COST PERFORMANCE AND CUSTOMER SERVICE LEVEL UNDER SUPPLY QUANTITY, PROCESS QUANTITY,AND PROCESS TIMING
 UNCERTAINTIES IN A FLOW SHOP MANUFACTURING

ENVIRONMENT

By

KANCHANA SETHANAN

Bachelor of Engineering

Khon Kaen University
Khon Kaen, Thailand
1991

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1996

COST PERFORMANCE AND CUSTOMER SERVICE LEVEL UNDER SUPPLY

QUANTITY, PROCESS QUANTITY, AND PROCESS TIMING

UNCERTAINTIES IN A FLOW SHOP MANUFACTURING

ENVIRONMENT

Thesis Approved:

Manjunath Kamath
Thomas C. Collins
Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major advisor, Dr. David B. Pratt for his intelligent supervision, encouragement, guidance, and advice throughout my graduate program. Without his support and guidance, this research would not have been completed. I am so grateful to my thesis committee members, Dr. Kenneth E. Case and Dr. Manjunath Kamath, for their support and suggestions on numerous occasions.

I would like to extend my special thanks to Dr. J. Leroy Folks for his help in statistical analysis, Ms.Patsy Coleman at Industrial Engineering office for her support, encouragement, and suggestions.

Moreover, I would like to give my special thanks to my friends at Industrial Engineering Department and Thai Student Association who are not mentioned specifically but who have helped me, academically or otherwise.

I am grateful to the Royal Thai Government for financial assistance during a portion of my graduate study.

My deepest appreciation is extended to my parents, Pichai and Sunee, my sisters, Wachiraporn and Amornrat, my brother, Niti, and my closed friend, Bussaba, for their love, support, moral encouragement, and understanding.

This work is solely dedicated to my mother.

TABLE OF CONTENTS

Chapter Page
I. THE PROBLEM AND ITS SETTING 1
Introduction 1
Uncertainty in flow shop manufacturing 3
Background 4
Type of uncertainty 4
Customer service level 8
Holding and stockout cost 9
The problem 13
Research objectives 14
The delimitations 15
The definitions of the terms 16
Assumptions 19
The importance of study 20
II. THE REVIEW OF THE RELATED LITERATURE 21
Introduction 23
Buffering mechanisms for reducing uncertainty in manufacturing systems 22
Uncertainty and its effects in a production system 25
Process uncertainty 27
Supply uncertainty 29
Summary 30
III. THE RESEARCH METHODOLOGY 31
A simple model 31
Performance measures 33
Description of model 35
Experimental design 36
IV. FINDINGS 51
Verification and validation 51
The base experiment results 53
Total cost analysis results 58
Customer service level analysis results 72
V. SUMMARY AND CONCLUSIONS 84
Discussion of research findings 84
Practical guidelines 86
BIBLIOGRAPHY 90
APPENDICES 94
APPENDIX A - THE NETWORK DIAGRAM 95
APPENDIX B - THE NETWORK STATEMENT MODEL 98
APPENDIX C - THE VALIDATION DATA 105
APPENDIX D - THE RESULTS FROM SIMULATION 114
APPENDIX E - THE STATISTICS FROM SAS PROGRAM FOR THE TOTAL COSTS AND CUSTOMER SERVICE LEVELS 120
APPENDIX F - THE LEAST SIGNIFICANT DIFFERENCE TEST (LSD) FOR TOTAL COSTS AND CUSTOMER SERVICE LEVELS UNDER BOTH SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTAINTY 129
APPENDIX G - THE STATISTICS RESULTS FROM SAS SYSTEM FOR THE HOLDING COSTS 135
APPENDIX H - THE STATISTICS RESULTS FROM SAS SYSTEM FOR THE STOCKOUT COSTS 142

