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CBAPfERI 

INTRODUCTION 

Traditionally, error detection by the compiler occurs mainly at the lexical and syntactic 

levels. Lexical and syntactic analysis have been investigated thoroughly and have well 

established means of determining errors (see section 2.1). Just as the syntactic level builds 

upon the foundation of lexical detection and requires more analysis, the semantic level also 

builds upon the syntactic level an.d requires yet more analysis (section 2.1 .3). 

The semantic level has a larger area to cover as each language seems to have more 

diverse semantics. Some languages, such as PLII and Ada, may allow the user to trap run­

time errors with ON ERROR statements or exception handling, but the compiler gives no 

notice of where those errors may occur at compile-time other than in very obvious cases. 

Utilities such as lint more rigorously apply type checking of parameters and results as well 

as indicate the portability of the code [Darw91]. Safety checks must be placed around 

each possible offender to control run-time errors. The compiler provides no notification 

that an error may occur at such points. Such possible points of run-time errors are too 

numerous to be worth mentioning by the compiler as every division by a variabJe and 

every array indexed by a variable are candidates for compiler warnings. 

This thesis addresses the problem of statically detecting the possible locations of 

run-time errors. The techniques presented in the thesis mimic the method used by some 



human programmers when analyzing code. A procedural language's source code, or more 

typically its intermediate code, is analyzed using alternate semantics in whlch each variable 

represents not a value but rather a set ofpossible values. To be practical the compiler 

overdetects possible errors and to be conservative it does not optimize everything that 

could be optimized if all information were retained. But the technique flags all pLaces 

where certain run-time errors such as division by zero, array bound violations, arithmetic 

over/underflows and uninitialized variables may occur. 

Some optimizations are made which otherwise cann.ot occur. Checks for run-time 

errors which may be detected by this analysis can be eliminated wherever the analysis 

determines that the run-time errors cannot ocellI. A different method of constant 

propagation, more appropriately constant replacement, is presented. As the possible 

values of expressions are known, some expressions may be downgraded in byte length. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Current literature discusses error detection of all types in compilers at all levels. 

The literature contains much information on the well-defined areas, but the less well­

defined areas merely indicative of errors also are discussed. Some general code 

optimizations are discussed as found in the literature. 

2.1 Errors 

Errors occur at the lexical level by the insertion and/or deletion of characters 

leading to strings that do not match any of the lexical analyzer's valid tokens. Syntactic 

errors may occur through flaws in the programmer's grammatical constructions as well as 

through the causes above. Semantic errors have valid syntax, but invalid meaning; the 

extent of information included in a language's grammar separates the syntactic and 

semantic levels. Logical errors are beyond the scope of this thesis. 
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2.1.1 Lexical Errors 

Error detection at the purely lexical level is rather simple. The lexical analyzer 

uses regular expressions and a table in order to determine whether the source input is a 

valid token. The token may not be valid at higher levels, but the determination of the 

existing token is straightfolWard. When no available expression or table entry describes 

the string encountered, there are several methods of recovery available. 

First, the compiler may simply stop upon receiving an invalid token. This is 

certainly the easiest action, but for such a simple error the compiler can generally continue 

to provide the programmer more information. 

Second, the compiler may insert or delete characters, replace incorrect characters 

by correct characters, or excbange adjacent characters [AboSS]. If the compiler inserts 

characters into the input stream to correct the input, it should take care not to insert 

characters indefinitely thus creating an infinite loop. As the number of possibly valid 

characters is limited, each character "is examined in sequence against a list of all possible 

characters. During this examination a new list of all possible next characters is built. 

When the end of the current list is reached, the new list becomes the current list, the 

character is obtained, and the process continues" [Thom68]. All such modification should 

only be for the purpose of continuing the compilation; the compiler should notify the 

programmer of such changes and they should be fixed by the programmer before 

compilation should produce executable code. 
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2.1.2 Syntax Errors 

Error detection at the syntactic level is more involved, especially if meaningful 

error messages are to be produced and if the compiler is to continue compiling after 

detecting the error. As an example in LR( 1) parsers, the parsing table and stack are used 

in the detection of errors; so long as the parser may proceed using given productions aU is 

well, but if there is no match then the parser enters into an error state [Geor85]. 

Upon the detection of an error, there are several methods of recovery available. 

2.1.2.1 Panic Mode 

If the parser discovers a syntax error, panic mode recovery deletes tokens from its 

consideration until some form of synchronization is possible. lbis recovery "attempts to 

move forward in the input stream far enough that the new input is not adversely affected 

by the older input" [Levi92]. In many languages, synchronization may occur when an end 

token is reached to pair against an already recognized begin token [Aho88]. The token to 

regain synchronization varies with the language and the context. A left parenthesis may 

synchronize with a right parenthesis, or a statement may regain synchronization upon 

reading an end of statement marker such as ';'. If synchronization is not achieved 

correctly, errors can cascade [Levi92]. This technique never enters an infinite loop, but it 

does not give the programmer the most information possible as all possible error 

information between points of synchronization is lost [Ab088]. 

2.1.2.2 Phrase-Level Recovery 

Phrase-level recovery attempts a local recovery by using simple heuristics 

detemlined by the compiler writer to "correct" the code allowing the compiler to continue. 
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It isolates uan 'error phrase', which is then replaced by a suitable 'reduction goal'" 

[Sipp83]. It may use the remaining input as the base upon which it can concatenate 

another string making the remaining input valid. It may replace similar characters such as 

a comma or colon by a semicolon, or delete or insert end of statement markers [Ah088]. 

This form of error correction must be ensured not to enter an infinite loop by always 

inserting another character in the input. Its greatest weakness lies in dealing with the 

situation in which the error occurred before the point of detection [Ah088]. 

2.1.2.3 Error Productions 

Error productions involve the foresight of the compiler writer in noting those 

errors of construction which will be common in the language. Just as the compiler has 

productions for comparisons, assignments, etc., it may have productions for constructs 

which produce errors [Ab088]. These productions may actually produce code 

corresponding to what the programmer wanted and simply warn the programmer that the 

construct is invalid or it may just give a more explicit error message. If it were known that 

people moving from Pascal to C often used Pascal style pointers, the appropriate 

productions may be included, automatically replacing the error with its corresponding C 

construct and giving an error message notifYing the programmer of the correct usage. 

This often seems to be done with ANSI C compilers upon encountering K&R C 

constructs. Some systems such as those proposed by Sippu and Soisalon-Soininen would 

create error productions based upon the findings of the stack in phrase level recovery 

[Sipp83]. 
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2.1.2.4 Global Correction 

Global correction attempts to use an algorithm "to find the minimal sequence of 

changes to obtain a globally least-cost correction" [AhoSS]. Given that there is an error in 

the source code and the low likelihood of the correction being that which the programmer 

actually intended, the high cost of such algorithms prevents their general use [AhoS8]. 

Backhouse discusses locally least-cost error recovery for LL( 1) parsers [Back84]. 

The cost of replacing terminal symbols and determining the min and max follow costs are 

discussed therein. The scheme presented uses a parameter table rather than searching for 

the follow set; it tries to decrease the size of the parameter table through various 

techniques including the definition of equivalence classes for terminals. Unfortunately, its 

definition of equivalence classes is not solvable in general for LR( 1) parsers [Back84]. 

Traviolia discusses a new syntax-error recovery scheme for LR(k) parsers called 

Least-Cost LR(k) Early's Algorithm [Trav91]. Traviolia's algorithm is O(n) for correct 

input, causing little concern for correct compilation, and it is effective though potentially 

costly, O(n\ in the worst-case [Trav91]. This worst-case bound is still better than some 

previous algorithms [Trav91]. 

2.1.2.5 Recovery Without Correction 

Recovery from syntactic errors without an attempt at correction is another 

method, one promoted by Richter [Rich85], in which a nonnal LR parser would 

process the source code language until an error is reached. At that point, a suffix 

parser is then invoked which may determine intervals in which errors may occur. This 
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method of detection does not necessarily detect all errors, most notably it only detects 

the innermost error in an interval thus possibly skipping mismatched parenthesis errors. 

2.1.3 Semantic Errors 

Semantic errors are errors in meaning. The programmer creates a program which 

may be syntactically correct yet does not perform the desired operation. As an example, a 

compiler cannot generally detect that the desired function of a program is to sort input 

when the programmer actually creates a program to play Othello. A compiler may respect 

assertions, and a programmer may enter preconditions and post-conditions for a block of 

code [Marc86]. A programmer can work backwards from the desired result finding the 

necessary condition to ensure its evaluation, repeatedly applying such steps until the 

precondition is derived [Babe87]. ' 'The semantics of a programming language can be 

defined via a hypothetical machine which interprets the programs ofthat 

language"[Bjoe82]; a modification of such semantics for a language leads to the results 

contained herem. Yet if such assertions and any other extra materials match the program, 

and still the program does not match the programmer's intention, nothing can detect the 

error. When the program and its associated materials is consistent and still incorrect, there 

is no handle for the compiler to discover that the program is incorrectly specified. 

Yet a compiler can detect certain inconsistencies in the program. 

