GROWING-SEASON AND DORMANT-SEASON FIRE BEHAVIOR AND EFFECTS ON VEGETATION IN THE OUACHITA MOUNTAINS, ARKANSAS

By

JEFFREY C. SPARKS

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1994

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1996

GROWING-SEASON AND DORMANT-SEASON FIRE BEHAVIOR AND EFFECTS ON VEGETATION IN THE OUACHITA MOUNTAINS, ARKANSAS

Thesis Approved:

Romed E. Marten Thesis Advisor

aurichn. Enclo

Thomas nc

Dean of the Graduate College

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my major advisor, Dr. Ronald E. Masters for his inspiration, friendship, constructive guidance, supervision and encouragement both in the office and field. His unlimited knowledge, experience, and kindness have been an invaluable part of my experience as a graduate student. I would also like to sincerely thank Dr. David Engle for his guidance, encouragement, and assistance both in the field and office. Additionally, I would like to thank Dr. Mike Palmer for his guidance, encouragement and assistance analyzing the vegetation data of this study. It has been a distinct pleasure and good fortune to have worked under the direction of these three excellent ecologists. I regret moving on and leaving them behind, but these three years of memories will remain with me forever.

I would like to thank the outstanding biologists and technicians of the Poteau Ranger District, special thanks is extended to George Bukenhofer, Warren Montague, Joe Neal, Justin Ridenhour, Keith Piles, and Harold Johnson for their assistance throughout this project. I am also extremely grateful to all those who assisted with vegetation and fuel sampling, especially David Gay, Scott Crockett, Stephanie Compton, James Kulbeth, Joe Vaughn, and Melinda Crockett.

I sincerely thank my mother, father and entire family for their love, encouragement and financial assistance to fulfill this dream. I also am forever indebted to my wife Jennifer for her love, support and encouragement throughout this entire process. I also extend a special thanks to my friend and office companion Montie Stewart.

iii

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
II. GROWING-SEASON VERSUS DORMANT-SEASON FIRE BEHAVI FUEL CONSUMPTION IN THINNED STANDS OF PINE	IOR AND
Abstract Introduction Methods Results and Discussion Conclusions References	2
III. INFLUENCE OF FIRE SEASON ON ACCURACY OF BEHAVE PREDICTIONS OF FIRE BEHAVIOR	
AbstractIntroductionMethodsResults and DiscussionConclusionsReferences	
IV. EFFECTS OF GROWING-SEASON AND DORMANT-SEASON PR FIRE ON HERBACEOUS VEGETATION IN RESTORED PINE-GRASSI AND COMMUNITIES	ESCRIBED
Abstract Introduction Study Area Methods Results Discussion Conclusions Literature Cited	

Chapter

V. GROWING-SEASON VERSUS DORMANT-SEASON FIRE FOR WOODY
SPECIES MANAGEMENT IN RED-COCKADED WOODPECKER CLUSTERS
Abstract99Introduction100Study Area102Methods103Results and Discussion106Management Implications110Literature Cited113
APPENDIXES 127
APPENDIX ASTAND CHARACTERISTICS AND LOCATION 128
APPENDIX BHERBACEOUS SPECIES RESPONSE TO SEASON OF FIRE
APPENDIX CWOODY SPECIES RESPONSE TO SEASON OF FIRE
APPENDIX DFUELS OF PRESCRIBED FIRES ON THE OUACHITA NATIONAL FOREST, ARKANSAS 161
APPENDIX EOBSERVED AND PREDICTED FIRE BEHAVIOR 165
APPENDIX FWEATHER DURING PRESCRIBED FIRES ON THE OUACHITA NATIONAL FOREST, ARKANSAS 174
APPENDIX GA PARTIAL LIST OF PLANTS OCCURRING ON THE

Page

OUACHITA NATIONAL FOREST, ARKANSAS 176

LIST OF TABLES

Table

Chapter II

1.	in the Ouachita Mountains of Arkansas, USA.	24
2.	Comparison of growing-season and dormant-season fire behavior parameters, Ouachita National Forest, Arkansas, USA (1995 and 1996).	25
3.	Fuel conditions during growing- and dormant-season prescribed fires on Wildlife Stand Improvement areas in the Ouachita National Forest, USA (1994, 1995, and 1996)	26
4.	Mean weather conditions during growing-season and dormant-season prescribed fires, Ouachita National Forest, Arkansas, USA.	27

Chapter III

1.	Characteristics of stands used to compare BEHAVE predicted and observed fire behavior in the Ouachita Mountains of Arkansas, USA.	55
2.	Range in fuel and weather conditions during prescribed fires on Wildlife Stand Improvement areas in the Ouachita National Forest of western Arkansas	56
3.	Fuel model descriptors for standard and custom fuel models used to model fire behavior in the Ouachita Mountains, Arkansas, USA.	58
4.	R-square values by treatment and fire behavior parameters for linear regression of observed parameters vs predicted parameters, Ouachita Mountains, Arkansas, USA	59

Chapter IV

1.	Study 1, herbaceous stem density (stems/m ²) and percent frequency of	
	occurrence response to season of fire in restored pine-grassland communities	
	on the Ouachita National Forest, Arkansas, summer 1994 and 1995	89

Table

Chapter IV (Continued)

2.	Study 2, herbaceous stem density (stems/m ²) and percent frequency of occurrence response to season of fire in restored pine-grassland communities on the Ouachita National Forest, Arkansas, summer 1995 and 1996.	90
3.	Post-treatment percent cover in restored red-cockaded woodpecker clusters on the Ouachita National Forest, Arkansas in 1995.	91
4.	Study 2, herbaceous stem density (stems/m ²) and percent frequency of occurrence response to frequent fire in restored pine-grassland communities on the Ouachita National Forest, Arkansas, summer 1995 and 1996.	92

Chapter V

1.	Comparison of growing-season and dormant-season fire behavior parameters, Ouachita National Forest, Arkansas, USA 1995 and 1996	
	(data from Sparks et al. IN REVIEW <u>a</u>).	122
2.	Study 1, woody stem density (stems/m ²) and percent frequency of occurrence by height class to season of fire in red-cockaded woodpecker clusters on the Ouachita National Forest, Arkansas, 1994 and 1995.	123
3.	Study 2, woody stem density (stems/m ²) and percent frequency of occurrence by height class to season of fire in red-cockaded woodpecker clusters on the Ouachita National Forest, Arkansas, 1995 and 1996	124

LIST OF FIGURES

	Chapter II	
1.	Mean Keetch/ Byram Drought Index by month, Oden Ranger District of the Ouachita National Forest for 1985-1996.	28
2.	Mean number of days by month the ambient air temperature reached 32 degrees C or greater for Waldron, AR 1991-1995.	30

Page

Chapter III

1.	Means and Standard Errors by treatment for (a) flame length (m), (b) fireline intensity	y
	(kW/m), (c) rate of spread (m/min), (d) heat per unit area (kJ/m ²) and	
	(e) reaction intensity (kW/m ²).	60

Chapter IV

1.	(a) Stand species richness by study and treatment, (b) Net-change and standard errors in stand species richness by study and treatment.	93
2.	(a) Sample (m^2) species richness by study and treatment, (b) Net-change and standard errors in sample species richness by study and treatment.	95
3.	Detrended correspondence analysis of stand importance values by treatment, Ouachita National Forest.	97

Chapter V

1.	Fire behavior parameters versus total stem density (stems/ha) \geq 1-m for each stand	
	and season of fire (a) fireline intensity (kW/m), (b) rate of spread (m/min), and (c)	
	reaction intensity (kW/m ²), Ouachita National Forest, Arkansas.	125

Figure

viii

CHAPTER I INTRODUCTION

This thesis is composed of 4 distinct manuscripts formatted for submission to 3 scientific journals. Chapter II and III are formatted for the International Journal of Wildland Fire, Chapter IV is formatted for Forest Ecology and Management. and Chapter V for the Wildlife Society Bulletin. Each manuscript is complete as written and requires no additional material for support. Manuscripts are arranged in the order of text, literature cited, tables and figures. Appendixes follow the last manuscript.

CHAPTER II

GROWING-SEASON VERSUS DORMANT-SEASON FIRE BEHAVIOR AND FUEL CONSUMPTION IN THINNED STANDS OF PINE

ABSTRACT. Managers of the pine forests in the southeastern United States have relied primarily on dormant-season fires to meet management objectives, but are beginning to experiment with prescribed fires in different seasons and with varying fire intensities. We observed fire behavior during both growing-season and dormant-season prescribed fires in shortleaf pine (<u>Pinus echinata</u>) stands managed as pine-grassland communities for the endangered red-cockaded woodpecker (<u>Picoides borealis</u>). The Keetch Byram Drought Index during the growing-season was almost 10 times greater than during the dormant season. However, growing-season fires produced discontinuous fire fronts, consumed fuels in a heterogeneous fashion, and burned with less intensity than dormant-season fires. Although potential for escapes was less during growing season fires, high ambient air temperature often resulted in difficult working conditions for burning crews. Effective burning can be achieved during the growing-season, but, managers must be aware of the differences in fire behavior and safety concerns between these two seasons of burning.

Key words: Arkansas, Fire management, Ouachita National Forest, Prescribed fire, Red-cockaded woodpecker, Shortleaf pine.

INTRODUCTION

Fire has a major ecological influence on vegetation in both forested and rangeland communities throughout the world (Christensen 1981; Wright and Bailey 1982; Pyne 1982; 1995). Fire, along with other environmental factors, developed and maintained a mosaic of different ecotypes (Christensen 1981; Singh et al. 1981; Edwards 1984; Waldrop et al. 1992; Pyne 1995; Sparks and Masters 1996). Fire suppression has altered many fire dependent communities often changing plant community structure and composition. For example, fire suppression after settlement in the southeastern United States allowed once open, park-like forested communities to become dense forests, thereby reducing habitat quality for many species of wildlife (Lewis and Harshbarger 1976; Masters 1991; Kreiter 1995; Wilson et al. 1995). Land managers have re-introduced fire to the region primarily for fire hazard reduction, wildlife habitat improvement, endangered species management, control of woody species, seedbed preparation, or for other silviculture reasons.

Managers have until recently largely confined prescribed burning to the dormant season. Managers using prescribed fire are experienced with dormant-season prescriptions, which emphasize winter burns 1 to 3 days after a cold front passes that has delivered 1.3 to 2.5-cm of rain (Mobley et al. 1978). Burning conditions are predictable after the passage of cold fronts because of the presence of a cold air mass, which follows these fronts (Robbins and Myers 1992). Conditions following these fronts are also ideal to meet most silviculture objectives and minimize direct effects on many wildlife species (Robbins and Myers 1992). However, dormant-season fires alone may be ineffective at maintaining habitats of many endemic species over the longterm because they may not mimic natural ecosystem processes (Boerner et al. 1988; Robbins and Myers 1992).

Recent studies indicate that the historic fire regime was one of predominantly late growing-season fires and to a lesser extent dormant-season fires of periodic frequency (Foti and Glenn 1991; Masters et al. 1995). Lightning fires tended to occur with a bimodal distribution, with most occurring during the summer, while aboriginal fires occurred during all seasons, with the majority in late summer and fall (Pyne 1982; Foti and Glenn 1991; Masters et al. 1995). Vegetation composition and structure can be significantly influenced by fire frequency, intensity, and season of burning (Glitzenstein 1995). Therefore, land managers attempting to restore or maintain relicts of natural communities are beginning to mimic presettlement fire regimes by burning in different seasons, with varying intensities and frequencies (Robbins and Myers 1992; Glitzenstein et al. 1995; Masters et al. 1996).

Conventional wisdom in the southern pine forests is that fire during the growing-season will be more intense than dormant-season fires and more greatly influence vegetation (Robbins and Myers 1992; Glitzenstein et al. 1995). However, research and experience with prescribed fire during the growing-season is limited. Land managers are often unaware of differences in fire behavior and common prescription considerations between growing-season and dormant-season prescribed fires. Therefore, managers considering the use of growing-season prescribed fires are faced with uncertain liability risks and perhaps other dangers. Our primary objective was to compare growing-season and dormant-season fire behavior and fuel consumption in thinned stands of shortleaf pine (<u>Pinus echinata</u>) managed as a pine-grassland community for the endangered red-cockaded woodpecker (<u>Picoides borealis</u>). Our purpose was to determine relative risk from a management standpoint of emulating a presettlement fire regime (see Masters et al. 1995).

METHODS

Study Area

Our study sites were located in Scott County of west-central Arkansas on the Poteau Ranger District of the Ouachita National Forest (ONF). The ONF lies within the 2,280,000 ha Ouachita Mixed Forest Meadow Province and comprises 648,000 ha throughout the Ouachita Mountains in Arkansas and Oklahoma (Neal and Montague 1991; Bailey 1995). The Ouachita mountains are east-west trending, strongly dissected, and range in elevation from 150 to 790 m (Fenneman 1938). The thin and drought prone Ouachita Mountain soils developed from sandstone and shale. A subhumid to humid climate prevails with hot summers and mild winters.

Our study focused on stands under active management for the endangered redcockaded woodpecker (<u>Picoides borealis</u>) within the 40,000 ha Pine-bluestem Ecosystem Renewal Area (Wilson et al. 1995; Masters et al. 1996). Management consisted of thinning midstory and codominant pine and hardwood trees followed by dormant-season prescribed burning every three years. We randomly chose 12 stands that had been burned previously in the dormant-season at three year intervals (Table 1). Pinus echinata (shortleaf pine) was the dominant overstory tree species in all stands. Codominant and intermediate overstory species included <u>Quercus stellata</u> (post oak), Q. <u>marilandica</u> (blackjack oak), Q. <u>alba</u> (white oak), Q. <u>rubra</u> (northern red oak), Q. <u>velutina</u> (black oak), <u>Carya texana</u> (black hickory), and <u>C. tomentosa</u> (mockernut hickory). Woody resprouts and shrubs (\leq 3m) dominated the understory of these stands. The dominant understory woody species and vines included <u>Toxicodendron radicans</u> (poison ivy), <u>Vaccinium pallidum</u> (low-bush huckleberry), Q. <u>stellata</u>, <u>C</u>. tomentosa, Rubus spp. (blackberry), <u>Parthenocissus quinquefolia</u> (Virginia creeper), <u>Ceanothus americanus</u> (New Jersey tea), <u>Vitis rotundifolia</u> (muscadine), Q. <u>alba</u> and <u>P</u>. echinata (Sparks 1996).

Treatments

We applied 4 treatments in a completely randomized fashion, with 2 treatments consisting of growing-season fires, and 2 treatments of dormant-season fires. Treatments were as follows:

(1) Growing-season burn (G30; $\underline{n} = 4$);

30 months after previous dormant-season burn;

(2) Dormant-season burn (D36; $\underline{n} = 4$),

36 months after previous dormant-season burn;

(3) Growing-season burn (G43; $\underline{n} = 2$),

43 months after previous dormant-season burn;

(4) Dormant-season burn (D48; $\underline{n} = 2$),

48 months after previous dormant-season burn;

The G43 and D48 treatments differed from G30 and D36 in that experimental prescribed burns were applied after 4 growing seasons and 3 growing seasons after dormant-season burns, respectively.

We conducted growing-season burns between 1200 and 1800 on September 10 to 13, 1994, and October 14 and 15, 1995. We initiated dormant-season burns between 1000 and 1800 on March 31 to April 2, 1995, and March 2 to 4, 1996. We ignited backfires and allowed to burn > 50 m into the stand before igniting strip headfires and sampling fire behavior parameters of the strip headfires.

Stand Characteristics

We characterized canopy species within each stand before burning. We sampled 20-30 points on 2-4 randomly spaced lines perpendicular to the contour. At each sampling location we observed canopy cover using a spherical densiometer (Avery 1967), tree and crown height using a clinometer, crown diameter, and diameter at breast height for the closest tree in each sampling quarter.

Meteorological Data

We measured relative humidity, temperature, cloud cover, and wind speed at sunrise, 1400 hours, and sunset the day before the burn, the day after the burn, and the day of the burn. We also recorded weather observations immediately before igniting the fire, as we observed fire behavior parameters, and immediately upon completion of the fire. We measured wind at 2 m using a totalizing anemometer. We used observed wind speeds to estimate wind speed at 6 m (Albini and Baughman 1979). We used a belt weather kit to determine other weather parameters. Keetch Byram Drought Index data from 1985-1996 for the Oden Ranger District, Arkansas was obtained from the U.S. Forest Service, Ouachita National Forest.

Fuel Sampling

We sampled fuels <1 hour before burning at 3 random locations within each stand. At each location, we harvested all fuels ≤ 1.5 m in height in 4 to 10, 0.5 X 0.5-m quadrats at 5 m intervals, and parallel to the firefront. We hand separated fuels into 1-hour (< 0.6 cm-diameter) dead, 1-hour live, and 10-hour (0.6 to 2.5 cmdiameter) dead components. The majority of fuels in the 100-hour class had been consumed by previous burns so we did not sample this category. We weighed fuels immediately after clipping. After burning, we collected fuel residue at locations paired with pre-fire fuel samples by sampling all residual dead and live vegetation less than 2.5 cm in diameter to a height of 1.5 m. All fuel samples were dried at 70 degrees C to a constant weight. Fuel moisture was calculated on a dry weight basis.

We determined fuel energy by selecting 3 random samples of dried fuels from each stand burned during the dormant-season of 1995 and growing-season of 1994 (\underline{n} = 24). We combined 1-hour and 10-hour live and dead fuel components for each preburn observation, ground samples to a fine powder and compressed them into 1-g pellets. We then combusted these pellets in a bomb calorimeter to determine high heat of combustion.

Fire Behavior Observations

We recorded rate of spread (ROS), flame length (FL), flame depth (FD), and residence time (RT) at all 3 fuel sampling locations. Before headfire ignition we placed

3 sets of 2 m freestanding stakes, with heights marked at 0.5 m intervals, at 5 m apart and perpendicular to the firefront. Three observers estimated fire behavior parameters by observing and timing the fire as the firefront passed each set of stakes, as described by Rothermel and Deeming (1980). We repeated this procedure ≥ 2 times at 3 locations within each stand ($n \geq 18$).

We calculated fireline intensity by Byram's (1959) formula ($I_B = hwr$), where I_B is frontal fire intensity (kW/m), h is net heat of combustion (kJ/kg) obtained by adjusting fuel high heat of combustion for fuel moisture and heat of vaporization, w is fuel consumed (kg/m²) calculated as pre-burn fuel load minus post-burn residual fuel, and r is rate of spread (m/sec). We estimated the total energy released in the active flame front, or heat per unit area (kJ/m²) (H_a), by dividing fireline intensity (kW/m) by rate of spread (m/min) (Rothermel and Deeming 1980). We determined reaction intensity (kW/m²) (I_R), or the rate of energy release per unit area of flaming zone, by dividing fireline intensity (kW/m) by flame depth (m) (Albini 1976; Alexander 1982).

We tested all variables for homogeneity of variance using Levene's test (Snedecor and Cochran 1980). None of these tests were significant, indicating homogeneous variances. We then used a 2 X 2 factorial analysis of variance to test for differences between years, burn season, and for an interaction between year and burn season. We separated means ($\underline{P} \leq 0.05$) with the protected least significant difference test (Steel and Torrie 1980).

RESULTS AND DISCUSSION

High relative humidity and light and variable wind along with the presence of live vegetation caused growing-season fires to be low intensity and burn a given area in a patchy discontinuous fashion. Our dormant-season fires produced greater fireline intensity, heat per unit area, reaction intensity and rate of spread than fires during the growing-season (Table 2). The Keetch Byram Drought Index (KBDI) for the nearby Oden Ranger District (Figure 1) indicates that prescribed fires during the growing season should burn with greater intensity than dormant-season fires because of greater amounts of available fuel (Melton 1989). Melton (1989) noted that an active fire situation develops when KBDI values exceeds 200 and approaches 300 and at KBDI levels between 300 and 500, the fire consumes most of the surface litter and fire intensity increases dramatically (Melton 1989). Fuel moisture was similar between seasons, but dormant-season fires had more 1-hour dead and total fuel than growingseason fires (Table 3). We attribute the increase in fuel load during the dormant season to hardwood leaf fall in late autumn and early winter (Engle and Stritzke 1995). Fuel decomposition is also less during the dormant season because of low temperature and lower relative humidity, thereby allowing accumulated leaf litter to persist throughout the winter (Engle and Stritzke 1995). Furthermore, the majority of standing vegetation during dormant-season fires was dormant or "cured", and served as dead 1-hour timelag fuels, whereas a large proportion of standing vegetation was actively growing with high moisture content during growing-season fires.

One-hour dead fuel moisture is a primary controlling factor of fire behavior on the fire front (Andrews 1986). One-hour live fuel moisture depends on physiological changes in the plant (Andrews 1986), and can influence ignition and spread patterns depending on the distribution, quantity and moisture content of live vegetation. Therefore, because of sparse and patchily distributed live vegetation, fuel consumption was greater in dormant-season fires (Table 3).

Woody understory species were primarily deciduous, therefore solar radiation and wind exposure to the fuels increased during the dormant season. Increased solar radiation and exposure to wind allowed fuels to dry quickly after precipitation. Large amounts of live herbaceous vegetation and shading from the dense woody shrub layer resulted in discontinuous fire fronts, leaving a mosaic of unburned areas during growing-season fires. In contrast, dormant-season fires produced continuous fire fronts and relatively homogeneous fuel consumption across the stand, leaving very few unburned patches.

Behavior parameters based on flame characteristics were similar for all treatments (Table 2). Unlike other behavior parameters, flame length and depth are difficult to estimate because the flame is unsteady, causing observers to estimate average lengths (Rothermel and Deeming 1980). Also, the correlation of flame length with fireline intensity is not always high nor does it follow a standard function (Clark 1983; Nelson and Adkins 1986; Finney and Martin 1992). Fuels and weather conditions are dynamic and change by season (Table 3), and, both have a major influence on fire behavior. Dormant-season fires in this study were less intense than fires observed by Masters and Engle (1994) in a nearby study in open <u>Quercus</u> dominated stands. The difference in fire behavior can be contributed to the fact that Masters and Engle (1994) observed fire behavior in a open forest type (% canopy cover=5-24%) with the dominant fuel type consisting of standing dormant grasses. We observed fire behavior in stands with greater canopy cover (% canopy cover = 84%) with fuels dominated by pine needles and hardwood leaf litter with only scattered patches of grass. Pine needles contributed less to fire spread in our fires than did the grass fuels in the fires of Masters and Engle (1994) because, un-weathered conifer needles often act like 10 hour time-lag fuels or greater (Anderson 1990; Hartford and Rothermel 1991). Although the packing ratio was not measured in either study, we believe fuel bed porosity differed greatly between these two studies, with much greater packing of the fuel beds in our study.

Risk Assessment

Growing-season fires have been perceived to produce fires of greater intensity than dormant-season fires (Komarek 1965; Waldrop et al. 1992), but our dormantseason fires were more intense (Table 2). We attempted to burn under conditions necessary to create more severe fire behavior in the growing season of the second year of this study (KBDI > 650), but even these fires were less intense than dormant-season fires (KBDI < 100) (Table 4). We believe our growing-season fires were less intense than the KBDI would indicate because of the relatively large amount of live 1-hour fuels. However, we also believe it is possible for growing-season fires conducted under extreme conditions (i.e. small amounts of live fuels) that accompany unusually dry summers or droughty years to produce higher fireline intensities and potentially have a greater influence on woody vegetation than we observed in our study. We used strip headfires to burn all stands. Fires utilizing other fire ignition techniques (i.e., ring fires) may be more intense than the fires we observed. However, the risk of overstory damage would increase if high intensity fires were used during the growingseason when temperatures are higher and particularly when light winds prevail (Robbins and Myers 1992).

Growing-season fires were generally of low intensity with slower rates of spread, allowing for easily suppressed fires. We observed 18 growing-season fire fronts in 6 stands. Of those, 12 fire fronts had fireline intensities < 345 kW/m, which are within the range of direct attack at the head by persons using hand tools (Rothermel 1983). The other 6 had fireline intensities > 345 kW/m and would require equipment such as plows, dozers, pumpers and retardants for suppression (Rothermel 1983). In comparison, only 1 of the 18 dormant-season fire fronts observed produced a fireline intensity < 345 kW/m.

Growing-season fires had a low potential for escape, so line construction needs and personnel requirements were reduced (Robbins and Myers 1992). However, members of the burn crew were heat stressed in the growing-season fires because of the high ambient air temperatures coupled with high relative humidities creating high heat indices. For example, we burned 1257 with an ambient air temperature of 30 degrees Celsius coupled with 50% relative humidity that produced a heat index of 32 degrees Celsius in a shaded area. Heat exhaustion, cramps and sunstroke are possible at indices between 32 and 41, and exposure to heat indices greater than 41 is dangerous (Quayle and Doehring 1981; Chang et al. 1996). Furthermore, exposure to sun can increase heat indices by 7 to 9 degrees (Quayle and Doehring 1981; Chang et al. 1996), and exposure to a burning fire would also elevate these indices (Quayle and Doehring 1981). Many days have ambient air temperatures greater than 32 degrees C during the growing season (Figure 1), which produces dangerous heat indices. <u>Management Implications</u>

Managers must be aware of the implications and risks involved with burning during the growing-season. Common prescriptions for dormant-season (i.e., winter) burning are 1) mid-flame windspeed between 3 and 15 km/h, 2) relative humidity of 30 to 55 percent, and 3) temperature below 16 degrees C (Wade and Lunsford 1989). Seldom do all of the above parameters occur within the acceptable ranges during the growing season. Relative humidity during the growing season tends to be higher because of the influx of moisture from the Gulf of Mexico. Temperatures, which preheat fuels, in the growing season are also considerably higher than acceptable ranges for dormant-season fires (Table 4). Winds during the growing season are light and variable, and can change suddenly and unexpectedly with afternoon storms (Robbins and Myers 1992).

Burning during the growing season is often ruled out because of 1) frequent afternoon thunderstorms, making it difficult to predict a burning day, 2) widely scattered rainfall cannot be predicted, so the site must be checked the day of the burn, and 3) high ambient air temperature and lack of steady winds to dissipate heat, thereby increasing the risk of crown damage (Robbins and Myers 1992). These problems can be reduced if the fire officer arrives to the burn area early, observes weather conditions on site, and inspects the fireline for any trouble areas before fire ignition. If crown scorching and fire suppression are major concerns for managers inexperienced with growing-season fires, then small scale fires should be performed initially, allowing managers to gain experience and to modify their prescriptions with minimal risks of escape and timber damage. To reduce crown scorching of pine trees, managers can modify their prescriptions for lower ambient air temperatures and greater windspeeds (see also Wade 1986; Robbins and Myers 1992). Crown scorch and damage to overstory pines is a major consideration for red-cockaded woodpecker management because suitable cavity trees may be limited in some stands.

Growing-season fires produced more smoke because of the large quantity of live vegetation and high fuel moisture. Therefore, managers should exercise added caution when burning near smoke-sensitive areas in the growing season. As the elevated KBDI indicates, larger fuels such as snags, stumps and fallen logs burned for several days after the growing-season burns. The presence of burning snags may increase the potential for escapes if the wind shifts or increases in the days following a growingseason fire. Fire managers inexperienced with growing-season fires may find it difficult to accommodate the patchy burns that growing-season fires produced. Silviculture practices, such as pine plantation burns, often require homogeneous burn patterns that dormant-season fires produced. In contrast, the patchy burning patterns resulting from growing-season fires may benefit many wildlife species because of the mosaic of habitats created (Burrows and Christensen 1991).

CONCLUSIONS

Our results indicate that fires in the growing season behave differently from fires in the dormant season. In comparison, growing-season fires produced low intensity and discontinuous fire fronts leaving a mosaic of burned and unburned areas. Dormant-season fires had a higher potential for escapes than growing-season fires, but resulted in an homogeneous burn pattern. When burning during the growing season, managers should be aware of the chance for wind shifts because of afternoon thunderstorms, excessive smoke, longer burn-out time of larger fuels, and physical stress on personnel conducting the fires.

REFERENCES

- Albini, F. A. 1976. Estimating wildfire behavior and effects. United States
 Department of Agriculture, Forest Service General Technical Report
 INT-30, Intermountain Forest and Range Experiment Station, Ogden,
 Utah, USA. 92 pages.
- Albini, F. A. and R. G. Baughman. 1979. Estimating wind speeds for predicting wildland fire behavior. United States Department of Agriculture, Forest Service Research Paper INT 221, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 12 pages.
- Alexander M. E. 1982. Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60: 349-357.

Anderson, H. E. 1990. Moisture diffusivity and response time in fine forest fuels. Canadian Journal of Forest Research 20: 315-325.

Andrews, P. L. 1986. BEHAVE: fire behavior prediction and fuel modeling system - BURN subsystem, part 1. United States Department of Agriculture, Forest Service General Technical Report INT-194, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 130 pages.

- Avery, T. E. 1967. Forest measurements. McGraw-Hill Co., New York, USA. 290 pages.
- Bailey, R. G. 1995. Description of the ecoregions of the United States. 2nd edition. United States Department of Agriculture, Forest Service Miscellaneous Publication 1391 (Revised), Washington, D.C., USA. 108 pages.
- Boerner, R. E. J., T. R. Lord, and J. C. Peterson. 1988. Prescribed burning in the oak-pine forest of the New Jersey Pine Barrens: effects on growth and nutrient dynamics of two <u>Quercus</u> species. American Midland Naturalist 120: 108-119.

Burrows, N. D. and P. E. S. Christensen. 1991. A survey of aboriginal fire patterns in the Western Desert of Australia. In Fire and the environment: ecological and cultural perspectives: Proceedings of an international symposium. United States Department of Agriculture, Forest Service General Technical Report SE-69, USA. Pages 297-305.

- Byram, G. M. 1959. Combustion of forest fuels. In Forest fire: control and use (edited by K. P. Davis). McGraw Hill Book Co., New York, USA. Pages 61-89.
- Chang, M., L. D. Clendenen, and H. C. Reeves. 1996. Characteristics of a humid climate. Center for Applied Studies in Forestry, Nacogdoches, Texas, USA. 211 pages.
- Christensen, N. L. 1981. Fire regimes in southeastern ecosystems. In Proceedings of the conference on fire regimes and ecosystem properties (edited by H. A. Mooney, T. M. Bonnicksen, N. L. Christensen, J. E. Lotan, and W. A. Reiners). United States Department of Agriculture, Forest Service General Technical Report WO-26, USA. Pages 112-136.
- Christensen, P., H. Recher, and J. Hoare. 1981. Responses of open forest to fire regimes. In Fire and the Australian biota (edited by A. M. Gill, R. H. Groves, and I. R. Noble). Australian Academy of Science, Canberra. Pages 367-394.
- Clark, R. G. 1983. Threshold requirements for fire spread in grassland fuels.Ph.D. Thesis, Texas Tech University, Lubouck, USA. 72 pages.
- Edwards, D. 1984. Fire regimes in the biomes of South Africa. In Ecological effects of fire in South African ecosystems (edited by P. de V. Booysen and N. M. Tainton). Springer-Verlag, New York, USA. Pages 19-37.
- Engle, D. M. and J. F. Stritzke. 1995. Fire behavior and fire effects on eastern redcedar in hardwood leaf-litter fires. International Journal of

Wildland Fire 5: 135-141.

- Fenneman, N. M. 1938. Physiography of eastern United States. McGraw-Hill Book Co., New York, USA. 714 pages.
- Finney, M. A. and R. E. Martin. 1992. Calibration and field testing of passive flame height sensors. International Journal of Wildland Fire 2: 115-122.
- Foti, T. L. and S. M. Glenn. 1991. The Ouachita Mountain landscape at the time of settlement. In Restoration of old growth forests in the interior highlands of Arkansas and Oklahoma: Proceedings of the Conference (edited by D. Henderson and L. D. Hedrick). Morrilton, Arkansas, USA. Pages 49-65.
- Glitzenstein, J. S., W. J. Platt, and D. R. Streng. 1995. Effects of fire regime and habitat on tree dynamics in North Florida longleaf pine savannas. Ecological Monographs 65: 441-476.
- Hartford, R. A. and R. C. Rothermel. 1991. Fuel moisture as measured and predicted during the 1988 fires in Yellowstone
 Park. United States Department of Agriculture, Forest Service
 Research Note INT-396, Intermountain Forest and Range
 Experiment Station, Ogden, Utah, USA. 7 pages.
- Komarek, E. V. 1965. Fire ecology--grasslands and man. In Proceedings of the fourth annual Tall Timbers Fire Ecology Conference. 4: 169-220.
- Kreiter, S. D. 1995. Dynamics and spatial pattern of a virgin old-growth hardwood-pine forest in the Ouachita Mountains, Oklahoma, from 1896

to 1994. M.S. Thesis, Oklahoma State University, Stillwater, USA. 141 pages.

- Lewis, C. E. and T. J. Harshbarger. 1976. Shrub and herbaceous vegetation after 20 years of prescribed burning in South Carolina Coastal Plain. Journal of Range Management 29: 13-18.
- Masters, R. E. 1991. Effects of timber harvest and prescribed fire on wildlife habitat and use in the Ouachita Mountains of eastern Oklahoma. Ph.D. Thesis, Oklahoma State University, Stillwater, USA. 351 pages.
- Masters, R. E. and D. M. Engle. 1994. BEHAVE--Evaluated for prescribed fire planning in mountainous oak-shortleaf pine habitats. Wildlife Society Bulletin 22: 184-191.
- Masters, R. E., J. E. Skeen, and J. Whitehead. 1995. Preliminary fire history of McCurtain County Wilderness Area and implications for red-cockaded woodpecker management. In Red-cockaded woodpecker: species recovery, ecology and management (edited by D. Kulhavy, B. Hooper, and R. Costa). Center for Applied Studies, Stephen F. Austin University, Nacogdoches, Texas, USA. Pages 290-302.
- Masters, R. E., C. W. Wilson, G. A. Bukenhofer, and M. E. Payton. 1996.
 Effects of pine-grassland restoration for red-cockaded woodpeckers on white-tailed deer forage production. Wildlife Society Bulletin 25: 77-84.
- Melton, M. 1989. The Keetch/Byram Drought Index: A guide to fire conditions and suppression problems. Fire Management Notes 50: 30-

- Mobley, H. E., R. S. Jackson, W. E. Balmer, W. E. Ruziska, and W. A.
 Hough. 1978. A guide for prescribed fire in southern forests. United
 States Department of Agriculture, Forest Service, Atlanta, Georgia,
 USA. 40 pages.
- Neal, J. C. and W. G. Montague. 1991. Past and present distribution of the red-cockaded woodpecker <u>Picoides borealis</u> and its habitat in the Ouachita Mountains, Arkansas. Proceedings of the Arkansas Academy of Science 45: 71-75.
- Nelson, R. M. and C. W. Adkins. 1986. Flame characteristics of wind-driven surface fires. Canadian Journal of Forest Research. 16: 1293-1300.
- Pyne, S. J. 1982. Fire in America: a culture history of wildland and rural fire. Princeton University Press, Princeton, New Jersey, USA. 654 pages.
- Pyne, S. J. 1995. World fire: the culture of fire on earth. Henry Holt and Company, New York, USA. 379 pages.
- Quayle, R. and F. Doehring. 1981. Heat stress, a comparison of indices. Weatherwise 34: 120-124.
- Robbins, L. E. and R. L. Myers. 1992. Seasonal effects of prescribed burning in Florida: a review. Tall Timbers Research, Inc.
 Miscellaneous Publication Number 8. Tallahassee, Florida, USA. 96 pages.

Rothermel, R. C. 1983. How to predict the spread and intensity of

forest and range fires. United States Department of Agriculture, Forest Service Research Paper INT-143, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 161 pages.

- Rothermel, R. C. and J. E. Deeming. 1980. Measuring and interpreting fire behavior for correlation with fire effects. United States Department of Agriculture, Forest Service General Technical Report INT-93, Intermountain Forest and Range Experiment Station, Ogden Utah, USA. 4 pages.
- Singh, G., A. P. Kershaw, and R. Clark. 1981. Quaternary vegetation and fire history in Australia. In Fire and the Australian biota (edited by A. M. Gill, R. H. Groves, and I. R. Noble). Australian Academy of Science, Canberra. Pages 243-272.
- Snedecor, G. W. and W. G. Cochran. 1980. Statistical methods, 7th edition. Iowa State University Press, Ames, Iowa, USA. 507 pages.
- Sparks, J. C. 1996. Growing-season and dormant-season fire behavior and effects on vegetation in the Ouachita Mountains, Arkansas. M.S. Thesis, Oklahoma State University, Stillwater, USA. 186 pages.
- Sparks, J. C. and R. E. Masters. 1996. Fire seasonality effects on vegetation in mixed-, tall-, and southeastern pine-grassland communities: a review. Transactions of the 61st North American Wildlife and Natural Resources Conference. Pages 230-239.

Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics,

a biometrical approach: second edition. McGraw-Hill Book Company, New York, USA. 633 pages

- Wade D. D. and J. D. Lunsford. 1989. A guide for prescribed fire in southern forests. United States Department of Agriculture,
 Forest Service Technical Publication R8-TP 11. 56 pages.
- Waldrop, T. A., D. L. White, and S. M. Jones. 1992. Fire regimes for pinegrassland communities in the southeastern United States. Forest Ecology and Management 47: 195-210.
- Wilson, C. W., R. E. Masters and G. A. Bukenhofer. 1995. Breeding bird responses to pine-grassland community restoration for red-cockaded woodpeckers. Journal of Wildlife Management 59: 56-67.
- Wright, H. A. and A. W. Bailey. 1982. Fire ecology: United States and Southern Canada. John Wiley and Sons, New York, USA. 501 pages.

Stand,	,	Fire	Months since	Stand	Stand	6 1	Mean	Mean	Mean	Mean	Mean	Mean
treat	nent	date	last fire	(ha)	(m)	(%)	Dasal area (m²/ha)	(m)	(cm)	(m)	(m)	(%)
Dormant	Season											
1313,	D36	3-31-95	36	13.8	305	7	24	15.0	27.9	6.5	5.4	90
1274,	D36	4-1-95	36	16.2	336	7	25	16.5	28.2	7.0	5.3	94
1289,	D36	4-1-95	36	16.2	335	7	17	15.0	29.1	6.0	5.4	82
1257,	D36	4-2-95	36	16.2	305	7	20	15.5	31.5	7.0	6.3	88
1257,	D48	3-2-96	48	18.2	335	9	14	17.0	32.6	9.0	7.1	68
1313,	D48	3-3-96	48	26.7	305	8	23	15.0	26.9	7.0	4.9	84
Growing	Season											
1274,	G30	9-10-94	30	24.3	338	3	23	22.0	30.7	10.0	6.1	87
1289,	G30	9-11-94	30	13.8	333	8	17	21.0	32.8	9.0	5.9	81
1257,	G30	9-12-94	30	16.2	292	13	18	20.5	32.3	9.5	6.1	81
1259,	G30	9-13-94	30	16.2	305	9	17	21.5	33.4	10.0	6.5	72
1265,	G43	10-14-95	43	16.2	335	4	23	21.5	29.7	9.0	5.7	93
1274,	G43	10-15-95	43	17.8	305	15	26	23.0	27.6	10.0	5.2	92

Table 1. Stand characteristics at time of growing-season and dormant season fires in the Ouachita Mountains of Arkansas, USA.

^a DBH= diameter at breast height.

~

	Treatment ^a						
Fire Behavior Parameter	Dormant Season (<u>n</u> = 6)			Growing Season ($\underline{n} = 6$)			
	Mean	Min	Max	Mean	Min	Max	
Flame Length (m)	0.5	0.4	0.8	0.5	0.3	0.8	
Flame Depth (m)	0.8	0.5	1.4	0.4	0.2	0.7	
Rate of Spread (m/min)	8.5a	4.9	12.6	2.9b	0.6	6.2	
Residence Time (Sec)	11	8	15	26	14	54	
Fireline Intensity (kW/m)	1,300a	534	2,082	281b	58	691	
Heat per Unit Area (kJ/m²)	8,827a	6,745	10,415	5,803b	5,150	6,668	
Reaction Intensity (kW/m²)	1,955a	905	2,767	618b	394	961	

Table 2. Comparison of growing-season and dormant-season fire behavior parameters, Ouachita National Forest, Arkansas, USA (1995 and 1996).

 $^{\rm a}$ Row means followed by the same letter were not different (P > 0.05).

Fuel Conditions	Treatment ^a					
	Dormant Season (<u>n</u> = 6)		Growing Season ($\underline{n} = 6$)			
	Mean	Std error	Mean	Std error		
Fuel load ^c (kg/ha)						
1 hour live fuels	240b	30	930a	120		
1 hour dead fuels	10,030a	740	7,610b	410		
10 hour dead fuels	930	60	1,020	180		
Total fuel load	11,210a	700	9,600b	540		
Post burn residual	5,710	520	5,670	570		
Fuel Consumption	5,480a	320	3,910b	180		
Fuel Moisture (%)						
1 hour live	125	10	110	3		
1 hour dead	20	3	14	2		
10 hour dead	30	5	31	3		

Table 3. Fuel conditions during growing- and dormant-season prescribed fires on Wildlife Stand Improvement areas in the Ouachita National Forest, USA (1994, 1995, and 1996).

^a Row mean followed by the same Row mean followed by the same letter were not different (\underline{P} > 0.05).

