
POSSmILITY SET SEMANTICS: ERROR DETECTION

AND CODE OPTIMIZATION

By

BRIAN JOSEPH SULLIVAN

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1993

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1996

OKLAHOMA STATE UNIVERSITY
-: ...

POSSmILIlY SET SEMANTICS: ERROR DETECTION

AND CODE OPTIMIZATION

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to thank my advisor Dr. K M. George for his assistance in constructing this

thesis. Also, I would like to thank my other committee members Dr. Hedrick and Dr.

Chandler.

In addition, I would like to express my gratitude to my family and friends for their

support during the creation of this thesis.

iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

II. REVIEW OF TIlE LITERATURE '" ~

2.1 Errors 3
2.1.1 Lexical Errors 4
2.1 .2 Syntax Errors 5

2.1.2.1 Panic Mode 5
2.1.2.2 Phrase-Level Recovery 5
2.1.2.3 Error Productions 6
2.1.2.4 Global Correction 7
2.1.2.5 Recovery Without Correction 7

2.1.3 Semantic Errors 8
2.1.3.1 Type Checking 8
2.1.3.2 Data Flow Inconsistencies 9
2.1.3.3 Lint 9

2.1.4 Semantic Errors Resulting in Exceptions 10
2.1.4.] Current Treatment of Exceptions 10
2.1.4.2 Treatment of Exceptions in this Thesis 11

2.1.5 Preserving Error Producing Behavior 12
2.2 Code Optimization 13

2.2.1 Constant Propagation 13
2.2.2 Uninitialized Variable Access 15
2.2.3 Range Checking 16

III. POSSmILITY SET SEMANTICS 19

3.1 Notation for Possibility Set Semantics 19
3.2 Virtual Machine Notation 21
3.3 Basic statements 22

3.3.1 begin .Jlrocedure 22
3.3.2 end .JlTOcedure 23
3.3.3 declare x of type T 24
3.3.4 kill x 25

iv

3.4

3.5

3.6

3.7

3.3.5 undeclare v
3.3.6 y~x
3.3.7 cast source x to destination y
Arithmetic Instructions
3.4.1 x~x+y

3.4.2 x ~ x + yon overflow goto z

3.4.3 y ~ y / x on divzero goto z
3.4.4 bound low w, check X, high yon error label z
Comparisons
3.5.1 D ~ (x < y)
3.5.2 b ~ x and y
3.5.3 i£lelse/endif
Branching
3.6.1 Forward jump: goto S
Looping
3.7.1 Backward jump: goto Z

IV. USAGE OF POSSIBILITY SET SEMANTICS

4.1
4.2

4.3
4.4

Interprocedural Analysis and Globals
Error Detection and Code Optimization
4.2.1 Error Detection

4.2.1.1 Division by zero
4.2.1.2 Overflow
4.2.1.3 Invalid array index
4.2.1.4 Invalid parameter to function
4.2.1.5 Possible loss of information
4.2.1.6 Reference to uninitialized variable

Code Optimization
Practicality
4.4.1 Determination of Definite Errors in Loop Analysis
4.4.2 Early Termination of Loop Analysis by Expanding

Possibilities
4.4.3 Conservation of Space
4.4.4 Limit to Complexity

V CONCLUSION

5.1
5.2

Future Work
Conclusions

REFERENCES

v

25

26
26
27

28
28
30
30
32
33
35
39
41
41
43
44

47

47
49
49
49
50
50
50
50
51
52
53
53

54
55
55

57

57
58

59

APPENDIX A-- GLOSSARY

APPENDIX B-- ALGORITIIMS IN C AND PSS ANALYSIS

vi

62

64

LIST OF TABLES AND FIGURES

Table

1. PLiI Error Conditions

Figure

1. Example of end --'procedure from C

2. Example of assignment using cast from C

3. Example of greater-than-or-equal (>=) from C

4. Example oflogical andwhere x and yare distinct.

5. Example oflogical and where x and yare the same variable.

6. Example of a fOIWard goto from C

7. Example ofprototype from C-like language

vii

Page

11

Page

24

27

35

37

38

43

48

CBAPfERI

INTRODUCTION

Traditionally, error detection by the compiler occurs mainly at the lexical and syntactic

levels. Lexical and syntactic analysis have been investigated thoroughly and have well

established means of determining errors (see section 2.1). Just as the syntactic level builds

upon the foundation of lexical detection and requires more analysis, the semantic level also

builds upon the syntactic level an.d requires yet more analysis (section 2.1 .3).

The semantic level has a larger area to cover as each language seems to have more

diverse semantics. Some languages, such as PLII and Ada, may allow the user to trap run­

time errors with ON ERROR statements or exception handling, but the compiler gives no

notice of where those errors may occur at compile-time other than in very obvious cases.

Utilities such as lint more rigorously apply type checking of parameters and results as well

as indicate the portability of the code [Darw91]. Safety checks must be placed around

each possible offender to control run-time errors. The compiler provides no notification

that an error may occur at such points. Such possible points of run-time errors are too

numerous to be worth mentioning by the compiler as every division by a variabJe and

every array indexed by a variable are candidates for compiler warnings.

This thesis addresses the problem of statically detecting the possible locations of

run-time errors. The techniques presented in the thesis mimic the method used by some

human programmers when analyzing code. A procedural language's source code, or more

typically its intermediate code, is analyzed using alternate semantics in whlch each variable

represents not a value but rather a set ofpossible values. To be practical the compiler

overdetects possible errors and to be conservative it does not optimize everything that

could be optimized if all information were retained. But the technique flags all pLaces

where certain run-time errors such as division by zero, array bound violations, arithmetic

over/underflows and uninitialized variables may occur.

Some optimizations are made which otherwise cann.ot occur. Checks for run-time

errors which may be detected by this analysis can be eliminated wherever the analysis

determines that the run-time errors cannot ocellI. A different method of constant

propagation, more appropriately constant replacement, is presented. As the possible

values of expressions are known, some expressions may be downgraded in byte length.

2

CHAPTER II

REVIEW OF THE LITERATURE

Current literature discusses error detection of all types in compilers at all levels.

The literature contains much information on the well-defined areas, but the less well­

defined areas merely indicative of errors also are discussed. Some general code

optimizations are discussed as found in the literature.

2.1 Errors

Errors occur at the lexical level by the insertion and/or deletion of characters

leading to strings that do not match any of the lexical analyzer's valid tokens. Syntactic

errors may occur through flaws in the programmer's grammatical constructions as well as

through the causes above. Semantic errors have valid syntax, but invalid meaning; the

extent of information included in a language's grammar separates the syntactic and

semantic levels. Logical errors are beyond the scope of this thesis.

3

2.1.1 Lexical Errors

Error detection at the purely lexical level is rather simple. The lexical analyzer

uses regular expressions and a table in order to determine whether the source input is a

valid token. The token may not be valid at higher levels, but the determination of the

existing token is straightfolWard. When no available expression or table entry describes

the string encountered, there are several methods of recovery available.

First, the compiler may simply stop upon receiving an invalid token. This is

certainly the easiest action, but for such a simple error the compiler can generally continue

to provide the programmer more information.

Second, the compiler may insert or delete characters, replace incorrect characters

by correct characters, or excbange adjacent characters [AboSS]. If the compiler inserts

characters into the input stream to correct the input, it should take care not to insert

characters indefinitely thus creating an infinite loop. As the number of possibly valid

characters is limited, each character "is examined in sequence against a list of all possible

characters. During this examination a new list of all possible next characters is built.

When the end of the current list is reached, the new list becomes the current list, the

character is obtained, and the process continues" [Thom68]. All such modification should

only be for the purpose of continuing the compilation; the compiler should notify the

programmer of such changes and they should be fixed by the programmer before

compilation should produce executable code.

4

2.1.2 Syntax Errors

Error detection at the syntactic level is more involved, especially if meaningful

error messages are to be produced and if the compiler is to continue compiling after

detecting the error. As an example in LR(1) parsers, the parsing table and stack are used

in the detection of errors; so long as the parser may proceed using given productions aU is

well, but if there is no match then the parser enters into an error state [Geor85].

Upon the detection of an error, there are several methods of recovery available.

2.1.2.1 Panic Mode

If the parser discovers a syntax error, panic mode recovery deletes tokens from its

consideration until some form of synchronization is possible. lbis recovery "attempts to

move forward in the input stream far enough that the new input is not adversely affected

by the older input" [Levi92]. In many languages, synchronization may occur when an end

token is reached to pair against an already recognized begin token [Aho88]. The token to

regain synchronization varies with the language and the context. A left parenthesis may

synchronize with a right parenthesis, or a statement may regain synchronization upon

reading an end of statement marker such as ';'. If synchronization is not achieved

correctly, errors can cascade [Levi92]. This technique never enters an infinite loop, but it

does not give the programmer the most information possible as all possible error

information between points of synchronization is lost [Ab088].

2.1.2.2 Phrase-Level Recovery

Phrase-level recovery attempts a local recovery by using simple heuristics

detemlined by the compiler writer to "correct" the code allowing the compiler to continue.

5

It isolates uan 'error phrase', which is then replaced by a suitable 'reduction goal'"

[Sipp83]. It may use the remaining input as the base upon which it can concatenate

another string making the remaining input valid. It may replace similar characters such as

a comma or colon by a semicolon, or delete or insert end of statement markers [Ah088].

This form of error correction must be ensured not to enter an infinite loop by always

inserting another character in the input. Its greatest weakness lies in dealing with the

situation in which the error occurred before the point of detection [Ah088].

2.1.2.3 Error Productions

Error productions involve the foresight of the compiler writer in noting those

errors of construction which will be common in the language. Just as the compiler has

productions for comparisons, assignments, etc., it may have productions for constructs

which produce errors [Ab088]. These productions may actually produce code

corresponding to what the programmer wanted and simply warn the programmer that the

construct is invalid or it may just give a more explicit error message. If it were known that

people moving from Pascal to C often used Pascal style pointers, the appropriate

productions may be included, automatically replacing the error with its corresponding C

construct and giving an error message notifYing the programmer of the correct usage.