2.1.3.1 Type Checking 

The type checking component of analysis is concerned with determining whether a 

program conforms to the type system This may apply to the built-in operations such as 
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addition and subtraction and other programmer defined types and operations. Type errors 

are improper usages that violate the rules definin.g the type system of the language. For 

example, type mismatch of the left-hand side and the right-hand side of an assignment 

statement may be a type error in a language. 

Type errors may be considered syntax errors if the languages defines the type 

structure at the syntactic level [Wijn76], or it may be considered to be at the semantic 

level if the language syntax does not invoke type. Algol 68 includes sufficient information 

within its language definition to detetmine that types are syntactic in nature [Wijn761, 

whereas in Lisp an addition of two members of a list mayor may not have valid meaning; 

it may have meaning during one pass of a loop and lose its meaning during the next pass. 

2.1.3.2 Data Flow Inconsistencies 

Systems such as Dave, developed and described by Fosdick and Osterweil, try to 

determine inconsistencies in data-flow [Fosd76]. Dave finds definitions, references, and 

undefinitions (the invalidation of data). A definition followed by another definition is an 

inconsistency in that the first definition would not be used. Similarly, a definition followed 

by an lUldefinition would make the definition useless. And naturally an undefinition 

followed by a reference would mean that the reference would be invalid. 

2.1.3.3 Lint 

Lint, a utility provided on UNIX systems, provides another form of error checking. 

Lint tries to detetmine some common coding problems and tries to determine if the code 

has the same semantics on other machines, its portability [Darw91]. Again, the checks 

made by the program fall under the category of inconsistency. It can determine if 
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arguments passed to functions are not always the same. It can determine if a function's 

returned value is used in some instances, but ignored in other instances. 

2.1.4 Semantic Errors Resulting in Exceptions 

Semantic errors as referred to in this section describe those errors made by the 

programmer which would generally not be detectable at compile time, but rather they 

occur at run-time as run-time errors or exceptions. The most general case of those errors 

which could be detected by the techniques presented are those in which functions are 

applied to invalid values. This includes functions such as division where the divisor is 

zero, the array indexing functions with invalid indexes, addition and other arithmetic 

operators with values inducing over/underflow, and certain inconsistencies of 

programmers' code when interacting with language supplied functions and specially 

annotated user functions. 

2.1.4.1 Current Treatment of Exceptions 

Currently, the two most common approaches to these forms of errors are letting 

the error occur and allowing the operating system to attempt a recovery or allowing the 

programmer or compiler to designate exception handlers [Rich85]. No notice is given to 

the programmer of the places that these exceptions would be needed even when such 

exceptions are supported by the language. 

The PLiI language has many separate ON conditions which would catch different 

types of run-time errors (see Table 1 below). Some conditions in PLiI are always active 

and some are active unless disabled and some are active only when enabled. The 
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condition may even be signaled directly without the actual cause of the condition 

occurring. The subject of the ON condition may continue to the next statement or halt the 

entire program ifno ON condition is supplied, depending on the condition [Lech68]. 

Table 1. PUI Error Conditions [Lech68] 

CONVERSION llJegal conversion of character string data. 

FrxEDOVERFLOW Result of fixed point arithmetic exceeds places. 

OVERFLOW 

SIZE 

UNDERFLOW 

ZERODIVIDE 

Value of float's exponent exceeds 2127. 

Assignment of a value too large for the variable. 

Value of float's exponent smaller than 2- 128. 

Division by zero in fixed or floating point. 

SUBSCRIPTRANGE An index to an array falls out of declared bounds. 

2.1.4.2 Treatment of Exceptions in this Thesis 

This thesis shows that by maintaining a set of possible values for each expression 

that the compiler may discover those places where certain run-time errors cannot occur. 

By knowing where they definitely will not occur, the compiler may forego the placement 

of checks surrounding the otherwise suspect code. 

The reduction in possible places for run-time errors makes the location of 

remaining possible exception points valuable to the programmer. The programmer could 

then make the decision to have the compiler eliminate automatic exception points, instead 
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placing the exceptions only in the points with possible meaning to the program If the 

program were free from such possible warnings and errors, then the programmer could be 

assured that in a reliable system the program could not suffer from the run-time errors 

discussed in this thesis. As discussed within this thesis, a reliable system is one in which 

all effects on the program may be reliably predicted given the information within the 

program and correct information regarding its environment. For example, if the possible 

return values from the operating system were found to be incorrect or if another program 

could overwrite the execution space of the program in question then the system would Dot 

be "reliable". Such knowledge would be extremely valuable to those programming for 

mission critical applications. 

2.1.5 Preserving Error Producing Behavior 

If the error-producing behavior of a program needs to be maintained, then a 

greater amount of information retained may help with optimizations. Normally, a compiler 

is only concerned with reproducing the behavior of a correct program If a program 

crashes with an error, compilers typically allow differing behavior. If the behavior of 

program which crashes were to be preserved, optimizations which rely upon any form of 

code motion would normally be disabled. That is, if the unoptimized code executes a then 

b, and a and b each would cause a different run-time error, then the positions of a and b 

may not be altered. Optimizing the code could execute b before a therefore creating a 

different run-time error, causing the error producing behavior of the program to change. 
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Code motion is disallowed across warnings discovered by this thesis if the error-producing 

bebavior must be preserved. 

If the run-time error producing portion oftbe code must be maintained, then it 

eliminates many possible optimizations. Portions of the program may be marked as safe in 

that they would be known not to cause run-time errors. Code between warnings 

generated by this thesis can be marked safe. Any portion so marked could then be fully 

optimized. Although Aiken et a!. speak of marking code as safe in functionallanguages, 

by knowing where an error cannot occur, benefits may be achieved in procedural 

languages as well [Aike95]. 

2.2 Code Optimization 

Code optimization in compiling actually refers to improving the time performance 

of code. If all statements from a high level language were to be translated as directly as 

possible to a lower-level intermediate or assembler language, the produced code would 

generally be of poor quality compared to what a human could code by hand. Code 

optimization attempts to bring the produced code closer to the code a competent person 

could produce by hand. 

2.2.1 Constant Propagation 

One of the most common and useful code optimization techniques is that of 

constant folding and propagation. In constant folding, when all the inputs of an 
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expression are constant, then the expression is computed at compile-time and directly 

replaced by the constant [Clic95]. In constant propagation, the definition ofa variable 

with a constant value allows its uses to be replaced by the constant. 

Static Single-Assignment form allows each assignment to have its own name 

allowing the compiler to find more easily the occurrence of each value [Bran 94 ]. Then if 

one occurrence of the name has a constant value, all occurrences have the same constant 

value. 

Constants may be propagated even across procedures, although such 

interprocedural propagation is not very common [Metz93] . 

Abo, Sethi and Ullman show constant propagation in terms of dataflow analysis 

[Ah088]. The values, transfer functions, meet operation, etc. for constant propagation are 

sh.own. Simple modifications of constants are allowed as in "when x is defined by d: 

x:=x+l , and x had a constant value before assignment, it does so afterward" [Ab088]. 

Yet it reduces all sets of values to the single special value, noncons!. "The value 

nonconst would be assigned to variable x it: say, during data-flow analysis we discovered 

two paths along which the values 2 and 3, respectively, were assigned to x, or a path along 

which the previous definition ofx was a read statement" {Abo8S]. The values 2 and 3 

would be irrevocably lost, subsumed into the special nonconst. If a later control construct 

split the flow with a statement such as: 

if{x:;t2) output(x); else output(lO-x); 
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then both opportunities for constant replacement would be lost. 

Constant propagation within the framework of this thesis will be done quite 

differently. As each variable would have a set of possible values, it follows directly that if 

there is only one possible value then that value may replace the original reference. This 

form of replacement does not depend on the existence of a constant's assignment to a 

variable at any point. As many values in the sets as practical would be retained by the 

compiler. Partitioning of the set by comparisons could occur as in the following, assuming 

x is an integer: 

if{(x>9) && (x<ll» output(x); 

Assuming ten (10) is ever a possibility, the output if any would certainly be 10, yet the 

constant assignment of 10 will not be made using techniques found in the literature. (If x 

could not be 10, then the code could safely be removed as dead code.) As more constants 

will now be discovered at compile time, especially including such useful constants for 

optimization such as zero (0) and one (I), more benefits of constant folding for addition, 

multiplication and division will arise [Bidw86]. 

2.2.2 Uninitialized Variable Access 

A special value denoting the uninitialized state may be assigned to each declared 

variable. Whenever this value is accessed, it may be flagged as accessing an uninitialized 

variable. As the set of possible values would be maintained, the variabJe may be initialized 
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in one branch of the control flow, but not in another, and when the control flows rejoin it 

would still be detected as a possibly illegal access. Note that it could not be sure to be 

illegal; program input could conceivably never go through any route that would not 

initialize the variable, yet the possibility would exist and the programmer should be 

notified. 

2.2.3 Range Checking 

When an array is accessed, care must be taken that the index is within the declared 

bounds. If the index exceeds the array bounds (either above or below), then other 

unknown portions of data may be overwritten, the program's code may be modified 

without the programmer's knowledge, and even other programs' code and data may be 

modified on some systems. 

