
FAST SIMULATION OF GENERAL

MANUFACTURING NETWORKS

By

RAM SREENIV ASAN

Bachelor of Engineering

Annamalai University

Tamil Nadu, India

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1996

FAST SIMULATION OF GENERAL

MANUFACTURING NETWORKS

Thesis Approved:

M ~\.rv·()~ k{)VYY"'d.[t)
Thesis Advisor

y~A. /LN-
7-ztpJ?~

Jhi!YJ1M c. c~
Dean of Graduate College

II

ACKNOWLEDGMENT

I wish to express my heartfelt appreciation and gratitude to my advisor, Dr. Manjunath

Kamath, without whose supervision, constructive guidance, inspiration, tolerance, and a

certain facility to use the carrot instead of the stick this work would not have been

possible. While I am essentially groping for words, and any superlatives to describe the

interest he has shown in my well-being and progress (academically and otherwise) would

still be an understatement, I can definitely say he has been a teacher in the truest sense of

the term.

My sincere appreciation extends to my other committee members Dr. David Pratt, who

taught simulation and the spirit of simulation to me, and Dr. Timothy Greene, who has

always been effusively encouraging. I would like to thank the School of Industrial

Engineering & Management for providing me with precious research and teaching

opportunities and generous financial support. I would like to thank the rest of the CIM

Center team for their support. I would like to, especially, acknowledge my friends Ralph

and Shankar for their extensive guidance in programming and Baskar for his help in

SLAM system.

I would like to thank my brother-in-law, Aththim, who pushed me into all this. Thanks

also go to my mother and sisters for their support and encouragement. Special thanks are

in order for my friend Amith and his family, comrade Thaths, and Pals who were always

there when I so often got myself into trouble.

lll

I wish to remember my father who would have loved to see me move in the right

direction and my niece, Lajo, and nephew, Ashwath whose impishness has always been a

source of joy and has vested in me a certain amount of responsibility.

IV

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

Simulation of Systems ... 1
Motivation Behind this Research4
Overview of Research .. 7

II. BACKGROUND OF THE STUDY .. 9

Review of Previous Work. ... 9
Statistics Collection and Execution Efficiency ... 15
Fast Simulation - Unanswered Questions ... 16

III. STATEMENT OF THE RESEARCH ... 18

Research Goal. ... 18
Research Objectives ... 19
Research Scope and Limitations ... 19
Research Contributions ... 20

IV. PRELIMINARIES: PERFORMANCE MEASURES, IMPLEMENTATION
LANGUAGE, AND PHASES OF RESEARCH 21

Performance Measures .. 21
Selection of Modeling and Simulation Environment.. 22
Research Phases .. 23

V. DEVELOPMENT OF THE NEW METHODOLOGY. 25

The New Methodology .. 26
Description of the Experimental Prototype ... 31

VI. FAST SIMULATION- IMPLEMENTATION .. 33

Design ofReusable Fast Simulation Building Blocks 33
Executional Details of the Fast Simulation Methodology Proposed 37
Memory Management of the Fast Simulator40
Verification of Fast Simulation Logic44

v

A Discussion on Linearity of Execution Time of Fast Simulation46

VII. RESEARCH SUMMARY, CONTRIBUTIONS, AND FUTURE
RESEARCH ... 51

Research Summary .. 51
Research Contributions .. 53
Future Research ... 55

BIBLIOGRAPHY ... 56

APPENDICES

APPENDIX I--ALGORITHMS FOR SIMULATING INDIVIDUAL
TOPOLOGIES ... 59

APPENDIX II--SOURCE CODE FOR SIMULATING EXPERIMENTAL
PROTOTYPE .. 80

VI

LIST OF TABLES

~k p~

1. System Parameters for the Experimental Prototype45

2. Verification of Simulation End time for Prototype System45

VII

LIST OF FIGURES

Figure Page

1. The relationship between departure times in a system with finite buffer 13

2.1. A Simple Prototype .. 27

2.2. An Alternate Prototype ... 27

3. Fast Simulation Algorithm to Simulate Prototype System in Figure 2.1.. 30

4. The Experimental Prototype ... 32

5.1. Psuedocode showing modules that simulate system in Figure 2.1.. 36

5.2. Psuedocode showing modules that simulate system in Figure 2.2 36

6.1. Increase in Execution Time with Increase in Size of a Tandem Line 50

6.2. Increase in Execution Time with Increase in Size of Assembly 50

6.3. Increase in Execution Time with Increase in # of Merging Lines50

6.4. Increase in Execution Time with Increase in #of Parallel Servers 50

VIII

CHAPTER I

INTRODUCTION

Simulation of Systems

Performance evaluation of any system is vital for its design and operation.

Simulation, queueing networks, Markov chains and Petri nets are the most common

techniques for performance evaluation of manufacturing systems (Viswanadbam and

Narabari 1992). However, for the detailed modeling and analysis of complex systems,

simulation remains the most commonly used tool. As Kelton (1994) puts it, "As a

general approach to addressing analytically intractable problems, simulation bas always

bad an attractive directness and simplicity about it." He further adds, "While the general

idea of simulation is popular and appealing, it bas bad its drawbacks, and thus its

detractors. Perhaps the most obvious limitation is the need to keep track of and

manipulate a lot of numbers as a simulation progresses."

Among the three fundamental simulation worldviews, namely, discrete event

scheduling, process interaction, and activity scanning, the discrete event scheduling

(DES) approach seems to be the most widely used, due to its execution efficiency and

applicability to systems in general (Nance 1971). Another equivalent approach would be

the 3-phase approach which takes a global view of the simulation model (Paul 1991); the

time is advanced until there is a state change in the system or until something happens.

At this point the system is examined to find out all the events that take place at this time,

i.e. all the activity completions that take place at this time. Only when all resources due

to be released at this time have been released, is the reallocation of these resources into

1

new activities started in the third phase of the simulation. The first phase is time

advance. The second phase is to release those resources scheduled to end their activities

at this time. The third phase is to start activities given the global picture about resource

availability. The attraction ofthis method is that it gives maximum control of the model,

the experimental tool for simulation, to the analyst. Decisions as to priority over

resource allocation are more readily made within this structure. Since the third phase,

the allocation of resources to new activities, is distinct from the rest of the modeling

structure, some very esoteric allocation rules can be encapsulated in such a structure.

The disadvantage of this method is that it can be computationally inefficient to run (Paul

1991).

In the DES approach, the execution time is primarily made up of the time

consumed in manipulation of a list of scheduled future events. The implication of the

data structure used for storing/removing events from the calendar on the execution

efficiency of simulation has been recognized by several researchers. A summary of

comparative performance of various data structures and algorithms has been reported in

Adam and Dogramaci (1979). Reeves (1984) bas studied the performance of various

algorithms under certain conditions and has found ternary heaps to be more attractive for

event manipulation.

When using simulation for systems design and analysis, DES does remam a

powerful tool. However, for quite sometime now, researchers have been exploring real

time control of systems using simulation (Harmonosky 1990). Even when real time

control is not an objective, there is some need for continuously trying to speed up

simulation, for, as Kelton (1994) says-

2

"Despite all this impressive technology advancement, though, simulationists continue to
push the envelope by continuing to ask more of their simulations- run them longer,
replicate them more, look at more scenarios, allow for more experimental factors, and
search for input-parameter combinations that optimize a performance measure."

He further continues,

"Be that as it may, there remain at least two additional barriers, of a more fundamental
nature, to the continuing advance of simulation's utility, neither of which can ever really
be "solved" by faster, bigger, cheaper hardware.
• General methodological problems concerning how to model, how to plan a course of

simulation experimentation, and how to interpret the results. Research in these areas
is quite active.

• As such methodological advances occur, they must be effectively embedded in
simulation software to make them available to the wider world of applications in a
form that will gain them acceptance and routine use. This will involve closer
collaboration between methodological research and simulation-software developers
than has been the case so far."

So saying, he "argues for the vitality of simulation, thus justifying investment m

methodological research and its implementation in software."

In the same vein, we can see, any methodological course to improving the

execution speed of simulation should be welcome. Proceeding in this train of thought,

we can theorize that if the execution time of DES can be reduced by reducing the

manipulation of the event list, or by total elimination of the event list itself, then we

would have brought the dream of using simulation for real time control one step closer to

reality. This is exactly what fast simulation attempts to achieve. Chen and Chen (1993)

remark, "We observe that, when the event-scheduling technique is employed, complex

data structures (e.g. pointers and linked lists) are generally used, and much simulation

run time is devoted to the management of complex procedures (e.g. search, sort, link, and

unlink). In order to save simulation run time, if possible, we want to avoid using these

structures and procedures." Furthermore, the simpler fast simulation models may

3

provide us some insight into how some systems may be simulated with more ease than

when DES is employed.

The field of fast simulation traces its origin to Chen and Chen's (1990) seminal

paper, in which they provide a methodology for simulating a simple tandem line using

recursive relationships that are established between departure times of customers (which

is what this type of fast simulation is all about) thereby precluding the overhead of event

manipulation. They followed that publication with a paper which had a better

implementation of the same tandem line simulation (Chen and Chen 1993). Since then

Duse (1994) has come up with recursive relationships to fast simulate other

manufacturing topologies like merge, split, assembly, parallel server workstation and

unreliable server.

Motivation Behind this Research

Continuing the discussion of fast simulation, one very soon comes to think of

how to model the dynamics of systems to enhance the generality (like ability to handle

larger manufacturing networks and non-FCFS queue disciplines) of the approach. The

current approaches deal with the modeling issues by imposing restrictions on the system

features; or by using a hybrid approach. This brings us to the question of what the

available fast simulation approaches are, and what the other related approaches are.

Methodologies that attempt to reduce execution time of simulation of general

systems through methodological changes in simulation mechanism can be classified as

follows.

4

1. Acyclic Fast (Hunt 1994. Hunt and Foote 1995)

Here the event calendar is completely avoided. Hence this methodology may be

classified as 'pure' fast simulation. Customers being simulated visit any node in the

system at most once (hence acyclic). The system is decomposed into nodes and levels.

'Nodes' are typically tandem line structures which can be fast simulated by Chen and

Chen's procedure (1990) of recursion. A 'level' is a division in a system within which

dependency relationships of customer departure times are obvious; like in the case of a

single tandem line. We can then exploit the linear sequential dependency relationship

that exists between levels in a system. This implies that we can completely simulate the

flow of all customers in Ievell, and then in level 2, and so on. Since all customers have

to be simulated through one level before they can enter another level, this methodology

entails a number of shortcomings, viz.,

• The departure times of all the customers from a system level taken together have to

be stored in memory at some point of time. This places a lot of demand on the

memory and puts a limit on the number of customers that can be simulated;

• As the name indicates, only acyclic situations can be modeled;

• Since there is no way to conglomerate departure times of customers, assembly servers

could not be included;

• Buffers had to be infinite;

• Parallel servers were not modeled; and

• Only systems which can be modeled as combination of tandem lines can be

simulated.

5

2. General Fast (Hunt 1994)

This does not completely avoid the event list. Here, control points (typically,

points where tandem lines merge or split into other tandem lines) are identified for a

network. Only events happening at these points are entered in the event list. In effect,

we breakdown the event list necessary to maintain the logical control of the simulation

into a smaller list containing events happening at points identified as control points.

What this does is, make the control points see smaller lists for manipulation (search and

insert). This results in lesser time being spent in event list searching, and hence in

simulation execution. Though this has been called fast simulation methodology by Hunt

(1994), we have to understand the basic difference between this approach and 'pure' fast

simulation where the event list is avoided completely. Here, the reduction in execution

time is achieved by fast simulating any system component (like tandem line) which can

be fast simulated. This way the number of events that we have to take care of is reduced.

In this sense, general fast is more like hybrid simulation which is discussed next.

However, general fast has a few differences from hybrid simulation in the way it has

been applied so far. It, like acyclic fast, has been applied only to systems which could be

treated as combination of tandem lines, and infinite buffer cases. It showed some

promise in dealing with non-FCFS queue disciplines.

3. Hybrid Simulation (Duse 1994)

One other technique that one should be sensitive to while talking of fast

simulation is one called hybrid simulation. It was theorized that for a fairly complex

manufacturing system, fast simulation may not really be an efficient mechanism for

simulation. In some cases, pure fast simulation may not even be possible. Hence

6

2. General Fast (Hunt 1994)

This does not completely avoid the event list. Here, control points (typically,

points where tandem lines merge or split into other tandem lines) are identified for a

network. Only events happening at these points are entered in the event list. (In effect,

we breakdown the event list necessary to maintain the logical control of the simulation

into a smaller list containing events happening at points identified as control points.

What this does is, make the control points see smaller lists for manipulation (search and

insert). (This results in lesser time being spent in event list searching, and hence in

simulation execution. Though this has been called fast simulation methodology by Hunt

(1994), we have to understand the basic difference between this approach and 'pure' fast

simulation where the event list is avoided completely. Here, the reduction in execution

time is achieved by fast simulating any system component (like tandem line) which can

be fast simulated. This way the number of events that we have to take care of is reduced.

In this sense, general fast is more like hybrid simulation which is discussed next.

However, general fast has a few differences from hybrid simulation in the way it has

been applied so far. It, like acyclic fast, has been applied only to systems which could be

treated as combination of tandem lines, and infinite buffer cases. It showed some

promise in dealing with non-FCFS queue disciplines.

3. Hybrid Simulation (Duse 1994)

One other technique that one should be sensitive to while talking of fast

simulation is one called hybrid simulation. It was theorized that for a fairly complex

manufacturing system, fast simulation may not really be an efficient mechanism for

simulation. In some cases, pure fast simulation may not even be possible. Hence

6

research was done to study issues involved in effectively combining fast simulation and

DES, and this technique came to be called hybrid simulation or multi-mode simulation

(Duse 1994). While the basic idea of general fast and hybrid simulation is the same,

certain differences in explaining away the scope of each have been due to their

contemporaneous development.

Reiterating what we have gone through so far, all previous research has focused

on finding individual manufacturing network topologies (e.g. tandem queueing system,

single server assembly station, and merge node topology) that can he fast simulated.

Simultaneously dealing with the various topologies in a fairly complex system and fast

simulating the same was beyond the scope of previous research efforts. One previous

research effort did concentrate on the combination of tandem lines (to form a prototype

job shop) (Hunt 1994). However, its scope was limited as discussed earlier.

The motivation behind this research is this recognition of an opportunity to

develop a robust approach to model a general manufacturing system that is a

combination of various individual network topologies, for purposes of simulating the

same using pure (has no event list whatsoever) fast simulation.

Overview of the Research

The rest of this thesis is laid out in the following chapters. The literature relevant

to this research is reviewed in Chapter II. This chapter also contains the research

questions that remain unanswered in this area. In Chapter III, the scope and limitations

of this study are defined by presenting a concise statement of the goal for this research.