This often seems to be done with ANSI C compilers upon encountering K&R C

constructs. Some systems such as those proposed by Sippu and Soisalon-Soininen would

create error productions based upon the findings of the stack in phrase level recovery

[Sipp83].

6

2.1.2.4 Global Correction

Global correction attempts to use an algorithm "to find the minimal sequence of

changes to obtain a globally least-cost correction" [AhoSS]. Given that there is an error in

the source code and the low likelihood of the correction being that which the programmer

actually intended, the high cost of such algorithms prevents their general use [AhoS8].

Backhouse discusses locally least-cost error recovery for LL(1) parsers [Back84].

The cost of replacing terminal symbols and determining the min and max follow costs are

discussed therein. The scheme presented uses a parameter table rather than searching for

the follow set; it tries to decrease the size of the parameter table through various

techniques including the definition of equivalence classes for terminals. Unfortunately, its

definition of equivalence classes is not solvable in general for LR(1) parsers [Back84].

Traviolia discusses a new syntax-error recovery scheme for LR(k) parsers called

Least-Cost LR(k) Early's Algorithm [Trav91]. Traviolia's algorithm is O(n) for correct

input, causing little concern for correct compilation, and it is effective though potentially

costly, O(n\ in the worst-case [Trav91]. This worst-case bound is still better than some

previous algorithms [Trav91].

2.1.2.5 Recovery Without Correction

Recovery from syntactic errors without an attempt at correction is another

method, one promoted by Richter [Rich85], in which a nonnal LR parser would

process the source code language until an error is reached. At that point, a suffix

parser is then invoked which may determine intervals in which errors may occur. This

7

method of detection does not necessarily detect all errors, most notably it only detects

the innermost error in an interval thus possibly skipping mismatched parenthesis errors.

2.1.3 Semantic Errors

Semantic errors are errors in meaning. The programmer creates a program which

may be syntactically correct yet does not perform the desired operation. As an example, a

compiler cannot generally detect that the desired function of a program is to sort input

when the programmer actually creates a program to play Othello. A compiler may respect

assertions, and a programmer may enter preconditions and post-conditions for a block of

code [Marc86]. A programmer can work backwards from the desired result finding the

necessary condition to ensure its evaluation, repeatedly applying such steps until the

precondition is derived [Babe87]. ' 'The semantics of a programming language can be

defined via a hypothetical machine which interprets the programs ofthat

language"[Bjoe82]; a modification of such semantics for a language leads to the results

contained herem. Yet if such assertions and any other extra materials match the program,

and still the program does not match the programmer's intention, nothing can detect the

error. When the program and its associated materials is consistent and still incorrect, there

is no handle for the compiler to discover that the program is incorrectly specified.

Yet a compiler can detect certain inconsistencies in the program.

2.1.3.1 Type Checking

The type checking component of analysis is concerned with determining whether a

program conforms to the type system This may apply to the built-in operations such as

8

addition and subtraction and other programmer defined types and operations. Type errors

are improper usages that violate the rules definin.g the type system of the language. For

example, type mismatch of the left-hand side and the right-hand side of an assignment

statement may be a type error in a language.

Type errors may be considered syntax errors if the languages defines the type

structure at the syntactic level [Wijn76], or it may be considered to be at the semantic

level if the language syntax does not invoke type. Algol 68 includes sufficient information

within its language definition to detetmine that types are syntactic in nature [Wijn761,

whereas in Lisp an addition of two members of a list mayor may not have valid meaning;

it may have meaning during one pass of a loop and lose its meaning during the next pass.

2.1.3.2 Data Flow Inconsistencies

Systems such as Dave, developed and described by Fosdick and Osterweil, try to

determine inconsistencies in data-flow [Fosd76]. Dave finds definitions, references, and

undefinitions (the invalidation of data). A definition followed by another definition is an

inconsistency in that the first definition would not be used. Similarly, a definition followed

by an lUldefinition would make the definition useless. And naturally an undefinition

followed by a reference would mean that the reference would be invalid.

2.1.3.3 Lint

Lint, a utility provided on UNIX systems, provides another form of error checking.

Lint tries to detetmine some common coding problems and tries to determine if the code

has the same semantics on other machines, its portability [Darw91]. Again, the checks

made by the program fall under the category of inconsistency. It can determine if

9

arguments passed to functions are not always the same. It can determine if a function's

returned value is used in some instances, but ignored in other instances.

2.1.4 Semantic Errors Resulting in Exceptions

Semantic errors as referred to in this section describe those errors made by the

programmer which would generally not be detectable at compile time, but rather they

occur at run-time as run-time errors or exceptions. The most general case of those errors

which could be detected by the techniques presented are those in which functions are

applied to invalid values. This includes functions such as division where the divisor is

zero, the array indexing functions with invalid indexes, addition and other arithmetic

operators with values inducing over/underflow, and certain inconsistencies of

programmers' code when interacting with language supplied functions and specially

annotated user functions.

2.1.4.1 Current Treatment of Exceptions

Currently, the two most common approaches to these forms of errors are letting

the error occur and allowing the operating system to attempt a recovery or allowing the

programmer or compiler to designate exception handlers [Rich85]. No notice is given to

the programmer of the places that these exceptions would be needed even when such

exceptions are supported by the language.

The PLiI language has many separate ON conditions which would catch different

types of run-time errors (see Table 1 below). Some conditions in PLiI are always active

and some are active unless disabled and some are active only when enabled. The

10

condition may even be signaled directly without the actual cause of the condition

occurring. The subject of the ON condition may continue to the next statement or halt the

entire program ifno ON condition is supplied, depending on the condition [Lech68].

Table 1. PUI Error Conditions [Lech68]

CONVERSION llJegal conversion of character string data.

FrxEDOVERFLOW Result of fixed point arithmetic exceeds places.

OVERFLOW

SIZE

UNDERFLOW

ZERODIVIDE

Value of float's exponent exceeds 2127.

Assignment of a value too large for the variable.

Value of float's exponent smaller than 2- 128.

Division by zero in fixed or floating point.

SUBSCRIPTRANGE An index to an array falls out of declared bounds.

2.1.4.2 Treatment of Exceptions in this Thesis

This thesis shows that by maintaining a set of possible values for each expression

that the compiler may discover those places where certain run-time errors cannot occur.

By knowing where they definitely will not occur, the compiler may forego the placement

of checks surrounding the otherwise suspect code.

The reduction in possible places for run-time errors makes the location of

remaining possible exception points valuable to the programmer. The programmer could

then make the decision to have the compiler eliminate automatic exception points, instead

, 1

placing the exceptions only in the points with possible meaning to the program If the

program were free from such possible warnings and errors, then the programmer could be

assured that in a reliable system the program could not suffer from the run-time errors

discussed in this thesis. As discussed within this thesis, a reliable system is one in which

all effects on the program may be reliably predicted given the information within the

program and correct information regarding its environment. For example, if the possible

return values from the operating system were found to be incorrect or if another program

could overwrite the execution space of the program in question then the system would Dot

be "reliable". Such knowledge would be extremely valuable to those programming for

mission critical applications.

2.1.5 Preserving Error Producing Behavior

If the error-producing behavior of a program needs to be maintained, then a

greater amount of information retained may help with optimizations. Normally, a compiler

is only concerned with reproducing the behavior of a correct program If a program

crashes with an error, compilers typically allow differing behavior. If the behavior of

program which crashes were to be preserved, optimizations which rely upon any form of

code motion would normally be disabled. That is, if the unoptimized code executes a then

b, and a and b each would cause a different run-time error, then the positions of a and b

may not be altered. Optimizing the code could execute b before a therefore creating a

different run-time error, causing the error producing behavior of the program to change.

12

Code motion is disallowed across warnings discovered by this thesis if the error-producing

bebavior must be preserved.

If the run-time error producing portion oftbe code must be maintained, then it

eliminates many possible optimizations. Portions of the program may be marked as safe in

that they would be known not to cause run-time errors. Code between warnings

generated by this thesis can be marked safe. Any portion so marked could then be fully

optimized. Although Aiken et a!. speak of marking code as safe in functionallanguages,

by knowing where an error cannot occur, benefits may be achieved in procedural

languages as well [Aike95].

2.2 Code Optimization

Code optimization in compiling actually refers to improving the time performance

of code. If all statements from a high level language were to be translated as directly as

possible to a lower-level intermediate or assembler language, the produced code would

generally be of poor quality compared to what a human could code by hand. Code

optimization attempts to bring the produced code closer to the code a competent person

could produce by hand.

2.2.1 Constant Propagation

One of the most common and useful code optimization techniques is that of

constant folding and propagation. In constant folding, when all the inputs of an

13

expression are constant, then the expression is computed at compile-time and directly

replaced by the constant [Clic95]. In constant propagation, the definition ofa variable

with a constant value allows its uses to be replaced by the constant.

Static Single-Assignment form allows each assignment to have its own name

allowing the compiler to find more easily the occurrence of each value [Bran 94]. Then if

one occurrence of the name has a constant value, all occurrences have the same constant

value.

Constants may be propagated even across procedures, although such

interprocedural propagation is not very common [Metz93] .

Abo, Sethi and Ullman show constant propagation in terms of dataflow analysis

[Ah088]. The values, transfer functions, meet operation, etc. for constant propagation are

sh.own. Simple modifications of constants are allowed as in "when x is defined by d:

x:=x+l , and x had a constant value before assignment, it does so afterward" [Ab088].

Yet it reduces all sets of values to the single special value, noncons!. "The value

nonconst would be assigned to variable x it: say, during data-flow analysis we discovered

two paths along which the values 2 and 3, respectively, were assigned to x, or a path along

which the previous definition ofx was a read statement" {Abo8S]. The values 2 and 3

would be irrevocably lost, subsumed into the special nonconst. If a later control construct

split the flow with a statement such as:

if{x:;t2) output(x); else output(lO-x);

14

then both opportunities for constant replacement would be lost.