Stand, Fire		Mean	Mean	Mean	Mean	Keetch/Byram	
treatment	date	Temperature	Relative Humidity	Wind Speed	Cloud Cover	Drought Index	
		(C)	(%)	(km/h)	(%)		
ormant Season							
1313, D36	3-31-95	14	43	5	17	79	
1274, D36	4-1-95	20	26	2	55	85	
1289, D36	4-1-95	19	34	11	17	85	
1257, D36	4-2-95	24	25	5	5	95	
1257, D48	3-2-96	14	29	4	3	68	
1313, D48	3-3-96	15	38	5	0	71	
rowing Season							
1274, G30	9-10-94	27	53	3	19	137	
1289, G30	9-11-94	28	53	4	25	155	
1257, G30	9-12-94	30	50	7	22	172	
1259, G30	9-13-94	30	49	7	20	189	
1265, G43	10-14-95	19	30	2	0	659	
1274, G43	10-15-95	25	23	3	0	662	

Table 4. Mean weather conditions during growing-season and dormant-season prescribed fires. Ouachita National Forest, Arkansas, USA.

-

Figure 1. Mean Keetch/ Byram Drought Index by month, Oden Ranger District of the Ouachita National Forest for 1985-1996.

Figure 2. Mean number of days by month the ambient air temperature reached 32 degrees C or greater for Waldron, AR 1991-1995.

Mean Number of Days

31

CHAPTER III

INFLUENCE OF FIRE SEASON ON ACCURACY OF BEHAVE PREDICTIONS OF FIRE BEHAVIOR

ABSTRACT. We compared predicted fire behavior of 4 standard BEHAVE fuel models and site specific customized models with observed fire behavior in shortleaf pine (<u>Pinus echinata</u>) stands managed for the endangered red-cockaded woodpecker (<u>Picoides borealis</u>). We observed fire behavior in growing-season and dormant-season prescribed fires. Models varied in accuracy depending on fuel loading and season of fire. Therefore, multiple models were required to accurately characterize all fire behavior parameters across fire seasons and fuel loads. When used with the appropriate fuel model, BEHAVE has the potential to predict fire behavior parameters before ignition, ideally limiting risk involved with burning in these seasons. Accurate predictions are important for endangered species management as well as assessment of safety.

Keywords: Fire management; Fire models; Fuel models; Ouachita National Forest; <u>Picoides borealis; Pinus echinata;</u> Prescribed fire; Red-cockaded woodpecker; Shortleaf pine.

INTRODUCTION

Fire is a natural and dynamic force that played a major role in presettlement landscape development in both forest and rangeland communities worldwide (Christensen et al. 1981; Gill 1981; Pyne 1982; Wright and Bailey 1982; Bigalke and Willan 1984; Kruger 1984; Chandler et al. 1983; Sparks and Masters 1996). However, fire control and prevention has altered many of these fire derived communities, often causing many plant and animal species dependent on these communities to decline or become endangered. Land managers throughout the world attempt to restore and maintain relics of these communities by initiating prescribed fire to meet specific objectives such as endangered species management, manipulation of community composition, fire hazard reduction, wildlife habitat improvement, control of woody species, and seedbed preparation (Van Lear 1985; Waldrop et al. 1992; Wilson et al. 1995; Masters et al. 1996).

Computer models utilizing on-site environmental data to predict common fire behavior parameters can be used before fire ignition providing managers with insight on the probability of achieving desired objectives, possibility of escapes, and equipment required to suppress the firefront (Raybould and Roberts 1983; Andrews and Bradshaw 1990). BEHAVE is a wildland fire behavior and fuel modeling system developed by the U.S. Department of Agriculture, Forest Service to provide real-time fire behavior predictions of large scale wildland fires or prescribed natural fires (Burgan and Rothermel 1984; Andrews 1986; Andrews and Chase 1989). However, when used with caution, BEHAVE can be utilized for fire behavior training, dispatch of crews for initial attack and prescribed fire planning (Andrews 1986; Andrews and Chase 1989; Andrews and Bradshaw 1990).

BEHAVE is equipped with 13 standard fuel models and the capability of customizing site-specific models (Andrews 1986; Andrews and Chase 1989). Standard models vary according to fuel type, fuel load, and fuel structure. However, fuels are dynamic and describing them often requires more than one model, depending on management history, the season of fire, fuel bed depth, and subsequent weather conditions. Furthermore, a standard model may not adequately characterize a site, therefore managers may need to modify a model for their particular situation. Managers must be aware of the complexity of fuels, and be capable of choosing the appropriate model for a given situation.

Many researchers are beginning to experiment with fire in different seasons and with fires of varying intensities to accomplish management objectives (Robbins and Myers 1992; Glitzenstein et al. 1995). Fire behavior characteristics may be used to predict the influence on herbaceous and woody vegetation (Engle et al. 1996; Sparks 1996). Accurate fire behavior predictions can thus be used to define burning windows and potential habitat change for management of endangered species such as the redcockaded woodpecker (<u>Picoides borealis</u>). Currently, research and experience with prescribed fire at times other than the late dormant-season is limited. Therefore, managers are faced with uncertain liability risks from fire escapes, residual smoke and uncertain management outcomes when using prescribed fire for endangered species management. However, fire behavior models such as BEHAVE maybe useful for increasing the efficacy of prescribed fires and reducing liability (Masters and Engle 1994). Predictive fire behavior models such as BEHAVE were developed for use in continuous fine fuels under wildfire situations. Therefore, these models must be validated before fire management decisions are based on predicted outcomes.

Our primary objective was to evaluate the accuracy of BEHAVE's predictions by determining the most appropriate fuel model for thinned stands of shortleaf pine (<u>Pinus echinata</u>), managed as a pine-grassland community for the red-cockaded woodpecker. We also wanted to determine the efficacy of using a single fuel model in different seasons.

METHODS

Study Area

Our study sites were located on the Poteau Ranger District of the Ouachita National Forest (ONF) in Scott County of west-central Arkansas. The ONF lies within the 2,280,000 ha Ouachita Mixed Forest-Meadow Provide and comprises 648,000 ha throughout the Ouachita Mountains in Arkansas and Oklahoma (Neal and Montague 1991; Bailey 1995). The Ouachita mountains are east-west trending, strongly dissected, and range in elevation from 150-790 m (Fenneman 1938). Soils in the Ouachita Mountains developed from sandstone and shales and are thin and drought prone. The climate of the area is semi-humid to humid with hot summers and mild winters.

Our study focused on stands under active management for the endangered redcockaded woodpecker (<u>Picoides borealis</u>) within the 40,000 ha Pine-bluestem Ecosystem Renewal Area (Masters et al. 1996; Wilson et al. 1995). Management consisted of thinning midstory and codominant pine and hardwood trees and is known as Wildlife Stand Improvement (WSI). Dormant-season prescribed burning every three years followed WSI. Three-year fire intervals are the most common after WSI, but intervals vary from 1 to 4 years. We randomly chose 12 stands that had been burned previously in the dormant season between 1 to 5 times at 3 year intervals (Table 1).

Pinus echinata (shortleaf pine) was the dominant overstory tree species in all stands (Table 1). Codominant and intermediate overstory species included Quercus stellata (post oak), Q. marilandica (blackjack oak), Q. alba (white oak), Q. rubra (northern red oak), Q. velutina (black oak), Carya texana (black hickory), and C. tomentosa (mockernut hickory). Woody resprouts and shrubs (\leq 3m) dominated the understory of these stands. The dominant understory species included Toxicodendron radicans (Poison ivy), Vaccinium pallidum (Low-bush huckleberry), Q. stellata, Rubus spp. (Blackberry), Parthenocissus quinquefolia (virginia creeper), Ceanothus americanus (New Jersey Tea), Vitis rotundifolia (muscadine), Q. alba and P. echinata (Sparks 1996).

Treatments

We applied 5 treatments in a completely randomized fashion, with 2 treatments consisting of growing-season fires, and 3 treatments of dormant-season fires. Treatments were as follows:

(1) Growing-season burn (G30; $\underline{n} = 4$);

30 months after previous dormant-season burn;

(2) Dormant-season burn (D36; $\underline{n} = 4$),

36 months after previous dormant-season burn;

(3) Growing-season burn (G43; $\underline{n} = 2$),

43 months after previous dormant-season burn;

(4) Dormant-season burn (D48; $\underline{n} = 2$),

48 months after previous dormant-season burn;

(5) Dormant-season burn (D12; $\underline{n} = 2$),

12 months after previous dormant-season burn.

The G43 and D48 treatments differed from G30 and D36 in that experimental prescribed burns were applied after 4 growing seasons and 3 growing seasons respectively. The G43, D48, and D12 treatments were added to test model flexibility under different fuel loads.

We conducted growing-season burns between 1200 and 1800 on September 10 to 13, 1994, and October 14 and 15, 1995 (Table 1). We initiated dormant-season prescribed fires between 1000 and 1800 on March 31 to April 2, 1995, and March 2 to 4, 1996 (Table 1). We ignited backfires and allowed to burn > 50 m into the stand before igniting strip headfires and sampling fire behavior parameters of the strip headfires.

Fuel Sampling

We sampled fuels <1 hour before burning at 3 random locations within each stand. At each location, we harvested all fuels ≤ 1.5 m in height in 4 to 10, 0.5 X 0.5-m quadrats at 5 m intervals, parallel to the firefront. We hand separated fuels into

1-hour (< 0.6 cm-diameter) dead, 1-hour live, and 10-hour (0.6 to 2.5 cm-diameter) dead components. We weighed fuels immediately after clipping. After burning, we collected fuel residue at locations paired with pre-fire fuel samples by sampling all residual dead and live vegetation less than 2.5 cm in diameter to a height of 1.5 m. All fuel samples were dried at 70 degrees C to a constant weight. Fuel moisture was calculated on a dry weight basis. We also determined fuel moisture of 10-hour fuels using standard fuels sticks and a protimeter. Fuel loads varied considerably, while mean fuel moisture was similar across all treatments (Table 2).

We calculated fuel energy by selecting 3 random samples of dried fuels from each stand burned during the dormant season of 1995 and growing season of 1994 (n =24). We combined 1-hour and 10-hour live and dead fuel components for each preburn observation, ground samples to a fine powder and compressed them into 1-g pellets. We then combusted these pellets in a bomb calorimeter to determine high heat of combustion.

Meteorological Data

We measured relative humidity, temperature, cloud cover, and wind speed at sunrise, 1400 hours and sunset the day before the burn, the day after the burn, and the day of the burn. We also recorded weather observations immediately before igniting the fire, as we observed fire behavior parameters, and immediately upon completion of the fire. We measured wind at 2 m using a totalizing anemometer. We used observed wind speeds to estimate wind speed at 6 m (Albini and Baughman 1979). We used a belt weather kit to determine other weather parameters. We verified our observations

38

with weather data from the Poteau Ranger District Headquarters in Waldron, Arkansas and the National Weather Service in Tulsa, Oklahoma, for Fort Smith observations. Weather parameters by treatment are in Table 2.

Stand Characteristics

We characterized the canopy species within each stand before burning. In September, 1994 and March and April, 1995 we sampled 30 points at 30-m intervals on 2 to 4 randomly spaced lines perpendicular to the contour. In October of 1995 and March of 1996 we sampled 20 locations within each stand. At each sampling location we estimated canopy cover with a spherical densiometer (Avery 1967), tree and crown height using a clinometer, crown diameter, and diameter at breast height for the closest tree in each sampling quarter. We estimated mean tree height and the ratio of crown length to tree height and crown length to crown diameter from these observations for use in BEHAVE.

Fire Behavior Observations

We recorded rate of spread (ROS), flame length (FL), flame depth (FD), and residence time (RT) at all 3 fuel sampling locations. Before headfire ignition we placed 3 sets of 2 m freestanding stakes, with referenced heights marked at 0.5 m intervals, at 5 m apart and perpendicular to the firefront. Three observers estimated fire behavior parameters by observing and timing the fire as the firefront passed each set of stakes, as described by Rothermel and Deeming (1980). We repeated this procedure ≥ 2 times at 3 locations within each stand ($n \geq 18$). We calculated fireline intensity by Byram's (1959) formula ($I_B = hwr$), where I_B is frontal fire intensity (kW/m), h is net heat of combustion (kJ/kg) obtained by adjusting fuel high heat of combustion for fuel moisture and heat of vaporization, w is fuel consumed (kg/m²) calculated as pre-burn fuel load minus post-burn residual fuel, and r is rate of spread (m/sec). We estimated the total energy released in the active flame front, or heat per unit area (kJ/m²) (H_a) by dividing fireline intensity (kW/m) by rate of spread (m/min) (Rothermel and Deeming 1980). We determined reaction intensity (kW/m²) (I_R), or the rate of energy release per unit area of flaming zone, by dividing fireline intensity (kW/m) by flame depth (m) (Albini 1976; Alexander 1982). Creating Custom Fuel Models

We used TSTMDL in BEHAVE to create a site specific, static fuel model for each treatment type ($\underline{n} = 5$), by adjusting the values of the Southern Rough model (model 7). We used the fuels sampled in each stand to represent fuel load. We calculated depth of the fuel bed in NEWMDL and used this value in TSTMDL. After customizing model 7, we used TSTMDL to test the model against observed fire behavior using environmental data we collected. We fine tuned extinction moisture, fuel load, and fuel depth (Table 3) to produce accurate and consistent results for a variety of environmental conditions.

BEHAVE Predictions

The mathematical model used in BEHAVE is intended primarily for the prediction of fire behavior parameters on the flame front of a headfire carried by fine fuels (Rothermel 1983). Therefore, we only compared observed fire behavior

parameters of headfires with BEHAVE predictions. We modeled fire behavior using the SITE module of the FIRE1 program in BEHAVE (Andrews 1986). We were interested in predictions from several possible models, therefore, we used our custom fuel model and standard fuel models 7, 8, 9, and 10 described by Anderson (1982). We used 1-hour fuel moisture from collected fuel samples; 10-hour fuel moisture from fuel sticks and protimeter readings observed on site; we estimated 100 hour fuel moisture based on 1- and 10-hour fuel moisture and weather conditions. We supplied all environmental variables, stand characteristics, and weather observations for each fire sub-sample within a stand as prompted by the SITE module. BEHAVE predicted fireline intensity, heat per unit area, reaction intensity, flame length, and rate of spread for each fire location within all stands.

We used simple linear regression to determine if fuel models in BEHAVE were accurate predictors over the range of observed fire behavior by pairing observed and predicted fire behavior parameters for each fire sub-sample. We tested the slope of the linear regression line (i.e., BEHAVE predicted fire behavior vs observed fire behavior) for equality to 1 with the y-intercept forced to 0. A model was determined accurate when the slope was not significantly different from 1 using a 0.05 significance level. To determine model accuracy at all levels of observed behavior, we inspected the r^2 for the model and plotted the residuals. We also validated the average accuracy of BEHAVE predictions of flame length and fireline intensity with Fisher's exact test by defining categorical variables from the fire behavior characteristics chart (Rothermel 1983).

RESULTS AND DISCUSSION

Fuels in all stands tended to be heterogenous and discontinuous, with occasional exposed rock, patches of dense grass, deep pine needles, residual thinning slash, and occasional fallen snags. Fuels in the growing-season treatments were even more heterogeneous because of patchy distribution of live understory vegetation.

The SITE module of the FIRE1 program in BEHAVE is based on Rothermel's (1972) model and Albini's (1976) additions. It was developed for predicting fire behavior of wildland fires in relatively homogeneous, porous fuels (Rothermel 1983). The program is intended to characterize fine fuels and describe headfires (Rothermel 1983; Andrews 1986). In discontinuous and heterogeneous fuels the model can produce erroneous predictions (Sneeuwjagt and Frandsen 1977; Brown 1982). Brown (1982) found Rothermel's model accurately predicted rate of spread in sagebrush fuel types, however the model produced erroneous predictions of flame length and intensity. Sneeuwjagt and Frandsen (1977) determined the model was useful in predicting fire behavior in grasslands, but expressed concern about flame length and combustion zone depth inaccuracies. Therefore, part of the variation between observed and predicted fire behavior may be attributed to fuel bed continuity and relative homogeneity.

Reliability of Fuel Models Across Seasons

Fire behavior parameters predicted with standard models were constant for all treatments regardless of fuel loads and season of fire, while observed parameters varied depending on the season of the fire and fuel loads (Figure 1a-e). This constancy is linked to the static nature of these fuel models. Fuels are dynamic and change by seasons and with time since fire (see Sparks et al. 1996). For example, a larger proportion of the fuels are dormant or "cured" during dormant-season fires. Second, woody species in the understory are primarily deciduous, therefore when they are dormant there is an increase in solar radiation and wind exposure on the fuels (Sparks et al. 1996). Each fuel model is designed to function in a specific fuel type; as fuel characteristics change so must the fuel models used to predict fire behavior. Therefore, it is necessary for managers to understand the dynamics of fuels and which fuel model is appropriate for their given situation (Andrews 1986; Andrews and Chase 1989). To appropriately choose a model, managers should use TSTMDL in BEHAVE to validate a model for their particular fuel type (Burgan and Rothermel 1984). Accuracy of Fuel Models

We examined 4 standard fuel models (i.e., 7, 8, 9, and 10) and a separate model customized for each treatment (Table 3). Model 8 and 9 produced unrealistic predictions for all fire behavior parameters, so we discarded these models from further analysis. None of the models either standard or customized, produced accurate estimates of all fire behavior parameters across all treatments (Figure 1). Models tended to vary in accuracy depending on fuel loading and season of fire. Therefore multiple models were required to accurately characterize all fire behavior parameters across fire seasons and fuel loads. Results on the efficacy of models varied with the different statistical analyses (i.e., regression vs Fisher's exact test). For example, model 7 appears to be the most accurate model on average for predicting reaction intensity in the D12 treatment but, model 10 and the custom model are more accurate when analyzing specific fires (Figure 1e). Model 7 would be effective from a management standpoint, if numerous predictions were obtained throughout the stand, but model 10 and the custom model would be more effective if a limited number of predictions were obtained.

Standard models 7 and 10 produced accurate predictions of flame length for all treatments except the D12 treatment (Figure 1a). However, standard models under estimated fireline intensity and rate of spread in all treatments except for the D12 treatment in which the customized models and model 7 and 10 predicted fireline intensity similar to observed fireline intensity (Figure 1b, 1c). Model 7 produced accurate predictions of heat per unit area more often than other models for growing-season fires, while custom models tended to over-predict heat per unit area (Figure 1d, 1e). Model 7 was most effective at predicting reaction intensity of D12 stands, while model 10 and the custom models proved more effective on average and on an individual basis for all other treatments (Figure 1e). Models produced similar r^2 values within similar treatments (Table 4).

All models failed to produce accurate predictions for fireline intensity and rate of spread (Figure 1b, 1c). Analysis of residuals indicated that all models tended to over-predict fireline intensity on low intensity fires while under predicting on higher intensity fires. We found an inconsistent relationship between observed and predicted fireline intensity based on low \underline{r}^2 values for fireline intensity (Table 4). Observed ROS and fireline intensity may have been greater than predicted because the headfire may have been influenced by backing fires. Strip headfires were set and allowed to burn into backing fires creating a situation similar to a ring fire, a common firing technique in the southeastern United States (Wade and Lunsford 1989). Wind speeds in the actively burning area can increase because of the convection created by ring fires (Wade and Lunsford 1989), we attempted to monitor these winds at 2 m, but were unsuccessful. Therefore, fire behavior may have been influenced by these convection winds not measured in our pre-burn weather observations. Adjustments to BEHAVE may be needed for this influence in small-scale ring fires (Masters and Engle 1994).

Because of the mountainous terrain of the region, wind speeds away from the fire were also variable in all stands, constantly shifting directions and varying intensities. We attempted to monitor this variability but were unsuccessful. Fuel moisture was also quite variable within stands, as a result of live vegetation in the growing season and variable shading from the dense midstory. A portion of the large variation between observed and predicted fire parameters was a result of the inherent variation of the advancing fire front, which varies with fuel moisture, and wind speed (Brown and Davis 1973; Trollope 1984).

In the D12 treatment, BEHAVE failed to produce accurate predictions and high \underline{r}^2 for nearly all fire behavior parameters (Table 4). Unlike other treatments, this treatment had only one year of fuel build up, with fuels consisting primarily of freshly fallen conifer needles with little cured herbaceous material and hardwood leaf litter. Unweathered conifer needles such as those found in this treatment often act like ten hour time-lag fuels or greater (Anderson 1990). Hartford and Rothermel (1991) noted unweathered organic coatings on freshly cast conifer needles as a likely cause of slow

moisture response in the Yellowstone fires.

Management Implications

If BEHAVE can accurately predict fire behavior parameters before ignition, managers can prescribed burn with more efficacy and yet reduce the risks involved. Fireline intensity, heat per unit area and reaction intensity relate to fire effects on vegetation (Van Wagner 1973; Rothermel and Deeming 1980; Alexander 1982; Wright and Bailey 1982; Wade 1986; Engle et al. 1996). Wade (1986), recommended using fireline intensity for correlating fire behavior effects above the flame zone, reaction intensity within the flame zone, and heat per unit area for below ground effects. Flame length, which is related to fireline intensity, is a good predictor of scorch height on conifers (Van Wagner 1973). Fireline intensity, and flame length are also excellent indicators of the difficulty of control, potential for escapes, and equipment required for suppression (Roussopoulos and Johnson 1975; Rothermel 1983; Pyne 1996). With accurate models, prescribed burn practitioners can set goals and identify parameters within which a given heat per unit area, reaction intensity, and fireline intensity will best achieve their management objectives. Practitioners can also determine the equipment required to suppress or maintain the fire fronts using the fire behavior characteristics chart (Rothermel 1983).

Headfires with fireline intensity < 345 kW/m (flame length < 1.2 m) can generally be attacked at the head by persons using hand tools (Rothermel 1983). Headfires with a fireline intensity > 345 kW/m (flame length < 2.5 m) are too intense for direct attack on the head by persons using hand tools and require equipment such as plows, dozers, pumpers and retardant aircraft (Rothermel 1983). Our fires produced intensities and flame lengths in both of these categories (Figure 1a, 1b). In D48 and D36 treatments, models 10 and 7 were more accurate than custom models at predicting flame length within the correct fire behavior classification ($\underline{P} \leq 0.001$). However, custom models were more accurate than other models at predicting fireline intensity in the D36 and D48 treatments ($\underline{P} \leq 0.001$).

CONCLUSIONS

BEHAVE can provide accurate predictions of fire behavior for use in defining prescribed burning windows when the proper model is selected. This is particularly important when managing for endangered species because specific fire behavior parameters may be used to predict the influence on habitat variables. However, managers must proceed with caution because the appropriate fuel model varies with season of fire and fuel loading. Therefore, managers must identify or customize the appropriate fuel model. Furthermore, model accuracy varies among fire behavior parameters, so managers should use more than one model to predict relevant fire behavior parameters and to produce a range of fire behavior within which a specific fire may fall. Because fuels vary widely between seasons, managers should interpret predictions with caution, and perform multiple analyses for each burn situation.

REFERENCES

Albini, F. A. 1976. Estimating wildfire behavior and effects. United States
 Department of Agriculture, Forest Service General Technical Report
 INT-30, Intermountain Forest and Range Experiment Station, Ogden,

Utah, USA. 92 pages.

- Albini, F. A. and R. G. Baughman. 1979. Estimating wind speeds for predicting wildland fire behavior. United States Department of Agriculture, Forest Service Research Paper INT 221, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 12 pages.
- Alexander M. E. 1982. Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60: 349-357.
- Anderson, H. E. 1982. Aids to determining fuel models for estimating fire behavior. United States Department of Agriculture, Forest Service General Technical Report INT-122, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 22 pages.
- Anderson, H. E. 1990. Moisture diffusivity and response time in fine forest fuels. Canadian Journal of Forest Research 20: 315-325.
- Andrews, P. L. 1986. BEHAVE: fire behavior prediction and fuel modeling system - BURN subsystem, part 1. United States Department of Agriculture, Forest Service General Technical Report INT-194, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 130 pages.
- Andrews, P. L. and C. H. Chase. 1989. BEHAVE: fire behavior prediction and fuel modeling system - BURN subsystem, part 2. United States
 Department of Agriculture, Forest Service General Technical Report INT-260, Intermountain Forest and Range Experiment Station, Ogden,

Utah, USA. 93 pages.

- Andrews, P. L. and L. S. Bradshaw. 1990. RXWINDOW: Defining windows of acceptable burning conditions based on desired fire behavior. United States Department of Agriculture, Forest Service General Technical Report INT-273, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 54 pages.
- Avery, T. E. 1967. Forest measurements. McGraw-Hill Co., New York, USA. 290 pages.
- Bailey, R. G. 1995. Description of the ecoregions of the United States. 2nd edition. United States Department of Agriculture, Forest Service Miscellaneous Publication 1391 (Revised), Washington, D.C. 108 pages.
- Bigalke, R. C. and K. Willan. 1984. Effects of fire regime on faunal composition and dynamics. In Ecological effects of fire in South African ecosystems (edited by P. de V. Booysen and N. M. Tainton). Springer-Verlag, New York, USA. Pages 255-271.
- Brown, A. A. and K. P. Davis. 1973. Forest fire: control and use. McGraw Hill Book Co., New York, USA. 548 pages.
- Brown, J. K. 1982. Fuel and fire behavior prediction in big sagebrush.
 United States Department of Agriculture, Forest Service Research Paper INT-290, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 10 pages.

- Burgan, R. E. and R. C. Rothermel. 1984. BEHAVE: fire behavior prediction and fuel modeling system - FUEL subsystem. United States Department of Agriculture, Forest Service General Technical Report INT-167, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 126 pages.
- Byram, G. M. 1959. Combustion of forest fuels. In Forest fire: control and use (edited by K. P. Davis). McGraw Hill Book Co., New York, USA. Pages 61-89.
- Chandler, C., P. Cheney, P. Thomas, L. Trabaud, and D. Williams. 1983.
 Fire in forestry, volume I: forest fire behavior and effects. John Wiley and Sons, New York, USA. 450 pages.
- Christensen, P., H. Recher, and J. Hoare. 1981. Responses of open forest to fire regimes. In Fire and the Australian biota (edited by A. M. Gill, R. H. Groves, and I. R. Noble). Australian Academy of Science, Canberra. Pages 367-394.
- Engle, D. M., T. G. Bidwell, and R. E. Masters. 1996. Restoring cross timbers ecosystems with fire. Transactions of the 61st North American Wildlife and Natural Resources Conference. IN PRESS.
- Fenneman, N. M. 1938. Physiography of eastern United States. McGraw-Hill Book Co., New York, USA. 714 pages.
- Gill, A. M. 1981. Adaptive responses of Australian vascular plant species to fires. In Fire and the Australian biota (edited by A. M. Gill, R. H.

Groves, and I. R. Noble). Australian Academy of Science, Canberra. Pages 243-272.

- Glitzenstein, J. S., W. J. Platt, and D. R. Streng. 1995. Effects of fire regime and habitat on tree dynamics in North Florida longleaf pine savannas. Ecological Monographs 65: 441-476.
- Hartford, Roberts A. and R. C. Rothermel. 1991. Fuel moisture as measured and predicted during the 1988 fires in Yellowstone Park. United States Department of Agriculture, Forest Service Research Note INT-396, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 7 pages.
- Kruger, F. J. 1984. Effects of fire regime on vegetation structure and dynamics. In Ecological effects of fire in South African ecosystems (edited by P. de V. Booysen and N. M. Tainton). Springer-Verlag, New York, USA. Pages 219-243.
- Masters, R. E. and D. M. Engle. 1994. BEHAVE--Evaluated for prescribed fire planning in mountainous oak-shortleaf pine habitats. Wildlife Society Bulletin 22: 184-191.
- Masters, R. E., C. W. Wilson, G. A. Bukenhofer, and M. E. Payton. 1996. Effects of pine-grassland restoration for red-cockaded woodpeckers on white-tailed deer forage production. Wildlife Society Bulletin 25: 77-84.
- Neal, J. C. and W. G. Montague. 1991. Past and present distribution of the red-cockaded woodpecker <u>Picoides borealis</u> and its habitat in the

Ouachita Mountains, Arkansas. Proceedings of the Arkansas Academy of Science 45: 71-75.

- Pyne, S. J. 1982. Fire in America: a culture history of wildland and rural fire. Princeton University Press, Princeton, New Jersey, USA.
- Pyne, S. J., P. L. Andrews, and R. D. Laven. 1996. Introduction to wildland fire: second edition. John Wiley and Sons, New York, USA. 769 pages.
- Raybould, S. and T. Roberts. 1983. A matrix approach to fire prescription writing. Fire Management Notes 44: 7-10.
- Robbins, L. E. and R. L. Myers. 1992. Seasonal effects of prescribed burning in Florida: a review. Tall Timbers Research, Inc. Miscellaneous Publication Number 8. Tallahassee, Florida, USA. 96 pages.
- Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels. United States Department of Agriculture, Forest Service Research Paper INT-115, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA. 40 pages.
- Rothermel, R. C. 1983. How to predict the spread and intensity of forest and range fires. United States Department of Agriculture, Forest Service
 Research Paper INT-143, Intermountain Forest and Range Experiment
 Station, Ogden, Utah, USA. 161 pages.
- Rothermel, R. C. and J. E. Deeming. 1980. Measuring and interpreting fire behavior for correlation with fire effects. United States Department of

Agriculture, Forest Service General Technical Report INT-93, Intermountain Forest and Range Experiment Station, Ogden Utah, USA. 4 pages.

- Roussopoulos, P. J. and V. J. Johnson. 1975. Help in making fuel management decisions. United States Department of Agriculture, Forest Service Research Paper NC-112, North Central Experiment Station, St. Paul, Minnesota, USA. 16 pages.
- Sneeuwjagt, R. J. and W. H. Frandsen. 1977. Behavior of experimental grass fires vs. predictions based on Rothermel's fire model. Canadian Journal of Forest Research 7: 357-367.
- Sparks, J. C. and R. E. Masters. 1996. Fire seasonality effects on vegetation in mixed-, tall-, and southeastern pine-grassland communities: a review. Transactions of the 61st North American Wildlife and Natural Resources Conference, USA. Pages 230-239.
- Sparks, J. C., R. E. Masters, D. M. Engle, and M. E. Payton. 1996. Growing-season versus dormant-season fire behavior in thinned stands of pine. International Journal of Wildland Fire IN REVIEW.
- Sparks, J. C. 1996. Growing-season and dormant-season fire behavior and effects on vegetation in the Ouachita Mountains, Arkansas. M.S. Thesis, Oklahoma State University, Stillwater, USA. 186 pages.
- Trollope, W. S. W. 1984. Fire behavior. In Ecological effects of fire in South African ecosystems (edited by P. de V. Booysen and N.

M. Tainton). Springer-Verlag, New York, USA. Pages 199-217.

- Van Lear, D. H. 1985. Prescribed fire--its history, uses, and effects in southern forest ecosystems. In Prescribed fire and smoke management in the south: conference proceedings (compiled by D. D. Wade), USA. Pages 57-75.
- Van Wagner, C. E. 1973. Height of crown scorch in forest fires. Canadian Journal of Forest Resources 3: 373-378.
- Wade D. D. and J. D. Lunsford. 1989. A guide for prescribed fire in southern forests. United States Department of Agriculture, Forest Service Technical Publication R8-TP 11, USA. 56 pages.
- Wade, D. D. 1986. Linking fire behavior to its effects on living plant tissue.
 Proceedings of the 1986 Society of American Foresters National
 Convention, October 5-8, Birmingham, Alabama, USA. Pages 112-116.
- Wilson, C. W., R. E. Masters and G. A. Bukenhofer. 1995. Breeding bird responses to pine-grassland community restoration for red-cockaded woodpeckers. Journal of Wildlife Management 59: 56-67.
- Wright, H. A. and A. W. Bailey. 1982. Fire ecology: United States and Southern Canada. John Wiley and Sons, New York, USA. 501 pages.

Stand, treatment	Fire date	Months since last fire	Stand size (ha)	Stand elevation (m)	Slope (%)	Mean basal area (m²/ha)	Mean height (m)	Mean DBH (cm)	Mean crown length (m)	Mean crown diameter (m)	Mean canopy cover (%)
1257, D48	3-2-96	48	18.2	335	9	14	17.0	32.6	9.0	7.1	68
1257, D36	4-2-95	36	16.2	305	7	20	15.5	31.5	7.0	6.3	88
1257, D12	3-2-96	12	16.2	305	7	20	16.0	32.5	7.0	6.4	81
1257, G30	9-12-94	30	16.2	292	13	18	20.5	32.3	9.5	6.1	81
1259, G30	9-13-94	30	16.2	305	9	17	21.5	33.4	10.0	6.5	72
1265, G43	10-14-95	43	16.2	335	4	23	21.5	29.7	9.0	5.7	93
1274, G43	10-15-95	43	17.8	305	15	26	23.0	27.6	10.0	5.2	92
1274, D36	4-1-95	36	16.2	336	7	25	16.5	28.2	7.0	5.3	94
1274, D12	3-4-96	12	16.2	336	7	25	16.5	28.2	7.0	5.3	84
1274, G30	9-10-94	30	24.3	338	3	23	22.0	30.7	10.0	6.1	87
1289, D36	4-1-95	36	16.2	335	7	17	15.0	29.1	6.0	5.4	82
1289, G30	9-11-94	30	13.8	333	8	17	21.0	32.8	9.0	5.9	81
1313, D48	3-3-96	48	26.7	305	8	23	15.0	26.9	7.0	4.9	84
1313, D36	3-31-95	36	13.8	305	7	24	15.0	27.9	6.5	5.4	90

Table 1. Characteristics of stands used to compare BEHAVE predicted and observed fire behavior in the Ouachita Mountains of Arkansas, USA.

NOTE: DBH= diameter at breast height.

Table 2. Range in fuel and weather conditions during prescribed fires on Wildlife Stand Improvement areas in the Ouachita National Forest of western Arkansas.

	Treatment ^a													
Parameter	D36	G30	D48	G43	D12									
	(<u>n</u> =12)	(<u>n</u> =12)	(<u>n</u> =6)	(<u>n</u> =6)	(<u>n</u> =6)									
	min max	min max	min max	min max	min max									
Fuel load (kg/ha)														
1 hour live fuels	73 422	320 1890	75 330	363 1010	81 250									
1 hour dead fuels	6580 11350	4860 9340	8900 13810	7420 8460	5910 9140									
10 hour dead fuels	200 1730	156 2510	340 1570	77 1700	175 1550									
Post burn residue	3230 6740	2430 9870	5170 9560	3430 6050	5450 8970									
Fuel moisture (%)														
1 hour live	45 163	92 133	114 184	86 127	133 194									
1 hour dead	9 45	8 28	12 28	6 15	15 24									
10 hour dead	6 55	6 58	28 48	8 62	19 50									

56

Table 2. Continued.

	Treatment ^a												
Parameter	D36 (<u>n</u> =12)		G	30	D	D48		G43		D12			
			(<u>n</u> =12)		(r	(<u>n</u> =6)		<u>1</u> =6)	(<u>n</u> =6)				
	min	max	min	max	min	max	min	max	min	max			
leather conditions													
Air temperature (C)	12	24	27	31	12	16	19	26	10	19			
6 m wind speed (km/h)	0	13	3	9	2	7	0	5	0	4			
Relative humidity (%)	22	48	46	57	26	51	20	31	32	49			
Cloud cover (%)	0	70	0	30	0	10	0	0	0	90			

^a D36 = dormant-season burn 36 months after previous dormant-season burn. G30 = growing-season burn 30 months after previous dormant-season burn.

D12 = dormant-season burn 12 months after previous dormant-season burn. D48 = dormant-season burn 48 months after previous dormant-season burn. G43 = growing-season burn 43 months after previous dormant-season burn.

			Fuel	load (M	ton/ha)			Surface to	o volume rat			
										Fuel	Extinction	
		1-	10-	100-	Live	Live		1-	Live	Live	depth	moisture
Model #	Treatments	Hour	Hour	Hour	Herb.	Woody		Hour	Herb.	Woody	(cm)	(%)
7	All	2.54	4.20	3.37	0.00	0.83		57	6	51	76.2	40
8	All	3.37	2.25	5.61	0.00	0.00		66	6	6	6.1	30
9	All	6.54	0.93	0.34	0.00	0.00		82	6	6	6.1	25
10	All	6.74	4.49	11.23	0.00	4.49		66	6	49	30.5	25
custom	G30	7.62	1.12	1.01	0.90	1.12		57	6	51	28.96	27
ш	D36	8.96	1.12	0.52	0.00	0.83		57	6	51	60.9	45
ш	G43	7.84	1.57	0.90	0.90	1.12		57	6	51	29.57	29
н	D12	5.60	0.67	0.45	0.00	0.83		57	6	51	24.38	25
n	D48	9.52	1.90	0.90	0.00	0.83		57	6	51	67.06	40

Table 3. Fuel model descriptors for standard and custom fuel models used to model fire behavior in the Ouachita Mountains, Arkansas, USA.

Table 4. R-square values by treatment and fire behavior parameters for linear regression of observed parameters vs predicted parameters, Ouachita Mountains, Arkansas, USA.

		Treatment ^a , Model Number													
Fire Behavior Parameter	D36			G30			D12			D48			G43		
	7	10	Cust.	7	10	Cust.	7	10	Cust.	7	10	Cust.	7	10	Cust.
Flame Length (m)	0.90	0.87	0.90	0.72	0.71	0.72	0.95	0.96	0.94	0.90	0.90	0.92	0.93	0.90	0.90
Fireline Intensity (kW/m)	0.75	0.70	0.80	0.63	0.60	0.61	0.19	0.21	0.18	0.72	0.72	0.74	0.77	0.71	0.73
Rate of Spread (m/min)	0.77	0.47	0.85	0.54	0.37	0.54	0.01		0.02	0.65		0.82	0.84		0.72
Heat per Unit Area (kJ/m²)	0.93	0.93	0.93	0.87	0.87	0.87	0.60	0.61	0.60	0.94	0.94	0.94	0.91	0.91	0.91
Reaction Intensity (kW/m²)	0.72	0.72	0.71	0.75	0.75	0.75	0.40	0.41	0.40	0.75	0.75	0.75	0.93	0.92	0.93

^a D36 = dormant-season burn 36 months after previous dormant-season burn. G30 = growing-season burn 30 months after previous dormant-season burn.
 D12 = dormant-season burn 12 months after previous dormant-season burn. D48 = dormant-season burn 48 months after previous dormant-season burn. G43 = growing-season burn 43 months after previous dormant-season burn.

Figure 1. Means and Standard Errors by treatment for (a) flame length (m), (b) fireline intensity (kW/m), (c) rate of spread (m/min), (d) heat per unit area (kJ/m²) and (e) reaction intensity (kW/m²). Asterisks indicate regression results (H_o: slope = 1, given Y intercept = 0), * = \underline{P} = 0.05 to 0.001, ** = $\underline{P} \le 0.001$ and no asterisk indicates a $\underline{P} \ge 0.05$ (that the model prediction accurately represents observed fire behavior). D36 = Dormant-season burn 36 months after previous dormant-season burn (<u>n</u> = 12). G30 = Growing-season burn 30 months after previous dormant-season burn (<u>n</u> = 12). D12 = Dormant-season burn 12 months after previous dormant-season burn (<u>n</u> = 6). D48 = Dormant-season burn 48 months after previous dormant-season burn (<u>n</u> = 6). G43 = Growing-season fire 43 months after previous dormant-season burn (<u>n</u> = 6). Bars are +1 SE.

CHAPTER IV

EFFECTS OF GROWING-SEASON AND DORMANT-SEASON PRESCRIBED FIRE ON HERBACEOUS VEGETATION IN RESTORED PINE-GRASSLAND COMMUNITIES

Abstract

Fire is essential in pine- (Pinus spp.) grassland communities to maintain open structure. We compared the effects of dormant-season and growing-season prescribed fires on herbaceous species in restored pine-grassland communities in the Ouachita Highlands of western Arkansas. Herbaceous species richness, diversity, and total forb and legume abundance increased following fire. Growing-season burns reduced distribution and abundance of panicums while dormant-season burns increased panicum distribution and abundance. Density of legumes increased following frequent or annual dormant-season fires. However, season of fire influenced the distribution and abundance of fewer than 10% of the species.

Key words: Arkansas, fire frequency, fire season, Ouachita Mountains

64
Introduction

Fire in conjuction with other natural disturbances and environmental factors such as topography and climate created and maintained a mosaic of pre-settlement communities including grasslands, savannahs, and forests, throughout the world (Pyne, 1982; Anderson and Brown, 1986; Anderson, 1990; Waldrop et al., 1992). Fire plays a major role in the development and maintenance of plant communities and species dependent on those communities (Connell, 1978; Pickett and White, 1985; Noss and Cooperrider, 1994; Perry, 1994). After disturbance, many species and individuals may become established in an area where they previously did not occur, increasing species richness and relative abundance of individual species in that community (Sousa, 1984). Fire and other disturbances are a major source of temporal and spatial heterogeneity in structure and dynamics of a community (Sousa, 1984; Pickett and White, 1985). Most plant and wildlife species require specific habitats for their survival, and without some form of successional redirection or method of disturbance, these habitats will change (Komarek, 1963; Sparks and Masters, 1996).

