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CHAPTER I 

INTRODUCTION 

Thermal transport properties of glasses have presented an interesting set of 

research questions over the last twenty-five years. The thermal conductivity' experiments 

of Zeller and Pohl[ 1] presented clear and unambiguous evidence that below the plateau 

region of approximately 1 K the thermal properties of amorphous insulating solids differ 

remarkably from their crystalline counterparts. 

The experiments of Zeller and Pohl[ 1] provide strong evidence that Debye-like 

phonons exist in glasses, and are scattered by additional excitations which can most simply 

be represented by the two-level-system (TLS) model, or more generally by highly 

anharmonic oscillators[3] . This model accounts for many of the properties of glasses at 

temperatures below the plateau region. In this picture the heat carriers are extended-state 

phonons. similar to the Debye Phonons of crystalline solids. and the TLS provide a 

scatting mechanism for them. On a more general level, an important consequence of the 

success of the TLS model has been the recognition that amorphous solids can support 

excitations that differ qualitatively, as well as quantitatively, from those ordinarily 

encountered in crystalline solids[2]. 

At temperatures above the plateau( - SK < T < -20K), there is not yet a consensus 

on the nature of the phonons that provide the heat carriers nor on the elastic properties of 

the glass that may be needed for effective thermal transport by these models . The most 

successful current models suggest that some or all of the Raman-active phonons are 



weakly localized by the disordered structure of the glass. The thennal transport process is 

one in which these localized phonons diffuse among neighboring localization sites by a 

random walk or hopping process[2]. 

In this thesis, a study of the thennal diffusivity between 80 and 500 K for a set of 

three fluoride glasses is presented. The two samples named ZBLAEu-147 and ZBLAH-

144 consistedofa base compositional fonnula ofO.36(BaF2) 0.57(ZrF~) O.Ol(LaF~) 

0.04(AlF3) 0.02(M) and doped with the modifier (M) ofEuF3 or HoF3, respectively. The 

third sample, ZBLAE-331, had the same composition as the other two with the exception 

ofO.025(LaF3) and the modifier(M) being 0.05 ErF3. The data obtained in this experiment 

will be analyzed and shown to adhere to the two-carrier model for thennal transport in 

glasses with localized phonons as the principal heat carriers in this temperature range 

introduced by Dixon and coworkers[2]. 

Amorphous Solids 

Amorphous materials can be defined as those materials which are "topologically 

disordered" and which do not exhibit periodicitv characteristic of crystals. Amorphous 

solids do not have the long-range orientational order characteristic of quasicrystals. For 

example, in a crystal state, all atomic positions are fixed when a few parameters are 

defined by position and distances. However, such a simple definition is impossible in both 

the gaseous and liquid states. To illustrate, fluctuations exist in the atomic distribution of 

liquids and gases in near-neighbor regions, but such fluctuations disappear at greater 



3 

distances, Naturally, the fluctuation in the atomic distribution in near-neighbor regions for 

liquids is larger than that of gases, 

In the gaseous state, the atoms are distributed with a low average density and with 

mean free path which is long in comparison to the atomic size, In addition. the positional 

correlation of atoms is weak, However, the atoms do not mutually approach within the 

atomic core diameter llo due to the repulsion of the pair potential. In both the liquid and 

amorphous state, the atoms are randomly distributed in a nearly close-packed structure, 

and the mean free path of the atoms are short and proportional to the atomic size , This 

implies that the positional correlation of atoms is relatively strong within the near-neighbor 

region, Nevertheless, due to high atomic vibration, the average atomic configuration in 

the liquid state is more homogeneous than that of the amorphous state, In other words, 

the atomic configuration in the amorphous state has more rigid packing than that of the 

liquid state, Consequently, the term amorphous state (or solid) can be generally defined 

as any solid having a non-periodic atomic array, 

Short of possessing the dynamic disorder characteristic of fluids, amorphous solids 

are among the most disordered of materials(7], Amorphous and crystalline solids have 

two quite different solidification processes , As figure 1 shows, a liquid may either solidify 

discontinuously into a crystalline solid or continuously into an amorphous solid[ 6], 

Figure 1 should be read from right to left since time runs in that direction during the 

course of the "quenching or temperature-lowering" experiment. A sharp break or bend in 

the Volume vs, Temperature curve, V(J), marks a change of phase occurring with 

decreasing temperature, The first occurs when the gas condenses to the liquid phase at 

the boiling temperature It" Continued cooling now decreases the liquid volume in a 
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Figure 1. The two general cooling paths by which a liquid can condense into the 
solid state. Route 1 is the path to the crystalline state. Route 2 is the 
path to the amorphous state. (from ref 6) 
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continuous fashion, the slope of the smooth V(T) curve defining the liquid's volume 

coefficient of thermal expansion a = (1/~)(GV!a1)p. Eventually, when the temperature is 

low enough, a liquid to solid transition takes place. The solid then continues to T = 0, 

with a small slope which corresponds to the low value of the expansion coefficient, a , 

which characterizes a solid. 

Almost all materials can be prepared as amorphous solids. One key to which path 

a liquid will follow in solidifying is the speed or "how fast the melt is cooled or 

quenched"[6]. Crystalline solids are usually fabricated by the use of very low cooling 

rates. Low cooling rates are necessary since crystallization requires time for crystalline 

centers to first form and then grow at the expense of the liquid which may have different 

local order. Furthermore, the liquid to crystal transition is marked by a discontinuity at Tf 

(freezing point) in the V(l) curve, which is due to the abrupt contraction of the volume of 

the crystalline solid. In a quenching experiment carried out at a sufficiently low cooling 

rate, this is usually the route taken to arrive at the solid state. Conversely, if the cooling 

rate of the melt is high enough or fast enough, Tf is bypassed, and the liquid phase endures 

until a lower temperature Tg , called the glass transition temperature, is reached. In this 

case, the second solidification scenario is realized in which an amorphous solid or glass is 

formed. 

The term glass has conventionally been reserved for an amorphous solid actually 

prepared by "quenching or temperature-lowering" the liquid melt in the experiment[6]. 

Unlike the crystalline solid, there is no V(l) discontinuity in the amorphous solid, but there 

is a trend in both scenarios to assume small slopes that are characteristic of low thermal 

expansion[6]. In this temperature range, the viscosity of the melt increases rapidly, 
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approaching that of a crystalline solid. During the time the liquid is cooled from Tf to Tg, 

it is prone to nucleation and growth of crystallites. Therefore, in the preparation of 

amorphous solids, the cooling must proceed "far enough", in the sense that the quench 

must be taken to below the glass transition temperature (T < Tg), and "fast enough" in the 

sense that Tg < T < Tf must be crossed in a time too short for crystallization to occur[ 6]. 

Thus, the essential ingredient in the preparation of an amorphous solid is speed 

As soon as the temperature of the liquid is lowered to Tr, it may take the path to the solid 

state and crystallize. To accomplish this. one can block the kinetic paths that lead to 

crystallization. Tris can be done in two ways: by rapidly cooling the melt to block thermal 

motion of mixture or by placing the system in a state where local rearrangement to 

crystallization requires a large energy or entropy change. This entropy change only occurs 

in the intermediate states between local order and the local arrangement consistent with 

translational symmetry. If the melt's temperature can be taken below Tg before 

crystallization has had time to occur, the undercooled liquid solidifies as a glass and 

remains in this form essentially indefinitely[ 6] . 

