a1. (1994) the depth and nature of the subsurface damage in addi t ion to 

the surface finish will affect the performance of semiconductor component s. Put tick 

et a1. (1994) also note that by observing the nature and extent of the subsurface dam­

age, light can be shed on the mechanism of material removal by ultrafine machining. 

In a recent review on the challenges and potential solutions of the II-VI semicon­

ductor blue-green laser , Luo and Furdyna (1995) note the increasing importance of 

optoelectronic devices and list their application in optical data storage, laser print­

ing, flat-panel displays , and optical data communication. Vaccaro et a1. (1996) have 

demonstrated the use of CdS interlayers in improving the performance of InP-based 

optoelectronic devices, and according to Kim et a1. (1993) CdS films are also used as 

a window material in heterojunction solar cell applications. 

Characterization is an important aspect in the development of semiconductor de­

vices , and according to Perkowitz et al. (1994) the semiconductor industry uses many 

characterization methods that focus on electrical , chemical and other approaches. 
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Perkowitz et a1. (1994) note that optical characterization techniques are widely used 

in that they can measure a broad range of fundamental material parameters , are 

nondestructive and non-contact in nature , and require minimal sample preparation. 

The optical techniques include ellipsometry, infrared spectroscopy, optical microscop.·, 

modulation spectroscopy, photoluminescence (PL) , and Raman scattering. According 

to Perkowitz et a1. (1994) PL can detect the presence of impurities and crystalline 

defects in semiconductors, and according to Stine and Knobler (1992) fluorescence 

microscopy has been employed "to investigate a variety of physical and chemical phe­

nomena such as the existence of pattern-forming instabilities in monolayers' . PL 

scanning at room temperature, a recent procedure, according to Hovel (1992) has 

been used to assess the uniformity of various properties of semiconductors rather 

than examine specific defects. He also notes that "PL scanning has been used as a 

tool for wafer and ingot qualification since the procedure has proven to have a good 

correlation between PL contrast and electrical properties". 

1.1 Objective 

In the present work an attempt is made to use measured fluorescent light intensity as 

a means to quantify the subsurface damage of ultraprecision machined CdS. When 

the CdS molecules are excited by light such as ultraviolet light , fluorescen t light is 

emitted. Using an intensified charge-coupled device (ICCD) and imaging software , 

the fluorescent light intensity can be measured. The objective of this study is to 

gauge the viability of this technique to quantify subsurface damage of ultraprecision 

machined single crystal materials in terms of emitted fluorescent light intensity at 

room temperature. It is expected that for a subsurface that is less damaged , t he 

re-emitted light intensity would be higher than for a crystal which has more damage 

(Bohm and Fischer, 1979; Pribat et a1., 1992; Parillaud et a1. , 1996; Shreter et a1. , 

1996). As a comparison , previous work by Lucca et a1. (1995, 1996) which reported 
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on the use of an ion beam channeling technique for assessing damage of diamond 

turned CdS a t several depths of cut , and t he subsurface lattice disorder on regions 

cut parallel to, and 30 degrees off a preferred cleavage plane, will be used to verify the 

validity of the thesis , and to establish a subsurface damage scale via t he fluorescent 

light intensity. This low cost technique, nondestructive and non-contact in nat ure. 

which requires no sample preparation , can potentially be used as a quali ty control 

tool in the semiconductor industry. 

1.2 Basic Physics Governing Fluorescence 

The fundamental physics which governs luminescence has been presented by Imbusch 

(1978), PI oem and Tanke (1987) , Rost (1992) , and Blasse and Grabmaier (1994) and 

a summary is presented below. Luminescence emission according to Imbusch (1978) 

involves radiative transitions between electronic energy levels of this material, and the 

emission is characteristic of the material. There are different types of luminescence 

depending on the cause of exci t ation and the nat ure of the elect ronic t ransitions 

involved. If for example , the excitation energy is obtained from t he chemical energy 

of a reaction , the process is called chemiluminescence, whereas cathodoluminescence 

results from excitation by a beam of energetic electrons. In PL, the required energy is 

obtained by absorption of photons, such as ultraviolet or blue light. Fluorescence and 

phosphorescence are recognized within PL and their distinction lies in t he manner 

of the emission. In fluorescence , the phenomenon involves light which is re-emitted 

almost instantaneously, whereas in phosphorescence the re-emission takes place after 

a delay, so that phos!Jhorescent objects continue to glow for some t ime after the 

excitation source has been removed. 

The fundamental process of excitation and emission in a hypothet ical material is 

illustrated in Figure 1-1. Electrons of molecules or atoms normally exist at the low­

est energy state known as the ground state with energy Eo, and with corresponding 
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Figure 1-1: Schematic of the process of excitation and luminescence in a hypothetical 
material having the electronic energy scheme as shown (Imbush , 1978). 

rotational and vibrational states. When a molecule is irradiated with light of short 

wavelength such as ultraviolet light , the electrons acquire energy resulting in an ex­

citation to a higher electronic energy state and a higher vibrational state (referred to 

as an excited state). In Figure 1-1, E1 to E,,) represent energies of excited states. The 

energy gaps among adjacent levels between E5 to E2 are small , while the difference 

between energies E2 and E1 is large. Imbusch (1978) notes that if the gap between an 

excited level and the adjacent lower level is small , the material in that exci ted state 

tends to decay non-radiatively via loss of vibration energy and releases t he energy as 

heat to the material. In addition , radiative decay only occurs when the transition is 

from the higher excited state to an adjacent lower excited state or the ground state 
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which involves energy difference above a critical value. This results in emission of 

a photon which gives rise to the phenomenon of luminescence. Consequently with 

the absorption of energy, the electron in the hypothetical material is raised to t he 

E5 level , it then loses energy as heat by cascading from level 5 to level 4 and so 

forth , ultimately ending up on level 2. The gap between levels 2 and 1 is above the 

critical value, so the material decays radiatively from level 2 emitting a photon , and 

ending on level 1 or O. If the material decays radiatively to state 1, it t hen decays 

non-radiatively through the small gap to the ground state. So for this hypothet ical 

material, two possible luminescence transitions can occur with frequencies given by 

Vo and VI and with angular velocities given by Wo and WI, where 

(1.1 ) 

(l. 2) 

and h is Planck's constant and h = hj(27r). Imbusch (1978) notes t hat it is important 

to not only know the position and nature of the energy levels involved in t he radiat ive 

process , but also the position and nature of the other levels which may be involved 

in the excitation process , and in the non-radiative process whereby t he excit at ion 

arrives at the radiative level. 