Fire played an important role in shaping formerly abundant pine- (Pinus spp.) grassland communities in the southeastern United States (Buckner, 1989; Platt et al., 1988; Waldrop et al., 1992; Masters et al., 1995). These pine-grassland communities consisted of open "park like" pine stands with a distinct grass-dominated herbaceous layer and recurrent woody layer, depending on fire frequency (Komarek, 1965; Masters, 1991<u>a</u>; Waldrop et al., 1992; Masters et al., 1995). Historical accounts before settlement describe an open structure forest with substantial herbaceous material on the forest floor and occasional prairie openings or glades (James, 1823; Featherstonhaugh, 1844; Nuttall, 1980). The accumulation of herbaceous material provided adequate fuels for frequent fires of aboriginal and lightening origin which maintained the open structure of these pine-grassland communities (Komarek, 1965; Buckner, 1989; Foti and Glenn, 1991; Waldrop et al., 1992; Masters et al., 1995).

Similar to other forested communities of the World, settlement in the southeastern U.S. (18th to mid 19th century) altered these landscapes by removing or changing much of the natural vegetation, resulting in fragmented and dissected landscapes (Cottam, 1949; Stearns, 1949; Curtis, 1956; Forman and Godron, 1986; Kreiter, 1995). The frequency and scale of fires in the region declined after settlement because of aboriginal displacement, fragmentation of habitats causing artificial fire breaks, and fire suppression by settlers (Pyne, 1982). This decline in fire activity caused once open pine-grassland communities to become much more dense. Dense forests minimize light reaching the forest floor, thus reducing the herbaceous plant community, understory forage, and habitat quality for many species of wildlife (Lewis and Harshbarger, 1976; Masters, 1991a; Wilson et al., 1995). The endangered red-cockaded woodpecker (Picoides borealis), an endemic of southeastern pine forests, is one example of a species that has declined, in part, as a result of forest densification in southeastern United States.

The U.S. Forest Service has begun to reconstruct or restore pine-grassland communities to benefit both plant and wildlife species dependent on these systems. In the Ouachita National Forest of western Arkansas, the Forest Service uses a program known as Wildlife Stand Improvement (WSI) that consists of thinning midstory and codominant pine and hardwood trees to near pre-settlement basal areas. Currently, WSI treated stands are burned during the dormant season on 3 year intervals to maintain open structure. However, recent studies in the Ouachitas suggest that the historical fire regime was one of predominantly late growing-season fires and to a lesser extent dormant-season burns (Foti and Glenn, 1991; Masters et al., 1995). In order to effectively restore this system, knowledge of the effects of both growingseason and dormant-season prescribed burns is necessary (Masters and Wilson, 1994).

Numerous studies have compared the effects of growing-season and dormantseason fires on vegetation in Coastal Plain regions of Florida, Louisiana, and South Carolina (Grelen, 1975; Hughes, 1975; Lewis and Harshbarger, 1976; Platt et al., 1988; Waldrop et al., 1992; Glitzenstein et al., 1995). Masters (1991<u>a;b</u>) and Masters et al. (1993) described the effects of dormant-season burns of varying frequency on vegetation under a variety of overstory conditions in interior highlands. Masters et al. (1996) described the effects of WSI and dormant-season burns on restored pinebluestem communities. However, no information is available on the effects of growing-season burns in the Ouachita Mountains. Our main objective was to compare the effects of growing-season and dormant-season burns on herbaceous vegetation richness, diversity, and abundance in WSI treated stands.

Study area

Our study focused on stands under active management for the endangered redcockaded woodpecker within the 40,000 ha Pine-bluestem Ecosystem Renewal Area,

67

on the Poteau Ranger District of the Ouachita National Forest (ONF) in Scott County Arkansas. The ONF lies within the 2,280,000 ha Ouachita Mixed Forest Meadow Province and comprises 648,000 ha throughout the Ouachita Mountains in Arkansas and Oklahoma (Neal and Montague, 1991; Bailey, 1995). The Ouachita mountains are east-west trending, strongly dissected and range in elevation from 150-790 m (Fenneman, 1938:669). South-facing slopes tend to be dominated by shortleaf pine (<u>Pinus echinata</u>) and more mesic north-facing slopes tend to be dominated by oaks (<u>Quercus spp.</u>), hickories (<u>Carya spp.</u>) and other hardwoods (Johnson, 1986; Foti and Glenn, 1991). Ouachita Mountain soils developed from sandstone and shales and are thin and drought prone. A semi-humid to humid climate prevails with hot summers and mild winters (Smith, 1989).

Shortleaf pine was the dominant overstory tree species in all stands. Codominant and intermediate overstory species included post oak (Quercus stellata), blackjack oak (Q. marilandica, white oak (Q. alba), northern red oak (Q. rubra), black oak (Q. velutina), black hickory (Carya texana), and mockernut hickory (C. tomentosa). Woody sprouts (\leq 3-m) dominated the understory of these stands. The dominant understory woody species and vines included poison ivy (Toxicodendron radicans), low-bush huckleberry (Vaccinium pallidum), post oak, mockernut hickory, blackberry (Rubus spp.), virginia creeper (Parthenocissus quinquefolia), New Jersey tea (Ceanothus americanus), muscadine (Vitis rotundifolia), white oak and shortleaf pine (Sparks 1996). OFLIGHTING STATE UNIT

Methods

Experimental design

Our experimental design encompassed two studies (Study 1 and Study 2) and was completely randomized. In these studies we used 12 stands (13.8 to 26.7 ha) that had been previously subjected to WSI and fire. Study 1 consisted of 3 treatments with 4 replications of each treatment ($\underline{n} = 12$). Study 2 used the control and dormantseason fire stands from Study 1 ($\underline{n} = 8$). Treatments are as follows:

Study 1

- (1) No-burn control (CON1; $\underline{n} = 4$);
- (2) Growing-season burn, September 1994 (GS1; $\underline{n} = 4$);
- (3) Dormant-season burn March-April 1995 (DS1; $\underline{n} = 4$);

Study 2

- (4) Growing-season burn, October 1995 (GS2; $\underline{n} = 2$);
- (5) Dormant-season burn, March 1996 (DS2; $\underline{n} = 2$);
- (6) Frequent dormant-season fire, March-April 1995 and March 1996
 (FDS; <u>n</u> = 2);
- (7) Infrequent dormant-season fire, burned March-April 1995, no-burn 1996
 (IFDS; <u>n</u> = 2).

Study 1 and Study 2 dormant-season and growing-season fire treatments differed in that prescribed burns were applied after 3 growing seasons versus 4, respectively, after previous dormant-season fire. Study 2 used the dormant-season fire treatments from Study 1 to determine the effects of fire frequency on the herbaceous community.

Vegetation sampling

We sampled herbaceous vegetation during a two week period in late July 1994 (Study 1 pre-treatment), July 1995 (Study 1 post-treatment; Study 2 pre-treatment), and July 1996 (Study 2 post-treatment). In each stand, we established 30, 1-m x 1-m permanent plots (after Oosting, 1956) at 30-m intervals on 2 to 4 randomly spaced lines perpendicular to the contour (after Masters, 1991<u>a;b</u>). We did not sample within 50-m of any edge to avoid bias from surrounding stands (Mueller-Dombois and Ellenberg, 1974:123). We recorded percent frequency of occurrence and stem density for each herbaceous species within permanent plots, and estimated cover for vascular plants and objects such as rocks, tree boles, and logs. We collected voucher specimens, and verified species identity with the Oklahoma State University Herbarium. We followed the nomenclature of Smith (1988). We deposited voucher specimens in the Oklahoma State University Herbarium.

Data analysis

We calculated species richness, diversity (Shannon-Weaver H') and evenness (J' of Pielou) after Ludwig and Reynolds (1988) at the sample (m²) and stand scales. In both studies, we summarized herbaceous species by mean density and percent frequency of occurrence for each year and treatment. We classified all plant species according to plant type (e.g., forb, legume, grass etc.) and season of growth (cool vs warm). Season of growth was determined by flowering dates described by the Great Plains Flora Association (1986) with cool season species flowering from November to mid May, and warm season species flowering from mid May through October. To account for pre-treatment differences, we determined the percent change [(posttreatment / pre-treatment) X 100] in density and frequency of occurrence caused by treatments. We tested all variables for homogeneity of variance using Levene's test (Snedecor and Cochran, 1980). These tests indicated homogeneity of variances, so we tested for treatment differences in percent change using a one-way GLM in which treatment was the factor of interest (SAS Inst. Inc., 1985). In Study 1, we used orthogonal contrasts (burn vs no-burn and growing-season fire vs dormant-season fire) and separated treatment means ($\underline{P} \leq 0.05$) with the protected least significant difference test (Steel and Torrie, 1980; Conover and Iman, 1981).

We performed a detrended correspondence analysis (DCA) using CANOCO (ter Braak, 1988), to analyze the species composition data. DCA is a multivariate indirect gradient analysis that uses variation in species abundance data to display species and stand locations in a two-dimensional ordination space (ter Braak, 1986). DCA axes are in units of constant beta-diversity, where one unit is equal to one standard deviation of species turnover (Hill and Gauch 1980). In DCA, changes in location of a stand over time indicate corresponding changes in real or relative species composition of the stand (Wyant et al., 1991). We used DCA to analyze importance values (relative density + relative frequency) to determine changes in stand composition from pre-treatment to post-treatment (after Mueller-Dombois and Ellenberg, 1974; Smith, 1990). We squareroot transformed species abundances before analysis.

Results

Response to fire and fire season

We observed more than 150 herbaceous species during these two studies. Fewer than 10% of these species were influenced ($\underline{P} \le 0.05$) by season of fire. Dormant-season fires produced a greater frequency of occurrence of <u>Panicum</u> <u>dichotomum</u> (Study 1: $\underline{F} = 26.9$; $\underline{P} = 0.0006$, Study 2: $\underline{F} = 29.7$, $\underline{P} = 0.0320$) and <u>Scleria triglomerata</u> (Study 1: $\underline{F} = 15.3$; $\underline{P} = 0.0035$, Study 2: $\underline{F} = 19.9$, $\underline{P} = 0.0467$) than growing-season fires. Density of <u>Panicum dichotomum</u> ($\underline{F} = 54.5$; $\underline{P} = 0.0001$) and <u>Scleria triglomerata</u> ($\underline{F} = 5.6$; $\underline{P} = 0.0416$) was less after growing-season fires than after dormant-season fires in Study 1.

Although few species were influenced by season of fire, differences ($\underline{P} \leq 0.05$) in density and frequency of major plant categories were apparent (Tables 1 and 2). Dormant-season fires increased panicum density while growing-season fires greatly reduced total panicum density (Tables 1 and 2). Panicum frequency also declined after growing-season fires in Study 1 (Table 1). Grasses showed a tendency to increase in percent cover following fire (Table 3), but a tendency to decline in density following growing-season fires (Table 2).

Regardless of season, fire increased density of legumes (Tables 1 and 2). Legume species such as <u>Stylosanthes biflora</u> increased in density ($\underline{F} = 16.9$; $\underline{P} = 0.0026$) after fire, while other legumes such as <u>Desmodium ciliare</u> ($\underline{F} = 6.58$; $\underline{P} = 0.0334$) and <u>Lespedeza procumbens</u> ($\underline{F} = 8.37$; $\underline{P} = 0.0179$) increased in frequency of occurrence of

OBLIGHTORING GIALD CHATE

numerous forbs such as <u>Coreopsis tinctoria</u>, <u>Polygala alba</u>, and <u>Erechtites hieraciifolia</u>, resulting in an increase in total forb density in Study 1 (Table 1). We found that forbs after dormant-season fires occurred more frequently than after growing-season fires and generally increased with fire (Table 1). Cover of herbaceous vegetation was similar for all treatments, but stands burned during the dormant season had more bare ground and exposed rock (Table 3). Warm season species had lower densities in response to growing-season burns than dormant-season burns (Table 1 and 2).

Response to frequent fire

Panicum frequency increased with frequent dormant-season burns (Table 4). However, density of <u>Chasmanthium sessiliflorum</u> declined ($\mathbf{E} = 35.6$; $\mathbf{P} = 0.0270$) after frequent dormant-season fire. Legume density was greater after frequent dormant-season fires (Table 4). Density of <u>Lespedeza procumbens</u> ($\mathbf{E} = 124$, $\mathbf{P} = 0.0080$) and <u>Stylosanthes biflora</u> ($\mathbf{E} = 124.9$; $\mathbf{P} = 0.0079$) was greater after frequent dormant-season fires. <u>Helianthus hirsutus</u> ($\mathbf{E} = 33.7$; $\mathbf{P} = 0.0284$) frequency of occurrence was also greater after frequent fire. Stand species richness in frequently burned stands remained stable, but declined in control stands (Figure 1).

Fire and season of fire dramatically influenced community composition in restored pine-grassland stands. Species diversity when compared to un-burned stands was greater ($\underline{P} \leq 0.05$) after both growing-season and dormant-season prescribed fires. Stand species richness increased after both growing-season and dormant-season fires, while declining in un-burned stands (Figure 1b). Furthermore, post-treatment stand

species richness after dormant-season and growing-season fires was greater than the unburned controls in Study 1 (Figure 1a). Sample species richness increased dramatically after dormant-season fires with net change in stand species richness being greatest after dormant-season fires (Figure 2b). Species evenness was similar for all treatments.

Detrended Correspondence Analysis illustrated the nature of change in these stands over time and in response to fire (Figure 3). Axis 1 indicated that year to year variation may be the most important factor in determining species composition of these stands (Figure 3). Axis 2 indicated that location also determines species composition. We could not interpret Axis 3, but Axis 4 may be interpreted as a treatment axis (Figure 3). Control stands shifted to the right on Axis 1 and upward on Axis 4 indicating a year and treatment effect, while dormant-season fire stands shifted right on Axis 1 and down on Axis 4 also indicating a year and treatment effect (Figure 3). Growing-season fire stands shifted directly to the right on Axis 1 indicating that year had an overriding influence on treatment (Figure 3). The shift in stands after treatment indicates a similar change in species composition among the treatments. Axes 1 through 4 had eigenvalues of 0.161, 0.081, 0.056, and 0.042 respectively. Together all axes account for 26.5% of the total variation in species data. With an eigenvalue of only 0.042, and the fact that the apparent "treatment axis" is the 4th axis, it is obvious that the effects of treatment, while perhaps highly significant, is trivial compared with the year-to-year effects and site effects.

Discussion

Treatment response

Burned stands had higher stand species richness and diversity than no-burn controls (Figure 1). These results are similar to many studies that indicate an initial increase in species diversity and richness following fire (Trabaud and Lepart, 1980; Armour et al., 1984). In Study 2, stands in the 2nd growing season since dormantseason fire (IFDS), declined in species richness, indicating that the initial increase in stand richness after fire is short lived (Figure 1 and 2) and may be somewhat influenced by environmental conditions during a given year (Figure 3). The majority of individual species in both studies did not respond favorably to any one treatment, but were common in all treatments. We believe this is because species present in restored pine-grassland communities are well adapted to fire and community changes are small and of short duration. Waldrop et al. (1992) noted that the pine-grassland ecosystem once common throughout the southeastern U.S. was fire derived and fire maintained. Herbaceous species in these restored-pine grassland communities were present in presettlement communities that developed under a periodically frequent fire regime during both the dormant and growing seasons (Masters et al., 1995).

Fire does not drastically alter species composition in stands with a recent history of fire. Pre-fire composition is a major factor in determing post-fire composition (Armour et al., 1984; Stickney, 1986; Rego et al. 1991). Adjacent forests without WSI treatment have dense midstories minimizing light from reaching the forest floor, so species richness and abundance of herbaceous species is much less (Masters et al., 1996). We also suggest that post-fire species richness and composition is influenced by fire intensity, which is related to litter consumption and reduction in the stature of woody species.

Stand structure

Prescribed fire plays a major role in determining the vegetation structure and composition in restored pine-grassland communities (Wilson et al., 1995). Understories of stands treated with WSI are characteristically dominated by woody sprouts (> 50,000 stems/ha) that restrict light from reaching the forest floor. Dormant-season fires in these stands on average produce greater fireline intensity than growing-season fires (1,300 kW/m versus < 300 kW/m), and are more effective at maintaining an open forest structure by reducing the stature of woody sprouts (Sparks, 1996; Sparks et al., IN REVIEW<u>a;b</u>).

The effect of a disturbance such as fire on any community or ecosystem depends on the intensity, scale, and frequency (Sousa, 1984; Perry, 1994; Sparks 1996). Dormant-season fires in these stands act as more intense disturbances than growingseason fires, by more effectively reducing stature of the woody community and reducing the litter layer. Increased light penetration due to the reduced stature of the woody understory and reduction of litter after fire provides an opportunity for new herbaceous species to become established, thereby significantly increasing species richness and diversity (Sousa, 1984; Masters, 1991<u>a;b</u>; Masters et al., 1993). But, fire in either season increases light and allows already present species to prosper, thus the increase in density and percent frequency of occurrence of forbs after fire.

Species composition

Herbaceous species actively growing at the time of a fire in grassland systems are more susceptible to injury than species that are dormant or in early stages of development (Towne and Owensby, 1984). Fires during the dormant season reduce cool-season species while favoring many warm-season species (Owensby and Anderson, 1967; Hover and Bragg, 1981; Towne and Owensby, 1984; Hulbert, 1988; Howe, 1994a) In contrast, growing-season fires reduce warm-season species while favoring cool-season species (Hover and Bragg, 1981; Ewing and Engle, 1988; Biondini et al., 1989; Howe, 1994a). Our results in Study 2 followed these other studies, with density of warm-season species being greatest after dormant-season fires (Table 2). Results from Study 1 were inconclusive, which may be attributed to a later burn date within the dormant-season. Growing-season burns may have increased coolseason species had our growing-season fires been conducted earlier in the growing season and before cool-season species initiated new growth. It is important to note that in both studies we attempted to burn earlier in the growing season, but burning conditions (primarily fuel moisture, presence of live vegetation and high relative humidities) were not conducive to fire until later in the growing season.

Several studies have noted that growing-season fires when compared to dormant-season fires and unburned areas increase diversity and richness by increasing the number of annuals and promoting cool-season grasses and forbs (Biondini et al., 1989; Howe, 1994<u>b</u>). Platt et al. (1988) noted that growing-season fires produced more flowering stems than fires in other seasons. Many warm-season grasses such as wiregrass (Aristida stricta) and little bluestem (Schizachrium scoparium) flower profusely after growing-season fires (Lewis, 1964; Robbins and Myers, 1992). Hodgkins (1958) noted that composites and legumes increase in response to growingseason fires. Our results indicate an aggressive response from legumes and forbs (Table 1 and 2), and a larger increase in species richness after dormant-season fires (Figure 1 and 2). Other studies have found similar results (Grelen and Lewis, 1981; Landers, 1981, and White et al. 1991). In Study 2, legume density was greater after frequent dormant-season fires, which are results similar to those of White et al. (1991) who found annual winter fires increased legumes more than periodic summer and winter burns or annual summer burns.

Conclusions

Fire changes woody structure, which influences plant composition in restored pine-grassland ecosystems. Fire increased species richness, diversity, and total abundance of forbs and legumes, while herbaceous species abundance and richness declined in no-burn controls. Increased light and presence of bare ground after fire provide the opportunity for many herbaceous species to become established. Change in species composition and abundance is linked to change in stand structure. Dormantseason fires are more effective than growing-season fires at reducing woody sprouts in the understory and at providing bare ground for colonization. As a result, herbaceous species abundance and richness was greater after dormant-season fires.

Literature cited

- Anderson, R. C., 1990. The historic role of fire in the North American grassland. In: S. L. Collins and L. L. Wallace (Editors), Fire in North American tallgrass prairies. Univ. of Oklahoma Press, Norman, pp 8-18.
- Anderson, R. C. and Brown, L. E., 1986. Stability and instability in plant communities following fire. Am. J. Bot., 73:364-368.
- Armour, C. D., Bunting, S. C. and Neuenschwander, L. F., 1984. Fire intensity effects on the understory in ponderosa pine forests. J. Range Manage., 37: 44-49.
- Bailey, R. G., 1995. Description of the ecoregions of the United States.2nd edition. USDA, For. Serv., Misc. Publ. 1391 (Revised),Washington, D.C., 108 pp.
- Biondini, M., Steuter A. A. and Grygiel G. E., 1989. Seasonal fire effects on diversity patterns, spatial distribution and community structure of forbs in northern mixed prairie, USA. Vegetatio, 85:21-31.

Buckner, E., 1989. Evolution of forest types in the Southeast.
In: T.A. Waldrop (editor), Proc. Pine-Hardwood
Mixtures: A Symposium on Management and Ecology of
the Type. U.S. For. Serv. Southeast. For. Exp. Stn., Gen
Tech. Rep., SE-58: 27-33.

Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science,

199: 1302-1310.

- Conover, W. J. and Iman, R. L., 1981. Rank transformations as a bridge between parametric and nonparametric statistics. Amer. Stat., 35:124-129.
- Cottam, G., 1949. The phytosociology of an oak woods in southwestern Wisconsin. Ecology, 30:271-287.
- Curtis, T. J., 1956. The modification of mid-latitude grasslands and forests by man. In W. L. Thomas (Editor), Man's role in changing the face of the earth. Univ. of Chicago Press, Chicago, pp 721-736.
- Ewing, A. L. and Engle, D. M., 1988. Effects of late summer fire on tallgrass prairie microclimate and community composition. Am. Midl. Nat., 120:212-223.
- Featherstonhaugh, G. W., 1844. Excursion through the slave states. Harper Bros., New York, 168 pp.
- Fenneman, N. M., 1938. Physiography of eastern United States. McGraw-Hill Book Co. New York, 714 pp.
- Forman, R. T. T. and Godron M., 1986. Landscape Ecology. John Wiley and Sons, New York, 619 pp.
- Foti, T. L. and Glenn, S. M., 1991. The Ouachita Mountain landscape at the time of settlement. In: D. Henderson and L. D. Hedrick (Editors),
 Restoration of old growth forests in the interior highlands of Arkansas and Oklahoma: proc. of the conf., Morrilton, Arkansas (19-20)

September 1990), pp 49-65.

- Glitzenstein, J. S., Platt, W. J. and Streng D. R., 1995. Effects of fire regime and habitat on tree dynamics in North Florida longleaf pine savannas. Ecol. Mono., 65:441-476.
- Grano, C. X., 1970. Eradicating understory hardwoods by repeated prescribed burning. USDA, For. Serv. South. For. Exp. Stn., Res. Pap. SO-56, 11 pp.
- Great Plains Flora Association, 1986. Flora of the Great Plains. Univ. Press of Kansas, Lawrence, 1402 pp.
- Grelen, H. E., 1975. Vegetation response to twelve years of seasonal burning on a Louisiana longleaf pine site. USDA, For. Serv., South. For. Exp. Stn., Res. Note, SO-192, 4 p.
- Grelen, H. E. and Lewis, C. E., 1981. Value of range data on fire effects to the wildlife manager. In: G. W. Wood (Editor), Prescribed fire and wildlife in southern forests. The Belle W. Baruch For. Sci. Inst., Clemson Univ., S.C., pp 155-161.
- Hill, M. O., and Gauch, Jr., H. G., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio, 42:47-58.
- Hodgkins, E. J., 1958. Effects of fire on undergrowth vegetation in upland southern pine forests. Ecology, 39:36-46.
- Hover, E. I. and Bragg, T. B., 1981. Effect of season of burning and mowing on an eastern Nebraska Stipa-Andropogon prairie. Am. Midl. Nat., 105:13-18.

- Howe, H. F., 1994a. Response of early- and late-flowering plants to fire season in experimental prairies. Ecol. Appl., 4:121-133.
- Howe, H. F., 1994b. Managing species diversity in tallgrass prairie: assumptions and implications. Conserv. Bio., 8:691-704.
- Hughes, R. H., 1975. The native vegetation in South Florida related to month of burning. USDA, For. Serv., Southeast. For. Exp. Stn., Res. Note, SE-222, 8 p.
- Hulbert, L. C., 1988. The causes of fire effects in tallgrass prairie. Ecology, 69:46-58.
- James, E., 1823. Account of an expedition from Pittsburgh to the Rocky Mountains, performed in the years 1819 and 1820. H.C. Carey, Philadelphia, 945 pp.
- Johnson, F. L., 1986. Woody vegetation of southeastern Leflore County, Oklahoma, in relation to topography. Proc. Okla. Acad. Sci., 66:1-6.
- Komarek, R., 1963. Fire and the changing wildlife habitat. Proc. Tall Timbers Fire Ecol. Conf., 2: 35-43.
- Komarek, E. V., 1965. Fire ecology--grasslands and man. In: Proceedings of the Fourth Annual Tall Timbers Fire Ecol. Conf., 4: 169-220.
- Kreiter, S. D., 1995. Dynamics and spatial pattern of a virgin old-growth hardwood-pine forest in the Ouachita Mountains, Oklahoma, from 1896 to 1994. M.S. Thesis, Oklahoma State Univ., Stillwater. 141 pp.

Landers, J. L. 1981. The role of fire in bobwhite quail management. In: G.

W. Wood (Editor), Prescribed fire and wildlife in southern forests. The Belle W. Baruch For. Sci. Inst., Clemson Univ., S.C., pp 73-80.

- Lewis, C. E., 1964. Forage response to month of burning. USDA, For. Serv., Southeast. For. Exp. Stn., Res. Note SE-35, 4 p.
- Lewis, C. E., and Harshbarger, T. J., 1976. Shrub and herbaceous vegetation after 20 years of prescribed burning in South Carolina Coastal Plain. J. Range Manage., 29:13-18.
- Ludwig, J. A. and Reynolds, J. F., 1988. Statistical ecology. John Wiley and Sons, Inc., New York, 337 pp.
- Masters, R. E., 1991a. Effects of timber harvest and prescribed fire on wildlife habitat and use in the Ouachita Mountains of eastern Oklahoma. Ph.D.
 Thesis, Oklahoma State Univ., Stillwater, 351 pp.
- Masters, R. E., 1991b. Effects of fire and timber harvest on vegetation and cervid use on oak-pine sites in Oklahoma Ouachita Mountains. In: S. C. Nodvin and T. A. Waldrop (Editors), Fire and the environment: ecological and cultural perspectives. Proc. of an international symposium. USDA, For. Serv., Gen. Tech. Rep., SE-69: 168-176.
- Masters, R. E., Lochmiller, R. L. and Engle, D. M., 1993. Effects of timber harvest and prescribed fire on white-tailed deer forage production. Wildl. Soc. Bull., 21:401-411.
- Masters, R. E., Skeen, J. E. and Whitehead, J., 1995. Preliminary fire history of McCurtain County Wilderness Area and implications for red-

cockaded woodpecker management. In: D. Kulhavy, B. Hooper, and R. Costa (Editors), Red-cockaded woodpecker: species recovery, ecology and management. Center for Applied Studies, Stephen F. Austin University, Nacogdoches, TX, pp 290-302.

- Masters, R. E., Wilson C. W., Bukenhofer, G. A., and Payton, M. E., 1996. Effects of pine-grassland restoration for red-cockaded woodpeckers on white-tailed deer forage production. Wildl. Soc. Bull., 25:77-84.
- Mueller-Dombois, D. and Ellenberg, H., 1974. Aims and methods of vegetational ecology. John Wiley and Sons, Inc., New York, 547 pp.
- Neal, J. C. and Montague, W. G., 1991. Past and present distribution of the red-cockaded woodpecker <u>Picoides borealis</u> and its habitat in the Ouachita Mountains, Arkansas. Proc. Ark. Acad. Sci., 45:71-75.
- Noss, R. F. and Cooperrider, A. Y., 1994. Saving nature's legacy: protecting and restoring biodiversity. Island Press, Washington, D.C. 416 pp.
- Nuttall, T. (S, Lottiville, editor.), 1980. A journal of travels into the Arkansas Territory during the year of 1819. Univ. Oklahoma Press, Norman, 361 pp.
- Oosting, H. J., 1956. The study of plant communities. W. H. Freeman and Co., San Francisco, 440 pp.
- Owensby, C. E. and Anderson, K. L. 1967. Yield responses to time of burning in the Kansas Flint Hills. J. Range Manage., 20:12-16.

Perry, D. A., 1994. Forest ecosystems. John Hopkins Univ. Press, Baltimore,

649 pp.

- Pickett, S. T. A. and White, P. S. (Editors), 1985. The ecology of natural disturbances and patch dynamics. Academic Press, New York, 472 pp.
- Platt, W. J., Evans, G. W. and Davis, M. M., 1988. Effects of fire season on flowering forbs and shrubs in longleaf pine forests. Ocecologia, 76:353-363.
- Pyne, S. J., 1982. Fire in America: a culture history of wildland and rural fire. Princeton University Press, Princeton, 654 pp.
- Rego, F. C., Bunting, S. C. and da Silva, J. M., 1991. Changes in understory vegetation following prescribed fire in maritime pine forests. For. Ecol. Manage., 41:21-31.
- Robbins, L. E. and Myers, R. L., 1992. Seasonal effects of prescribed burning in Florida: a review. Tall Timbers Research, Inc., Miscellaneous Publication Number 8. Tallahassee, 96 pp.
- SAS Institute Inc., 1985. SAS users' guide: statistics, version 5 edition. SAS Institute Inc., Cary, SC, 956 pp.
- Smith, E. B., 1988. An atlas and annotated list of the vascular plants of Arkansas. 2nd edition. Univ. of Ark., Fayettville, AR, 489 pp.
- Smith, R. M., 1989. The atlas of Arkansas. Univ. of Ark. Press, Fayetteville, AR, 226 pp.
- Smith, R. L., 1990. Ecology and field biology. Harper and Row, New York, 922 pp.

Snedecor, G. W. and Cochran, W. G., 1980. Statistical methods, 7th

edition. Iowa State Univ. Press, Ames, IW, 507 pp.

- Sousa, W. P., 1984. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst., 15:353-391.
- Sparks, J. C., 1996. Growing-season and dormant-season fire behavior and effects on vegetation in the Ouachita Mountains, Arkansas. M.S. Thesis, Oklahoma State Univ., Stillwater, OK. 186 pp.
- Sparks, J. C. and Masters, R. E., 1996. Fire seasonality effects on vegetation in mixed-, tall-, and southeastern pine-grassland communities: a review.
 Transactions of the North American Wildlife and Natural Resources Conference, 61: 230-239.
- Sparks, J. C., Masters, R. E., Engle, D. M. and Bukenhofer, G. A., IN REVIEW<u>a</u>. Growing-season versus dormant-season fire behavior and fuel consumption in thinned stands of pine. Int. J. of Wildland Fire.
- Sparks, J. C., Masters, R. E., Engle, D. M. and Bukenhofer, G. A., IN REVIEW<u>b</u>. Growing-season vs dormant-season fire for woody species management in RCW clusters. Wildl. Soc. Bull.
- Stearns, F. W., 1949. Ninety years change in a northern hardwood forest in Wisconsin. Ecology, 30:350-358.
- Stickney, P. F., 1986. First decade plant succession following the Sundance Forest Fire, northern Idaho, USDA, For. Serv., Int. For. and Range Exp. Stn., Gen Tech. Rep., INT-197, 26 pp.

Steel, R. G. D. and Torrie, J. H., 1980. Principles and procedures of statistics,

a biometrical approach. Second ed. McGraw-Hill Book Co., New York, 633 pp.

- ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67:1167-1179.
- ter Braak, C. J. F., 1988. CANOCO a FORTRAN program for Canonical Community Ordination. Microcomputer Power, Ithaca, NY, 95 pp.
- Towne, G. and Owensby, C., 1984. Long-term effects of annual burning at different dates in ungrazed Kansas tallgrass prairie. J. of Range Manage., 37:392-397.
- Trabaud, L. and Lepart, J., 1980. Diversity and stability in garrigue ecosystems after fire. Vegetatio, 43:49-57.
- Waldrop, T. A., White, D. L. and Jones, S. M., 1992. Fire regimes for pine--grassland communities in the southeastern United States. For. Eco. Manage., 47:195-210.
- White, D. L., Waldrop, T. A. and Jones, S. M., 1991. Forty years of prescribed burning on the Santee fire plots: effects on understory vegetation. In: S. C. Nodvin and T. A. Waldrop (Editors), Fire and the environment: ecological and cultural perspectives. USDA, For. Serv., Southeast. For. Exp. Stn., Gen. Tech. Rep., SE-69, 429 pp.
- Wilson, C. W., Masters, R. E. and Bukenhofer, G. A., 1995. Breeding bird response to pine-grassland community restoration for red-cockaded

87

woodpeckers. J. Wildl. Manage., 59:56-67.

Wyant, J. G., Ralph, J. A. and Bechold, W. A., 1991. Physiographic position, disturbance and species composition in North Carolina coastal plain forests. For. Ecol. Manage., 41:1-19.

	Treatment ^b									
	No-burn Control		Dormant Season		Growing Season					
	1995	Percent ^b	1995	Percent ^b	1995	Percent ^b	-	P > F		
	Mean (SE)	change	Mean (SE)	change	Mean (SE)	change		Contr	asts ^c	
Parameter, Group	(n=4)	(n=4)	(n=4)	(n=4)	(n=4)	(n=4)	Treatment	C vs B	D vs G	
Density (stems/m ²)									7	
Grasses	42.7 (1.1)	116	37.4 (6.3)	100	24.8 (5.1)	65	0.3477	0.2806	0.3292	
Panicums	17.2 (5.7)	106A	27.5 (6.2)	134A	8.4 (2.2)	23B	0.0194	0.3519	0.0077	
Sedges	8.0 (0.9)	73	22.3 (2.4)	129	13.8 (1.8)	81	0.1085	0.1850	0.0872	
Legumes	20.8 (7.6)	102B	24.8 (4.1)	198A	23.5 (6.7)	165AB	0.0259	0.0115	0.2864	
Forbs	21.0 (1.8)	105B	48.4 (1.2)	226A	29.5 (4.8)	142AB	0.0353	0.0451	0.0625	
Cool-season Species	26.8 (3.5)	116	54.0 (5.2)	187	31.6 (4.0)	88	0.1599	0.6160	0.0692	
Warm-season Species	82.7 (7.2)	102	106.3 (8.0)	131	68.4 (11.8)	76	0.2005	0.9604	0.0811	
Percent Frequency of Occ	urrence									
Grasses	77 (3)	97	77 (4)	102	69 (6)	88	0.3026	0.8060	0.1364	
Panicums	82 (6)	96A	93 (3)	109A	63 (2)	67B	0.0005	0.1874	0.0002	
Sedges	58 (3)	95	79 (6)	106	70 (7)	90	0.5019	0.7559	0.2691	
Legumes	80 (11)	94	85 (7)	103	88 (10)	115	0.2330	0.1732	0.2922	
Forbs	95 (2)	99	99 (1)	105	95 (5)	97	0.1181	0.5692	0.0500	
Cool-season Species	93 (2)	99	98 (2)	102	95 (5)	96	0.4027	0.9852	0.1894	
Warm-season Species	99 (1)	99	100 (0)	101	98 (3)	101	0.6252	0.3511	0.8828	

Table 1.^a Study 1, herbaceous stem density (stems/m²) and percent frequency of occurrence response to season of fire in restored pine-grassland communities on the Ouachita National Forest, Arkansas, summer 1994 and 1995.

^a Row means followed by different letters are different ($\underline{P} \leq 0.05$, Least Significant Difference).

^b Percent change = [(post treatment (1995) / pre-treatment (1994)) X 100] , presented <u>P</u> > F values are for this category.

^c Contrasts: C = Control; B = Burned stands regardless of season; D = Dormant-season fires; G = Growing-season fires.

÷	Dormant	Season	Growing			
	1996	Percent ^b	1996	Percent ^b		
	Mean (SE)	change	Mean (SE)	change	P > F	
Parameter, Group	(n=2)	(n=2)	(n=2)	(n=2)	Treatment	
Density (stems/m²)						
Grasses	47.9 (6.9)	115	16.7 (6.1)	38	0.0724	
Panicums	18.6 (10.6)	110	8.4 (5.4)	45	0.0056	
Sedges	12.2 (3.7)	142	8.0 (1.7)	104	0.1758	
Legumes	29.6 (14.6)	184	23.8 (11.8)	104	0.0451	
Forbs	28.7 (1.9)	143	21.4 (0.3)	101	0.1781	
Cool-season Species	37.6 (4.4)	124	20.1 (5.6)	88	0.3087	
Warm-season Species	101.1 (10.0)	140	58.6 (16.3)	63	0.0451	
Percent Frequency of C	Occurrence					
Grasses	77 (17)	105	67 (3)	84	0.4563	
Panicums	78 (5)	100	67 (3)	80	0.1987	
Sedges	67 (3)	123	60 (3)	100	0.3352	
Legumes	85 (15)	120	93 (0)	110	0.6865	
Forbs	98 (2)	102	100 (0)	107	0.4226	
Cool-season Species	100 (0)	106	98 (2)	107	0.7863	
Warm-season Species	100 (0)	102	100 (0)	100	0.4226	

Table 2.^a Study 2, herbaceous stem density (stems/m²) and percent frequency of occurrence response to season of fire in restored pine-grassland communities on the Ouachita National Forest, Arkansas, summer 1995 and 1996.

 $^{\rm a}$ Row means followed by different letters are different (P \leq 0.05, Least Significant Difference).

 $^{\rm b}$ Percent change = [(post treatment (1995) / pre-treatment (1994) X 100] , presented \underline{P} > F values are for this category.

			Treat		122 0 125				
Group	<u>Control (n=4)</u>		Dormant Season (n=4)		Growing Season (n=4)			<u>P > F</u> <u>Contrasts^b</u>	
	Mean	SE	Mean	SE	Mean	SE	Treatment	C vs B	D vs G
Bare Ground	0.1B	0.1	6.4A	0.6	1.4B	0.6	0.0001	0.0001	0.0001
Litter	74.5	2.4	51.3	14.2	73.8	6.3	0.1787	0.3114	0.1149
Rock	0.5B	0.2	3.9A	0.8	1.3B	0.2	0.0019	0.0057	0.0045
Logs	2.9	0.8	2.7	0.5	3.6	0.7	0.6449	0.7773	0.3842
Tree Bole	0.3B	0.1	0.8A	0.2	0.1B	0.1	0.0111	0.3599	0.0042
Cryptogams	1.0	0.5	1.8	1.2	0.1	0.0	0.3233	0.9020	0.1447
Woody Species	24.7	4.1	16.6	3.0	18.0	3.1	0.2609	0.1141	0.7979
Forbs	7.8	1.9	10.4	0.9	9.2	3.0	0.7161	0.4756	0.7180
Grasses	10.9	3.5	5.3	0.8	4.8	1.2	0.1474	0.0582	0.7991

Table 3.ª Post-treatment percent cover in restored red-cockaded woodpecker clusters on the Ouachita National Forest, Arkansas in 1995.

^a Row means followed by different letters are different ($\underline{P} \leq 0.05$, Least Significant Difference).

^b Contrasts: C = Control; B = Burned stands regardless of season; D = Dormant-season fires; G = Growing-season fires.

- 11
D T T T
7
그다
- 21
20
~
3
- 21
- 21
1

	Cont	rol	Freque			
Parameter, Group	1996 Mean (SE) (n=2)	Percent ^b change (n=2)	1996 Mean (SE) (n=2)	Percent ^b change (n=2)	<u> P > F </u> Treatmen	
Density (stems/m²)						
Grasses	57.7 (4.4)	130	32.5 (8.7)	109	0.3744	
Panicums	18.9 (8.7)	76	21.5 (2.6)	75	0.9556	
Sedges	25.3 (3.0)	96	15.5 (1.1)	86	0.4414	
Legumes	17.0 (5.8)	79	32.6 (2.8)	118	0.0234	
Forbs	30.9 (5.5)	65	30.2 (1.9)	62	0.8398	
Percent Frequency of	Occurrence					
Grasses	78 (5)	94	75 (2)	108	0.2951	
Panicums	88 (2)	91	88 (2)	100	0.0267	
Sedges	82 (2)	106	72 (5)	90	0.3854	
Legumes	85 (15)	103	95 (2)	110	0.3906	
Forbs	98 (2)	100	98 (2)	98	0.4226	

Table 4.^a Study 2, herbaceous stem density (stems/m²) and percent frequency of occurrence response to frequent fire in restored pine-grassland communities on the Ouachita National Forest, Arkansas, summer 1995 and 1996.

^a Row means followed by different letters are different ($\underline{P} \leq 0.05$,

Least Significant Difference).

^b Percent change = [(post treatment (1995) / pre-treatment (1994)) X 100] , presented $\underline{P} > F$ values are for this category.

Figure 1. (a) Stand species richness by study and treatment, (b) Net-change and standard errors in stand species richness by study and treatment. Means followed by different letters are different ($\underline{P} \leq 0.05$, Least Significant Difference). CON1 = Study 1, no-burn control; GS1 = Study 1, growing-season burn; DS1 = Study 1, dormant-season burn; GS2 = Study 2, growing-season burn; DS2 = Study 2, dormant-season burn; FDS = Study 2, frequent dormant-season burn; and IFDS = Study 2, infrequent dormant-season burn.

Treatment

Figure 2. (a) Sample (m²) species richness by study and treatment, (b) Net-change and standard errors in sample species richness by study and treatment. Means followed by different letters are different ($\underline{P} \le 0.05$, Least Significant Difference). CON1 = Study 1, no-burn control; GS1 = Study 1, growing-season burn; DS1 = Study 1, dormant-season burn; GS2 = Study 2, growing-season burn; DS2 = Study 2, dormant-season burn; FDS = Study 2, frequent dormant-season burn; and IFDS = Study 2, infrequent dormant-season burn.

Treatment

AND ATTOTAL COLDER TIMINERS AND

96

Figure 3. Detrended correspondence analysis of stand importance values by treatment, Ouachita National Forest. Stands are connected by vectors to indicate change from pre-treatment sampling to post-treatment sampling. CON1 = Study 1, no-burn control; GS1 = Study 1, growing-season burn; DS1 = Study 1, dormant-season burn; GS2 = Study 2, growing-season burn; DS2 = Study 2, dormant-season burn; FDS =Study 2, frequent dormant-season burn; and IFDS = Study 2, infrequent dormantseason burn.