Glass formation, therefore, is a matter of bypassmg crystallizatIOn. The channel 

to the crystalline state is evaded by quickly crossing the dangerous regime of temperature 

between Tf and Tg and achieving the safety of the amorphous solid state below Tg. 

Throughout the temperature interval Tg < T < Tf , the liquid is "at risk" with respect to 

nucleation and growth of crystallites. 

As previously mentioned, for a material to be prepared as an amorphous solid, 

cooling must proceed "fast enough and far enough." When these conditions exist, the 

liquid to glass transformation occurs homogeneously throughout the material. 
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In contrast, during crystallization, heterogeneous pockets of the solid phase appear 

abruptly within the liquid and then grow at its expense. Without the intervention of 

crystallization[6], all liquids would form glasses if sufficiently undercooled. 

Structure of Glasses 

For an amorphous solid, the essential structural difference with respect to that of a 

crystalline solid is the absence of long-range order (periodicity). This difference 

complicates the study of glasses more than their crystalline counterparts where an 

underlying periodic lattice exists from which one can describe the whole crystalline solid 

on the basis of a few atoms. Figure 2 presents schematically the characteristics of the 

atomic arrangements in glasses as opposed to crystals. Also included, as an additional 

reference point, is an illustration of the arrangement in a gas. Notice that two-dimensional 

crystals, glasses, and gases are represented, but the essential points to be noted carry over 

to their actual, three-dimensional, physical counterparts. 

The lack of long-range order in glasses implies randomness at large separations. 

Knowing the positions of a few atoms does not help to locate, as it does in a crystal, the 

positions of distant atoms. However, this does not mean that glasses are structurally 

completely random at all length scales. As seen in figure 2a and 2b the atomic positions in 

the glass are not randomly distributed in space. Randomness is a trait more properly 

associated with figure 2c. Each atom can be found at any location, independent of the 

positions of all other atoms. But in figure 2b, a high degree of local correlation is seen. 
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FIGURE 2. The schematic representation of the atomic arrangements in (a) a 
crystalline solid, (b ) an amorphous solid, and (c) a gas. 
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In other words, glass exhibits a high degree of short-range order. Each atom has three 

nearest neighbors at nearly the same distance from it. The nearest-neighbor atoms are 

connected by lines in figure 2a and 2b. The "bond angles" formed where these lines meet 

at an atomic position and are correspondingly near~y equal. 

In the crystalline case offigure 2a, the nearest-neighbor separations and bond 

lengths are exactly equal, rather than nearly equal as in the glass. The exactly equal bond 

lengths can be considered to be a "formula cell" introduced by Dixon and coworkers[2] 

as the smallest number of atoms in which each element is represented in the same 

proportion as in the sample as a whole. The "formula cell" structure can not be seen 

throughout figure 2b at long-range but can be seen at shorter-ranges. Thus glasses share a 

high degree of short-range order with crystals. As in crystals, this is a consequence of the 

chemical bonding responsible for holding the solid together[6,7]. The importance of 

short-range order in glasses can be seen in those applications where a crystalline solid can 

be replaced by its glass counterpart. This is due to the fact that glassy materials often 

share the same coordination numbers and nearest-neighbor separation as their crystalline 

counterparts[7] . 

The atomic structure of glasses can be describe in terms of increasing length scales 

Two such length scales can be distinguished by short-range order(SRO) and medium­

range order(MRO) from the structure of a glass. Short-range order encompasses a length 

scale from 2 to 3 A and is associated with the nearest-neighbor environment of atoms. For 

the case of covalently-bonded glasses, the simplest description of SRO is in terms of local 

coordination polyhedra and their interconnectivity[7]. Thus, SRO can be characterized in 

terms of intra-polyhedral factors, such as the 2-body correlation quantities: r, the nearest-
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neighbor bond length, and z, the coordination number. The coordination number = of a 

particular atom is the number of the nearest neighbor atoms which surround that atom in 

the solid. The coordination number z is the most valuable pIece of structural information 

which provides evidence for a dominant role of covalent bonding (= ::; 4) in the coupling of 

nearest-neighbor atoms[6]. By generalizing the idea of a single coordination number to a 

sequence of numbers embracing "shells" of neighbors at distances beyond the nearest 

ones, Olle is led to a more substantial structural characterization called the radial 

distribution function (RDF) [ 6]. In figure 3, direct evidence of the existence of SRO in 

glasses, in the form of well-defined nearest neighbor and next-nearest neighbor 

coordination shells, is provided by the first and second peaks in the X-ray-derived RDF of 

amorphous germanium. Notice that figure 3 shows a superposition of this RDF for 

germanium crystalline powder(c-Ge) and the RDF for the germanium amorphous solid(a­

Ge). This crystal/glass comparison is especially useful because both curves were obtained 

under the same experimental conditions and by means of the same analytical 

transformation procedure[ 6]. However, the absence of long-range order manifests itself in 

the fact that, for glasses, discernible peaks in the RDF rarely occur beyond third-nearest 

neighbors. 

While the SRO of glasses is well known, the same cannot be said about medium­

range order(MRO). Presently, the terms used to describe 't\1RO are not well defined 

which causes great controversy about what comprises the 't\1RO of glasses[27]. This is 

due to the fact that while diffraction experiments reveals a wealth of information about 

SRO, they result in almost no information about MRO because of the absence oflong­

range order. As an example of the level of disagreement that exists in characterizing 
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MRO, reference 27 considers the length scale of 3A to sA as part of SRO for most 

materials, while in reference 7 this range is included as part of the local-scale MRO. 
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The main concept of this section was to become more familiar with the many 

descriptions of glasses. While much more can be said about the classification and 

description of different length scales as a definition of glasses, the subject area is too large 

for the scale of this paper and will not be discussed further. 

Continuous Random Network Model of Covalent Glasses 

In 1932 W.H. Zachariasen, in his classic paper entitled "The Atomic Arrangement 

in Glass," set forth what has since become known as the continuous-random-network 

model (henceforth, CRN) for the structure of covalently bonded amorphous solids[6]. The 

essential characteristics of CRN structures are revealed by comparing figure 4 and 

figure 5. 

Figure 4 represents two different cartoons representing covalent structures of 

crystalline solids. The honeycomb lattice of figure 4a is the two-dimensional covalent 

graph corresponding to a layer of boned carbon atoms in graphite. Figure 4b represents 

the "decorated" honeycomb lattice, as it is derivable from a honeycomb lattice by 

replacing each bond by a pair of bonds to an intervening twofold-coordinated "bridging" 

atom[6]. 

"Vhile the two covalent cartoons of figure 4 represent periodic structures, figure 5 

shows a corresponding pair of cartoons which represent continuous random networks; 
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(0) 

( b) 

FIGURE 4. The honeycomb lattice (a) and the decorated honeycomb (b) . The 
topological structure of the honeycomb is the as that of a layer in graphite 
or crystalline arsenic . 