The contributions this effort would provide to the body of knowledge are also outlined in

7

this chapter. Chapter IV discusses the performance measures to be used and various

phases of this research. Chapter V discusses the proposed approach (in the context of an

experimental prototype) to solve the stated research problem. Chapter VI discusses the

implementational details of the methodology. Chapter VII gives a summary of the

research followed by contributions to the body of knowledge and future research

possibilities.

Appendix I gives detailed algorithms for some typical topologies that have been

previously dealt with by researchers. It has been provided to give the reader a flavor of

how implementations of fast simulation models of typical network topologies may be

made. Appendix II gives the source code for fast simulation of an experimental

prototype.

8

CHAPTER II

BACKGROUND OF THE STUDY

Review of Previous Work

In their seminal work in fast simulation, Chen and Chen (1990) identified how

single server-infinite/finite buffer stations in tandem can be simulated based on recursive

relationships that can be captured between the departure times of the customers from the

successive stations. Basically, they exploited the simplicity of a tandem line to form

those recursive relationships and performed the simulation with no event list whatsoever.

In the process they realized speed-ups of up to 80% in their run time while estimating

certain performance measures. We cannot avoid the generation of random numbers and

random variates, and have to generate them as we do in DES.

In formulating their fast simulation recursions, Chen and Chen (I 990) had

assumed reliable servers, First Come, First Served (FCFS) queue discipline, and single

class of customers. In other complex cases, say with state-based decision making one

may have to look into how the system can be modeled for purposes of hybrid simulation,

and which parts of the system are to be modeled for fast simulation and which parts are

to be modeled for DES (Duse 1994). The aim of hybrid simulation is to reduce the

number of events in the event list and thus reduce the simulation execution time. Also,

this effort may not be worthwhile in reducing the execution time for some complex

systems where 'many' portions of the system have to be modeled using DES.

9

Duse (1994), in his work, extended the body of knowledge in fast simulation by

simulating assembly, merge, split, parallel server, and unreliable station topologies. An

assembly server has a certain number of components coming into component buffers.

Once one of each type of component is available for the assembly server to work on, the

components are assembled in the assembly server. A merge node, on the other hand,

takes in customers to be serviced from different merging lines. The customer which has

finished the earliest in the last workstation of the various merging lines waits at the

buffer at the merge node or is served at the merge node. In the case of a split topology, a

tandem line splits into two or more tandem lines. A parallel server workstation bas

number of servers in parallel, with a single common buffer in front of them.

Some sample fast simulation algorithms - for a tandem line with finite buffer, an

assembly station with infinite buffer, an assembly station with finite buffer and merge

topologies- given by Chen and Ch~n (1993) and Duse (1994) are included in Appendix

I. Also included is the algorithm for the simulation of the parallel server topology, based

on Duse's (1994) discussion. Though these algorithms of Chen and Chen, and Duse

have been presented in detail in the appendix, we present next a brief explanation of the

underlying rationale of fast simulation as applied to the classic case of a tandem line.

The following relations were identified for a single server tandem line by Chen

and Chen (1993). The, relations carry the assumption of a reliable server and FCFS

discipline, and a single customer class.

Let

Dij = departure time of the jlh customer from the ilh station

Sij = service time of the jlh customer at the ilh station

10

Eij = service end time of the jth customer at the i'h station

Infinite buffer case

The service start time of the jth customer at the ith station

= max (departure time of customer j at station i-1, departure time of customer j-1 at
station i)

=max (Di-1j, Di,j-1)

The service end time, Ei,j =max (Di-1,j, Di,j-1) + Sij

In the infinite buffer case, the service end time (Eij) is also the departure time (Dij).

However, when we have finite buffers, the service end time need not be the same as the

departure time and the departure time may be computed as in Chen and Chen (1990)

where they have adopted a "customer-by-customer" view. What this means is that they

take a customer and simulate that customer's flow along the tandem line. Once that

customer is completely simulated through the tandem line, the next customer is taken for

simulation.

Another way of putting this is when the n'h customer is being simulated, all

previous n-1 customers have been simulated and quantities associated with them needed

for statistics collection have been recorded. Let us take the n'11 customer. That customer,

after finishing service in station 1, will be blocked if there is no space available in the

input buffer of station 2. Let us now say the input buffer of station 2 has a capacity B =

3 (excluding the one space in the station). It is now clear that there will be space

available in the input buffer of station 2, only when the n-4111 customer departs from that

station. We may choose to call the n-4th customer the "preceding buffer-relevant"

customer and the nth customer the "later buffer-relevant" customer. The term "buffer-

relevant" is used to denote the fact that they are connected through their departure times'

11

dependence. Thus, to determine the departure time of customers from station 1, we need

to know the departure times of preceding buffer-relevant customers from the following

node. This is the basic idea in modeling any finite buffer case, be it single server or

parallel server station, assembly, or merge or any other topology. Use of the "customer

by-customer" view gives us the ability to determine departure time for the n-4th customer

from station 2 before we have to determine the departure time of nth customer from

station 1.

Summing up the above concept in equation form

Di,j = max{Ei,j•Di+l,j-(Bi+t+l)}

where Bi+I is the buffer capacity of i+ 1 th station excluding the one in the server. The

above explanation is picturised in Figure 1.

12

D1,1

Di-1,1

Di,1

Di+1,1

Do,1 Do,2 Do,N
Doj -Q Doj-1 __ _

Do,3 Q-0----
------- :

I
I
I
I
I
I
I
I
I
I
I
I I Di-lj I Di-lj-1 t !__

I
I
I
I
I

------·
Dij-1

------~

I _ _n~+~~~(~~-o---~,
Di,j =Max{(Max(Di-l,j'Di,j-l)+Si,j),Di+l,j-(Bi+l +1)}

~---~
DM,1

M = The total number of stations in the tandem line

N = The total number of customers to be simulated through the tandem line

Figure 1. The relationship between customer departure times in a
tandem line with finite buffers.

Adapted from Chen and Chen (1990)

13

DM,N

However, when we have the sequence of customers changing at any station, the

customer-by-customer approach will not work as it is. We need to re-index customers.

This is what we attempt to do in topologies like merge and parallel station.

• The merge node is simulated using a switching mechanism to toggle between the

various merging lines. The service end times at the end nodes of all merging lines

are compared to get the lowest service end time among them. The line corresponding

to this service end time would be the present merging line, and its present customer is

processed through the merge node. Even as the merge node is being simulated, the

next customer at the previous merging line can be simulated. Its service end time at

the last node of that line is obtained for comparison with service end times of other

lines. This way the simulation is kept going, by getting the forthcoming merging line

every time the present merging line sends a customer to the merge node.

• The parallel server workstation case creates a tricky situation where customer indices

are not retained as in the previous case. To handle this situation Duse (1994) used

the abstraction of 'customer-by-customer-with-switching', where customers are taken

into a parallel set of servers and their service end times are obtained. Then the

customer with the least service end time is sent out of the parallel server workstation

as the next departing customer (though it may not have been the first customer to

have come to the workstation). The next customer is brought into the depleted server

in the parallel server workstation and its service end time is obtained and the

procedure is continued.

• For fast simulating an assembly server, Duse (1994) uses the abstraction of queue

removal time. As components come into the component buffers their arrival times

14

are recorded and the maximum of the component arrival times is taken as the kit

formation time. Once we have the kit formation time, maximum of the kit formation

time and the previous departure time from the assembly server yields the next

assembly start time. Addition of the assembly service time to this assembly start time

gives the new assembly service end time. This assembly end time is the departure

time and is used to update the component buffer departure times.

• The only pure fast simulation work available that goes into a methodology for

simulation oflarger systems is Hunt's acyclic fast (Hunt 1994, Hunt and Foote 1995),

that bas been dealt with previously in Chapter I.

Statistics Collection and Execution Efficiency

Fast simulation does not involve approximations and hence should give results

identical to those of DES. Certain statistics like average queueing times can be easily

collected using fast simulation. However other state-based statistical measures like

queue length distribution require some extra computations; as state-based decision

making is not natural to the outlook taken by fast simulation. It then becomes a question

of where to draw the line in the range of statistics so as to not go overboard on the

execution time. One may use to one's advantage analytical results, such as Little's law

(Glynn and Whitt 1989), that queueing theory bas given to us, to eliminate some statistics

collection procedures, and the associated time. Also, calculation of the average queue

lengths in this indirect way is in many ways better than traditional computation of queue

lengths (Glynn and Whitt 1989). However, it should be noted that the savings in the

execution time in fast simulation is not due to the reduction in the type of statistics

15

I

independently collected. It is due to the essential mechanism that drives this type of

simulation; namely, the absence of overhead related to search and insertion in the event

list. Instead, we only have simple comparison and addition operations that steer the

recursive relationships that capture the system dynamics.

It is to be noted that there are numerous other techniques that attempt to reduce

the computational time of a simulation run. For example, the parallel/distributed

simulation techniques use hardware improvements to reduce the computational time

(Bhuskute 1993). Variance reduction techniques and regenerative simulation method

(Bratley et al. 1987) reduce the run time by reducing the total run length needed to

produce estimates with a desired statistical accuracy. Typically, they borrow ideas from

concepts in probability theory, stochastic processes and statistics. On the other band, fast

simulation draws its execution efficiency from modeling the dynamics of the system

using a methodology (namely, the formulation of recursive logical relationships to model

the system element interactions) fundamentally different from the event-oriented

approach.

Fast Simulation - Unanswered Questions

The following are some of the questions generated from previous research efforts

(mostly Duse's (1994) research).

1. Is the world-view 'customer-by-customer-with-switching' (Duse 1994) general

enough to handle all topologies and combinations of them? If not, what

modifications to the above view may succeed in handling a combination of these

topologies?

16

2. Presently, the statistics one collects in fast simulation are limited to those that can be

collected without significantly losing their execution efficiency. What other statistics

(like queue length distributions) can be collected without adversely affecting the

computational efficiency?

3. What would be the issues involved in developing trade-offs between loss of accuracy

and additional savings in execution time?

4. How can we predict speed-ups in fast simulation? Hunt (1994) has devised ways and

means for predicting speed-ups in the context of general fast.

5. Ideally, only for individual topologies the execution time of fast simulation should

increase linearly with the increase in system size. Even so, what is the functional

relationship between the system size increase and the increase in execution time.

6. What are the issues involved in the judicious integration of various approaches such

as parallel discrete event simulation (PDES), fast simulation, metamodeling, etc. to

gain the maximum possible computational efficiency?

One may stress at this point that the focus of this research is to answer the question-

"/f one develops fast simulation models of typical manufacturing network building

blocks, then can these models be integrated to create a fast simulation model of a system

which contains a logical combination of such network building blocks?"

17

CHAPTER III

STATEMENT OF THE RESEARCH

As mentioned earlier, the previous research efforts in fast simulation did not deal.

with the combinations of various manufacturing topologies. They were successful in

identifying possible world views for effectively handling the various topologies in

isolation (Chen and Chen 1990, Duse 1994). Once this was accomplished Duse's (1994)

research effort turned its attention to handling complex manufacturing scenarios with

hybrid simulation. One other research (Hunt 1994) did not go into handling complex

manufacturing systems containing the various manufacturing topologies investigated, but

attempted to handle job shop like systems which can be considered as a combination of

tandem lines. The same work simulated its prototype job shop of tandem lines using

general fast- a fast simulation technique that retains the event list of DES. This work

also explained the superiority of general fast when handling queue disciplines other than

FCFS (especially, earliest due date), in job shop situations.

Research Goal

The goal of this research was to make a contribution to the evolving field of fast

simulation by considering a general manufacturing system that is a combination of

various network topologies (that in isolation have been modeled before) and handling the

simulation ofthis system using pure fast simulation.

18

Research Objectives

The main objectives of this research are listed below.

1. To investigate issues related to the combination of various network topologies into a

reasonable manufacturing system for the purpose of simulating the same using fast

simulation.

2. To investigate the potential of a new "pulling customers into network when needed"

approach.

3. To demonstrate the potential of the new approach using a prototype manufacturing

system.

4. To investigate the functional relationship between the execution time of fast

simulation and system size.

5. To disseminate knowledge about fast simulation in the research community.

Research Scope and Limitations

The scope of this work was limited to integrating manufacturing topologies for

the purpose of fast simulating them. The prototype system consisted of only topologies

which have already been investigated. One such prototype system is shown and

discussed in Chapter V. Other than tandem lines, typically, topologies that Duse (1994)

had studied, such as merge, assembly, and parallel server workstation were used. Other

possible topologies, including batch nodes and split that may be fast simulated without

much ado, were not studied since no interesting issues were identified to be highlighted

using them. Another important clarification that can be made here is that this work did

19

not go into queue disciplines other than FCFS. No deliberate attempts at predicting

speed-ups were made.

No attempt was made to delve into hybrid simulation. If in some rare cases,

event listing (such as in general fast) was to have been used, it was considered.

However, its usage was precluded, owing to the finding of a better 'pure' fast simulation

methodology.

Research Contributions

The primary contribution of this research was the development of a fast

simulation methodological framework that would be effective in simulating

manufacturing networks that can be configured from common manufacturing topologies,

and processing parts on a FCFS basis. This would help to fill the present gap in the

body of knowledge about integration of various topologies while simulating them using

fast simulation. While Duse (1994) had successfully identified topologies that can be

fast simulated, he then went on to investigate hybrid simulation for simulation of a

combination of the topologies. He had indicated the opportunity for future researchers to

identify other topologies/combinations of them that can be fast simulated. That is what

this research has taken up and achieved.

20

CHAPTER IV

PRELIMINARIES: PERFORMANCE MEASURES, IMPLEMENTATION

LANGUAGE, AND PHASES OF RESEARCH

Performance Measures

Fast simulation performance measures can be broadly classified into the

following two categories:

Quantitative Measures

Simulation execution time: This can be considered to . be a direct measure of the

execution efficiency of the simulation. Of course, the gain in execution time can be

measured only in the context of hardware and language used. In the case of fast

simulation, execution time is the primary performance measure (Duse 1994).

Average number of computational steps in the algorithms: As can be seen, these are

factors which contribute to the speed-up. These factors are absolute measures, as they

are independent of the hardware and language used. Relying heavily on these instead of

on execution time, may not be an objective way of determining the proper performance

measure. This is because sometimes the computations involved in fast simulation of

complex systems may be more time consuming than in DES, though they may seem to

involve less number of algorithmic steps.

Qualitative measures

Duse, in his work (1994), has outlined the following qualitative measures that can be

used to judge a fast simulation model.