Constant propagation within the framework of this thesis will be done quite

differently. As each variable would have a set of possible values, it follows directly that if

there is only one possible value then that value may replace the original reference. This

form of replacement does not depend on the existence of a constant's assignment to a

variable at any point. As many values in the sets as practical would be retained by the

compiler. Partitioning of the set by comparisons could occur as in the following, assuming

x is an integer:

if{(x>9) && (x<ll» output(x);

Assuming ten (10) is ever a possibility, the output if any would certainly be 10, yet the

constant assignment of 10 will not be made using techniques found in the literature. (If x

could not be 10, then the code could safely be removed as dead code.) As more constants

will now be discovered at compile time, especially including such useful constants for

optimization such as zero (0) and one (I), more benefits of constant folding for addition,

multiplication and division will arise [Bidw86].

2.2.2 Uninitialized Variable Access

A special value denoting the uninitialized state may be assigned to each declared

variable. Whenever this value is accessed, it may be flagged as accessing an uninitialized

variable. As the set of possible values would be maintained, the variabJe may be initialized

15

in one branch of the control flow, but not in another, and when the control flows rejoin it

would still be detected as a possibly illegal access. Note that it could not be sure to be

illegal; program input could conceivably never go through any route that would not

initialize the variable, yet the possibility would exist and the programmer should be

notified.

2.2.3 Range Checking

When an array is accessed, care must be taken that the index is within the declared

bounds. If the index exceeds the array bounds (either above or below), then other

unknown portions of data may be overwritten, the program's code may be modified

without the programmer's knowledge, and even other programs' code and data may be

modified on some systems.

Although obvious that this must be prevented, the overhead to ensure prevention is

extraordinarily large. Gupta mentioned that execution times when run-time bounds checks

are in place may double [Gupt93], and Chin and Goh state that such bounds checks may

add up to 50% overhead [Chin95]. Although suitable during debugging to ensure that test

cases by the programmer do not cause boundary faults, such overhead may not be

acceptable in production programs.

If the compiler takes no notice of the array other than that it exists and that it must

be checked at run-time, then each array access would also require an index check against

both upper and lower bOlUlds. As array accesses may often be within loops and other

important areas of the program, it is clear why bound checks may hinder programs

16

seriously. Some of the propagation methods applied to constants have also been applied

to bound checks.

Although some computers may have a single instruction capable of checking both

upper and lower bounds, most typically the upper and lower bounds may be treated

separately as one may be optimized, but the other may not. Local analysis can discover

when bound checks are identical and it can discover when one bound check is subsumed

by another [Gupt93]. Naturally, such values for ranges may be checked globally as well as

10caUy. Range checks for arrays may be hoisted from within a loop to outside its bounds

with modifications [Gupt93][Chin95]. Asuru and Hedrick have shown that both common

subexpression elimination, which may be applied to range bounds, and code hoisting may

be done simultaneously without separate passes leading to greater efficiency [Asur93]. All

such checks are adaptations of more traditional optimizations for other constructs

modified for ranges. Just as a constant may be propagated when its value has not

changed, a bound check may be propagated when its index has not changed, leaving it

definitely safe within another bound check. Just as other code may be hoisted from within

a loop, a bound check may be hoisted as well. These techniques may eliminate a large

number of checks, anywhere from 42% to 100% in small sample programs tested by

Gutpa [Gupt93}.

By maintaining the set of all possible values for each variable, much of range

checking comes for free at compile time; when the set of possible values for an index

contains no values outside the range, then no run-time bound check code must be

produced. Rather, when it detects that there may be a boundary violation, the compiler

17

may warn the programmer. The programmer may insert his own manual bound check

(such as a simple illthenlelse clause) or allow the compiler to insert one at such remaining

points.

18

CHAPTERID

POSSmILITY SET SEMANT1CS

In this chapter, a new method for static checking of certain runtime errors, namely

Possibility Set Semantics (PSS), is presented. Possibility sets will be defined by the actions

of a virtual machine described in the sections below. Virtual machine instructions are

specified along with their semantics. The notation used to define the possibility sets is

described for the general case of high-level procedure-oriented languages and the included

virtual machine. A sufficient number of statements to demonstrate each class of

statements in the virtual machine is introduced with explanation. Possible compiler actions

such as issuance of error messages also are given along with PSS definitions.

3.1 Notation for Possibility Set Semantics

Possibility set semantics may be discussed in the abstract independent of any

particular form or in the specific form of a language. The notation for possibility sets

themselves and their most general use will first be discussed.

Variables will be written in italicized lower-case in the text. Values, the data

which may be stored in variables, will be described in the text using either numbers or

variables.

19

For each variable x, there is an associated possibility set for x. Variables will be

written in lowercase and the possibility set for the associated \"ariable will be written in

uppercase. For example, assigning the value one (1) to the variable x would result in

X={l} .

The possibility set for a variable may typically contain any value which may be

assigned to the variable. It may also contain special values not possible in the value

semantics. One such special value, represented using the empty set (0), stands for an

uninitialized variable.

Boolean variables have their own possibility sets, indicated in the manner above,

but they often also have extra associated sets. These sets associate possibility sets with

the 'true' or positive possibility and the 'false' or negative possibility. These extra

associated sets will be noted with a subscripted T .and F for the true/positive and

false/negative sets, respectively. For example, a boolean variable b will have its own

possibility set called B, which may hold T, F, or 0. Where B is true, BT contains the

appropriate possibility sets; where B is false, BF is similarly in effect.

Variables as discussed within this thesis have types. For this thesis's purposes, tbe

most important aspect of a type is the values whicb it may contain. This set of values for

any variable will be represented as the capital letter R witb a subscripted variable name.

The set of values which the variable x may contain would be represented as Rx.

20

3.2 Virtual Machine Notation

The virtual machine which defines possibility sets is presented below. The

language is designed to conform to standard notation wherever possbile.

The statements have both value semantics and possibility set semantics. Both are

presented, the value semantics first and then the possibility set semantics.

The definitions for the value semantics closely follow the expected definitions

where possible. A program counter, PC, tracks which statement will be executed. Since

at no point is the PC explicitly set to a numeric value, the instruction size and other

implementation details of the machine itself are irrelevant to the discussion. Some

im1ructions do refer to a word size when dealing with values at the bit leveL but the actual

word size is not specified.

The definitions for the possibility set semantics use the notation given above in

section 3. 1 where possible. In addition, there is the concept that the analysis moves from

one .statement to another. This is embodied in the analysis counter, AC, analogous to the

program counter, PC, for value semantics. AC is used in loop analysis. Separate terms

for the instruction pointer for value semantics and possibility set semantics are used in

order to avoid confusion when they do not coincide.

At times additional sets may be defined beyond the expected set or sets associated

with each variable. The,., (script V) set is the most prevalent ofthese sets. It contains

ordered pairs containing all visible variables and their possibility sets. As variables enter

and leave scope, they may be included in ,., or excluded from,.,. Unless specified

21

otherwise, it is considered that all validly referenced possibility sets are retrieved from '1/.

'1/x represents the set of visible variables and possibility sets at point X, where X is

typically represented as a label.

"V ={ (x, {I}),(y, {2}),(z, {3,4,5, 10,11,12}) } would mean that X={ I}, Y={2} , and

Z={3 ,4,5, 10, 11 , 12}. The variables x, y, and z would be the only variables that could

validly be referenced. The use of any other variable would be the use of an undeclared

variable.

3.3 Basic statements

The following statements form the core outline of many languages, plus a few

miscellaneous instructions. The semantics is defined in terms of the effect the statements

have on "V and the value of '1/ at those points.

3.3.1 begin.J)rocedure

The value semantics of this typically would be to manage the stack frame and

perform any system dependent initializations for the routine.

The possibility set semantics for this initializes ""y. '1/ is the special set containing

all visible variables. As there are no variables yet defined other than possibly globals, '1/

should be set equal to Globals, the set of all global variables. If there are no globals, then

22

Globals={} and therefore ~ ={} upon begin_procedure. Further discussion of globals

will be delayed until section 4.1.

3.3.2 endj)rocedure

The value semantics of this typically would be to restore the stack and perform any

system dependent terminations for the routine before returning. This may correspond to

an implied end of procedure or an explicit return within a procedure.

The possibility set semantics for this is:

~={}

That is, all previously declared variables and their possibility sets are no longer available.

This is important considering that analysis continues.

For example. if endj)rocedure is present within an irs true clause, ~ would be

emptied. This would leave only the false clause's possibilities to continue onward to

recombine at the endifwith the empty ~ (see Figure I below).

23

if(x<5)
{

}
else
{

}

II Assume X={1..lO}
II Splits the X set

II X={ 1..4}
return; II an end.J)rocedure

II "V ={}, so there is no X now

II X={S .. lO}

IIX={} u {S .. 10}={S .. lO}
II the true clause's values had been removed by the
II return and so were not present to be unioned.

Figure 1. Example of end.Jlrocedure from C

3.3.3 declare x of type R

The value semantics of this may vary. The allocation of space for the variable may

be merged into the begin.J)Tocedure statement. Some languages may wish to initialize x

to zero or to another initialization value. Such an initialization should be done as a

separate statement. Naturally, the program translating the intermediate code to the

target's native code may recombine the statements, ifpossible, on the target machine.

The possibility set semantics for this follows the actual meaning ofthe declare:

"V = "V u{ (x,{0}) }

It places x in "", setting XIS possibility set to include only 0, the special symbol

representing an uninitialized variable.

24

The parameter R is a set of all possible values for the type, the maximum set of

possibilities for x. This may be referred toas Rx.

3.3.4 kill x

This statement has no explicit counterpart in normal execution. However, it may

be an implicit action caused by other statements. It invalidates the use of x, marking it to

be undefined. A language may define that this operation should be performed upon a loop

index after the loop or other similar operations.