'4 
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each of these noncrystalline structures has the same short-range order as its crystalline 

counterpart in figure 4. To begin with the simpler case, the elemental network glass of 

figure Sa shares the following features in common with the honeycomb crystal lattice 

1. Z = 3, each atom is threefold coordinated. 

2. Nearest-neighbor distances (i .e., bond lengths) are constant, or nearly so. 

3. Both structures are "ideal" in admitting no dangling bonds. 

Both networks are indefinitely extendible and no notice is taken here of surface effects. 

Actually statement 3 is implied by statement 1, but it is worth separate mention because of 

its chemical significance[6]. Statement 2, as emphasized by Zachariasen, is the condition 

which ensures that the energy of the covalent glass is little different from that of the 

crystal. The two fundamental ways in which the crystalline and the continuous-random 

networks distinctly differ from each other are: 

4. A significant spread in bond angles. not permItted in the crystal, is 

characteristic of the CRN structure. 

5. Long-range order is absent for the CRN glass. 

There is an additional degree of latitude in the presence of a second type of bond 

angle that occurs at the bridging atom. Since the bond angie at a twofoid-coordinated 

atom is expected to be much softer (i.e., much Jess costly in energy to deform) than that at 

a threefold-coordinated atom, all of the bond-angie leeway may be supposed to be taken 

up at the bridging atoms[ 6]. Thus statement 4 now applies only to the soft bond angles in 

the network, while the stiff bond angles may be lumped together with the bond lengths in 

statement 2 as little different in the eRN glass from their values in the crystal. This is the 

case in figure 5b. Also evident in a comparison of this structure with that offigure 5a is 
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--------------------------------r--------------------------------

FIGURE 5. Two-dimensional continuous random networks. A sketch of a three-fold­
coordinated elemental glass is presented in (a), while Zachariasen's 

(1932) diagram for an A2B3 glass is shown in (b) . 
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the relative ease, because of the bends permitted at the bridging atoms, of developing a 

covalent network without bond-length distortion in the case of the compound[6] . 

Modified Random Network 

Though glasses present complexities not found in crystals, they possess specific 

properties which make them advantageous to crystals. For one, the compositional 

flexibility of glasses allows for the study of different types of additives over a continuous 

range of concentrations without running into solubility limits. Furthermore, the structural 

changes created in the glasses by the additives enable one to study transport -structure 

correlations more readily then in crystalline soIids[7]. This has sparked the development 

of the model, based on the same principles as Zarchariasen' s eRN model, called the 

Modified Random Network Model CMRN). 

In the MRN modeL glass-modifying oxides are believed to micro-segregate from 

glass-forming oxides at the atomic level as shown in figure 6. The effect of modifiers are 

to simultaneously change the network structure and bonding which affects its rigidity, net 

charge, and distribution of interconnected interstices. These changes are reflected in the 

physical properties of the glass[7]. Network modifiers induce charges in the network by 

introducing ionic bonds between the positively-charged interstitial modifier cations and the 

now negatively-charged covalent chains. 
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FIGURE 6. The Modified Random Network (MRN) model for the structure of glass . 
The dashed bonds represent ionic interaction. The regions that are not 
shaded represent the modifier channels. 
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Einstein and Debye Models of Heat Transport 

In the classical Einstein model oflattice vibrations, based on the work of Petit & 

Dulong[18J, every atom contains the vibrational energy 3kBT, where kB is Boltzmann's 

constant and T the absolute temperature. This leads to a temperature-independent specific 

heat 3kBll, where 11 is the number density of atoms (number per volume). The limits of this 

picture were demonstrated by H. F. Weber[19] in 1875, who showed that the specific heat 

approached this .$o-called Dulong-Petit value only at high temperature. By extending the 

measuring temperatures below room temperature, he observed a decrease in specific heat 

of diamond by as much as a factor of ten[ 19]. 

With the experimental data of Weber. Einstein[20J took 32 years to recognize that 

the atomic vibrations were quantized. These "Einstein Oscillators", as they are now 

known, have a specific heat that approaches the Dulong-Petit value at high temperatures 

and that decreases exponentially at low temperatures. Therefore, in Einstein's model the 

thermal conductivity should decrease with decreasmg temperature. However, a dilemma 

occurred when another experiment was conducted by A. Eucken, in which he observed 

the thermal conductivity to increase with increasing temperature at low temperatures[ 17J . 

The way out of the fundamental dilemma inherent in the Einstein model was 

suggested by Debye[21] and by Born & von Karman[22]. These authors argued that 

atoms in a solid do not oscillate as isolated entities, but collectively as propagating waves. 

Debye treated these elastic waves as dispersionless in a way identical to the 

electromagnetic waves in an empty cavity; the only differences were that he included 

longitudinal waves, and that he limited the number of normal modes to 311, where 11 is the 
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density of atoms in a three-dimensional solid[ 17]. With these assumptions. he was able to 

predict the specific heat of solids and found agreement with the measurements, whereas 

Einstein' s theory employed the Einstein frequency as a free parameter . Debye was also 

able to explain why at low temperatures the specific heat decreased less rapidly than 

predicted by Einstein's lattice vibration model (Debye's T3 dependence of the specific 

heat)[17]. 

A very important success of the elastic wave theory was that it opened the way to 

a qualitative understanding of the observed high thermal conductivity of dielectnc crystals. 

and also of its temperature dependence In analogy to the kinetic theory of gases, 

Debye[~3] wrote the thermal conductivity 1\ as 

1\ = 1/3 CvVL (1-1) 

where Cv is the specific heat (per volume), Vthe wave velocity, and L the mean free path 

between collisions with lattice defects and other waves A mean free path of the order of 

100 A or a few tens of wavelengths. was reqUIred to explain Eucken ' s findings for 

crystalline solids. A rapidly decreaSIng scattering probability could be expected to more 

than compensate for the decreasing specific heat at decreasing temperatures, thus leading 

to an increase of the thermal conductivity[ 17]. Some of the important scattering 

mechanisms for elastic waves and their study through measurements of heat transport are 

reviewed below. 
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Phonons in Glasses 

The thermal conductivity experiments of Zeller and Pohl[2] initiated a train of 

investigations that culminated in the two-level-system (TLS) model which accounts for 

many properties of glasses at temperatures below the plateau region( -SK < T < -20K) In 

this picture, the heat carriers are extended-state phonons, similar to the Debye phonons of 

crystalline solids, and the TLS provide a scattering mechanism for the phonons[ 1 0] . Zeller 

and Pohl[ 1] were the first to present experimental evidence that the thermal properties of 

amorphous solids differ remarkably from their crystalline counterparts at low temperature. 

Thermal transport properties of glasses have presented an interesting set of 

research questions, starting from Zeller and Pohl's experiments, over the last few decades 

The research investigation concentrated on the behavior of the thermal conductivity and 

specific heat as a function of temperature, and the understanding and description of the 

processes which mayor may not contribute to their behavior. While it has been well 

established[3, 10,12, 13,14] that phonons are responsible for the thermal diffusion in 

glasses, there is much disagreement as to how these phonons interact with each other and 

with other intrinsic properties of the material to give the observed behavior in the thermal 

conductivity[3]. While numerous models have heen put forth since then, only those 

models which are generally accepted as representing the behavior of thermal conductivity 

in their respective temperature range will be briefly mentioned. 