According to Rost (1992) the fluorescence normally observed is called Stokes flu­

orescence named after Sir George Stokes who, in 1852, first observed the mechanism 

of the absorption-emission process. This fluorescence is re-emission of less energet ic 

photons, having a longer wavelength than the excitat ion light. Rost (1992) notes 

that emission at shorter wavelengths than that of excitation may also occur , and t his 

is known as anti-Stokes fluorescence. The addi t ional energy accordingly may come 

from thermal energy or be associated with a molecule with many highly populated 

vibrational energy levels . The characterist ic spectra of fluorescence are the excita-



tion spectrum and the emission spectrum as shown in Figure 1-2. The excitation 

Wavelength 

Figure 1-2: Typical excitation spectrum (left) and emission spectrum (right) of a. 
fluorescent material (Rost , 1992). 

spectrum (shown as the left-hand curve) is a plot of the relative total intensity of 

fluorescence obtained when the fluorescent specimen is irradiated at varying wave­

lengths compared to a given wavelength. An excitation spectral curve according to 

Rost (1992) has a peak at the photon energy, or wavelength , corresponding to the 

energy difference between the ground state of the fluorescent material and some fa­

vored vibrational level of its first excited state. Ploem and Tanke (1987) note that 

to obtain intense fluorescence, irradiation with light of wavelengths close to the peak 

of the excitation spectrum is desirable. The right-hand curve, which is the emission 

spectrum, is a plot of the fluorescence intensity distribution which results from exci­

tation at a certain wavelength. The shape of the emission spectrum is usually similar 

to that of the first absorption band, but in 'mirror-image ' form. 

Semiconductors are characterized by a valence band and a conduction band sep­

arated by an energy gap Eg . When subjected to excitation , electrons migrate to the 

empty conduction band leaving holes in the valence band which was completely filled. 

According to Blasse and Grabmaier (1994) emission then occurs by electron-hole re-
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combination usually close to or at defects in the crystal lattice. There are several 

possibilities for radiative recombination: 

1. Edge emission - emission occurs close to the band-gap energy, Eg • This emission 

IS due to exciton recombination of bound excitons where an exciton has ei ther the 

electron or the hole is trapped at an imperfection in t he lattice. Luminescence in CdS 

is of the exciton emission type (Blasse and Grabmaier, 1994). 

2. Deep-center emission - emission occurs at energy considerably lower than Eg . 

3. Donor-acceptor pair emission - emission occurs when an electron trapped at a 

donor and a hole trapped at an acceptor recombine. 

4. Other radiative recombination possibilities - for example, a free hole t hat 

recombines with a trapped electron or a free elect ron that recombines wi t h a t rapped 

hole. In these instances the trapped charge carriers may occupy deep traps so t hat 

the emitted energy is considerably less than Eg • 

Blasse and Grabmaier (1994) have given a schematic represent ation of some of the 

possibilities for radiative recombinat ion in a semiconductor as shown in Figure 1-3. 

Excitation in excess of the band gap creates electrons in the conduction band and holes 

in the valence band as depicted in Figure 1-3 by process 1. Optical recombinat ion is 

shown in processes 2-6. In process 2, a free hole recombines with an electron t rapped 

in a shallow trap level. This is also known as exciton recombination and gives rise to 

edge emission. Process 3 is the same as 2 only with a deep elect ron-t rapping level. In 

process 4 , a free electron recombines with a trapped hole. Process 5 is donor-acceptor 

pair emission , and process 6 is electron-hole recombinat ion in an associate of a donor 

and acceptor. 

The processes involved in determining the PL efficiency according to Bebb and 

Williams (1972) and Hovel (1992) can be dist inguished by the following: 

1. creation of electron-hole pairs 

2. radiation recombinat ion of electron-hole pairs 

-I 
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conduction band 

valence band 

1 2 3 4 5 6 

Figure 1-3: Schematic representation of the emission transitions in a semiconductor 
(Blasse and Grabmaier, 1994). 

3. escape of the recombination radiation from the material 

4. diffusion into the material 

The physical processes involved in determining PL output are shown in Figure 

1-4. Hovel (1992 ) has defined PL efficiency as "the number of photons emitted from 

the surface versus the number of photons incident". The PL efficiency is therefore 

determined by competition between the various processes. Hovel (1992) notes that 

"the low-energy photons created by the radiative recombination may be reabsorbed 

by the material or emitted from the surface, provided the photon is directed at the 

surface within the critical angle cone". In addition, "PL photons directed at the 

back surface have some probability of being reflected back to the front and being in­

cluded in t.he emission". Bebb and Williams (1972) note that since the exciting light 

is absorbed in creating electron-hole pairs, the greatest excitation of the sample is 

near the surface giving rise to the carrier distribution being both inhomogeneous and 

nonequilibrium. Thereby in attempting to regain homogeneity and equilibrium , the 

excess carriers will diffuse away from the surface while being depleted by both radia-
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Figure 1-4: Schematic of the physical processes involved in determining photolumi­
nescene output (Hovel , 1992). 

tive and nonradiative recombination processes. Accordingly, most of the excitation 

of the crystal is thereby restricted to a region within a diffusion length (or absorption 

length) of the illuminated surface. Since the recombination radiation is subjected 

to self-absorption, it will not propagate far from this region, and the recombination 

radiation most readily escapes through the nearby illuminated surface. According to 

Hovel (1992) the incoming light is absorbed in a distance of about 3/3 S 1 f..lm (where 

/3 is the absorption coefficient for that radiation) from the surface. Hovel (1992) has 

proposed an equation for the PL intensity, F, as a function of the emitted angle e 
accounting for the above-mentioned processes , given by 

F (8) = G (1 - T) cos 8 L ~ 
7fN(N + 1)2 TR S, 

9 
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where G is the incident intensity, r is the reflectivity from the surface, A is the 

refractive index, L is the diffusion length, TR is radiative lifetime and Sf is the 

surface recombination velocity. Hovel (1992) notes that comparison with experimental 

results indicates that the surface recombination velocity determines the overall level 

of intensity but that the surface non-uniformities (PL contrast) are mainly controlled 

by L /iR and therefore by the ratio of total to radiative lifetime T /iR (since L = J DT, 

where D is the diffusion coefficient). 