4 sixA

CHAPTER V

GROWING-SEASON VERSUS DORMANT-SEASON FIRE FOR WOODY SPECIES MANAGEMENT IN RED-COCKADED WOODPECKER CLUSTERS

Abstract: Control of woody midstory in red-cockaded woodpecker clusters is a major concern throughout southeastern U.S pine forests. Prescribed fire and midstory thinning are the most common management tools used to restore pine-grassland communities and minimize midstory development, however it is unclear which season of fire is most efficient. We compared woody stem control from prescribed fires during both the late growing season (September--October: before leaf fall) and dormant season (March--April: before leaf expansion). We found mortality of woody stems \geq 1-m tall was related to fireline intensity, rate of spread, and heat per unit area. Growing-season fires were less intense than dormant-season fires, and less effective at reducing woody stems \geq 1-m tall in the understory and lower midstory. Because of prolific sprouting, neither growing-season nor dormant-season prescribed fires were effective at reducing stems < 1-m tall. We recommend that studies using prescribed fire should quantify fire behavior rather than using subjective descriptions and should precisely define season of burn.

INTRODUCTION

The endangered red-cockaded woodpecker (Picoides borealis) is endemic to the fire derived or maintained, pine- (Pinus spp.) grassland ecosystem once common throughout the southeastern U.S. (Conner and Rudolph 1989, 1991; Masters et al. 1996). Pine-grassland communities consist of widely spaced pine or mixed pine-hardwood canopies with a distinct herbaceous and grass dominated groundstory (Little and Olmstead 1931, Smith 1986, Waldrop et al. 1992), and a recurrent hardwood shrub layer or midstory on some sites (Masters et al. 1995). After Euro-American settlement these once open communities changed drastically because of habitat loss through timber harvest and fire suppression (Foti and Glenn 1991, Kreiter 1995, Masters et al. 1995). Subsequently, red-cockaded woodpecker populations declined precipitously (Ligon et al. 1986, Conner and Rudolph 1989, 1991; Conner et al. 1991a,b; Kelly et al. 1993, Heppell et al. 1994).

Fire historically maintained open southeastern forest conditions (Buckner 1989, Masters et al. 1995, Kreiter 1995). However, fire suppression following settlement permitted development of dense midstories (primarily hardwoods) and an increase in overall tree density (Conner and Rudolph 1989, Foti and Glenn 1991, Masters et al. 1995, Kreiter 1995). Encroachment of hardwood midstories cause red-cockaded woodpeckers to abandon cavities and even entire clusters (Lennartz et al. 1983, Richardson and Smith 1992). Therefore, removal of midstory and codominant trees within active red-cockaded woodpecker clusters is essential when managing for redcockaded woodpeckers.
TILLE THE THE TELEVIST THE THE

Increased interest in ecosystem management over single species management prompted the U.S.D.A. Forest Service to focus on broader efforts using wildlife stand improvement (WSI) and fire (Masters et al. 1996). WSI consists of thinning midstory and codominant trees to presettlement basal area followed by application of fire at 3year intervals (Wilson et al. 1995, Masters et al. 1996). The primary objective of WSI and fire is to reconstruct and maintain presettlement forest structure and benefit wildlife and plant species dependent on open forests and fire.

Because woody plants that sprout after thinning are common in southeastern pine forests, periodic dormant-season prescribed fires are used to maintain WSI stands and prevent midstory development. Dormant-season fires in WSI stands topkill the majority of woody stems in the understory and midstory, but these stems are replaced by numerous sprouts (Wilson et al. 1995, Waldrop et al. 1987, 1991; Glitzenstein et al. 1995). Because woody sprouts grow rapidly after fire, stands must be burned every 3 to 4 years to prevent midstory development. With small administrative units (generally <16 ha) this fire interval limits the area than can be burned on an annual basis. Therefore, interest has increased in using growing-season prescribed fires as a potential method of extending the number of burning days per year and possibly the interval between burns.

Several studies in the Ouachita Highlands have investigated the effects of dormant-season fire frequency on woody understory and midstory species (Masters 1991<u>a,b;</u> Masters et al. 1993, Masters et al. 1996). However, no information is available on the effects of growing-season burns on woody species in the forest

understory and midstory of the Ouachita Mountains. Numerous studies performed in the Coastal Plains of the southeast suggest growing-season fires are more effective than dormant-season fires in controlling small hardwoods and sprouts (Brender and Cooper 1968, Chaiken 1952, Ferguson 1961, Grano 1970, Grelen 1975, Hodgkins 1958, Lotti et al. 1960, Trousdell 1970, Waldrop et al. 1987, Boyer 1990).

Our purpose was to evaluate the effects of growing-season and dormant-season prescribed fires on woody structure in restored pine-grassland communities. Our primary objective was to determine which season of fire (growing versus dormant) was most effective at topkilling understory and lower midstory woody species in WSI treated stands. We compared no-burn control WSI stands with WSI stands burned during the growing season and dormant season. A secondary objective was to determine if fire behavior parameters (i.e., flame length, fireline intensity, rate of spread, heat per unit area, and reaction intensity) were related with woody stem response following prescribed fire.

STUDY AREA

Our study was conducted on the Poteau Ranger district of the Ouachita National Forest (ONF) in west-central Arkansas. The ONF lies within the 2,280,000 ha Ouachita Mixed Forest Meadow Province and comprises 648,000 ha throughout the Ouachita Mountains in Arkansas and Oklahoma (Neal and Montague 1991, Bailey 1995). All stands in this study were within the 40,000 ha Pine-bluestem Ecosystem Renewal Area, and were under active management for the endangered red-cockaded woodpecker. Other studies have described the physical features of these stands

- ---- ANTON & CONTRACTOR ATTACTOR

(Wilson et al. 1995, Masters et al. 1996, Sparks 1996, Sparks et al. IN REVIEWa).

Forest structure in these stands resemble presettlement pine-grasslands, with shortleaf pine (Pinus echinata) as the dominant overstory species. Codominant and intermediate overstory species included post oak (Quercus stellata), blackjack oak (Q. marilandica, white oak (Q. alba), northern red oak (Q. rubra), black oak (Q. velutina), black hickory (Carya texana), and mockernut hickory (C. tomentosa). The understory and lower midstory of these stands were dominated by numerous woody resprouts (\leq 3-m). Woody species and vines dominating the understory included poison ivy (Toxicodendron radicans), low-bush huckleberry (Vaccinium pallidum), post oak, mockernut hickory, blackberry (Rubus spp.), virginia creeper (Parthenocissus quinquefolia), New Jersey tea (Ceanothus americanus), muscadine (Vitis rotundifolia), white oak and shortleaf pine (Sparks 1996).

METHODS

Experimental Design

Our experimental design included two studies (Study 1 and Study 2) in a completely randomized design. In these studies we used 12 stands (13.8 to 26.7 ha) that had been previously subjected to WSI and fire. Study 1 consisted of 3 treatments with 4 replications of each treatment ($\underline{n} = 12$). Study 2 used the control stands from Study 1 ($\underline{n} = 4$). Study 1 and Study 2 treatments differed in that prescribed burns were applied after 3 growing seasons versus 4 growing seasons, respectively after the previous dormant-season fire. Treatments are as follows:

Study 1

- (1) No-burn control ($\underline{n} = 4$);
- (2) Dormant-season fire, March--April 1995 ($\underline{n} = 4$);
- (3) Growing-season fire, September 1994 ($\underline{n} = 4$);

Study 2

- (4) Dormant-season fire, March 1996 ($\underline{n} = 2$);
- (5) Growing-season fire, October 1995 ($\underline{n} = 2$).

Vegetation Sampling

We sampled woody vegetation during a two week period in July 1994 (pretreatment, Study 1), July 1995 (post-treatment, Study 1; pre-treatment Study 2), and July 1996 (post-treatment, Study 2). We established 30 permanent plots in each stand at 30-m intervals on 2 to 4 randomly spaced lines perpendicular to the contour (after Oosting 1956, Masters 1991a,b). We did not sample within 50-m of any edge to avoid bias from surrounding stands (Mueller-Dombois and Ellenberg 1974:123). We divided woody understory, shrub, and midstory species into three height classes 0 to 1-m, 1 to 3-m, and > 3-m. We determined species density and composition within these height classes using fixed-radius plots (radius = 3.64-m). We estimated basal area using a 10-factor prism (Avery 1967) and percent canopy cover using a spherical densiometer (Lemmon 1957) at each permanent plot.

Fire Behavior

We used strip headfires to burn each stand at the appropriate dates (see above). Fire behavior was sampled at 3 random locations within a stand. Further description of methods used to sample and calculate fire behavior parameters was reported by Sparks et al. (IN REVIEWa). Fire behavior data are presented in Table 1.

Data Analysis

We calculated species richness, diversity (Shannon-Weaver H') and evenness (J' of Pielou) after Ludwig and Reynolds (1988). In both studies, we summarized woody species by mean density and frequency of occurrence for each year and treatment. We then determined the percent change caused by treatment [(posttreatment / pre-treatment) X 100] to account for pre-treatment differences among stands and tested these variables for homogeneity of variance using Levene's test (Snedecor and Cochran 1980). These tests indicated heterogeneity of variances, so we tested for treatment differences ($\underline{P} \leq 0.05$) using the Kruskal-Wallis nonparametric test on percent change (SAS Inst., Inc. 1985:651). In Study 1 we used orthogonal contrasts (burn vs no-burn and growing-season fire vs dormant-season fire). We separated mean differences ($\underline{P} \leq 0.05$) with the protected least significant difference test (Steel and Torrie 1980, Conover and Iman 1981). We used a large population effect (<u>F-ratio</u> = 4.0) to determine power $(1-\exists)$. Study 1 power or the probability of a Type II error (failure to reject the null hypothesis) was 0.31 (Critical F = 4.26; df = 2, 9), while study 2 power was 0.22 (Critical F = 18.51; df = 1, 2). We used linear regression on inverse transformed fire behavior parameters to determine if fire behavior was related to total woody stem density (≥ 1 -m).

RESULTS AND DISCUSSION

Prescribed fire plays a major role in determining the structure of restored pinegrassland communities (Masters et al. 1996, Wilson et al. 1995). Fire, regardless of season, reduced stature of woody stems, but nearly all woody species in these stands sprouted after fire (Table 2). Species richness, diversity and evenness were not affected by fire or season of fire, because of the tendency for woody species to sprout after fire.

<u>Understory Structure, Stems < 1-m</u>

Stem density in the 0 to 1-m height class did not differ among control and burn treatments or with season of fire (Table 2 and 3). The majority of species in the 0 to 1m height class were not affected by season of fire. However, in Study 1, stem densities of post oak (Quercus stellata) ($\mathbf{F} = 18.6$; $\mathbf{P} = 0.0020$) and black oak (Quercus velutina) ($\mathbf{F} = 6.0$; $\mathbf{P} = 0.0368$) increased after fire regardless of season. Black-jack oak (Quercus marilandica) stem density ($\mathbf{F} = 6.5$; $\mathbf{P} = 0.0179$) and frequency of occurrence ($\mathbf{F} = 57.6$; $\mathbf{P} = 0.0001$) declined after fire regardless of season. Our results vary slightly from those of Huddle and Pallardy (1996), who determined Erythrobalanus (black and red oak sub-genus) oak species were more susceptible to mortality after fire than post oaks. This difference may be attributed to the fact that Huddle and Pallardy (1996) combined all Erythrobalanus oak species, while we examined species separately. とうちょう ション・ション しょうちょう ちょうちょう 丁丁

<u>Midstory Structure, Stems > 1-m</u>

Stem density and frequency of occurrence in the 1 to 3-m height class was less after prescribed fire in either season, but dormant-season fires were more effective than growing-season fires at reducing stems in the 1 to 3-m height class (Table 2). Fire in both seasons caused all woody species ≥ 1 -m to decline in density and frequency of occurrence (P < 0.05). Waldrop et al. (1992) and Waldrop and Lloyd (1991) documented a similar shift in hardwoods after periodic winter and summer fires. Fire maintained WSI stands by reducing stems ≥ 1 -m. Dormant-season prescribed fires produced higher fire intensities and were generally more effective at controlling stem density and frequency.

As woody species age they develop thick insulative bark and elevate terminal buds (Wade 1986, Waldrop et al. 1992, Huddle and Pallardy 1996), these conditions protect stems > 3-m in the midstory (Table 2 and 3) and common canopy species from fire induced mortality. The potential for mortality of canopy species is greater following late growing-season fires because of higher ambient air temperatures and lower windspeeds (Ferguson 1961, Robbins and Myers 1992).

Studies in Coastal Plain communities of southeastern U.S. suggest growingseason fires are more effective at controlling woody species in the understory and midstory (Ferguson 1961, Grano 1970, Grelen 1975, Hodgkins 1958, Lotti et al. 1960, Trousdell 1970, Waldrop et al. 1987, Boyer 1990, Glitzenstein et al. 1995). These studies conclude successive annual summer fires are extremely effective at killing and reducing woody stem densities. Waldrop and Lloyd (1991) noted that after 20 years of NAMES OF A DESCRIPTION OF A DESCRIPTION

annual "hot" summer fires, hardwood rootstocks began to die and woody stem density declined. It is important to note that Coastal Plains studies were conducted in a different habitat (fuel) type than the Ouachita Highlands where fuel continuity, woody species composition and flammability may be different. These studies also concentrated on the use of frequent fire and early to mid growing-season fires. Early to mid growing-season fires are rarely possible in the Ouachita Highlands because of high fuel moisture, low wind speeds, and presence of substantial amounts of live vegetation. Limited dead fuels, presence of lush vegetation of low flammability, and high percentage of exposed surface rock make it near impossible to perform annual or frequent early to mid summer fires. These conditions restricted this study to periodic, late growing-season fires that may not be as effective as frequent or early growingseason fires achieved in other regions of southeastern U.S. If land managers are unable to achieve burning targets on three year intervals, annual fires would further compound the problem.

Response of woody species to fire varies with the timing of fires within a season (Robbins and Myers 1992). For example, the increase of woody stems between 0 and 1-m in Study 2 may be attributed to the timing of fire within the dormant season (Table 3). Fires in Study 1 were at the time of bud break for many of the woody species (late March-early April), while dormant-season fires in Study 2 were a month earlier. Fires early in the growing season (i.e., late in the dormant season), immediately after leaf expansion, are believed most effective for weakening and killing deciduous trees because carbohydrate root reserves are at their lowest point (Woods et al. 1959, Boyer

1990, Waldrop and Lloyd 1991). When fires are conducted annually over a long period of time, carbohydrate reserves diminish and root systems begin to die (Waldrop et al. 1987, Waldrop and Lloyd 1991). However, periodic winter and summer fires and annual winter fires provide at least one full growing season for sprouts to replenish depleted carbohydrate reserves before the next burning event (Waldrop and Lloyd 1991). Without long term, annual growing-season fires it is questionable whether fire alone can reduce stem density of hardwood sprouts (Waldrop and Lloyd 1991).

Woody Response to Fire Behavior

Changes to vegetation caused by fire depend on fire behavior, season of fire, fire frequency, number of successive fires and previous stand conditions (Waldrop and Lloyd 1991, Masters et al. 1993). Dormant-season fires in these stands tend to produce greater fire intensities than growing-season fires (Table 1). Dormant-season fires topkill a larger proportion of woody stems \geq 1-m than growing-season fires, and thus are more effective at maintaining an open forest structure by reducing stature of woody stems (Table 2 and 3). Fire regardless of season was not effective at reducing the number of stems < 1-m, and often resulted in an increase in stems (Table 2 and 3).

Fire intensity influences woody understory and lower midstory structure. We found a discrete relationship between stem density and observed fire behavior parameters. The best model ($\underline{r}^2 = 0.79$; $\underline{F} = 37.8$; $\underline{P} = 0.0001$) was for stem density and the inverse of fireline intensity (Kw/m) (Figure 1a). Other parameters that influenced woody stem density were the inverse of rate of spread (m/min) and the inverse of reaction intensity (KW/m²) (Figure 1b and 1c). As fire intensity increases,

stems \geq 1-m decline, creating a more open forest structure, an important consideration for pine-grassland restoration.

Fire behavior parameters such as fireline intensity, reaction intensity, and rate of spread relate to fire effects on vegetation (Van Wagner 1973, Rothermel and Deeming 1980, Alexander 1982, Wright and Bailey 1982, Wade 1986, Engle et al. 1996). Natural resource managers can utilize results from studies such as ours to determine desired fire behavior parameters required to meet specific objectives. Furthermore, managers can increase the efficiency of their burning program by using computer software such as BEHAVE to predict fire behavior parameters before fire ignition (Sparks et al. IN REVIEWb). Computer models such as BEHAVE utilize onsite environmental variables to predict fire behavior before fires are initiated, thus providing managers with insight on the probability of achieving desired objectives (Raybould and Roberts 1983, Andrews and Bradshaw 1990, Masters and Engle 1994, Sparks et al. IN REVIEWb). Land managers can also use these programs to define "windows" of acceptable burning conditions (i.e., fuel moisture, temperature, relative humidity, and windspeed) to meet their objectives (Andrews and Bradshaw 1990).

MANAGEMENT IMPLICATIONS

The majority of studies comparing the effects of growing-season and dormantseason fires did not quantify fire behavior. We strongly recommend that managers and researchers quantify fire behavior rather than use general descriptive terms such as "low", "moderate", and "high" intensity fires, or "hot" and "cool" fires. Fire behavior in the Ouachita Highlands may vary from that of the Coastal Plains because of highly discontinuous fuel beds caused by exposed surface rock, steep slopes, and strongly dissected landscapes. Furthermore, understory woody species composition and fuel flammability in the Ouachita Highlands may be considerably different than those in Coastal Plain regions.

Growing-season fires in these stands burned with low intensities and heterogenous fire fronts creating a mosaic of burned and unburned areas (Sparks et al. IN REVIEWa). Therefore, growing-season fires were not as efficient at reducing stature of woody stems in the understory or lower midstory. Stems spared by growingseason fires and by future fires may begin to develop a midstory, and reduce habitat quality for red-cockaded woodpeckers. However, numerous other wildlife species may benefit from the mosaic of habitats created by patchy burning patterns of growingseason fires (Burrows and Christensen 1991). The goal of WSI and fire is not to eliminate, but to reduce stature of hardwoods, because the recurrent hardwood shrub layer present in restored pine-grassland communities is important to other species of wildlife such as the prairie warbler (Dendroica discolor) (Wilson et al. 1995).

Managers must be aware of potential for damage or mortality of canopy species (i.e., pine) following growing-season fires (Ferguson 1961, Robbins and Myers 1992). Red-cockaded woodpecker cavity trees may be limiting in many stands, therefore crown scorch and damage to overstory pines is a major consideration (Sparks et al. IN REVIEW<u>a</u>). To overcome these problems, managers can modify prescriptions to include lower ambient air temperatures, higher fuel moisture, and greater windspeeds (Wade 1986, Robbins and Myers 1992, Sparks et al. IN REVIEW<u>a</u>). Our results indicate that there is no silvicultural advantage to using growing-season fires for woody stem control, because all dormant-season fires (i.e., the lowest intensity dormantseason fire) were more effective at reducing stems ≥ 1 -m (Figure 1). From an ecological perspective both seasons of fire most likely play an important role. We also see little advantage to burning stands with intense fires (\geq 345 kW/m), because the majority of stem kill on stems ≥ 1 -m is reached before this point and equipment required to suppress the fire front increases dramatically (Rothermel 1983). Fire fronts with fireline intensities < 345 kW/m are within the range of direct attack at the head by persons using hand tools, while fire fronts with fireline intensities > 345 kW/m would require equipment such as plows, dozers, pumpers and retardants for suppression (Rothermel 1983). High fireline intensities also create safety hazards for personnel.

Current policy of natural resource management agencies in many areas of southeastern U.S. restrict the use of prescribed fires between April 1 and June 30 each year in deference to ground nesting birds. Burning late in the dormant season or extremely early in the growing-season (April--May) may be an effective alternative to mid to late growing-season fires, but the effects on ground nesting birds should be quantified first. Fireline intensity should be relatively high because lush vegetation is limited and dead fuels abundant. Several studies suggest reduced sprouting after fires during this phenological stage (i.e., budding and leaf expansion) (Grano 1955, Woods et al. 1959, Robbins and Myers 1992, Glitzenstein et al. 1995). It is also possible for managers to increase the number of restored hectares with minimal effort by burning larger tracts in a single burn unit rather than scattered small units. Larger burn units also more nearly mimic presettlement landscape level burns (Masters et al. 1995).

LITERATURE CITED

Alexander M. E. 1982. Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60:349-357.

- Andrews, P. L. and L. S. Bradshaw. 1990. RXWINDOW: Defining windows of acceptable burning conditions based on desired fire behavior. U.S.
 For. Serv. Gen. Tech. Rep. INT-273. 54 pp.
- Avery, T. E. 1967. Forest measurements. McGraw-Hill Co., New York, N.Y. 290pp.
- Bailey, R. G. 1995. Description of the ecoregions of the United States. 2nd edition. U.S. For. Serv. Misc. Publ. 1391 (Revised), Washington, D.C. 108pp.
- Boyer, W. D. 1990. Growing-season burns for control of hardwoods in longleaf pine stands. U.S. For. Serv. Res. Pap. SO-256. 7p.
- Brender, E. V., and R. W. Cooper. 1968. Prescribed burning in Georgia's Piedmont loblolly pine stands. J. For. 66:31-36.
- Buckner, E. 1989. Evolution of forest types in the Southeast. Pages 27-34 in
 T. A. Waldrop, ed. Proceedings of pine-hardwood mixtures: a symposium on management and ecology of the type. U.S. For Serv.
 Gen. Tech. Rep. SE-58. 271pp.

Burrows, N. D. and P. E. S. Christensen. 1991. A survey of aboriginal fire

patterns in the Western Desert of Australia. Pages 297-305 In Fire and the environment: ecological and cultural perspectives: Proceedings of an international symposium. U.S. For. Serv. Gen. Tech. Rep. SE-69. 429pp.

- Chaiken, L. E. 1952. Annual summer fires kill hardwood root stocks. U.S. For. Serv. Res. Note. SE-19. 1p.
- Conner, R. N., and D. C. Rudolph. 1989. Red-cockaded woodpecker colony status and trends on the Angelina, Davy Crockett and Sabine National Forests. U.S. For. Serv. Res. Pap. SO-250. 15pp.
- Conner, R. N., and D. C. Rudolph. 1991. Forest habitat loss, fragmentation, and red-cockaded woodpecker populations. Wilson Bull. 103:446-457.
- Conner, R. N., D. C. Rudolph, D. L. Kulhavy, and A. E. Snow. 1991<u>a</u>. Causes of mortality of red-cockaded woodpecker cavity trees. J. Wildl. Manage. 55:531-537.
- Conner, R. N., A. E. Snow, and K. A. O'Halloran. 1991b. Red-cockaded woodpecker use of seed-tree/shelterwood cuts in eastern Texas. Wildl. Soc. Bull. 19:67-73.
- Conover, W. J., and Iman, R. L. 1981. Rank transformations as a bridge between parametric and nonparametric statistics. Amer. Stat. 35:124-129.
- Engle, D. M., T. G. Bidwell, and R. E. Masters. 1996. Restoring cross timbers ecosystems with fire. Trans. North Amer. Wildl. and Nat. Res.

Conf. 61:174-183.

- Ferguson, E. R. 1961. Effects of prescribed fires on understory stems in pinehardwood stands of Texas. J. For. 59:356-359.
- Foti, T. L., and S. M. Glenn. 1991. The Ouachita Mountain landscape at the time of settlement. Pages 49-65 in D. Henderson and L. D. Hedrick, eds. Restoration of old growth forests in the interior highlands of Arkansas and Oklahoma: proceedings of the conference. Winrock Int., Morrilton, Ark. 190pp.
- Glitzenstein, J. S., W. J. Platt, and D. R. Streng. 1995. Effects of fire regime and habitat on tree dynamics in North Florida longleaf pine savannas. Ecol. Monog. 65:441-476.
- Grano, C. X. 1955. Behavior of south Arkansas oaks girdled in different seasons. J. For. 53:886-888.
- Grano, C. X. 1970. Eradicating understory hardwoods by repeated prescribed burning. U.S. For. Serv. Res. Pap. SO-56. 11pp.
- Grelen, H. E. 1975. Vegetation response to twelve years of seasonal burning on a Louisiana longleaf pine site. U.S. For. Serv. Res. Note SO-192.4p.
- Heppell, S.S., J. R. Walters, and L. B. Crowder. 1994. Evaluating management alternatives for red-cockaded woodpeckers: a modeling approach. J. Wildl. Manage. 58:479-487.

Hodgkins, E. J. 1958. Effects of fire on undergrowth vegetation in upland

southern pine forests. Ecology 39:36-46.

- Huddle, J. A., and S. G. Pallardy. 1996. Effects of long-term annual and periodic burning on tree survival and growth in a Missouri Ozark oakhickory forest. For. Ecol. Manage. 82:1-9.
- Kelly, J. F., S. M. Pletschet, and D. M. Leslie Jr. 1993. Habitat associations of red-cockaded woodpecker cavity trees in an old-growth forest of Oklahoma. J. Wildl. Manage. 57:122-128.
- Kreiter, S. D. 1995. Dynamics and spatial pattern of a virgin old-growth hardwood-pine forest in the Ouachita Mountains, Oklahoma, from 1896 to 1994. M.S. Thesis, Okla. State Univ., Stillwater. 141pp.
- Lemmon, P. E. 1957. A new instrument for measuring forest overstory density. J. For. 55:667-668.
- Lennartz, M. R., P. H. Geissler, R. F. Harlow, R. C. Long, K. M. Chitwood, and J. A. Jackson. 1983. Status of the red-cockaded woodpecker on federal lands in the South. Pages 7-12 in Redcockaded Woodpecker symposium II proceedings (D.A. Wood, ed.). State of Florida Game and Fresh Water Fish Comm., Tallahassee, Florida.
- Ligon, J. D., P. B. Stacey, R. N. Conner, C. E. Bock, and C. S. Adkisson. 1986. Report of the American Ornithologists' Union Committee for the Conservation of the Red-cockaded woodpecker. Auk 103:848-855.

- Little, E. L. Jr., and E. E. Olmstead. 1931. An ecological study of the southeastern Oklahoma protective unit, Oklahoma Forest Service.(Manuscript edited by W. T. Penfound, Univ. Okla. Libr.) 53pp.
- Lotti, T., R. A. Klawitter, and W. P. Legrande. 1960. Prescribed burning for understory control; in loblolly pine stands of coastal plain. U.S. For. Serv. Res Pap. SE-116. Asheville, N.C. 19pp.
- Ludwig, J. A., and J. F. Reynolds. 1988. Statistical ecology. John Wiley and Sons, Inc., N.Y. 337pp.
- Masters, R. E. 1991a. Effects of timber harvest and prescribed fire on wildlife habitat and use in the Ouachita Mountains of eastern Oklahoma. Ph.D. Thesis, Okla. State Univ., Stillwater. 351pp.
- Masters, R. E. 1991b. Effects of fire and timber harvest on vegetation and cervid use on oak-pine sites in Oklahoma Ouachita Mountains. Pages 168-176. in S. C. Nodvin and T. A. Waldrop, eds. Fire and the environment: ecological and cultural perspectives. Proc. of an international symposium. U.S. For. Serv. Gen. Tech. Rep. SE-69. 429pp.
- Masters, R. E., R. L. Lochmiller, and D. M. Engle. 1993. Effects of timber harvest and prescribed fire on white-tailed deer forage production.Wildl. Soc. Bull. 21:401-411.
- Masters, R. E. and D. M. Engle. 1994. BEHAVE--Evaluated for prescribed fire planning in mountainous oak-shortleaf pine habitats. Wildl. Soc.

Bull. 22:184-191.

Masters, R. M., J. E. Skeen, and J. Whitehead. 1995. Preliminary fire history of McCurtain County Wilderness Area and implications for red-cockaded woodpecker management. Pages 290-302 in R. Costa, D. L. Kulhavy, and R. G. Hooper, eds. Red-cockaded woodpecker: species recovery, ecology and management. Center for Applied Studies, Stephen F. Austin University, Nacogdoches, TX. 551pp.

- Masters, R. E., C. W. Wilson, G. A. Bukenhofer, and M. E. Payton. 1996. Effects of pine-grassland restoration for red-cockaded woodpeckers on white-tailed deer forage production. Wildl. Soc. Bull. 25:77-84.
- Mueller-Dombois, D., and Ellenberg, H. 1974. Aims and methods of vegetational ecology. John Wiley and Sons, Inc., New York. 547pp.
- Neal, J. C., and W. G. Montague. 1991. Past and present distribution of the red-cockaded woodpecker <u>Picoides borealis</u> and its habitat in the Ouachita Mountains, Arkansas. Proc. Ark. Acad. Sci. 45:71-75.
- Oosting, H. J. 1956. The study of plant communities. W. H. Freeman and Co., San Francisco. 440pp.
- Raybould, S. and T. Roberts. 1983. A matrix approach to fire prescription writing. Fire Manage. Notes 44:7-10.
- Richardson, D. M., and D. L. Smith. 1992. Hardwood removal in redcockaded woodpecker colonies using a shear V-blade. Wildl. Soc. Bull. 20:428-433.

- Robbins, L. E., and R. L. Myers. 1992. Seasonal effects of prescribed burning in Florida: a review. Tall Timbers Research, Inc.
 Miscellaneous Publication Number 8. Tallahassee, Florida.
 96pp.
- Rothermel, R. C. 1983. How to predict the spread and intensity of forest and range fires. U.S. For. Serv. Res. Pap. INT-143. 161pp.
- Rothermel, R. C. and J. E. Deeming. 1980. Measuring and interpreting fire behavior for correlation with fire effects. U.S. For. Serv. Gen. Tech. Rep. INT-93. 4p.
- SAS Institute Inc. 1985. SAS users' guide: statistics, version 5 edition. SAS Institute Inc., Cary, S.C. 956pp.
- Smith, K. L. 1986. Historical perspective. Pages 1-8 in P. A. Murphy, ed., Proc. of a symposium on the shortleaf pine ecosystem. U.S. For. Serv., Monticello, Ark.
- Snedecor, G. W. and W. G. Cochran. 1980. Statistical methods, 7th edition. Iowa State Univ. Press, Ames, Iowa. 507pp.
- Sparks, J. C. 1996. Growing-season and dormant-season fire behavior and effects on vegetation in the Ouachita Mountains, Arkansas. M.S. Thesis, Oklahoma State Univ., Stillwater. 186pp.
- Sparks, J. C. and R. E. Masters. 1996. Fire seasonality effects on vegetation in mixed-, tall-, and southeastern pine-grassland communities: a review. Trans. North Amer. Wildl. and Nat. Res. Conf. 61:230-239.

- Sparks, J. C., R. E. Masters, D. M. Engle, and G. A. Bukenhofer. IN REVIEW<u>a</u>. Growing-season versus dormant-season fire behavior and fuel consumption in thinned stands of pine. Int. J. Wildland Fire.
- Sparks, J. C., D. M. Engle, R. E. Masters, G. A. Bukenhofer, and M. E. Payton. IN REVIEW<u>b</u>. Influence of fire season on accuracy of BEHAVE predictions of fire behavior. Int. J. Wildland Fire.
- Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics, a biometrical approach. Second ed. McGraw-Hill Book Co., New York, N.Y. 633pp.
- Trousdell, K. B. 1970. Disking and prescribed burning: sixth-year residual effects on loblolly pine and competing vegetation. U.S. For. Serv. Res. Note SE-133. 6p.
- Van Wagner, C. E. 1973. Height of crown scorch in forest fires. Can. J. For. Res. 3:373-378.
- Wade, D. D. 1986. Linking fire behavior to its effects on living plant tissue.Proceedings of the Society of American Foresters National Convention.October 5-8, 1986. Birmingham, Ala.
- Waldrop, T. A., D. H. Van Lear, F. T. Lloyd, and W. R. Harms. 1987. Long term studies of prescribed burning in loblolly pine forests of Southeastern Coastal Plain. U.S. For. Serv. Gen. Tech. Rep. SE-45. 23pp.

Waldrop, T. A., and F. T. Lloyd. 1991. Forty years of prescribed burning on

the Santee fire plots: effects on overstory and midstory vegetation. Pages 45-50 In S.C. Nodvin and T.A. Waldrop, eds. Fire and the environment: ecological and cultural perspectives: U.S. For. Serv. Gen Tech. Rep. SE-69. 429pp.

- Waldrop, T. A., D. L. White, and S. M. Jones. 1992. Fire regimes for pinegrassland communities in the Southeastern United States. For. Ecol. and Manage. 47:195-210.
- Wilson, C. W., R. E. Masters, and G. A. Bukenhofer 1995. Breeding bird response to pine-grassland community restoration for redcockaded woodpeckers. J. Wildl. Manage. 59:56-67.
- Woods, F. W., H. C. Harris, and R. E. Caldwell. 1959. Monthly variations of carbohydrates and nitrogen in roots of sandhill oaks and wiregrass. Ecology 40:292-295.
- Wright, H. A. and A. W. Bailey. 1982. Fire ecology: United States and Southern Canada. John Wiley and Sons, New York, USA. 501pp.

	Treatment ^a									
	Dormant	t Season	(<u>n</u> = 6)	Growing	g Seaso	on (<u>n</u> = 6)				
Fire Behavior Parameter	Mean	Min	Max	Mean	Min	Max				
Flame Length (m)	0.5	0.4	0.8	0.5	0.3	0.8				
Flame Depth (m)	0.8	0.5	1.4	0.4	0.2	0.7				
Rate of Spread (m/min)	0.5A	4.9	12.6	2.9B	0.6	6.2				
Residence Time (Sec)	11	8	15	26	14	54				
Fireline Intensity (kW/m)	1,300A	534 2	,082	281B	58	691				
Heat per Unit Area (kJ/m²)	8,827A 6	5,745 10	,415	5,803B 5,	,150	6,668				
Reaction Intensity (kW/m²)	1,955A	905 2	,767	618B	394	961				

Table 1. Comparison of growing-season and dormant-season fire behavior parameters, Ouachita National Forest, Arkansas, USA 1995 and 1996 (data from Sparks et al. IN REVIEWa).

^a Row means followed by the same letter were not different (\underline{P} > 0.05).

Table 2.^a Study 1, woody stem density (stems/m²) and percent frequency of occurrence by height class to season of fire in red-cockaded woodpecker clusters on the Ouachita National Forest, Arkansas, 1994 and 1995.

			Treatme	ent						
	No-Burn Co	ontrol	Dormant S	Season	Growing	Season				
	1995	Percent ^b	1995	Percent ^b	1995	Percent ^b		<u> </u>		
Parameter,	Mean (SE)	change	Mean (SE)	change	Mean (SE)	change		Contr	rasts ^c	
Height Class	(n=4)		(n=4)		(n=4)		Treatment	C vs B	D vs G	
Stem Density										
0-1-m	62,921 (7,066)	99	62,532 (9,416)	106	76,293 (9,023)	128	0.3009	0.2503	0.2938	
1-3-m	4,563 (250)	99A	916 (121)	200	2,668 (616)	43B	0.0008	0.0004	0.0424	
<u>></u> 3-m	546 (360)	156	216 (78)	53	201 (122)	35	0.2524	0.1175	0.6472	
Percent Frequence	cy of Occurrence									
0-1-m	100 (0)	100	100 (0)	100	100 (0)	100	1.0000	1.0000	1.0000	
1-3-m	100 (0)	100A	56 (8)	56C	92 (4)	92B	0.0001	0.0002	0.0016	
<u>></u> 3-m	8 (3)	208	3 (1)	33	6 (3)	61	0.5770	0.3080	0.9628	

^a Row means followed by different letters are different ($\underline{P} \leq 0.05$, Least Significant Difference).

^b Percent change = [(post treatment (1995) / pre-treatment (1994)) X 100].

^c Contrasts: C = Control; B = Burned stands regardless of season; D = dormant-season fires; G = growing-season on fires.

123

Table 3.^a Study 2, woody stem density (stems/m²) and percent frequency of occurrence by height class to season of fire in red-cockaded woodpecker clusters on the Ouachita National Forest, Arkansas, 1995 and 1996.

		Trea	tment			
	Dormant Se	eason	Growing S	eason		
	1995	Percent ^b	1995	Percent ^b	<u>P > F</u>	
	Mean (SE)	change	Mean (SE)	change		
Height Class	ght Class (n=4)		(n=4)		Treatment	
Stem Density						
0-1-m	90,227 (11,881)	162	89,070 (5,790)	131	0.1056	
1-3-m	2,137 (210)	48	1,503 (295)	32	0.1056	
<u>≥</u> 3-m	124 (124)	38	309 (62)	12	0.7643	
Percent Frequ	ency of Occurrence					
0-1-m	100 (0)	100	100 (0)	100	1.0000	
1-3-m	50 (17)	50	78 (18)	78	0.5528	
> 7.m	2 (2)	17	5 (2)	50	0 76/3	

^a Row means followed by different letters are different (P \leq 0.05, Least

Significant Difference).

^b Percent change = [(post treatment (1995) / pre-treatment (1994)) X 100].

Figure 1. Fire behavior parameters versus total stem density (stems/ha) \geq 1-m for each stand and season of fire (a) fireline intensity (kW/m), (b) rate of spread (m/min), and (c) reaction intensity (kW/m²), Ouachita National Forest, Arkansas. Circles are growing-season fires and squares are dormant-season fires. Each symbol represents the mean value observed for a stand.

APPENDIXES

APPENDIX A

STAND CHARACTERISTICS AND

LOCATION

Stand	Treatment	Size (Ha)	Year of WSI	Times Burned
1257C	WSI-C	18.21	1990	3
1274C	WSI-C	17.81	1980	5
1313C	WSI-C	26.71	1985	2
1265C	WSI-C	16.19	1980	5
1289G	WSI-G	13.76	1989	2
1257G	WSI-G	16.19	1990	3
1274G	WSI-G	24.28	1989	1
1259G	WSI-G	16.19	1990	3
1313D	WSI-D	13.76	1985	2
1257D	WSI-D	16.19	1990	3
1274D	WSI-D	16.19	1980	3
1289D	WSI-D	16.19	1989	2

Table 1. Stand characteristics and history prior to treatment, Ouachita National Forest, Arkansas.

Figure 1. Map of the pine-bluestem renewal area, Ouachita National Forest, Arkansas.

APPENDIX B

HERBACEOUS SPECIES RESPONSE

TO SEASON

OF FIRE

			Pre-treat	ment (19	94) ^b		Post-treatment (1995) ^b					
	WSI	-C	WSI-	D	WSI-	G	WSI-	С	WSI	-D	WSI	- G
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Grasses	10. 17M-101			15 11-5-11		N	in the second	-		100 - 10 AM	104040-00045	
Andropogon gerardii	2.33	0.57	2.87	0.78	2.96	1.58	2.78	1.37	2.11	1.07	2.80	1.52
Andropogon gyrans	3.42	1.84	4.27	3.40	2.62	1.12	3.08	1.13	2.63	1.00	1.46	0.46
<u>Aristida</u> spp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.27	0.27
Chasmanthium sessiliflorum	9.76	4.57	9.27	3.07	6.00	3.30	10.50	4.91	7.92	2.80	2.98	1.67
Danthonia spicata	2.97	0.92	4.94	1.51	9.29	4.66	3.29	0.96	1.77	0.52	1.94	0.72
Gymnopogon ambiguus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.06	0.00	0.00
Manisuris cylindrica	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.29	0.09	0.09
Muhlenbergia schreberi	0.00	0.00	0.00	0.00	0.00	0.00	1.81	1.11	0.00	0.00	0.00	0.00
Muhlenbergia spp.	2.93	1.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paspalum sp.	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Schizachyrium scoparium	23.80	9.01	22.80	8.67	18.10	5.76	19.90	4.80	21.60	0.56	14.80	2.81
Sorghastrum nutans	0.01	0.01	0.59	0.51	0.49	0.29	0.00	0.00	0.07	0.07	0.45	0.27
Sporobolus asper	0.07	0.07	0.28	0.28	0.33	0.19	1.27	1.27	0.00	0.00	0.06	0.06
Sporobolus spp.	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.04	0.91	0.77	0.06	0.06
Tridens flavus	0.00	0.00	0.00	0.00	0.08	0.07	0.00	0.00	0.00	0.00	0.00	0.00
Unknown Grass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.38	0.00	0.00
Panicums												
<u>Panicum acuminatum</u>	0.00	0.00	0.00	0.00	0.00	0.00	1.87	1.28	13.80	4.62	1.64	0.88
Panicum anceps	0.00	0.00	0.09	0.09	0.00	0.00	0.00	0.00	0.13	0.13	0.00	0.00
Panicum boscii	1.01	0.37	0.89	0.37	0.69	0.39	3.48	1.61	2.92	0.46	1.61	0.48
Panicum dichotomum	3.23B	0.58	3.90B	0.54	10.0A	1.36	3.49AB	1.25	5.85A	1.09	1.46B	0.63
Panicum laeviatum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.00	0.00
Panicum linearifolium	0.00	0.00	0.00	0.00	0.00	0.00	3.52	1.93	2.68	1.09	0.36	0.16
Panicum rigidulum	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.29	0.29	0.00	0.00
Panicum spp.	11.10B	2.10	15.90B	0.79	24.50A	4.16	4.80	4.14	1.27	0.66	3.33	1.53
Panicum virgatum	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.62	0.62	0.00	0.00
Sedges												
Carex latebracteata	0.12	0.12	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.00	0.00
Carex spp.	0.17	0.09	0.03	0.03	0.03	0.03	2.44	0.93	8.14	1.18	6.91	1.95
Scleria spp.	8.08	2.35	10.6	4.90	8.00	1.12	1.15	1.11	0.19	0.13	2.23	1.86
Scleria triglomerata	3.94B	0.48	12.1A	4.60	9.10A	0.87	4.44B	0.40	13.90A	1.86	4.65B	1.94

Table 1.ª Herbaceous species response (stems/m²) to season of fire in WSI stands, Ouachita National Forest, Arkansas.