Although obvious that this must be prevented, the overhead to ensure prevention is 

extraordinarily large. Gupta mentioned that execution times when run-time bounds checks 

are in place may double [Gupt93], and Chin and Goh state that such bounds checks may 

add up to 50% overhead [Chin95]. Although suitable during debugging to ensure that test 

cases by the programmer do not cause boundary faults, such overhead may not be 

acceptable in production programs. 

If the compiler takes no notice of the array other than that it exists and that it must 

be checked at run-time, then each array access would also require an index check against 

both upper and lower bOlUlds. As array accesses may often be within loops and other 

important areas of the program, it is clear why bound checks may hinder programs 
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seriously. Some of the propagation methods applied to constants have also been applied 

to bound checks. 

Although some computers may have a single instruction capable of checking both 

upper and lower bounds, most typically the upper and lower bounds may be treated 

separately as one may be optimized, but the other may not. Local analysis can discover 

when bound checks are identical and it can discover when one bound check is subsumed 

by another [Gupt93]. Naturally, such values for ranges may be checked globally as well as 

10caUy. Range checks for arrays may be hoisted from within a loop to outside its bounds 

with modifications [Gupt93][Chin95]. Asuru and Hedrick have shown that both common 

subexpression elimination, which may be applied to range bounds, and code hoisting may 

be done simultaneously without separate passes leading to greater efficiency [Asur93]. All 

such checks are adaptations of more traditional optimizations for other constructs 

modified for ranges. Just as a constant may be propagated when its value has not 

changed, a bound check may be propagated when its index has not changed, leaving it 

definitely safe within another bound check. Just as other code may be hoisted from within 

a loop, a bound check may be hoisted as well. These techniques may eliminate a large 

number of checks, anywhere from 42% to 100% in small sample programs tested by 

Gutpa [Gupt93}. 

By maintaining the set of all possible values for each variable, much of range 

checking comes for free at compile time; when the set of possible values for an index 

contains no values outside the range, then no run-time bound check code must be 

produced. Rather, when it detects that there may be a boundary violation, the compiler 
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may warn the programmer. The programmer may insert his own manual bound check 

(such as a simple illthenlelse clause) or allow the compiler to insert one at such remaining 

points. 
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CHAPTERID 

POSSmILITY SET SEMANT1CS 

In this chapter, a new method for static checking of certain runtime errors, namely 

Possibility Set Semantics (PSS), is presented. Possibility sets will be defined by the actions 

of a virtual machine described in the sections below. Virtual machine instructions are 

specified along with their semantics. The notation used to define the possibility sets is 

described for the general case of high-level procedure-oriented languages and the included 

virtual machine. A sufficient number of statements to demonstrate each class of 

statements in the virtual machine is introduced with explanation. Possible compiler actions 

such as issuance of error messages also are given along with PSS definitions. 

3.1 Notation for Possibility Set Semantics 

Possibility set semantics may be discussed in the abstract independent of any 

particular form or in the specific form of a language. The notation for possibility sets 

themselves and their most general use will first be discussed. 

Variables will be written in italicized lower-case in the text. Values, the data 

which may be stored in variables, will be described in the text using either numbers or 

variables. 
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For each variable x, there is an associated possibility set for x. Variables will be 

written in lowercase and the possibility set for the associated \"ariable will be written in 

uppercase. For example, assigning the value one (1) to the variable x would result in 

X={l} . 

The possibility set for a variable may typically contain any value which may be 

assigned to the variable. It may also contain special values not possible in the value 

semantics. One such special value, represented using the empty set (0), stands for an 

uninitialized variable. 

Boolean variables have their own possibility sets, indicated in the manner above, 

but they often also have extra associated sets. These sets associate possibility sets with 

the 'true' or positive possibility and the 'false' or negative possibility. These extra 

associated sets will be noted with a subscripted T .and F for the true/positive and 

false/negative sets, respectively. For example, a boolean variable b will have its own 

possibility set called B, which may hold T, F, or 0. Where B is true, BT contains the 

appropriate possibility sets; where B is false, BF is similarly in effect. 

Variables as discussed within this thesis have types. For this thesis's purposes, tbe 

most important aspect of a type is the values whicb it may contain. This set of values for 

any variable will be represented as the capital letter R witb a subscripted variable name. 

The set of values which the variable x may contain would be represented as Rx. 
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3.2 Virtual Machine Notation 

The virtual machine which defines possibility sets is presented below. The 

language is designed to conform to standard notation wherever possbile. 

The statements have both value semantics and possibility set semantics. Both are 

presented, the value semantics first and then the possibility set semantics. 

The definitions for the value semantics closely follow the expected definitions 

where possible. A program counter, PC, tracks which statement will be executed. Since 

at no point is the PC explicitly set to a numeric value, the instruction size and other 

implementation details of the machine itself are irrelevant to the discussion. Some 

im1ructions do refer to a word size when dealing with values at the bit leveL but the actual 

word size is not specified. 

The definitions for the possibility set semantics use the notation given above in 

section 3. 1 where possible. In addition, there is the concept that the analysis moves from 

one .statement to another. This is embodied in the analysis counter, AC, analogous to the 

program counter, PC, for value semantics. AC is used in loop analysis. Separate terms 

for the instruction pointer for value semantics and possibility set semantics are used in 

order to avoid confusion when they do not coincide. 

At times additional sets may be defined beyond the expected set or sets associated 

with each variable. The,., (script V) set is the most prevalent ofthese sets. It contains 

ordered pairs containing all visible variables and their possibility sets. As variables enter 

and leave scope, they may be included in ,., or excluded from,.,. Unless specified 
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otherwise, it is considered that all validly referenced possibility sets are retrieved from '1/. 

'1/x represents the set of visible variables and possibility sets at point X, where X is 

typically represented as a label. 

"V ={ (x, {I} ),(y, {2} ),(z, {3,4,5, 10,11,12}) } would mean that X={ I}, Y={2} , and 

Z={3 ,4,5, 10, 11 , 12}. The variables x, y, and z would be the only variables that could 

validly be referenced. The use of any other variable would be the use of an undeclared 

variable. 

3.3 Basic statements 

The following statements form the core outline of many languages, plus a few 

miscellaneous instructions. The semantics is defined in terms of the effect the statements 

have on "V and the value of '1/ at those points. 

3.3.1 begin.J)rocedure 

The value semantics of this typically would be to manage the stack frame and 

perform any system dependent initializations for the routine. 

The possibility set semantics for this initializes ""y. '1/ is the special set containing 

all visible variables. As there are no variables yet defined other than possibly globals, '1/ 

should be set equal to Globals, the set of all global variables. If there are no globals, then 
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Globals={} and therefore ~ ={} upon begin_procedure. Further discussion of globals 

will be delayed until section 4.1. 

3.3.2 endj)rocedure 

The value semantics of this typically would be to restore the stack and perform any 

system dependent terminations for the routine before returning. This may correspond to 

an implied end of procedure or an explicit return within a procedure. 

The possibility set semantics for this is: 

~={} 

That is, all previously declared variables and their possibility sets are no longer available. 

This is important considering that analysis continues. 

For example. if endj)rocedure is present within an irs true clause, ~ would be 

emptied. This would leave only the false clause's possibilities to continue onward to 

recombine at the endifwith the empty ~ (see Figure I below). 
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if(x<5) 
{ 

} 
else 
{ 

} 

II Assume X={1..lO} 
II Splits the X set 

II X={ 1..4} 
return; II an end.J)rocedure 

II "V ={}, so there is no X now 

II X={S .. lO} 

IIX={} u {S .. 10}={S .. lO} 
II the true clause's values had been removed by the 
II return and so were not present to be unioned. 

Figure 1. Example of end.Jlrocedure from C 

3.3.3 declare x of type R 

The value semantics of this may vary. The allocation of space for the variable may 

be merged into the begin.J)Tocedure statement. Some languages may wish to initialize x 

to zero or to another initialization value. Such an initialization should be done as a 

separate statement. Naturally, the program translating the intermediate code to the 

target's native code may recombine the statements, ifpossible, on the target machine. 

The possibility set semantics for this follows the actual meaning ofthe declare: 

"V = "V u{ (x,{0}) } 

It places x in "", setting XIS possibility set to include only 0, the special symbol 

representing an uninitialized variable. 
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The parameter R is a set of all possible values for the type, the maximum set of 

possibilities for x. This may be referred toas Rx. 

3.3.4 kill x 

This statement has no explicit counterpart in normal execution. However, it may 

be an implicit action caused by other statements. It invalidates the use of x, marking it to 

be undefined. A language may define that this operation should be performed upon a loop 

index after the loop or other similar operations. 

Its definition in possibility set semantics is straightforward: 

X={0} 

Any references of the variable after this, but before other assignments, will be tagged as 

references to an uninitialized variable. 

3.3.5 undeclare v 

This is a more severe counterpart to kill Rather than just declaring a variable's use 

to be undefined, but redefinable, this eliminates all possible references to the variable short 

of a redeclaration. If a loop's index is declared within the loop, but not capable of being 

referenced outside the loop, this statement may be used. Additionally, if a variable is valid 

only within a subblock, then this statement may be used at the end of the subblock to 

invalidate its declared variables. 

25 



The possibility set semantics for this instruction removes v from --V: 

-v ={(x,Y) I 'ifx, (x,Y) E -V 1\ x;ev} 

3.3.6 Y +--- x 

The value semantics for assignment copies the value from x to y . 