1.3 Some Aspects of Material-Removal in Brittle 

Materials 

One of the goals of an ultraprecision material-removal process is to impart the least 

amount of surface and subsurface damage possible to the workpiece. This section dis-

cusses some recently reported studies on the potential material removal mechanisms 

in single-point diamond turning (SPDT) of brittle materials. 

Blackley and Scattergood (1990) have observed pitting damage which is cutt ing 

direction dependent on single point diamond turned germanium single crystal wafers. 

The pitting damage in turn dictates a limiting feed rate at which the material can be 

machined. The orientation dependence is attributed to the maximum ampli tude of the 

resolved tensile stresses on {111} cleavage planes. Thus, the pitting damage changes 

with cutting direction because of the change in crystal orientation with respect to the 

principal stress axes. Their observations support the assumption that tensile stresses 

behind the tool tip are respunsible fur the observed fracture damage. 

Morris et a1. (1995) in their study of the so-called "ductile regime" SPDT of 

germanium employed transmission electron microscopy (TEM) and parallel electron 

energy-loss spectroscopy (PEELS) , and contend that material removal takes place in 

a ductile manner. They support this claim by their examination of the macroscopic 

morphology of the machining chips, finding that t hey are smooth and wavy, and do not 
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exhibit faceting normally indicative of brittle material removal. The machined sur­

faces that result are smooth and frequently free of cracking. They found no evidence 

of homogeneous melting, and conclude that the absence of solidified drops or drawn 

fibers on the machined surface, or in the machining swarf, is conclusive evidence as 

to the plastic deformation of the material. Morris et a1. (1995) rule out conventional 

plastic deformation modes as there is no dislocation activity evident in the chips. 

They claim the key to the understanding of the mechanism of plasticity lies in the 

microstructure of the chip which is in the amorphous phase. This amorphous phase 

is likely due to a pressure-induced phase transfonnation. Central to their argument 

is that the cutting mode, i.e., "ductile regime" machining versus brittle machining is 

dependent on the depth of penetration or cut. Using the Griffith criteria for brittle 

fracture as a first approximation, they contend that if the depth of cut taken is of 

the flaw size, fracture occurs at some critical depth. They then postulate that wi th 

a sharp tool resulting in high enough stresses, phase transformation may take place. 

The region below the tool has high ductility and so "ductile regime" machining is 

achieved. Phase transformation takes place before cracking, allowing larger depths of 

cut to be taken before the ductile-to-brittle transition occurs. 

In single crystals, there are certain planes that have lower cleavage stresses than 

others , and therefore machining near the fracture threshold can resul t in some region 

which will have a ductile response, and some with a brittle response. 

Puttick et a1. (1995) in their work on SPDT of silicon present an argument based 

on the energy scaling of the machining process that leads to a critical depth of cut 

below which no cracks should accompany the removal of material. The researchers 

note that from TEM analysis for a surface produced with a depth of cut of 0.5 J.Lm , it 

is clear that SPDT of silicon has achieved fully ductile removal of material by plastic 

flow alone. A cross-section of the nano-turned silicon reveals surface deformation 

consisting of groups of dislocat ions spaced 50-100 nm apart , which are bundles of 

elongated loops intersecting the surface, all on the same slip system with a single 

11 
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Burgers vector. This study confirms earlier work on SPDT of silicon by Puttick et al. 

(1994) which indicated that the main mechanism of material removal was extrusion of 

plastic material ahead of the tool , which has been observed in low-load indentat ion by 

other researchers (Puttick and Hosseini , 1980; Morris and Callahan , 1994). Through 

TEM observations of turned-surface cross-sections, Puttick et al. (1994) have noted 

the regularity and homogeneity of the lattice deformation, consist ing of elongated 

dislocation loops lying on a single (111) plane, and explained that this array has been 

formed by slip in one or the other of the three (110) directions lying in t he plane. 

Another observation made was that dislocations were found to lie predominantly in 

the (111) plane, another possible slip plane, of which the surface trace is parallel to 

the direction of motion of the tool , that is , in the [nO] directions. 

12 
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Chapter 2 

Literature Review 

Scott and Reed (1975) note that it has been established that in single crystal CdS 

when free electrons and holes are created in the surface region their subsequent re­

combination is very dependent upon the condition of the surface and the underlying 

layer. Therefore , PL due to strongly absorbed primary irradiation will be correspond­

ingly dependent upon the surface. Experimental evidence of this has been provided 

in the 1950's, 1960 's, and early 1970 's (Liebson , 1954 , 1955; Liebson and West, 1955; 

Many and Katzir , 1967; Bujatti, 1969; Henry et al. , 1970; Ermolovich , 1971). In the 

late 1970's spatially resolved PL measurements have been used in the investigation of 

the influence of dislocations on the radiative recombjnation of electron-hole pairs in 

III-V compounds materials (Bahm and Fischer, 1978). Recently, PL has been used as 

a tool in evaluating dislocation density as an indication of crystal quali ty in the het­

eroexpitaxy of I II-V compounds on silicon substrates (Pribat et al. , 1992; Parillaud 

et al., 1996) and in an experimental investigation of n-ZnSe after plastic deformation 

(Shreter et al., 1996). 

Bleil and Albers (1964) have demonstrated that oxygen is chemisorbed and water 

vapor physically adsorbed on the CdS snrface , causing a decrease and increase in the 

exciton emission intensity, respectively. The influence of chemisorption of oxygen on 

the green exciton luminescence and red luminescence observable at room temperature 
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in CdS single crystals has been investigated by Heine and Wandel (1973). They have 

observed a reduction of emission in both bands with increase in oxygen pressure . It is 

clear from all these measurements that chemisorbed oxygen increases the rate of non­

radiative recombination , reducing simultaneously the excess free carrier concentrat ion 

and the radiative recombination rate. 

Acrording to Mar (1992) the mechanism of exciton localization at defects of II-V] 

semiconductors has been discussed in detail by Hopfield (1964) and Halsted (1967). 

Halsted (1967) has given a comprehensive review of the recombinat ion processes in 

the near-band-edge region , and has noted that the bound states play a significant role 

in the near-band-edge transitions. His findings have been confirmed experimentally 

by Dean et a1. (1981) using a different approach. In addit ion , Mar (1992) notes t hat 

PL studies by Henry et a1.(1970) of shallow acceptors in CdS , CdSe , Li and Na have 

established PL as a tool for st udying impurity- and defect-related accept ors in II-V] 

and II 1-V semiconductors. 