Table 1. (Continued).^a

			Pre-treat	ment (199	94) ^b		Post-treatment (1995) ^b					
	WSI	-C	WSI-	D	WSI-	G	WSI	-C	WSI	-D	WSI -	G
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Legumes		0.000		201-1188	5 - 6353	N 1750	0.540	0.7583	1001.0000	0.00000	2017 AND	
Amphicarpa bracteata	0.45	0.32	0.32	0.17	0.65	0.38	0.38	0.12	0.43	0.21	1.21	0.42
<u>Baptisia</u> <u>nuttalliana</u>	0.03	0.02	0.03	0.02	0.00	0.00	0.02	0.01	0.16	0.09	0.02	0.02
<u>Cassia</u> <u>fasciculata</u>	0.76	0.49	0.40	0.21	2.05	1.17	0.25B	0.15	1.46A	0.32	0.22B	0.10
<u>Clitoria mariana</u>	1.46	0.66	1.62	0.72	2.00	0.53	1.29	0.43	1.84	0.77	1.76	0.55
Crotalaria sagittalis	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03
Desmodium canescens	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.06
Desmodium ciliare	3.34	1.87	0.68	0.41	1.43	0.68	3.73	1.68	3.32	1.17	6.32	2.26
Desmodium cuspidatum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.07	0.01	0.01
Desmodium laevigatum	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.24	0.01	0.01	0.07	0.04
Desmodium marilandicum	0.75	0.39	0.57	0.32	0.15	0.11	0.93	0.57	0.16	0.06	0.52	0.51
Desmodium paniculatum	0.00	0.00	0.13	0.13	0.08	0.08	0.00	0.00	0.06	0.03	0.01	0.01
Desmodium rotundifolium	0.08	0.03	0.19	0.11	0.13	0.05	0.03	0.03	0.00	0.00	0.06	0.04
Desmodium spp.	0.38	0.14	0.32	0.06	0.17	0.08	0.00	0.00	0.03	0.03	0.01	0.01
Desmodium viridiflorum	0.92	0.51	0.33	0.17	0.29	0.10	0.79	0.29	1.95	0.51	1.12	0.54
Galactia regularis	0.36	0.10	0.47	0.14	0.17	0.03	0.38	0.09	0.35	0.09	0.19	0.08
Lespedeza cuneata	0.00	0.00	0.00	0.00	0.08	0.07	0.00	0.00	0.00	0.00	0.01	0.01
Lespedeza hirta	0.16	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00
Lespedeza intermedia	0.17	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.15	0.00	0.00
Lespedeza procumbens	3.18	0.49	2.07	0.18	3.30	1.37	3.54	1.13	3.12	0.86	3.03	1.17
Lespedeza repens	2.73	1.41	3.44	1.50	2.02	0.47	3.46	2.06	4.55	0.69	4.33	1.51
Lespedeza spp.	0.07A	0.03	0.00B	0.00	0.00B	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lespedeza striata	0.00	0.00	0.03	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lespedeza violacea	1.02	1.02	0.11	0.11	0.00	0.00	1.55	0.87	0.61	0.28	2.09	0.96
Lespedeza vicginica	0.21	0.14	0.16	0 13	0.08	0.08	0.37	0.22	0.56	0.32	0.42	0.37
Phynchosia latifolia	0.17	0.17	0 01	0 01	0.08	0.06	0.00	0.00	0.01	0 01	0.20	0.20
Schrankia nuttallii	0 13	0.07	0.04	0.03	0.00	0.03	0.00	0.00	0.01	0.01	0 10	0 10
Strophostyles umbellata	0.12	0.06	0 13	0.03	0.18	0.10	0.00	0.07	0.27	0.20	0 13	0.08
Stylesapthes hifland	6 28	5 48	1 65	0.15	1 56	0.58	3 67	2.87	5 28	2 24	1 63	0.61
Tephoosis winginions	0.20	0.30	0.02	0.07	0.11	0.11	0.00	0.00	0.06	0.06	0.00	0.00
rephrosta virginiana	0.50	0.50	0.02	0.02	0.11	0.11	0.00	0.00	0.00	0.00	0.00	0.00
Ferns										-		
Polystichum acrostichoides	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00
<u>Pteridium aquilinum</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00

Table 1. (Continued).³

WSI-C WSI-B WSI-G WSI-C WSI-G WSI-C WSI-C WSI-G orbs Acalypha gracilens 0.00 0.				Pre-treat	ment (199	94) ^b				Post-treat	tment (19	95) ^b		
Sroup, Species Mean SE Mean		WSI	WSI-C		WSI-D		G	WSI	-C	WSI-D		WSI-G		
Grobs Acalypha gracilens 0.00 </th <th>Group, Species</th> <th>Mean</th> <th>SE</th> <th>Mean</th> <th>SE</th> <th>Mean</th> <th>SE</th> <th>Mean</th> <th>SE</th> <th>Mean</th> <th>SE</th> <th>Mean</th> <th>SE</th>	Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	
Acalypha gracilens 0.00 <td>Forbs</td> <td>TU CANNER</td> <td></td> <td>500 - 505</td> <td>44524 6524</td> <td>6.12</td> <td>11279 No. 277</td> <td></td> <td></td> <td>10.0000</td> <td></td> <td>1.00 1.00 10</td> <td></td>	Forbs	TU CANNER		500 - 505	44524 6524	6.12	11279 No. 277			10.0000		1.00 1.00 10		
Acalypha sp. 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Analinis fasciculata 0.00 0.01 0.01 0.01 0.00 0.01	Acalypha gracilens	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.08	0.39	0.14	0.10	0.04	
Againis fasciculata 0.00 0.00 0.01 0.01 0.01 0.00 </td <td><u>Acalypha</u> sp.</td> <td>0.00</td> <td>0.00</td> <td>0.01</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	<u>Acalypha</u> sp.	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ambrosia artemisiifolia 0.01 0.01 0.00 0.	Agalinis fasciculata	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Antennaria parlinii 0.00 </td <td>Ambrosia artemisiifolia</td> <td>0.01</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.01</td> <td>0.01</td>	Ambrosia artemisiifolia	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	
Antennaria spp. 2.39 0.48 2.22 0.43 4.98 1.54 2.83 0.83 2.53 0.96 3.13 0.95 Aristolochia serpentaria 0.00 0.00 0.17 0.08 0.03 0.03 0.03 0.02 0.02 0.03 0.03 Asclepias variegata 0.00	Antennaria parlinii	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.39	0.39	
Aristolochia serpentaria 0.00 0.00 0.17 0.08 0.08 0.03 0.03 0.02 0.02 0.03 0.03 Asclepias variegata 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 Asclepias verticillata 0.00	Antennaria spp.	2.39	0.48	2.22	0.43	4.98	1.54	2.83	0.83	2.53	0.96	3.13	0.95	
Asclepias 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Aster aeria 0.02 0.02 0.00	Aristolochia serpentaria	0.00	0.00	0.17	0.08	0.08	0.03	0.03	0.03	0.02	0.02	0.03	0.03	
Asclepias verticillata 0.00 0.0	Asclepias variegata	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.01	
Aster ageria 0.00	Asclepias verticillata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	
Aster anomalus 0.68 0.44 1.94 1.47 0.19 0.08 0.54 0.10 1.19 0.75 0.38 0.15 Aster aureus 0.02 0.02 0.02 0.00 </td <td>Aster ageria</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.02</td> <td>0.02</td> <td>0.00</td> <td>0.00</td>	Aster ageria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	
Aster azureus 0.02 0.02 0.00	Aster anomalus	0.68	0.44	1.94	1.47	0.19	0.08	0.54	0.10	1.19	0.75	0.38	0.15	
Aster ericoides 0.02 0.02 0.00	Aster azureus	0.02	0.02	0.00	0.00	0.00	0.00	0.14	0.10	0.00	0.00	0.02	0.01	
Aster linariifolius 0.20 0.20 0.09 0.09 0.00 0.00 0.33 0.33 0.16 0.09 0.25 0.25 Aster paludosus 0.19 0.13 0.38 0.15 0.15 0.03 0.038 0.03 0.52A 0.19 0.11AB 0.04 Aster patens 0.60 0.20 2.11 1.25 0.56 0.20 0.71 0.18 1.14 0.40 0.77 0.21 Aster spp. 0.04 0.04 0.05 0.05 0.00 0	Aster ericoides	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Aster paludosus0.190.130.380.150.150.030.03B0.030.52A0.190.11AB0.04Aster patens0.600.202.111.250.560.200.710.181.140.400.770.21Aster spp.0.040.040.050.050.00 <td>Aster linariifolius</td> <td>0.20</td> <td>0.20</td> <td>0.09</td> <td>0.09</td> <td>0.00</td> <td>0.00</td> <td>0.33</td> <td>0.33</td> <td>0.16</td> <td>0.09</td> <td>0.25</td> <td>0.25</td>	Aster linariifolius	0.20	0.20	0.09	0.09	0.00	0.00	0.33	0.33	0.16	0.09	0.25	0.25	
Aster patens0.600.202.111.250.560.200.710.181.140.400.770.21Aster spp.0.040.040.050.050.000.000.000.000.000.000.010.010.000.00Aster subulatus0.00 <t< td=""><td>Aster paludosus</td><td>0.19</td><td>0.13</td><td>0.38</td><td>0.15</td><td>0.15</td><td>0.03</td><td>0.03B</td><td>0.03</td><td>0.52A</td><td>0.19</td><td>0.11AB</td><td>0.04</td></t<>	Aster paludosus	0.19	0.13	0.38	0.15	0.15	0.03	0.03B	0.03	0.52A	0.19	0.11AB	0.04	
Asterspp.0.040.040.050.050.000.000.000.000.010.010.000.00Astersubulatus0.00 <th< td=""><td>Aster patens</td><td>0.60</td><td>0.20</td><td>2.11</td><td>1.25</td><td>0.56</td><td>0.20</td><td>0.71</td><td>0.18</td><td>1.14</td><td>0.40</td><td>0.77</td><td>0.21</td></th<>	Aster patens	0.60	0.20	2.11	1.25	0.56	0.20	0.71	0.18	1.14	0.40	0.77	0.21	
Astersubulatus0.00	Aster spp.	0.04	0.04	0.05	0.05	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	
Cirsium carolinianum Cirsium horridulum0.330.260.230.120.170.060.150.051.100.490.450.14Cirsium horridulum Cirsium spp.0.000.000.010.010.000	Aster subulatus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	
Cirsium horridulum0.000.000.010.010.000	Cirsium carolinianum	0.33	0.26	0.23	0.12	0.17	0.06	0.15	0.05	1.10	0.49	0.45	0.14	
Cirsium spp. 0.00 0.00 0.00 0.00 0.01 0.01 0.00	Cirsium horridulum	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Cocculus carolinus 0.00 <td>Cirsium spp.</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.01</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	Cirsium spp.	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
Convra canadensis 0.05 0.05 0.00	Cocculus carolinus	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00	0.01	0.01	
Coreopsis grandiflora 0.00 0.00 0.03 0.03 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 Coreopsis lanceolata 0.00 0	Convza canadensis	0.05	0.05	0.00	0.00	0.00	0.00	0.00B	0.00	0.00B	0.00	0.34A	0.20	
Coreopsis Lanceolata 0.00	Coreopsis grandiflora	0.00	0.00	0.03	0.03	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00	
Coreopsis palmata1.010.390.450.210.220.143.86A2.342.17A0.440.40B0.20Coreopsis spp.0.000.000.000.080.080.000.000.000.000.000.000.000.00Coreopsis tinctoria0.530.180.590.170.330.140.11B0.051.82A0.900.90A0.26Crotonopsis crotonopsis elliptica0.000.000.000.000.000.000.000.00	Coreopsis lanceolata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00	
Coreopsis spp. 0.00 0.00 0.08 0.08 0.00	Coreopsis palmata	1.01	0.39	0.45	0.21	0.22	0.14	3.86A	2.34	2.17A	0.44	0.40B	0.20	
Coreopsis tinctoria 0.53 0.18 0.59 0.17 0.33 0.14 0.11B 0.05 1.82A 0.90 0.90A 0.26 Crotonopsis elliptica 0.00	Coreopsis spp.	0.00	0.00	0.08	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Crotonopsis elliptica 0.00	Coreopsis tinctoria	0.53	0.18	0.59	0.17	0.33	0.14	0.11B	0.05	1.82A	0.90	0.90A	0.26	
	Crotopopsis elliptica	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	
Cupila origanoides 0.2548 0.18 0.314 0.12 0.008 0.00 0.26 0.17 0.99 0.73 0.00 0.00	Cupila origanoides	0 25AB	0.18	0.314	0.12	0.008	0.00	0.26	0.17	0.99	0.73	0.00	0.00	
	Echinacea nallida	0.08	0.08	0.08	0.03	0.07	0.05	0.05	0.03	0.24	0 11	0.23	0.14	
	Echinacea purpurea	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0 00	
Elephantopic tomentopics 0.37 0.37 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.0	Elephantonus tomentosus	0.37	0.37	0.01	0 01	0.00	0.00	0.30	0.27	0.17	0.16	0.08	0.08	
$\frac{1}{100} \frac{1}{100} \frac{1}$	Erechtites hieracijfelia	0.00	0.00	0.01	0.01	0.00	0.00	0.000	0.00	14 404	1.46	0.37B	0 14	
	Frigeron annuus	0.01	0.01	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.01	0.01	

Table 1. (Continued).

			Pre-treat	ment (199	94) ^b		Post-treatment (1995) ^b					
	WSI	- C	WSI-	D	WSI-	G	WSI	-C	WSI -	D	WSI-0	3
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Forbs (Continued)			20 - 200C	22 mar 1	0. K0000	10 10 10			a - 445.57	10	5.515.050.5	
Polygonum scandens	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00	0.14	0.14
Potentilla simplex	0.08	0.06	0.00	0.00	0.00	0.00	0.08	0.05	0.09	0.09	0.19	0.19
Potentilla spp.	0.00	0.00	0.23	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pycnanthemum albescens	0.13	0.13	0.03	0.03	0.15	0.15	0.00	0.00	0.00	0.00	0.00	0.00
Pycnanthemum tenuifolium	0.20	0.20	0.08	0.08	0.00	0.00	0.00	0.00	0.05	0.05	0.24	0.24
Rudbeckia amplexicaulus	0.00	0.00	0.00	0.00	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Rudbeckia grandiflora	0.28	0.13	0.26	0.12	0.16	0.06	0.44	0.23	0.54	0.52	0.60	0.22
Rudbeckia hirta	0.09	0.04	0.27	0.13	0.06	0.03	0.02B	0.01	0.86A	0.40	0.22AB	0.16
Ruellia humilis	0.06	0.03	0.12	0.07	0.14	0.07	0.00B	0.00	0.01B	0.01	0.18A	0.07
Ruellia pedunculata	0.43	0.37	0.15	0.12	0.16	0.05	0.08B	0.06	0.35AB	0.28	0.25A	0.05
Ruellia strepens	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.01	0.01	0.03	0.03
Salvia lyrata	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.08	0.00	0.00	0.00	0.00
Sanicula canadensis	0.00	0.00	0.01	0.01	0.24	0.19	0.03	0.03	0.03	0.03	0.59	0.37
Scutellaria ovata	0.04	0.04	0.00	0.00	0.00	0.00	0.02	0.01	0.50	0.36	0.93	0.36
Scutellaria parvula	0.02	0.02	0.03	0.03	0.08	0.05	0.00	0.00	0.00	0.00	0.00	0.00
Senecio spp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.08	0.02	0.02
Sisyrinchium angustifolium	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.06	0.00	0.00	0.15	0.09
Solidago caesia	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.02	0.25	0.23	0.04	0.04
Solidago hispida	0.49	0.35	0.57	0.29	0.37	0.18	0.06B	0.04	1.79A	0.50	0.00B	0.00
Solidago odora	0.01	0.01	0.03	0.02	0.10	0.06	0.22	0.13	0.58	0.34	0.26	0.14
Solidago radula	0.68	0.35	2.22	0.83	0.63	0.14	0.55	0.25	1.20	0.77	0.67	0.21
Solidago SDD.	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
Solidago ulmifolia	1.69	0.33	1.67	0.76	1.32	0.30	1.86	0.38	1.70	0.47	2.06	0.63
Tradescantia ohiensis	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.01	0.01
Triodanus leptocarpa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.09
Unknown Forb #3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02
Unknown Forb 100	0.04	0.04	0.02	0.01	0.13	0.12	0.00	0.00	0.00	0.00	0.00	0.00
Unknown Forb 2b	0.04	0.03	0.08	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unknown Forb 4	0.07	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unknown forb	0.01	0.01	0.11	0.08	0.03	0.01	0.00	0.00	0.00	0.00	0.01	0.01
Unknown forb 108	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unkown onetwo	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.09	0.00	0.00	0.00	0.00
Unknown three	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	0.04	0.03
Unkown Seeds	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.00	0.00	0.00	0.00
Verbesina helianthoides	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00	0.00	0.00	0.04	0.04
Table 1. (Continued).^a

		Pre-treatment (1994) ^b					Post-treatment (1995) ^b					
	WSI	-C	WSI-	D	WSI-	G	WSI	- C	WSI	D	WSI-	G
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Forbs (Continued)												
Polygonum scandens	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00	0.14	0.14
Potentilla simplex	0.08	0.06	0.00	0.00	0.00	0.00	0.08	0.05	0.09	0.09	0.19	0.19
Potentilla spp.	0.00	0.00	0.23	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pycnanthemum albescens	0.13	0.13	0.03	0.03	0.15	0.15	0.00	0.00	0.00	0.00	0.00	0.00
Pycnanthemum tenuifolium	0.20	0.20	0.08	0.08	0.00	0.00	0.00	0.00	0.05	0.05	0.24	0.24
Rudbeckia amplexicaulus	0.00	0.00	0.00	0.00	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Rudbeckia grandiflora	0.28	0.13	0.26	0.12	0.16	0.06	0.44	0.23	0.54	0.52	0.60	0.22
Rudbeckia hirta	0.09	0.04	0.27	0.13	0.06	0.03	0.02B	0.01	0.86A	0.40	0.22AB	0.16
Ruellia humilis	0.06	0.03	0.12	0.07	0.14	0.07	0.00B	0.00	0.01B	0.01	0.18A	0.07
Ruellia pedunculata	0.43	0.37	0.15	0.12	0.16	0.05	0.08B	0.06	0.35AB	0.28	0.25A	0.05
Ruellia strepens	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.01	0.01	0.03	0.03
Salvia lyrata	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.08	0.00	0.00	0.00	0.00
Sanicula canadensis	0.00	0.00	0.01	0.01	0.24	0.19	0.03	0.03	0.03	0.03	0.59	0.37
Scutellaria ovata	0.04	0.04	0.00	0.00	0.00	0.00	0.02	0.01	0.50	0.36	0.93	0.36
Scutellaria parvula	0.02	0.02	0.03	0.03	0.08	0.05	0.00	0.00	0.00	0.00	0.00	0.00
Senecio spp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.08	0.02	0.02
Sisvrinchium angustifolium	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.06	0.00	0.00	0.15	0.09
Solidago caesia	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.02	0.25	0.23	0.04	0.04
Solidago hispida	0.49	0.35	0.57	0.29	0.37	0.18	0.06B	0.04	1.79A	0.50	0.00B	0.00
Solidago odora	0.01	0.01	0.03	0.02	0.10	0.06	0.22	0.13	0.58	0.34	0.26	0.14
Solidago radula	0.68	0.35	2.22	0.83	0.63	0.14	0.55	0.25	1.20	0.77	0.67	0.21
Solidago spp.	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
Solidago ulmifolia	1.69	0.33	1.67	0.76	1.32	0.30	1.86	0.38	1.70	0.47	2.06	0.63
Tradescantia ohiensis	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.01	0.01
Triodanus Leptocarpa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.09
Unknown Forb #3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02
Unknown Forb 100	0.04	0.04	0.02	0.01	0.13	0.12	0.00	0.00	0.00	0.00	0.00	0.00
Unknown Forb 2b	0.04	0.03	0.08	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unknown Forb 4	0.07	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unknown forb	0.01	0.01	0.11	0.08	0.03	0.01	0.00	0.00	0.00	0.00	0.01	0.01
Unknown forb 108	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00
Unknun onetwo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 09	0.00	0.00	0.00	0 00
Unknown three	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0 02	0.00	0.00	0.04	0.03
Unknum Saads	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.00	0.00	0.00	0.00
Verbeging belightheides	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00
verbestha netrantholdes	0.00	0.00	0.00	0.00	0.03	0.05	0.00	0.00	0.00	0.00	0.04	0.04

Table 1. (Continued).^a

Pre-treatment (1994) ^b						Post-treatment (1995) ⁵						
	WSI	- C	WSI-	D	WSI-	G	WSI	- C	WSI	-D	WSI-	G
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Forbs (Continued)												
Viola palmata	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.32	0.27	0.07	0.05
Viola pedata	0.23	0.11	0.08	0.03	0.28	0.12	0.09	0.03	0.23	0.20	0.30	0.14
Viola sagittata	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Viola sororia	0.06	0.05	0.02	0.01	0.04	0.03	0.00B	0.00	0.13A	0.06	0.00B	0.00

^a Row means followed by the same letter or without letters were not different (LSD) (P ≤ 0.05).
^b WSI-C = Wildlife Stand Improvement--no burn control; WSI-D = Wildlife Stand Improvement--dormasnt-season prescribed fire, March 1995;
WSI-G = Wildlife Stand Improvement--growing-season prescribed fire, September 1994.

WSI-CD WSI-CG WSI-DC WSI-DD Grasses MEAN SE MEAN SE MEAN SE MEAN SE Androgoodn syrans 1.63 0.53 0.02 0.02 4.70 2.77 5.73 5.33 Chasmanthium sessiliforum 2.70 2.70 7.75 1.95 10.45 4.52 7.92 6.33 Danthonia spciata 5.63 4.97 0.00 0.00 2.42 0.18 2.33 1.43 Mainerberris schreberi 0.00		Treatment ^b							
Group, Species MEAN SE MEAN SE MEAN SE MEAN SE Androseanon gerardii Androseanon gerardii Chasses 1.63 0.25 0.15 0.12 0.78 0.58 4.25 3.85 Chasses 1.63 0.57 0.75 1.95 10.16 2.37 5.73 5.73 Chasseni Ifforum 2.70 7.75 1.95 10.16 2.37 5.73 5.73 Manifischistari 5.63 0.70 7.75 1.93 1.43 1.	_	WSI-0	CD	WSI-	CG	WSI-D	C	WSI-D	D
Grasses Andropoagon gerardii 7.72 4.25 0.15 0.12 0.78 0.58 4.25 3.85 Andropoagon gyrans 1.65 0.53 0.02 0.02 4.70 2.37 5.73 5.33 Chasmanthium gessiliforum 2.70 2.70 7.75 1.95 10.45 4.52 7.92 6.33 Marispacing splicats 5.63 4.97 0.00 0.0	Group, Species	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE
Androposon gerandii 7.72 4.25 0.15 0.12 0.78 0.58 4.25 3.85 Androposon gyrans 1.63 0.53 0.02 4.70 2.37 5.73 5.33 Chasmanthium sessiliflorum 2.70 2.70 7.75 1.95 10.45 4.25 3.74 3.53 1.43 Manisuris cylindrisa 0.00 <td>Grasses</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Grasses								
Androposon syrans 1.63 0.53 0.02 0.02 4.70 2.37 5.33 Chasmathim sessitifurm 2.70 2.70 7.75 1.645 4.52 7.75 1.63 Manisuris spicata 5.63 4.97 0.00 0.00 2.42 0.18 2.33 1.43 Manisuris cylindrica 0.00	Andropogon gerardii	7.72	4.25	0.15	0.12	0.78	0.58	4.25	3.85
Chasmanthium sessiliflorum 2.70 2.70 7.75 1.95 10.45 4.52 7.92 6.35 Manisuris picata 5.63 4.97 0.00 0.00 0.10 0.10 0.00 0.00 Mulnenderaia spicata 0.00 <t< td=""><td>Andropogon gyrans</td><td>1.63</td><td>0.53</td><td>0.02</td><td>0.02</td><td>4.70</td><td>2.37</td><td>5.73</td><td>5.33</td></t<>	Andropogon gyrans	1.63	0.53	0.02	0.02	4.70	2.37	5.73	5.33
Dathonia spicata 5.63 4.97 0.00 0.00 2.42 0.18 2.33 1.43 Manisuria spicationa 0.00	Chasmanthium sessiliflorum	2.70	2.70	7.75	1.95	10.45	4.52	7.92	6.35
Manisuria cylindrica 0.00 0.00 0.00 0.10 0.10 0.00<	<u>Danthonia</u> <u>spicata</u>	5.63	4.97	0.00	0.00	2.42	0.18	2.33	1.43
Mullenbergia sphreberi 0.00 0.00 0.00 0.00 0.00 1.88 1.18 Mullenbergia spp. 0.00	Manisuris cylindrica	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00
Multienbergia Spp. 0.00	Muhlenbergia schreberi	0.00	0.00	0.00	0.00	0.00	0.00	1.18	1.18
Schizachvrium scoparium 30.18 4.02 7.47 5.47 37.58 6.95 11.07 5.60 Sorchasturum nutans 0.00 0.00 0.00 0.03 0.03 0.00 0.00 Sporobolus sppr. 0.008 0.00 0.008 0.03 0.03 0.00 0.00 Panicum acuminatum 4.93 4.90 3.05 2.55 6.55 3.58 9.92 1.18 Panicum anceps 0.00 0.	Muhlenbergia spp.	0.00	0.00	0.03	0.03	0.00	0.00	0.00	0.00
Sorghastrum nutans 0.00 0.00 1.21 0.00 0.00 Sporabolus asper 0.00 0.00 0.27 1.27 0.03 0.03 0.00 Panicum acuminatum 4.93 4.90 3.05 2.55 6.55 3.58 9.92 1.18 Panicum anceps 0.00 0.00 0.00 0.00 0.33A 0.13 0.008 0.00 Panicum anceps 0.00 0.00 0.00 0.00 0.33 0.00	Schizachyrium scoparium	30.18	4.02	7.47	5.47	37.58	6.95	11.07	5.60
Sporobolus sper 0.00 0.00 0.00 0.008 0.00 0.008 0.00 Panicums Panicum acuminatum 4.93 4.90 3.05 2.55 6.55 3.58 9.92 1.18 Panicum acuminatum 4.93 4.90 3.05 2.55 6.55 3.58 9.92 1.18 Panicum boscii 2.68 2.15 0.63 0.10 1.82 0.28 2.08 0.45 Panicum ideviatum 0.00 0.00 0.72 0.72 0.00	Sorghastrum nutans	0.00	0.00	0.00	0.00	1.25	1.25	0.00	0.00
Sporobolus Sporobo	<u>Sporobolus</u> asper	0.00	0.00	1.27	1.27	0.03	0.03	0.00	0.00
Panicums 4.93 4.90 3.05 2.55 6.55 3.58 9.92 1.18 Panicum anceps 0.00 0.00 0.00 0.30 0.00 0.00 Panicum boscii 2.68 2.15 0.63 0.10 1.82 0.28 2.08 0.45 Panicum dichotomum 4.98 0.08 2.78 1.85 5.73 2.20 3.65 0.00	<u>Sporobolus</u> spp.	0.008	0.00	0.008	0.00	0.33A	0.13	0.008	0.00
Panicum accepts 0.00	Panicums								
Panicum anceps 0.00 0.00 0.00 0.30 0.30 0.30 0.00 Panicum boscii 2.68 2.15 0.63 0.10 1.82 0.28 0.48 0.48 0.08 0.72 0.72 0.00	Panicum acuminatum	4.93	4.90	3.05	2.55	6.55	3.58	9.92	1.18
Panicum boscii 2.68 2.15 0.63 0.10 1.82 0.28 2.08 0.45 Panicum lineaviatum 0.00 0.08 2.78 1.85 5.73 2.20 3.65 0.82 Panicum lineaviatum 0.00 0.00 0.72 0.72 0.00 0.00 0.00 0.00 Panicum scoparium 1.73 1.73 0.70 0.07 1.10 0.70 0.53 0.10 Panicum scoparium 1.73 1.73 0.70 0.07 1.00 0.70 0.00	Panicum anceps	0.00	0.00	0.00	0.00	0.30	0.30	0.00	0.00
Panicum dichotonum 4.98 0.08 2.78 1.85 5.73 2.20 3.65 0.82 Panicum laviatum 0.00 0.00 0.72 0.72 0.00 0.03 0.03 0.07 1.10 0.70 0.53 0.10 Panicum scoparium 1.73 1.73 0.70 0.07 1.10 0.70 0.53 0.10 Carex latebracteata 0.03 0.03 0.00 <t< td=""><td><u>Panicum boscii</u></td><td>2.68</td><td>2.15</td><td>0.63</td><td>0.10</td><td>1.82</td><td>0.28</td><td>2.08</td><td>0.45</td></t<>	<u>Panicum boscii</u>	2.68	2.15	0.63	0.10	1.82	0.28	2.08	0.45
Panicum laeviatum 0.00 0.072 0.72 0.00 0.00 0.00 0.00 Panicum linearifolium 3.40 2.57 0.62 0.55 3.30 1.93 4.02 1.92 Panicum spp. 2.63 1.03 0.58 0.22 1.23 0.43 1.87 1.50 Sedges Carex latebracteata 0.03 0.03 0.00 0.00 0.02 0.00 0.00 0.00 Scleria gligantha 0.43 0.43 0.40 0.00 <td>Panicum dichotomum</td> <td>4.98</td> <td>0.08</td> <td>2.78</td> <td>1.85</td> <td>5.73</td> <td>2.20</td> <td>3.65</td> <td>0.82</td>	Panicum dichotomum	4.98	0.08	2.78	1.85	5.73	2.20	3.65	0.82
Panicum linearifolium 3.40 2.57 0.62 0.55 3.50 1.93 4.02 1.92 Panicum scoparium 1.73 1.73 0.70 0.07 1.10 0.70 0.53 0.10 Panicum spp. 2.63 1.03 0.58 0.22 1.23 0.43 1.87 1.50 Seders Carex latebracteata 0.03 0.03 0.00 <	<u>Panicum</u> <u>laeviatum</u>	0.00	0.00	0.72	0.72	0.00	0.00	0.00	0.00
Panicum scoparium 1.73 1.73 0.70 0.07 1.10 0.70 0.53 0.10 Panicum spp. 2.63 1.03 0.58 0.22 1.23 0.43 1.87 1.50 Sedges Image: Carex latebracteata 0.03 0.03 0.00 0.00 0.02 0.00	<u>Panicum</u> <u>linearifolium</u>	3.40	2.57	0.62	0.55	3.30	1.93	4.02	1.92
Panicum spp. 2.63 1.03 0.58 0.22 1.23 0.43 1.87 1.50 Sedges Carex latebracteata 0.03 0.03 0.00 0.00 0.02 0.00 <td< td=""><td><u>Panicum</u> <u>scoparium</u></td><td>1.73</td><td>1.73</td><td>0.70</td><td>0.07</td><td>1.10</td><td>0.70</td><td>0.53</td><td>0.10</td></td<>	<u>Panicum</u> <u>scoparium</u>	1.73	1.73	0.70	0.07	1.10	0.70	0.53	0.10
Sedges Carex latebracteata 0.03 0.03 0.00 0.00 0.02 0.02 0.00 0.00 Carex spp. 5.40 1.23 5.75 1.18 11.83 2.00 9.18 0.82 Scleria oligantha 0.43 0.43 0.00 0.00 0.00 0.00 0.00 Scleria triglomerata 6.02AB 1.78 2.25B 0.55 13.23A 0.73 6.33AB 0.23 Ferns Polystichum acrostichoides 0.00	<u>Panicum</u> spp.	2.63	1.03	0.58	0.22	1.23	0.43	1.87	1.50
Carex latebracteata 0.03 0.03 0.00 0.02 0.02 0.00 0.00 Carex spp. 5.40 1.23 5.75 1.18 11.83 2.00 9.18 0.82 Scleria oligantha 0.43 0.43 0.00	Sedaes								
Carex spp. 5.40 1.23 5.75 1.18 11.83 2.00 9.18 0.82 Scleria oligantha 0.43 0.43 0.00	Carex latebracteata	0.03	0.03	0.00	0.00	0.02	0.02	0.00	0.00
Scleria oligantha 0.43 0.43 0.00	Carex spp.	5.40	1.23	5.75	1.18	11.83	2.00	9.18	0.82
Scleria spp. 0.35 0.22 0.00 0.00 0.22 0.22 0.00 0.00 Scleria triglomerata 6.02AB 1.78 2.25B 0.55 13.23A 0.73 6.33AB 0.23 Ferns Polystichum acrostichoides 0.00 0.00 0.02 0.00<	Scleria oligantha	0.43	0.43	0.00	0.00	0.00	0.00	0.00	0.00
Scleria triglomerata 6.02AB 1.78 2.25B 0.55 13.23A 0.73 6.33AB 0.23 Ferns Polystichum acrostichoides Pteridium aquilinum 0.00 0.00 0.02 0.02 0.00	Scleria spp.	0.35	0.22	0.00	0.00	0.22	0.22	0.00	0.00
Ferns Polystichum acrostichoides 0.00 0.00 0.02 0.02 0.00 0.00 0.00 Legumes Amphicarpa bracteata 0.83 0.83 0.45 0.28 0.08 0.08 1.38 0.02 Baptisia nuttalliana 0.10 0.10 0.02 0.02 0.12 0.12 0.15 0.15 Cassia fasciculata 0.58 0.55 0.22 0.15 1.30 0.63 0.60 0.03 Crotalaria sagittalis 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 2.52 1.32 Crotalaria sagittalis 0.00	Scleria triglomerata	6.02AB	1.78	2.25B	0.55	13.23A	0.73	6.33AB	0.23
Prefins Polystichum acrostichoides 0.00 0.00 0.02 0.02 0.00	Forme								
Drystering acrossion Order Structures Order Structures Order Structures Order Structures Pteridium aquilinum 0.00 0.00 0.02 0.02 0.00 0.00 0.00 Legumes Amphicarpa bracteata 0.83 0.83 0.45 0.28 0.08 0.08 1.38 0.02 Baptisia nuttalliana 0.10 0.10 0.02 0.02 0.12 0.12 0.15 0.15 Cassia fasciculata 0.58 0.55 0.22 0.15 1.30 0.63 0.60 0.03 Citoria mariana 0.87 0.77 1.25 0.35 1.03 1.03 2.52 1.32 Crotalaria sagittalis 0.00 0.00 0.02 0.02 0.00 0.00 0.00 Desmodium canescens 0.40 0.40 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Polystichum acrostichoides	0 00	0 00	0 02	0 02	0 00	0 00	0.00	0.00
Legumes Amphicarpa bracteata 0.83 0.83 0.45 0.101 0.102 0.101 0.103 0.103 0.103 Baptisia nuttalliana 0.10 0.10 0.02 0.02 0.12 0.12 0.13 0.13 0.13 Cassia fasciculata 0.58 0.55 0.22 0.15 1.30 0.63 0.60 0.03 Citaria mariana 0.87 0.77 1.25 0.35 1.03 1.03 2.52 1.32 Crotalaria sagittalis 0.00 0.00 0.02 0.02 0.00	Pteridium aquilinum	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00
Legumes Amphicarpa bracteata 0.83 0.83 0.45 0.28 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.02 0.12 0.12 0.15 0.15 Cassia fasciculata 0.58 0.55 0.22 0.15 1.30 0.63 0.60 0.03 Citoria mariana 0.87 0.77 1.25 0.35 1.03 1.03 2.52 1.32 Crotalaria sagittalis 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<u>Freerraram</u> agarcinam	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00
Amphicarpa bracteata0.830.830.450.280.080.081.380.02Baptisia nuttalliana0.100.100.020.020.120.120.150.15Cassia fasciculata0.580.550.220.151.300.630.600.03Citoria mariana0.870.771.250.351.031.032.521.32Crotalaria sagittalis0.000.000.020.020.000.000.020.02Desmodium canadense0.170.170.000.000.000.000.000.00Desmodium canacense0.440.972.972.770.580.585.083.12Desmodium ciliare4.430.972.972.770.580.585.083.12Desmodium laevigatum0.100.070.120.120.320.320.970.10Desmodium paniculatum0.0080.000.000.020.220.200.20Desmodium viridiflorum2.202.202.800.971.501.270.520.05Galactia regularis0.330.270.150.020.220.120.300.20Lespedeza intermedia0.050.000.000.320.320.000.00Lespedeza triata0.100.070.000.000.320.320.000.00Lespedeza triata0.100.070.000.000.03	Legumes		0.07	0.15	0.00	0.00	0.00	4 70	0.00
Baptisia nuttaliana 0.10 0.10 0.02 0.02 0.12 0.12 0.15 0.15 0.15 Cassia fasciculata 0.58 0.55 0.22 0.15 1.30 0.63 0.60 0.13 Clitoria mariana 0.87 0.77 1.25 0.35 1.03 1.03 2.52 1.32 Crotalaria sagittalis 0.00 0.00 0.02 0.02 0.00	Amphicarpa bracteata	0.83	0.85	0.45	0.28	0.08	0.08	1.38	0.02
Cassia fasciculata 0.58 0.55 0.22 0.15 1.30 0.63 0.00 0.03 Clitoria mariana 0.87 0.77 1.25 0.35 1.03 1.03 2.52 1.32 Crotalaria sagittalis 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.02 Desmodium canadense 0.17 0.17 0.00	<u>Baptisia</u> <u>nuttalliana</u>	0.10	0.10	0.02	0.02	0.12	0.12	0.15	0.15
Clitoria mariana0.870.771.250.351.031.032.321.32Crotalaria sagittalis0.000.000.000.020.020.000.000.020.02Desmodium canadense0.170.170.000.000.000.000.000.000.00Desmodium canescens0.400.400.550.050.000.000.000.00Desmodium ciliare4.430.972.972.770.580.585.083.12Desmodium marilandicum0.100.070.120.120.320.320.970.10Desmodium paniculatum0.00B0.000.00B0.000.0280.020.220.220.200.20Desmodium yiridiflorum2.202.202.800.971.501.270.520.55Desmodium yiridiflorum2.202.202.800.971.501.270.520.05Galactia regularis0.330.270.150.020.220.120.300.20Lespedeza intermedia0.050.050.000.000.330.030.000.00Lespedeza repens5.424.086.884.724.300.778.453.22Lespedeza triata0.100.070.000.000.000.030.030.00Lespedeza violacea0.300.270.000.000.030.030.000.00	<u>Cassia</u> <u>fasciculata</u>	0.58	0.55	0.22	0.15	1.30	0.03	0.60	1 72
Crotalaria sagittalis0.000.000.020.020.000.000.000.00Desmodium canescens0.400.400.050.050.000.000.000.00Desmodium ciliare4.430.972.972.770.580.585.083.12Desmodium laevigatum0.100.070.120.120.320.320.970.10Desmodium marilandicum1.631.600.000.000.000.000.000.00Desmodium paniculatum0.0080.000.020.020.020.020.020.020.020.00Desmodium viridiflorum2.202.202.800.971.501.270.520.05Galactia regularis0.330.270.150.020.220.120.300.20Lespedeza intermedia0.050.050.000.000.030.000.00Lespedeza repens5.424.086.884.724.300.778.453.22Lespedeza violacea0.300.270.000.001.200.030.030.000.00Lespedeza violacea0.300.270.000.000.030.030.000.00Desmodium intermedia0.100.000.000.000.000.000.000.00Lespedeza intermedia0.050.050.000.000.000.000.000.00Lespedeza intermedia <td><u>Clitoria</u> <u>mariana</u></td> <td>0.87</td> <td>0.77</td> <td>1.25</td> <td>0.35</td> <td>1.05</td> <td>1.05</td> <td>2.52</td> <td>0.02</td>	<u>Clitoria</u> <u>mariana</u>	0.87	0.77	1.25	0.35	1.05	1.05	2.52	0.02
Desmodium Canadense 0.17 0.17 0.00 </td <td><u>Crotalaria</u> <u>sagittalis</u></td> <td>0.00</td> <td>0.00</td> <td>0.02</td> <td>0.02</td> <td>0.00</td> <td>0.00</td> <td>0.02</td> <td>0.02</td>	<u>Crotalaria</u> <u>sagittalis</u>	0.00	0.00	0.02	0.02	0.00	0.00	0.02	0.02
Desmodium Calescens 0.40 0.40 0.40 0.03 0.03 0.00 </td <td>Desmodium canadense</td> <td>0.17</td> <td>0.17</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	Desmodium canadense	0.17	0.17	0.00	0.00	0.00	0.00	0.00	0.00
Desmodium Desmodium laevigatum4.430.972.972.770.360.360.360.360.160.10Desmodium marilandicum0.100.070.120.120.320.320.970.10Desmodium marilandicum1.631.600.000.000.220.220.200.20Desmodium paniculatum0.0080.000.0080.000.02AB0.020.200.20Desmodium spp.0.020.020.020.020.000.000.000.00Desmodium viridiflorum2.202.202.800.971.501.270.520.05Galactia regularis0.330.270.150.020.220.120.300.20Lespedeza intermedia0.050.050.000.000.320.320.000.00Lespedeza repens5.424.086.884.724.300.778.453.22Lespedeza triata0.100.070.000.000.030.030.000.03Lespedeza violacea0.300.270.000.001.201.200.030.03Lespedeza 	Desmodium canescens	0.40	0.40	0.05	0.05	0.00	0.00	5.08	3 12
Desmodium Laevigatum 0.10 0.07 0.12 0.10 0.10	Desmodium Leouinetum	4.43	0.97	2.97	0.12	0.30	0.30	0.07	0 10
Desmodium maritandicum 1.85 1.80 0.00 0.00 0.00 0.00 0.02 0.22 0.22 0.22 0.23 0.25 0.26 0.22 0.21 0.38A 0.25 0.26 0.20 0.00 0.	Desmodium taevigatum	1.47	1.60	0.12	0.12	0.32	0.32	0.97	0.10
Desmodium particulatum 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.002 0.001 0.00 0.	Desmodium maritandicum	1.05	0.00	0.00	0.00	0.22	0.02	0.20	0.25
Desmodium spp. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.05 0.05 0.02 0.22 0.13 0.27 0.15 0.02 0.22 0.12 0.03 0.20 Lespedeza intermedia 0.05 0.05 0.00 0.00 0.32 0.32 0.00 0.00 Lespedeza procumbens 9.48 5.52 3.48 0.25 1.55 1.02 5.17 1.87 Lespedeza repens 5.42 4.08 6.88 4.72 4.30 0.77 8.45 3.22 Lespedeza striata 0.10 0.07 0.00 0.00 0.03 0.03 0.00 0.00 Lespedeza violacea 0.30 0.27 0.00 0.00 1.20 1.20 0.03 0.03 Lespedeza virginica 0.40 0.37 0.08 0.08 0.78	Desmodium paniculatum	0.006	0.00	0.006	0.00	0.0246	0.02	0.00	0.00
Desindurium C120	Desmodium viridiflorum	2 20	2 20	2 80	0.02	1 50	1 27	0.52	0.05
Ustatistic 0.133 0.137 0.137 0.132 0.121 0.132 0.132 0.132 0.100 0.00 Lespedeza intermedia 0.05 0.05 0.00 0.00 0.32 0.32 0.00 0.00 Lespedeza procumbens 9.48 5.52 3.48 0.25 1.55 1.02 5.17 1.87 Lespedeza repens 5.42 4.08 6.88 4.72 4.30 0.77 8.45 3.22 Lespedeza striata 0.10 0.07 0.00 0.00 1.20 1.20 0.03 0.00 0.00 Lespedeza violacea 0.30 0.27 0.00 0.00 1.20 1.20 0.03	Calactia regularis	0 33	0 27	0 15	0.02	0.22	0.12	0.30	0.20
Lespedeza Interineura 0.09 0.09 0.09 0.00	Locpodoza intermedia	0.05	0.05	0.00	0.00	0.32	0 32	0.00	0.00
Lespedeza proteiniberis 5.42 4.08 6.88 4.72 4.30 0.77 8.45 3.22 Lespedeza striata 0.10 0.07 0.00 0.00 0.03 0.03 0.00 0.00 Lespedeza striata 0.10 0.07 0.00 0.00 0.03 0.03 0.00 0.00 Lespedeza violacea 0.30 0.27 0.00 0.00 1.20 1.20 0.03 0.03 Lespedeza virginica 0.40 0.37 0.08 0.08 0.78 0.35 0.38 0.18 Rhynchosia latifolia 0.00 0.00 0.10 0.10 0.00 0.00 0.00 0.00 Schrankia nuttallii 0.00 0.00 0.10 0.10 0.00 0.00 0.00	Lespedeza procumbons	0.05	5 52	3 /8	0.25	1 55	1 02	5 17	1.87
Lespedeza striata 0.10 0.07 0.00 0.00 0.03 0.00 0.00 Lespedeza violacea 0.30 0.27 0.00 0.00 1.20 1.20 0.03 0.00 Lespedeza violacea 0.30 0.27 0.00 0.00 1.20 1.20 0.33 0.03 Lespedeza virginica 0.40 0.37 0.08 0.08 0.78 0.35 0.38 0.18 Rhynchosia latifolia 0.00 0.00 0.10 0.00	Lespedeza repens	5 40	4 08	6 88	4.72	4 30	0.77	8.45	3.22
Lespedeza violacea 0.30 0.27 0.00 0.00 1.20 0.30 0.03 Lespedeza virginica 0.40 0.37 0.08 0.08 0.78 0.35 0.38 0.18 Rhynchosia latifolia 0.00 0.00 0.00 0.00 0.03 0.00 <	Lespedeza repens	0 10	0.07	0.00	0.00	0.03	0.03	0.00	0.00
Lespedeza virginica 0.40 0.37 0.08 0.08 0.78 0.35 0.38 0.18 Rhynchosia latifolia 0.00 0.00 0.00 0.03 0.03 0.00 0.0	Lespedeza violacea	0.30	0.27	0.00	0.00	1.20	1.20	0.03	0.03
Rhynchosia latifolia 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 Schrankia nuttallii 0.00 0.00 0.10 0.10 0.0	Lespedeza virginica	0 40	0.37	0.08	0.08	0.78	0.35	0.38	0.18
Schrankia nuttallii 0.00 0.00 0.10 0.10 0.00 0.00 0.00 0.	Rhynchosia latifolia	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00
	Schrankia nuttallii	0.00	0.00	0.10	0.10	0.00	0.00	0.00	0.00

Table 2. $^{\circ}~$ Herbaceous species response (stems/m²) by treatment in WSI stands, Ouachita National Forest, Arkansas, Summer 1996.