The possibility set semantics correspond exactly: 

Y=X 

3.3.7 cast source x to destination y 

The value semantics correspond to an assignment of a value of one type to a value 

of a different type. Any value which may be held in y is copied from x. 

The possibility set definition corresponds closely. Any element that may be 

assigned to the destination will be assigned; any element that may not be assigned to the 

destination flag a warning: 

Y={x I '\j x, (x E X 1\ X E Ry)} 

Y'={x I '\j x, (x E X 1\ X Ii!: Ry)} 
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IfY' is not empty, then a warning should be issued explaining the possible loss of 

information. IfY is empty, then the assignment cannot execute correctly and the warning 

should instead be upgraded to an error. 

If loss of information is allowed without incident in the language, then the 

information from Y' must be merged with Y , eliminating Y'. How that would be done 

would be dependent upon the language, but one common possibility would be to union Y 

with the lowest order bytes ofY'. Figure 2 gives an example illustrating this situation. 

int L; 
char C; 
L=functionO; 
C=(char)L; 

II Assume ~={-32768 .. 32767} 
II Assume Rc={ -12S .. 127} 
II Assume L={ -lOOO .. lOO} 
II Warning: C={-12S .. 100}, C'={ -lOOO .. -129} 
I I If the lowest order bytes of C' are merged with C, 
II then C={ -12S .. 127} 

Figure 2. Example of assignment using cast from C 

3.4 Arithmetic Instructions 

The arithmetic instructions generally deal with addition, subtraction, multiplication, 

division and other similar instructions. They may overflow, underflow or be applied over 

invalid values. Typical instructions are described in the following subsections. 
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3.4.1 x.(;- x + y 

The value semantics add the contents of x to the contents y, leaving the result in y. 

Overflow is allowed, leaving the result present in the lowest order byte(s). For example, 

assuming integer variables capable of holding 0 to 255: 

r 1. b .(;- #255 

r2.b .(;-#1 

r1.b .(;- rl.b + r2.b 

: assume r#.b refers t o byte registers ,",1th ~={O .. 255} 

; assign constant 255 to register byte variable 1 

; assign constant I to register byte variable 2 

; add allowing overflow 

: r l.b would be left with the value O. 

As overflow is allowed, no run-time arithmetic error could occur; the lowest-order bytes 

are assumed to catch the overflow. 

The possibility set semantics follow closely: 

y={ (x+y) bit-and (2bits-in-_rd)_l I (\7'x, x E X) J\ (\7' y, Y E Y) } 

3.4.2 x.(;- x + y on overflow goto z 

In value semantics, tbis would add the contents ofx to the contents ofy, leaving 

the result in y ifno overflow occurs. If an overflow occurs, then control branches to label 

:. Ifno destination is supplied, it is assumed the target machine would provide a default 

destination for the trap. 

The possibility set semantics for tbis is the first to be introduced which may detect 

an overflow exception: 
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Y={x+y I (\fx, x E X) /\ (''iiy, Y E Y) /\ «X+y) E Ry)} 

Y'={x+y I (\fx, x E X) /\ (\fy, y E Y) /\ «X+y) Ii!: Ry)} 

1fY'={}, remove on overflow error clause. 

lfY;t;{} and Y'*{}, issue waming. 

IfY={} and Y':;t;{} , issue error. 

Y is then the resultant set of possihle values, and Y' is the set of overflowed results. IfY' 

is empty, then no overflow can occur so the error clause may be elirrrinated. IfY is empty, 

then there are no possible results other than overflow; this should flag an error rather than 

a warning. Ifboth Y and Y' are non-empty then a warning should be issued to the 

programmer indicating a possible overflow condition; the set Y' may be displayed to the 

programmer if more information is desired. 
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3.4.3 Y ~ Y I x on divzero goto z 

The value semantics divides y by x, trapping to z on a division by zero. 

lbis possibility set semantics for division follow the above addition closely: 

Y={y/x I (\iy, y E Y) 1\ (\ix, (x E X) 1\ (x :t: 0» } 

IfX={O} , flag a division by zero error. 

IfOEX, flag a wammg ofpossible division by zero. 

If 0 ~X, remove the on error clause. 

If the onJy possibility for x is zero (0), then the instruction can never execute safely so an 

error should be issued. Ifx can never be 0, then the instruction will always execute safely 

and the error clause may be safely eliminated. If x can. be 0, but is not necessarily 0, then 

the code should compile correctly, but the user should be warned that the program may 

crash with a division by zero error. 

3.4.4 bound low w, check x, high y on error label z 

The value semantics for this would check the value of x against the low value w 

and the high value y ensuring that x is valid. Ifx is not within the bounds, it traps to z. 

lbis instruction typically would bound an array index. Although this may seem to have 

more in common with the comparisons below, it is simpler in scope and falls more easily 

under arithmetic operations. 
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bounds. 

The possibility set semantics for this checks that no value in X exceeds the given 

X={x I Vx, XEX 1\ (x->W and ~y) } 

X '={x I Vx., X E X 1\ (x<w or x>y)} 

If X'= {} , remove statement. 

lfX':;t:{} and X;t:{} , flag a warning that array bounds may be exceeded. 

IfX':;t:{} and X={} , flag an error that array bounds will be exceeded. 

X' is the set of values which would exceed the bounds. If there are no values which 

would exceed the bounds, then the statement will never cause an action in value semantics 

and thus may safely be removed. 

If X';t: {}, then there are possible values which would exceed the bounds and the 

statement may be executed in value semantics. At least a warning should be issued. If 

there are no valid entries, X ={} , then an error should be issued because the exception 

would always be raised in value semantics. 

Other arithmetic operations behave similar to the statements described above and 

so their description is omitted. 
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3.5 Comparisons 

In the above statements, the results of statements were analogous to the normal 

execution of the statement--uniform members ofa set, a null result , or errors. For 

example, addition ofintegers yielded only integers or an error. Boundary checks have no 

effect or produce an error. Many similar statements follow directly with little 

modification. They are similar to each other in one very important aspect : they need not 

lose any information that a normal execution would not lose. 

Comparisons are quite different. In value semantics, they compare two values 

yielding a boolean. This boolean must be maintained in possibility set semantics, but there 

is also a second level of information produced. For the boolean to be true orfalse, only 

certain combinations of values are possible. Possibility set semantics partitions each of the 

compared expressions into those possibilities which may yield the true boolean (the T 

possibility set) and those possibilities which may yield thefalse boolean (the F possibility 

set) . 

Optimally, all possible partitionings should be maintained and th.is partitioning 

should be performed once for each time the statement could be executed, splitting the 

control flow of analysis repeatedly. Obviously, if the executing program could execute the 

comparison an infinite number oftimes, it would not be possible to split the control flow 

of analysis an infinite number of times. And such partitionings into true and false could 

not be perfect as some elements would be members of both T and F sets. Most often the 
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resultant boolean will be {T,F} and the T and F sets will not be disjoint. Splitting control 

flow will not be considered further. 

3.5.1 b «-- ( x < y ) 

The values semantics for this compares x to y, yielding the boolean true if x<y or 

the booleanfalse ifX2Y. 

The possibility set semantics for this instruction is more complex and produces less 

precise information. First, some intermediate sets are introduced to simplify the 

semantics. T x is the set of values from X which holds when the condition is true, and Fx is 

the set of values from X which holds when the condition is false. Ty and Fy are 

analogous. 

T,,={x I Vx, X E X /\ X < Ymax} 

Ty= {y I 'Vy, y E Y /\ Y 2 X min} 

F,,={ x I Vx, X E X /\ X 2 Y min } 

Fy={y I 'Vy, y E Y /\ Y < Xmax} 

The possibility set semantics for b «-- ( x < Y ) is defined by the following: 

B={ C I C={} u ({F} if(F" u Fy);t {}) u ({T} if(T" u Ty);t (} ) } 

B-r={(x, Tx), (y,Ty)} 

BF= {( x,F,,),(y,Fy)} 
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'V = 'V u {(bt,BT ),(b(BF )} 

As an example, considerX={4 .. 9} andY={1..7}: 

Tx={4 .. 6} 

Ty={4 .. 7} 

Fx={4 .. 9} 

B={T,F} 

In the above example, the T for x and y yield some information, but the F for x and y do 

not narrow the possibilities. If the comparison were the other direction with the same 

data, then F would offer more information while T would yield no more information. This 

narrowing of possibilities is what allows constants to emerge even when not explicitly 

defined . Although not perfect, the information retained is yet useful. 

The T and F sets are maintained with the resulting boolean B. This information is 

used by statements such as and and or. This is extra information, not associated with the 

variable at run-time, and it is ignored when actual code is finally produced. 

Similar comparison statements follow easily from the above statement as seen in 
Figure 3. 
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positive=( x>= 1 ); 
// Assume X={-128 .. 127} 
1/ Positive={T,F}, 
1/ Positiver{X={ -128 .. 0}} 
1/ Positiver={X={ LI27}} 

Figure 3. Example of gr eater-than-or-equa) (>=) from C 

3.5.2 b <E- ( x and y ) 

The value semantics assigns the result of'logical and' of x and y to b. 