LIST OF TABLES

Table Page
I. The Summary of Source and Type of Uncertainty 6
II. References Related to the Number of Machine Studied 40
III. Experimental Factor Alternatives Selected 44
IV. Summarized Customer Service Levels in Each Event 47
V. References Related to the Number of Replications of the Simulation Runs 50
VI. The Results of Validation 52
VII. Summary of the Average Total Cost and Customer Service for Processing time (min./unit):1 54
VIII. Summary of the Average Total Cost and Customer Service for Processing time (min./unit): UNFRM (0.75,1.25) 55
IX. Summary of the Average Total Cost and Customer Service for Processing time (min./unit): $\operatorname{UNFRM}(0.8,1.2)$ 56
X. Summary of the Average Total Cost and Customer Service for Processing time (min./unit): $\operatorname{UNFRM}(0.85,1.15)$ 57
XI. Summary of the Average Total Cost and Customer Service for Processing time (min./unit): $\operatorname{UNFRM}(0.9,1.1)$ 58
Table Page
XII. The holding Cost of each run for all Levels of Processing time 60
XIII. The SAS System: Analysis of Variance Procedure Dependent Variable: Total Cost 62
XIV. The Summary of the Total Cost Discussion When Changing the Supply Quantity Uncertainty Levels 64
XV. The Summary of the Total Cost Discussion When Changing the Process Quantity Uncertainty Levels. 66
XVI. The Summary of the Total Cost Discussion When Changing the Process Timing Uncertainty Levels 67
XVII. The Summary of the Total Cost Discussion of the Interaction between the Supply Quantity Uncertainty and Process Quantity Uncertainty 70
XVIII. The Cost Performance of the Interaction between Supply Quantity Uncertainty and Process Quantity Uncertainty (Percent Scrap) 71
XIX. Analysis of Variance Procedure Dependent Variable: Customer Service Level 74
XX. The Summary of the Customer Service Level Discussion When Changing the Supply Quantity Uncertainty Levels 76
XXI. The Summary of the Customer Service Level Discussion When Changing the Process Quantity Uncertainty Levels 77
XXII. The Summary of the Customer Service Level DiscussionWhen Changing the Process Timing UncertaintyLevels78
Table Page
XXIII. The Summary of the Results Discussion of the Interaction between the Supply Quantity Uncertainty and Process Quantity Uncertainty on the Customer Service Levels 81
XXIV. The Customer Service Level of the Interaction between Supply Quantity Uncertainty and Process Quantity Uncertainty (Percent scrap) 82
D-1. Results from Simulation: Processing Time (min./unit): 115
D-2. Results from Simulation: Processing Time (min./unit): $\operatorname{UNFRM}(0.75,1.25)$ 116
D-3. Results from Simulation: Processing Time (min./unit): UNFRM(0.8,1.2) 117
D-4. Results from Simulation: Processing Time (min./unit): UNFRM (0.85, 1.15) 118
D-5. Results from Simulation: Processing Time (min./unit): UNFRM(0.9,1.1) 119
E-1. The SAS System: Analysis of Variance Procedure Class Level Information for The Total Cost 121
E-2. The SAS System: The Multiple Comparison
Procedure for The Total cost Factor: Supply Quantity Uncertainty 122
E-3. The SAS System: The Multiple Comparison Procedure for The Total cost Factor: Process Quantity Uncertainty 123
E-4. The SAS System: The Multiple Comparison Procedure for The Total cost Factor: Process Timing Uncertainty 124
E-5. The SAS System: Analysis of Variance Procedure Class Level Information for The Customer Service Level 125
E-6. The SAS System: The Multiple Comparison
Procedure for The Customer Service Level
Factor: Supply Quantity Uncertainty 126
E-7. The SAS System: The Multiple Comparison Procedure for The Customer Service Level Factor: Process Quantity Uncertainty 127
E-8. The SAS System: The Multiple Comparison
Procedure for The Customer Service Level Factor: Process Timing Uncertainty 128
G-1. The SAS System: Analysis of Variance Procedure lass Level Information for The holding Cost 136
G-2. The SAS System: Analysis of Variance Procedure Independent Variable: Holding Cost 137
G-3. The SAS System: The Multiple Comparison Procedure for The Holding Costs Factor: Supply Quantity Uncertainty 138
G-4. The SAS System: The Multiple Comparison Procedure for The Holding Costs Factor: Process Quantity Uncertainty 139
G-5. The SAS System: The Multiple Comparison Procedure for The Holding Costs Factor: Process Timing Uncertainty 140
G-6. The Holding Costs under Supply Quantity Uncertainty and Process Quantity Uncertainty 141
H-1. The SAS System: Analysis of Variance Procedure Class Level Information for The Stockout Cost 143
H-2. The SAS System: Analysis of Variance Procedure Independent Variable: Stockout Costs 144
H-3. The SAS System: The Multiple Comparison Procedure for The Stockout Costs Factor: Supply Quantity Uncertainty 145