Suzuki and Ogawa (1977) , Guidotti et a1.(1987) , and Guidotti and Hovel (1988) 

have observed that near-band-edge PL emission from GaAs degrades as a function 

of exposure time to moderate illumination. Guidott i and Hovel (1988) observed the 

following about this degradation: 

1. the degradation rate is independent of incident wavelength , is not governed by 

a fixed relationship with time, and increases with increasing incident intensity 

2. PL degradat ion is not caused by surface oxidation , and is observed to be fas ter 

in an inert atmosphere 

3. no degradation is observed at a passivated surface 

4. the degradation rate is independent of temperature between 77 and 300 K and 

at temperatures less than 10 K no PL degradation is observed 

5. the effects of degradation do not reverse aft er a high-temperat ure annealing 
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cycle 

6. the degraded area extends much beyond the illwninated spot , and t he obser­

vations suggest that PL is brought about by a recombination-enhanced defect 

reaction (REDR) mechanism near the surface 

Hovel (1992) notes that the main process that affects the intensity (but not the 

distribution) of PL at room temperature is surface recombinat ion , and therefore any­

thing that significantly affects surface states should also affect PL intensi ty. He 

has shown that subjecting GaAs wafers to chemical treatment particularly, HCL or 

NH4 0H significantly enhances the PL intensity. Accordingly the PL init ially increases 

by a factor of three immediately after the treatment , drops back to 2.5 times after 

60 minutes and 2 times after 3 hours , and finally saturates permanently at about 

1.9 times the original value. He postulates that the chemical treatment removes t he 

native oxide and leaves the GaAs initially in a non-oxidized state after removal with 

the chemical. Subsequently the native oxide appears to grow back slowly because 

the surface is temporarily protected by adsorbed CI, OH, or H ions. The effect of 

chemical treatment on the PL of an ingot annealed GaAs wafer is shown in Figure 

2-1 in which the PL line scans show the effect before immersion in NH40H and at 

various times after. 

Negrii (1992) notes that plastic deformation of CdS crystals leads to the appear­

ance of a characteristic group of emission lines in the 505 nm and 515 nm region of 

the low temperature PL spectrum. He labels this "dislocation emission" . 

Garosshen et a1. (1990) have found that type II-VI semiconductors exhibit sig­

nificant changes in flow stress when irradiated with light . CdS in particular shows a 

large photoplastic effect during basal slip which is associated with a large charge on 

the mobile dislocations. In comparison , prismatic slip exhibit s a significantly smaller 

photoplastic effect and, correspondingly, a smaller charge on the mobile dislocations . 

This is due to compensating charges along dislocat ion lines. The photoplastic effect 

is greatest at light frequencies just below the band gap energy and increases with 
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Figure 2-1: Photoluminescence line scans across the center of an ingot annealed GaAs 
wafer before chemical treatment and at several elapsed times afterward (Hovel , 1992). 

light intensity until a saturation level is reached.. The magnitude of t he photoplas­

tic effect decreases with increasing temperature, and increases with st rain rate. They 

suggest that it may be possible to exploit the photoplastic effect to cont rol dislocation 

densities in semiconductors which exhibit photoplastic behavior. 
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Chapter 3 

Experimental Procedures 

3.1 Optical and Imaging System 

According to Rost (1992) major sources of instrument error in fluorescence microscopy 

include instability of the light source, non-homogenous illumination of t he object 

(i.e., ilhunination with light of uneven intensity or wavelength dist ribution) I and non­

lineari ty of the photometric system. Rost (1992) also notes that optical arrangement 

is very critical in fluorescence microscopy. The direction of illumination in relation to 

the direction of measurement affects the relationship between the fluorescent material 

and the measured fluorescence intensity. The epi-illumination optical arrangement is 

preferred in fluorescence microscopy. In this optical arrangement, light can be directed 

downwards onto the specimen from the same side as the objective, or through the 

objective itself. This technique enables the illumination to be concentrated on , and 

confined to , the field of view. Light is neither wasted, nor unnecessarily directed at 

other parts of the specimen, thus minimizing the color-fading area of the specimen. 

Epi-illumination therefore gives reproducible and ideal conditions which are necessary 

for quantification purposes. 

The optical and imaging system which was used in this study consisted of a Nikon 

epi-illumination fluorescence microscope with a high intensity 100 W mercury lamp, 
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a Hamamatsu C3500S intensified charge-coupled device (ICCD) , a personal computer 

with a frame grabber DT3851A from Data Translation and 'GLOBAL LAB Image" 

imaging software also from Data Translation. The schematic of the optical system 

which was used is shown in Figure 3-1. The system was mounted on a vibration 

isolation table. 

neutral density 
filter 

high intensity 
mercury lamp 

field diaphragm 

collector lens excitation filter 

intensified charge-coupled 
device 

low-power 
eyepiece 

barrier filter 

dichroic mirror 

high-power objective 

r-----~~------~ 
specimen 

Figure 3-1: Schematic of the optical system used in this study which features the 
epi-illumination fluorescence microscope and intensified charge-coupled device. 

In Figure 3-1, light from the high intensity mercury lamp is concentrated into a 

beam via the collector lens and directed onto the blue violet excitation filter which 

permits only light of wavelength between 400 and 440 nm to pass through to the semi­

transparent dichroic mirror situated in the body tube of the microscope. The dichroic 
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mirror or beamsplitter is characterized by a wavelength of 455 nm , above which it 

preferentially transmit s and below which it preferent ially reflects. The excit ation 

light of wavelength between 400-440 nm is then reflected by the mirror down through 

the objective which also acts as a condenser that focuses the excitat ion light onto 

the specimen. The fluorescence , excited by the incident beam , is collected by t he 

objective then passes through the dichroic mirror and onto the barrier fil ter . The 

barrier filt er then permits fluorescence of wavelength of greater than 470 nm to pass 

through to the eyepiece or ICCD camera. In this study the excitation fil ter , dichroic 

mirror. and barrier filter are housed in the Nikon BV-2A filter block. The spectrum 

t ransmission curves of the filter block are shown in Figure 3-2. The emission spectra 

excitation fitter allows 
light of wavelength 
400-440 nm to be 
transmitted 

dichroic mirror (DM455) allows light 
of wavelength greater than 455 nm to 
be transmitted and below 455 nm to 
be reflected 

barrier filter allows fluorescent light of 
wavelength greater than 470 to be 
transmitted 

.. ,... ........... _. 

/ .... . 

.. ' 
.;..:.. ..... . 
. .' 

. ~ . , ~, ~) . 
. 4 .: . 