The actual boolean is easy to obtain, but more operations are required for the 

booleans' extra information. It performs a modified intersection of the true components of 

the sources and a modified union ofthejalse components. The possibility set semantics 

for and is shown. below: 

B= { C I C={} u ({T) if (T E (X n Y)) u ({F} if (F E (X u Y) ) } 

Br {(r,P u Q) I V r «r,P) E XF, else P={} ) 1\ «r,Q) E YF, else Q={})} 

Br= {(r,P n Q) I V r «r,P) EXT, else P=Q) 1\ «r,Q) E YT, else Q=P)} 

The above definitions create new possibility sets for both the true andfalse conditions. 

They take advantage of the combined information if the referenced variables are present in 

both sets. If the referenced variables are not in both sets, the possibility sets transfer 

directly to the new combined set. 
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An example of the logical and where x and y are distinct variables is shown in 

Figure 4. 

See Figure 5 for an example of the logical and where x is the same variable as y . 

In Figure 5, although no constant of7 actually appears in the code, the methods allow the 

possibility sets to be partitioned enough. to discover that x may only be 7 when the 

comparisons are true. If 7 is not a possibility before the comparisons, then the comparison 

would instead reduce to a definite false. 
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; assuming X={ l..IO} and Y={ l..IO} 

bi f-x < #5 

:BI={T,F} 

;BJ.r={(x,{l..4})} 

; B lr={(x,{5 .. 10})} 

b2 f- Y < #5 

; B2={T,F} 

; B2r={(y,{1..4})} 

: B2r={(y,{5 .. 10})} 

b f- bl and b2 

: B={T,F} 

; Br={ (x, {1..4 }),(y, {1..4})} 

: Br={(x,{5 .. 10}),(y,{5 .. 10})} 

Figure 4. Example of logical and where x and yare distinct. 
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; assuming X={ 1..1O} 

bI ~ x < #8 

;BI={T,F} 

; Bl r={(x,{ 1..7})} 

;Blr{(x,{S .. lO})} 

b2 ~x > #6 

; B2={T,F} 

; B2r={(x,{7 .. 10})} 

~ B2r {(x,{1..6})} 

b ~ bl and b2 

; B={T,F} 

; Br={ (x, {7}}} 

; Br {(x,{ 1..6,8 .. 10})} 

Figure 5. Example of logical and where x and yare the same variable. 
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3.5.3 if/else/endif 

P: 

if (boolean x) then goto destination R 

Q: 

. .. true clause ... 

Q': 

else 

R: 

... false clause ... 

R': 

endif 

s: 

where P, Q, Q', R., R' , and S are labels representing execution points. The value semantics 

for the statement would check the current condition ofx and then branch or not according 

to its value. Assuming that there can be no branches into or out of the conditional 

structure other than the defined entry and exit points, then the following holds. If x is 

true, then PCf-Q. And when the PC reaches the else statement, PCf-S. lfx is false, 

then PCf-R. Execution would th.en fall through to S after the endi.f statement. 
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3.5.3 if/else/endif 

P: 

if (boolean x) then goto destination R 

Q: 

· .. true clause ... 

Q': 

else 

R: 

... false clause ... 

R': 

endif 

s: 

where P, Q, Q', R, R', and S are labels representing execution points. The value semantics 

for the statement would check the current condition of x and then branch or not according 

to its value. Assuming that there can be no branches into or out of the conditional 

structure other than the defined entry and exit points, then the following holds. lfx is 

true, then PC~Q. And when the PC reaches the else statement, PC~S. lfx is false, 

then PC~R. Execution would then fall through to S after the endif statement. 
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The possibility set semantics for this statement must analyze both the true and 

false portions. Q through Q' use XT, and R through R' use XF. In the following, recall 

that '1/p, '1/Q, '1/R and '1/s refer to '1/ at points P, Q, R., and S respectively. For the 

true clause, the T sets override the normal values, so '1/ is assigned as follows: 

""'VQ={(u,V) I '\I u, (u,V) EXT, else (u,V) E ""'Vp} 

That is, if a variable is mentioned in XT, then that is the relevant set, else the normal set 

from before the if is still used. If a variable is not mentioned in the if comparison, then 

there is no more specific information available for it than its normal set. 

The else clause also has its F sets override ""'V in the false clause. 

""'VR= {(U,V) I '\I u, (u,V) E XF, else (u,V) E ""'Vp} 

After the end of each clause, the control flows and hence possibility sets recombine: 

""'Vs={(u,V u W) I '\Iu, «u,V) E ""'VQ' 1\ (u,W) E ""'VR' )} 

That is, if the end ofthe true clause leaves with X = {l} and the end of the false clause 

leaves with X={O}, then endifwill produce X= {O, I}. 
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3.6 Branching 

Branching deals with all transfers of control other than. the implicit flow of control 

from one instruction to the following instruction. It includes the error flow of control 

possible from all error conditions in previous statements. 

3.6.1 Forward jump: goto destination S 

P: 

Forward jump: goto S 

Q: 

.. . code ... 

R: 

S: 

Value semantics would define a forward goto as an unconditional PC~S, where S 

is a point in the program which has not yet been processed. 

The possibility set semantics for this instruction transfers all possible values from 

the forward goto point to the label point . This must accommodate the fact that there may 

be code at point R which would continue at the label as well. The possibility set semantics 

for this forward goto is defined precisely as shown: 
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'"VQ={} 

This states that all sets existing before the fOIWard goto and all sets existing before 

label must be unioned together at the label point. Q is defined to be a label which cannot 

be the target of a branch; another label may immediately follow Q and be the target of a 

branch. As any code following the fOIWard goto will not be executed unless there is a 

branch into the code and such a branch is disallowed, "'Q is set equal to the empty s.et. 

By assigning "VQ to be empty, it may be unioned at an endif or at another label. Figure 6 

provides an example. 

The backward goto statement is covered below within the looping section . 
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ittx<5) 
{ 

} 
else 
{ 

} 

test: 

goto test; 

II X={ 1..1 O} The initial assumption. 

II Br={Xr= { l..4}} Br {Xr {5 .. 10} }, B={T,F} 

II X={ l..4} This set is carriedforward to the label. 

. II X={} The set is cleared after the label. 

II X={ 5 .. 1O} 

II X={} union {5 .. 10}={ 5 .. IO} 
1/ Union true and false clauses at the endif 

II X={ 1..4} union { 5 .. 10}={ 1..1O} 
II Union pre-label and post-label possibility sets. 

Figure 6. Example of a forward goto from C 

3.7 Looping 

Any goto with a destination which has already been analyzed is effectively a 

possible loop. 
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3.7.1 Backward j ump: goto Z 

P: 

Z: 

Q: 

... code ... 

R: 

Backward jump: goto Z 

s: 

where P, Q, R, S, and Z are labels. The value semantics define goto as an unconditional 

PC~Z where Z<R. 

The possibility set semantics for this instruction are the most intricate. This must 

re-evaluate portions, but it cannot do so indefinitely. The analysis method presented 

terminates regardless of the code within the loop, but the analysis is not quick. In a 

practical implementation, some modifications to be explored in sections 4.4.1 and 4.4.2 

may be made if speed is desired above accuracy. 

S is defined as a point whlch cannot be the target of a branch ; another label may be 

placed after S to be the target of a branch. Clearly, the statement after the goto, labeled 

S: , cannot be executed as it cannot be a branch target, so ""Vs is set to the empty set : 

44 



~s={} 

On the first pass of analysis, before the goto is discovered, the ~P from before the 

destination label continues onward into the section labeled Q. On subsequent passes, ~R 

from immediately before the goto must be transferred to the destination label. 

On the first pass, 

~Q='VP 

~Q'=~P 

On subsequent passes, 

~Q=~R 

If "VQ,:;t:~Q, then ~Q'="'Q ' U 'VQ and AC~z, 

else continue analysis past goto and set AC~S. 

The ~Q' above is introduced in order to provide a halting condition for the goto. ~Q' 

tracks all possibilities that have been analyzed in the loop. lfmore possibilities have been 

discovered, then ~Q' will differ from ~Q' If no new possibilities have been determined 

during a pass, then no new possibilities will ever be created, and the loop may stop . 
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An infinite loop may merely assign a value to a variable and th.en unconditionally 

loop backwards. As all data which may be handled by this analysis is finite, the analysis 

loop will eventually discover them all and the analysis will stop. 

For example, assume that a byte may contain any value from 0 through 255 . If a 

loop always increased a byte, then after 256 passes the values would repeat. When the 

values repeat, ""Q' would no longer change. The analysis loop would then stop, and 

processing would continue past the goto. 

Note that the analysis of statements withln a loop may change as the statements are 

analyzed repeatedly. Therefore, any warnings, removals and optimizations may not be 

performed until the final pass has been completed. Each destination must maintain a 

continuously unioned set of possibilities to prevent invalid optimizations. The possibility 

sets created by statements within the loop must be considered to be only intermediate 

possibility sets until the loop ends. The actual possibility set used for error detection and 

optimization is the union of an intermedi.ate possibility sets created during the loop passes. 

If a warning can occur in any pass of analysis, then the warning needs to be issued, but 

errors signifying the absence of valid data may become warnings instead after further 

analysis. The actual issue of such errors should be delayed until all loop analysis has 

finished . 