21

1. Difficulty/awkwardness of model generation.

2. Complexity of model management.

3. Ease of model modification for experimentation.

All the above measures may be used to evaluate the proposed methodology. However,

since the aim of the research was not to go into aesthetics of model generation, no

explicit discussions shall be included. We will use the execution time and the functional

relationship it has to the system size as the performance measures to judge our fast

simulation methodology.

Selection of Implementation Language

The seminal work in this area by Chen and Chen (1990 and 1993) used a general

purpose programming language, namely C. However, the later works (Duse 1994, Hunt

1994) used an object oriented programming (OOP) language, SMALLTALK, (Kreutzer

1986, Goldberg and Robson 1989) for implementation. The usage of an OOP language

may to some extent reduce the stress one may have to lay on statistics collection

computations.

This research was implemented in C in Microsoft Visual C/C++ environment

where statistics collection routines would be more clear on scrutiny. However, we may

not expect the same degree of modeling reusability and flexibility as in a pure OOP

implementation.

The tediousness of coding in a general purpose language is worth the effort, as

very little knowledge is available regarding issues/problems one may be faced with while

implementing fast simulation algorithms (other than that for tandem lines) in it.

22

Typically, the issues/problems are expected to be more pronounced in handling statistics

collection mechanisms and the related data storing methods. Another point to be noted is

that general purpose languages are much faster than OOP languages. Obviously, any

effort to show the viability of general purpose languages for fast simulation would help

researchers to exploit the speed-up a general purpose language provides over OOP

languages.

Research Phases

Phase I

Implementation of each network topology in isolation. Identification of topologies

which can be combined easily (e.g. we can couple assembly with feeder tandem lines).

Phase II

Constructing a fairly complex manufacturing system by combining at least one of each

type of topology one has simulated in isolation and developing an approach to fast

simulate the same.

Phase III

Verification of the fast simulation models using corresponding DES models. They

should give the same results, as there are no approximations involved in fast simulation.

This effort in verification was also accompanied by performance evaluation of the

results. By performance evaluation we mean, comparing the execution times of a fast

simulation model and the corresponding DES modeL Because the fast simulation was

handled so effectively as to touch the ideal case of preserving the linear growth in

execution time with increase in the 'size' of any particular topology, DES model building

23

in C was dispensed with. The verification of the output was done with a DES model in a

simulation language, SLAM II (Pritsker 1986).

24

CHAPTERV

DEVELOPMENT OF THE NEW METHODOLOGY

As we began to consider the development of a new methodology to fast simulate

systems that have combinations of various topologies as its building blocks, the

following issues surfaced. (A building block, is typically, a manufacturing network

topology that may constitute a logical component of a larger manufacturing system.)

1. At every building block we have to know what the next building blocks are, so as to

decide what to do with a customer as it leaves the present building block.

2. We have to know the buffer limitations in the next building block; only taking into

consideration the buffer limitations can anything be done with a customer once it has

finished service at the present building block.

3. Not all servers have just one buffer associated with them. For example, a single

assembly server bas as many buffers associated with it as there are components. In

the same way a parallel server workstation has many servers but with only one buffer

associated with those servers.

4. We also have to think of how the dynamics of the system is to be taken care of in its

entirety.

5. There are other executional details that have to be addressed - such as, how statistics

are to be collected. If statistics are not collected at the right time and the values so

collected deleted, we may run into serious memory problems.

25

!·

I
' ~
t !,

'

6. We should have a generic way of capturing a system as input to the fast simulation

program.

The New Methodology

With the above issues in mind, let us discuss the new methodology and the

implications it will have in the execution of a simulation program based on the

methodology. Consider a simple system with just two building blocks- an assembly

server and a merge node combined together as shown in Figure 2.1. For convenience

sake, let the number of components feeding into the assembly server he two, which also

means the number of buffers before the assembly server is two. Let the merge node

accept customers from two streams, one coming from the assembly server and the other

coming in from the lone workstation as shown in Figure 2.1.

Let the components being assembled be c1 and c2. Once they are assembled, let

the unit be called a1• The components leaving the lone workstation enter the merge node

and are called c3• Now we can simulate this simple system as follows.

We generate an arrival time for c1 and compare it with the departure time of the

previous buffer-relevant customer. As defined in Chapter II, a previous buffer-relevant

customer is a customer which constrains the departure of the present customer from a

workstaion into the buffer of the next workstation. If the arrival time is less than the

departure time of the preceding buffer-relevant customer then the customer is lost, c1 lost

count is incremented and another arrival time is generated. If this arrival time is more

than the departure time of the preceding buffer-relevant customer, then this arrival time

is updated as the component arrival time for c1•

26

Assembly workstation

C1

~ ai
"'-. Merge Node
~ rrrrO •

rn:rO/
C2

CJ

Lone workstation

Figure 2.1. A Simple Prototype

Lone workstation 1

C3

~ rrmO ~Merge Node Assembly workstation

ITII()~
rrmO / c, ~ ~---

C2

Lone workstation 2

Figure 2.2. An Alternate Prototype

27

--'---

In the same way, arrival time for c2 is generated. The maximum of the arrival times of

these two components is taken as the kit formation time or the earliest start time. The

maximum ofthis kit time and the departure time of the previous assembled component is

the next assembly service start time. Adding the assembly service time to this start time

gives the next departure time. This departure time is used to update the departure time

arrays which bold the departure times of the preceding buffer-relevant customers. The

departure times of those preceding buffer-relevant customers are held so that the

forthcoming arrival times may be compared with those departure times to compute the

loss count or arrival times.

However, the above approach will not work per sc! For the following reason

we will not know about the availability of space in the next buffer (at the merge node), as

by the time a single assembled component a1 is ready to go into the merge node, many

c3's may have arrived and been waiting/processed in the merge node. We have to make

some changes to the above logic of getting the departure times at the assembly server

without any other consideration, if we have to maintain the simulation logic's fidelity to

reality. A way of doing this would be to postpone the computation of the departure time

at the assembly station until later when we have enough data to make the decision. So

we just stop the assembly server simulation with the calculation of the assembly service

end time.

We simulate the arrival of component c3 to the lone workstation in merge stream

2. The service end time at that station is obtained and that is compared with the assembly

service end time. The customer with the lesser service end time is taken into the merge

node after comparison with the buffer availability time. The arrival time into the merge

28

node is the maximum of the service end time and the buffer availability time at the merge

node. This buffer availability time itself is equal to the departure of the preceding

buffer-relevant customer from the merge node. Let us say that the lone workstation has

the lesser service end time; so the customer from this workstation is taken into the merge

node and its departure time (this being equal to the service end time at the merge node) is

generated. With the completion of this step, one customer bas been simulated through

the system. Now, the lone workstation bas been depleted of a customer; so another

arrival into the lone workstation is generated and the new service end time at that

workstation is compared with the service end time at the assembly server and the

customer with the lesser service end time is once again taken into the merge node. The

above discussion of the methodology is captured in an algorithmic form in Figure 3.

The point to be stressed here is that, while we are trying to simulate systems as

shown in Figure 2.1, we should not only be sensitive to topologies present, but should

also be thinking about the order in which they have come to be present. For example in

Figure 2.2, the merge node comes first, and customers from the merge node form one of

the two components being assembled in an assembly server. The other assembly

component comes from the lone workstation 2. In such a case we would keep simulating

one customer out of the merge node, as we simulate one arrival of c,, and then keep

'assembling' them together.

The rationale behind the proposed approach can be summed up as follows- "once

we have knowledge of the fate of previous customers on forthcoming stations, we can

decide the fate of customers at any station." This approach may be called "pulling

customers into the network as and when needed." The above approach, in some ways,

29

1. Accept one arrival of c1 after comparison of its arrival time with the departure time of the preceding
buffer-relevant customer in the station into which the customer arrives;

2. In the same way accept one arrival of c2 ;

3. Kit time= maximwn (arrival time of c1, arrival time of c2);

4. Assembly service end time = maximum (Kit time, previous departure time at
Assembly) + Assembly service time;

5. Accept one arrival of c3 in the same way in which c1 and c2 arrivals were simulated;

6. Service end time at lone workstation= maximum (arrival time of c3, previous
departure time at that
workstation) + Service time;

7. The next merging station= The station which had the least service end time;

8. Take merging station's customer as the next customer into the merge node after taking into account
the buffer-relevancy comparisons;

9. Simulate the departure of that customer from the merge node;

10. Replenish the depleted merging station with next customer's service end time;

11. Repeat steps 7 to 10 till the required number of customers have been simulated through the merge
node.

Figure 3. Fast Simulation Algorithm to Simulate Prototype System in Figure 2.1

generalizes the abstractions presented by Duse (1994). For example, Duse's (1994)

approach of "customer-by-customer-with-switching" for a parallel server station is

nothing but "pulling customers into a server in the parallel server station as and when the

server is depleted of a customer." In the case of a merge topology too, customers are

pulled into a merging line when it is depleted of a customer. In the case of an assembly

topology, customers are, again, pulled into the system as and when needed, namely,

when the next kit is to be simulated out of the assembly server. Adding some complexity

to how the assembly server works, we can have more than one unit of a component going

into the assembly server. Lets say, one unit of component c~, and two units of c2 go into

a single assembly; then for every unit of c~, two units of c2 have to be pulled into the

30

ht

assembly server. The above situation presents a clearer instance of "pulling customers

into a server as and when needed."

While we have described the basic philosophy of the new approach using a small

prototype system shown in Figure 2.1, a bigger, more complicated system may be

designed as shown in Figure 4 for a proof-of-concept implementation of the above

mentioned approach. The bigger system has at least one specimen each of the important

manufacturing network building blocks such as tandem line, assembly, merge, and

parallel server workstation mentioned earlier.

Description of the Experimental Prototype

For ease of representation as a model input, a parameterized 3-dimensional

addressing mechanism is used to describe the system. A high level unit called "level" is

said to contain tandem lines in it, with the tandem lines containing the workstations.

Though essentially the "level" in this work achieves what Hunt's "level" does, the scope

of "level" is slightly broadened here to act more as an addressing abstraction than

anything else. Any tandem line is represented as tandem<level #>.<line #> and any

buffer is represented as buffer<level #>.<line #>.<workstation#>.

The experimental prototype has two tandem lines- tandem 1.1 and tandem 1.2

leading into an assembly station represented by the lone server in tandem2.1, with the

component buffers, buffer2.1.1 and huffer2.2.1 accepting components from tandem1.1

and tandeml.2, respectively. Customers from this assembly station (which is taken to be

at level 2) are processed by workstations in tandem3.1 at level 3, and the customers

merge into tandem4.1. Tandem4.1 also has customers from tandem3.2 merging into it.

31

·--

After tandem4.1 lies a parallel server workstation which is taken to be at level 5. The

two parallel servers that form the parallel server workstation are represented as lone

servers in tandem5.1 and tandem5.2, with buffer5.1.1 serving as the lone buffer

associated with the parallel server station. After the parallel server station in level 5,

comes tandem6.1 in level 6. How this schemata for representing the system is amenable

as simulation program input is elucidated in Chapter VI.

~ buffer2.1.1 r buffer5.1.1
I

> 'tandem2.1 ' : ,
1 1 > 'tandem5.1

I : I I tandeml.l 1 1 1
.·····················: I I I I

~ ... rmi\ ~1 1
tandem3.1 : I

~~.~~:: rrln6 mi) ~ .. oliO\ ! : tandem6.1
...................... ~ ~......... tandem4.1 ~ ·

_.Uno ••• ITII()j I 4IJO: ·······~~·~·~·~ mi()ooomi():-+
: :

1 merge UillJ : · •..................... I : :

·

parallel I
I ___.nno. ITII()1 servers
1

: I 52' : : . 'tandem . ~

tandem3.2

Figure 4. Fast Simulation - An Experimental Prototype

32

CHAPTER VI

FAST SIMULATION- IMPLEMENTATION

Design of Reusable Fast Simulation Building Blocks

The primary aim of this research was to find a methodological framework for fast

simulation of general manufacturing systems as well as the design of a simulation

program in a general purpose language for the same. However, the applicability of the

methodological framework and the resulting implementational paradigm will largely be

inhibited if every time a system has to be fast simulated, a time consuming general

purpose language program has to be written. So all along the research phase it was

considered necessary to be sensitive to, and to be on the look out for user friendly

program structures/reusable program constructs. This is not merely a programming

effort. The foundations of such reusable, modular structures have to begin from the

essential outlook the fast simulation methodological framework should take. The

memory addressing mechanism that we will describe later in this chapter was designed

with reusability and user friendliness in mind. Actually, the mechanism provides us

means to parameterize all variables so as to have user friendly, reusable programming

routines. Also, the programming logic should be so manipulated to vest the routines with

some independence so that they may be assembled together to build a simulation

program quickly and easily.

In the prototype system shown, there are four different topologies that make up

the system- tandem lines, assembly server, merge, and parallel server workstation. If we

33

can have independent modules to simulate each of these topologies so that they may be

assembled together to make up the simulation program for simulating the topologies

figuring in as a part of the system in any combination, that would be a sizable step

towards developing a user friendly fast simulation "language". Forthcoming is a

discussion on how such modules were constructed due to the outlook that we chose to

take in fast simulation.

Tandem Line: The basic code here is the same as that proposed by Chen and Chen

(1993). However, we can vest the module with a lot of independence if we do not

attempt to get the departure time from the last server of the tandem line in the tandem

line module itself. Wherever the tandem line module appears in the program it does what

it is supposed to do except the last step of releasing the customer from the last server.

This last step is handled in each forthcoming level according to the specifications/intent

in that level.

Assembly: Once we have components in all the component buffers in the assembly

server, we can get the kit completion time. Then the assembly start time and the

assembly end time are obtained. Once this assembly end time is obtained, the departure

time may be computed after taking into consideration the buffer availability times in the

forthcoming stations. Then, the component buffer linked lists are updated with that

departure time. It can be seen that, once within the assembly module, all information

needed for the simulation program at that point of execution (like the component buffer

arrays to be updated) are available within the module. This makes the assembly module

independent.

34

II

ii
11

:1

;I

ll
jl

:I
:

Merge: The tandem line module is vested with the capability of getting the departure

time from any tandem line/topology upstream to it. This way any line may be connected

to any other topology/tandem line. In this context, capturing a merge scenario would

mean connecting the merge node/line to the previous lines depending on the service end

times of the customers at the merging servers. The merging line itself is decided by a

simple conditional statement.

Parallel server workstation: We have to get the customers to the various servers in the

workstation so that their service end times may be compared to decide upon the earliest

departing customer. However, we have to update the lone buffer array associated with

the workstation every time a departure takes place (no matter from what server of the

parallel set). This is easily done by having a routine (that may be called

"NextToParallel") that would update that lone buffer array (and only that) every time a

departure from the parallel set of servers is obtained.