500 SOO 

Wavelength (nm) 

Figure 3-2: Spectrum t ransmission curves of Nikon filt er block BV-2A that is used in 
the study (Nikon Corporatiun. 1993). 

of a typical 100 W mercury lamp commonly used for fluores cence microscopy is shown 
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in Figure 3-3 with emission peaks in the region from 300-600 nm. 
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Figure 3-3: Emission spectra of a 100 W mercury lamp commonly used for fluores­
cence microscopy (Ploem and Tanke , 1987). 

The ICCD camera incorporates both the charge-coupled device camera and an 

image intensifier. The ICCD can measure very low light levels. It is connected in 

parallel to a monitor (not shown in the schematic) , printer, and personal computer 

with a DT3851A frame grabber board with 256 (8 bi t ) gray levels. The DT3851A 

frame grabber is fully software configurable and features high resolution input and 

display. The intensity of the fluorescence is read via "Global Lab Image" imaging 

software with display resolution of 640 x 480 pixels. The intensi ty measurements 

enabled by the software include point intensity and area histogram (graph , raw data , 

mean, minimum/maximum, standard deviation , and percent of pixels wi t hin target 

intensity range). The software can display a profile of intensi ty along a line or an 

average across several contiguous lines. 

Due to the sensitivity of the ICCD , neutral densi ty filters were used to limit the 

transmission of the fluorescence light so that intensity readings within t he grayscale 

can be obtained. An optimum t ransmission of 0.1 percent of the re-emitted fluores-
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cence light was found to give discernible intensity readings with the various specimens. 

This optimum transmission is used in all the intensity measurements. 

3.2 Specimen Preparation 

The CdS specimens that were used in this study are t he identical specimens used 

by Lucca et al. (1996) in their study of subsurface damage of CdS assessed by 

ion channeling. The wurtzite structure CdS used was grown by the physical vapor 

transport (PTV) method. The (0001 )-oriented CdS wafers were sawn from a bulk 

crystal and etched for 10 minutes in HCI to remove all prior subsurface damage (Lucca 

et al., 1996). Under an optical microscope the etched (0001)Cd face is observed to 

have the characteristic hexagonal etch pit structure as shown in Figure 3-4. whereas 

the (OOOl)S face does not exhibit such structure. 

100 j.1m 

Figure 3-4: Characteristic hexagonal etch pit structure observed on the et ched 
(0001 )Cd face observed with a Nomarski optical microscope. 
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The planes of interest are the principal planes (1010) and (1120) which are parallel 

to the c-axis, and located 30 degrees apart. The (1010) plane is a preferred cleavage 

plane and according to Wolff and Broder (1959) the (1120) plane is another cleavage 

plane. The orientation of the (1010) plane was determined to wit hin about ± 1 

degree by illuminating the (0001)Cd face with a 670 nm light source, and observing 

the reflected 6-fold star pattern from the etch pits (Lucca et al. , 1995). The uni t cell 

for CdS in the wurtzite phase is shown in Figure 3-5. 

./' 
,/ 

u 

"-',-
I 
I 
I 

~, C 

• S or Cd 

0 Cd or S 

Figure 3-5: Unit cell for CdS in the wurtzi te phase. The a , c , and u cell parameters 
are indicated together with the (1010) and (1120) principal planes (Leo et al. , 1991). 

The procedure used for SPDT of the CdS specimens has been reported by Lucca 

et al. (1995) and is repeated here for convenience. The oriented crystals were of 

nominal dimensions 20 mm x 25 mm x 1 mm, and were mounted wit h instant 
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adhesive to a lapped aluminum substrate which was in turn held on a. vacuum chuck 

of a commercial diamond turning machine. The specimens were posit ioned with their 

centerlines approximately 20 mm off the spindle axis , and as a result t he cutt ing 

direction varied over 60 degrees with respect to the crystallographic direction over 

the specimen. In this way, machining along both the (1010) and (1l20) planes on 

the same crystal could be achieved. The orientation of the planes and the machined 

surface is shown in Figure 3-6. A portion of the etched surface was left unmachined 

<1120> 
CdS specimen /'*' 

",; 

./ 

I .,../ 
",/ -1(-- --

..... 
.......... 

spindlecentenine 

Figure 3-6: The (OOOl)Cd face showing the orientation of the principal planes, ma­
chined surface, and etched surface (Lucca, 1995). 

such that a measure of original crystal quality could be made. The (0001 )Cd face 

was machined at nominal depths of cut of 0.1 , 0.5, 1.25, and 10 pm. The feedrate 
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was 6.25 /-tm/rev, and the cutting speed at the crystal centerline was 0.8 m /sec . No 

lubricant was used. Multiple passes at the final depth of cut were made to assure 

that the surface was representative of the depth of cut of interest . Greater than 40 

times the nominal depth of cut in thickness was removed. The tool used was a single 

crystal diamond having a nose radius of 5 mm , a 0 degree rake angle and a .) degree 

clearance angle. Lucca et a1. (1995) note that the edge profile , as measured wi th an 

atomic force microscope technique was found to be a true radius of 50 nm ± 10 nm. 

3.3 Fluorescence Intensity Measurements 

Centering and focusing of the mercury lamp is first conducted before any intensity 

measurement is made. This is to ensure that the direct and reflected images of the 

arc are coincident, and that the coincident arc images are positioned and focused in 

the center of the illuminated spot. Maximum excitation light is to be incident onto 

the excitation filter. Therefore , any filter in the path of the excitation light prior to 

the excitation filter is removed. Next , the machined specimen is oriented on the x-y 

table of the microscope with the plane of interest parallel to the y-axis of t he x-y 

table. The schematic of the orientation of the plane of interest parallel to the y-axis 

is shown in Figure 3-7. 

In taking the intensity measurement , the smallest possible illuminated spot on the 

specimen is obtained by adjusting the field diaphragm. The diameter of the illumi­

nated spot was measured to be about 9.7 /Lm and is used throughout the experiments. 

The measurement of the illuminated spot size was obtained by first calibrat ing the 

microscope with a standard grating via the calibration tool in the imaging software. 

The spot diameter was then measured with the measurement tool in the software. 

After the specimen has been oriented, the objective is removed and t he specimen 

is exposed to the excitation light for a duration of one hour , two hours , or three 

hours. After the specimen is exposed for one hour, the objective is replaced and the 

24 

.. 
f: 
c.r 
-c:t 

s 
( 



-----r-+ -1------
-- I --

,/" 1 I I axis of plane ....... \ 

/ 1 n of mterest \ 
1 I \ 

" (0001 )Cd face 1 I illuminated spot at \ 
I low magnification \ 

\ , 
, I 
\ I 
\ I 
\ I 
, , I 

"....... I plane of Interest J 
...... -1 I I . 