Its definition in possibility set semantics is straightforward:

X={0}

Any references of the variable after this, but before other assignments, will be tagged as

references to an uninitialized variable.

3.3.5 undeclare v

This is a more severe counterpart to kill Rather than just declaring a variable's use

to be undefined, but redefinable, this eliminates all possible references to the variable short

of a redeclaration. If a loop's index is declared within the loop, but not capable of being

referenced outside the loop, this statement may be used. Additionally, if a variable is valid

only within a subblock, then this statement may be used at the end of the subblock to

invalidate its declared variables.

25

The possibility set semantics for this instruction removes v from --V:

-v ={(x,Y) I 'ifx, (x,Y) E -V 1\ x;ev}

3.3.6 Y +--- x

The value semantics for assignment copies the value from x to y .

The possibility set semantics correspond exactly:

Y=X

3.3.7 cast source x to destination y

The value semantics correspond to an assignment of a value of one type to a value

of a different type. Any value which may be held in y is copied from x.

The possibility set definition corresponds closely. Any element that may be

assigned to the destination will be assigned; any element that may not be assigned to the

destination flag a warning:

Y={x I '\j x, (x E X 1\ X E Ry)}

Y'={x I '\j x, (x E X 1\ X Ii!: Ry)}

26

IfY' is not empty, then a warning should be issued explaining the possible loss of

information. IfY is empty, then the assignment cannot execute correctly and the warning

should instead be upgraded to an error.

If loss of information is allowed without incident in the language, then the

information from Y' must be merged with Y , eliminating Y'. How that would be done

would be dependent upon the language, but one common possibility would be to union Y

with the lowest order bytes ofY'. Figure 2 gives an example illustrating this situation.

int L;
char C;
L=functionO;
C=(char)L;

II Assume ~={-32768 .. 32767}
II Assume Rc={ -12S .. 127}
II Assume L={ -lOOO .. lOO}
II Warning: C={-12S .. 100}, C'={ -lOOO .. -129}
I I If the lowest order bytes of C' are merged with C,
II then C={ -12S .. 127}

Figure 2. Example of assignment using cast from C

3.4 Arithmetic Instructions

The arithmetic instructions generally deal with addition, subtraction, multiplication,

division and other similar instructions. They may overflow, underflow or be applied over

invalid values. Typical instructions are described in the following subsections.

27

3.4.1 x.(;- x + y

The value semantics add the contents of x to the contents y, leaving the result in y.

Overflow is allowed, leaving the result present in the lowest order byte(s). For example,

assuming integer variables capable of holding 0 to 255:

r 1. b .(;- #255

r2.b .(;-#1

r1.b .(;- rl.b + r2.b

: assume r#.b refers t o byte registers ,",1th ~={O .. 255}

; assign constant 255 to register byte variable 1

; assign constant I to register byte variable 2

; add allowing overflow

: r l.b would be left with the value O.

As overflow is allowed, no run-time arithmetic error could occur; the lowest-order bytes

are assumed to catch the overflow.

The possibility set semantics follow closely:

y={ (x+y) bit-and (2bits-in-_rd)_l I (\7'x, x E X) J\ (\7' y, Y E Y) }

3.4.2 x.(;- x + y on overflow goto z

In value semantics, tbis would add the contents ofx to the contents ofy, leaving

the result in y ifno overflow occurs. If an overflow occurs, then control branches to label

:. Ifno destination is supplied, it is assumed the target machine would provide a default

destination for the trap.

The possibility set semantics for tbis is the first to be introduced which may detect

an overflow exception:

28

Y={x+y I (\fx, x E X) /\ (''iiy, Y E Y) /\ «X+y) E Ry)}

Y'={x+y I (\fx, x E X) /\ (\fy, y E Y) /\ «X+y) Ii!: Ry)}

1fY'={}, remove on overflow error clause.

lfY;t;{} and Y'*{}, issue waming.

IfY={} and Y':;t;{} , issue error.

Y is then the resultant set of possihle values, and Y' is the set of overflowed results. IfY'

is empty, then no overflow can occur so the error clause may be elirrrinated. IfY is empty,

then there are no possible results other than overflow; this should flag an error rather than

a warning. Ifboth Y and Y' are non-empty then a warning should be issued to the

programmer indicating a possible overflow condition; the set Y' may be displayed to the

programmer if more information is desired.

29

3.4.3 Y ~ Y I x on divzero goto z

The value semantics divides y by x, trapping to z on a division by zero.

lbis possibility set semantics for division follow the above addition closely:

Y={y/x I (\iy, y E Y) 1\ (\ix, (x E X) 1\ (x :t: 0» }

IfX={O} , flag a division by zero error.

IfOEX, flag a wammg ofpossible division by zero.

If 0 ~X, remove the on error clause.

If the onJy possibility for x is zero (0), then the instruction can never execute safely so an

error should be issued. Ifx can never be 0, then the instruction will always execute safely

and the error clause may be safely eliminated. If x can. be 0, but is not necessarily 0, then

the code should compile correctly, but the user should be warned that the program may

crash with a division by zero error.

3.4.4 bound low w, check x, high y on error label z

The value semantics for this would check the value of x against the low value w

and the high value y ensuring that x is valid. Ifx is not within the bounds, it traps to z.

lbis instruction typically would bound an array index. Although this may seem to have

more in common with the comparisons below, it is simpler in scope and falls more easily

under arithmetic operations.

30

bounds.

The possibility set semantics for this checks that no value in X exceeds the given

X={x I Vx, XEX 1\ (x->W and ~y) }

X '={x I Vx., X E X 1\ (x<w or x>y)}

If X'= {} , remove statement.

lfX':;t:{} and X;t:{} , flag a warning that array bounds may be exceeded.

IfX':;t:{} and X={} , flag an error that array bounds will be exceeded.

X' is the set of values which would exceed the bounds. If there are no values which

would exceed the bounds, then the statement will never cause an action in value semantics

and thus may safely be removed.

If X';t: {}, then there are possible values which would exceed the bounds and the

statement may be executed in value semantics. At least a warning should be issued. If

there are no valid entries, X ={} , then an error should be issued because the exception

would always be raised in value semantics.

Other arithmetic operations behave similar to the statements described above and

so their description is omitted.

31

3.5 Comparisons

In the above statements, the results of statements were analogous to the normal

execution of the statement--uniform members ofa set, a null result , or errors. For

example, addition ofintegers yielded only integers or an error. Boundary checks have no

effect or produce an error. Many similar statements follow directly with little

modification. They are similar to each other in one very important aspect : they need not

lose any information that a normal execution would not lose.

Comparisons are quite different. In value semantics, they compare two values

yielding a boolean. This boolean must be maintained in possibility set semantics, but there

is also a second level of information produced. For the boolean to be true orfalse, only

certain combinations of values are possible. Possibility set semantics partitions each of the

compared expressions into those possibilities which may yield the true boolean (the T

possibility set) and those possibilities which may yield thefalse boolean (the F possibility

set) .

Optimally, all possible partitionings should be maintained and th.is partitioning

should be performed once for each time the statement could be executed, splitting the

control flow of analysis repeatedly. Obviously, if the executing program could execute the

comparison an infinite number oftimes, it would not be possible to split the control flow

of analysis an infinite number of times. And such partitionings into true and false could

not be perfect as some elements would be members of both T and F sets. Most often the

32

resultant boolean will be {T,F} and the T and F sets will not be disjoint. Splitting control

flow will not be considered further.

3.5.1 b «-- (x < y)

The values semantics for this compares x to y, yielding the boolean true if x<y or

the booleanfalse ifX2Y.

The possibility set semantics for this instruction is more complex and produces less

precise information. First, some intermediate sets are introduced to simplify the

semantics. T x is the set of values from X which holds when the condition is true, and Fx is

the set of values from X which holds when the condition is false. Ty and Fy are

analogous.

T,,={x I Vx, X E X /\ X < Ymax}

Ty= {y I 'Vy, y E Y /\ Y 2 X min}

F,,={ x I Vx, X E X /\ X 2 Y min }

Fy={y I 'Vy, y E Y /\ Y < Xmax}

The possibility set semantics for b «-- (x < Y) is defined by the following:

B={ C I C={} u ({F} if(F" u Fy);t {}) u ({T} if(T" u Ty);t (}) }

B-r={(x, Tx), (y,Ty)}

BF= {(x,F,,),(y,Fy)}

33

'V = 'V u {(bt,BT),(b(BF)}

As an example, considerX={4 .. 9} andY={1..7}:

Tx={4 .. 6}

Ty={4 .. 7}

Fx={4 .. 9}

B={T,F}

In the above example, the T for x and y yield some information, but the F for x and y do

not narrow the possibilities. If the comparison were the other direction with the same

data, then F would offer more information while T would yield no more information. This

narrowing of possibilities is what allows constants to emerge even when not explicitly

defined . Although not perfect, the information retained is yet useful.

The T and F sets are maintained with the resulting boolean B. This information is

used by statements such as and and or. This is extra information, not associated with the

variable at run-time, and it is ignored when actual code is finally produced.

Similar comparison statements follow easily from the above statement as seen in
Figure 3.

34

positive=(x>= 1);
// Assume X={-128 .. 127}
1/ Positive={T,F},
1/ Positiver{X={ -128 .. 0}}
1/ Positiver={X={ LI27}}

Figure 3. Example of gr eater-than-or-equa) (>=) from C

3.5.2 b <E- (x and y)

The value semantics assigns the result of'logical and' of x and y to b.

The actual boolean is easy to obtain, but more operations are required for the

booleans' extra information. It performs a modified intersection of the true components of

the sources and a modified union ofthejalse components. The possibility set semantics

for and is shown. below:

B= { C I C={} u ({T) if (T E (X n Y)) u ({F} if (F E (X u Y)) }

Br {(r,P u Q) I V r «r,P) E XF, else P={}) 1\ «r,Q) E YF, else Q={})}

Br= {(r,P n Q) I V r «r,P) EXT, else P=Q) 1\ «r,Q) E YT, else Q=P)}

The above definitions create new possibility sets for both the true andfalse conditions.