The simulation logic presented in the above discussion has been translated into C

and is included in Appendix II. Basic knowledge of C may be useful for understanding

the program; however, it has to be stressed that the above logic may be coded in any

general purpose language.

The reusable building blocks may be used to quickly configure fast simulation

models of prototypes in Figure 2.1 and Figure 2.2, as shown next.

35

Assembly Module; //simulates assembly
Lone Workstation Module; //simulates a single workstation
for (number of customers to be simulated through the merge node)
{

}

if (Assembly Module Service End Time<= Lone Workstation Service EndTime)
{

}
else
{

}

Merge Node Module; //simulates a merge 11ode
Assembly Module;

Merge Node Module;
Lone Workstation Module;

Figure 5.1. Psuedocode showing modules that simulate the system in Figure 2.1

Lone Workstation(I) Module; //simulates Lone Workstation 1 (hence, parameter '1 ')
Lone Workstation(2) Module; //simulates Lone Workstation 1 (hence, parameter '2')
for (number of assemblies to be simulated)
{

}

if(Lone Workstation(l) Service End Time< Lone Workstation(2) Service EndTime)

else

{
Merge Node Module;
Assembly Module;
Lone Workstation(1);
}

{
Merge Node Module;
Assembly Module;
Lone Workstation(2);
}

Figure 5.2. Psuedocode showing modules that simulate the system in Figure 2.2

36

Executional Details of the Fast Simulation Methodology

Our aim here is to show that the fast simulation methodology developed to

simulate a generic system consisting of common manufacturing network topologies is

indeed "fast". What we mean by "fast" is that the recursion that works (and makes them

faster) in the cases of the individual manufacturing network topologies works in exactly

the same way in our methodology for fast simulation of larger systems. That is to say,

there are no additional steps that we have to do to keep the logic of the simulation going

to accommodate a generic system into a "fast simulation" methodology. Re-wording the

above statement we can say, "given that we have fast simulation models of the

manufacturing network topologies, can we develop a schemata for simulating them, only

now, they all being a part of a bigger system." The following discussion should also

clearly show how our methodology would indeed be "faster" for any combination of

topologies when compared to the corresponding DES simulation.

Adopting the symbols that Chen and Chen (1993) use for discussion of their

execution time for a tandem line, we have

cmp = comparison of two quantities and getting the minimum or maximum of them;

add = addition; and

rv = random variate generation.

Let us now step through the fast simulation of the prototype shown in Figure 4, in

Chapter V. In the process we would have listed the computational steps involved and

would see how the schemata simulates the various topologies while they form a bigger,

buffered general system. Then it will be clear how the new methodology should indeed

be faster than DES.

37

At level 1, we accept a customer through tandem].]. We fast simulate it up to the

last station where we compute only its service end time. For determining the departure

time of that customer from the last workstation of tandem].], one cmp between service

end time at the last workstation of tandem].] and the entry time into the buffer2.1.1 is

needed. However this is spared at that level, and done at the next level. As indicated

earlier in our discussion on modules, this procedure gives some independence to the

tandem line module. In a similar fashion, a customer is simulated through tandeml.2 till

its service end time at the last workstation of tandeml.2. These two procedures take

place for every customer taken into the tandem lines. Hence, we can see that this part of

the program is just fast simulation of a simple tandem line.

Then the attention shifts to level 2 for simulation of the assembly server.

Components are taken into buffer2.1.1 and buffer2.2.1 by the cmp function which was

spared in the level 1 procedures. This cmp function compares service end times at the

last workstations of tandem].] and tandem1.2 and the space availability at buffer2.1.1

and buffer2.2.1, respectively. After this we have to compute the kit completion time

(time when all components are available for next assembly). This is another cmp

between the departure times from the last workstations of the tandem lines of the

previous level. Then the service start time on the assembly is computed with a cmp

between the kit completion time and the previous departure time from the assembly

station. An add function between the assembly start time and the assembly time

(generated by rv function) gives the assembly end time. This sums up the list of actions

in level 2, assembly.

38

As can be seen there are no other additional steps to model the assembly when it

is a part of a bigger system than when it stands alone; except for the minor changes

wherein we leave the onus of getting a departure time from the previous level to the

present level of the assembly. In the bargain we do not add any additional steps to the

iteration, but merely perform a step at another place instead of where one would expect it

to be performed. This is done to facilitate some modularity in the code. More

specifically, we can have a function that simulates any tandem line till the service end

time at its last workstation. This can be done only if the tandem line code should not he

caring about what lies ahead of it in the system.

Next the focus shifts to level 3; more specifically to tandem3.1. Tandem3.1 pulls

the customer from the level 2 assembly server and simulates the customer through itself,

till the customer's service end time at the last workstation. Now we cannot proceed

unless we get the service end time of a customer at the last workstation of tandem3.2. So

a customer is processed through tandem3.2. Once this is done, a cmp between service

end times of customers at the last workstations of tandem3.1 and tandem3. 2 is made.

The line with the lesser service end time at the last workstation is chosen as the present

merging line. Tandem4.1, at the next level, now pulls a customer from the present

merging line and takes it through till the last workstation of the tandem4.1. After that,

the present merging line which is depleted of one customer, is replenished with the next

customer so that the simulation may be kept going.

Then, tandem5.1 with its lone workstation representing one server of a parallel

server station pulls the customer from tandem4.1 and its service end time is computed.

Now we have to get a service end time at the lone workstation of tandem5.2

39

(representing the other server of the parallel server station). So another customer is

pulled from level 3 into level 4 and then into tandem5.2. A cmp between the service end

times at two stations which represent the two parallel servers, decides which customer

should be pulled into the next level, namely level 6, with its tandem6.1. Just as in the

case of the merging tandem lines, the parallel server which has a departure simulated, is

filled with the next service end time. This means a customer is brought in from start of

the system to reach the parallel server and the next service end time at that server is

computed.

The customer is processed completely through tandem6.1 when it exits the

system. But note that we do not compute the departure time of a customer from the last

workstation of a tandem line until we move to the next level. In the case of tandem6.1,

since the service end time would be the departure time we may just add a line of code

which would equate the departure time of a customer from the system to the service end

time at the last workstation of tandem6.1.

Thus, we see that with no more than the steps used by Duse (1994), we can

simulate the topologies while they form a larger, finite buffered system.

Memory Management of the Fast Simulator

Even though the memory space available in computers is increasing day by day,

efficient memory management is still a challenge if not a problem. An efficient memory

management procedure for the proposed methodology based on Chen and Chen's (1993)

procedure is given below.

40

I
II

~

Jl
I'

·:1
·~
·l

In· their paper, Chen and Chen (1993) make repeated use of the same memory

space. In their procedure, the storage cost is dependent on the number of stations and the

sum of the buffer spaces in the system, and independent of the number of customers to be

simulated. The question, then, to be asked is "can the same data management procedure

be used here or not, and if not what changes/adaptations have to he made to achieve the

same." With our convention for nomenclature, a workstation can he addressed by three

parameters, the level, the tandem line, and the workstation number. So whatever

variables we need to associate with every workstation for purposes of

simulation/statistics collection we will have three dimensional arrays associated with

them.

The variables so needed are

1. departure time[level} [tandemLine1 [WS1

2. service end time[leve/1 [tandemLine1 [WS1

3. start time[leve/1 [tandemLine1 [W/i1

4. previous-departure time[level] [tandemLine1 [WS1

5. service time[leve/1 [tandemLine1 [WS1

6. total service time[leve/1 [tandemLine1 [WS1

7. total queue time[leve/1 [tandemLine1 [WS1

8. total block time[leve/1 [tandemLine 1 [WS 1

InC (the language of our implementation), to make things easier for manipulation

we may choose to have the arrays used, start with array element '1' and may leave the 'O''h

element unused. However the existence of this 'O''h array element may he used to our

advantage to store the arrival time of a customer into a level, e.g.

41

departure time[level] [tandemLine] [OJ= arrival time of a customer into the level.

departure time[level] [tandemLine] [1] is used to denote the departure time at the first

workstation of a line, so on and so forth.

Once the departure time of a customer from a workstation is scheduled to be

generated, the present value of departure time[level] [tandemLine] [WS] is assigned to

previous-departure[level][tandemLine][WS] (used for queueing time computations).

The new departure time is then assigned to departure time[level] [tandemLine] [WS].

This way, we see that we can have repeated use of the same memory space (similar to

Chen and Chen's procedure). Thus the memory space needed by departure times is the

product of the number of stations plus 1 (for arrival mechanism) "(M+ 1)" and the size of

data type of a departure time.

In the case of finite buffer sizes, each station needs a circular linked list which

records the departure times used to trace blocking situations. The length of a circular

linked list is equal to the buffer size (including one in service) of the station it belongs to.

Whenever one departure time is generated, it is stored in both an array (the array

departure time[level] [tandemLine] [WS]) and a circular linked list. The one stored in the

array is replaced by departure of the next customer departing from the workstation (like

in the infinite buffer case). On the other baud, the one stored in the circular linked list

will be replaced by the departure of the "later block-relevant" customer after that is used

for checking the blocking situation of the departure of the "later block-relevant"

customer from the previous workstation. Thus in addition to the memory needed in the

infinite buffer cases, we need more memory space for the circular linked lists. This

42

additional storage cost equals the product of the sum of the total buffer sizes of all

stations and the size of data type of departure time[level} [tandemLine] [WS}.

Storage cost (finite buffer)= (Number of workstations+ 1 +sum of buffer sizes of all

workstations) * SizeOf(data type of departure time)

There exists a potential problem associated with the memory space in the finite buffer

cases. When the size of a buffer is very large, the circular linked list will become very

long, and consequently large memory space is required. The solution to this problem is

to remove the circular linked lists of the stations with very large buffer sizes (e.g. more

than 1,000) if an infinite buffer approximation is deemed acceptable.

A brief explanation bas to be given about bow the assembly server and parallel

server are captured for purposes of implementation. A problem arises because assembly

server bas one server and several component buffers associated with it. Likewise, the

parallel server workstation has one buffer, but several servers associated with it.

However, according to our schemata of representing the system, it can be seen that only

one server can be associated with a buffer and vice versa. The implementational obstacle

in the case of the assembly server was alleviated by having as many servers as there are

component buffers, but treating only one server as the 'working' assembly server. The

assembly code was tailored to meet this situation, by forcing all the component buffers to

be updated as and when one customer gets out of the one 'working' assembly server. In

a similar fashion, the parallel server workstation was represented by as many servers and

buffers as there are parallel servers in the station, but treating only one buffer as the

'working' buffer. The parallel station code was tailored for this abstraction by forcing

43

the 'working' buffer to be updated every time a customer gets out of any of the parallel

servers.

Verification of Fast Simulation Logic

The fast simulation program was tested for individual configurations such as

tandem line and assembly and the results were compared with previous results. The

simulation output obtained from the fast simulation program should give exactly the

same results as the corresponding DES program in C if the random numbers generated in

DES match exactly with the corresponding ones in the fast simulation program. If this is

not the case, then the results should be the same, statistically. The latter holds in our case

as SLAM II (Pritsker 1986) was used for the verification.

The system parameters for the experimental prototype are shown in Table l. The

mean and standard deviation of ten samples of the simulation end time for 50,000

customers passing through the system (shown in Figure 4) obtained through fast

simulation and SLAM II are shown in Table 2. The null hypothesis that the means of

simulation end time are the same was not rejected at the 95% confidence level. The z

statistic for the above sets of data while comparing them for the null hypothesis that the

means are the same, was 0.778. This is less than 1.96; hence we do not reject the null

hypothesis at the 5% significance level.

44

LEVEL NUMBER PARAMETERS
1 buffer 1.1.1 = 1; buffer 1.2.1 = 1;
Tandem lines 1.1 and 2.1 service time 1.1.1 = 0.05*; service timel.2.1 = 0.05;

interarriva1 timel.1 = 0. 7; interarriva1 timel.2 = 0. 7*
2 buffer2.1.1 = 5; buffer2.2.1 = 5;
Assembly Station service time2.1.1 = 1;
3 buffer3.1.1 = 1; service time3.1.1 = 0.01;
Tandem lines 3.1 and 3.2 huffer3.2.1 = 1; service time3.2.1 = 0.01;

buffer3.2.2 = 1; service time3.2.2 = 0.01;
interarrival time3.2 = 0.7;

4 huffer4.l.I = I; service time4.1.1 = 0.0 I;
Tandem line 4.1 buffer4.I.2 = 1; service time4.1.2 = 0.0 I;
5 huffer5.l.I=4; service time5.l.I = 0.5;
Parallel server station service time5.2.I = 0.5;
6 huffer6.1.1 = 6; service time6.1.1 = 0.5;
Tandem line 6.1

*mean of the exponential random variate generator

Table 1. System Parameters for the Experimental Prototype

SLAM II FAST SIMULATION

mean= 25156 mean= 25153
standard deviation = 69.15 standard deviation= 83.9

sample size = 10 sample size = 10

Table 2. Verification of Simulation End Time for Prototype System

45

A Discussion on Linearity of Execution Time of Fast Simulation

One basic expectation in pure fast simulation is that as the 'size' of any particular

topology increases the simulation execution time increases linearly. However, we have

to be sure to see the subtleties in the various ways the system size could increase and

what would each mode of increase means in the context of execution efficiency. Before

we go into any discussion in that direction, we summarize the findings of previous

researches.

• For a tandem line (with single servers), as the number of servers increases, the

execution time increases linearly for fast simulation, while it seems to increase

exponentially for DES (Chen and Chen 1993).

• Regarding parallel server stations Duse (1994) has the following comments- "The

execution time for both fast and discrete event simulation increases with the number

of servers but the CPU time for discrete event simulation increases at a faster rate

("drastically") as compared to the fast simulation. Thus, the greater the number of

servers at the parallel server station, the higher the savings achieved by employing

fast simulation. The increase in execution time for fast simulation can he attributed

to the "switching task". The higher the number of servers, the higher the time

required to determine the part to which the focus of fast simulation needs be shifted.

The increase in CPU time for discrete event simulation can be attributed to the fact

that the average length of the event list increases with the increase in number of

servers at the parallel server."

46

• Confirming the speed-up obtained for all topologies he studied, Duse adds,

"Significant speed-up was achieved in all cases by the use of fast simulation."

The execution time increases linearly with the number of customers processed for both

fast and discrete event simulation; but the rate of increase for discrete event simulation is

higher than that for fast simulation.

Let us see why the above linearities should hold in our methodology too.

• Increase in the number of servers in one or more tandem lines.

In this case, the loop which simulates the servers in a tandem line loops one more

time for each server added to the tandem line. This results in a linear increase in the

execution time.

• Increase in the number of tandem lines bringing in components into the assembly.