~ '---~_Ll-------_/ 
)orientation about z-axis I 

X I 

y 

x-v table 

positioning knob 

positioning 
knob 

Figure 3-7: Schematic of the orientation of the plane of interest parallel to the y-axis 
of the microscope x-y table . 

illuminated spot is focused at lOOOx magnification, The imaging software is then 

activated to digitize and capture the illuminated spot. The software's histogram tool 

is then used to measure the mean intensity of the illuminated spot. The distribu­

tion of the intensity in the rectangular region of interest , ROI, in terms of grayscale 

value can be determined using the histogram tool. The rectangular ROI used in the 

study has a width of 1.4 J.Lm and a height of 5.3 J.Lm, and contains 240 pixels. The 

distribution of the intensity within the ROI is given both graphically and in terms 

of statistically analyzed information which includes values of the mean , minimum , 

maximwn, median, and standard deviation of the intensity, and the total number of 

pixels in the ROI. A display of the histogram feature is shown in Figure 3-8. 

The ROI in the illuminated spot is then scanned to a location that gives the lowest 

standard deviation of the distribution of the gray values. If none is found (i .e. , the 

gray value standard deviation> 3.5) the software is exited, and a new illuminated spot 
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Figure 3-8: A display of the software histogram tool which gives both the graphical 
and statistically analyzed information. 

on the specimen is located by positioning counterclockwise a quarter turn (resulting 

in a translational displacement of 0.3 mm) via the y-axis positioning knob. The 

standard deviation of 3.5 gray value represents 5 percent of the mean intensity of 

the ROl. For one specimen under study, ten intensity readings and their respective 

standard deviations are recorded. The first five readings are taken at locat ions which 

are progressively extended within the machined surface, and the last five readings are 

taken at locations which are progressively withdrawn toward the machined-etched 

boundary. 

Central to the accuracy and repeatability of the measurements is the minimization 

of both the illurrlinated spot and the ROT. The illuminated spot is controUed by the 

field diaphragm and the smallest achievable diameter is 9.7 pm. The ROI derived 

from the histogram tool of the imaging software is superimposed on the digitized 
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illuminated spot. The dimensions of the ROI can be manipulated by the imaging 

software. The ROI is chosen to have a rectangular shape. The width of the rectangle 

is made to be as small as possi ble within the constraints of the software. The longi­

tudinal axis of the rectangular ROI is made to orient in-line to the specimen plane of 

interest , such that the ROI captures the fluorescence intensity representat ive of that 

region. 

The spatial extent of the effect of dislocations on fluorescence intensity has been 

studied by Bohm and Fischer (1979). In their study on PL at dislocations in GaAs 

they found that the contrast at individual dislocations varies between C = 0 and C = 

0.5 for different samples, as well as for different dislocations in the very same sample. 

They defined contrast , C, as 

(3.1 ) 

where 10 is the luminescence intensity outside the core ofthe dislocat ion and 1D is t he 

luminescence intensity at the core of the dislocation. The researchers have noted that 

the spatial extent of the contrast , measured by the half width of a dip in luminescence 

intensity, such as shown in Figure 3-9 , ranged from 5-15 {..Lm. In addition , they have 

observed that the PL spectra at the core and outside the dislocations differed only in 

overall intensity, but no changes in the relative intensities of the various lines in the 

spectrum occurred. 
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Figure 3-9: Typical luminescence profile (schematic) as a func t ion of dist ance across 
a dislocation (Bohm and Fischer, 1979). 
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Chapter 4 

Results and Discussion 

In this study, room temperature fluorescence intensity measurements were performed 

along the (1010) and (1120) planes of CdS specimens that had been machined at 

0.1, 0.5, 1.25, and 10 /.Lm depth of cut. Exposure times to ultraviolet light (UV) in 

the wavelength range of 400-440 nm were one hour , two hours and three hours . In 

addition, intensity measurements were made on a chemo-mechanically polished CdS 

specimen of a different bulk CdS crystal of nominal dimensions 20 mm x 25 mm x 

2 mm. A repeatability study was made for each depth of cut along the (lOiO) plane. 

When the specimens were prepared, all machining parameters other than the dept h 

of cut were kept the same. Intensity measurements were taken at ambient conditions 

in a dark room. 

The imaging software evaluates the mean intensity over the ROI. Shown in Figure 

4-1 is the measured mean fluorescence intensity obtained from a chemo-mechanically 

polished CdS specimen measured at different illuminated spot locations at various 

durations of exposure to UV light. In the figure , the observation depicts the num-

ber of instant the mean fluorescence intensity reading is recorded after exposure to 

each duration. Figure 4-2 shows the mean intensity of the same chemo-mechanically 

polished CdS specimen , measured at the same illuminated spot location at various 

durations of exposure to UV light as indicated by data set 1, and at one hour of 
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exposure to UV light at a different day as indicated by data set 2. Table 4-1 gives 

the comparison between the measurements in terms of the mean intensi ty and per­

cent change. From Table 4-1 , the difference in percent change in the mean intensit;. 

for the specimen measured after 2 hours and after 3 hours at different illuminated 

spot locations is less than 1 percent whereas that of the specimen measured at same 

illuminated spot location is 1.9 percent, which is almost double the previous case. 

Since the percent change is less than 1 percent for the specimen measured at differ­

ent illuminated spot locations, it is assumed that after 3 hours of exposure to UV 

light, the mean intensity has stabilized. The mean intensity of the specimen mea­

sured at the same illuminated spot location is observed to be higher than that for 

the specimen measured at different illuminated spot locations for all the durations of 

exposure. This comparative study indicates that the measurement of mean intensity 

should be taken after 3 hours of exposure to UV light and that the measurement can 

be averaged over different illuminated spots. 

Figures 4-3 to Figure 4-6 show the mean intensity from (0001 ) CdS machined 

along the (1010) plane at depths of cut of 0.1, 0.5, 1.25 , and 10.0 /-Lm respectively at 

various durations of exposure to UV light. Also included in each figure is the mean 

intensity measurement after exposure for 3 hours taken on a different day (data set 

2). Tables 4-2 to 4-5 give the summary of the mean and standard deviation of the 

data in Figures 4-3 to 4-6. 