Table

H-4. The SAS System: The Multiple Comparison
Procedure for The Stockout Costs
Factor: Process Quantity Uncertainty 146
H-5. The SAS System: The Multiple Comparison Procedure for The Stockout Costs
Factor: Process Timing Uncertainty 147
H-6. The Stockout Costs under Supply Quantity
Uncertainty and Process Quantity Uncertainty 148

LIST OF FIGURES

Figure Page
1 Uncertainty in Manufacturing System 2
2 Schematic of Flow Shop Production Line 4
3 Transformation of Raw Materials to Finished Goods 9
4 A Manufacture Proceduring for Stock with Finite Replenishment Rate (Walters, 1992) 10
5 Physical Diagram of the System 38
6 Chart of the Total Costs Under Supply Quantity Uncertainty and Process Quantity Uncertainty (Percent Scrap) 72
7 Chart of the Customer Service Level Under Supply Quantity Uncertainty and Process Quantity Uncertainty (Percent Scrap) 83
A-1 The Network Diagram of Raw Material Arrival 96
A-2 The Main Network Diagram 97

CHAPTER I

THE PROBLEM AND ITS SETTING

Introduction

Uncertainty or variability is an attribute of change which can be planned or unplanned. It can be more or less certain. Even now, uncertainty is a real world manufacturing problem. It is a major problem that impedes manufacturing success. In manufacturing, almost nothing is perfectly predictable because of uncertain events such as machine breakdowns, material shortages, and variability in demand or supply volume. Uncertainty is one of the major problems for a firm seeking manufacturing flexibility to solve. Uncertainty directly affects the production system. It can create increasing production and inventory costs or unused capacity. For example, when uncertainty exists in manpower planning and purchasing decisions, it can create a costly instability (Ho, Law, and Rampal, 1995).

According to Vollmann, Berry, and Whybark (1992), there are two basic sources of uncertainty in manufacturing systems. The first one is demand uncertainty and the second
one is supply uncertainty. Both demand and supply uncertainty are classified into two types: quantity uncertainty and timing uncertainty.

Another view of uncertainty is to categorize it in
three basic sources: supply uncertainty, process uncertainty, and demand uncertainty. Each uncertainty is also categorized into two types: quantity uncertainty and timing uncertainty. This differs from the previous view in that it pertains to both process and supplier uncertainty. This view is adopted by Gupta and Brennan (1995). It is also the view adopted by this study. The framework of manufacturing uncertainty addressed in this study is shown in Figure 1.

Figure 1. Uncertainty in A Manufacturing System.

Uncertainty in Flow Shop Manufacturing

Flow shop manufacturing is a type of production system within which all jobs visit each machine in the same sequence. A schematic of a four machine flow shop is shown in Figure 2. Uncertainty is often present in this type of system. As show in Figure 2, supply uncertainty occurs before processing, process uncertainty occurs while operating, and demand uncertainty occurs after finishing the manufacturing processes. In this study, only supply uncertainty and process uncertainty are considered.

The quantity actually processed in a period may be greater than or less than the expected plan due to supply or process uncertainty. During processing, a machine might create scrap which is one form of process uncertainty. Scrap or rework can create a high cost in terms of increased work in process and proportional increase in the processing time and increased variability in the number of visits to each machine (Bowman, 1994).

Normally, when process and supply uncertainty exist in a production system, production costs increase because increased uncertainty in process or supply increases the need for safety stock or safety lead time to provide a high service level in terms of meeting the demand quantity without any delay. Unfortunately, protecting against
uncertainties by applying safety stock and safety lead time creates increased holding costs. Maintaining high service levels without increased holding cost thus becomes an important problem for firms and an important area for academic research.

Figure 2. Schematic of Flow Shop Production Line.

Background

Types of Uncertainty

According to Vollmann, Berry, and Whybark (1992), the sources of uncertainty in MRP are classified in two categories;

1. Supply uncertainty that relates to the scheduled receipts for a part.
2. Demand uncertainty that involves changes in the gross requirements for a part.