Here the newly added tandem line is simulated just like the other tandem lines,

making the execution time increase linear. However as it can be recalled, the tandem

lines are simulated only till the service end time in their last workstations. From

there onwards, the departure time of a customer from the last workstation of the line

into the corresponding component buffer is computed through a single cmp

operation. An additional component coming into assembly would mean an additional

cmp operation. This results in a linear increase in execution time. Once all the

components have come into the corresponding component buffers, the kit completion

time is a cmp operation. With an increase in the number of components being

assembled, the number of cmp operations also increases correspondingly. This

results in a linear increase in execution time too.

47

• Increase in the number of tandem lines merging.

As the number of tandem lines merging increases, the additional tandem lines should

be simulated by Chen and Chen's procedure; this leads to a linear increase in

execution time. Also, every additional merging tandem line increases the number of

cmp operations for determining the present merging line by one. This leads to a

linear increase in execution time too.

• Increase in the number of servers in a parallel server workstation.

Here as the number of servers increases, number of cmp operations to determine the

forthcoming departing customer increases correspondingly. This leads to a linear

increase in the execution time.

All the above possibilities in system size increase were studied through simulation

experiments. The above theories were verified with the experimental results graphed in

Figures 6.1 through 6.4. Figure 6.1 plots the execution time against the number of

workstations in the tandem line at level 4. Figure 6.2 plots the execution time against the

number of assembly feeder lines that feed into the assembly at level 2. Figure 6.3 plots

the execution time against the number of lines merging. For this experiment, level l and

level 2 were done away with. Lines similar to tandem3.2 were made to merge into

tandem4.1. Figure 6.4 plots the execution time against the number of parallel servers in

the parallel server workstation in level 5. For purposes of experimentation, level l, level

2 and level 3, were removed from the experimental prototype.

In figures 6.1, 6.3, and 6.4, the slight departure from the linearity is due to the

differences in the execution times that can be attributed to the difference in the number of

lost customers, and the resulting difference in the number of random variate generations.

48

While we are still in a discussion on linearity in the context of increase in system size in

the above mentioned modes, one should also be sensitive to the question- what would the

execution time increase be like, when the system size increase is accompanied with

increase in system complexity, like, say, the increase is an additional topology. While

one can think of ways and means to estimate the increasing trend in such a case (afterall,

even an additional topology is handled by cmp operations), such a study would be

beyond the scope of this work and may be left as a possible issue to be looked at by

future researchers.

49

Ill

~
Cl)

.5

~
~
a.
0

Figure 6.1. Increase in
Execution Time with Increase

in Size of a Tandem Line
(100,000 customers)

50

401.. • •
30

20

10

0 +-----11------+------j

4 5 6 7
#of Servers in Tandem

Figure 6.3. Increase in the
Execution Time with Increase

in the # of Merging Lines

62
60

.558

. I ss
I-54
~

~52
50
48

2 3 4 5

of Merging Lines

50

Figure 6.2. Increase in
Execution Time with Increase

in Size of Assembly Stage
(100,000 customers)

~ 90
c% 85
.E 80

~ ~~
~ 65
~ 60

2 3 4 5

of Assembly Components

Figure 6.4. The Increase in
Execution Time with Increase

in the Number of Parallel
servers

Ill 80
~
~ 70~ • • •

~ 60
~
a.
0 50 -r-----t----+------"

2 3 4 5

#of Parallel Servers

CHAPTER VII

RESEARCH SUMMARY, CONTRIBUTIONS, AND FUTURE RESEARCH

The first section of this chapter summarizes the research results and links the

research outcomes with the research objectives defined in Chapter Ill. Next, the

contributions of this research to the field of Industrial Engineering, specifically to

"~odeling and Simulation -Body of Knowledge" are identified. This chapter concludes

with a section which outlines possible areas, issues and problems for future research.

Research Summary

Five research objectives which were defined in Chapter III served as the prime

directive for this research.

The first objective of this research was to investigate issues related to the

combining of various network topologies into a reasonable manufacturing system for the

purpose of simulating the same using fast simulation. Implicitly, that meant, "can

various topologies be combined into a reasonable network for purposes of fast simulating

the same?" For this purpose, a prototype system of considerable difficulty was designed,

and ways and means (and ideas) to fast simulate the same were studied. All the

preliminary issues were laid out as discussions and these discussions helped us conceive

the proof-of-concept prototype systems (objective 1). Initially, the potential of the

proposed methodology was investigated using two simple prototypes (objective 2). That

also brought in issues of how the system should be represented for capturing the same as

input data for the code to fast simulate and give out the output. A working 3-

51

dimensional parameterized method of representing the system was designed to capture

the system for purposes of inputting data about the system for the simulation code to

work on. Typical statistics collection variables were associated with each workstation.

The new approach of "pulling customers into the network as and when needed" was

implemented and tested for the bigger proof-of-concept prototype (objective 3).

In any attempt to investigate the functional relationship between execution time

of fast simulation and system (objective 4), there are two issues to be considered-

!. Will this new extension of fast simulation produce the same simulation output as

discrete event simulation?

2. Will the new methodology be efficient in execution?

1. For simulation output value verification, the prototype system was simulated in

SLAM II and the output results were compared and statistical tests were conducted to

show that there was no significant difference between the SLAM and fast simulation

results. If a discrete event code with identical random number generators was

developed then the values should be exactly identical.

2. The basic philosophy of recursion based simulation models being faster than DES is

that, as system size increases (in individual topology sizes) the execution time

increases linearly unlike in DES. So, if such linearity of execution time increase is

noticed as was expected, then we can be sure that this methodology is indeed 'fast'

simulation. Also it is to be noted that DES execution time increases tremendously

(normally, exponentially, with a simple event list implementation) as system size and

complexity increases. In this case, the expected linearity was confirmed numerically.

52

The dissemination of knowledge resulting from the documentation of this thesis and

the archival publications that result from the work would satisfy objective 5.

Research Contributions

Fast simulation bas been used previously for improving the simulation execution

efficiency of topologies in isolation. However, the lack of a paradigm to apply fast

simulation for larger systems would have inhibited the continued evolution of and

subsequent applicability of fast simulation in research and industry. Researchers and

industry personnel want faster, easier and more generic tools to study real systems which

are increasingly becoming complex. This research has contributed positively in all the

above three directions.

The basic idea is simple. The implementation is highly simple, elegant and easily

understandable. The method is more generic in scope and applicability compared to the

fast simulation techniques previously available.

The specific contributions of this research to the "Modeling & Simulation -Body of

Knowledge" are-

1. New modeling abstraction of "pull customers into the network as and when needed"

was developed. This contribution is a sizable development which should keep fast

simulation alive and give it more applicability, visibility and attention.

2. Feasibility and viability of fast simulation in simulating FCFS general manufacturing

networks was demonstrated.

3. Insights were provided for configuring and executing fast simulation of general

manufacturing networks.

53

4. A user-friendly, 3-dimensional addressing mechanism was conceived as a model

representation abstraction for fast simulation of general manufacturing networks.

This enabled the development of independent modules that can be put together to

simulate larger systems.

5. Laid the foundation for future research in the area of fast simulation and hybrid

(fast/DES) simulation.

Listed below are some additional benefits of the new methodology, which though

present in the previous fast simulation abstractions, are more pronounced in this case (of

bigger, complex systems).

1. When we have finite buffers (as is the case in this study), deblocking can be

complicated in the DES code; here the finite buffer constraint is handled implicitly in

the simulation logic without a need for explicit functions for deblocking.

2. Previously only individual topologies could he simulated by the corresponding fast

simulation code while they form a part of larger hybrid simulation system; now

bigger system sectors can be simulated hy fast simulation while they form part of a

larger hybrid simulation system. This could prove to be an impetus to hybrid

simulation.

3. This kind of fast simulation of larger systems lends itself well to parallel processing.

4. Fast simulation methodology would have as its selling point the fact that its execution

time is nearly unaffected by increase in traffic rate. An increase in execution time

due to extra random number sampling for lost customers in the finite buffer case is

unavoidable and equivalent in DES and fast simulation.

54

Future Research

Several unanswered questions were identified in Chapter II and only a few of

them were chosen for inclusion within the scope of this research. These remaining

unanswered questions, along with any offshoots from this research effort, can set a

possible course for future research in this area.

The following may be thought of as the significant issues that deserve inclusion in

this future research agenda.

l. Tagging customers so that their time in system can he computed.

2. Inclusion of unreliable servers or other topologies which were not included in this

research.

3. Issues of trade-offs between approximations for the system and the resulting speed-

up.

4. Integration of various research efforts in this area of speeding up simulation, such as

PDES, hybrid simulation, and metamodeling.

5. Investigation of applicability of fast simulation to systems with non-FCFS queue

disciplines.

6. Studies on increase in execution time with increase in system complexity.

55

Hormonosky, C.M. (1990), "Implementation Issues: Using Simulation for Real-Time

Scheduling, Control, and Monitoring," In Proceedings ofthe 1990 Winter

Simulation Conference, 0. Balci, R. Sadowski, and R. Nance, Eds. IEEE,

Piscataway, NJ, 595-598.

Hunt, C.S. (1994), "Fast Simulation of Open Queueing Systems," M.S. Thesis, School of

Industrial Engineering, University of Oklahoma, Norman, OK.

Hunt, C.S. and B.L. Foote (1995), "Fast Simulation of Open Queueing Systems,"

Simulation 65, 3, 183-190.

Kamath, M. (1994), "Recent Developments in Modeling and Performance Analysis

Tools for Manufacturing Systems," In Computer Control of Flexible Manufacturing

Systems -Research and Development, (Eds. Sanjay B. Joshi and Jeffrey S. Smith),

Chapman & Hall, London, UK, 230-263.

Kelton, W.D. (1994), "Perspectives on Simulation Research and Practice," ORSA

Journal on Computing 6, 2, 318-328.

Kreutzer, W. (1986), System Simulation: Programming Styles and Languages, Addison

Wesley, Reading, MA.

Nance, R.E. (1971), "On Time Flow Mechanisms for Discrete System Simulation,"

Management Science 18, 1, 59-73.

Paul, R.J., (1991), "Recent Developments in Simulation Modelling," Journal of

Operational Research Society 42, 3, 217-226.

Pritsker, A.A. B. (1986), Introduction to Simulation and SLAM II, Third Edition, Halsted

Press, New York, NY.

57

Reeves, C.M. (1984), "Complexity Analyses of Event Set Algorithms," The Computer

Journal 27, 1, 72-79.

Viswanadham, N. andY. Narahari (1992), Perfonnance Modeling of Automated

Manufacturing Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

58

65;

(sa!iJO(OtlOJ(P.fiP!A!PU! iJU!JP.(fiW!S JOj SWqJ!JOiJ(V)

I XIUN~ddV

FAST SIMULATION OF A TANDEM LINE WITH SINGLE SERVER
STATIONS

1 n-1 n n+1 N

customers 0 0 0 0 0 customers --·... • •• OJ] OJ] []]] ••• OJ]

Figure 1.1. Tandem Queueing System

Description of the System

The system being studied consists of a series of single server stations processmg

customers consecutively. The customers enter the system through the first station, and

get processed consecutively through all the stations and depart from the last one. It is to

be noted that the order of customers, as they move through the tandem line, remams

unchanged, and this property is taken advantage of while fast simulating them.

Assumptions

1. There are no separate set up times for the customers.

2. The customers are processed on an FCFS basis.

3. There is ample waiting space in front of the first workstation.

Nomenclature

Index of station.

J Index for customer.

T·.
I, J S

. . f.th .th . erv1ce 1lme o J customer on 1 station.

Bi Input buffer capacity ofith station (excluding the one space in the server).

S· .
I, J S

. . f .th .th .
erv1ce start t1me o J customer on 1 statiOn.

Ei, j S . d . f.th fi .th . erv1ce en time o J customer rom 1 station.

60

D·.
1, J D . f.th fi .th . (E 'f' f eparture hme o J customer rom 1 station same as i,j 1 mput queue o

downstream station has infinite capacity).

Ui : Utilization of station i.

TIQi : Average waiting time in queue at station i.

BTi : Average blocking time at station i.

M : The number of stations in the tandem line.

N : The number of customers for which simulation is to be run.

Aj : The arrival time of customer j which is generated by the random number

generator and which is an input to the simulation.

TP : Throughput of the tandem line.

TIS : Average time in system of a customer.

The inputs are M, N, Aj, Bj, Ti, j-

Recursive Calculations

Si, j =max {Di-1, j. Di, j-1} [a]

The start time of customer j on station i is the maximum of departure time of that

customer from the previous station i-1, and the departure time of previous customer j-1

from that station i.

E· ·=S· · +T · l,J l,J l,J

Service end time of customer j on station i is the sum of the start time of that customer j

on that machine i, and the processing time of that customer on that station.

Di,j = max{Ei,j,Di+1,j-(Bi+I +I)} [b]

61

Departure time of customer j from station i is the maximum of service end time of that

customer on that station and the departure time of customer 'j-(Bi+ 1 +I)' from the next

station i+ 1.

Intermediate Variables

SumUj Variable for statistics collection for utilization.

SumTIQi Variable for statistics collection for waiting time in queues.

SumBTi Variable for statistics collection for blocking time in servers.

Sum TIS Variable for statistics collection for time in system.

Performance Measures

Ui = SumUj/ DM,N

TIQi = SumTIQi IN

BTi = SumBTjiN

TIS = SumTIS IN

TP = NIDM,N

Algorithm for Implementation

For j = 1 toN

do

** Beginning of Simulation **

{Generate arrival time of customer j, Aj

for node i = I to M do

{** Determine the time at which service can start at station i**

Si, j =max {Di-1, j. Di, j-d [a]

Generate processing time fori, Ti, j

E· ·- S· · +T · I, J- I, J I, J

62

Di,j = max{Ei,j,Di+l,j-(Bi+l +1)} [b]

** Intermediate variables collected for calculation of performance measures **

{

SumUj = SumUi + Ti, j

SumTIQ· = SumTIQ· + (S· · - D· -1 ·) I I I, J I , J

SumBT = SumBT+ (D· · - (S· ·+ T ·)) I I I, J I, J I, J

}

}

Sum TIS = Sum TIS + (DM, j - Aj)

}

Calculate performance measures

{ for node i = 1 to M

}

do

{ U=SumU/DMN I I ,

TIQi = SumTIQi IN

BTi = SumBTi IN

}

TIS = SumTIS IN

TP=N/DM,N

** Queue lengths can be calculated by Little's Law **

63

FAST SIMULATION OF A SINGLE SERVER ASSEMBLY QUEUEING
SYSTEM WITH INFINITE KIT BUFFER LIMIT

1
feeding tandem line

~0 0 0

0

0

c-1 0

~0 0 0

c assembly server

~0 0 0 IIIII II~
infinite kit buffer

c+l

~0 0 0

0

0

c 0

~0 0 0

Figure 1.2. A Tvpical Single Assemhlv Queueing System

Description of the System

The system consists of C component types coming through C separate tandem lines. If

one component of each type is available in the component buffers, they are combined to

form a kit which waits in a kit buffer before being assembled into the final assembly by a

single server assembly station.