They take advantage of the combined information if the referenced variables are present in

both sets. If the referenced variables are not in both sets, the possibility sets transfer

directly to the new combined set.

35

An example of the logical and where x and y are distinct variables is shown in

Figure 4.

See Figure 5 for an example of the logical and where x is the same variable as y .

In Figure 5, although no constant of7 actually appears in the code, the methods allow the

possibility sets to be partitioned enough. to discover that x may only be 7 when the

comparisons are true. If 7 is not a possibility before the comparisons, then the comparison

would instead reduce to a definite false.

36

; assuming X={ l..IO} and Y={ l..IO}

bi f-x < #5

:BI={T,F}

;BJ.r={(x,{l..4})}

; B lr={(x,{5 .. 10})}

b2 f- Y < #5

; B2={T,F}

; B2r={(y,{1..4})}

: B2r={(y,{5 .. 10})}

b f- bl and b2

: B={T,F}

; Br={ (x, {1..4 }),(y, {1..4})}

: Br={(x,{5 .. 10}),(y,{5 .. 10})}

Figure 4. Example of logical and where x and yare distinct.

37

; assuming X={ 1..1O}

bI ~ x < #8

;BI={T,F}

; Bl r={(x,{ 1..7})}

;Blr{(x,{S .. lO})}

b2 ~x > #6

; B2={T,F}

; B2r={(x,{7 .. 10})}

~ B2r {(x,{1..6})}

b ~ bl and b2

; B={T,F}

; Br={ (x, {7}}}

; Br {(x,{ 1..6,8 .. 10})}

Figure 5. Example of logical and where x and yare the same variable.

38

3.5.3 if/else/endif

P:

if (boolean x) then goto destination R

Q:

. .. true clause ...

Q':

else

R:

... false clause ...

R':

endif

s:

where P, Q, Q', R., R' , and S are labels representing execution points. The value semantics

for the statement would check the current condition ofx and then branch or not according

to its value. Assuming that there can be no branches into or out of the conditional

structure other than the defined entry and exit points, then the following holds. If x is

true, then PCf-Q. And when the PC reaches the else statement, PCf-S. lfx is false,

then PCf-R. Execution would th.en fall through to S after the endi.f statement.

39

3.5.3 if/else/endif

P:

if (boolean x) then goto destination R

Q:

· .. true clause ...

Q':

else

R:

... false clause ...

R':

endif

s:

where P, Q, Q', R, R', and S are labels representing execution points. The value semantics

for the statement would check the current condition of x and then branch or not according

to its value. Assuming that there can be no branches into or out of the conditional

structure other than the defined entry and exit points, then the following holds. lfx is

true, then PC~Q. And when the PC reaches the else statement, PC~S. lfx is false,

then PC~R. Execution would then fall through to S after the endif statement.

39

The possibility set semantics for this statement must analyze both the true and

false portions. Q through Q' use XT, and R through R' use XF. In the following, recall

that '1/p, '1/Q, '1/R and '1/s refer to '1/ at points P, Q, R., and S respectively. For the

true clause, the T sets override the normal values, so '1/ is assigned as follows:

""'VQ={(u,V) I '\I u, (u,V) EXT, else (u,V) E ""'Vp}

That is, if a variable is mentioned in XT, then that is the relevant set, else the normal set

from before the if is still used. If a variable is not mentioned in the if comparison, then

there is no more specific information available for it than its normal set.

The else clause also has its F sets override ""'V in the false clause.

""'VR= {(U,V) I '\I u, (u,V) E XF, else (u,V) E ""'Vp}

After the end of each clause, the control flows and hence possibility sets recombine:

""'Vs={(u,V u W) I '\Iu, «u,V) E ""'VQ' 1\ (u,W) E ""'VR')}

That is, if the end ofthe true clause leaves with X = {l} and the end of the false clause

leaves with X={O}, then endifwill produce X= {O, I}.

40

3.6 Branching

Branching deals with all transfers of control other than. the implicit flow of control

from one instruction to the following instruction. It includes the error flow of control

possible from all error conditions in previous statements.

3.6.1 Forward jump: goto destination S

P:

Forward jump: goto S

Q:

.. . code ...

R:

S:

Value semantics would define a forward goto as an unconditional PC~S, where S

is a point in the program which has not yet been processed.

The possibility set semantics for this instruction transfers all possible values from

the forward goto point to the label point . This must accommodate the fact that there may

be code at point R which would continue at the label as well. The possibility set semantics

for this forward goto is defined precisely as shown:

41

'"VQ={}

This states that all sets existing before the fOIWard goto and all sets existing before

label must be unioned together at the label point. Q is defined to be a label which cannot

be the target of a branch; another label may immediately follow Q and be the target of a

branch. As any code following the fOIWard goto will not be executed unless there is a

branch into the code and such a branch is disallowed, "'Q is set equal to the empty s.et.

By assigning "VQ to be empty, it may be unioned at an endif or at another label. Figure 6

provides an example.

The backward goto statement is covered below within the looping section .

42

ittx<5)
{

}
else
{

}

test:

goto test;

II X={ 1..1 O} The initial assumption.

II Br={Xr= { l..4}} Br {Xr {5 .. 10} }, B={T,F}

II X={ l..4} This set is carriedforward to the label.

. II X={} The set is cleared after the label.

II X={ 5 .. 1O}

II X={} union {5 .. 10}={ 5 .. IO}
1/ Union true and false clauses at the endif

II X={ 1..4} union { 5 .. 10}={ 1..1O}
II Union pre-label and post-label possibility sets.

Figure 6. Example of a forward goto from C

3.7 Looping

Any goto with a destination which has already been analyzed is effectively a

possible loop.

43

3.7.1 Backward j ump: goto Z

P:

Z:

Q:

... code ...

R:

Backward jump: goto Z

s:

where P, Q, R, S, and Z are labels. The value semantics define goto as an unconditional

PC~Z where Z<R.

The possibility set semantics for this instruction are the most intricate. This must

re-evaluate portions, but it cannot do so indefinitely. The analysis method presented

terminates regardless of the code within the loop, but the analysis is not quick. In a

practical implementation, some modifications to be explored in sections 4.4.1 and 4.4.2

may be made if speed is desired above accuracy.

S is defined as a point whlch cannot be the target of a branch ; another label may be

placed after S to be the target of a branch. Clearly, the statement after the goto, labeled

S: , cannot be executed as it cannot be a branch target, so ""Vs is set to the empty set :

44

~s={}

On the first pass of analysis, before the goto is discovered, the ~P from before the

destination label continues onward into the section labeled Q. On subsequent passes, ~R

from immediately before the goto must be transferred to the destination label.

On the first pass,

~Q='VP

~Q'=~P

On subsequent passes,

~Q=~R

If "VQ,:;t:~Q, then ~Q'="'Q ' U 'VQ and AC~z,

else continue analysis past goto and set AC~S.

The ~Q' above is introduced in order to provide a halting condition for the goto. ~Q'

tracks all possibilities that have been analyzed in the loop. lfmore possibilities have been

discovered, then ~Q' will differ from ~Q' If no new possibilities have been determined

during a pass, then no new possibilities will ever be created, and the loop may stop .

45

An infinite loop may merely assign a value to a variable and th.en unconditionally

loop backwards. As all data which may be handled by this analysis is finite, the analysis

loop will eventually discover them all and the analysis will stop.

For example, assume that a byte may contain any value from 0 through 255 . If a

loop always increased a byte, then after 256 passes the values would repeat. When the

values repeat, ""Q' would no longer change. The analysis loop would then stop, and

processing would continue past the goto.

Note that the analysis of statements withln a loop may change as the statements are

analyzed repeatedly. Therefore, any warnings, removals and optimizations may not be

performed until the final pass has been completed. Each destination must maintain a

continuously unioned set of possibilities to prevent invalid optimizations. The possibility

sets created by statements within the loop must be considered to be only intermediate

possibility sets until the loop ends. The actual possibility set used for error detection and

optimization is the union of an intermedi.ate possibility sets created during the loop passes.

If a warning can occur in any pass of analysis, then the warning needs to be issued, but

errors signifying the absence of valid data may become warnings instead after further

analysis. The actual issue of such errors should be delayed until all loop analysis has

finished .

As this is the most time consuming by far of all operations, considerations to

practicality of speed in favor of accuracy are possible and will be covered in the next

chapter.

46

CHAYfERIV

USAGE OF POSSmILITY SET SEMANTICS

The possibility sets as defined in the previous chapter allow sufficient information

to be retained from analysis to allow a greater amount of error detection and code

optimization. The error detection follows naturally from the presence or absence of on

error clauses and uninitialized variables after the final analysis. Code optimization follows

from the narrowing of possibility sets to only one choice, removal of statements involved

in error checking, transformation of integers into more efficient forms which can still hold

all needed data, and removal of dead code which emerged through the lack of possibility

sets. Some examples ofthis analysis is shown in Appendix: B.

4.1 InterproceduraJ Analysis and Globals

Interprocedural analysis using possibility set semantics capable of retaining all

conceivable information is not yet practical even in most cases where possible. The

predominant reason behind this is that infonnation is flowing both ways, to the function

through its parameters and from the function through its return value. Each function

would need to be analyzed and re-analyzed repeatedly.

47

Even if the above possibility is true, some benefits are available. System and

language functions may be prototyped with the permissible parameters and all possible

return values. This would allow the discovery of inconsistencies in the program, most

notably in the handling of error results. Figure 7 illustrates this case.

int getchar(void) = -1..255 ;
int putchar(int=0 .. 255);

int c;
c=getcharO;
putchar(c);

1/ Assume new prototype style in language library
I I Assume new prototype style in language library

1/ getcharO returns 0-255 or an error -1, so C={-1..255 }
II putchar(c) expects 0-255, the -1 in C would be invalid

Figure 7. Example of prototype and usage from C-like language.