To begin, figure 7 displays the thermal conductivity as function of temperature of 

crystalline quartz(I) and fused quartz(II). The behavior of these two materials is vastly 
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different although they have the same chemical composition In particular, the thermal 

conductivity of the amorphous solid is several orders of magnitude smaller than its 

crystalline counterpart[l]. Furthermore, it has been found that for a large variety of 

amorphous solids the thermal conductivities are very similar to the form shown m figure 7 

and differ in magnitude within a factor often or less[3,11]. In contrast, the thermal 

conductivity in crystalline solids can vary by as much as five orders of magnitude, with 

correspondingly different temperature dependencies[ 11]. The thermal conductivity curve 

for amorphous materials can be divided into three distinct regions, A, B, and C, which are 

seen in figure 7. The scope of our experiments extends well into region A Regions Band 

C will also be briefly discussed where the processes believed to be responsible for the 

behavior of the thermal conductivity occur. 

For temperatures corresponding to region C of approximately less than 5 K, Zeller 

and Pohl[ 1] showed that the thermal conductivity varied as T2 which was interpreted as 

due to a mean free path for phonons gomg as m-1 This T2 behavior was first explained 

successfully through a model put forth by Anderson and coworkers[] 2] where low 

frequency extended phonons, similar to Debye phonons of crystalline solids, are scattered 

off localized two-level systems[3,13]. The temperature region below 1 K has attracted a 

great deal of attention. In this region the thermal conductivity varies as r, with 11 ranging 

between 1.8 and 2.0 depending on the chemical composition of the glass. The scattering 

is believed to be due to low energy excitations that have been observed through a specific 

heat anomaly that varied almost linearly with temperature[ 17]. It has been suggested that 

these excitations are caused by tunneling of atoms or groups of atoms between nearly 

identical sites in the amorphous lattice with an almost unifoml density of states[25,26]. 
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The details of the thermal conductivity are produced by phonons resonantly scattering off 

these states. 

In region B, the plateau, where ~5K < T < -20K, depending on the material, the 

thermal conductivity is independent of temperature. This plateau region is believed to 

include a mobility edger 13] or crossover frequency, ro L , [12,14] where phonons with w·::·roc 

are extended states and those with ro>roc are localized. The excited extended phonons are 

in the Dulong-Petit region, and so their contribution to the thermal conductivi.ty is 

constant. This results in the plateau when coupled with a constant sound velocity and 

mean free path for the phonons with frequencies less than roc [13,14] . Figure 8 shows that 

the mean free path of the phonons (assuming all are extended states) decreases 

dramatically in the vicinity of the plateau region to within a few atomic spacings. The fact 

that the phonon mean free path becomes so strongly frequency dependent from a 

dependence of ro -1 at the lowest temperature region to an ro -4 dependence In the vicinity of 

the plateau, is still unclear. Jagannathan and coworkers[14] have attributed this 

phenomenon to Rayleigh-like scattering and anharmonic coupling between the extended 

state phonons and localized states. Some other literature suggests and supports the 

localization of certain phonons, mentioning that the mobility edge or crossover frequency 

is seen to occur approximately where the Ioffe-Regel condition is satisfied, which is 

generally accepted as signaling vibrationallocalization[ 1 0. 14]. 

In region A, as the temperature increases above the plateau, the thermal 

conductivity increases approximately linearly. This behavior is attributed to phonon 

assisted hopping of the localized vibrational modes[ 1 0, 13] or phonon-induced fracton-

hopping[ 12, 14]. In particular. as the temperature for frequencies ro>roc increases, a 
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significant number of localized modes are thermally excited and their hopping contributes 

to an increase in the thermal conductivity above the plateau value [ 14]. 

The anharmonic mechanism can have two results, absorption or emission of a 

photon. If absorbed either two phonons are created or one phonon is created and a 

second phonon oflower energy is destroyed. The emission of a photon either destroys 

two phonons or destroys one phonon and creates a second phonon of lower energy[ 1 5 J. 

In 1929, Peierls[24] showed for the three phonon anharmonic process that two 

conservation laws had to be obeyed. one of the laws is: 

(1-2) 

where Wi is the (angular) frequency of the quanta andh is Plank's constant divided by 2n ; 

this equation expresses the conservation of energy. 

Alexander and coworkers[16] derived an expression for the contribution of this 

three phonon anharmonic process to the thermal conductivity. In their derivation, they 

assumed glasses are fractal in nature. They also introduced a fracton-hopping formulation 

as an additional heat-carrying channel above the plateau region This introduction 

generated a linear increase in thermal conductivity with increasing temperature throughout 

their experiment Though they assumed a fractal nature of glasses, Graebner and 

coworkers[lO] point out that , in addition to the lack of evidence of the fractal nature of 

bulk glass, the assumption is not needed to expJ.ain the phonon assisted hopping of the 

localized modes above the plateau. 

To summarize, crystal elastic waves, or phonons in the quantum picture, can lead 

to a very satisfactory description of the observed phenomena. In contrast, this same 

picture is incorrect in amorphous solids except at low temperatures or for long 
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wavelengths[17]. Lattice vibrations, as they are thennally excited above -30K appear to 

be more appropriately described as localized Einstein oscillators: the heat is being carried 

through the lattice by a random walk, rather than by wave-like motion. It is not 

understood, however, why these oscillators are so heavily damped in all glasses. 

At temperatures below 30K, thennally excited elastic waves occur also in glasses. 

In fact, their scattering mean free path always exceeds 100 wavelengths when less than a 

few Kelvin, corresponding to phonon frequencies less than one terahertz[ 17] . However, 

in this energy raRge, some additional excitations have been found in all glasses These 

excitations are localized and are most likely tunneling states (TLS). Their physical origin 

is also not completely understood. In conclusion many aspects of the vibrational spectrum 

of glasses over the entire frequency range are still poorly understood and require further 

study. 

Raman Spectroscopy 

The Raman process was first predicted from theoretical considerations by Smekal 

in 1923 and was discovered by C. V. Raman five years later[8]. The effect is described as 

an inelastic, non-resonant light scattering process in wluch an incident photon, or light 

quantum, interacts with matter. The result is the emission of a photon of different 

frequency than the incident photon and either the creation or annihilation of a phonon, or 

quantum of lattice vibration. 
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When a sample is irradiated with monochromatic radiation, a small portion of the 

incident radiation is scattered from the main direction of propagation. The largest 

percentage of this represents Tyndall scattering caused by dust particles or imperfections 

in the sample[8] . These types of scattering are considered elastic, since the radiation is 

scattered at the same frequency as that of the source. 

If the light illuminating the sample is monochromatic and the scattered light i& 

examined with a spectrometer, a series of emission lines will be seen. The strongest line 

appears at the frequency of the exciting monochromatic light and is due to Rayleigh elastic 

scattering. Syrrunetrically placed on either side of the Rayleigh line are a number of ve~' 

much weaker lines, these being the Raman emissions. The Raman emissions on the low 

frequency side of the Rayleigh line are called the Stokes lines, and are of higher intensity 

than the anti-Stokes lines, which lie on the high frequency side[9]. Figure 9 shows the 

diagrarrunatic representation of the Raman spectrum of carbon disulphide as an example of 

the Stokes lines verses the anti-Stokes lines. 