Table 2. (Continued)^a.

	Treatment ^b									
_	WSI-	CD	WSI-	CG	WSI-	DC	WSI-	DD		
Group, Species	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE		
Legumes (Continued)										
Strophostyles umbellata	0.15	0.05	0.02	0.02	0.73	0.73	0.17	0.10		
Stylosanthes biflora	1.98	0.42	5.18	4.75	2.52	1.52	6.28	2.72		
Tephrosia <u>Virginiana</u>	0.00	0.00	0.00	0.00	0.15	0.15	0.00	0.00		
Forbs										
Acalypha gracilens	0.28	0.28	0.80	0.60	0.27	0.27	0.73	0.40		
Acalypha virginica	0.00	0.00	0.05	0.05	0.00	0.00	0.00	0.00		
Ambrosia artemisiifolia	0.03	0.03	0.07	0.07	0.00	0.00	0.00	0.00		
Antennaria spp.	3.18	0.68	1.33	0.87	3.50	2.67	3.20	2.03		
Aristolochia serpentaria	0.08	0.08	0.00	0.00	0.00	0.00	0.03	0.00		
Asclepias variegata	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02		
Aster anomalus	1.17	0.70	0.43	0.13	1.68	1.52	0.85	0.85		
<u>Aster</u> <u>azureus</u>	0.47	0.47	0.07	0.07	0.05	0.05	0.00	0.00		
<u>Aster linariifolius</u>	0.85	0.85	0.00	0.00	0.40	0.13	0.02	0.02		
<u>Aster</u> paludosus	0.15	0.15	0.02	0.02	0.85	0.82	0.07	0.03		
<u>Aster</u> patens	0.97	0.53	0.48	0.15	1.05	0.45	0.82	0.32		
<u>Aster</u> <u>subulatus</u>	0.08A	0.02	0.008	0.00	0.00B	0.00	0.32A	0.22		
<u>Cirsium</u> <u>carolinianum</u>	0.32	0.08	1.03	0.47	0.60	0.13	1.58	1.18		
<u>Cocculus</u> <u>carolinus</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02		
Conyza canadensis	0.02	0.02	0.08	0.08	0.12	0.05	0.02	0.02		
Coreopsis palmata	0.75	0.42	1.05	0.85	1.52	0.08	4.33	1 08		
Coreopsis tinctoria	0.20	0.15	0.17	0.17	0.02	0.92	0.02	0.02		
Coreopsis verticiliata	0.00	0.00	0.02	0.02	1 20	0.02	0.02	0.02		
<u>Cunita</u> <u>origanoides</u>	0.07	0.00	0.15	0.00	0.28	0.00	0.02	0.02		
Elephantepus tementesus	0.00	0.00	0.20	0.20	0.20	0.20	0.02	0.02		
Erechtites hieracijfelia	1 60	0.00	1 27	1 20	0.10	0.10	0.00	0.12		
Erigeron strigosus	0.00	0.00	0.02	0.02	0.02	0.02	0.00	0.00		
Eurostorium altissimum	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02		
Euphorbia corollata	0.15	0.15	0.00	0.00	0.03	0.03	0.02	0.02		
Galium pilosum	0.32	0.05	0.80	0.80	0.67	0.67	0.63	0.37		
Galium spp.	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20		
Geum canadense	0.03	0.03	0.02	0.02	0.02	0.02	0.12	0.02		
Gnaphalium obtusifolium	0.00	0.00	0.07	0.07	0.00	0.00	0.00	0.00		
Gnaphalium purpureum	0.10	0.10	0.00	0.00	0.17	0.13	0.10	0.10		
Hedyotis longifolia	0.53	0.20	0.12	0.02	0.12	0.12	0.17	0.13		
Helianthus hirsutus	3.48	1.42	2.58	0.22	4.27	1.17	4.53	0.83		
Heterotheca graminifolia	2.52	2.52	0.00	0.00	1.77	0.00	0.00	0.00		
<u>Hieracium gronovii</u>	0.22	0.08	0.08	0.02	0.38	0.18	0.13	0.03		
<u>Hieracium</u> <u>longipilum</u>	0.03	0.03	0.03	0.03	0.12	0.12	0.08	0.02		
Ipomoea pandurata	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02		
Lactuca canadensis	0.20	0.10	0.05	0.05	0.07	0.07	0.32	0.22		
<u>Liatris</u> aspera	0.05	0.05	0.17	0.13	0.08	0.05	0.02	0.02		
<u>Liatris</u> <u>squarrosa</u>	0.05	0.05	0.05	0.05	0.00	0.00	0.07	0.07		
<u>Lobelia</u> appendiculata	0.02	0.02	0.00	0.00	0.00	0.00	0.02	0.02		
Lobelia spicata	0.02	0.02	0.00	0.00	0.00	0.00	0.02	0.02		
Mentha spp.	0.00	0.00	0.20	0.20	0.00	0.00	0.00	0.00		
Monarda russeliana	1.23	1.23	2.60	1.60	0.88	0.88	4.03	2.15		
Monarda stipitatoglandulosa	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00		
Uxalis stricta	0.00	0.00	0.02	0.02	0.00	0.00	0.02	0.02		
Uxalis violacea	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02		
Partnenium integrifolium	0.00	0.00	0.08	0.08	0.08	0.00	0.05	0.00		
Phiox divaricata	0.05	0.05	0.00	0.00	0.03	0.03	0.00	0.00		
Phycalic virginiana	0.03	0.07	0.70	0.20	0.20	0.02	0.02	0.02		
Polygala alba	0.07	0.07	0.00	0.00	0.07	0.07	0.02	0.02		
Potentilla simplex	0.18	0.12	0.13	0.13	0.00	0.00	0.05	0.05		
Otentitud Shipten										

Table 2. (Continued)^a.

	Treatment ^b									
_	WSI-CD		WSI-	CG	WSI-DC		WSI-D	D		
Group, Species	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE		
Forbs (Continued)										
Pycnanthemum tenuifolium	0.03	0.03	0.00	0.00	0.07	0.07	0.00	0.00		
Rudbeckia amplexicaulus	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00		
Rudbeckia grandiflora	0.27	0.27	0.52	0.22	0.00	0.00	1.00	1.00		
Rudbeckia hirta	0.03	0.03	0.23	0.17	0.32	0.25	0.50	0.27		
<u>Ruellia humilis</u>	0.07	0.07	0.03	0.03	0.00	0.00	0.00	0.00		
Ruellia pedunculata	0.10	0.07	0.17	0.00	0.07	0.00	0.67	0.43		
Salvia lyrata	0.00	0.00	0.30	0.30	0.10	0.10	0.02	0.02		
Sanicula canadensis	0.07	0.07	0.25	0.02	0.02	0.02	0.10	0.07		
<u>Scutellaria</u> ovata	0.82	0.78	0.15	0.15	0.13	0.13	0.07	0.07		
Senecio spp.	0.10	0.10	0.00	0.00	0.02	0.02	0.02	0.02		
Sisyrinchium angustifolium	0.07	0.07	0.18	0.05	0.00	0.00	0.02	0.02		
<u>Solidago</u> <u>caesia</u>	0.27	0.27	0.00	0.00	0.00	0.00	0.05	0.05		
Solidago canadensis	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.08		
Solidago hispida	1.17	1.13	0.20	0.17	0.53	0.53	0.00	0.00		
Solidago odora	0.33	0.33	0.03	0.03	0.70	0.07	0.02	0.02		
Solidago radula	1.42AB	0.35	0.42C	0.02	3.55A	1.08	0.95BC	0.25		
<u>Solidago</u> spp.	0.63	0.50	0.12	0.12	1.03	1.00	0.02	0.02		
Solidago ulmifolia	1.92	0.62	1.83	0.80	2.10	0.97	1.58	0.52		
<u>Tradescantia</u> <u>ohiensis</u>	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
<u>Triodanus</u> <u>leptocarpa</u>	0.00	0.00	0.10	0.10	0.00	0.00	0.00	0.00		
UNK Matela	0.00	0.00	0.18	0.08	0.00	0.00	0.05	0.05		
Unknown forb	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00		
Unkown Seeds	0.00	0.00	0.17	0.17	0.00	0.00	0.00	0.00		
<u>Viola palmata</u>	0.10	0.10	0.00	0.00	0.00	0.00	0.05	0.05		
<u>Viola pedata</u>	0.08	0.08	0.23	0.23	0.07	0.03	0.23	0.20		
<u>Viola sagittata</u>	0.00	0.00	0.10	0.03	0.00	0.00	0.05	0.05		
<u>Viola sororia</u>	0.13	0.13	0.03	0.03	0.00	0.00	0.00	0.00		
<u>Viola</u> spp.	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00		

^a Row means followed by the same letter or without letters were not different (LSD)

(P ≤ 0.05). b WSI-CD = Wildlife Stand Improvement--dormant-season prescried fire, March 1996; WSI-CG = Wildlife Stand Improvement--growing-season prescribed fire, October 1995; WSI-DC = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995, no burn in 1996. WSI-DD = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995 and 1996.

	Pre-t	reatment (19	94) ^b	Post-tr	eatment (19	995) ^b
Group, Species	WSI-C	WSI-D	WSI-G	WSI-C	WSI-D	<u>WSI-G</u>
Grass						
Andropogon gerardii	9.2	10.0	10.0	12.5	14.2	9.2
Andropogon gyrans	16.7	20.0	20.0	14.2	20.8	15.0
Andropogon virginicus	0.0	0.8	0.0	0.0	0.0	0.0
Aristida spp.	0.0	0.0	0.0	0.0	0.8	1.7
Chasmanthium sessiliflorum	30.8	30.0	19.2	31.7	32.5	13.3
Danthonia spicata	16.7	27.5	24.2	18.3B	32.5A	11.7B
<u>Gymnopogon</u> ambiguus	0.0	0.0	0.0	0.0	1.7	0.0
<u>Manisuris</u> cylindrica	0.0	0.0	0.0	0.0	0.8	1.7
Muhlenbergia schreberi	0.0	0.0	0.0	1.7	0.0	0.0
Muhlenbergia spp.	1.7	0.0	0.0	0.0	0.0	0.0
<u>Paspalum</u> sp.	0.8	0.0	0.0	0.0	0.0	0.0
Schizachyrium scoparium	47.5	50.8	45.0	42.5	49.2	48.3
Sorghastrum nutans	0.8	2.5	3.3	0.0	0.8	2.5
Sporobolus asper	0.8	1.7	3.3	1.7	0.0	0.8
<u>Sporobolus</u> spp.	0.0	0.0	0.0	2.5	4.2	0.8
<u>Iridens</u> <u>flavus</u>	0.0	0.0	0.8	0.0	0.0	0.0
Panicum	F0 F	<i>(</i> 1 - 7	74.7	0.7		17 7
Dicanthelium spp.	52.5	61.7	16.1	8.3	3.3	15.5
Panicum acuminatum	0.0	0.0	0.0	19.28	59.2A	10.08
Panicum anceps	1/ 2	15.8	16.7	0.0	79.74	2/ 20
Panicum dishatamum	14.2	50.9	10.7	41.7A	57 5A	24.20
Panicum Laoviatum	47.5	0.0	02.5	4J.0A	1 7	0.06
Panicum Linearifolium	0.0	0.0	0.0	10 2AB	27 54	4 2B
Panicum rigidulum	0.0	0.0	0.0	1 7	1 7	0.0
Panicum spp	40.8	40.0	35.8	15.8	10.8	10.8
Panicum virgatum	0.0	0.0	0.8	0.0	0.8	0.0
Sedge						
Carex latebracteata	1.7	0.0	0.0	0.8	1.7	0.0
Carex spp.	2.5	0.8	0.8	25.0B	59.2A	42.5AB
Scleria spp.	40.0	45.8	52.5	10.0	1.7	15.8
<u>Scleria</u> triglomerata	38.3	53.3	62.5	39.2B	62.5A	38.3B
Fern						
Polystichum acrostichoides	0.0	0.0	0.0	0.8	0.0	0.0
<u>Pteridium</u> aquilinum	0.0	0.0	0.0	0.8	0.0	0.0
Legume	12.5	(2 2	1710	12.112	17 m	1941 M
Amphicarpa bracteata	10.0	7.5	16.7	9.2	11.7	12.5
<u>Baptisia nuttalliana</u>	1.7	1.7	0.0	1.7	7.5	0.8
<u>Cassia</u> <u>fasciculata</u>	15.0	10.0	27.5	10.0	15.0	14.2
<u>Clitoria</u> <u>mariana</u>	41.7	35.8	45.8	36.7	41.7	48.5
<u>Crotalaria</u> <u>sagittalis</u>	0.0	0.0	0.0	0.0	0.0	0.8
Desmodium canescens	0.0	0.0	0.0	0.0	0.0	1.7
Desmodium <u>ciliare</u>	22.5	8.3	14.2	19.2	20.0	28.5
Desmodium cuspidatum	0.0	0.0	0.0	0.0	5.5	0.0
Desmodium manilandiaum	10.0	0.0	0.0	3.5	10.0	2.5
	0.0	0.0	4.2	1.5	1 7	2.5
Desmodium paniculatum	3.2	7.7	7 5	1 7	1.7	2.5
Desmodium con	15 0	10.0	0.2	0.0	0.0	0.8
Desmodium viridiflarum	12 5	0.0	10.8	0.0	27 7	15 0
Galactia regularia	19 2	16 7	10.8	18 3	20.0	14.2
Lespedeza cupeata	0.0	0.0	0.8	0.0	0.0	0.8
Lespedeza hirta	0.8	0.0	0.0	0.0	1.7	0.0
Lespedeza intermedia	4.2	0.0	0.0	0.0	2.5	0.0

Table 3.^b Percent frequency of occurence of herbaceous species to season of prescribed fire in WSI stands on the Ouachita National Forest, Arkansas.

Table 3. (Continued). b

	Pre-treatment (1994) ^b		Post-treatment (1995) ^b			
	WSI-C	WSI-D	WSI-G	WSI-C	WSI-D	WSI-0
roup, species						
egumes (Continued)						
Lespedeza procumbens	25.8	25.0	32.5	25.0	18.3	20.8
Lespedeza repens	32.5	43.3	41.7	24.2	35.8	33.3
Lespedeza spp.	2.5	0.0	0.0	0.0	0.0	0.0
<u>Lespedeza</u> <u>striata</u>	0.0	0.8	0.0	0.0	0.0	0.0
<u>Lespedeza</u> violacea	3.3	2.5	0.0	14.2	12.5	15.0
<u>Lespedeza</u> <u>virginica</u>	5.8	3.3	2.5	8.3	8.3	3.3
Rhynchosia latifolia	0.8	0.8	3.3	0.0	0.8	3.3
<u>Schrankia</u> <u>nuttallii</u>	2.5	2.5	2.5	0.0	0.8	0.8
Strophostyles umbellata	7.5	2.5	8.3	2.5	10.8	9.2
Stylosanthes biflora	20.8	20.8	20.0	18.3	20.8	20.0
<u>Tephrosia</u> virginiana	0.8	0.8	0.8	0.0	0.8	0.0
orbs						
Acalypha gracilens	0.0	0.0	0.0	3.3B	22.5A	9.2
Agalinis tasciculata	0.0	0.8	0.0	0.0	0.0	0.0
Ambrosia artemisiifolia	0.8	0.0	0.0	0.0	0.0	0.8
Antennaria parlinii	0.0	0.0	0.0	0.0	0.0	0.8
Antennaria spp.	20.0	15.0	27.5	18.3	15.8	24.2
Aristolochia serpentaria	0.0	8.3	7.5	0.8	0.8	1.7
Asclepias variegata	0.0	0.0	0.8	0.8	0.8	2.5
Asclepias verticillata	0.0	0.0	0.0	0.0	0.8	0.0
<u>Aster</u> anomalus	22.5	28.3	9.2	29.2	30.0	14.2
Aster azureus	0.8	0.0	0.0	6.7	0.0	1.7
Aster ericoides	1.7	0.0	0.0	0.0	0.0	0.0
<u>Aster</u> <u>linariifolius</u>	3.3	1.7	0.0	2.5	4.2	1.7
Aster paludosus	6.7	7.5	10.0	1.7	5.8	5.0
<u>Aster</u> patens	20.8	29.2	20.8	21.7	27.5	23.3
<u>Aster</u> spp.	2.5	0.8	0.0	0.0	0.8	0.0
Aster subulatus	0.0	0.0	0.0	0.0	0.0	1.7
<u>Cirsium</u> carolinianum	11.7	10.0	9.2	11.7	22.5	17.5
<u>Cirsium</u> horridulum	0.0	0.8	0.0	0.0	0.0	0.0
Cocculus carolinus	0.0	0.0	1.7	0.0	0.0	0.8
Conyza canadensis	0.8	0.0	0.0	0.0B	0.0B	10.0
Coreopsis grandiflora	0.0	0.8	0.0	1.7	0.0	0.0
Coreopsis lanceolata	0.0	0.0	0.0	0.0	0.8	0.0
Coreopsis palmata	5.0	8.3	1.7	6.7	10.0	3.3
Coreopsis spp.	0.0	0.8	0.0	0.0	0.0	0.0
Coreopsis tinctoria	9.2	8.3	7.5	4.2B	15.0A	18.3
Crotonopsis elliptica	0.0	0.0	0.0	0.0	0.8	0.0
Cunila origanoides	6.7	6.7	0.0	7.5	8.3	0.0
Echinacea pallida	1.7	4.2	1.7	2.5	5.8	2.5
Echinacea purpurea	0.0	0.0	0.8	0.0	0.0	0.0
Elephantopus tomentosus	4.2	0.8	0.0	3.3	4.2	1.7
Erechtites hieraciifolia	0.0	0.8	0.0	0.00	86.7A	15.8
Erigeron annuus	0.8	0.0	0.0	1.7	0.0	0.8
Erigeron spp.	0.0	0.0	0.0	0.0	0.8	0.0
Eupatorium altissimum	0.8	0.0	0.0	0.0	0.0	0.0
Eupatorium serotinum	0.0	0.0	0.0	0.8	0.0	0.0
Eupatorium sp.	0.8	0.0	0.0	0.0	0.0	0.0
Euphorbia corollata	1.7	0.0	0.0	0.0	0.8	0.0
Galium pilosum	0.8	0.8	0.0	0.8	0.0	0.0
Galium spp.	8.3	9.2	10.8	10.8	12.5	8.3
Gnaphalium obtusifolium	0.8	0.0	5.8	0.8	0.8	0.0
Gnaphalium purpureum	0.0	0.0	0.0	1.7	4.2	0.8
Hedvotis longifolia	6.7	19.2	10.8	3.3	5.8	3.7
Hedvotis spr	0.0	0.0	0.0	0.8	0.0	0.0
Heliopthus hinsutus	64.2	45 0	51 7	52 5	50.8	55 0
Hotopothoon graminifelia	12 5	4J.0	0.0	10.0	14 2	2
neterotneca grammitolia	12.5	0.5	15.0	10.0	20.0	11 .

Table 3. (Continued).^b

	Pre-	treatment (19	94) ^b	Post-tre	Post-treatment (1995)	
Crown Specier	WSI-C	WSI-D	<u>WS1-G</u>	WSI-C	WSI-D	WSI-G
Forbs (Continued)	0.0	0.0	0.0	0.0	7 7	0.0
Hieracium Longipilum	0.0	0.0	0.0	0.0	3.5	0.0
Lactuca canadensis	10.0	15.5	13.3	9.2	14.2	9.2
Lactuca serriola	0.0	0.8	0.0	0.0	0.0	0.8
Liatris aspera	4.2	1.7	0.0	9.2	9.2	3.3
Liatris pycnostachya	0.0	0.0	0.0	0.0	2.5	0.0
Liatris squarrosa	1.7	0.8	0.0	1.7	5.5	0.0
Lobelia appendiculata	0.0	0.0	0.0	0.8	6.7	5.0
Lobelia spicata	5.5	2.5	0.8	0.0	0.8	0.8
Mentha spicata	0.0	0.0	0.0	0.8	0.0	0.0
Monarda russeliana	26.7	30.8	33.3	29.2	35.8	30.7
Monarda spp.	2.5	1.7	0.0	0.0	0.0	0.0
Monarda stipitatoglandulosa	0.0	0.0	0.8	0.8	0.0	7.7
Oxalis stricta	2.5	1.7	1.7	1.7	2.5	5.5
Oxalis Violacea	0.0	0.0	0.0	0.0	0.8	0.0
Parthenium integrifolium	5.5	5.0	0.0	2.5	5.0	2.7
Phlox divaricata	5.8	5.0	7.5	10.8	9.2	23.3
Phiox sp.	0.0	0.0	0.0	0.0	2.5	0.5
Physalis virginiana	0.8	0.8	0.0	5.5	11.7	9.2
Phytolacca americana	0.8	0.0	0.0	0.0	0.0	0.0
<u>Plantago lanceolata</u>	0.8	0.0	0.0	0.0	0.0	0.0
Polygala alba	0.8	0.0	0.0	0.08	5.8A	2.5A
<u>Polygala</u> sp.	0.8	0.0	0.0	0.0	0.0	0.0
Polygonum scandens	0.0	0.0	0.0	0.8	0.0	0.8
Potentilla simplex	2.5	0.0	0.0	2.5	0.8	0.8
Potentilla spp.	0.0	4.2	0.0	0.0	0.0	0.0
Prunella vulgaris	0.0	0.0	0.8	0.0	0.0	0.0
Pycnanthemum albescens	0.8	1.7	0.8	0.0	0.0	0.0
Pycnanthemum tenuifolium	0.8	1.7	0.0	0.0	0.8	0.0
Rudbeckia amplexicaulus	0.0	0.0	0.8	0.0	0.0	0.0
Rudbeckia grandiflora	8.5	5.8	5.5	8.5	5.0	0.7
Rudbeckia hirta	4.2	6.7	4.2	1.7	10.0	7.0
Ruellia humilis	4.2	5.8	9.2	0.08	0.88	8.3A
Ruellia pedunculata	5.8	8.5	9.2	4.2	11.7	0.5
Ruellia strepens	0.0	0.0	0.0	2.5	0.0	0.0
<u>Salvia</u> <u>lyrata</u>	0.0	0.0	0.0	0.8	1.7	6.7
Sanicula canadensis	0.0	0.8	6.7	0.8	1.7	19 7
Scutellaria ovata	3.3	0.0	0.0	1.7	9.2	10.5
Scutellaria parvula	0.8	1.7	5.5	0.0	1 7	1.7
Senecio spp.	0.0	0.0	0.0	0.0	1.7	1.7
Sisyrinchium angustitolium	0.0	0.0	0.0	1.7	6.0	2 5
Solidago caesia	12 5	10.0	0.0	4.C	27 54	0.08
Solidago nispida	12.5	10.8	9.2	6.7	8 Z	6.7
Solidago odora	20.0	29.7	1.7	10.7	20.9	20.8
Solidago radula	20.0	20.5	13.0	10.5	20.8	0.8
Solidago spp.	117	17 7	75.0	40.0	40.0	35.0
Solidago ulmitolia	41.7	43.3	35.0	47.2	0.8	0.8
Tradescantia oniensis	0.0	0.0	0.0	0.0	0.0	2.5
Irlodanus leptocarpa	0.0	0.0	0.0	0.0	0.0	0.8
Unknown Ford #3	0.0	1.7	6.0	0.0	0.0	0.0
Unknown Ford TUU	3 7	2.5	4.2	0.0	0.0	0.0
Unknown Forb 2D	0.9	2.5	0.0	0.0	0.0	0.0
Unknown Forb 4	0.0	4.7	2.5	0.0	0.0	0.8
Unknown forb	0.0	0.7	2.5	0.0	0.0	0.0
Unknown TOPD 108	0.0	0.0	0.0	2.5	0.0	0.0
Unkown onerwo	0.0	0.0	0.0	1 7	0.0	2 5
Unknown three	0.0	0.0	0.0	0.8	0.0	0.0
Verbeging belientheider	0.0	0.0	0.0	0.0	0.0	0.8
Viola palmata	0.0	0.0	0.0	0.8	9.2	4.2
viora parmara	0.0	0.0	0.0	0.0		

	Pre-	treatment (1	994) ^b	Post-treatment (1995) ^b				
Group, Species	WSI-C	WSI-D	WSI-G	WSI-C	WSI-D	WSI-G		
Forbs (Continued)								
Viola pedata	7.5	5.8	9.2	5.0	3.3	11.7		
Viola sagittata	1.7	0.0	0.0	0.0	0.0	0.0		
<u>Viola</u> <u>sororia</u>	2.5	1.7	2.5	0.0B	5.0A	0.0B		

^a Row means followed by the same letter or without letters were not different (LSD)

(P ≤ 0.05). ^b WSI-C = Wildlife Stand Improvement--no burn control; WSI-D = Wildlife Stand Improvement--dormasnt-season prescribed fire, March 1995; WSI-G = Wildlife Stand Improvement--growing season prescribed fire, September 1994.

	Treatment ^b							
Group, Species	WSI-CD	WSI-CG	WSI-DC	WSI-DD				
Grass								
Andropogon gerardii	20.0	3.3	3.3	16.7				
Andropogon gyrans	15.0	1.7	20.0	23.3				
Chasmanthium sessiliflorum	8.3	46.7	40.0	31.7				
Danthonia spicata	28.3	0.0	23.3	23.3				
Manisuris cylindrica	0.0	0.0	1.7	0.0				
Muhlenbergia schreberi	0.0	0.0	0.0	1.7				
Muhlenbergia spp.	0.0	1.7	0.0	0.0				
Schizachyrium scoparium	51.7AB	26.7B	58.3A	30.0B				
Sorghastrum nutans	0.0	0.0	1.7	0.0				
Sporobolus asper	0.0	1.7	1.7	0.0				
<u>Sporobolus</u> spp.	0.0B	0.0B	5.0A	0.0B				
anicum								
Dicanthelium spp.	10.0	1.7	1.7	1.7				
Panicum acuminatum	25.0	26.7	56.7	56.7				
Panicum anceps	0.0	0.0	1.7	0.0				
Panicum boscii	30.0	20.0	21.7	30.0				
Panicum dichotomum	46.7	41.7	65.0	46.7				
Panicum laeviatum	0.0	1.7	0.0	0.0				
<u>Panicum</u> <u>linearifolium</u>	18.3BC	6.7C	33.3A	31.7AB				
Panicum scoparium	11.7	11.7	13.3	16.7				
<u>Panicum</u> spp.	13.3	10.0	18.3	8.3				
Sedges								
Carex latebracteata	1.7	0.0	1.7	0.0				
Carex spp.	45.0BC	41.7C	61.7A	51.7AB				
<u>Scleria</u> <u>oligantha</u>	1.7	0.0	0.0	0.0				
<u>Scleria</u> spp.	10.0	0.0	3.3	0.0				
<u>Scleria</u> <u>triglomerata</u>	45.0BC	40.0C	63.3A	56.7AB				
Ferns								
Polystichum acrostichoides	0.0	1.7	0.0	0.0				
<u>Pteridium</u> aquilinum	0.0	1.7	0.0	0.0				
Legumes								
Amphicarpa bracteata	18.3	15.0	6.7	25.0				
Baptisia nuttalliana	3.3	1.7	5.0	5.0				
<u>Cassia fasciculata</u>	15.0	6.7	16.7	13.3				
<u>Clitoria</u> mariana	25.0	45.0	35.0	45.0				
Crotalaria sagittalis	0.0	1.7	0.0	1.7				
Desmodium canadense	3.3	0.0	0.0	0.0				
Desmodium canescens	3.3	1.7	0.0	0.0				
Desmodium ciliare	16.7	30.0	10.0	18.3				
Desmodium Laevigatum	3.3	3.3	3.3	10.0				
Desmodium marilandicum	6.7	0.0	3.3	3.3				
Desmodium paniculatum	0.0	0.0	1.7	3.3				
Desmodium spp.	1.7	1.7	0.0	0.0				
Desmodium viridiflorum	13.3	26.7	10.0	15.0				
<u>Galactia</u> <u>regularis</u>	20.0	10.0	13.3	16.7				
Lespedeza intermedia	1.7	0.0	5.0	0.0				
Lespedeza procumbens	25.0	30.0	15.0	26.7				
Lespedeza repens	28.3	43.3	38.3	53.3				
Lespedeza striata	6.7	0.0	1.7	0.0				
Lespedeza violacea	6.7	0.0	15.0	3.3				
Lespedeza virginica	13.3	1.7	15.0	8.3				
<u>Rhynchosia</u> <u>latifolia</u>	0.0	0.0	1.7	0.0				
<u>Schrankia</u> <u>nuttallii</u>	0.0	1.7	0.0	0.0				
Strophostyles umbellata	8.3	1.7	20.0	6.7				

Table 4. Percent frequency of occurence of herbaceous species to season of prescribed fire in WSI stands on the Ouachita National Forest, Arkansas, summer 1996.

Table 4. (Continued).^a

	Treatment ^b							
-	WSI-CD	WSI-CG	WSI-DC	WSI-DD				
Group, Species								
Legumes (Contiued)								
<u>Stylosanthes</u> <u>biflora</u>	15.0	23.3	18.3	35.0				
Forbs								
Acalypha gracilens	15.0	35.0	16.7	26.7				
<u>Acalypha</u> <u>virginica</u>	0.0	1.7	0.0	0.0				
<u>Ambrosia</u> <u>artemisiifolia</u>	1.7	1.7	0.0	0.0				
Antennaria spp.	25.0	16.7	10.0	15.0				
Aristotochia serpentaria	5.0	0.0	0.0	17				
Aster anomalus	38.3	13 3	36.7	25 0				
Aster azureus	13.3	6.7	5.0	0.0				
Aster linariifolius	5.0	0.0	5.0	1.7				
Aster paludosus	3.3	1.7	6.7	5.0				
Aster patens	26.7	20.0	31.7	28.3				
Aster subulatus	3.3	0.0	0.0	6.7				
<u>Cirsium</u> carolinianum	13.3	25.0	18.3	31.7				
Cocculus carolinus	0.0	0.0	0.0	1.7				
<u>Conyza</u> <u>canadensis</u>	1.7	1.7	5.0	1.7				
<u>Coreopsis</u> palmata	3.30	8.3B	3.30	16.7A				
Coreopsis tinctoria	8.3	3.3	15.0	15.0				
Coreopsis verticillata	0.0	1.7	1.7	1.7				
<u>Cunila</u> origanoides	8.3	5.0	10.0	5.0				
Echinacea pallida	0.0	0.7	3.3	1.7				
Elephantopus tomentosus	41 7	26.7	1.7	10.0				
Ericeron strigosus	41.7	1 7	1 7	0.0				
Eupatorium altissimum	0.0	0.0	0.0	1.7				
Euphorbia corollata	5.0	0.0	1.7	1.7				
Galium pilosum	10.0	8.3	6.7	16.7				
Galium spp.	0.0	0.0	0.0	1.7				
Geum canadense	1.7	1.7	1.7	10.0				
Gnaphalium obtusifolium	0.0	1.7	0.0	0.0				
Gnaphalium purpureum	1.7	0.0	8.3	5.0				
<u>Hedyotis</u> <u>longifolia</u>	11.7	6.7	3.3	6.7				
<u>Helianthus</u> <u>hirsutus</u>	50.0	53.3	43.3	56.7				
<u>Heterotheca</u> graminifolia	20.0	0.0	21.7	0.0				
Hieracium gronovii	11.7	8.3	23.3	8.3				
Hieracium longipilum	5.5	1.7	5.0	8.5				
Ipomoea pandurata	11.7	5.0	6.7	15.0				
Liatric aspera	1 7	6.7	5.0	1.7				
Liatris squarrosa	1.7	5.0	0.0	1.7				
Lobelia appendiculata	1.7	0.0	0.0	1.7				
Lobelia spicata	1.7	0.0	0.0	1.7				
Mentha spp.	0.0	1.7	0.0	0.0				
Monarda russeliana	21.7	40.0	18.3	43.3				
Monarda stipitatoglandulosa	1.7	0.0	0.0	0.0				
<u>Oxalis</u> stricta	0.0	1.7	0.0	1.7				
Oxalis violacea	0.0	0.0	0.0	1.7				
Parthenium integrifolium	0.0	3.3	5.0	1.7				
Phlox divaricata	1.7	0.0	5.5	0.0				
Phlox spp.	50.0	28.5	15.0	20.7				
Palvarla alba	5.5	0.0	z z	1.7				
Potoptilla simpley	2.2	5.0	0.0	1 7				
Pycpapthemum teouifolium	1 7	0.0	1 7	0.0				
Rudbeckia amplexicaulus	0.0	1.7	0.0	0.0				
Rudbeckia grandiflora	3.3	15.0	0.0	8.3				
Rudbeckia hirta	3.3	3.3	11.7	13.3				

Table 4. (Continued).^a

	Treatment ^b							
-	WSI-CD	WSI-CG	WSI-DC	WSI-DD				
Group, Species								
Forbs (Continued)								
Ruellia humilis	5.0	1.7	0.0	0.0				
Ruellia pedunculata	5.0	10.0	6.7	21.7				
Salvia lyrata	0.0	1.7	1.7	1.7				
Sanicula canadensis	3.3	13.3	1.7	3.3				
Scutellaria ovata	10.0	6.7	8.3	3.3				
Senecio spp.	3.3	0.0	1.7	1.7				
Sisyrinchium angustifoli	1.7	5.0	0.0	1.7				
Solidago caesia	6.7	0.0	0.0	3.3				
Solidago canadensis	0.0	0.0	0.0	3.3				
Solidago hispida	16.7	5.0	15.0	0.0				
Solidago odora	3.3	1.7	15.0	1.7				
Solidago radula	31.7AB	15.0C	56.7A	28.3BC				
Solidago spp.	11.7	5.0	13.3	1.7				
Solidago ulmifolia	56.7	53.3	53.3	38.3				
Tradescantia ohiensis	1.7	0.0	0.0	0.0				
Triodanus leptocarpa	0.0	1.7	0.0	0.0				
UNK Matela	0.0	5.0	0.0	1.7				
Unknown forb	0.0	0.0	1.7	0.0				
Unkown Seeds	0.0	1.7	0.0	0.0				
<u>Viola</u> palmata	1.7	0.0	0.0	3.3				
<u>Viola</u> pedata	5.0	8.3	3.3	6.7				
Viola sagittata	0.0	3.3	0.0	1.7				
Viola sororia	1.7	1.7	0.0	0.0				
<u>Viola</u> spp.	1.7	0.0	0.0	0.0				

^a Row means follwed bythe same letter or without letters were not different (LSD)

(P ≤ 0.05). ^b WSI-CD = Wildlife Stand Improvement--dormant-season prescribed fire, March 1996; WSI-CG = Wildlife Stand Improvement--growing-season prescribed fire, October 1995; WSI-DC = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995, no burn in 1996; WSI-DD = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995 and 1996.