Without further information about globals, each function entry and each program

call may redefine any and all globals to any possible value for the globals' types. System

calls may be assumed not to redefine globals unless noted in the prototype, but user calis

are difficult to handle.

It would be a simple task to detemrine which globals are defined in each function

and its called functions, but it would not be quick to discover the values assigned to the

globals. Ifit has been determined that a certain global is not defined in a called function

(or any function it calls, etc.) then it may remain unchanged after the call. Without that

assurance, the global needs to be set back to its maximum set of possibilities after each

non-system call.

If extensions are added to the language to define what possibilities \vill be passed

to functions and returned from functions, then that information could be used by this

48

analysis. The information declared by the user may be in error, so it should not be used if

all possible warnings are desired.

4.2 Error Detection and Code Optimization

The technique described above supplies more information than would otherwise be

available. That information may be used to detect some errors which otherwise would be

caught only at run-time. It may also be used to remove some safety checks which have

become redundant and to discover some otherwise hidden constants. The information

above has already described many of the warnings and errors; the optimizations should be

apparent after realizing which new information is available. The error detection and

optimizations will be summarized below.

4.2.1 Error Detection

The following summarizes some of the error conditions that may be detected by

using possibility set semantics.

4.2.1.1 Division by zero

Any division by a variable x where 0 E X and X:;t:{O}is a division by zero warning.

Any division by a variable x where X={O} is a division by zero error.

49

4.2.1.2 Overflow

Anytime an operation upon the possibility sets yields a set with values not within

the desired result set, an overflow warning will be flagged . If there are no possible valid

results, then an error message would be issued.

4.2.1.3 Invalid array index

Any bound statements left after analysis should be flagged as warnings for invalid

array indexes.

4.2.1.4 Invalid parameter to function

Anytime a function parameter's possibility set does not represent a subset of the

declared possibility set, the compiler should warn of an invalid parameter to the function .

This can detect a variety of errors in which special values within a type's possibility set

represent exceptional conditions such as -1 representing end-of-file. Anytime a declared

function has a set of normal values and an error result, and the error result is not valid in a

subsequent function call, this warning would be issued. In a way, this is a more

generalized overflow error for functions rather than for internally defined statements.

4.2.1.5 Possible loss of information

Dfthe explored statements, this applies only to the cast statement. In converting a

variable from a type with more precision to a type with less, it may be determined that

information may be lost. This could occur when there are members of a possibility set for

a long variable which could not fit into a destination short. Or it could occur when

converting floating point variables containing possible fractions when being converted to

integers.

50

4.2.1.6 Reference to uninitialized variable

Anytime a variable with a possibility set containing 0 is referenced, this warning

should he issued. This will detect not only those times an uninitialized variable is

referenced in the initial basic block, but also those cases where several if/else/endif clauses

and other control flow statements have been executed. It may possibly give warnings too

often, but it will not miss any uninitialized local variables.

It does not miss any cases because the special value 0 is contagious. All

operations other than direct assignment propagate 0. Even after a direct assignment, a

control construct may union the valid possibility set with another possibility set containing

0. In such a circumstance, the analyzer knows that there may be execution sequences

which do not initialize the variable. If a previously initialized variable, X, has an

uninitialized variable, y, assigned to it, then x is also uninitialized.

Uninitialized global variables are not discovered without interprocedural analysis.

In this situation, local variables passed by reference are effectively global after the

procedure call.

51

4.3 Code Optimization

If checks were to be placed around every division previously, then those checks

may be removed if there is no division by zero warnings. Similar optimizations of code to

perform redundant safety checks may be removed and considered code optimizations.

Just as a constant has a possibility set containing only the constant, if a set has onJy

one member (other than 0), then it may be replaced by this value. That is, even if the

constant was never explicitly assigned to a variable, if the variable's possibility set narrows

enough to leave onJy one value possible, then the variable may safely be replaced by that

value. This narrowing generally would occur through the if/else/endif clause.

A case statement in a language which requires a constant for the case would often

result in the replacement of the case variable by its constant value.

Ifa variable has been declared to be a certain type, yet its possibility sets show that

it has been used without need of extended precision then its type could be changed to a

type with less precision. If a variable has been declared long, yet its values are only one

through ten, then it may safely be changed into a char. The largest restriction upon this is

when the variable must be accessed externally.

52

4.4 Practicality

The above techniques illustrate ways to gain information about the source

program But that information comes at a cost, time and space. A program without loops

can be analyzed very easily and without much increased cost in terms ofresources.

4.4.1 Determination of Definite Errors in Loop Analysis

On.e of the most important factors in easing time restrictions is the notion that once

a definite error has occurred within a loop, the loop's analysis may be terminated. Only

those sets determined up until the time of the error should be carried past the loop, if any.

It should be repeated that this extra loop termination condition only applies to certain,

definite errors. If any possibility is valid, the loop analysis should continue to keep the

information. This helps greatly with loops that access information in arrays. Once the

loop index reaches a value which would provoke an invalid array index error, the loop

analysis may terminate.

A loop spanning the entire set of values for a type, but indexing an array valid only

for a few index values, may quickly be terminated rather than have useless analysis

performed upon it. For an example of this, the reader is referred to the tlllrd example in

AppendixB.

This technique is covered in this section rather than within the looping section

because in some rare case it may not be desirable. Although an index accessing an array

should not violate the array bounds, conceivably in some programs it could violate the

53

bounds and still produce correct results. This would occur if the violation only altered

memory not protected by the operating system and not used otherwise in the system Yet

it may be the wish ofthe programmer to have more errors or warnings found within the

loop after the array bound violation. Nonetheless, it is safe to have loop analysis

termination upon error be the default. A flag to deactivate the loop error termination

condition could be provided in case it would ever be desirable.

4.4.2 Early Termination of Loop Analysis by Expanding Possibilities

Another factor in limiting the time spent in the analysis of the program could be the

early termination ofloop analysis by expanding the possibilities for variables. lIDs would

not produce the same results, giving more possible values to variables than would

otherwise be found, but it could be effective in quicker analysis of some code during

deveJopment. This could be provided as an option along with a maximum number ofloop

passes.

A set maximum number of passes may be specified; any variable x still changing

after n passes may be safely replaced by the full set of possibilities for its type, Rx. And

then the loop may continue to be processed again with the same maximum condition until

the loop stabilizes. lbis method will terminate analysis of a loop after a reasonable

number of passes even when the loop has many variables which constantly change, and it

still maintains generally good information about a loop. Other safe possibilities to speed

the analysis of the loop are also possible.

54

4.4.3 Conservation of Space

To conserve space, not all information about a possibility set must be saved.

Without possibility set semantics or other optimizations, all variables effectively have a

possibility set equal to that of their type. In this manner, no information whatsoever is

known about the variables and no optimizations will be performed. Expanding the number

of values within a possibility set is always the safe option.

Much of the work done in a program is done with the smallest values. A bit vector

of eight bytes could contain the set of values -128 to 127 for signed types, or 0 to 255 for

unsigned types. All possibilities for the low values would thus be maintained. Aside from

the low values, a few ranges could be maintained. The less critical or the more uniform

the values, the more useful this type of modification would be. Arrays should find this

type of treatment very useful. Explicitly named variables within the procedure would find

it less useful.

With these modifications, I believe this form of analysis to be useful and practical.

This technique certainly requires more resources than the typical compilation, but

generaUy the development platform is at least as powerful as the platform upon which the

program will be executed and should be capable of spending the required time on analysis.

4.4.4 Limit to Complexity

The analysis is at most within the same order of complexity as the analyzed

program Any program which is feasible to execute is feasible to analyze. This can be

seen in that a basic block to execute in the final code is still a basic block during analysis.

55

The only time analysis loops back is when the program loops back. Without performing

the analysis between procedures, once a procedure has been analyzed it need not be re­

analyzed. And loops which become infinite in the executed program terminate un.der

analysis, so regardless of how intricate the analyzed code, the possibility semantics

analysis will terminate. The analysis of an individual statement may take longer than the

execution of the same statement, but only by a constant factor. This initial investment in

analysis can avoid unexpected errors in programs used frequently or used for a long

duration.

56

5.1 Future Work

CBAYfERV

CONCLUSION

One obvious extension to the virtual machine would be the modification of names

to indicate the declaration level. This virtual machine is meant to be a starting point for

various procedural languages. Ifbotb possibility sets semantics and value semantics are

synchronized, extension to this machine is possible. The new statement must first be

defined for value semantics. After value semantics are determined, the implications for all

inputs and outputs must be considered to determine the corresponding definition for

possibility sets.

Interprocedural analysis should be developed to gain as much information as

possible from the interaction of procedures, their parameters, and their results. Any

information so gathered, even quite limited information, would be helpful in narrowing the

possibility sets. Information from this analysis could be used in other error detection and

optimization, and information from other forms of analysis could be useful in possibility

set semantics.

57

5.2 Conclusions

For the uses of error detection and some forms of code optimization, the

maintenance of sets of possible values is not currently being performed. Although

unrealistic to maintain thousands of separate values in an actual set for a compiler,

typically a set of at most one element is being maintained. All others merely become the

set of an unknown number of values having no error detection or optimization value. In

the thesis, it has been shown how to maintain more information about the value which a

variable may hold at each point in the program Surely the maintenance of more

information than simply noncons! would be of use in the detection of errors and

optimization of code. The more information available to the programmer about where a

program may experience an exception, the better able the programmer will be to correct

those errors before they may occur.

An optimizing compiler including this analysis would generally not apply this

analysis during each compilation. It would be most useful when the program crashes for

an unseen reason and before release in order to discover any hidden flaws. When there are

a lot of resources invested in the success of a project, it is important to ensure the quality

of the product in every way possible. Hopefully this technique will be a useful tool in the

assurance of quality software.

58

[Aho88}

[Aike95]

[Asur93]

[Babe87]

[Back84]

[Bidw86]

[Bjoe82]

[Bran94]

[Chin95]

[Clic95]

References

Aho, AV. , Sethi, R. and Ullman, 1.D. 1988. Compilers, Principles,
Techniques, and Tools. Addison-Wesley Publishing Company, Reading,
Massachusetts, pp. 88, 164-165.