This intensity difference between the two sets of Raman lines arises because of the 

population difference between the different vibrational energy levels of the molecule At 

room temperature there will be many more molecules in the ground vibrational state than 

in the higher vibrational states. Therefore the incoming hght is more likely to interact \vith 

a molecule in the ground state and excite it to a higher vibrational state than it is to collide 

with a molecule in one of the higher energy states, causing it to lose energy and fall back 

to the ground state. If the light excites the molecule to a higher vibrational state it will 

lose energy and appear with a lower frequency; conversely, if it brings about a downward 

transition it will gain energy and appear at a higher frequency[9]. 
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The displacements of these lines from the Rayleigh line (~v), measured in 

wavenumbers (em-I) are found to correspond to the frequencies of the molecular 

vibrations. These frequencies can sometimes be measured by absorption spectroscopy in 

the infrared. The infrared and Raman spectra obey different selection rules, so both are 

necessary if the maximum amount of information is to be obtained about a molecule. 

The activity of a particular vibrational mode in the infrared region is dependent 

upon whether or not there is a change in the dipole moment during the vibration. For a 

mode to be Raman active there must be a change in the polarizability of the molecule 

during the vibration. This change can be considered as being a change in the shape of the 

electron cloud surrounding it[9] . 

Inelastic Raman scattering is considerably weaker than Tyndall or Rayleigh 

scattering. It is caused by changes in the polarizability of the sample. Raman scattering is 

considered inelastic because the scattered radiation is of a different frequency than that of 

the source. The intensity of the scattered light is extremely weak, approximately 10-8 

times the intensity of the source[8] . The RaInan scattering is directly proportional to the 

intensity of the incident light source; the higher the power that can be concentrated mto a 

particular volume of sample, the more intense will be the recorded spectrum. Therefore 

very high power lasers are used to bring weak spectra up to a level where they can be 

recorded photo-electrically. 

The Raman scattering is proportional to the fourth power of the frequency of the 

laser line exciting the spectrum -- this means that a red laser will be less efficient as a 

source for Raman spectroscopy than a green one[9]. As the frequency in wavenumbers is 

obtained by dividing the frequency in hertz by the velocity of light, the scattering is also 
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proportional to the frequency in wavenumbers. For example, changing from excitation of 

the spectrum by a 100 mW krypton ion laser operating at 14783 cm-1 (6471 A) to a 100 

mW argon ion laser operating at 20487 cm-1 (4880 A) causes an increase of scattering 

efficiency of (20487/ 14783)* ~ 37 times[9]. 

It is important to note that most absorption or emission spectroscopy involves 

scattering in which the radiation is in resonance with the energy level transition of the 

material. Raman spectroscopy, however, is due to the scattering of non-resonant 

absorption or emission, and it is the frequency shift that gives information about the 

energy level transitions In Raman scattering, the scattered photon brings exira 

information away with it, including information on rotational and vibrational transitions of 

the material[8]. 

In the Raman effect, a photon with initial energy hvo interacts with a molecule, 

resulting in the scattering of a photon of energy hys :j; hyo and the creation or annihilation 

of a phonon. The Raman effect must follow the law of conservation of energy, so that in a 

Stokes transition, where hys < hyo, a phonon of energy hyo - hys = hy is created 

Likewise, in an anti-Stokes transition, where hys - hyo = hy is annihilated Thus, the 

Raman effect follows the selection rule 

Yo = Vs ± y 0-3) 

where Yo, Ys, and y refer to the frequencies of the incident photon, scattered photon, and 

phonon, respectively. If there is no such phonon with energy hy, then the corresponding 

transition from hyo to hys is forbidden. 
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Statement of Purpose 

The purpose of this experiment was to track the effect of various rare earth 

elements being doped on the baseline composition set of fluoride glasses as it 1S inserted 

into the network. Specifically, as the three different rare earth materials were added to the 

baseline the thermal diffusivity as a function of temperature was examined in the 

temperature range of 80-S00K. The data was analyzed using a two-carrier model for 

thermal transport by extended phonons, and thermally activated hopping of localized 

phonons. Within the two-carrier model, a Debye approximation is used to calculate the 

heat capacity of the extended modes, while a multi-term Einstein approximation using 

vibrational modes obtained from Raman data is used to calculate the total heat capacity of 

the three samples. 
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CHAPTERll 

EXPE~ENTALPROCEDURE 

The Samples 

Heavy metal fluoride glasses have proved to be excellent hosts for both rare earth 

and 3d transition metal ions. In addition, their potential as light guides is at present 

unexcelled. These glasses are especially promising for optical display devices, laser hosts, 

and electrolurninescence panels. Numerous defects and impurities can be incorporated in 

the glasses which can absorb or emit light. In this thesis, the fluoride glasses were doped 

with three rare earth materials consisting of europium(Eu), holrnium(Ho), and erbium(Er) 

The three fluoride glass samples studied were doped with different concentrations 

of the rare earth elements The samples used were ZBLAEu-147, ZBLAH-144, and 

ZBLAE-331 prepared at Hanscom Air Force Base, Massachusetts. The two samples 

named ZBLAEu-147 and ZBLAH -144 consisted of a base compositional formula of 

0.36(BaF2) 0.5 7(ZrF4)0.01(LaF3)0.04(AlF3)0.02(M) and doped with the modifier (M) of 

EuF3 or HoF3, respectively. The third sample, ZBLAE-331, had the same composition as 

the other two with the exception ofO.025(LaF3) and the modifier(M) being 0.05 ErF3 

The samples and their properties are listed in table 1 for easy reference. 

Each sample was cut into rectangular parallelepipeds, typically 3x3xl 0 mm3 in 

dimension. The first step in the experiment was to take the data for the thermal properties 

of each sample. The procedure for this is described below in the next section. Once all 
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TABLE I. Compositions of Samples. 

BaF2 ZrF4 LaF3 AIF3 Active Ion 
Glass Sample 
ZBLAEu-147 36% 57% 1% 40/0 2% EuF3 

ZBLAH-144 36% 57% 1% 4% 2~~ HoF3 

ZBLAE-331 36% 57% 2.5% 40/0 0.50/0 ErF3 
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thermal experiments were completed, the samples were then polished for the Raman 

spectroscopy part of the experiment. The samples were polished to a surface layer of one 

micron with Metadi II diamond polishing compound. made by the Buehler company. 

Experimental Setup For Thermal DitTusivity 

The experiment was conducted under microcomputer control with the instruments 

communicating over an IEEE-488 interface bus . The instrumentation consisted of three 

Hewlett-Packard Model 3478A digital multimeters having a sensitivity ofO.lllV, a 

Hewlett-Packard model 342lA data acquisition unit, and a Hewlett-Packard 6284A dc 

power supply. Three simultaneous readings ufthe three thermocouples were obtained by 

sending a group trigger command to the digital voltmeters from the microcomputer 

approximately every 30 minutes. 