As this is the most time consuming by far of all operations, considerations to 

practicality of speed in favor of accuracy are possible and will be covered in the next 

chapter. 
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CHAYfERIV 

USAGE OF POSSmILITY SET SEMANTICS 

The possibility sets as defined in the previous chapter allow sufficient information 

to be retained from analysis to allow a greater amount of error detection and code 

optimization. The error detection follows naturally from the presence or absence of on 

error clauses and uninitialized variables after the final analysis. Code optimization follows 

from the narrowing of possibility sets to only one choice, removal of statements involved 

in error checking, transformation of integers into more efficient forms which can still hold 

all needed data, and removal of dead code which emerged through the lack of possibility 

sets. Some examples ofthis analysis is shown in Appendix: B. 

4.1 InterproceduraJ Analysis and Globals 

Interprocedural analysis using possibility set semantics capable of retaining all 

conceivable information is not yet practical even in most cases where possible. The 

predominant reason behind this is that infonnation is flowing both ways, to the function 

through its parameters and from the function through its return value. Each function 

would need to be analyzed and re-analyzed repeatedly. 
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Even if the above possibility is true, some benefits are available. System and 

language functions may be prototyped with the permissible parameters and all possible 

return values. This would allow the discovery of inconsistencies in the program, most 

notably in the handling of error results. Figure 7 illustrates this case. 

int getchar(void) = -1..255 ; 
int putchar(int=0 .. 255); 

int c; 
c=getcharO; 
putchar( c); 

1/ Assume new prototype style in language library 
I I Assume new prototype style in language library 

1/ getcharO returns 0-255 or an error -1, so C={-1..255 } 
II putchar(c) expects 0-255, the -1 in C would be invalid 

Figure 7. Example of prototype and usage from C-like language. 

Without further information about globals, each function entry and each program 

call may redefine any and all globals to any possible value for the globals' types. System 

calls may be assumed not to redefine globals unless noted in the prototype, but user calis 

are difficult to handle. 

It would be a simple task to detemrine which globals are defined in each function 

and its called functions, but it would not be quick to discover the values assigned to the 

globals. Ifit has been determined that a certain global is not defined in a called function 

(or any function it calls, etc.) then it may remain unchanged after the call. Without that 

assurance, the global needs to be set back to its maximum set of possibilities after each 

non-system call. 

If extensions are added to the language to define what possibilities \vill be passed 

to functions and returned from functions, then that information could be used by this 
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analysis. The information declared by the user may be in error, so it should not be used if 

all possible warnings are desired. 

4.2 Error Detection and Code Optimization 

The technique described above supplies more information than would otherwise be 

available. That information may be used to detect some errors which otherwise would be 

caught only at run-time. It may also be used to remove some safety checks which have 

become redundant and to discover some otherwise hidden constants. The information 

above has already described many of the warnings and errors; the optimizations should be 

apparent after realizing which new information is available. The error detection and 

optimizations will be summarized below. 

4.2.1 Error Detection 

The following summarizes some of the error conditions that may be detected by 

using possibility set semantics. 

4.2.1.1 Division by zero 

Any division by a variable x where 0 E X and X:;t:{O}is a division by zero warning. 

Any division by a variable x where X={O} is a division by zero error. 
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4.2.1.2 Overflow 

Anytime an operation upon the possibility sets yields a set with values not within 

the desired result set, an overflow warning will be flagged . If there are no possible valid 

results, then an error message would be issued. 

4.2.1.3 Invalid array index 

Any bound statements left after analysis should be flagged as warnings for invalid 

array indexes. 

4.2.1.4 Invalid parameter to function 

Anytime a function parameter's possibility set does not represent a subset of the 

declared possibility set, the compiler should warn of an invalid parameter to the function . 

This can detect a variety of errors in which special values within a type's possibility set 

represent exceptional conditions such as -1 representing end-of-file. Anytime a declared 

function has a set of normal values and an error result, and the error result is not valid in a 

subsequent function call, this warning would be issued. In a way, this is a more 

generalized overflow error for functions rather than for internally defined statements. 

4.2.1.5 Possible loss of information 

Dfthe explored statements, this applies only to the cast statement. In converting a 

variable from a type with more precision to a type with less, it may be determined that 

information may be lost. This could occur when there are members of a possibility set for 

a long variable which could not fit into a destination short. Or it could occur when 

converting floating point variables containing possible fractions when being converted to 

integers. 
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4.2.1.6 Reference to uninitialized variable 

Anytime a variable with a possibility set containing 0 is referenced, this warning 

should he issued. This will detect not only those times an uninitialized variable is 

referenced in the initial basic block, but also those cases where several if/else/endif clauses 

and other control flow statements have been executed. It may possibly give warnings too 

often, but it will not miss any uninitialized local variables. 

It does not miss any cases because the special value 0 is contagious. All 

operations other than direct assignment propagate 0. Even after a direct assignment, a 

control construct may union the valid possibility set with another possibility set containing 

0. In such a circumstance, the analyzer knows that there may be execution sequences 

which do not initialize the variable. If a previously initialized variable, X, has an 

uninitialized variable, y, assigned to it, then x is also uninitialized. 

Uninitialized global variables are not discovered without interprocedural analysis. 

In this situation, local variables passed by reference are effectively global after the 

procedure call. 
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4.3 Code Optimization 

If checks were to be placed around every division previously, then those checks 

may be removed if there is no division by zero warnings. Similar optimizations of code to 

perform redundant safety checks may be removed and considered code optimizations. 

Just as a constant has a possibility set containing only the constant, if a set has onJy 

one member (other than 0), then it may be replaced by this value. That is, even if the 

constant was never explicitly assigned to a variable, if the variable's possibility set narrows 

enough to leave onJy one value possible, then the variable may safely be replaced by that 

value. This narrowing generally would occur through the if/else/endif clause. 

A case statement in a language which requires a constant for the case would often 

result in the replacement of the case variable by its constant value. 

Ifa variable has been declared to be a certain type, yet its possibility sets show that 

it has been used without need of extended precision then its type could be changed to a 

type with less precision. If a variable has been declared long, yet its values are only one 

through ten, then it may safely be changed into a char. The largest restriction upon this is 

when the variable must be accessed externally. 
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4.4 Practicality 

The above techniques illustrate ways to gain information about the source 

program But that information comes at a cost, time and space. A program without loops 

can be analyzed very easily and without much increased cost in terms ofresources. 

4.4.1 Determination of Definite Errors in Loop Analysis 

On.e of the most important factors in easing time restrictions is the notion that once 

a definite error has occurred within a loop, the loop's analysis may be terminated. Only 

those sets determined up until the time of the error should be carried past the loop, if any. 

It should be repeated that this extra loop termination condition only applies to certain, 

definite errors. If any possibility is valid, the loop analysis should continue to keep the 

information. This helps greatly with loops that access information in arrays. Once the 

loop index reaches a value which would provoke an invalid array index error, the loop 

analysis may terminate. 

A loop spanning the entire set of values for a type, but indexing an array valid only 

for a few index values, may quickly be terminated rather than have useless analysis 

performed upon it. For an example of this, the reader is referred to the tlllrd example in 

AppendixB. 

This technique is covered in this section rather than within the looping section 

because in some rare case it may not be desirable. Although an index accessing an array 

should not violate the array bounds, conceivably in some programs it could violate the 

53 



bounds and still produce correct results. This would occur if the violation only altered 

memory not protected by the operating system and not used otherwise in the system Yet 

it may be the wish ofthe programmer to have more errors or warnings found within the 

loop after the array bound violation. Nonetheless, it is safe to have loop analysis 

termination upon error be the default. A flag to deactivate the loop error termination 

condition could be provided in case it would ever be desirable. 

4.4.2 Early Termination of Loop Analysis by Expanding Possibilities 

Another factor in limiting the time spent in the analysis of the program could be the 

early termination ofloop analysis by expanding the possibilities for variables. lIDs would 

not produce the same results, giving more possible values to variables than would 

otherwise be found, but it could be effective in quicker analysis of some code during 

deveJopment. This could be provided as an option along with a maximum number ofloop 

passes. 

A set maximum number of passes may be specified; any variable x still changing 

after n passes may be safely replaced by the full set of possibilities for its type, Rx. And 

then the loop may continue to be processed again with the same maximum condition until 

the loop stabilizes. lbis method will terminate analysis of a loop after a reasonable 

number of passes even when the loop has many variables which constantly change, and it 

still maintains generally good information about a loop. Other safe possibilities to speed 

the analysis of the loop are also possible. 
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4.4.3 Conservation of Space 

To conserve space, not all information about a possibility set must be saved. 

Without possibility set semantics or other optimizations, all variables effectively have a 

possibility set equal to that of their type. In this manner, no information whatsoever is 

known about the variables and no optimizations will be performed. Expanding the number 

of values within a possibility set is always the safe option. 

Much of the work done in a program is done with the smallest values. A bit vector 

of eight bytes could contain the set of values -128 to 127 for signed types, or 0 to 255 for 

unsigned types. All possibilities for the low values would thus be maintained. Aside from 

the low values, a few ranges could be maintained. The less critical or the more uniform 

the values, the more useful this type of modification would be. Arrays should find this 

type of treatment very useful. Explicitly named variables within the procedure would find 

it less useful. 