Assumptions

1. There are no separate set up times for the assembly server.

2. The kits are assembled on an FCFS basis.

3. There is ample waiting space in front of the assembly server.

64

Nomenclature

n Index for assemblies.

Sn = Service start time for assembly n.

Kn = Time kit n is formed.

Tn = Assembly time for assembly n.

Dn = Departure time of assembly n.

N = Number of assemblies which are to be simulated.

De q = Departure time of q th unit from the last machine of feeder line of component c.

c = Index for component type.

C = Number of component types.

qc Number of units of component c going into a single assembly.

U Utilization of assembly server.

TP = Throughput ofthe assembly server.

TISc = Average time in system of component c.

CWTc = Average waiting time of component c before kitting.

The inputs are T n. N, C, and qc.

Recursive Relationships used for Simulation

Kn = max {De qc)
c

[a]

The kit formation time of kit n, Kn, is the maximum among the departure times of qc

units of corresponding component 'c' s.

Sn =max { Kn, Dn-1} [b]

65

The service start time of an assembly n is the maximum of the kit formation time, Kn and

the departure time of previous assembly, Dn-1·

Dn = Sn + Tn [c]

The departure time of an assembly n is the sum of the service start time Sn and the

assembly time T n·

Performance Measures of Interest

N
U= L Tn /DN

n = 1

TP = NIDN

TISc = L SumTISc/(N*qc)
c

CWT c = L SumCWT ci(N*qc)
c

Algorithm of Implementation

for n = 1 toN **Beginning of simulation ofN assemblies**

{

for c = 1 to C** Process all component types through their respective feeder lines **

{

Process qc units of type c through feeder line of c using the fast simulation model

of the tandem line and store departure time of qc th unit from last machine of the

line, as Dcq

·f n q q 1 c c > De-l c-1

Kn = Dcqc ** Storing the max. arrival time as the time a kit n is formed **

}

66

Sn =max {Kn, Dn-1} **To compute the assembly start time for assembly n **

Dn = Sn +Tn ** To compute the departure time for assembly n **

SumT n = SumT n + T n ** To store the sum of all assm. times for stat. cole. **

for c = 1 ton

{

qc
SumTISc = SumTISc + (qc* Dn- :Lo~) **Store info for stat. cole. ofTISc **

q=l

qc
SumCWTc = SumCWTl: + (qc*Kn- :Lo~)**Store info for stat. cole. ofCWTc **

q=l

}

}

U= SumTn/DN ** Computation of performance measures**

TP = NIDN

for c = 1 ton

{

TISc = SumTISc/(N*qc)

CWT c = SumCWT ci(N*qc)

}

** Queue lengths can be calculated using Little's law**

67

FAST SIMULATION OF A SINGLE SERVER ASSEMBLY QUEUEING
SYSTEM WITH FINITE KIT BUFFER LIMIT

1

kit buffer
finite

~000~1111111
0

0

c-1 0

~000~~·

c _ \ assembly server

~ o o o~--.[]]J]J]-. 0
c+l /.

~ o o o~ITIIIIJIJ
0

0

c 0

~ooo~lllllll

Figure 1.3. A Typical Single Assembly Queueing System with Finite Buffers

Description of the System

The system consists of C component types coming through C separate tandem lines.

Each of these components go into separate kit buffers before the assembly node. If Qc

units of each type c are available in the component buffers, they are assembled. If the kit

buffer is full, the components wait in the tandem lines themselves, thus blocking any

service on the last machines of the tandem lines.

68

Assumptions

1. There are no separate set up times for the assembly server.

2. The kits are assembled on an FCFS basis.

Nomenclature

n Index for assemblies.

Sn =

Kn =

Tn =

Dn =

N =

DT q c

Service start time for assembly n.

Time kit n is formed.

Assembly time for assembly n.

Departure time of assembly n.

Number of assemblies which arc to be simulated.

- Departure time of q th unit from the last machine of feeder line of component c.

c = Index for component type.

C = Number of components types.

qc - Number of units of component c going into a single assembly unit.

U = Utilization of assembly server.

TP = Throughput of the assembly server.

TISc - Average time in system of component c.

CWTc Average waiting time of component c before kitting.

Be - Size of buffer before assembly server, for component c.

Ecq = The service end time ofunit q on last machine of tandem line c.

Qc[Bc] = The queue removal time array having size, Be.

69

The inputs are T 0 , N, C, Be, and qe.

Recursive Relationships used for Simulation

DTeq =max {Eeq, Qc[Bc]}

The departure time of unit q of component c, from last machine of tandem line c is the

maximum of its service end time and the departure time of previous customer from last

space in the buffer Be (as recorded in the queue removal time history array, Qc[Bc]).

Kn = max (DT e qc)
e

The kit formation time for kit n, is the maximum of these departure times of qc th units of

corresponding component 'c's.

S0 =max { K 0 , Dn-1}

The service start time of assembly n is the maximum of the departure time of previous

assembly from assembly server and the kit formation time.

Dn = Sn +Tn

The departure time of assembly n is the sum of service start time S0 and the assembly

time T0 .

Performance Measures of Interest

N

U= LT11 /DN
n=l

TP = NIDN

TISe = L SumTISc/(N*qc)
e

CWT e = L SumCWT ei(N*qc)
e

70

Algorithm for Implementation

for n = 1 toN **Beginning of simulation ofN assemblies**

{ for c = 1 to C** Process all component types through their respective feeder lines **

{

}

for q = 1 to qc

{

Process a unit of type c through feeder line of c using the fast simulation model of

the tandem line and store departure time of that unit from last machine. of the line,

as DTcq

DTcq =max {Ecq' Qc[Bc]} **Determining the dept. time ofunit q from last

machine of tandem lines**

}

if DTc qc > DTc-1 qc-1

K 11 = DT c qc ** Storing the max. arrival time as the time an assembly kit n is

formed**

S11 =max { K 11, Dn-1} **To compute the assembly start time for assembly i **

D11 = S11 + Tn ** To compute the departure time for assembly i **

SumT11 = SumT11 + T11 ** To store the sum of all assm. times for stat. cole. **

for c = 1 ton

{ Update Qc[Bc] based on S11

qc
SumTISc = SumTISc + (qc* D11 - I DT~) **To store info needed for

q=1

stat. cole. ofTISc **

71

}

}

qc
SumCWTc = SumCWTc + (qc*Kn- LDT~)

q=l

** To store info needed for stat. cole. of CWT c **

U= SumTn/DN **Computation of performance measures**

TP = NIDN

for c = 1 ton

{

TISc = SumTISc/(N*qc)

CWT c = SumCWT ci(N*qc)

}

** Queue lengths can be calculated using Little's law **

72

FAST SIMULATION OF MERGE TOPOLOGY

part 1 L1

0 0 0

part 2

0 0 0

0

0

0

partM

0 0 0

Figure 1.4. A Merge Topology

Description of the System

In this system, there are M separate tandem lines, which process M different parts,

merging at a merge node. The merge node processes parts in the order of their

completion times at the various tandem lines.

Nomenclature

m

M =

Em =

N

m*

DTm• =

Dn =

B =

Index of tandem line.

Index of the last tandem line (or) number of tandem lines.

Service end time of part on last machine of line m.

Number of parts to be completed at the merge node.

arg {Et, E2, ... , EM}
min

Departure time of part from the last machine of merging line.

Departure time of part n from merge node.

Buffer size of merge node.

73

Tn = Processing time at merge node.

u = Utilization of merge node.

BT = Blocking time before merge node.

TP = Throughput of merge node.

QWT = Queue waiting time before merge node.

The inputs are T n. M, N, and B.

Recursive Relationship used for Simulation

m* = arg {EI. E2, ... , EM}
mm

The merging line is the one corresponding to the minimum service end time among Ems.

DT m* = max {Em*• Dn-(B+ 1)}

The departure time of a part n from the last machine of the merging line is the maximum

of the service end time of that part and the departure time of 'n-(B+ 1)''" part from the

merging node.

Sn = max {DT m*• Dn-1 }

The service start time is the maximum of the departure time of the part from the last

machine of the merging line and the departure time of the previous part from the merge

node.

Dn = Sn + Tn

The departure time of part from merge node is the sum of the service start time and the

processing time T n·

Determine next m = m* and the corresponding Em*·

74

Algorithm for Implementation

form= 1 toM

do

{

Determine Em after processing a single part through each of the lines

}

for n = 1 toN

do

{

Em* = min (Em) for 'II m

DT m* = max (Em*• Dn-(B+ 1))

S0 =max {DT m*• Dn-1}

SumBT = SumBT + (DT m* - Em*)

To add up the values of blocking times for statistics collection

SumQWT = SumQWT + (S0 - DT m*)

** To add up the values of queue waiting times

in front of the merge node for QWT stat. cole. **

Generate processing time T 0

Dn = Sn + Tn

SumT0 = SumT0 + T0

** To add up the values of processing times at merge node

to compute the utilization of merge node **

Determine next Em for m = m*

** Simulate the processing of a part tluo' the

line which is the present merge line **

75

}

** Computation of performance measures **

U=SumT0 /DN

BT= SumBT/N

TP=NIDN

QWT = SumQWT/N

** Queue lengths can be calculated by Little's law**

76

FAST SIMULATION OF PARALLEL STATION TOPOLOGY

Pt

p2 a-.
---+OJ] 0

I TIIJO
single common 0

buffer
I

0

r-
PM

Figure 1.5. A Parallel Server Workstation

Description of the System

In this case, there are M separate servers in a parallel server worstation. The parallel

server workstation takes in customers and the customer which finishes earliest in any of

the servers in the station is released from the station.

Assumptions

1. There is a single common buffer associated with all the servers in the parallel server.

Nomenclature

m -

M =

Em

N =

m* =

Index of the server in the parallel server workstation.

Index of the last server in the parallel server workstation.

Service end time of a part in a server m.

Number of parts to be completed at the parallel server workstaion.

arg {Et, E2, ... , EM}
min

77

DTm* =

B

Sm

Tm

u
TP

QWT

-

Departure time of part from the parallel server workstation.

Buffer size of the single common buffer in front of the parallel server

workstation.

Service start time at server m.

Processing time at server m.

Utilization of parallel server workstation.

Throughput of parallel server workstation.

Queue waiting time before the parallel server workstation.

The inputs are An, T m. M, N, and B.

Recursive Relationship used for Simulation

m* = arg {EI. E2, ... , EM}
mm

The customer to be released is the one corresponding to the minimum service end time

among Ems.

DTm* =Em*

The departure time of a customer from the server m* is the same as the service end time

at that server, when the forthcoming station has an infinite buffer.

Determine next m = m* and the corresponding Em*·

Algorithm for Implementation

form= 1 toM

do

{

Generate arrival time An

Sm=An ** The first service start time on any of the servers is the arrival

time of customers **

Em=Sm+Tm

78

Determine Em after processing a single part through each of the servers

SumTn = SumTn + Tm

**SumT n is a statistics collection term used to aggregate statistics for the utilization of

the parallel server station**

}

for n = 1 toN

do

{

}

Em* = min (Em) for "i/ m

DTm* =Em*

Generate arrival time An

Sm=m* = max{DT m=m*, An}

Em=m*= Sm=m* + T m

SumTn = SumTn + Tm

SumQWT = SumQWT + (S 11 - Dtm*)

Add up the values of queue waiting times

Sn is the start time of any job whose queue time is collected

** Computation of performance measures **

U=SumTn/DN

TP=NIDN

QWT = SumQWT/N

** Queue lengths can be calculated by Little's law**

79

08

(adAlOlOJd (tquaw!Jadxa aql ilu!lP.(UW!S JOJ apo;1 a;JJnos)

II XI UN:il<ldV

lflnit.h -initializes variables and !J'eeds used;
void Initialize()
{ for (int level = 1; level<=8; level++) !!initializing variables for 8 levels, 3 tandem lines in each

/!level and 6 workstations in each tandem line
{for (int prsntTL =I; prsntTL <=3; prsntTL++) 1/prsntTL =present tandem li11e

{for (int prsntWS =1; prsntWS <=6; prsntWS++) 1/pnmtWS =present workstatio11
{

b(level][prsntTLJ[prsntWS)=O; //buffer size of a server+ !~pace in the server
s(level)[prsntTL)[prsntWS]=O.O; //service time at a server
e(level][prsntTL)(prsntWS]=O.O; !!service e11d time at a server
d(level][prsntTL)[prsntWS]=O.O; //departure time at a server
PrevD(Ievel)[prsntTLJ[prsntWS)=O.O; !!previous departure time at a server
Wq(level][prsntTL][prsntWS)=O.O; //quantity collecti11g queuei11g times
Ws[level][prsntTL][prsntWS]=O.O; //quantity collecti11g service times
Wb[Ievel][prsntTL)(prsntWS)=O.O; //quantity collecti11g b/ocki11g times
Wi[level)(prsntTL][prsntWS)=O.O; /!quantity collecting idle times
nt(level)(prsntTL)(prsntWS)=O.O; //quantity collecti11g node times

w(level][prsntTL][prsntWS].QLength=O; //buffer size of a server
w(Jevel](prsntTL][prsntWS).SvcTMean=O.O//service time mea11

}
LossCount[level)[prsntTL]=O;
INT ARRT[Jevel)(prsntTL]=O.O;
NoOfWS[Ievel)[prsntTL)=O;
partnow[Jevel][prsntTL]= I;
TotalLife[level) (prsntTL]=0.0;
TP(level)(prsntTL]=O.O;
ArrGenCount[level][prsntTL)=O;

//loss cou11t at a ta11dem li11e
1/illterarrival time i11to a ta11dem li11e
II# ofworkstatiOit.\' ill a ta11dem line
//present customer in a tandem line
//total time !~pellt in a ta11dem line by a customer
1/t/rrough put ill a tandem line
II# of arrivals ge11erated into a tandem line

}
l1(levei]=O.O; //kit time at a11 assembly server

SerGenCount=O;
GenerateSeeds();

II# of service times generated
!/Generate seeds for random # generation

}

void GenerateSeeds()
{for (int level =1; level<=8; level++)

}

{for (int prsntTL =I; prsntTL <=3; prsntTL++)
{for (int prsntWS =0; prsntWS <=6; prsntWS++)

{
initSeed(level][prsntTL)(prsntWS]= I23457; /!initial seed for all generators
seedO=short(l+RandU(initSeed[level](prsntTL](prsntWS])*(32766));
seed[level][prsntTL)(prsntWS]=Iong(1 +GetSeed(seedO)*(MAXLONGINT-1));
}

double GetSeed(short& sd) 1/16 bit ge11erator
{

double gSeed;
sd=(sd * 5997)+ 1 ;
if(sd<O) sd=sd+32767+1;
gSeed=sd*invMaxlnt;
return gSeed;