The thermocouples were anchored in three shallow grooves spaced at 3 mm 

intervals and with a small amount of thermally conducting paste (an alumina-filled silicone 

grease). The shallow (approximately 3011m) grooves were cut into the samples to hold the 

three thermometers at equally spaced distances The thermocouples were then referenced 

to electronic ice points and connected to the microcomputer. The thermocouples used 

were 0.003 inch (bare) diameter chromeI-alumel thermocouples produced by the Omega 

Engineering, Inc .. With the same thermal compound, the sample's base was attached to a 

resistance heater used to obtain a transient temperature distribution in the specimen[2,S] . 

For measurements above room temperature, the samples were mounted in a small 
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tube furnace that controlled the mean temperature of the sample. Figure 10 illustrates a 

schematic representation of the high temperature experimental setup. The tube furnace 

had an operational range of 300K to SOOK with a response time of approximately 5-10 

minutes over a large temperature change to obtain the new mean temperature. 

For low temperature measurements the sample was mounted on the cold finger of 

a liquid nitrogen cryostat. Figure 11 illustrates a schematic representation of the low 

temperature cryostat experimental setup. Notice that the section of cryostat in figure 11 

containing the sample is shown enlarged for clarity. The cryostat atmospheric pressure 

was reduced to nearly zero( -0 atm) to reduce the condensation of moisture on the sample 

and electronic 'wires. 

Procedure for Thermal Diffusivity 

Thermal diffusivity is the preferred technique for studying thermal transport in 

poor thermal conductors because of its insensitivity to radiate heat losses. The thermal 

diffusivities were measured using an adaptation of the transient technique developed by 

Kennedy and coworkers[ 4] . During each experimental run, simultaneous readings of three 

thermocouples were obtained by sending a group trigger command to the digital 

multimeters With the sample in steady-state conditions temperature readings were taken 

to establish a "baseline" for the measurement. On command from the computer, the 

digital relay was closed, supplying current to the transient heater. A constant current was 
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maintained and a 10 second delay was allowed to give the thermocouple the farthest away 

from the transient heater time to respond. Following the delay, simultaneous temperature 

measurements were taken by the three thermocouples at intervals of 0.5 seconds. The 

data was collected for an elapsed time of 50 to 100 seconds. During this time a 

temperature change of 3 to 8 K occurred at the thermometer closest to the transient 

heater. At the end of this data-collection interval the relay was opened to tum off the 

transient heater and allow steady-state conditions to become fe-established before the next 

trial run which occurred 30 minutes later. The purpose for the 30 minute interval between 

experimental runs was to insure that the transients were given enough time to dissipate. 

Figure 12 displays a typical data set of temperatures as functions of time for one of the 

glasses. The upper curve is for the thermocouple closest to the heater and the lower curve 

is for the thermocouple farthest away from the transient heater. 

The thermal diffusivity, a , was obtained from the data using the diffusion equation, 

(2-1) 

This equation was solved for the diffusivity by the computer using a simple algorithm. 

The algorithm for the diffusivity was evaluated in a few seconds by the microcomputer. 

Under the assumption of one dimenslOnal heat flow, V2T was estimated by the finite 

difference relation 

(2-2) 
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for each measurement time in the data set[2]. The subscripts L, M, and U refer to the 

lower, middle, and upper thermocouples, respectively, while ~ is the spacing between 

adjacent thermocouples. At each time tj, Of(tj) / Ot was estimated by fitting a regression 

line to a short segment consisting of approximately eight points of T l\-r( t) on either side of tj 

and using the slope of this line as the estimate of the time derivative. The estimates of 

V2T M were refined by averaging over the same time interval used to evaluate the time 

derivative[2]. Based on equation (2-1), Of M / Ot should be a linear function of y2T M with 

slope u. Figure- I3 shows the result of this procedure applied to the data set shown in 

figure 12. As can be seen in figure 13 the curve is remarkably linear, particularly in viev. 

of the number of numerical derivatives that have been performed to generate it[2,5] . The 

value of u obtained in this way was assigned to the mean temperature of the middle 

thermocouple during the measurement cycle. 

Two kinds of checks have been performed on the reliability of this algorithm to 

represent the diffusion equation faithfully_ First. the method has been used to measure the 

thermal diffusivities of several standard samples whose known thermal diffusivities cover a 

broad range of values and which include both amorphous and crystalline solids. In all 

cases the thermal diffusivities measured by the present technique were in excellent 

agreement with those reported by Dixon and coworkers[25]. A second test was 

performed on every data set to ensure that the smoothing procedure in the algorithm did 

not materially affect the estimated thermal diffusivity The experimental setup was exactly 

that used by Dixon and coworkers[2]. Based on these checks and the experiment 

developed by Dixon the method was deemed reliable. 
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Since temperature was observed at only three locations along the length of the 

sample, finite difference procedures could not efficiently track V2T unless the 

contributions to the transient temperature distribution from higher order derivatives of the 

temperature and from radial heat flow were small . This could be guaranteed only if the 

initial condition ofthe sample was nearly to steady-state. Tn the apparatus the best results 

for these samples were obtained if the transients were allowed to dissipate for 30 minutes 

between data sets. Tfthis did not agree with the value obtained using the smoothing 

procedure, the data set was deemed too noisy to be useful. 

Experimental Setup For Raman Spectroscopy 

The light scattering set up of the Raman spectrometer used in this experiment is 

shown schematically in figure 14. A Spectra Physics model 2020 Argon-Ion laser was 

used to produce monochromatic light of wavelength 5145 A The power of the laser was 

variable, from roughly 20 to 500 mW 

The laser output was directed mto a Pellin Broca filter system, which allowed the 

selective transmission of vertically polarized light. Prisms in the system filtered the non­

lasing plasma lines by dispersmg the light. It was then fe-focused by a lens of focal length 

300 mm and directed through a pinhole aperture placed 300 mm away. From there. it 

entered a second lens located 100 mm away, with focal length 100 mm, and was directed 
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method the laser is directed at the sample from the side, top or bottom, and the sample is 

surrounded by mirrors to reflect as much light as possible into the slit of the spectrometer. 

Scattered light was collected in the back scattering configuration. focusing into a 

Jobin-Yvon Ramanor U-JOOO double monochromator. Each monochromator features an 

asymmetric Czerny-Turner mounting with two symmetrical opening slits. The two 

diffraction gratings (1800 grooves/mm) rotate on a horizontal shaft parallel to the grating 

grooves. A concave mirror of focal length 0.5m couples the two monochromators by 

imaging the exitslit of the first with the entrance slit of the second. Four mirrors, all with 

focal length 1m, divert the optical paths. 

Light exiting the double monochromator was directed into an RCA C31 034A 

photomultiplier tube (PMT) which was cooled to -20°C using a Products for Research 

thermoelectric cooling unit. The PMT was in turn connected to signal converter that was 

connected to an llM PC with Enhanced Plism software, used for scanning and analysis. 