With these modifications, I believe this form of analysis to be useful and practical. 

This technique certainly requires more resources than the typical compilation, but 

generaUy the development platform is at least as powerful as the platform upon which the 

program will be executed and should be capable of spending the required time on analysis. 

4.4.4 Limit to Complexity 

The analysis is at most within the same order of complexity as the analyzed 

program Any program which is feasible to execute is feasible to analyze. This can be 

seen in that a basic block to execute in the final code is still a basic block during analysis. 
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The only time analysis loops back is when the program loops back. Without performing 

the analysis between procedures, once a procedure has been analyzed it need not be re­

analyzed. And loops which become infinite in the executed program terminate un.der 

analysis, so regardless of how intricate the analyzed code, the possibility semantics 

analysis will terminate. The analysis of an individual statement may take longer than the 

execution of the same statement, but only by a constant factor. This initial investment in 

analysis can avoid unexpected errors in programs used frequently or used for a long 

duration. 
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5.1 Future Work 

CBAYfERV 

CONCLUSION 

One obvious extension to the virtual machine would be the modification of names 

to indicate the declaration level. This virtual machine is meant to be a starting point for 

various procedural languages. Ifbotb possibility sets semantics and value semantics are 

synchronized, extension to this machine is possible. The new statement must first be 

defined for value semantics. After value semantics are determined, the implications for all 

inputs and outputs must be considered to determine the corresponding definition for 

possibility sets. 

Interprocedural analysis should be developed to gain as much information as 

possible from the interaction of procedures, their parameters, and their results. Any 

information so gathered, even quite limited information, would be helpful in narrowing the 

possibility sets. Information from this analysis could be used in other error detection and 

optimization, and information from other forms of analysis could be useful in possibility 

set semantics. 
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5.2 Conclusions 

For the uses of error detection and some forms of code optimization, the 

maintenance of sets of possible values is not currently being performed. Although 

unrealistic to maintain thousands of separate values in an actual set for a compiler, 

typically a set of at most one element is being maintained. All others merely become the 

set of an unknown number of values having no error detection or optimization value. In 

the thesis, it has been shown how to maintain more information about the value which a 

variable may hold at each point in the program Surely the maintenance of more 

information than simply noncons! would be of use in the detection of errors and 

optimization of code. The more information available to the programmer about where a 

program may experience an exception, the better able the programmer will be to correct 

those errors before they may occur. 

An optimizing compiler including this analysis would generally not apply this 

analysis during each compilation. It would be most useful when the program crashes for 

an unseen reason and before release in order to discover any hidden flaws. When there are 

a lot of resources invested in the success of a project, it is important to ensure the quality 

of the product in every way possible. Hopefully this technique will be a useful tool in the 

assurance of quality software. 
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APPENDIX A 

GLOSSARY 

ANSI C: American National Standards Institute C. The officiaL standardized version of 

C. 

K&R C: Kernighan and Ritchie C. The original de facto standard C language as 

designed by its creators, Brian Kernighan and Dennis Ritchie. 

Possibility Set: A set associated with a variable x at a point p in the program's code 

containing all values possible for the variable x at the point p during all possible execution 

paths regardless of input. The virtual machine in Chapter 3 defines possibility sets 

precisely. 

Possibility Set Semantics: The creation and analysis ofpossibility sets as presented in 

this thesis. 

PSS: See Possibility Set Semantics. 
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Rv: The set of values which the variable v is capable of containing according to its type. 

VT : The set of values in effect when the variable v is true. 

VF: The set of values in effect when the variable v is false. 

""V (Script V): The master set of ordered pairs containing all currently visible variables 

and their associated possibility sets. 
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APPENDIXB 

Algorithms in C and PSS Analysis 

Original code in C: 

II Simple sort 
int n,ij,temp; 
int s[lO]; 

n=10; 

for(i=O l<n;i++) 
s[i]=inputO; 

for(i=O;i<n-l;i++ ) 
forG= 1 j <nj++) 

if{ s[i]>s[jD 
{ 

Example 1 

Sorting Algorithm 

temp=s[i]: s[i]=s[jJ; s[jJ=temp; 
} 

for(i=O;i<n;i++ ) 
output(s[i]); 

PS8 Analysis: 

declare n of {-32768 .. 32767} 
declare i of {-32768 .. 32767} 
declare j of {-32768 .. 32767} 
declare temp of {-32768 .. 32767} 
declare s[O .. 9] of {-32768 .. 32767} 

n ~ #10 

N={0} 
I={0} 
J={0} 
Temp={0} 
8[0]=S[1]=S[2]=S[3]=S[4]= 
S[5]=S[6]=S[7]=S[8]=S[9]={ 0} 

N={ 10} 
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; INPUT LOOP 

i~#O 

label loop: 
bound #O,i,#9 on error e 

call input to sri] 
i ~ i + #1 on overflow v 

b ~i<n 

ifb then 
goto loop 

else 
endif 

; SORT LOOP OUTER 
i~#O 

outertemp ~ n 

outertemp ~ outertemp - # 1 
on overflow v 

label loop outer: 

; SORT LOOP INNER 
j ~ #1 
label loop inner: 

bound #O,i,#9 on error e 

bound #OJ,#9 all error e 

b ~ sri] > s[j] 

ifb then 
bound #O,i,#9 on error e 

temp ~ s[i] 

Assuming for this example that the for statement always 
processes at least once. Although not true for C, it is for 
some languages. The next examples assume the normal 
interpretation ofC's for statement. 

J={O} 
Pass 0 

I={O} 

Pass 1 

I={1} 

Pass 9 

I={9} 
Bound is never violated, so may be removed 
S[i]={ -32768 .. 32767} ... 
I={l} I={2} I={lO} 
{I}.. {lO} are subsets of R[, so overflow may be removed. 
B={T} B={T} B={F} 
By constant replacement: b ~ i < # 1 0 
B={T} B={T} B={F} 
'" ={I={O},B={T}, .. . } ... 

I={O} 
Outertemp= { lO} 
Outertemp= {9} 
{9} is a subset of Rowerremp. so remove overflow. 

J={l} 

I={O} .. {8} 
Bound is never violated, so may be removed 
J={I} .. {9} 
Bound is never violated, so may be removed 

S[i]={-32768 .. 32767}, S[j]={ -32768 .. 32767} 
By={S[i]={-32767 .. 32767}, S[j]={-32768 .. 32766}} 
BF={ S[i]={ -32768 .. 32767}, S[j]={-32767. .32767}} 
B={T,F} 

I={O} .. {8} 
Bound is never violated, so may be removed. 
Temp={-32767 .. 32767} 
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bound #OJ,#9 on error e 

bound #0,i,#9 on error e 

s[i] ~ s[j] 
bound #0,~#9 on error e 

s[j] ~ temp 
else 
endif 

; END INNER LOOP 
j ~ j + #1 on overflow v 

b~j <n 

ifb then 
goto loopinner 
else 
endif 

; END OUTER LOOP 
i ~ i + #1 on overflow v 

b ~ i < outertemp 

ifbthen 
goto loop outer 
else 
endif 

;OUTPUT LOOP 
i ~#O 

label oloop: 
bound #0,~#9 on error e 

call output with s[i] 
i ~ i + #1 on overflow v 

J={l} .. {9} <-- 10 times 
Bound is never violated, so may be removed. 

I={O} 
Bound is never violated, so may be removed. 
S[i]={-32768 .. 32766] 

I={O} 
Bound is never violated, so may be removed 
S[j]={-32767 .. 32767] 

J={2} .. {l0}, {2} .. {10}, {2} .. {1O}, {2} .. {I0}, 
{2} .. {lO} are subsets of RJ; so overflow may be removed. 
J={2} .. {9}, N={lO} 
By={J={0} .. {9},N={l0}} BrO B={T} 
On the pass with J= 1 0, 
J={ 1O}, N={lO} 
Br{J={ lO},N={lO}} By=O B={F} 

I={l} .. {9} 
{l} .. {9} are subsets of RI , so overflow may be removed. 
1= { 1.. 8} , Outertemp= {9} 
By={I={ 1..8},Outertemp={9}} Br O , B= {T} 
I={9} , Outertemp={9} 
By=O, Br {I={9},Outertemp={9}}, B={F} 

I={O} 
Pass() 

I={0} .. {9} 

Pass 1 ... Pass 9 

Bound is never violated, so may be removed 
S[i]={-32768 .. 32767} ... 
I={l} .. {lO} 
{l} .. {JO} are subsets of RI , so overflow may be removed. 
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b~i < n 

ifb then 
goto oloop 

else 
endif 

B={T} ... B={T}, .final pass: B={F} 
less I than # 1 0 to b by constant replacement 
B={T} ... B={T} , final pass: B={F} 
'V ={I={O} ,B={T}, ... } ... 

In the above, all array bounds have been checked at compile-time. No boundary violations 
occur and all boundary checks can be removed safely. The code associated with the 
boundary check would be removed by more standard optimizations as it would then be 
dead code. 

All additions and subtractions yield results within the types to which they are 
assigned. Therefore, all overflow checks can be removed safely. 