81

double RandU(long& sd) 1132 bit generator
{

double Rand;
const double a=l6807,q=l27773.0,r=2836.0;
ldiv _ t dSeed;
dSeed=ldiv(sd,(long)q);
sd=(long)(a*(sd-(long)(dSeed.quot*q)))-(long)(dSeed.quot*r);
if(sd<O)

sd=sd+MAXLONGINT;
Rand=sd*ONEBYMAXLONGINT;
return Rand;

}
1/Routnoif.h - This file contains all simulation routines 11eeded for random number
ge11eration, 1/simulatioll of various topologies, a11d statistics collectio11
#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include <fstream.h>
#include <malloc.h>
#include <assert.h>
#include <time.h>

#define TOTWS 10
#define TOTTL 4
#define LEVEL 9

/lean model 9 wls
/lean model 3 tandem lines in each level
/lean model 8 levels

typedef struct DT *DTPtrType; //holds depart. time of a part and a11 address to
ll11ext part record

typedef struct DT DTRecord;
//used to generate tire circular link list wlriclr lrolds tire previous buffer-relevant customers
struct DT { double dt;

DTPtrType next;
} ;

typedef struct asma *asmaType;

struct asma { DTPtrType LL[TOTWS]; //get a circular linked list in 2 dimension to lrold tire
//departure

DTPtrType dptr;
DTPtrType ptrend;

};

typedef struct asma asmaRecord;

//times at various workstations

asmaType preA[LEVEL][TOTTL]//2 dimensional array to hold the circular linked list mentioned
/lin struct asma

typedef struct WS WSRecordType;

struct WS
{
int QLength;
double SvcTMean;

};

1/struct that lrolds workstation information

//buffer size of server
/!mean service time of server

82

WSRecordType w[LEVEL][TO TTL][TOTWS I; //contains workstation information

int b[LEVEL)[TOTTL)[TOTWSI;
double s[LEVEL)[TOTTL)[TOTWSI;
double e[LEVEL)[TOTTLJ[TOTWS];
double d[LEVEL][TOTTL)[TOTWS];
double PrevD[LEVEL][TOTTL][TOTWS];

//buffer size + 1; for establislring circular lilrk list
//service time of workstation
//service end time at workstation
//departure time from workstation

//previous departure time at workstation

double Wq[LEVEL][TOTTL)[TOTWS];
double Ws[LEVEL)[TOTTL][TOTWS];
double Wb[LEVEL][TOTTL)[TOTWSI;
double Wi[LEVEL][TOTTL)[TOTWS];
double nt[LEVEL][TOTTL][TOTWSI;
long seed[LEVEL][TOTTL][TOTWSI;

long LossCount[LEVEL][TO TTL];
double INT ARRT[LEVEL][TOTTL I;
int NoOfWS[LEVEL][TOTTLI;
long partnow[LEVEL](TO TTL I;

double TotalLife[LEVEL][TOTTLI;
double TP[LEVEL)[TO TTL I;

//statistics collection variable for queueing times
//statistics collection variable for service times
//statistics collection variable for blocking times

//statistics collection variable for idle times
//statistics collection variable for time at node
/!seed for random number generator

//loss count at a tandem line
/linter-arrival time of parts comi11g from out.\·ide .\ystem
II# ofworkstatiolls ill a ta11dem li11e
//tire present customer bei11g simulated

//total time a customer .\pends in a tandem line
1/tlrro' put of a line

void Alllnputs(); //reads system parameter input from i11put file
void Input(int level,int linelndex); //reads i11put file for eaclr li11e
void GenerateDepartureTimeLinkList(int level, int prsntTL,int prsntWS); /lge11erates link li~>·t
void Initialize(); lli11itializes variables
void fillup(); //fills up network so toggles may be set goi11g
void Simulate(); //simulates tire 11etwork
void AIIOutputs(); llpri11ts simulatio11 output to output files
void Output(int level, int linelndex); 1/prillts sim. olp to output file for a si11gle li11e
double max(double p,double q); //computes max oftwo qua11tities

char OutputFile[13];
char lnputFile[13];
double kt[LEVELI;

int level;
int prsntTL;

//takes i11 output file name
//takes ill input file 11ame
//kit time at as assembly in any level

//declares level ide11tijication
//declares tandem line

void LLUpdate(int level,int prsntTL,int prsntWS); //updates circular link list after a 11ew dep.
void StatColct(int level,int prsntTL,int prsntWS); //collects statistics
void Service(int level,int prsntTL,int prsntWS); l/ge11erates service time
void Arrival(int level,int prsntTL); //ge11erates arrivals
void lnSerDep(int level,int prsntTL,int prsntWS); //simulates a dep. at a in11er server in a line
void EndOfServiceAtEndNode(int level,int prsntTL,int prsntWS); II computes e11d of service at

/lend node in a line
void BackEndNodeDep(int level,int prsntTL,int BackprsntTL);

void BackEndNodeUpdate(int level,int prsntTL,int BackprsntTL);

//computes tire departure time
//from tire prev. e11d 11ode
//updates tire prev. end node'.\·
//circular link list

void BackEndNodeStatColct(int level,int prsntTL,int BackprsntTL); /!collects statsfor prev.
/lend 11ode

void ParaBackEndNodeDep(int level,int prsntTL,int BackprsntTL); //computes tire departure time
//from a previou.~ parallel statio11

void ParaBackEndNodeUpdate(int level,int prsntTL,int BackprsntTL); /!updates tire li11k list of

83

//parallel station
void ParaBackEndNodeStatColct(int level,int prsntTL,int BackprsntTL); !!collects statistics

//for parallel station
void InTand(int level, int prsntTL,int BackprsntTL); //simulate.~ a tandem line wlriclr gets parts

/!from other workstations
void OutTand(int level, int prsntTL); /!simulates a tandem line that gets parts

//that gets parts from outside system
void Assem(int level); //simulates assembly

long ArrGenCount[LEVEL][TOTTL]; !Ito count the# oftimes ex:po gen. called for tire sake of
II getting arr.s

long SerGenCount; /Ito count the# of times rand# gen. called for the sake of getting serv. time

//begin procedure for random number generation
long MAXLONGINT= (long)(pow(2,31)-1);

double ONEBYMAXLONGINT=(l.O/(pow(2,31)-1.0));
double invMaxlnt=l/32767.0;

II# used for random #generation
II# used for random #generation
II# used for random #generation

double expo(double Mean, int level, int prsntTL, int prsntWS); !!generate.\' exponential random#
void GenerateSeeds(); //generates seed to generate random #
double GetSeed(short& sd); /!functions to get initial seed
double RandU(long& sd); 1/fwrctimr to generate random #
short seedO;
long initSeed[LEVEL][TOTTL][TOTWS); /!initial seed input

double expo(double Mean, int level, int prsntTL, int prsntWS) //exponential random #generator
{

double Prob,expo;
Prob = RandU(seed[level][prsntTL][prsntWS]);
if{Prob<=ONEBYMAXLONGINT) Prob=RandU(seed[level][prsntTL)[prsntWS]);
expo= (-Mean)*log(Prob);
return expo;

/lend procedure for random number generation

double max(double p,double q)
{

}

if (p>q) q=p;
retum(q);

//tire cmp function

void LLUpdate(int level,int prsntTL,int i) 1/linklist update for an inner server in a line
{
(preA[level][prsntTL]->LL[i])->dt=d[level][prsntTL][i];
preA[level][prsntTL]->LL[i]=(preA[level) (prsntTL]-> LL[i])->next;
}

void StatColct(int level,int prsntTL,int i) //stat cole. (blocking, queueing a1rd idle time) for an
//inner server

{
Wi[level][prsntTL][i]+=max(O,d(level][prsntTL)[i-l]-PrevD[Ievel][prsntTL)[i]);
Wb[level][prsntTL)(i]+=max(O,d[level)[prsntTL][i]-e[level][prsntTL][i));
W q[level][prsntTL)[i]+=max(O,PrevD[level)(prsntTL)(i]-d[level][prsntTL)[i-1));
}

void Service(int level,int prsntTL,int i) //service time generation and service stat cole.

84

{
s[level][prsntTL][i]=expo(w[level)[prsntTLIIi).SvcTMean, level, prsntTL, i);
W s[level][prsntTL)[i)+=sl level][prsntTL IIi);
++SerGenCount;
}

void Arrival(int Ievel,int prsntTL) //arrival generation for outTands and loss count cole.
{

d[level][prsntTL)[O]=d[level)IPrsntTL)[O)+expo(INTARRTIIevei)IPrsntTL],level,prsntTL,O);
++ArrGenCount[level]lprsntTL];

while (d[level) [prsntTL)[0)<(preAI level) [prsntTL)-> LLI 1))->dt)
{

d[level][prsntTL)[O)=d[level](prsntTL)(O]+expo(INTARRT(IevelllprsntTL],level,prsntTL,O);
++LossCount(level][prsntTL];
++ArrGenCount(level][prsntTL);

}
}
void InSerDep (int level,int prsntTL,int i) /!inner server departure calculation routine
{
PrevD[level][prsntTL](i)=d(level][prsntTL][i];
e[Ievel][prsntTL][i]= max(d(level)[prsntTL](i-l),d(level][prsntTL)(i))+s(level][prsntTL)[i);
d[level][prsntTL][i]=max(e(level][prsntTL)[i],(preA[level)[prsntTL)->LLI i+ 1))->dt);
nt[level][prsntTL)[i]+=d[level][prsntTL) [i]-dl level)lprsntTL)(i-1);
}

void EndOfServiceAtEndNode(int level,int prsntTL,int I)
{
Service(level,prsntTL,i);

/lean 't get the departure time for
/lend node .. so get end time

e[Ievel][prsntTL)[i]=max(dl level][prsntTLII i-l),dl level) I prsntTL IIi))+sl level)[prsntTL)[i);
}

void BackEndNodeDep(int level,int prsntTL,int BackprsntTL) //gets departure time from md node
{ //of previou ... topology
PrevD[Ievel-1)[BackprsntTL][NoOtWS[Ievel-l][BackprsntTL]]=
d[level-1][BackprsntTL) [NoOtwS[Ievel-l) [BackprsntTL)) ;
d[level-1) [BackprsntTL)[NoOtwS [Ievel-l) [BackprsntTL]] =
max(e[level-1] [BackprsntTL) [No01WSI Ievel-l) [BackprsntTL)],(preA[level] I prsntTL)-> LL[1))->dt);
++partnow[level-1] [BackprsntTL];
nt[level-1][BackprsntTL)[NoOfWS(Ievel-1)[BackprsntTL]]+=
d[level-1)[BackprsntTL][NoOfWS(Ievel-1 JrBackprsntTL])-d(level-1)fBackprsntTL)[NoOfWSI level

l)[BackprsntTL[-1);

void BackEndNodeUpdate(int level, int prsntTL, int BackprsntTL) //update!>· linked /i.'tt of end node
{ //of previous level
(preA[level-1][BackprsntTL]-> LL[NoOfWS(Ievel-1] [BackprsntTL)))->dt=
d[level-1][BackprsntTL) [NoOtwS[Ievel-l)[BackprsntTL)) ;
preA[level-1)[BackprsntTL)->LL[NoOtwS(level-1][BackprsntTL])=
(preA[Ievel-1)[BackprsntTL)->LL[NoOfWS (Ievel-l] (BackprsntTL)))->next;
}

void BackEndNodeStatColct(int level,int prsntTL,int BackprsntTL) //stat colc.(blocking and)
{ //queueing for an inner server
Wi[level-1)[BackprsntTL][NoOfWS[Ievel-l][BackprsntTL])+=
max(O,d(Ievel-l][BackprsntTL) (NoOtwS [Ievel-l][BackprsntTL)-1]-Prev D(Ievel-

l)[BackprsntTL][NoOtwS(Ievel-l][BackprsntTL)));

85

Wb[level-1][BackprsntTL][NoOfWS[level-1][BackprsntTL]]+=
max(O,d(level-1][BackprsntTL][NoOfWS[level-1][BackprsntTL]]-e[Ievel-l][BackprsntTL]

[NoOfWS[Ievel-l][BackprsntTL]]);
W q[level-1] [BackprsntTL] [NoOfWS [Ievel-l] [BackprsntTL]]+=
max(O,PrevD[level-1][BackprsntTL][NoOfWS[level-1][BackprsntTL]]-d[Ievel-

l] [BackprsntTL] [NoOfWS [Ievel-l] [BackprsntTL]-1]);

void ParaBackEndNodeDep(int level,int prsntTL,int BackprsntTL) //function that gets departure
{ //from parallel server
PrevD[level-1][BackprsntTL][l]=d[level-1][BackprsntTL][I];
d[level-1] [BackprsntTL][1]=max(e[Ievel-l] [BackprsntTL] [l],(preA[level] [prsntTL]-> LL[1])->dt);
++partnow[level-1] [BackprsntTL];
}

void ParaBackEndNodeUpdate(int level, int prsntTL, int BackprsntTL)
{
(preA[level-1][1]->LL[1])->dt=d[Ievel-l)[1][1];
preA[level-1][1]->LL[1]=(preA[level-l][1]->LL[1])->next;
}

void ParaBackEndNodeStatColct(int level,int prsntTL,int BackprsntTL)
{
Wi[level-1][1][1]+=max(O,d[level-1][1][0]-PrevD[level-1][BackprsntTL][1]);

//updates link list of
//parallel server

//stat cole. (blocking for
II second parallel server)

Wb[level-1] [BackprsntTL][1]+=max(O,(preA[level] [prsntTL]->LL[1])->dt-e[Ievel-l] [BackprsntTL] [I]);
Wq[level-1][1][1]+=max(O,PrevD[level-1][BackprsntTL][1]-d[level-1][1][0]);
}

void InTand(int level, int prsntTL, int BackprsntTL) //simulates an inner tandem line
/lean also act as a merge line {

BackEndNodeDep(level,prsntTL,BackprsntTL);
BackEndNodeUpdate(level, prsntTL, BackprsntTL);
BackEndNodeStatColct(level, prsntTL, BackprsntTL);
d(level] [prsntTL][0] = d[Ievel-l] [BackprsntTL] [NoOfWS (Ievel-l] [BackprsntTL]] ;

for (int i=1;i<NoOfWS(level][prsntTL]; i++)
{

Service(level,prsntTL,i);
InSerDep(level,prsntTL,i); 1/ilmer server departure
LLUpdate(level,prsntTL,i);
StatColct(level,prsntTL,i);