YEAR STAND		TREATMENT ^a	Species R	ichness	Species D	iversity	Species Evenness		
TEAR	STAND	IREAIMENT	(Stand)	(m²)	H'b	N2 ^b	E1 ^b	E5 ^b	
Pre-	Treatme	nt							
94	1257C	WSI-C	52	9	2.93	9.79	0.74	0.50	
94	1265C	WSI-C	78	14	3.22	15.13	0.74	0.59	
94	1274C	WSI-C	53	9	3.09	15.68	0.78	0.70	
94	1313C	WSI-C	56	9	2.65	6.30	0.66	0.40	
94	1257D	WSI-D	53	9	3.05	14.41	0.77	0.67	
94	1274D	WSI-D	60	11	3.19	16.21	0.78	0.65	
94	1289D	WSI-D	63	12	3.10	13.41	0.75	0.59	
94	1313D	WSI-D	55	11	2.78	9.88	0.69	0.59	
94	1257G	WSI-G	55	11	3.04	14.33	0.76	0.67	
94	1259G	WSI-G	57	12	2.89	10.47	0.71	0.56	
94	1274G	WSI-G	51	8	2.68	10.42	0.68	0.69	
94	1289G	WSI-G	59	12	2.94	13.13	0.72	0.68	
Year	One								
95	1257C	WSI-C	53	10	3.00	11.40	0.75	0.55	
95	1265C	WSI-C	68	12	3.09	12.99	0.73	0.57	
95	1274C	WSI-C	51	9	3.06	15.12	0.78	0.70	
95	1313C	WSI-C	55	8	2.89	8.34	0.72	0.43	
95	1257D	WSI-D	65	14	3.19	15.57	0.76	0.63	
95	1274D	WSI-D	79	14	3.31	17.97	0.76	0.65	
95	1289D	WSI-D	76	16	3.39	18.62	0.78	0.61	
95	1313D	WSI-D	69	12	3.06	10.89	0.72	0.48	
95	1257G	WSI-G	69	12	3.34	18.18	0.79	0.63	
95	1259G	WSI-G	69	12	3.22	15.23	0.76	0.59	
95	1274G	WSI-G	64	7	3.26	17.45	0.78	0.66	
95	1289G	WSI-G	69	11	3.28	16.19	0.77	0.60	
Year	Тwo								
96	1257CD	WSI-CD	71	13	3.24	15.64	0.76	0.59	
96	1265CG	WSI-CG	76	12	3.14	13.69	0.73	0.57	
96	1274CG	WSI-CG	59	10	3.30	19.85	0.81	0.72	
96	1313CD	WSI-CD	70	11	3.04	9.82	0.72	0.44	
96	1257DD	WSI-DD	66	12	3.30	19.60	0.79	0.71	
96	1274DD	WSI-DD	77	13	3.28	18.66	0.76	0.69	
96	1289DC	WSI-DC	69	14	3.17	13.40	0.75	0.54	
96	1313DC	WSI-DC	63	12	2.90	8.42	0.70	0.44	

Table 5. Effects of fire season on species richness, diversity, and evenness of herbaceous plants in experimental stands, Ouachita National Forest, Arkansas, July 1994-1996.

^a WSI-C = Wildlife Stand Improvement--no burn control; WSI-D = Wildlife Stand Improvement-dormasnt-season prescribed fire, March 1995; WSI-G = Wildlife Stand Improvement--growing season prescribed fire, September 1994; WSI-CD = Wildlife Stand Improvement--dormant-season prescried fire, March 1996; WSI-CG = Wildlife Stand Improvement--growing-season prescribed fire, October 1995; WSI-DC = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995, no burn in 1996; WSI-DD

Pielou, E5 = Modified Hill's ratio.

APPENDIX C

WOODY SPECIES RESPONSE

TO SEASON

OF FIRE

WSI-C WSI-0 WSI-6 WSI-C WSI-0 WSI-6 Group, Species Mean SE Mean SE <th></th> <th></th> <th></th> <th>Pre-trea</th> <th>tment (19</th> <th>94)^b</th> <th></th> <th></th> <th colspan="6">Post-treatment (1995)^b</th>				Pre-trea	tment (19	94) ^b			Post-treatment (1995) ^b					
Sroup, Species Mean SE Mean		WS	I - C	WS	I - D	WS	I - G	WS	GI-C	WS	SI-D	WS	61-G	
Joody, Trees 1,030 587 962 540 257 206 1,019 605 949 599 297 234 Amelanchier arborea 208 73 103 39 113 81 181 106 241 132 152 69 Carya texana 2,143 373 2,914 796 3,159 1,028 776 274 1,431 676 2,549 880 Celtis occidentalis 14 8 6 6 25 15 8 6 6 16 12 Certis candensis 0 0 0 10 0 <t< th=""><th>Group, Species</th><th>Mean</th><th>SE</th><th>Mean</th><th>SE</th><th>Mean</th><th>SE</th><th>Mean</th><th>SE</th><th>Mean</th><th>SE</th><th>Mean</th><th>SE</th></t<>	Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	
Acer Loss 1,030 587 962 540 257 206 1,019 605 949 599 207 234 Amelanchic arborea 104 102 107 96 663 488 776 274 1,431 676 25,49 880 Carya tomentosa 2,133 373 2,914 796 3,159 1,028 1,435 447 1,678 1,000 1,116 550 Cariya tomentosa 2,133 373 2,914 796 3,159 1,028 1,435 447 1,678 1,000 1,116 550 Carius cidentalis 1 4 8 6 6 16 12 14 8 6 16 12 19 4 4 0	Woody, Trees			0.000				va serended	Sector					
Amelanchier arborea 208 73 103 39 113 81 181 106 241 132 152 69 Carya tomentosa 2,133 373 2,914 796 3,159 1,028 1,435 447 1,678 1,000 1,116 550 Certis caradensis 0 <th0< td=""><td>Acer rubrum</td><td>1,030</td><td>587</td><td>962</td><td>540</td><td>257</td><td>206</td><td>1,019</td><td>605</td><td>949</td><td>599</td><td>297</td><td>234</td></th0<>	Acer rubrum	1,030	587	962	540	257	206	1,019	605	949	599	297	234	
$ \begin{array}{c} \underline{\text{Carva texana}}{\text{Carva texana}} & 144 & 102 & 107 & 96 & 663 & 488 & 776 & 274 & 1,431 & 676 & 2,549 & 880 \\ \underline{\text{Carva texana}} & 2,133 & 373 & 2,914 & 796 & 3,159 & 1,028 & 1,435 & 447 & 1,678 & 1,000 & 1,116 & 550 \\ \underline{\text{Celtis occidentalis}} & 14 & 8 & 6 & 6 & 25 & 15 & 8 & 6 & 6 & 6 & 6 & 12 \\ \underline{\text{Carcat semadensis}} & 0 & 0 & 0 & 0 & 0 & 10 & 10 & 0 & 0 &$	Amelanchier arborea	208	73	103	39	113	81	181	106	241	132	152	69	
Carva tomentosa 2,133 373 2,914 7%6 3,159 1,028 1,435 447 1,678 1,000 1,116 550 Celtis occidentalis 14 8 6 6 25 15 8 6 6 6 16 12 Cercis canadensis 0 0 0 0 10 0	Carya texana	144	102	107	96	663	488	776	274	1,431	676	2,549	880	
Celtis occidentalis 14 8 6 6 25 15 8 6 6 6 16 12 Cercis canadensis 0 0 0 0 10 0	Carya tomentosa	2,133	373	2,914	796	3,159	1,028	1,435	447	1,678	1,000	1,116	550	
$\begin{array}{c} \hline Cercis canadensis \\ Chionanthus virginicus \\ 4 & 2 & 64 & 39 & 47 & 23 & 14 & 8 & 167 & 121 & 91 & 48 \\ \hline Corrus florida \\ \hline Corrus flori$	Celtis occidentalis	14	8	6	6	25	15	8	6	6	6	16	12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cercis canadensis	0	0	0	0	10	10	0	0	0	0	0	0	
Concus florida 1,299 873 1,824 819 1,678 1,166 1,287 877 2,156 1,072 1,728 1,143 Diospyros virginiana 0 0 4 2 0 4 4 0	Chionanthus virginicus	4	2	64	39	47	23	14	8	167	121	91	48	
Dispyros virginiana 0 0 4 2 0 0 4 4 0 0 0 0 Fraxinus americana 4 4 16 16 41 19 4 4 0 0 25 20 Juniperus virginiana 0 0 0 4 4 0	Cornus florida	1,299	873	1,824	819	1,678	1,166	1,287	877	2,156	1,072	1,728	1,143	
Frazinus americana 4 4 16 16 41 19 4 4 0 0 25 20 Juniperus virginiana 0 <th< td=""><td>Diospyros virginiana</td><td>0</td><td>0</td><td>4</td><td>2</td><td>0</td><td>0</td><td>4</td><td>4</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	Diospyros virginiana	0	0	4	2	0	0	4	4	0	0	0	0	
Juniperus virginiana 0 0 0 0 4 4 0	Fraxinus americana	4	4	16	16	41	19	4	4	0	0	25	20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Juniperus virginiana	0	0	0	0	4	4	0	0	0	0	0	0	
Morus rubra 14 9 4 4 6 4 16 14 12 7 14 14 Mysa sylvatica 472 445 887 549 70 21 332 326 912 447 54 22 Pinus echinata 2,473 1,181 4,740 2,772 3,618 3,195 1,711 828 3,498 3,040 1,017 990 Prunus mexicana 523 313 237 147 476 194 385 240 515 282 566 329 Prunus serotina 700 440 356 38 402 208 597 369 548 269 597 331 Quercus falcata 1,878 1,498 1,048 400 1,299 847 1,855 1,361 945 396 1,515 696 Quercus falcata 41 41 72 48 194 69 16 16 16 16 12 12 Quercus falcata 1,474 311 1,58	Liquidambar styraciflua	0	0	8	8	0	0	0	0	0	0	0	0	
Nyssa sylvatica47244588754970213323269124475422Qstrva virginiana19211316121010138938622Pinus echinata2,4731,8114,7402,7723,6183,1951,7118283,4983,0401,017990Prunus serotina523313237147476194385240515282566329Prunus serotina70044035638402208597359548269597331Quercus falcata4141724819469161616161212Quercus marilandica1,4743111,5884652,053663920A22578C34408890Quercus niara3123391299462115511986Quercus stellata6,1828636,4804516,0898475,20686128,473A8167,574A593Quercus stellata6,1828636,4804516,0898475,20686128,473A8167,574A593Quercus stellata6,1828636,4804516,0898475,20686128,473A8167,574A593Quercus stellata1,497728<	Morus rubra	14	9	4	4	6	4	16	14	12	7	14	14	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nyssa sylvatica	472	445	887	549	70	21	332	326	912	447	54	22	
Pinus echinata 2,473 1,181 4,740 2,772 3,618 3,195 1,711 828 3,498 3,040 1,017 990 Prunus mexicana 523 313 237 147 476 194 385 240 515 282 566 329 Prunus serotina 700 440 356 38 402 208 597 369 548 269 597 331 Quercus alba 1,878 1,498 1,048 400 1,299 847 1,855 1,361 945 396 1,151 696 Quercus falcata 41 41 72 48 194 69 16 16 16 16 16 16 12 12 Quercus miara 31 23 39 12 99 46 21 15 51 9 8 6 Quercus phellos 8 6 8 6 2 2 2 0 0 0 0 0 0 0 0 0 0	Ostrya virginiana	192	113	16	12	10	10	138	93	8	6	2	2	
Prunus mexicana 523 313 237 147 476 194 385 240 515 282 566 329 Prunus serotina 700 440 356 38 402 208 597 369 548 269 597 331 Quercus alba 1,878 1,498 1,048 400 1,299 847 1,855 1,361 945 396 1,151 696 Quercus marilandica 1,474 311 1,588 465 2,053 663 920A 225 78C 34 4088 90 Quercus snigra 31 23 39 12 99 46 21 15 51 19 8 6 Quercus spellos 8 6 8 6 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0<	Pinus echinata	2,473	1,181	4,740	2,772	3,618	3,195	1,711	828	3,498	3,040	1,017	990	
Prunus serotina 700 440 356 38 402 208 597 369 548 269 597 331 Quercus alba 1,878 1,498 1,048 400 1,299 847 1,855 1,361 945 396 1,151 696 Quercus falcata 41 41 72 48 194 69 16 17 124 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0<	Prunus mexicana	523	313	237	147	476	194	385	240	515	282	566	329	
Quercus alba 1,878 1,498 1,048 400 1,299 847 1,855 1,361 945 396 1,151 696 Quercus falcata 41 41 72 48 194 69 16 17 17 17 18 36 8 6 8 6 2 2 2 0	Prunus serotina	700	440	356	38	402	208	597	369	548	269	597	331	
Quercus falcata 41 41 72 48 194 69 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 16 16 16 17 17 16 16 16 17 17<	Quercus alba	1,878	1,498	1.048	400	1.299	847	1,855	1,361	945	396	1,151	696	
Quercus marilandica 1,474 311 1,588 465 2,053 663 920A 225 78C 34 408B 90 Quercus nigra 31 23 39 12 99 46 21 15 51 19 8 6 Quercus phellos 8 6 8 6 2 2 2 0 0 0 0 Quercus phellos 8 6 8 6 2 2 2 0	Quercus falcata	41	41	72	48	194	69	16	16	16	16	12	12	
Quercus nigra 31 23 39 12 99 46 21 15 51 19 8 6 Quercus phellos 8 6 8 6 2 2 2 2 0 0 0 0 Quercus phellos 8 6 8 6 2 2 2 2 0 0 0 0 Quercus rubra 373 209 82 82 262 180 167 72 124 52 103 21 Quercus stellata 6,182 863 6,480 451 6,089 847 5,2068 612 8,473A 816 7,574A 593 Quercus velutina 624 245 350 127 616 193 1,110 306 2,576 512 2,483 837 Sassafras albidum 0 0 0 0 0 0 0 0 0 10 501	Quercus marilandica	1,474	311	1,588	465	2.053	663	920A	225	78C	34	408B	90	
Quercus phellos 8 6 8 6 2 2 2 2 0	Quercus nigra	31	23	39	12	99	46	21	15	51	19	8	6	
Quercus rubra 373 209 82 82 262 180 167 72 124 52 103 21 Quercus stellata 6,182 863 6,480 451 6,089 847 5,206B 612 8,473A 816 7,574A 593 Quercus velutina 624 245 350 127 616 193 1,110 306 2,576 512 2,483 837 Sassafras albidum 0	Quercus phellos	8	6	8	6	2	2	2	2	0	0	0	0	
Autors Stellata 6,182 863 6,480 451 6,089 847 5,2068 612 8,473A 816 7,574A 593 Quercus velutina 624 245 350 127 616 193 1,110 306 2,576 512 2,483 837 Sassafras albidum 0	Quercus rubra	373	209	82	82	262	180	167	72	124	52	103	21	
Based of the second s	Quercus stellata	6,182	863	6.480	451	6.089	847	5.206B	612	8.473A	816	7.574A	593	
Sassafras albidum 0	Quercus velutina	624	245	350	127	616	193	1,110	306	2.576	512	2.483	837	
Ulmus alata 1,497 728 1,036 355 1,575 602 1,419 705 1,400 538 2,525 1,012 Viburnum rufidulum 859 470 124 37 196 61 910 501 117 69 764 541 Totals 0-1 m 18,361 2,594 18,740 2,725 17,715 2,739 15,7408 1,965 25,560A 4,335 21,310A 229 1-3 m 3,791 445 4,295 773 5,212 961 3,758A 246 334C 76 1,923B 550 > 3 m 25 19 41 17 37 26 41 23 10 5 19 11 TOTAL 23 137 2,003 22,966 2,130 10 5 19 11	Sassafras albidum	0	0	0	0	0	0	4	4	0	0	0	0	
Viburnum rufidulum 859 470 124 37 196 61 910 501 117 69 764 541 Totals 0-1 m 18,361 2,594 18,740 2,725 17,715 2,739 15,740B 1,965 25,560A 4,335 21,310A 229 1-3 m 3,791 445 4,295 773 5,212 961 3,758A 246 334C 76 1,923B 550 > 3 m 25 19 41 17 37 26 41 23 10 5 19 11 TOTAL 32 127 2 30 32 26 2 130 19 539 2163 25 66 2 130 19 539 2163 25 66 2 130 19 59 11	Ulmus alata	1,497	728	1.036	355	1 575	602	1.419	705	1,400	538	2.525	1.012	
Totals 18,361 2,594 18,740 2,725 17,715 2,739 15,7408 1,965 25,560A 4,335 21,310A 229 1-3 m 3,791 445 4,295 773 5,212 961 3,758A 246 334c 76 1,923B 550 > 3 m 25 19 41 17 37 26 41 23 10 5 19 11 TOTAL 23 127 2 30 72 2003 22 964 2 10 5 19 11	Viburoum rufidulum	859	470	124	37	196	61	910	501	117	69	764	541	
0-1 m 18,361 2,594 18,740 2,725 17,715 2,739 15,740B 1,965 25,560A 4,335 21,310A 229 1-3 m 3,791 445 4,295 773 5,212 961 3,758A 246 334c 76 1,923B 550 > 3 m 25 19 41 17 37 26 41 23 10 5 19 11 TOTAL 23 127 2 30,772 2,003 22,966 2,130 19,539 21,63 25,026 47,72 23,253 35,72	Totals	0,77			51		5.		501		0,	101	2	
1-3 m 3,791 445 4,295 773 5,212 961 3,758A 246 334c 76 1,923B 550 > 3 m 25 19 41 17 37 26 41 23 10 5 19 11 TOTAL 23 177 2 30,077 2,003 22,964 2,130 19 5004 4,733 25 19 11	0-1 m	18 361	2 594	18 740	2 725	17 715	2 739	15 740R	1 965	25 5604	4 335	21 3104	229	
> 3 m 25 19 41 17 37 26 41 23 10 5 19 11 TOTAL 22 23 23 27 2 03 22 06 2 130 10 5 19 11	1-3 m	3 701	445	4 295	773	5 212	961	3 7584	246	33/1	76	1 9238	550	
Total 20 17 2 43 23 20 77 2 003 22 2064 2 130 10 530 2 142 25 004 4 272 23 25 257	- J	25	10	41	17	37	26	2,1 JOA	23	10	5	10	11	
	TOTAL	22,177	2,639	23.077	2.003	22.964	2.130	19.539	2.163	25.904	4.372	23.252	357	

Table 1.^a Woody species response (stems/ha) to season of fire in WSI stands, Ouachita National Forest, Arkansas.

Table 1. (Continued).³

			Pre-treatment (1994) ^b					Post-treatment (1995) ^b				
	WS	I - C	WS	I - D	WS	I - G	WSI	I-C	WS	I - D	WSI	- G
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Woody, Shrubs												
<u>Callicarpa</u> <u>americana</u>	0	0	8	8	4	4	0	0	23	23	0	0
Ceanothus americanus	2,611	1,413	1,147	202	2,446	1,132	2,685	1,552	3,348	430	5,177	2,808
Crataegus crusgalli	43	25	62	37	91	66	72	38	56	32	99	76
Crataegus marshallii	89	56	31	13	305	172	68	37	41	41	115	43
Crataegus pruinosa	10	10	2	2	27	17	21	21	10	10	35	35
Crataegus spathulata	45	30	6	6	0	0	2	2	19	11	4	4
Crataegus uniflora	23	23	4	4	4	2	0	0	23	14	0	0
Euonymous americanus	2	2	0	0	0	0	0	0	0	0	0	0
Hypericum densiflorum	62	62	0	0	0	0	14	14	0	0	49	29
Hypericum hypericoides	754	408	1,032	557	614	89	593A	375	23B	11	449A	285
Ilex decidua	10	10	0	0	25	16	0	0	0	0	0	0
Rhamnus caroliniana	0	0	0	0	0	0	0	0	0	0	0	0
Rhus aromatica	45A	3 31	OB	0	645A	400	78	56	185	185	698	434
Rhus copallina	507	197	958	209	1,100	390	391B	162	2,187A	371	1.415AB	502
Rhus glabra	126	61	33	17	241	121	107	61	119	62	257	137
Ribes sp.	8	5	39	39	2	2	0	0	0	0	0	0
Rosa carolina	1,460	1.287	785	580	459	394	585	383	303	215	463	269
Rosa multiflora	10	10	0	0	154	90	710	710	0	0	58	50
Sambucus canadensis	0	0	0	0	0	0	0	0	0	0	0	0
Symphoricarpos orbiculatus	0	Ō	0	0	2	2	6	4	8	8	4	2
Vaccinium arboreum	1.931	1.035	1.347	398	1.528	607	1.779	794	1,256	411	1,678	716
Vaccinium pallidum	9,297	8.817	4.789	6.315	848	501	9.332	8.839	1,120	579	474	439
Vaccinium stamineum	103	50	235	208	121	46	595	173	3,511	3.382	801	361
Totals	1200	55						1679		-/	1.10	F.5.1/
0-1 m	16.712	9,255	12.835	7.740	7.831	790	16.663	8.798	12,167	4.638	11.599	2.846
1-3 m	424	72	342	132	785	327	377	75	64	53	177	56
> 3 m	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	17,136	9,269	13,176	7,764	8,615	670	17,039	8,833	12,231	4,642	11,776	2,843
Woody, Vines												
Berchemia scandens	45	45	0	0	4	4	33	33	0	0	0	0
Lonicera japonica	0	0	4	2	4	4	0	0	0	0	0	0
Lonicera spp.	2	2	0	0	0	0	2	2	0	0	0	0
Parthenocissus guinguefolia	2,349	1,611	1,194	485	3,406	2,379	2,310	1,310	1,343	530	3,548	952
Rubus spp.	6,645	3,590	2,650	967	5,397	1,895	4,909	1,543	3,295	1,125	9,151	3,594

Table 1. (Continued).

	Pre-treatment (1994) ^b					Post-treatment (1995) ^b						
	WSI-C		WS	SI-D	WS	WSI-G		WSI-C		WSI-D		SI-G
Group, Species	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Woody, Vines (Continued)												
Smilax bonanox	1,831	346	1,439	369	1,987	671	2,275	182	1,614	583	2,010	627
Smilax glauca	41	25	6	6	10	10	262	187	200	130	134	115
Smilax rotundifolia	142	77	521	312	206	116	4B	2	175A	134	10B	8
Smilax spp.	340	142	19	11	82	47	0	0	0	0	0	0
Toxicodendron radicans	20,262	9,419	22,469	12,926	26,614	12,817	18,512	8,690	15,707	8,497	26,905	10,664
Vitis aestivalis	142	67	243	84	198	62	284	81	276	98	344	209
Vitis palmata	2	2	0	0	8	8	0	0	0	0	0	0
Vitis rotundifolia	1,534	761	1,822	424	1,038	200	2,360	1,076	2,319	362	1,668	145
Totals			•••••									
0-1 m	32,784	13,764	29,707	13,445	38,166	13,757	30,519	10,098	24,802	9,241	43,359	10,009
1-3 m	552	152	651	238	772	288	428	102	126	32	406	114
> 3 m	0	0	10	10	16	6	4	2	0	0	4	2
TOTAL	33,335	13,850	30,368	13,677	38,955	13,750	30,951	10,192	24,928	9,259	43,769	10,107

^a Row means followed by the same letter or without letters were not different (LSD) (P ≤ 0.05).
^b WSI-C = Wildlife Stand Improvement--no burn control; WSI-D = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995; WSI-G = Wildlife Stand Improvement--growing season prescribed fire, September 1994.

				Tre	atment ^b			
0	WSI	- CD	WSI	-CG	WSI	-DC	WSI	-DD
Group, Species	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE
Woody, Trees								
Acer rubrum	1.594	1.594	964	799	1,672	972	350	243
Amelanchier arborea	272A	107	70AB	37	29BC	21	00	0
Bumelia lanuginosa	54	54	0	0	0	0	0	0
Carya texana	78	78	111	62	264	0	49	33
Carya tomentosa	2,483	1,281	3.097	99	1,903	1.219	5,210	572
Celtis occidentalis	16	16	0	0	0	0	33	33
Chionanthus virginicus	0	0	8	8	107	107	54	54
Cornus florida	103	54	4.114	2,261	2.426	1.726	1.717	1,404
Fraxinus americana	0	0	8	8	62	62	0	0
Liquidambar styraciflua	140	140	16	16	21	21	0	0
Morus rubra	OB	0	37A	12	OB	0	OB	0
Nyssa sylvatica	1.211	1,128	29	12	1,660	309	16	16
Ostrva virginiana	62	37	29	4	305	305	45	45
Pinus echinata	6.976	6293	54	29	4.559	4.122	663	12
Prunus mexicana	1,623	1.441	1,141	194	511	156	527	453
Prunus serotina	680	169	1 952	1 623	284	210	424	29
Quercus alba	3 735	3 554	605	605	951	844	1 508	1 277
Quercus falcata	08	0,554	0B	000	864	21	08	0
Quercus marilandica	01	91	01	01	2 002	230	198	115
	21	21	41	41	5/	12	45	45
Quercus phellos	1244	82	08	0	1248	12	45 08	0
Quercus rubra	861	367	440	264	10/	78	16	8
Quercus stellata	7 5/1	1 371	11 082	712	10 018	1231	0 / 80	1 005
Quercus velutina	2 244	457	1 651	647	383	37	2 401	1 075
Illmus alata	1 / 13	437	3 7/.8	2 306	1 775	1 000	733	00
Vibuppum pufidulum	1 2104	402	115AD	2,300	15640	58	660	16
Totala	1,2174	10	TIJAB	0	IJOAD	00	006	10
	71 990	7 942	29 61/	6 929	28 210	1211	27 700	1 778
1-7 m	51,000	1,002	20,014	0,020	20,210	145	23,309	1,750
1-5 III >7 m	0,00	124	160	441	2,191	105	325	120
75 m Total	32 530	7 085	20 / 22	7 277	30 /22	1 0/2	27 675	1 866
locat	32,339	7,905	29,433	1,211	50,422	1,042	23,033	1,000
Woody, Shrubs	121-2012	121 122-0	10.000	11-12-12-12-12	12:03.253	1022	22/742/02/07	12/11/2022
<u>Ceanothus</u> americanus	9,942	9,661	3,760	1,355	2,051	395	7,532	2,335
Crataegus crus-galli	12	12	12	12	70	70	0	0
<u>Crataegus</u> <u>marshallii</u>	181	156	140	115	0	0	58	25
<u>Crataegus</u> pruinosa	119	21	124	124	0	0	91	91
Hypericum hypericoides	202	169	54	54	37	37	45	45
Rhus aromatica	78	78	4	4	0	0	0	0
Rhus copallina	1,326	857	898	99	1,738	82	1,787	848
<u>Rhus</u> glabra	74	74	329	33	8	0	95	95
Rosa carolina	5,469	5,131	243	136	906	906	354	41
Symphoricarpos orbiculatus	8	8	0	0	0	0	16	16
Vaccinium arboreum	24,174	23,186	3,315	1,413	2,166	824	1,343	527
Vaccinium pallidum	0	0	0	0	13,504	13,496	2,282	2,282
Vaccinium stamineum	74	74	585	486	78	45	346	346
Totals								
0-1 m	41,442	7,648	9,176	1,145	20,464	14,731	13,895	6,466
1-3 m	218	218	288	99	95	29	62	62
>3 m	0	0	0	0	0	0	0	0
Total	41,661	7,429	9,464	1,046	20,558	14,760	13,957	6,527

Table 2.^a Woody species response (stems/ha) by treatment in WSI stands, Ouachita National Forest, Arkansas, Summer 1996.

Treatment ^b									
-	WSI-CD		WSI-	WSI-CG		oc	WSI-DD		
Group, Species	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE	
Woody, Vines						_			
Parthenocissus guinquefolia	2,170	1,791	4,699	3,562	894	531	3,958	572	
Rubus spp.	4,044	3,089	10,905	1,738	3,406	984	4,592	2,879	
Smilax bona-nox	2,244	671	1,701	424	2,644	346	869	449	
Smilax glauca	268	259	284	144	350	243	25	25	
Smilax rotundifolia	0	0	0	0	144	144	54	54	
Toxicodendron radicans	6,968	1,013	29,742	1,911	8,290	5,383	22,819	13,751	
Vitis aestivalis	115	82	367	12	297	91	399	350	
Vitis palmata	4	4	0	0	0	0	0	0	
Vitis rotundifolia	1,252	568	3,723	3,583	3,418	1,137	3,043	54	
Totals									
0-1 m	16,906	3,628	51,281	107	19,072	4,468	35,627	17,910	
1-3 m	156	156	140	33	371	181	132	115	
>3 m	4	4	0	0	0	0	0	0	
Total	17,066	3,789	51,421	74	19,442	4,650	35,759	18,026	

^a Row means followed by the same letter or without letters were not different (LSD)

(P ≤ 0.05). ^b WSI-CD = Wildlife Stand Improvement--dormant-season prescried fire, March 1996; WSI-CG = Wildlife Stand Improvement--growing-season prescribed fire, October 1995; WSI-DC = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995, no burn in 1996; WSI-DD = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995 and 1996.

	Pre-treatment (1994) ^b			Post-t	reatment (1	995) ^b
	WSI-C	WSI-D	WSI-G	WSI-C	WSI-D	WSI-G
Group, Species						
Woody, Trees						
Acer rubrum	26.7	29.2	15.8	25.8	25.0	15.0
Amelanchier arborea	20.0	9.2	9.2	12.5	10.0	14.2
<u>Carya</u> <u>texana</u>	11.7	7.5	28.3	50.8	50.0	73.3
<u>Carya</u> tomentosa	83.3	85.0	85.8	70.0	47.5	36.7
<u>Celtis</u> <u>occidentalis</u>	2.5	0.8	1.7	1.7	0.8	1.7
Cercis canadensis	0.0	0.0	0.8	0.0	0.0	0.0
Chionanthus virginicus	1.7	3.3	5.8	2.5	8.3	11.7
Cornus florida	22.5	42.5	34.2	28.3	31.7	32.5
Diospyros virginiana	0.0	1.7	0.0	1.7	0.0	0.0
Fraxinus americana	0.8	1.7	9.2	0.8	0.0	4.2
Juniperus virginiana	0.0	0.0	1.7	0.0	0.0	0.0
Liquidambar styraciflua	0.0	0.8	0.0	0.0	0.0	0.0
Morus rubra	4.2	1.7	1.7	4.2	1.7	1.7
Nyssa sylvatica	14.2	22.5	9.2	9.2	20.0	5.0
Ostrva virginiana	7.5	4.2	2.5	13.3	2.5	0.8
Pinus echipata	45.0	56.7	43.3	36.7	23.3	17.5
Prupus mexicana	23 3	18 3	25 0	21 7	14 2	17.5
Prunus serotina	35 0	25.8	35.0	34.2	23 3	32 5
Quercus alba	31 7	40.0	32.5	30 2	35.8	38 3
Quercus falcata	25	40.0	10.0	0.8	2.5	2 5
Quercus Talcata	2.5	5.0	70.0	70.24	2.5	2.5
Quercus maritandica	41.5	10.0	10.0	59.ZA	4.20	20.06
Quercus higra	4.2	10.0	11.7	4.2	9.2	2.5
Quercus pheilos	1.7	2.5	0.8	0.8	0.0	15.0
Quercus rubra	25.0	3.3	23.3	(.5	9.2	15.0
Quercus stellata	95.8	96.7	96.7	91.7	97.5	90.7
Quercus velutina	44.2	30.0	36.7	68.3	65.0	11.5
<u>Sassafras</u> <u>albidum</u>	0.0	0.0	0.0	0.8	0.0	0.0
<u>Ulmus</u> <u>alata</u>	65.0	57.5	65.0	65.8	53.3	66.7
<u>Viburnum</u> <u>rufidulum</u>	19.2	19.2	15.0	25.8	10.8	22.5
Woody, Shrubs						
Callicarpa americana	0.0	0.8	0.8	0.0	0.8	0.0
Ceanothus americanus	58.3	47.5	62.5	61.7	54.2	60.0
Crataegus crus-galli	7.5	13.3	11.7	12.5	5.8	8.3
Crataegus marshallii	10.0	6.7	15.8	8.3	3.3	8.3
Crataegus pruinosa	1.7	0.8	3.3	4.2	0.8	4.2
Crataegus spathulata	4.2A	0.8AB	0.0B	0.8	1.7	0.8
Crataegus uniflora	4.2	0.8	1.7	0.0	5.0	0.0
Euonymous americanus	0.8	0.0	0.0	0.0	0.0	0.0
Hypericum densiflorum	1.7	0.0	0.0	0.8	0.0	1.7
Hypericum hypericoides	25.8	34.2	20.8	20.8A	2.5B	14.2A
Ilex decidua	0.8	0.0	2.5	0.0	0.0	0.0
Phus aromatica	2.5	0.0	10 0	3 3	0.8	9.2
Rhus conallina	47 5	61 7	56.7	46 7R	70 04	60 8AB
Phus alabra	10.8	7.5	22 5	8 3	12 5	20.0
Ribes en	2.5	1 7	0.8	0.5	0.0	0.0
<u>kines</u> sp.	10.9	5.0	2 7	10.0	2 2	5.0
Rosa carotina	0.0	5.0	3.5	1 7	5.5	1 7
Kosa multitlora	0.8	0.0	2.5	1.7	0.0	1.7
sympnoricarpos orbiculatus	0.0	0.0	70.0	1./	7/ 3	25.0
vaccinium arboreum	30.7	40.0	59.2	50.0	34.2	23.0
vaccinium pallidum	18.5	25.0	5.8	20.8	18.5	1.5
Vaccinium stamineum	5.8	6.7	6./	25.0	19.2	17.5

Table 3.^a Percent frequency of occurence of woody species to season of prescribed fire, in WSI stands on the Ouachita National Forest, Arkansas.

Table 3. (Continued)^a

	Pre-t	reatment (1	994) ^b	Post-treatment (1995) ^b			
Group, Species	WSI-C	WSI-D	<u>WSI-G</u>	WSI-C	<u>WSI-D</u>	<u>WSI-G</u>	
Woody, Vines							
Berchemia scandens	0.8	0.0	0.8	0.8	0.0	0.0	
Lonicera japonica	0.0	1.7	0.8	0.0	0.0	0.0	
Parthenocissus guinguefolia	44.2	33.3	53.3	49.2	28.3	63.3	
Rubus spp.	59.2	69.2	69.2	60.8	70.8	75.8	
Smilax bonanox	63.3	55.0	71.7	70.0	70.8	74.2	
Smilax glauca	8.3	1.7	1.7	18.3	17.5	12.5	
Smilax rotundifolia	10.8	28.3	14.2	1.7	12.5	4.2	
Smilax spp.	12.5	4.2	5.8	0.0	0.0	0.0	
Toxicodendron radicans	60.0	61.7	71.7	57.5	60.8	71.7	
Vitis aestivalis	18.3	29.2	19.2	23.3	25.0	20.0	
Vitis palmata	0.8	0.0	2.5	0.0	0.0	0.0	
Vitis rotundifolia	43.3	49.2	47.5	50.0	42.5	40.0	

^a Row means followed by the same letter or without letters were not different (LSD)

		Trea	tment ^b	
-	WSI-CD	WSI-CG	WSI-DC	WSI-DD
Group, Species				
Woody, Trees	100 1	Manual Laboration		1152544
Acer rubrum	13.3	12.5	16.7	7.5
Amelanchier arborea	9.2A	3.3B	1.7C	0.0D
<u>Bumelia lanuginosa</u>	0.8	0.0	0.0	0.0
<u>Carya texana</u>	4.2	2.5	8.3	5.0
<u>Carya tomentosa</u>	38.3	45.8	35.0	46.7
<u>Celtis</u> <u>occidentalis</u>	0.8	0.0	0.0	0.8
<u>Chionanthus</u> <u>virginicus</u>	0.0	0.8	0.8	3.3
<u>Cornus florida</u>	1.7	20.8	15.8	17.5
<u>Fraxinus</u> <u>americana</u>	0.0	0.8	4.2	0.0
<u>Liquidambar</u> styraciflua	0.8	0.8	0.8	0.0
Morus rubra	0.0	2.5	0.0	0.0
<u>Nyssa sylvatica</u>	10.0	1.7	19.2	1.7
<u>Ostrya virginiana</u>	1.7	1.7	0.8	1.7
<u>Pinus</u> <u>echinata</u>	20.8	4.2	17.5	6.7
Prunus mexicana	15.0	20.0	10.0	14.2
<u>Prunus</u> <u>serotina</u>	10.8	25.0	10.8	11.7
<u>Quercus</u> <u>alba</u>	21.7	11.7	15.8	16.7
<u>Quercus</u> <u>falcata</u>	0.0	0.0	1.7	0.0
<u>Quercus</u> <u>marilandica</u>	0.8	2.5	25.8	5.8
Quercus nigra	1.7	4.2	4.2	1.7
Quercus phellos	1.7	0.0	0.8	0.0
Quercus rubra	20.8	16.7	7.5	1.7
Quercus stellata	46.7	49.2	50.0	49.2
Quercus velutina	30.8	29.2	12.5	30.8
<u>Ulmus</u> <u>alata</u>	23.3	40.0	30.8	20.8
<u>Viburnum</u> <u>rufidulum</u>	8.3	9.2	7.5	4.2
Woody, Shrubs				
Callicarpa americana	0.0	0.0	0.0	0.8
Ceanothus americanus	29.2	34.2	15.8	37.5
Crataegus crus-galli	0.8	0.8	4.2	0.0
Crataegus marshallii	5.0	5.0	0.0	1.7
Crataegus pruinosa	5.0	6.7	0.0	4.2
Hypericum hypericoides	1.7	1.7	1.7	0.8
Rhus aromatica	1.7	0.8	0.0	0.0
Rhus copallina	22.5	30.0	34.2	29.2
Rhus glabra	3.3	10.8	1.7	2.5
Rosa carolina	8.3A	5.0B	0.80	3.3B
Symphoricarpos orbiculatus	0.8	0.0	0.0	0.8
Vaccinium arboreum	27.5	20.0	21.7	9.2
Vaccinium pallidum	0.0	0.0	15.8	5.0
Vaccinium stamineum	1.7	3.3	1.7	2.5
Haady Visas				
Parthenonissus guinguofalia	17 5	32 5	0 2	20.8
Partnenocrssus quinquerolita	27 2	14.2	34. 2	35.0
Kubus spp.	30.9	44.2	27 Z	31.7
Smilax alouse	12 5	41.7	15 0	17
Smiley noturalifation	0.0	14.2	1.0	2 5
Smilax rotunditolia	14.0	0.0	4.2	2.7
Vitio continuito	14.2	40.7	10.0	17 7
vitis aestivalis	5.0	12.5	12.5	13.3
Vitis palmata	0.8	10.0	0.0	0.0
VITIS rotundifolia	15.8	18.5	20.8	24.2

Table 4.^a Percent frequency of occurence of woody species to season of prescribed fire, in WSI stands on the Ouachita National Forest, Arkansas, summer 1996.

^a Row means followed by the same letter or without letters were not different (LSD) (P ≤ 0.05). ^b WSI-CD = Wildlife Stand Improvement--dormant-season prescried fire, March 1996; WSI-CG = Wildlife Stand Improvement--growing-season prescribed fire, October 1995; WSI-DC = Wildlife

Stand Improvement--dormant-season prescribed fire, March 1995, no burn in 1996; WSI-DD = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995 and 1996.

YEAR	STAND	TREATMENT ^a	Species R	ichness	Species D	iversity	Species Evenness		
			(Stand)	(m ²)	H' ^b	N2 ^b	E1 ^b	E5 ^b	
Pre-1	reatment								
94	1257C	WSI-C	36	15	2.77	12.35	0.77	0.76	
94	1265C	WSI-C	42	20	2.11	4.33	0.57	0.46	
94	1274C	WSI-C	43	18	2.20	4.15	0.58	0.39	
94	1313C	WSI-C	38	14	2.31	4.95	0.64	0.43	
94	1257D	WSI-D	35	13	2.42	7.69	0.68	0.65	
94	1274D	WSI-D	42	21	1.79	2.59	0.48	0.32	
94	1289D	WSI-D	39	17	2.29	5.14	0.63	0.46	
94	1313D	WSI-D	36	16	2.54	6.41	0.71	0.46	
94	1274G	WSI-G	46	19	1.83	2.81	0.48	0.35	
94	1257G	WSI-G	40	17	2.57	7.48	0.70	0.54	
94	1259G	WSI-G	42	19	2.74	10.45	0.73	0.66	
94	1289G	WSI-G	41	20	2.30	5.47	0.62	0.50	
Year	One								
95	1257C	WSI-C	42	16	2.91	13.66	0.78	0.73	
95	1265C	WSI-C	39	19	2.30	5.42	0.63	0.49	
95	1274C	WSI-C	34	17	1.97	3.23	0.56	0.36	
95	1313C	WSI-C	38	15	2.23	4.23	0.61	0.39	
95	1257D	WSI-D	34	10	2.55	9.06	0.72	0.68	
95	1274D	WSI-D	40	13	2.16	4.00	0.58	0.39	
95	1289D	WSI-D	34	13	2.56	7.64	0.73	0.56	
95	1313D	WSI-D	35	12	2.74	10.14	0.77	0.63	
95	1257G	WSI-G	35	14	2.70	9.90	0.76	0.64	
95	1259G	WSI-G	37	14	2.55	8.32	0.71	0.62	
95	1274G	WSI-G	42	18	2.06	3.40	0.55	0.35	
95	1289G	WSI-G	39	15	2.14	4.68	0.59	0.49	
Year	Тwo								
96	1257CD	WSI-CD	35	12	2.56	8.72	0.72	0.64	
96	1257DD	WSI-DD	26	8	2.37	7.82	0.73	0.70	
96	1265CG	WSI-CG	35	16	2.38	7.27	0.67	0.64	
96	1274CG	WSI-CG	35	13	2.29	5.42	0.64	0.50	
96	1274DD	WSI-DD	38	14	2.39	5.93	0.66	0.50	
96	1289DC	WSI-DC	36	15	2.58	8.38	0.72	0.60	
96	1313CD	WSI-CD	36	10	2.07	4.06	0.58	0.44	
96	1313DC	WSI-DC	35	13	2.52	6.78	0.71	0.50	

Table 5. Effects of fire season on species richness, diversity, and evenness of woody plants in experimental stands, Ouachita National Forest, Arkansas, July 1994-1996.