No references are made to variables with possibility sets containing 0, so no 
uninitialized variable references occur. 

All error conditions above have been italicized and safely removed. It is safe to 
say that if the input and output routines are safe, then this routine is safe from the 
exceptions noted in this thesis. 
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Example 2 

Faulty Average of Input Values 

Original Code from C: 

int n; 
int i; 
int a[10]; 
int sum; 
int avg; 

n=inputO; 

for( i=O ~<n j.++ ) 
a [i]=inputO; 

sum=O; 

for(i=O;i<n;i++ ) 
sum+=a[i]; 

avg=sum/n; 
output(sum); II Output the sum of the input values 
output(avg); II Output the mean average of the input values 
output(a[O]); II Output tbe first value from tbe list 
output( a[ n-l]); / / Output tbe last value from the list 

PSS Analysis: 

declare n of {-32768 .. 32767} 
declare i of {-32768 .. 32767} 
declare a[10] of f -32768 .. 32767} 
declare sum of {-32768 .. 32767} 
declare avg of {-32768 .. 32767} 

call input to n 

i~#O 

label loop 1: 
b ~i>=n 

N={0} 
I={0} 
A[O]=A[ 1]= ... =A[9]={0 } 
Sum={0} 
Avg={0} 

N={ -32768 .. 32767} 

I={O} 

O:Br'{N={O} },BF={N={ 1..32767} },B={T,F} 
1 :Br'{N={O .. I} },BF={N={2 .. 32767} },B={T,F} 
2:Br'{N={0 .. 2} },BF={N={3 .. 32767} },B={T,F} 

32767:Br'{N={0 .. 32767}} ,Br={ },B={F} 
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ifbthen 

bound #O,i,#9 on error b 

call input to a[i] 
i ~ i + #1 on over.fl(M· b 

goto loopl 
else 
endif 

{O} .. {32766} , B={T,F}, so process both T and F 
{32767}, B={F} , so process only false (to endif) 
{O} .. {9}: Passes 
{lO} .. {32766}: Fails 
Boundary violation is possible. 
A[ -32768 .. 32766]={ -32768 .. 32767} 
{l} .. {32767} 
Overflow is not possible, so may be removed. 

I={O .. 32767} 
A[O . .32766]={ -32768 .. 32767,0} 
A[32767]={0} 
Note that A[10 .. 32767] are not declared. 

Since the else clause is missing, its possibility sets are effectively the same as if it were 
present, but null. In this case, the else clause is the same as the sets before the if clause, 
other than the variable i. 

If the rules of analysis allow all processing on a sequence to stop if a definite error occurs, 
then the above would stop processing as soon as I={10} occurred at the bound statement. 
All T and F possibilities would then immediately be unioned together at the endif. In this 
case, the analysis would proceed much more quickly. 

sum~#O 

i~#O 

labelloop2: 
b ~i;:::n 

ifb then 

bound #O,i#9 on error b 

sum ~ sum + a[i] on overflow ov 

i ~ i + #1 on overflow ov 
goto 100p2 

Sum={O} 
I={O} 

O:Br={N={O} },Br{N={ 1..32767} },B={T,F} 
l:Br={N={O .. 1} },Br {N={2 .. 32767} },B={T,F} 
2:Br={N={ O .. 2}} ,BF={N={3 .. 32767} } ,B={T,F} 

32767 :Br={N={ 0 .. 32767} } ,Br=O ,B= {F} 
{O} .. {32766}, B={T,F}, so process both T and F 
{32767}, B={F}, so process only false (to endif) 

{ O} .. {9}: Passes 
{lO} .. {32766}: Fails 
Boundary violation is possible. 
O:Sum={ -32768 .. 32767} 
l:Sum={-32768 .. 32767}, possible overflow 

32767:Sum={-32768 .. 32767}, possible overflow 
Overflow is possible for all but first pass. 
{l} .. {32767} 
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endif 

avg ~ sum 
avg ~ avg / n on error z 

call output with sum 
call output with avg 
bOlIDd #0,#0,#9 on error b 

call output with a[O] 

temp ~n 
teinp ~ temp - # 1 on overflow ov 

bOlIDd #O,temp,#9 on error b 

call output with a[temp] 

Avg={ -32768 .. 32767} 
N={-32768 .. 32767}, Avg={ -32768 .. 32767} 
o EN, so Division by zero error is possible. 

o is within 0 .. 9, so within bOlIDds. 
Always within bounds, so may be removed. 
o E A[O], so 
Possible read of un initialized variable. 
Temp = { -32768 . .32767} 
Temp={-32768 . .32766} 
Overflow is possible (-32768-1 =-32769 ~ RTemp) 

Temp={-32768 . .32766} is not a subset of {0 .. 9}. 
Boundary violation is possible. 
There exists a [Temp ] with 0 as member, 
Possible read oJuninitialized variable. 

The above example has C code which looks reasonable, yet which has many possiblities 
for TlID-time errors. The first problem yielding the errors is that the input value to n 
determining the number of entries is unbounded by the code. Any value including zero, 
even negative numbers, may be supplied, yet the code does not check for reasonable 
values. When the average is finally calculated at the end, the division can cause problems 
if the number of values is zero (0). 

The output of a[O] with no values input would yield garbage. The output of the 
supposedly last value in the list is worse; it could conceivably reference a negative index as 
well as garbage. 

By calculating the sum of the values in a single variable of the same type as the 
input, the sum could easily overflow causing incorrect results. 
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Example 3 

Corrected Average of Input Values 

The code below performs the same function as example 2, but without many of the 
associated problems. 

Original code from C: 

int n; 
int i; 
int a[10]; 
long sum; 
int avg; 

n=inputO; 

if{ (n>= 1 )&&( n<= 1 0») 
{ 

sum=O; 
for(i=O J<n;i++) 
{ 

} 

a [i]=inputO; 
sum+=a[i]; 

avg=sumln; 
output(sum); 1/ Output the sum ofthe input values 
output(avg); II Output the mean average of the input values 
output(a[O]); II Output the first value from the list 
output(a[n-l]); II Output the last value from the list 

PSS Analysis: 

declare n of {-32768 .. 32767} N={0} 

declare i of {-32768 .. 32767} I={0} 
declare a[0 .. 9] of {-32768 .. 32767} A[O]=A[ I]= .. . =A[9]={0} 
declare sum of {-2147483648 .. 2147483647} Sum={ 0 } 

declare avg of {-32768 .. 32767} Avg={0} 

call input to n 

bl~n2:#l 

b2~n ~# 10 

N={ -32768 . .32767} 

Bl r={N={1..32767}}, Bl r={N={-32768 .. 0}} 

B2-r={N={ -32768 .. 10} }, B2r= {N={l1..32767} } 
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b3 +--- bland b2 
ifb3 then 

sum +--- #0 

i +--- #0 
label loop 1 : 
b+---i ~ n 

ifb then 

bound O,i,9 on error b 

B3,.={N= { LIO} },B3r={N= {-32768 .. 0, 11..32767}} 

N={1.. 10} 

Sum={O} 

I={O} 

0: B,.={}, Br={N={ L IO}}, B={F} 
1: B,.={N={I }}, Br={N={2 .. 1O}} , B= {T,F} 

9: Br={N={1 .. 9} },Bro{N={ IO} },B= {T,F} 
10: B,.={N={LlO} },Br={} ,B= {T} 
Pass 10 avoids goto-backwards, going directly to endloop 1. 

I={O} .. {9} 
Boundary is never violated, so may be removed. 

call input to a[i] A[i]={ -32768 .. 32767} 
sum +--- sum + a[i] 

on overflow v 0: Sum={-32768 .. 32767} 

i -+--- i + # 1 on overflow v 

goto loop 1 
else 
endif 

l: Sum={-32768*2 .. 32767*2} 

9: Sum={-32768*10 .. 32767*10} 
A lways within RsUTfb so overflow may be removed. 
I={1} .. {lO} 
Never overflows, so may be removed. 

Assume temp is a long. 
temp +--- sum Temp= {-327680 . .327670} 
temp +--- temp I n on error e N= { LIO} , Temp= {-327680 .. 327670} 

N never contains 0, so on error may be removed. 
cast temp to avg Avg={-327680 .. 327670}, not within ~vg, so 

Possible loss of information. 
Avg= { -32768 .. 32767} 

call output with sum 
call output with avg 
bound #0,#0,#9 on error b Always within bounds, so may be removed. 
call output with a[O] 

temp -+--- n Temp= { l..IO} 

temp +--- temp - # 1 
on overflow v Temp={0 .. 9} 

Never overflows, so may be removed. 
bound #O,temp,#9 on error b Temp={O .. 9}, 

72 



Always within bounds, may be removed. 
call output with a [temp ] 

endif 

In the above version, the only remaining warning is a possible loss of information remains 
from casting a long to an into It cannot determine that the loss of information cannot 
actually occur, so it warns about it regardless. 

The only time that the long could be 327680 is if32768 is input 10 times; in that 
case n would equal 10, and the division would bring the result into the range of int. The 
program cannot correlate the n value with the possible ranges; it must assume a division 
by 1 is possible even when the sum. was 327680. Note that this is the safe alternative. 
Giving a superfluous warning is better than missing a warning. 
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