}
EndOfServiceAtEndNode(level,prsntTL,i);

void OutTand(int level, int prsntTL) //simulates a tandem line into wlticlt arrivals take place
{
Arrival(level, prsntTL);
for (int i=1;i<NoOfWS[level][prsntTL]; i++)
{

Service(level,prsntTL,i);
InSerDep(level,prsntTL,i); !!inner server departure
LLUpdate(level,prsntTL,i);

StatColct(level,prsntTL,i);
}

EndOfServiceAtEndNode(level,prsntTL,i);
}

86

void Assem(int level) //simulates an assembly server
{

}

for (int prsntTL =1; prsntTL <=2; prsntTL++)
{

}

BackEndNodeDep(level, prsntTL, prsntTL);
BackEndNodeUpdate(level,prsntTL, prsntTL);
BackEndNodeStatColct(level, prsntTL, prsntTL);
d[level][prsntTL][0]= d[Ievel-l][prsntTL)[NoOfWS[level-l)[prsntTL]];

kt[level]=max(d[level)[1)[O),d[level)[2)[0]); //kit time computation
Service(level, 1,1);
e[level][1)[1]=max(kt[level],d[level)[1)[1))+s[level][1][1);
PrevD[level][2)[1]= d[level)[2][1);
d[level][2][l]=max(e[level)[1][l],preA[level+ 1][1]->LL[1]->dt);
LLUpdate(level,2, 1);

Wq[level][2)[1]+=max(O,PrevD[level)[2)[1]-d[level][2)[0));
++partnow[level)[2];

void Merge(int level, int prsntTL, int BackprsntTL) //simulates a lone merge node
{

BackEndNodeDep(level, prsntTL, BackprsntTL);
BackEndNodeUpdate(level,prsntTL, BackprsntTL);
BackEndNodeStatColct(level, prsntTL, BackprsntTL);

d[level][prsntTL)[O)=d[level-1)[prsntTL][NoOfWS[Ievel-l)[prsntTL)) ;
Service(level,prsntTL,l);
e[level][prsntTL][l)=max(d[level][prsntTL](O),d[level][prsntTL)[l))+s[level](prsntTL](I);

void Parallel(int level,int prsntTL, int BackprsntTL) !!simulates a parallel server workstation
{

BackEndNodeDep(level, 1, BackprsntTL);
BackEndNodeUpdate(level, 1, BackprsntTL);
BackEndNodeStatColct(level, 1, BackprsntTL);

d[level][1] [O]=d[Ievel-l] [BackprsntTL) [NoOfWS [level-l][BackprsntTL)) ;
Service(level,prsntTL, 1);
e[level][prsntTL)[l)=max(d[level][1][O].d[level][prsntTL)[l))+s(level][prsntTL)[1];

void NextToPara(int level, int prsntTL, int BackprsntTLYI.\·imulates a .'ierver next to tire parallel
{ 1/.Yerver and updates linked list of parallel server

}

ParaBackEndNodeDep(level, prsntTL, BackprsntTL);
ParaBackEndNodeUpdate(level, prsntTL, BackprsntTL);
ParaBackEndNodeStatColct(level, prsntTL, BackprsntTL);

d[level][prsntTL) [O)=d[Ievel-l) [BackprsntTL) [NoOfWS [Ievel-l] [BackprsntTL)) ;
Service(level,prsntTL, 1);
e[level][prsntTL][l]=max(d[level][prsntTL)[O),d[level)[prsntTL)[1))+s[level][prsntTL)[I];

87

1/A//nputl.h- reads files containing system parameter inputs
void Allin puts() //takes in tire input names of files that contain information about tire various
{ //topologies
for (int level =1; level <=2; level++)

{
for (int prsntTL= 1; prsntTL<=2; prsntTL ++)
{
cout<<"give the i/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<": ";
cin>>lnputFile;
Input(level,prsntTL);
}

}
for (level =3; level <=3; level++)

{
for (int prsntTL=1; prsntTL<=2; prsntTL++)
{
cout<<"give the i/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>InputFile;
Input(level,prsntTL);
}

}
for (level =4; level <=4; level++)

{
for (int prsntTL=1; prsntTL<=1; prsntTL++)
{
cout<<"give the i/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>InputFile;
Input(level,prsntTL);
}
}

for (level =5; level <=5; level++)
{
for (int prsntTL=1; prsntTL<=2; prsntTL++)
{
cout<<"give the i/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>lnputFile;
Input(Ievel,prsntTL);
}

}
for (level =6; level <=7; level++)

{
for (int prsntTL= I; prsntTL<= 1; prsntTL ++)
{
cout<<"give the i/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>lnputFile;
Input(level,prsntTL);
}
}

void Input(int level,int prsntTL) //takes in data for a topology at a given/eve/
{
ifstream inFile(lnputFile,ios: :in);
assert(inF ile! =0);
int dunmty;
inFile>>INTARRT[Ievel][prsntTL);

88

inFile>>NoOfWS[level][prsntTL];
preA[level] [prsntTL]=(asma Type)malloc(sizeof(asmaRecord));
for(int i=l;i<=NoOfWS[level)[prsntTL];i++)

{

}

inFile>>dwnmy;
inFile>>w[level][prsntTL][i].QLength;
inFile>>w[level][prsntTL][i].SvcTMean;
b[level][prsntTL)[i]=w[level][prsntTL][i].QLength + 1;
GenerateDepartureTimeLinkList(level, prsntTL, i);

1/malloc.\· memory for asmaRecord

//generates circular linked list which will hold the preceding buffer-relevant customers
void GenerateDepartureTimeLinkList(int level, int prsntTL, int prsntWS)

{
preA[level][prsntTL]->LL[prsntWS]=(DTPtrType)malloc(sizeof(DTRecord));

(preA[level][prsntTL]->LL[prsntWS])->dt=(double)0;
preA[level][prsntTL]->ptrend=preA[level][prsntTL)->LL[prsntWS];
for (int j=2;j<=b(level][prsntTL][prsntWSJ;j++)
{ pre A[level] [prsntTL]->dpt•=(DTPtrType)malloc(sizeof{DTRecord));

(preA[level] [prsntTL]->dptr)->dt=(double)0;
(preA[level][prsntTL]->ptrend)->next=preA[level)[prsntTL)->dptr;
preA[level] [prsntTL]->ptrend=(preA[!eve 1) [prsntTL)->ptrend)->next;

}
(preA[level] [prsntTL]->dptr)->next=preA[level]l prsntTL)-> LL[prsnt WS];

}

89

1/AlOtptsl.h -calls tire appropriate output file for tire various workstations
void AllOutputs() //gets tire output file names wlrere tire system performance measures are printed
{

for (int level =1; level <=2; level++)
{
for (int prsntTL=1; prsntTL<=2; prsntTL++)
{
cout<<"give the o/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>OutputFile;
Output(level,prsntTL);
}

}
for (level =3; level <=3; level++)

{
for (int prsntTL=1; prsntTL<=2; prsntTL++)
{
cout<<"give the o/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>OutputFile;
Output(level,prsntTL};
}

}
for (level =4; level <=4; level++)

{
for (int prsntTL= 1; prsntTL<= 1; prsntTL ++)
{
cout<<"give the o/p file name for level "<<level<<" and for prsntTL "<<prsntTL<<" : ";
cin>>OutputFile;
Output(level,prsntTL);
}

}
for (level =5; level <=5; level++)

{
for (int prsntTL=1; prsntTL<=2; prsntTL++)
{
cout<<"give the o/p file name for level "<<level<<" and for pmstTL "<<prsntTL<<" : ";
cin>>OutputFile;
Output(level, prsntTL);
}
}

for (level =6; level <=6; level++)
{
for (int prsntTL=1; prsntTL<=1; prsntTL++)
{
cout<<"give the o/p file name for level "<<level<<" and for pmstTL "<<prsntTL<<" : ";
cin>>OutputFile;
Output(level, prsntTL);
}

}

void Output(int level, int prsntTL) //calculates tire sim. olp measures and prints it to files
{
TP[level][prsntTL]=(double)partnow(level]lprsntTL]/d[level][prsntTL][NoOtWS[level][prsntTL]];
//calculates tlrrouglrput of a line
for (int i=1;i<=NoOfWS[Ievel][prsntTL];i++)
TotalLife[level][prsntTL] =

90

TotalLife[level][prsntTL)+W s[levelllprsntTL][i)+Wb[levelllprsntTL IIi)+W q[levelllprsntTL If i I;
ofstream outF(OutputFile,ios::app);
assert(outF!=O);
outF<<"The Fast Simulation Report of tandem line "<<prsntTL<<"in level "<<level<<endl;

outF < <" ---\n "< <endl;
for (i=l; i<=NoOfWS[Ievel)fprsntTL); i++)
{
outF<<"For w/s "<<i<<endl;
outF < <" ----------"<<end I;
outF<<"The queue capacity is :"<<w[levelllprsntTLIIi).QLength<<endl;

outF<<"The ave. queueing time is:"<< Wq[levelJiprsntTLIIi)l(double)(partnow[level)lprsntTL))
<<endl;

outF<<"The ave. queueing length is:"<<
W q(level] [prsntTL IIi] *TP[Ievel] [prsntTL]I(double)(partnow[level) [prsntTL))<<endl;

outF<<"The ave. service time is : "<<W s[level)[prsntTL)[i]I(double)(partnow[level)[prsntTL))
<<endl;

outF<<"The ave. idle time is :"<<Wi[level][prsntTL)[i)/(double)(partnow[levelJI prsntTL))<<endl;
outF<<"The ave. node time is :"<<nt[level][prsntTLJii)/(double)(partnow[levelJiprsntTL))<<endl;
outF<<"The ave. blocking time is : "<<Wb[level][prsntTL IIi)/(double)(partnow[leveiJiprsntTL I)

<<endl;
outF<<"The utilization of node is:"<<

Ws[level)[prsntTL][i]ld[level)[prsntTL)[NoOIWS[level)[prsntTL))<<endl;

outF < <" ------------------------------"< <endl;
outF<<"The %loss in the tandem line "<<prsntTL<<" is :"

<<(double)(LossCount[levelJiprsntTL)* I 00)/(double)partnow[6)[l]<<endl;
outF<<"The thro' put is :"<<TP[leveiJiprsntTL)<<endl;
outF <<"Time In System is : "<<TotaiLife[level] [prsntTL)/(double)(partnow[level][prsntTL))

<<endl;
outF<<"Simulation end time is :"<<d[level][prsntTLIINoOfWS[IevelllprsntTL))<<endl;
outF<<"The Partnow is :"<<partnow[levelJiprsntTL)<<endl;
outF<<"\n"<<endl;
outF.close();

91

lflhe main program that simulates the experimental scenario

#include "routnoif.h"
#include "init.h"
#include "Allnptsl.h"
#include "AlOtptsl.h"

double elapsed_ time;
long start, finish;

void MergeStreaml();
void MergeStream2();
void FireMerge();

void ParaStreaml();
void ParaStream2();
void FirePara();

void main()
{

//contains all functions tlrat wlren put together will simulate scenario
//initializing all variables

//contains functions for inputting system parameters
//contains functions for outputting system performance measures

/Ito measure simulation run time
//begin and end of simulation execution time

//simulates one stream merging into tire merge node
//simulates second stream merging into tire merge node
//gets tire toggle in merge node going

//simulates one server in parallel server station
//simulates second server in parallel server station
//gets tire toggle in parallel server station going

Initialize(); //function in init.lr; initializes all variables
Alllnputs(); //function in Allnptsl.h; reads system parameters from input file
fillup(); //fills up tire network so tire toggles may be set
time (&start); //marks begin of simulation execution time
Simulate(); //simulates nehvork
time (&finish); //marks begin ofsimulatimr execution time
elapsed_ time = difftime(finish, start); lithe difference between begin and end of ex e. time

cout<<"\n The time taken by the program to execute the sim. is= "<<elapsed_ time<<endl;
AllOutputs(); //function in AlOtptsl.h; prints simulation output
}
void fillup()
{
MergeStreaml();
MergeStream2();
ParaStream l ();
ParaStream2();
FirePara();

void Simulate()
{

//fills up tire network so tire toggles may be set

//simulates tandem].] and tandem1.2 tire assembly at level 2 and tandem3.1
//simulates tandem3.2
/!simulates upto parallel server 1 -tandem5.1
//simulates upto parallel server 2 -tandem5.2
//gets a customer out of tire parallel server workstation and releases it tlrro'
l/tandem6.1 and out of tire sy!J·tm

//simulates network

while (partnow[6] [l)<50000)
{

//simulate for 50000 parts

FirePara();
}

}

void ParaStreaml()
{

FireMerge();
Parallel(5,1,1);

}

void ParaStream2()

//simulates one server in parallel server station

//simulates second server in parallel server station

92

{
FireMerge();
Parallel(5,2, 1);

}

void FirePara() //gets tire toggle in parallel server station going
{
if(e[5][1][NoOfWS[5][1)] <= e(5][2](NoOfWS(5][2]]) //toggle based on serv. end times at parallel

ll!>·ervers
{
NextToPara(6,1, 1);
ParaStream1();
InTand(7,1,1);
}

else
{
NextToPara(6,1 ,2);
ParaStream2();
InTand(7,1,1);
}

void MergeStreaml()
{

OutTand(1,1);
OutTand(l,2);

Assem(2);
InTand(3,1,1);

}

void MergeStream2()
{

OutTand(3,2);
}

void FireMerge()
{

//gets departure from a server in tire parallel server w/s

//simulates one stream merging into tire merge node

/1.\·imulates tandem].]
//simulate.\' tandem1.2

//simulates assembly server at level 2.
//simulates tandem3.1

ll!.·imulates second stream merging into tire merge node

//simulates tandem3.2

//gets tire toggle in merge node going

if(e[3][1][NoOfWS[3](1)] <= e(3][2)(NoOfWS[3)(2)))
{

//toggle based on service
/lend time at stations before
//merge node InTand(4,1,1);

MergeStream 1 ();
}

else
{
InTand(4,1,2);
MergeStream2();
}

93

Thesis:

VITA

Ram Sreenivasan

Candidate for the Degree of

Master of Science

FAST STh1ULATION OF GENERAL MANlTF ACTURING
NETWORKS

Major Field: Industrial Engineering and Management

Biographical:

Education: Graduated from Alpha Matriculation High School, Madras, India in
May 1989; received Bachelor of Engineering degree in Mechanical &
Production Engineering from Annamalai University, India in June 1993.
Completed the requirements for the Master of Science degree in Industrial
Engineering at Oklahoma State University in Mayl996.

Experience: Employed by Oklahoma State University, School of Industrial
Engineering and Management as Graduate Research Assistant, and
Graduate Teaching Assistant, 1994 to 1995.

Professional Memberships: Alpha Pi Mu, The National Industrial Engineering
Honors Society.