Scans were printed out using a Hewlett-Packard plotter connected to the IBM PC 

Procedure for Raman Spectroscopy 

Each day the Raman spectrometer was used, calibration procedures were 

performed. Within the double monochromator, the mirror coupling the two 

monochromators and the concave mirror nearest to the exit slit were adjusted to maximize 

the signal intensity. This was done using a 5461 A mercury line, created by a mercury 

lamp, to produce a known Raman peak at the wavenumber of 1122.8 cm- I 
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Each sample was first scanned from 5.0 cm-I to 1500 cm-I , with an increment of 

1.0 cm- I and integration times between 0.200 to 1.000 seconds . The power of the laser 

was set at 200 mW whenever possible. However, when this exceeded the computer 

program capabilities, lower powers of25mW to 100mW had to be used. Peaks of interest 

were scanned over a narrower range of wavenurnbers with a smaller increment and longer 

integration time, resulting in increased accuracy. Enhanced Prism software was used to 

determine the positions of peaks and their full widths at half the maximum of the peak 

heights. All scans were saved on the ffiM PC hard drive and could be plotted out or 

examined at a later time. 
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CHAPTERID 

RESULTS and DISCUSSION 

The thermal diffusivities of the three samples are shown as a function of 

temperature in figures 16 through 18. Figure 19 displays the diffusIvity of the samples on 

a single graph. As can be expected the curves are all very similar in form with the 

uppermost curve representing the sample with Holmium doping, the mid die curve 

representing the Europium doping and the lowermost curve representing the sample with 

Erbium doping. 

The model used to describe the data has been proposed by Dixon and 

coworkers[2,5] where thermal transport is represented by a two-carrier model of 

conventional phonon-gas transport by extended phonons and thermally activated hopping 

of localized phonons. In this model, the extended phonons produce a transport that is a 

decreasing function of temperature between 100 and 250K, while the localized phonons 

produce a transport that is a linearly increasing function of temperature above 250K[51 

While this model employs many of the ideas inherent in the fracton model proposed by 

Orbach and coworkers[ 12, 13,14], It differs in that a fractal nature of glasses is not 

assumed. Instead, empirical properties of the glasses are used to support the analysis 
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Figure 16. Thermal diffusivity as a function of temperature for the ZBLAEu-147 
sample. In addition, the individual contributions to the thermal 
diffusivity of the extended and localized phonons is shown. 
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Figure 17. Thermal diffusivity as a function of temperature for the ZBLAH-144 
sample. In addition, the individual contributions to the thermal 
diffusivity of the extended and localized phonons is shown. 
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Figure 18. Thermal diffusivity as a function of temperature for the ZBLAE-331 
sample. In addition, the individual contributions to the thermal 
diffusivity of the extended and localized phonons is shown. 
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Table 2 lists the relevant physical properties of the glasses used in this analysis In 

particular, the concept of a "formula unit" was employed. The "formula unit" was first 

introduced by Dixon and coworkers[2] and is defined as the smallest number of atoms in 

which each element is represented in the same proportion as in the sample as a whole 

Since the glasses studied here are mixtures rather than compounds, the "formula units" are 

not whole numbers. We shall retain the quotation marks as a reminder of this fact . The 

molar volume is the ratio of mass of the "formula unit" to the density of the sample Table 

2 also includes the sound velocity, 3 OOxl05 em/s, which was used for all three samples 

This value was taken from a sample in reference 5 which was verv similar in composition 

to the sample glasses in this experiment 

From the Raman spectroscopy scattering experiments the existence oflow 

frequency extended phonons and localized phonons was inferred. The Raman spectra for 

the samples are shown in figures 20 to 22 . The onset of Raman activity is interpreted to 

represent phonon localization with the clltofffrequency, roc , separating the extended 

phonons from the localized ones[2]. While Dixon and coworkers[2,5] define the boson 

peak in the Raman data as representing the mobility edge (cutoff frequency), this 

experiment utilizes the minimum preceding the boson peak as representing the mobility 

edge. 

Based on the two-carrier model, the thermal diffusivity due the extended phonons 

and the localized phonons can be written as 

(3-1) 
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TABLE II. Physical properties of the glasses. 

Modifier 
\ 

ZBLAEu-147 ZBLAH-144 ZBLAE-331 

Density (g/cm3) 4.08 4.03 3.95 

Formula Mass (u) or 16,792.8 16,818.7 I 33,219.7 
Molecular Weight .(g/mol) 
No (Smallest # of atoms in 421 421 842 

formula unit) 
Molar Volume (cm3 /mole) 4112.2 4175.8 8415 .7 

Average sound velocity of 3.0 3.0 3.0 
extended phonons, Vs ( 105cm/s) 

Cutoff frequency, We, in 16 16 I 15 
wavenumbers (cm- l ) 

Cutoff frequency, Wc (1012Hz) 0.485 0.485 0.455 
Raman Frequencies (cm- l ) 

WI (cm- I ) / Wc (1 o 12Hz) 45.0 / 1.36 45.0 / l.36 150.0 / 4.54 
W2 (cm- I) / c!)c (1012Hz) 186 .0/ 5.60 185.0 / 5.60 276.0 / 8.36 
w3(cm-I) / (oc (1012Hz) 583.0 / 17.6* . 275.0/ 8.33 508.0 / 15.39 
(04 (cm-I) / We (1 o 12Hz) 666 .0/ 20.18 585.0/17.73 944.0/28.61 
(05 (cm- I) / We (1 0 12Hz) 75l.0 / 22.75 1025 / 3l.1 * 997.0 / 30.21 
(06 (em-I) / We (1 o 12Hz) 804 .0/ 24.36 1205 I 36 .51 1252 / 37.94 
(07 (cm-I) / Wc (1 o 12Hz) 1378 / 41.7* N /A N/A 

Heat Capacity, C (J1K-cm3) 12.11 1l.93 13.77 

Heat Capacity for extended 2.95 2.95 2.44 
phonons, Cext (l0-6 JIK-cm3 ) 

Cex.t/C ( 10-7 ) 2.43 2.47 I l.77 
I 

A (106 cm2K/s) 3.19 3.18 2.48 

B (10-5 cm2/s-K) 1.09 1.50 0.864 

Note: *Data excluded due to electronic transition states. 
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Figure 20. Raman spectrum of the ZBLAEu-147 sample. The main figure shows 
the full Raman spectrum for this sample. The arrows in the full 
spectrum point to the frequencies used in the multi-term Einstein 
approximation. 
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Figure 22, Raman spectrum of the ZBLAE-331 sample. The main figure shows 
the full Raman spectrum for this sample. The arrows in the full 
spectrum point to the frequencies used in the multi-term Einstein 
approximation. 