Aiken, A, Williams, 1.H. and Wimmers, E.L. 1995. "Safe: A Semantic
Technique for Transforming Programs in the Presence of Errors. " ACM
Transactions on Programming Languages and Systems, Vol. 17, No.1,
pp.63-84.

Asuru, 1. M. and Hedrick, G. E. 1993. "Joint Common Subexpression
and Code Hoisting Optimization." Oklahoma State University, Stillwater,
Oklahoma, pp. 1-23.

Baber, R. L. 1987. The Spine of Software: Designing Provably Correct
Software Theory and Practice. John Wiley & Sons Ltd, New York,
New York, pp. 64-66.

Backhouse, R. 1984. "Global Data Flow Analysis Problems Arising in
Locally Least-Cost Error Recovery." ACM Transactions on Programming
Languages and Systems, Vol. 6, No. 2, pp. 192-214.

Bidwell, n.R. 1986. Comparison of Optimization Techniques in Code
Generation. lllinois Institute of Technology, Ph.D. Dissertation.
University Microfi.lms International.

Bjoener, D. and Jones, C. B. 1982. Formal Specification and Software
Development. Prentice-Hall Intemationa~ New Jersey, p. 15.

Brandis, M.M. and Moessenboeck. H. 1994. "Single-Pass Generation of
Static Single-Assignment Fonn for Structured Languages". ACM
Transactions on Programming Languages and Systems, Vol. 16, No.6,
p. 1685.

Chin, W. and Goh, E. 1995. "A Reexamination of ' Optimization of Array
Subscript Range Checks"'. ACM Transactions on Programming
Languages and Systems, Vol. 17, No.2, pp. 217-227.

Click, C. 1995. "Global Code Motion Global Value Numbering. " ACM
Sigplan Notices , Vol. 30, No.6, pp. 247-257.

59

[Darw91]

[Fosd76]

[Geor85]

[Gupt93]

[Lech68]

[Levi92]

[Marc86]

[Metz93]

[Rich85]

[Sipp83]

[Thom68]

[Trav91]

[Wijn76]

Darwin, Ian F. 1991. Checking C Programs with lint. O'Reilly &
Associates, Inc., Sebastopol, CA, pp.16-23.

Fosclick, L.D. and Osterweil, L.1. 1976. "Data Flow Analysis in Software
Reliability." Computing Surveys, Vol. 8, No.3. pp.305-330.

George, KM. and Hedrick, G.E. 1985. "A Note on Error Recovery in
LR(1) Parsers." Oklahoma State University, Stillwater, Oklahoma,
pp. 1-6.

Gupta, R. 1993. "Optimizing Array Bound Checks Using Flow Analysis."
ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4,
pp. 135-150.

Lecht, c.P. 1968. The Programmer's PLIl: A Complete Reference.
McGraw-Hill Book Company, New York, New York, pp. 156-157,
401-403.

Levine, John R., Mason, T, and Brown, D. 1992. lex & yacc. O'Reilly &
Associates, Inc., Sebastopol, CA, pp . 248-249.

Marcotty, M. and Ledgard, H. 1986. Programming Language Landscape:
Syntax, Semantics, and Implementation, Science Research Associates, Inc.,
Chicago, illinois, pp. lto-112.

Metzger, R. and Stoud, S. 1993. "InterproceduraJ Constant Propagation:
An Empirical Study." ACM Letters on Programming Languages and
Systems, Vol. 2, Nos. 1-4, pp. 23]-232.

Richter, H.]985. "Noncorrecting Syntax Error Recovery." ACM
Transactions on Programming Languages and Systems, Vol. 7, No . 3,
pp.478-489.

Sippu, S. and Soisalon-Soininen, E. 1983. "A Syntax-Error-Handling
Technique and Its Experimental Analysis." ACM Transactions on
Programming Languages and Systems, Vol. 5, No.4, pp. 656-679.

Thompson, K 1968. "Regular Expression Search Algorithm."
Communications of the ACM, Vol. 11, No. 6, pp. 4]9-422.

Traviolia, M. L. 1991. improved Regionally Least-Cost Syntax
Error Recovery. Oklahoma State University, Stillwater, Oklahoma,
pp.I-163.

Van Wijngaarden, A , Mailloux, B. J. , Peck, 1. E. L. , Koster, SintzofL M. ,

60

Lindsey, C. H. , Meertens, L. G. L. T. and Fiscker, R. G. 1976. Revised
Report on the Algorithmic Language Algol 68. Springer-Verlag, New
York, New York.

61

APPENDIX A

GLOSSARY

ANSI C: American National Standards Institute C. The officiaL standardized version of

C.

K&R C: Kernighan and Ritchie C. The original de facto standard C language as

designed by its creators, Brian Kernighan and Dennis Ritchie.

Possibility Set: A set associated with a variable x at a point p in the program's code

containing all values possible for the variable x at the point p during all possible execution

paths regardless of input. The virtual machine in Chapter 3 defines possibility sets

precisely.

Possibility Set Semantics: The creation and analysis ofpossibility sets as presented in

this thesis.

PSS: See Possibility Set Semantics.

62

Rv: The set of values which the variable v is capable of containing according to its type.

VT : The set of values in effect when the variable v is true.

VF: The set of values in effect when the variable v is false.

""V (Script V): The master set of ordered pairs containing all currently visible variables

and their associated possibility sets.

63

APPENDIXB

Algorithms in C and PSS Analysis

Original code in C:

II Simple sort
int n,ij,temp;
int s[lO];

n=10;

for(i=O l<n;i++)
s[i]=inputO;

for(i=O;i<n-l;i++)
forG= 1 j <nj++)

if{ s[i]>s[jD
{

Example 1

Sorting Algorithm

temp=s[i]: s[i]=s[jJ; s[jJ=temp;
}

for(i=O;i<n;i++)
output(s[i]);

PS8 Analysis:

declare n of {-32768 .. 32767}
declare i of {-32768 .. 32767}
declare j of {-32768 .. 32767}
declare temp of {-32768 .. 32767}
declare s[O .. 9] of {-32768 .. 32767}

n ~ #10

N={0}
I={0}
J={0}
Temp={0}
8[0]=S[1]=S[2]=S[3]=S[4]=
S[5]=S[6]=S[7]=S[8]=S[9]={ 0}

N={ 10}

64

; INPUT LOOP

i~#O

label loop:
bound #O,i,#9 on error e

call input to sri]
i ~ i + #1 on overflow v

b ~i<n

ifb then
goto loop

else
endif

; SORT LOOP OUTER
i~#O

outertemp ~ n

outertemp ~ outertemp - # 1
on overflow v

label loop outer:

; SORT LOOP INNER
j ~ #1
label loop inner:

bound #O,i,#9 on error e

bound #OJ,#9 all error e

b ~ sri] > s[j]

ifb then
bound #O,i,#9 on error e

temp ~ s[i]

Assuming for this example that the for statement always
processes at least once. Although not true for C, it is for
some languages. The next examples assume the normal
interpretation ofC's for statement.

J={O}
Pass 0

I={O}

Pass 1

I={1}

Pass 9

I={9}
Bound is never violated, so may be removed
S[i]={ -32768 .. 32767} ...
I={l} I={2} I={lO}
{I}.. {lO} are subsets of R[, so overflow may be removed.
B={T} B={T} B={F}
By constant replacement: b ~ i < # 1 0
B={T} B={T} B={F}
'" ={I={O},B={T}, .. . } ...

I={O}
Outertemp= { lO}
Outertemp= {9}
{9} is a subset of Rowerremp. so remove overflow.

J={l}

I={O} .. {8}
Bound is never violated, so may be removed
J={I} .. {9}
Bound is never violated, so may be removed

S[i]={-32768 .. 32767}, S[j]={ -32768 .. 32767}
By={S[i]={-32767 .. 32767}, S[j]={-32768 .. 32766}}
BF={ S[i]={ -32768 .. 32767}, S[j]={-32767. .32767}}
B={T,F}

I={O} .. {8}
Bound is never violated, so may be removed.
Temp={-32767 .. 32767}

65

bound #OJ,#9 on error e

bound #0,i,#9 on error e

s[i] ~ s[j]
bound #0,~#9 on error e

s[j] ~ temp
else
endif

; END INNER LOOP
j ~ j + #1 on overflow v

b~j <n

ifb then
goto loopinner
else
endif

; END OUTER LOOP
i ~ i + #1 on overflow v

b ~ i < outertemp

ifbthen
goto loop outer
else
endif

;OUTPUT LOOP
i ~#O

label oloop:
bound #0,~#9 on error e

call output with s[i]
i ~ i + #1 on overflow v

J={l} .. {9} <-- 10 times
Bound is never violated, so may be removed.

I={O}
Bound is never violated, so may be removed.
S[i]={-32768 .. 32766]

I={O}
Bound is never violated, so may be removed
S[j]={-32767 .. 32767]

J={2} .. {l0}, {2} .. {10}, {2} .. {1O}, {2} .. {I0},
{2} .. {lO} are subsets of RJ; so overflow may be removed.
J={2} .. {9}, N={lO}
By={J={0} .. {9},N={l0}} BrO B={T}
On the pass with J= 1 0,
J={ 1O}, N={lO}
Br{J={ lO},N={lO}} By=O B={F}

I={l} .. {9}
{l} .. {9} are subsets of RI , so overflow may be removed.
1= { 1.. 8} , Outertemp= {9}
By={I={ 1..8},Outertemp={9}} Br O , B= {T}
I={9} , Outertemp={9}
By=O, Br {I={9},Outertemp={9}}, B={F}

I={O}
Pass()

I={0} .. {9}

Pass 1 ... Pass 9

Bound is never violated, so may be removed
S[i]={-32768 .. 32767} ...
I={l} .. {lO}
{l} .. {JO} are subsets of RI , so overflow may be removed.