Figure 4-7 shows the mean intensity from (0001) CdS machined along the (1010) 

plane at depths of cut of 0.1,0.5,1.25, and 10.0 /-LID measured after 3 hours of exposure 

to UV light. Table 4-6 gives a summary of the mean and standard deviation of the 

data in Figure 4-7. Figure 4-8 shows the mean intensity from (0001) CdS machined 

along the (1120) plane at depths of cut of 0.1 , 0.5, 1.25, and 10.0 /-Lm measured after 3 

hours of exposure to UV light. Table 4-7 gives a summary of the mean and standard 

deviation of the data in Figure 4-8. Figure 4-9 shows the average values of mean 

intensity from (0001) CdS machined along the (1010) and (1120) planes at depths of 
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cut of 0.1 , 0.5 , 1.25, and 10.0 /-lm measured after 3 hours of exposure to UV light. 

Table 4-8 gives a summary of the mean intensity data in Figure 4-9. 

When one compares the data presented in Figure 4-9 'with t he resul ts reported by 

Lucca et a1. (1996) as in Figure 4-11 , it appears that the mean fluorescence intensity 

is able to distinguish the degree of lattice disorder in the subsurface of the (0001 ) CdS 

machined along the (1010) and (1120) planes for various depths of cut. The present 

fluorescence study shows that the degree of lattice disorder in the subsurface is t he 

least at 0.1 /-lm depth of cut for both the (1010) and (1120) planes. As the depth of cut 

increases the mean fluorescence intensity reduces , inferring that the degree of latt ice 

disorder has correspondingly increased. The mean intensity then increases beyond 

the depth of cut of 1.25 j..Lm which indicates that the mean intensity has reached a 

minimum between a depth of cut of 1.25 and 10.0 j..Lm. 

Lucca et a1. (1996) in their study of the subsurface damage distribution in ul­

t raprecision machined CdS have made a comparison of the damage dept h profi les 

for a range of depths of cut for machining along the (1010). They have shown t hat 

at a particular depth from the surface , t he relat ive disorder of the lattice increases 

with depth of cut up to a depth of about 320 nm as shown in Figure 4-10. In the 

same study, the group observed, using ion channeling, that there is a larger dept h 

of damage for the CdS machined along the (1010) plane as compared to the (1120) 

plane. The general trend of increased damage with depth of cut up to 1.25 /.tm can 

be seen from Figure 4-11. It is less clear whether their measurements are consistent 

with the fluorescence results at 10.0 /.tm , however , the ion channeling results show 

that a reduction in damage depth at 10.0 /.tm depth of cut is plausible. 
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Figure 4-1: Mean fluorescence intensity from a chemo-mechanically polished 
specimen measured at various locat ions and. durations of exposure to UV light. 

32 

-1 

"1 
-'1 
rj 
tool 
t:l 
~ .. -... -... r; .. 
~ .... 

: ., 

cr 

'r , 
CdS 

(-

lJ 
..-: .. 
~ 
<: 



-rIl -.-= = c 
~ -. -,Q 
1.. 

= --~ -.-rIl 
= QJ -= -

100 
99 
98 
97 
96 
95 
94 
93 
92 
91 
90 
89 
88 
87 
86 
85 
84 
83 
82 

=-
=-
=-
::-

:-

E-

~ 

r 
t 
l:-

E 
t 
E-

F-

E-

E-

• • • 
• 
... , I 

6 

I ! I 

1 2 3 

... 1st. hr (data set 1) 
• 2nd. hr. (data set 1) 
• 3rd. hr. (data set 1) 
6 1st. hr. (data set 2) 

• • • • • • • • • • • • • 
... ... ... ... ... 

... 6 ... 
6 6 6 b, 

6 
6 

1 I I J J J I 

4 5 6 7 8 9 10 

Observation 

Figure 4-2: Mean fluorescence intensi ty from a chemu-mechani cally polished CdS 
specimen (same as specimen of Figure 4-1) measured at same locat ion and various 
durations of exposure to UV light. 

33 

.. -
:­
• 
'r 



76 
-. ... 1 st. hr (data set I) 
CIl 75 • 2nd. hr. (data set I ) ... .- • 3rd. hr. (data set I ) = = o 3rd. hr. (data set 2) 

~ 74 .& 
~ ... .& .& 
= .. ... .. .. .- 73 .. .Q .A. .. ... 0 = 0 -- 72 0 0 0 • ~ • 0 ... 0 -1 . - 0 ., .-1 
CIl 

71 • ~ -"1 = '-- "j Q.l • • • ... • • • Cool 

= • • • t:l 
iIOIIII 70 • • :;. . ... 

• :Or ... 
69 I 

1 2 3 4 5 6 7 8 9 10 
.. 

Obsenration 
"1 • , 

Figure 4-3: Mean fluorescence intensity from (0001) CdS machined along (1010) at a 
(-,-
,:1 

depth of cut of 0.1 /-Lm at various durations of exposure to UV light . ~ 

,.. 
t;, 
<: 

34 



75 

- .. 1 st. hr (data set 1) 
fIJ 74 - f- • 2nd _ hr_ (data set I) .-= = 73 

• 3rd_ hr_ (data set I ) 

c-
O 3rd_ hr_ (data set 2) 

C 
~ 72 -. -.c - 71 = --~ 70 -.-fIJ = 69 ~ -= - 68 

.. .. .. .. .. 
f--- .. ... ... .. 

• .. 
f--- • • • • • • • f--- • 0 0 • • • • l- • ~ ~ • • 0 • 0 0 
l-

67 I I I I I I I (1) I I 

1 2 3 4 5 6 7 8 9 10 

Observation 

Figure 4-4: Mean fluorescence intensity from (0001) CdS machined along (lOi O) at a 
depth of cut of 0.5 /-lm at various durations of exposure to UV light . 
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Figure 4-5: Mean fluorescence intensity from (0001) CdS machined along (1010) a t a 
depth of cut of 1.25 fJ.m at various durations of exposure to UV light . 
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Figure 4-6: Mean fluorescence intensity from (0001) CdS machined along (1010) a t a 
depth of cut of 10.0 /-LID at various durations of exposure to UV light . 
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Figure 4-7: Mean fluores cence int ensi ty from (0001) CdS machined along (1010) a t 
various dept hs of cut measured after 3 hours of exposure to UV light. 
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Figure 4-8: Mean fluorescence intensity from (0001) CdS machined along (1120) at 
various depths of cut measured after 3 hours of exposure to UV light. 
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Figure 4-9: Mean fluorescence intensity from (0001) CdS machined along (1010) and 
(1120) at various depths of cut measured after 3 hours of exposure to UV light. 
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Figure 4-10: Comparison of depth profiles for (0001 ) aligned CdS diamond turned 
along a preferred cleavage plane, (1010) , at various depths of cut. (Lucca et aI , 1996) 
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Figure 4-11: Maximum damage depth fur (0001 ) CdS machined along the (lOla) and 
(1120) planes at various depths of cut, (Lucca et al. , 1996) 
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Illuminated spot Mean Mean % change Mean % change 

location intensity intensity ( BAA intensity (GA A 

(1 hr.) (A) (2 hrs.) (B) x 100%) (3 hrs.) (C) x 100o/c ) 