57 

where the first term represents the contribution due to extended phonons and the second 

term the contribution due to the thermally activated hopping oflocalized phonons. ext 

and C10c are the heat capacity per unit volume of the extended and localized phonons. 

respectively, and C=Cext+C1oc . The terms 'text and 'tloc are the mean lifetimes of the 

extended and localized phonons, respectively, and Vs is the velocity of sound in the 

samples. <R2> represents the thermally averaged square hopping distance Replacing C10c 

with c-Cext, equation (3-1) becomes 

1 Cexr : (Ce.<r '\ (Rl ) 
a = ---v T +11---1--

3 C e.<1 \ C ) . , . T l o e 

(3-2) 

If phonon-phonon scattering is assumed to be the dominant resistive anharmonic process 

for the extended phonons then 'text :x rl can be used to fit the data[2,5]. On the other 

hand, the phenomenon referred to as "hopping" by DIxon and coworkers[2,5] is the major 

contributor of the localized modes to the thermal transport. "Hopping" is defined as a 

three phonon anharmonic process where an extended phonon is scattered by a localized 

phonon to produce another localized phonon. The reverse of this process. in which an 

extended phonon is produced when a localized phonon scatters another localized phonon, 

may also occur. In this process energy conservation dictates that if a localized phonon 

decays, it must reappear a distance R away in some other mode in the glass. Since the 

disorders of the glasses leads to a distribution of localized phonon frequencIes where 

neighboring modes will most likely vary in frequency, a low frequency extended phonon 

will be emitted or absorbed to make up the energy difference between the donor localized 

modes and the acceptor localized modes[2]. This three phonon anharmonic process is 

illustrated schematically in figure 23. Orbach and coworkers[ 12,13,14] have 
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demonstrated through their fractal model that this three phonon process contributes a 

localized thermal diffusivity that is a linear function of temperature to the total thermai 

diffusivity, a = <lext + aloe . Keeping this in mind and the assumption that ~e,,: ex r:. the 

functional equation used to fit the data is 

c ( c ) a = CI A r l + 1- (:"<1 BT (3-3 ) 

where A and B are constants to be determined by the fit 

In determining the heat capacity of the extended phonons. a Debye approxlmation 

was used at the high temperature limit for these modes. This approximation give5 the 

extended phonon heat capacity as 

W e iCB ( 13 r 

C e., ' = ', -,,- , -r ,,\ , 2 ') 
'- .~.I , _1[' I 

(3-4) 

Since the peaks in the Raman spectra extend to roughly 1600cm", a multi-term Einstein 

approximation was used for the determination of the total heat capacity, C. to correct for 

the temperature variation of this total heat capacity, This wa5 accomplished by 

approximating the phonon density of states bv the center frequencies of the six Raman 

peaks and substituting these frequencies in the equation 

(3-5) 

where n, the number of modes per unit volume was taken as the ratio of the "formula unit" 

to the molar volume and T was set equal to each corresponding Raman peak temperature , 

The values for C Cext, and the ratio Cext/e together with the constants A and B are listed 

in table 2, Note that some ofthe raman peaks were deliberately excluded due to 
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electronic transition states of the rare earth elements used during this experiment. It is 

worth mentioning that, had the mobility edge been approximated by the boson peak in the 

Raman spectra as was done in references 2 and 5. the values for the ratio C eXl/e calculated 

would have been similar to the values calculated for the families of glasses studied by 

Dixon and coworkers[2,5]. 

In examining the thermal diffusivites in figure 19, they are observed to increase 

linearly at room temperature and above, while below room temperature the thermal 

diffusivities are a decreasing function of the temperature, This behavior is similar to the 

behavior described in reference 5 for the same family of glasses This is to be expected 

since the samples studied in this experiment are very similar to one of the samples studied 

in reference 5. In contrast. the behavior of the thermal diffusivities of the family of glasses 

studied in reference 2 shows that the thermal diffusivites are roughly linear in temperature 

throughout the whole temperature region studied here, in reference 2, and in reference 5, 

Dixon and coworkers[2,5] suggested that the extended phonons in the samples in this 

study and in reference 5 make a larger contribution. relative to the localized phonons, to 

the thermal diffusivity due to weaker anharmonic interactions in these samples compared 

to stronger anharmonic interactions in the samples studied in reference 2 The weaker 

anharmonic interactions in the glasses studied here and in reference 5 are assumed to 

affect the behavior of the thermal diffusivity in two ways, First, since anharmonic 

interactions are weaker, less phonon-phonon scatteling takes place. allowing the extended 

phonons to make a larger contribution to the thermal diffusivity, Second, the weaker 

anharmonic interactions mean that the contribution to the thermal diffusivity by the 

localized phonons is reduced since they are more weakly coupled to extended phonons 
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which serve to facilitate thermally activated hopping of these modes[5]. The reasons why 

the anharmonic interactions in the glasses studied here and in reference 4 are weaker than 

in the glasses studied in reference 2 is unclear. Further studies may reveal that this is 

possibly accounted for by the structures of the glasses. 

The two-carrier model can also help to explain why the different doping 

concentrations of europium, erbium, and holmium have a stronger effect on the thermal 

diffusivities at temperatures above room temperatures than at temperatures belo\\ If the 

two-carrier model is correct in asserting that the density of states of the samples is such 

that it contains extended phonons, and above a mobility edge, IDc , localized phonons, then 

at low temperatures, where the phonons are mostly extended modes, we do not expect the 

increases in the density fluctuations introduced by the different doping concentrations to 

affect these modes since the extended phonon wavelengths are large enough that they are 

essentially insensitive to the increase in density fluctuations. On the other hand, at higher 

temperatures where extended phonon wavelengths approach a length scale comparable to 

the length scale of the disorder in the glasses, the increases in the density fluctuations 

become more apparent thereby introducing scattering centers which ultimately cause the 

thermal diffusivity to decrease. This is supported by the fact that the masses of the three 

different samples are much more massive, respectively, than any of the other elements 

present in the samples in this study. 
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CHAPTER IV 

CONCLUSION 

In this experiment the thermal diffusivities of a set of three glasses were studied as 

a function of temperature. The glasses studied were ZBLAEu-147, ZBLAH-144, and 

ZBLAE-331 . The two samples named ZBLAEu-147 and ZBLAH-144 consisted of a base 

compositional formula ofO.36(BaF2) 0.S7(ZrF4) 001(LaF3) 0.04(AlF3) 002(M) and 

doped with the modifier (M) ofEuF3 or HoF3, respectively. The third sample, ZBLAE-

33 L had the same composition as the other two with the exception ofO.02S(LaF3) and the 

modifier(M) being 0.05 ErF3 . 

It was shown that, based on the two-carrier model proposed by Dixon and 

coworkers[2,S], the thermal diffusivity data can be explained fairly well . In this model, the 

dominant thermal transport mechanism below a mobility edge is through extended state 

phonons, while above this mobility edge localized phonons interacting with extended 

phonons through a three phonon anharmonic process acts as the main contributor to the 

thermal diffusivity. The fact that above room temperature, the thermal diffusivity is seen 

to be linearly dependent on temperature seems to support this hypothesis . 

On the other hand, for temperatures below room temperatures, if phonon-phonon 

scattering is assumed to be the main process to the thermal transport by the means of 

extended phonons, then the thermal diffusivity can be described as a decreasing function 

of temperature, which describes the data well. Furthermore, the thermal diffusivities ' 



decreasing nature supports the existence of a phonon spectrum that contains both 

extended phonons and, above the mobility edge, IDc, localized phonons. 
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In this analysis the mobility edge and the frequencies of the localized phonon 

modes were obtained from Raman data which, together with a Debye and Einstein 

approximation, were used to calculate the total heat capacity and the heat capacity of the 

extended phonons 
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