66

b~i < n

ifb then
goto oloop

else
endif

B={T} ... B={T}, .final pass: B={F}
less I than # 1 0 to b by constant replacement
B={T} ... B={T} , final pass: B={F}
'V ={I={O} ,B={T}, ... } ...

In the above, all array bounds have been checked at compile-time. No boundary violations
occur and all boundary checks can be removed safely. The code associated with the
boundary check would be removed by more standard optimizations as it would then be
dead code.

All additions and subtractions yield results within the types to which they are
assigned. Therefore, all overflow checks can be removed safely.

No references are made to variables with possibility sets containing 0, so no
uninitialized variable references occur.

All error conditions above have been italicized and safely removed. It is safe to
say that if the input and output routines are safe, then this routine is safe from the
exceptions noted in this thesis.

67

Example 2

Faulty Average of Input Values

Original Code from C:

int n;
int i;
int a[10];
int sum;
int avg;

n=inputO;

for(i=O ~<n j.++)
a [i]=inputO;

sum=O;

for(i=O;i<n;i++)
sum+=a[i];

avg=sum/n;
output(sum); II Output the sum of the input values
output(avg); II Output the mean average of the input values
output(a[O]); II Output tbe first value from tbe list
output(a[n-l]); / / Output tbe last value from the list

PSS Analysis:

declare n of {-32768 .. 32767}
declare i of {-32768 .. 32767}
declare a[10] of f -32768 .. 32767}
declare sum of {-32768 .. 32767}
declare avg of {-32768 .. 32767}

call input to n

i~#O

label loop 1:
b ~i>=n

N={0}
I={0}
A[O]=A[1]= ... =A[9]={0 }
Sum={0}
Avg={0}

N={ -32768 .. 32767}

I={O}

O:Br'{N={O} },BF={N={ 1..32767} },B={T,F}
1 :Br'{N={O .. I} },BF={N={2 .. 32767} },B={T,F}
2:Br'{N={0 .. 2} },BF={N={3 .. 32767} },B={T,F}

32767:Br'{N={0 .. 32767}} ,Br={ },B={F}

68

ifbthen

bound #O,i,#9 on error b

call input to a[i]
i ~ i + #1 on over.fl(M· b

goto loopl
else
endif

{O} .. {32766} , B={T,F}, so process both T and F
{32767}, B={F} , so process only false (to endif)
{O} .. {9}: Passes
{lO} .. {32766}: Fails
Boundary violation is possible.
A[-32768 .. 32766]={ -32768 .. 32767}
{l} .. {32767}
Overflow is not possible, so may be removed.

I={O .. 32767}
A[O . .32766]={ -32768 .. 32767,0}
A[32767]={0}
Note that A[10 .. 32767] are not declared.

Since the else clause is missing, its possibility sets are effectively the same as if it were
present, but null. In this case, the else clause is the same as the sets before the if clause,
other than the variable i.

If the rules of analysis allow all processing on a sequence to stop if a definite error occurs,
then the above would stop processing as soon as I={10} occurred at the bound statement.
All T and F possibilities would then immediately be unioned together at the endif. In this
case, the analysis would proceed much more quickly.

sum~#O

i~#O

labelloop2:
b ~i;:::n

ifb then

bound #O,i#9 on error b

sum ~ sum + a[i] on overflow ov

i ~ i + #1 on overflow ov
goto 100p2

Sum={O}
I={O}

O:Br={N={O} },Br{N={ 1..32767} },B={T,F}
l:Br={N={O .. 1} },Br {N={2 .. 32767} },B={T,F}
2:Br={N={ O .. 2}} ,BF={N={3 .. 32767} } ,B={T,F}

32767 :Br={N={ 0 .. 32767} } ,Br=O ,B= {F}
{O} .. {32766}, B={T,F}, so process both T and F
{32767}, B={F}, so process only false (to endif)

{ O} .. {9}: Passes
{lO} .. {32766}: Fails
Boundary violation is possible.
O:Sum={ -32768 .. 32767}
l:Sum={-32768 .. 32767}, possible overflow

32767:Sum={-32768 .. 32767}, possible overflow
Overflow is possible for all but first pass.
{l} .. {32767}

69

endif

avg ~ sum
avg ~ avg / n on error z

call output with sum
call output with avg
bOlIDd #0,#0,#9 on error b

call output with a[O]

temp ~n
teinp ~ temp - # 1 on overflow ov

bOlIDd #O,temp,#9 on error b

call output with a[temp]

Avg={ -32768 .. 32767}
N={-32768 .. 32767}, Avg={ -32768 .. 32767}
o EN, so Division by zero error is possible.

o is within 0 .. 9, so within bOlIDds.
Always within bounds, so may be removed.
o E A[O], so
Possible read of un initialized variable.
Temp = { -32768 . .32767}
Temp={-32768 . .32766}
Overflow is possible (-32768-1 =-32769 ~ RTemp)

Temp={-32768 . .32766} is not a subset of {0 .. 9}.
Boundary violation is possible.
There exists a [Temp] with 0 as member,
Possible read oJuninitialized variable.

The above example has C code which looks reasonable, yet which has many possiblities
for TlID-time errors. The first problem yielding the errors is that the input value to n
determining the number of entries is unbounded by the code. Any value including zero,
even negative numbers, may be supplied, yet the code does not check for reasonable
values. When the average is finally calculated at the end, the division can cause problems
if the number of values is zero (0).

The output of a[O] with no values input would yield garbage. The output of the
supposedly last value in the list is worse; it could conceivably reference a negative index as
well as garbage.

By calculating the sum of the values in a single variable of the same type as the
input, the sum could easily overflow causing incorrect results.

70

Example 3

Corrected Average of Input Values

The code below performs the same function as example 2, but without many of the
associated problems.

Original code from C:

int n;
int i;
int a[10];
long sum;
int avg;

n=inputO;

if{ (n>= 1)&&(n<= 1 0»)
{

sum=O;
for(i=O J<n;i++)
{

}

a [i]=inputO;
sum+=a[i];

avg=sumln;
output(sum); 1/ Output the sum ofthe input values
output(avg); II Output the mean average of the input values
output(a[O]); II Output the first value from the list
output(a[n-l]); II Output the last value from the list

PSS Analysis:

declare n of {-32768 .. 32767} N={0}

declare i of {-32768 .. 32767} I={0}
declare a[0 .. 9] of {-32768 .. 32767} A[O]=A[I]= .. . =A[9]={0}
declare sum of {-2147483648 .. 2147483647} Sum={ 0 }

declare avg of {-32768 .. 32767} Avg={0}

call input to n

bl~n2:#l

b2~n ~# 10

N={ -32768 . .32767}

Bl r={N={1..32767}}, Bl r={N={-32768 .. 0}}

B2-r={N={ -32768 .. 10} }, B2r= {N={l1..32767} }

71

b3 +--- bland b2
ifb3 then

sum +--- #0

i +--- #0
label loop 1 :
b+---i ~ n

ifb then

bound O,i,9 on error b

B3,.={N= { LIO} },B3r={N= {-32768 .. 0, 11..32767}}

N={1.. 10}

Sum={O}

I={O}

0: B,.={}, Br={N={ L IO}}, B={F}
1: B,.={N={I }}, Br={N={2 .. 1O}} , B= {T,F}

9: Br={N={1 .. 9} },Bro{N={ IO} },B= {T,F}
10: B,.={N={LlO} },Br={} ,B= {T}
Pass 10 avoids goto-backwards, going directly to endloop 1.

I={O} .. {9}
Boundary is never violated, so may be removed.

call input to a[i] A[i]={ -32768 .. 32767}
sum +--- sum + a[i]

on overflow v 0: Sum={-32768 .. 32767}

i -+--- i + # 1 on overflow v

goto loop 1
else
endif

l: Sum={-32768*2 .. 32767*2}

9: Sum={-32768*10 .. 32767*10}
A lways within RsUTfb so overflow may be removed.
I={1} .. {lO}
Never overflows, so may be removed.

Assume temp is a long.
temp +--- sum Temp= {-327680 . .327670}
temp +--- temp I n on error e N= { LIO} , Temp= {-327680 .. 327670}

N never contains 0, so on error may be removed.
cast temp to avg Avg={-327680 .. 327670}, not within ~vg, so

Possible loss of information.
Avg= { -32768 .. 32767}

call output with sum
call output with avg
bound #0,#0,#9 on error b Always within bounds, so may be removed.
call output with a[O]

temp -+--- n Temp= { l..IO}

temp +--- temp - # 1
on overflow v Temp={0 .. 9}

Never overflows, so may be removed.
bound #O,temp,#9 on error b Temp={O .. 9},

72

Always within bounds, may be removed.
call output with a [temp]

endif

In the above version, the only remaining warning is a possible loss of information remains
from casting a long to an into It cannot determine that the loss of information cannot
actually occur, so it warns about it regardless.

The only time that the long could be 327680 is if32768 is input 10 times; in that
case n would equal 10, and the division would bring the result into the range of int. The
program cannot correlate the n value with the possible ranges; it must assume a division
by 1 is possible even when the sum. was 327680. Note that this is the safe alternative.
Giving a superfluous warning is better than missing a warning.

73

VITA

Brian Josepb Sullivan

Candidate for the Degree of

Master of Science

Thesis: POSSmILITY SET SEMANTICS: ERROR DETECTION AND
CODE OPTIMlZA TION

Major Field: Computer Science

Biographical:

Education: Graduated from Broken Arrow High ScbooL Broken Arrow,
Oklahoma, in May, 1990; received Bacbelor of Science degree in
Computing and Information Science from Oklahoma State University,
Stillwater, Oklahoma in December, 1993. Completed the requirements for
tbe Master of Science degree with a major in Computer Science at
Oklahoma State University in May, 1996.

Experience: Employed at Creative Labs, Inc. as a technical support agent, Lead
Agent, and Agent in Charge of the Sound group, 1993 to 1996.