They further classify uncertainty into two types: quantity uncertainty and timing uncertainty. Table 1 summarizes Vollmann, Berry, and Whybark's approach to the combinations of source and type with respect to uncertainty.

Demand quantity uncertainty

Demand quantity uncertainty in an MRP based system occurs when a Master Production Schedule (MPS) quantity is increased or decreased to reflect a change in the demand forecast or customer orders. It can also occur when there are changes which impact gross requirements of lower level items.

Demand timing uncertainty

Demand uncertainty occurs when timing changes in the projected requirements from period to period. This shift might result from a change in the promise date to a customer or from a change in a planned order for a higher level item.

TABLE I

THE SUMMARY OF SOURCE AND TYPE OF UNCERTAINTY

Type	Source	
	Supply	Demand
Timing	Orders are not received when they are due because of longer supplier leadtime or manufacturing lead-time.	Requirements shift from one period to the next.
Quantity	Orders are received with quantities more or less than planned or defect rates greater than planned.	Required quantity is more or less than order quantity.

Supply quantity uncertainty

Supply quantity uncertainty typically arises when the supplier delivers items less than or greater than the order quantity or when the inventory records overstate or understate the amount of physical inventory (Etienne, 1987). Supply timing uncertainty

Supply timing uncertainty occurs when the supplier lead times are longer than planned. Therefore, when an order is released, the exact timing of its delivery is uncertain (Whybark and Williams, 1976).

Process quantity uncertainty

Process quantity uncertainty typically arises when scrap rate in a production process is greater than or less than planned (Etienne, 1987).

Process timing uncertainty

Process timing uncertainty occurs when manufacturing lead times are longer or shorter than planned. This means that there is an increase in either processing time or the number of visits to each machine (Bowman, 1994).

Customer Service Level

To assess the impact of uncertainty, measures of the service level and inventory cost are required. According to Greene (1974), customer service level can be defined by the following equation:

```
service level = (units supplied without delay) x 100
    (units required)
    = (units required - units short) x 100
    (units required)
```

According to Waters (1992), "there are several ways in which customer service level can be measured:

- percentage of orders completely satisfied from stock.
- percentage of units demanded which are met from stock.
- percentage of time there is stock available.
- percentage of stock cycles without shortages.
- percentage of item-month there is available." (p. 151).

The percentage of units demanded which are met from stock is the most common method to measure customer service level (Waters, 1992). This method is considered in this study.

Holding and stockout Cost

In a "push" production system, when raw materials from suppliers are available, the raw materials will be converted into finished goods by processing. The transformation of raw materials to finished goods is shown in Figure 3.

Figure 3: Transformation of Raw Materials to Finished Goods.

Inventory might occur anywhere through the process shown in Figure 3. Inventory may be categorized in three cases which are an accumulation of raw materials from suppliers, an in-process inventory to feed successive steps in production, or a finished goods inventory accumulated to meet customer requirements (Waters, 1992).

Consider the stock of finished goods at the end of a production line. If the rate of production is greater than actual demand, finished goods will accumulate while the line is operating. On the other hand, if the rate of production is less than actual demand, each unit of product is immediately moved to a customer and no stocks are held
(Waters, 1992). Figure 4 shows a manufacturing process producing for stock with finite replenishment rate (A) and finite demand (D). When manufacturing with rate A per unit time, the stock will build up with rate ($A-D$) per unit time to meet customer need with rate D per unit time. For periods when the amount of production quantity is greater than actual demand $\left(A_{i}>D_{i}\right)$, there is a holding cost for unused units which is $\left(A_{i}-D_{i}\right) \star H C$ per unit of time where $H C$ is holding cost per unit time. On the other hand, in periods when the amount of actual demand is greater than the produced quantity $\left(D_{i}>A_{i}\right)$, there is a shortage cost for demand not met. The shortage cost that occurs is $\left(D_{i}-A_{i}\right)$ *SC per unit time where $S C$ is the shortage cost per unit. In the periods when actual demand exactly equals expected demand $\left(A_{i}=D_{i}\right)$, there is neither a holding cost nor a stockout cost for units produced that period.

Figure 4. A Manufacturing Procedure for Stock with Finite Replenishment Rate (Waters, 1992).