^a WSI-CD = Wildlife Stand Improvement--dormant-season prescried fire, March 1996; WSI-CG = Wildlife Stand Improvement--growing-season prescribed fire, October 1995; WSI-DC = Wildlife Stand Improvement--dormant-season prescribed fire, March 1995, no burn in 1996; WSI-DD = Wildlife

APPENDIX D

FUELS OF PRESCRIBED FIRES

ON THE OUACHITA NATIONAL

FOREST, ARKANSAS

	Fir	e 1	F	ire 2	Fire 3		
	Pre-Burn	Post-burn	Pre-burn	Post-burn	Pre-burn	Post-burn	
Stand	-						
1257D	17021.98	18154.89	18519.68	19105.83	19069.70	17269.50	
1257G	17623.87	17276.33	17793.44	17160.52	14915.81	17750.06	
1259G	15476.50	15250.80	14467.57	17785.07	18666.72	16137.27	
1274D	17349.22	19520.03	18110.76	14311.95	17400.09	14380.23	
1274G	18254.87	18965.95	17111.79	17904.98	17031.74	14300.73	
1289D	16788.91	16004.46	18442.85	17685.21	16988.15	15954.55	
1289G	16286.74	19894.21	15768.91	18591.78	16555.40	18818.45	
1313D	18702.23	18174.48	18250.01	15146.42	18304.36	18617.19	

Table 1. Mean fuel energy (kj/kg) sampled prior to growing-season (September 1994) and dormant-season (March 1995) prescribed fires, in Ouachita National Forest, Arkansas.

		Per	cent Moist	ure		Fuel Load K	g/ha	
		1 hr	1 hr	10 hr	1 hr	1 hr	10 hr	Post-burn
		dead	live	dead	dead	live	dead	residual
stand,	Fire							
1257CD	1	23	184	37	10,070	294	350	5,980
257CD	2	24	135	48	12,030	198	340	6,900
257CD	3	24	114	39	13,805	188	1565	6,485
257D	1	16	120	28	9,960	200	687	4,472
257D	2	11	63	14	10,013	153	1,727	6,740
257D	3	9	45	6	10,728	160	200	6,673
257G	1	11	101	18	9.344	1,074	2,511	6.820
257G	2	11	121	43	8,656	732	1,902	9,868
257G	3	12	121	53	9,102	1,053	1,029	8,520
259G	1	14	101	22	8,080	1.072	1,056	5,712
259G	2	8	113	40	7,668	889	728	4.892
259G	3	10	115	31	8,888	1,416	848	6,240
265CG	1	13	104	40	7,293	423	350	5.153
265CG	2	14	127	36	8.460	827	857	6.053
265CG	3	10	127	19	8,083	363	1,703	5,200
274CG	1	10	113	51	7,613	495	77	5.747
274CG	2	6	86	8	7.423	650	643	5.627
274CG	3	11	110	17	7,527	1,007	703	3,433
274D	1	12	128	26	9.247	73	1.080	3,993
274D	2	15	117	15	8.413	307	1,140	5.147
274D	3	16	120	14	6,767	283	577	6,107
274G	1	15	105	23	7.896	870	1,212	6.256
274G	2	25	117	29	6.136	942	1.573	4.564
274G	3	8	102	11	4,864	816	280	2,432
289D	1	22	143	29	8,180	220	1.380	4.987
289D	2	45	117	55	6.580	263	963	3,273
289D	3	20	163	45	8,260	380	1.113	3,233

Table 2. Mean fuel conditions during prescribed fires in Wildlife Stand Improvement stands, Ouachita National Forest of western Arkansas.

Table 2. Continued.

		Pe	rcent Moist	ure		Fuel Load Kg/	ha	
Chand		1 hr dead	1 hr live	10 hr dead	1 hr dead	1 hr live	10 hr dead	Post-burn Residual
stand,	Fire							
1289G	1	28	92	29	8,492	1,018	1,752	5,304
1289G	2	12	94	40	5,940	1,227	883	4,227
1289G	3	24	100	58	5,592	1,892	156	6,028
1313CD	1	28	128	33	13,305	330	910	9,555
1313CD	2	21	114	28	8,895	75	960	5,165
1313CD	3	12	153	38	13,465	145	1,070	8,015
1313D	1	19	113	26	9,300	422	474	4,336
1313D	2	18	138	33	10,180	366	1,436	5,448
1313D	3	29	143	31	11,352	200	720	6,300

APPENDIX E

OBSERVED AND PREDICTED

FIRE BEHAVIOR

				Fire Beh	avior Paramet	vior Parameters			
		ŝ	Rate of Spread m/min	Flame Length (meters)	Flame Depth (meters)	Residence Time (seconds)			
ire Season, Stand	Fire Type	Date				18			
ormant-seaso	on								
1257CD		3-2-96							
	Headfire		11.95	0.52	0.91	9.67			
1257D		4-2-95							
	Backfire		0.28	0.17	0.02	8.50			
	Headfire		8.78	0.54	0.53	7.98			
1257DD	Headfire	3-2-96	0.27	0.12	0.09	18.11			
1274D		4-1-95							
	Backfire	- 10 - 1 - 10 EVS	1.06	0.35	0.30	19.50			
	Headfire		4.86	0.38	0.70	10.67			
1274DD	Headfire	3-4-96	1.80	0.13	0.15	17.54			
1289D		4-1-95							
	Backfire		0.41	0.23	0.04	10.19			
	Headfire		12.62	0.75	1.42	12.55			
1313CD	Headfire	3-3-96	6.84	0.51	0.56	15.34			
1313D		3-31-95							
	Backfire		0.24	0.14	0.04	9.39			
	Headfire		6.20	0.54	0.45	12.27			
Growing-Seas	on								
1257G		9-12-94							
	Backfire		0.43	0.45	0.11	13.00			
	Headfire		0.95	0.26	0.17	26.33			
1259G		9-13-94							
	Backfire		0.36	0.24	0.10	17.00			
	Headfire		6.23	0.79	0.70	13.62			
1265CG		10-14-95							
	Headfire		3.20	0.38	0.39	17.33			
1274CG		10-15-95							
	Headfire	1997-1997 - 249.	4.13	0.52	0.52	19.88			
127/0		9-10-94							
12/40	Backfire	7 10-94	0.13	0.15	0.05	28.00			
	Headfire		0.59	0.43	0.17	54.00			
12896		9-11-94							
12070	Backfire	2 11 27	0.26	0.21	0.11				
	Headfire		2.49	0.59	0.36	22.00			

Table 1. Mean fire behavior parameters observed for dormant-season and growing-season prescribed fires, Ouachita National Forest, Arkansas, 1994-1996.

			Ob	served Paramet	ers		Predicted Parameters						
Stand, Fi	ire	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline <u>Intensity</u> (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction Intensity (kW/m ²)	Model Number	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline <u>Intensity</u> (kW/m)	Heat/ <u>Unit Area</u> (kJ/m [°])	Reaction Intensity (kW/m ²)	
12890 1	1	0.59	15.2	1812	7137	1693	7	0.8	2	155	5147	347	
1289D 1	1						50	2.1	5	1278	14419	1078	
1289D 1	1						8	0.2	0	5	1845	151	
1289D 1	1						9	0.4	1	34	3713	400	
1289D 1	1						10	0.7	1	118	12596	965	
1289D 2	2	0.75	10.6	1296	7312	1296	7	0.9	2	195	5235	353	
12890 2	-				1.5.15		50	2.2	6	1506	14540	1087	
12890 2	2						8	0.2	0	5	1853	152	
12890 2	2						õ	0.4	1	37	3724	401	
12890 2	-						10	0.4	i	150	12814	981	
12800 3	z	0 00	12 0	1976	0871	808	7	0.6	1	80	5157	367	
12800 3	ž	0.70	12.0	1770	7071	070	50	1.6	3	600	14610	1002	
12800 3	z						8	0.1	0	3	1864	153	
12800 3	2						0	0.3	0	21	3740	403	
12800 3	ž						10	0.5	ñ	66	12580	964	
12070 3							10	0.5	0	00	12507	704	
1274D 1	e.	0 39	3.0	504	10113	788	7	0.6	1	98	5300	364	
12740 1		0.57	5.0	504	10115	100	50	1 7	3	700	15107	1120	
12760 1	i .						8	0.1	0	3	1914	157	
12760 1							ő	0.3	0	22	3807	610	
1274D 1	2						10	0.5	0	82	13021	007	
12740 1		0 30	7 1	021	7770	1770	7	0.0	0	62	5762	771	
12740 2		0.39	7.1	921	1134	1730	50	1.2	2	705	1/907	1112	
12740 2	-						50	1.2	2	202	14003	1112	
12740 2							8	0.1	0	2	1000	155	
12740 2	<u> </u>						9	0.5	0	10	5/09	406	
1274D 2	<u>.</u>			4.77			10	0.5	0	55	13021	997	
1274D 3	5	0.35	4.5	177	2383	190		0.4	U	45	5359	361	
1274D 3	5						50	1.2	2	5/5	14896	1113	
1274D 3	5						8	0.1	0	2	1890	155	
1274D 3	5						9	0.3	0	15	3772	407	
1274D 3	5						10	0.5	0	52	12996	995	
1313D 1	i i	0.83	7.1	1166	9911	4665	7	0.7	1	120	5010	337	
1313D 1	Ê.						50	1.7	4	845	13575	1014	
1313D 1							8	0.1	0	3	1784	146	
1313D 1	í.						9	0.3	0	23	3594	387	

Table 2. Observed and predicted fire behavior parameters of headfires, for prescribed fires in the Ouachita National Forest, Arkansas 1994-1996.

Table 2. (Continued).

		Ob	served Paramet	ers		Predicted Parameters					
Stand, Fire	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m²)	Reaction Intensity (kW/m ²)	Model <u>Number</u>	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction <u>Intensity</u> (kW/m ²)
1313D 1		1				10	0.6	0	101	12376	948
1313D 2	0.44	6.9	1231	10701	1758	7	0.5	1	58	4976	335
1313D 2						50	1.3	2	444	13665	1021
1313D 2						8	0.1	0	2	1792	147
1313D 2						9	0.3	0	15	3620	390
1313D 2						10	0.5	0	55	12335	945
1313D 3	0.35	4.6	752	9741	1879	7	0.4	0	36	4896	330
1313D 3						50	1.1	1	291	13402	1002
1313D 3						8	0.1	0	2	1775	146
1313D 3						9	0.2	0	12	3555	383
1313D 3						10	0.4	Ō	41	12132	929
1257D 1	0.40	10.1	1636	9766	2517	7	0.7	1	125	5824	392
1257D 1						50	1.9	4	1082	16695	1248
1257D 1						8	0.2	0	5	2120	174
1257D 1						9	0.4	0	30	4188	451
1257D 1						10	0.7	0	103	14014	1073
1257D 2	0.80	11.6	1694	8738	3388	7	0.8	2	170	6001	404
1257D 2						50	2.0	4	1229	16848	1259
1257D 2						8	0.2	0	5	2133	175
1257D 2						9	0.4	0	30	4213	454
1257D 2						10	0.8	1	167	15190	1163
1257D 3	0.41	4.7	604	7746	1343	7	0.9	2	201	6054	408
1257D 3						50	2.1	5	1364	16864	1260
1257D 3						8	0.2	0	5	2131	175
1257D 3						9	0.4	0	32	4211	454
1257D 3						10	0.9	1	215	15725	215
1257DD 1	0.13	0.3	6	1090	43	7	0.4	0	36	5220	352
1257DD 1						76	0.6	0	74	9253	688
1257DD 1						8	0.1	0	2	1873	154
1257DD 1						9	0.3	0	15	3755	405
1257DD 1						10	0.4	0	44	12722	974
1257DD 2	0.14	0.3	10	1864	107	7	0.4	0	44	5435	366
1257DD 2						76	0.6	1	88	9577	713
1257DD 2						8	0.1	0	2	1959	161

Table	2.	(Continued).

c	Observed Parameters						Predicted Parameters					
Stand, Fire	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m²)	Reaction <u>Intensity</u> (kW/m ²)	Model <u>Number</u>	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m²)	Reaction <u>Intensity</u> (kW/m ²)	
1257DD 2						9	0.3	0	18	3894	420	
1257DD 2						10	0.5	0	51	13116	1004	
1257DD 3	0.10	0.2	0	0	0	7	0.4	0	28	4781	322	
1257DD 3						76	0.5	0	60	8662	644	
1257DD 3						8	0.1	0	2	1780	146	
1257DD 3						9	0.3	0	13	3586	387	
1257DD 3						10	0.4	0	31	11524	883	
1313CD 1	0.41	2.9	384	7953	1201	7	0.5	1	65	4910	331	
1313CD 1						80	1.5	3	674	14921	1116	
1313CD 1						8	0.1	0	2	1775	145	
1313CD 1						9	0.3	0	15	3560	384	
1313CD 1						10	0.5	0	61	12163	931	
1313CD 2	0.31	3.4	439	7704	798	7	0.6	1	76	5030	339	
1313CD 2						80	1.7	3	785	15282	1144	
1313CD 2						8	0.1	0	2	1795	147	
1313CD 2						9	0.3	0	17	3633	392	
1313CD 2						10	0.6	0	73	12456	954	
1313CD 3	0.80	14.2	2561	10821	3123	7	0.6	1	86	4899	330	
1313CD 3						80	1.8	4	971	15129	1132	
1313CD 3						8	0.1	0	3	1789	147	
1313CD 3						9	0.3	0	21	3617	390	
1313CD 3						10	0.6	0	73	12218	936	
1257CD 1	0.58	10.1	1275	7604	1020	7	0.4	0	35	5112	344	
1257CD 1						80	1.3	2	472	16250	1216	
1257CD 1						8	0.1	0	2	1871	153	
1257CD 1						9	0.3	0	15	3752	404	
1257CD 1						10	0.4	0	37	12539	960	
1257CD 2	0.62	14.1	2143	9095	2552	7	0.7	1	114	5189	350	
1257CD 2						80	2.1	5	1352	16175	1210	
1257CD 2						8	0.1	0	4	1859	152	
1257CD 2						9	0.3	0	24	3735	403	
1257CD 2						10	0.6	0	90	12682	971	
1257CD 3	0.38	11.7	2827	14546	4349	7	0.5	1	55	5269	355	
1257CD 3	0.00					80	1.5	2	600	16316	1221	
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>.</u>	10.0			

Table	2.	(Continued).

	Observed Parameters						Predicted Parameters						
Stand, Fire	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction Intensity (kW/m ²)	Model <u>Number</u>	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction Intensity (kW/m²)		
1257CD 3						8	0.1	0	2	1868	153		
1257CD 3						9	0.3	0	15	3748	404		
1257CD 3						10	0.5	0	56	12897	988		
1274DD 1	0.17	4.2	403	5772	1222	7	0.4	0	35	4980	336		
1274DD 1						76	0.5	0	70	8942	665		
1274DD 1						8	0.1	0	2	1796	147		
1274DD 1						9	0.3	0	13	3635	392		
1274DD 1						10	0.4	0	43	12365	947		
1274DD 2	0.12	0.5	22	2600	276	7	0.5	1	55	4929	332		
1274DD 2		10.000		1000	(77.6.75)	76	0.7	1	102	8914	663		
1274DD 2						8	0.1	0	2	1809	148		
1274DD 2						9	0.3	0	17	3662	395		
127400 2						10	0.5	0	50	12278	940		
1274DD 3	0.10	0.7	22	1939	446	7	0.4	Ő	29	5032	339		
127400 3	0.10		57%	()		76	0.6	0	73	9027	672		
127400 3						8	0.1	0	2	1810	148		
127400 3						9	0.3	ñ	13	3663	395		
1274DD 3						10	0.4	Ō	41	12454	954		
1259G 1	1.10	9.3	947	6141	1029	7	0.9	2	200	5206	351		
1259G 1						25	1.3	2	422	12686	933		
1259G 1						8	0.2	0	5	1822	149		
1259G 1						9	0.4	1	34	3678	396		
1259G 1						10	0.8	1	160	12861	985		
1259G 2	0.54	3.9	368	5607	708	7	0.8	2	166	5156	347		
1259G 2						25	1.2	2	361	12619	928		
1259G 2						8	0.2	0	4	1817	149		
1259G 2						9	0.4	0	30	3671	396		
12596 2						10	0.7	1	132	12692	972		
1259G 3	0.77	5.5	757	8255	1147	7	0.7	1	113	5147	347		
12596 3			,		10.000	25	1.0	1	256	12606	927		
12596 3						8	0.1	Ó	3	1816	149		
12596 3						9	0.3	õ	22	3670	396		
1259G 3						10	0.6	õ	96	12666	970		
1257G 1	0.33	1.4	228	9685	1084	7	0.5	1	65	5187	349		

Table	2.	(Continued).

		Observed Parameters Flame Rate of Fireline Heat/ Reaction					Predicted Parameters					
Stand, F	ire	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline <u>Intensity</u> (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction Intensity (kW/m ²)	Model Number	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction <u>Intensity</u> (kW/m ²)
1257G	1						25	0.8	1	159	12693	933
1257G	1						8	0.1	0	2	1822	149
1257G	1						9	0.3	0	16	3681	397
1257G	1						10	0.5	0	67	12826	982
1257G 2	2	0.24	0.7	28	2278	156	7	0.8	2	141	5133	346
1257G 2	2						25	1.1	2	317	12627	928
1257G 2	2						8	0.1	0	4	1822	279
1257G 2	2						9	0.4	0	28	3681	397
1257G 2	2						10	0.7	1	113	12626	967
1257G 3	3	0.22	0.7	40	3487	308	7	0.6	1	81	5139	346
1257G 3	3						25	0.9	1	201	12638	929
1257G 3	3						8	0.1	0	3	1824	150
1257G 3	3						9	0.3	0	21	3684	397
1257G 3	3						10	0.6	0	77	12636	968
1289G 1	1	0.28	0.8	110	8595	613	7	0.5	1	65	5158	347
1289G 1	1						25	0.8	1	154	12576	924
1289G 1	1						8	0.1	0	2	1803	148
1289G 1	1						9	0.3	0	14	3635	392
1289G 1	1						10	0.5	0	69	12822	982
1289G 2	2	0.20	0.4	33	5270	325	7	0.6	1	97	5152	347
1289G 2	2						25	0.9	1	218	12595	926
1289G 2	2						8	0.1	0	3	1802	148
1289G 2	2						9	0.3	0	18	3645	393
1289G 2	2						10	0.6	0	90	12795	980
1289G 3	3	1.30	6.3	243	2306	300	7	0.5	1	66	4995	336
1289G 3	3						25	0.8	1	168	12380	910
1289G 3	3						8	0.1	0	2	1796	147
1289G 3	3						9	0.3	0	18	3631	391
1289G 3	3						10	0.5	0	62	12363	947
1274G 1	1	0.53	0.7	68	6145	241	7	0.6	1	74	5085	343
1274G 1	1						25	0.8	1	176	12517	920
1274G 1	1						8	0.1	0	2	1797	147
1274G 1	1						9	0.3	0	16	3635	392
1274G	1						10	0.6	0	71	12582	963

Table 2. (continued)	Table i	2. (Co	ontir	nued)
----------------------	---------	--------	-------	-------

		Observed Parameters						Predicted Parameters						
Stand, Fire	Flame <u>Length</u> (m)	Rate of <u>Spread</u> (m/min)	Fireline <u>Intensity</u> (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction <u>Intensity</u> (kW/m ²)	Model <u>Number</u>	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline <u>Intensity</u> (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction <u>Intensity</u> (kW/m ²)			
1274G 2	0.37	0.5	53	6138	409	7	0.5	1	70	5062	341			
1274G 2						25	0.8	1	171	12494	919			
1274G 2						8	0.1	0	2	1800	148			
1274G 2						9	0.3	0	16	3641	393			
1274G 2						10	0.5	0	67	12506	958			
1274G 3	0.40	0.6	53	5390	530	7	0.5	1	63	4850	327			
1274G 3						25	0.7	1	120	10902	801			
1274G 3						8	0.1	0	2	1675	137			
1274G 3						9	0.2	0	8	2862	308			
1274G 3						10	0.5	0	48	10590	811			
1274CG 1	0.48	6.4	393	3689	756	7	0.6	1	95	5542	373			
1274CG 1						60	1.0	1	269	14391	1060			
1274CG 1						8	0.1	0	3	1954	160			
1274CG 1						9	0.3	0	23	3868	417			
1274CG 1						10	0.6	0	86	13383	1025			
1274CG 2	0.46	3.5	271	4708	630	7	0.6	1	75	5581	376			
1274CG 2						60	0.9	1	229	14381	1059			
1274CG 2						8	0.1	0	3	1939	159			
1274CG 2						9	0.3	0	21	3845	414			
1274CG 2						10	0.6	0	89	13767	1054			
1274CG 3	0.63	2.5	369	8726	616	7	0.7	1	103	5504	371			
1274CG 3					2012	60	1.0	1	268	14273	1051			
1274CG 3						8	0.1	0	3	1934	159			
1274CG 3						9	0.3	Ō	20	3836	414			
1274CG 3						10	0.6	0	84	13334	1021			
1265CG 1	0.17	1.5	108	4408	568	7	0.4	0	41	5363	361			
1265CG 1	20 T CT + CL22	14/14/2017		2012127-772	202020	60	0.7	1	136	13893	1023			
1265CG 1						8	0.1	0	2	1872	153			
1265CG 1						9	0.3	0	14	3745	404			
1265CG 1						10	0.5	õ	53	13123	1005			
126506 2	0.22	1.1	110	6140	576	7	0.4	0	36	5305	357			
1265CG 2					210	60	0.7	1	126	13824	1018			
126506 2						8	0.1	'n	2	1873	154			
1265CG 2						9	0.3	0	14	3746	404			

172

Observed Parameters					Predicted Parameters						
Stand, Fire	Flame Length (m)	Rate of Spread (m/min)	Fireline <u>Intensity</u> (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction Intensity (kW/m ⁻)	Model Number	Flame Length (m)	Rate of <u>Spread</u> (m/min)	Fireline Intensity (kW/m)	Heat/ <u>Unit Area</u> (kJ/m ²)	Reaction Intensity (kW/m²)
1265CG 2						10	0.4	0	45	12861	985
1265CG 3	0.75	7.1	880	7490	1128	7	0.6	1	83	5288	356
1265CG 3						60	0.9	1	218	13787	1015
1265CG 3						8	0.1	0	3	1867	153
1265CG 3						9	0.3	0	19	3738	403
1265CG 3						10	0.6	0	73	12835	983

and the second se

APPENDIX F

WEATHER DURING PRESCRIBED FIRES

ON THE OUACHITA NATIONAL

FOREST, ARKANSAS

	Weather Parameters					
	Time	Ambient Temperature C	Relative Humidity	Wind Speed m/s	Cloud Cover Percent	Sky Description
Stand, Fire					2	
1257CD	_					
1	1130	54.00	32.00	0.25	10.00	1.00
2	1329	59.00	29.00	1.17	0.00	1.00
3	1430	60.00	26.00	0.48	0.00	1.00
1257D						
1	1026	72.33	29.67	0.83	5.00	1.00
2	1118	75.00	23.00		5.00	1.00
3	1224	75.91	22.18	0.86	5.00	1.00
1257DD	1700		70.00	0.07		
1	1709	55.00	32.00	0.05	0.00	1.00
2	1754	53.00	37.00	0.05	0.00	1.00
5	1830	50.00		0.00	10.00	1.00
125/6	1207	0E E0	E1 E0	1.0/	25 00	7 00
1	1/0/	85.50	51.50	1.04	25.00	3.00
2	1414	86.00	51.00	1.50	20.00	3.00
12500	12/1	00.00	41.00	1.10	20.00	5.00
12396	1272	88 00	18 00	1 //	30.00	3 00
1	1533	85.00	40.00	1.44	30.00	3.00
2	1712	85 50	49.00	0.75	2 50	3.00
126500	1/12	00.00	40.75	0.75	2.50	5.00
1	13/5	66 00	28 00	0 00	0 00	1 00
2	1430	66 50	20.50	0.00	0.00	1 00
2	1545	67 00	31 00	0.70	0.00	1.00
127406	1,14,1	01.00	31.00	0.70	0.00	1.00
1	1360	76 00	19.50	0.79	0,00	1,00
2	1430	79.00	25.00	0.15	0.00	1.00
3	1530	78.00	27.00	0.91	0.00	1.00
1274D						
1	1520	70.00	24.00	0.69	70.00	1.00
2	1620	68.00	28.00	0.00	45.00	1.00
3	1640	68.00	28.00		40.00	1.00
1274DD						
1	1320	66.00	49.00	0.00	70.00	1.00
2	1430	66.00	32.00	0.60	90.00	1.00
3	1550	66.00	32.00	0.00	85.00	1.00
1274G						
1	1473	80.00	57.00	0.56	20.00	3.00
2	1630	82.00	51.00	0.48	25.00	3.00
3	1730	81.00	46.00	0.48	0.00	3.00
1289D	000000	0040 - 100	<u>1970</u> , 1990	2 8548	121-00	020.0202
1	1119	64.00	39.00	1.84	0.00	1.00
2	1215	69.00	34.00	2.16	0.00	1.00
3	1315	69.12	28.00	1.55	50.00	1.00
1289G						
1	1309	82.00	54.00	0.56	25.00	3.00
2	1451	83.00	51.40	0.61	25.00	5.00
3	1582	83.25	54.00	0.65	25.00	3.00
1313CD			F4 44	0.10	0.00	4
1	1400	58.00	51.00	0.68	0.00	1.00
2	1439	60.00	30.00	0.68	0.00	1.00
3	1547	58.00	32.00	1.02	0.00	1.00
15150	4/5/	E(00	14 00	4 44	70.00	7 00
1	1456	56.00	40.00	1.11	10.00	1.00
2	1002	59.00	58.00	0.66	0.00	1.00

Table 1. Mean weather parameters recorded during growing-season and dormant season burns, September 1994, March 1995, October 1995, March 1996, Ouachita National Forest, Arkansas.

APPENDIX G

A PARTIAL LIST OF PLANTS OCCURING

ON THE OUACHITA NATIONAL FOREST

ARKANSAS

Table 1. Herbaceous and woody plants known to occur in experimental stands, Ouachita National Forest, 1996. Nomenclature after Smith (1988), "An Atlas and Annotated List of the Vascular Plants of Arkansas".

GROUP

Scientific Name	Common Name
Grasses	
Andropogon gerardii	Big bluestem
Andropogon gyrans	Elliott bluestem
Andropogon virginicus	Broomsedge
Aristida spp.	Three-awn
Chasmanthium latifolium	Inland sea oats
Chasmanthium sessiliflorum	Sessile uniola
Danthonia spicata	Poverty oatgrass
Gymnopogon ambiguus	Bearded skeletongrass
Manisuris cylindrica	Carolina Jointtail
Muhlenbergia schreberi	Nimblewill muhly
Muhlenbergia spp.	Muhly
Paspalum sp.	Paspalum
Schizachyrium scoparium	Little bluestem
Sorghastrum nutans	Indian Grass
Sporobolus asper	Tall dropseed
Sporobolus spp.	Dropseed
Tridens flavus	Purple top
Panicum virgatum	Switchgrass
Sedges	
Carex latebracteata	Waterfall sedge
Carex spp.	Unknown sedge
Rynchospora spp.	Beakrush
Scleria oligantha	Nut rush
<u>Scleria</u> spp.	Nut rush
Scleria triglomerata	Tall nut grass

Ferns

Polystichum acrostichoides Pteridium aquilinum Christmas fern Bracken fern

GROUP

Scientific Name

Legumes

Amphicarpa bracteataea Baptisia nuttalliana Cassia fasciculata Clitoria mariana Crotalaria sagittalis Desmodium canadense Desmodium canescens Desmodium ciliare Desmodium cuspidatum Desmodium laevigatum Desmodium marilandicum Desmodium paniculatum Desmodium rotundifolium Desmodium spp. Desmodium strictum Desmodium viridiflorum Galactia regularis * Lespedeza cuneata Lespedeza hirta Lespedeza intermedia Lespedeza procumbens Lespedeza repens Lespedeza spp. * Lespedeza stipulacea * Lespedeza striata Lespedeza violacea Lespedeza virginica Psoralea simplex Rhynchosia latifolia Schrankia nuttallii Strophostyles umbellata Stylosanthes biflora

Tephrosia virginiana

Common Name Hog peanut Nuttall's wild indigo Partridge pea Butterfly pea Rattlebox Tick trefoil Hoary tick trefoil Sm-leaved tick trefoil Lg-bracted tick trefoil Beggar's lice Tick trefoil Panicled tick trefoil Prostrate tick trefoil Tick trefoil Stiff tick trefoil Tick trefoil Downy-milk-pea Serecia lespedeza Bush lespedeza Intermediate lespedeza Prostrate lespedeza Reclining lespedeza Unknown lespedeza Korean lespedeza Japanese lespedeza Violet lespedeza Slender lespedeza Scurf-pea Snoutbean Sensitivebriar Trailing wild bean Pencil flower Goat's rue

GROUP

Scientific Name

Forbs

Acalypha gracilens Acalypha sp. Acalypha virginica Agalinis fasciculata Agrimonia rostellata Allium canadense Ambrosia artemisiifolia Ambrosia bidentata Anemone guinquefolia Antennaria parlinii Antennaria plantaginifolia Antennaria spp. Aristolochia serpentaria Aristolochia tomentosa Asclepias quadrifolia Asclepias spp. Asclepias variegata Asclepias verticillata Aster ageria Aster anomalus Aster azureus Aster ericoides Aster linariifolius Aster paludosus Aster patens Aster spp. Aster subulatus Aureolaria grandiflora Cirsium altissimum Cirsium carolinianum Cirsium horridulum Cirsium spp. Clematis versicolor Cocculus carolinus Conyza canadensis Coreopsis grandiflora

Common Name 3-seeded mercury 3-seeded mercury 3-seeded mercury Gerardia Agrimony Wild onion Common ragweed Lanceleaf ragweed Wood anenome Pussy's toes Pussy's toes Pussy's toes Virginia snakeroot Pipe-vine Milkweed Milkweed Milkweed Whorled milkweed Aster ageria Aster Azure aster Wreath aster Stiff-leaf aster Aster paludosus Spreading aster Aster Aster Gerardia Tall thistle Carolina thistle Yellow Thistle Thistle Leather flower Carolina moonseed Horseweed Tickseed

GROUP

Scientific Name

Forbs (Continued) Coreopsis lanceolata Coreopsis palmata Coreopsis spp. Coreopsis tinctoria Coreopsis verticillata Croton capitatus Crotonopsis elliptica Cunila origanoides * Daucus carota Diodia teres Dioscorea sp. Echinacea augustifolia Echinacea pallida Echinacea purpurea Elephantopus tomentosus Engelmannia pinnatifida Erechtites hieraciifolia Erigeron annuus Erigeron spp. Erigeron strigosus Eryngium yuccifolium Eupatorium altissimum Eupatorium rugosum Eupatorium serotinum Eupatorium spp. Euphorbia commutata Euphorbia corollata Euphorbia cyathophora Fragaria virginiana Galium circaezans Galium pilosum Galium spp. Geranium carolinianum Geranium maculatum Geum canadense Glandularia canadensis

Common Name Lance-leaved coreopsis Tickseed Tickseed Plains tickseed Tickseed Woolly croton Crotonopsis Dittany Queen Anne's lace Poor joe Wild yam Coneflower Pale coneflower Coneflower Tobacco weed Cutleaf daisy Fireweed Daisy fleabane Fleabane Rough fleabane Rattlesnake master Tall throughwort White snakeroot Late boneset Eupatorium Wood spurge Flowering spurge Wild poinsettia Wild strawberry Wild Licorice Hairy bedstraw Bedstraw Carolina cranesbill Spotted cranesbill White avens Rose vervain

GROU	JP			
	Scientific Name	Common Name		
Forbs	(Continued)			
	Glechoma hederacea	Ground ivy		
	Gnaphalium obtusifolium	Fragrant cudweed		
	Gnaphalium purpureum	Purple cudweed		
	Hedyotis longifolia	Long-leaved bluets		
	Hedyotis spp.	Bluets		
	Helianthus hirsutus	Rough-leaf sunflower		
	Heliantus mollis	Ashy sunflower		
	Heterotheca graminifolia	Grass-leaved golden aster		
	Heterotheca spp.	Golden aster		
	Hieracium gronovii	Hawkweed		
	Hieracium longipilum	Hawkweed		
	Ipomoea pandurata	Wild potato vine		
	Lactuca canadensis	Wild lettuce		
*	Lactuca serriola	Wild lettuce		
	Liatris aspera	Rough blazing star		
	Liatris pycnostachya	Button snakeroot		
	Liatris spp.	Blazing star		
	Liatris squarrosa	Scaly blazing star		
	Linum medium	Flax		
	Lobelia appendiculata	Lobelia		
	Lobelia spicata	Lobelia, Highbelia		
	Ludwigia alternifolia	Bushy seedbox		
	Matelea decipiens	Climbing milkweed		
*	Mentha spicata	Spearmint		
	Mentha spp.	Mint		
	Monarda citriodora	Lemon balm		
	Monarda fistulosa	Wild bergamot		
	Monarda russeliana	Horsemint		
	Monarda spp.	Bergamot		
	Monarda stipitatoglandulosa	Monarda		
	Monarda virgata	Bergamot		
*	Nepeta cataria	Catnip		
*	• Oxalis corniculata	Creeping lady's sorrel		
*	• Oxalis stricta	Yellow-woodsorrel		
	Oxalis violacea	Violet wood sorrel		

.

GROUP

Scientific Name

Forbs (Continued)	
Parthenium integrifolium	Wild quinine
Passiflora lutea	Passion flower
Pedicularis canadensis	Lousewort
Penstemon arkansanus	Arkansas beard-tongue
Phlox divaricata	Blue phlox
Phlox drummondii	Annual phlox
Phlox pilosa	Prairie phlox
Phlox spp.	Phlox
Physalis virginiana	Ground cherry
Phytolacca americana	Pokeweed
Plantago lanceolata	English plantain
Plantago patagonica	Wooly plantain
Plantago spp.	Plantain
<u>Polygala</u> <u>alba</u>	Milkwort
Polygala sp.	Milkwort
Polygonatum biflorum	Solomon's seal
Polygonum scandens	Hedge smartweed
Polygonum spp.	Smartweed
Potentilla simplex	Cinquefoil
Potentilla spp.	Cinquefoil
Prunella vulgaris	Heal-all
Pycnanthemum albescens	Mountain mint
Pycnanthemum muticum	Mountain mint
Pycnanthemum tenuifolium	Slender mountain mint
Rudbeckia amplexicaulus	Clasping coneflower
Rudbeckia grandiflora	Large coneflower
Rudbeckia hirta	Black-eyed susan
Ruellia humilis	Wild petunia
Ruellia pedunculata	Wild petunia
Ruellia spp.	Wild petunia
Ruellia strepens	Wild petunia
* <u>Rumex crispus</u>	Dock
Sabatia angularis	Rose pink
Salvia lyrata	Cancer weed
Sanicula canadensis	Black snakeroot

182

Common Name

GROUP Scientific Name Common Name Forbs (Continued) Scutellaria elliptica Skullcaps Scutellaria ovata Heart-leaved skullcap Smaller skullcap Scutellaria parvula Scutellaria spp. Skullcap Senecio spp. Groundsel Silphium laciniatum Compass plant * Sisymbrium officinale Hedge mustard Sisyrinchium angustifolium Blue eyed grass Solanum carolinense Horse nettle Bluestem goldenrod Solidago caesia Solidago canadensis Canada goldenrod Solidago hispida Goldenrod Solidago odora Fragrant goldenrod Rough goldenrod Solidago radula Goldenrod Solidago spp. Solidago ulmifolia Elm-leaf goldenrod Thalictrum thalictroides Rue anemonoe Thaspium Thaspium barbinode Thelsperma filifolium Green thread * Torilis arvensis Hedge parsley Ohio spiderwort Tradescantia ohiensis Trifolium spp. Clover Triodanis leptocarpa Venus'looking glass Corn salad Valerianella spp. * Verbascum thapsus Mullein Verbena urticifolia White vervain Crownsbeard Verbesina helianthoides Ironweed Vernonia baldwinii Vetch Vicia spp. 3-lobed violet Viola palmata Viola pedata Bird's foot violet Arrow-leaved violet Viola sagittata Missouri violet Viola sororia Viola spp. Violet Golden alexanders Zizia aurea

GROU	JP	
	Scientific Name	Common Name
Wood	ly Plants	
	Acer negundo	Box elder
	Acer rubrum	Red maple
	Acer saccharum	Silver maple
	Amelanchier arborea	Downy serviceberry
	Ampelopsis arborea	Pepper vine
	Berchemia scandens	Rattan vine
	Bumelia lanuginosa	Chittamwood
	Callicarpa americana	Beauty berry
*	Campsis radicans	Trumpet vine
	Carpinus caroliniana	American hornbeam
	<u>Carya glabra</u>	Pignut hickory
	Carya spp.	Hickory
	<u>Carya</u> texana	Black hickory
	Carya tomentosa	Mockernut hickory
	Ceanothus americanus	New Jersey tea
	Celtis laevigata	Sugarberry
	Celtis occidentalis	Common hackberry
	Cercis canadensis	Redbud
	Chionanthus virginicus	Fringe tree
	Cornus drummondii	Rough-leaved dogwood
	Cornus florida	Flowering dogwood
	Crataegus crus-galli	Cockspur hawthorn
	Crataegus marshallii	Parsley hawthorn
	Crataegus pruinosa	Frosted hawthorn
	Crataegus spathulata	Pasture hawthorn
	Crataegus uniflora	Hawthorn
	Diospyros virginiana	Persimmon
	Euonymous americanus	Strawberrybush
	Fraxinus americana	White ash
	Hypericum densiflorum	St. Johns wort
	Hypericum hypericoides	St. Andrews cross
	Ilex decidua	Decidous holly
	Juniperus virginiana	Eastern redcedar
	Liquidambar styraciflua	Sweetgum
*	Lonicera japonica	Japanese honeysuckle
	Lonicera sempervirens	Trumpet honeysuckle

GROUP	
Scientific Name	Common Name
Woody plants (Continued)	
Lonicera spp.	Coral honeysuckle
Magnolia tripetala	Umbrella magnolia
<u>Morus</u> <u>rubra</u>	Red mulberry
Nyssa sylvatica	Blackgum
<u>Ostrya</u> <u>virginiana</u>	Ironwood
Parthenocissus quinquefolia	Virginia creeper
Pinus echinata	Shortleaf pine
Prunus mexicana	Mexican plum
Prunus serotina	Wild black cherry
Quercus alba	White oak
Quercus falcata	Southern red oak
Quercus marilandica	Black-jack oak
Quercus nigra	Water oak
Quercus phellos	Willow oak
Quercus rubra	Northern red oak
Quercus stellata	Post oak
Quercus velutina	Black oak
Rhamnus caroliniana	Indian cherry
Rhus aromatica	Fragrant sumac
Rhus copallina	Winged sumac
Rhus glabra	Smooth sumac
Ribes sp.	Currant
Rosa carolina	Wild rose
Rosa multiflora	Multiflora rose
<u>Rubus</u> spp.	Blackberry
Sambucus canadensis	Elderberry
Sassafras albidum	Sassafras
Smilax bona-nox	Greenbrier
Smilax glauca	Cat greenbrier
Smilax rotundifolia	Greenbrier
Smilax spp.	Greenbriar
Symphoricarpos orbiculatus	Coral berry
Toxicodendron radicans	Posion ivy
<u>Ulmus</u> alata	Winged elm
Ulmus americana	American elm
Vaccinium arboreum	Farkleberry

GROUP Scientific Name	Common Name		
Woody plants (Continued)			
Vaccinium pallidum	Low-bush huckleberry		
Vaccinium stamineum	Deerberry		
Viburnum rufidulum	Rusty black haw		
Vitis aestivalis	Summer grape		
Vitis cinerea	Grayback grape		
Vitis palmata	Cat grape		
Vitis rotundifolia	Muscadine		

Note: * = Introduced, naturalized, or exotic species.

VITA

Jeffrey C. Sparks

Candidate for the Degree of

Master of Science

Thesis: GROWING-SEASON AND DORMANT-SEASON FIRE BEHAVIOR AND EFFECTS ON VEGETATION IN THE OUACHITA MOUNTAINS, ARKANSAS

Major Field: Environmental Science

Biographical:

- Personal Data: Born in Tulsa, Oklahoma, January 17, 1972, the son of Pat and Pam Sparks.
- Education: Graduated from Union High School, Tulsa, Oklahoma in May, 1990; received Associate of Science Degree in Arts and Sciences from Tulsa Junior College, May, 1992; received Bachelor of Science Degree in Wildlife and Fisheries Ecology from Oklahoma State University in May, 1994; completed requirements for Master of Science degree at Oklahoma State University in December, 1996.
- Professional Experience: Wildlife Research Assistant, Oklahoma State University, 1989 and 1990. Wildlife Research Technician, Zoology Department, Oklahoma State University, Fall of 1992, and Spring of 1993. Range Research Technician, Agronomy Department, Oklahoma State University, Spring of 1994. Research Assistant, Department of Forestry, Oklahoma State University, May 1994 to November, 1996.
- Professional Organizations: The Wildlife Society, Society for Range Management, Wildlife Management Institute, Honor Society of Phi Kappa Phi, Honor Society of Xi Sigma Pi.