Different location 85.6 89.2 4.2 90.0 5.1 

Same location 87.2 91.6 5.0 93.2 6.9 

Table 4.1: Summary of the mean, standard deviation , and percent change of t he 
mean fluorescence intensity measured at different illuminated spot locat ions and the 
same illuminated spot location at various durations of UV light exposure for the 
chemo-mechanical polished specimen. 

Mean intensity Mean intensity Mean intensity Mean intensity 

after 1 hr. after 2 hrs. after 3 hrs. after 3 hrs. 

(on different day) 

73.34 70.51 70.53 71.71 

Std. dev. 0.41 0.56 0.72 0.51 

Table 4.2: Sununary of the mean and standard deviation of the fluorescence intensity 
measured at various durations of UV light exposure from (0001 ) CdS machined along 
(1010) at a depth of cut of 0.1 j.1.m. 
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,---
I Mean intensity Mean intensity Mean intensi ty Mean intensit~, 

after 1 hr. after 2 hrs. after 3 hrs. after 3 hrs. 

(on different day) 

72.05 70.40 69.04 68.77 

Std. dev. 0.40 0.56 0.19 0.71 

Table 4.3: Summary of the mean and standard deviation of the fluorescence intensity 
measured at various durations of UV light exposure from (0001 ) CdS machined along 
(1010) at a depth of cut of 0.5 j.Lm. 

Mean intensity Mean intensity Mean intensity Mean intensity 

after 1 hr. after 2 hrs. after 3 hrs. after 1 hr. 

(on different day) 

69.21 67.02 64.31 68.65 

Std . dev. 0.65 1.23 0.84 0.92 

Table 4.4: Summary of the mean and standard deviation of the fluorescence intensi ty 
measured at various durat ions of UV light exposure from (0001) CdS machined along 
(1010) at a depth of cut of 1.25 p,m. 

Mean intensity Mean intensity Mean intensity Mean intensity 

after 1 hr. after 2 hrs. after 3 hrs. after 1 hr . 

(on different day) 

66.97 66.40 65.86 67.97 

Std. dev. 0.56 0.57 0.46 0.80 

Table 4.5: Summary of the mean and standard deviat ion of the fluorescence intensi ty 
measured a t various durations of UV light exposure from (0001) CdS machined along 
(1010) at a depth of cut of 10.0 p,m. 
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Mean intensity 

Depth of cut , J.Lm 0.1 0.5 1.25 10.0 

71.71 68.77 64.31 65.86 

Std. dev. 0.51 0.71 0.84 0.46 

Table 4.6: Summary of the mean and standard deviation of the fluorescence intensi t~, 

from (0001) CdS machined along (1010) measured at various depths of cut exposed 
to 3 hours of UV light. 

Mean intensity 

Depth of cut, 11m 0.1 0.5 1 1.25 10.0 

75.84 72.60 69.16 70.45 

Std. dev. 0.62 0.70 0.66 0.59 

Table 4.7: Summary of the mean and standard deviation of the fluorescence intensity 
from (0001) CdS machined along (1120) measured at various depths of cut exposed 
to 3 hours of UV light. 

Depth of Mean intensity, 

cut, pm machined along machined along machined along 

(1010) (ll20) (1010) 

(on different day) 

0.1 71.71 75.84 70.53 

0.5 68.77 72.60 69.04 

l.25 64.31 69.16 

10.0 65.86 70.45 

Table 4.8: Summary of the mean fluorescence intensity from (0001) CdS machined 
along (1010) and (1120) measured at various depths of cut exposed to 3 hours of UV 
light. 
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Chapter 5 

Conclusion 

From the present experiments , it was observed that the chemo-mechanically polished 

CdS specimen results in a higher mean fluorescence intensity than those CdS crystals 

which have been diamond turned. Comparing the various depths of cut ranging 

from 0.1 j..tm to 10.0 j..tm in the SPDT of single crystal {OOOl)-oriented CdS, it was 

observed that the depth of cut of 0.1 j..tm gives the highest mean fluorescence intensity 

and this intensity decreases as the depth of cut increases to 1.25 j..tm. Beyond t his 

the mean fluorescence intensity increases as the depth of cut increases to 10.0 j..tm. 

Comparing the CdS crystals machined along the (1010) and (1120) planes for depths 

of cut ranging from 0.1 /lm to 10.0 /lm, it was observed that the crystals machined 

along the (1120) plane consistently gave higher PL intensities than those machined 

along the (1010) plane. 

The first observation indicates that cherno-mechanical polishing produces less sub­

surface damage than the SPDT process . The second observation indicates that sub­

surface damage increases as the depth of cut increases up to a depth of cut of about 

1.25 {Lm. The third observation indicates that single point diamond turning along 

the (1010) plane produces more subsurface damage than when machining along the 

(1120) plane. The results of the present study are consistent with studies of the 

depth of subsurface damage of the same crystals performed by ion channeling (Lucca 
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et a1., 1995, 1996). A review of the literature has indicated that there are a number 

of possible mechanisms for luminescence quenching around dislocat ions , and it is not 

certain which is the exact mechanism that gives rise to the above observations. F i­

nally the present experiments have indicated that fluorescence microscopy at ambient 

conditions can be used to evaluate the subsurface damage of single crystal CdS. 

The measurement of the fluorescent intensity in this thesis encompasses the broad 

spectrum of wavelengths in excess of 470 nm. Future work should then concent rate 

on measuring fluorescent intensity at a narrow band of the fluorescent spectrum. In 

addition, measurement of fluorescent intensity at the "dislocation emission", which 

has been identified by Negrii (1992) to be a characteristic group of emission lines in 

the 505 run and 515 nm region of the low temperature PL spectrum of CdS should 

be explored. 
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