According to Thomas (1980), there are four methods for determining stockout costs in production. The four cases are as follows:

1. Cost per stockout per incident.
2. Cost per unit time per stockout.
3. Cost per unit time multiplied by units out of stock per stockout.
4. Cost per unit out of stock per stockout.

Whichever is chosen, the stockout cost must be converted to an annual cost by allowing for the number of stockouts expected in a year in order to make it harmonious with the ordering and delivery cost and the inventory holding costs, assuming that all of them are based on annual periods. Cost per unit time multiplied by units out of stock per stockout is evaluated in this study.

The following example illustrates the calculation of stockout cost using each method.

Example: Assume that the stockout data collected in one year is as follows:

stockout no.	\#Of units out of stock (unit/stockout)	\# of periods out of stock (periods/stockout)
1	10	1
2	30	2
3	10	5
4	40	3
5	15	4

stockout cost per incident (\$) = 100
stockout cost per period per stockout (\$) = 10
stockout cost per period (\$)
$=2$
stockout cost per unit out of stock (\$) = 3
Thus, the stockout cost of each method is as follows.
Method 1: By using cost per stockout incident
Cost of stockout $=5$ periods/year
x $\$ 100 /$ period
$=\$ 500 /$ year
Method 2: By using cost per period per stockout
Cost of stockout $=(1 \times 1 \times 10)+(1 \times 2 \times 10)+(1 \times 5 \times 10)$

$$
+(1 \times 3 \times 10)+(1 \times 4 \times 10)
$$

$$
=\$ 150 / \text { year }
$$

Method 3: By using cost per unit time multiplied by units out of stock per stockout

Cost of stockout

$$
\begin{aligned}
= & {[(1 \times 10)+(2 \times 30)+(5 \times 10)+} \\
& (3 \times 40)+(4 \times 15)] \times 2 \\
= & \$ 600 / \text { year }
\end{aligned}
$$

Method 4: By using cost per unit out of stock per stockout Cost of stockout $=[10+30+10+40+15] \times 3$ $=\$ 315 /$ year

In conclusion, holding costs and stockout costs relate directly to manufacturing uncertainty and inventory control. The purpose of inventory control is to minimize the total cost of holding stock while maintaining customer service levels. Within this context, the following sections formally state the research considered within this thesis.

The Problem

Uncertainty is a problem in manufacturing systems which, even now, causes operations to be unsuccessful. It directly affects the production system since it creates increasing production and inventory costs. It also occurs either in flow shop manufacturing or in job shop manufacturing. When uncertainty exists in manufacturing systems, a firm must seek methods to effectively deal with it. At present, much research addresses this issue to reduce its negative impacts. Unfortunately, nearly all of the research focuses on uncertainty in job shop
manufacturing. The research reported in this study is in the general area of uncertainty related to flow shop manufacturing. Only supply uncertainty and process uncertainty are considered while the demand is fixed. The purpose of this study is to conduct a sensitivity analysis of the cost performance in terms of inventory holding costs, stockout costs, and customer service level under the combination of process and supply uncertainty in a flow shop manufacturing environment.

Research Objectives

The specific research and objectives of this study are as follows:

1. To investigate how supply and process uncertainty affect cost performance and customer service level.
2. To conduct sensitivity analysis to evaluate cost performance and customer service level under different supply and process uncertainty levels.
3. Based on this study, recommendations on guidelines for manufacturers to help them understand and be able to analyze this issue when they are confronted with these uncertainties are established. For example, when manufacturers are confronted with supply quantity and process quantity uncertainty
that occur simultaneously, guidelines will provide the appropriate recommendations to deal with the priority uncertainty that has the most negative effect on flow shop performance.

The Delimitations

- Normally, process uncertainty is caused from variance in machines, variance in tooling, set up adjustment, operators, materials, and production yield. In this study, production yield is considered as the only cause of process uncertainty.
- In manufacturing systems, supply uncertainty affects flow shop manufacturing. It is separated into two types, quantity uncertainty and timing uncertainty. In this study, only quantity uncertainty is considered. Supply uncertainty is considered when receiving quantities either less than or greater than the expected order quantity.
- Demand for finished goods is constant.
- All operations in the production line have the same mean and variance for processing times. Thus, the result is a balanced line.
- Opportunity cost is not included in this study.
- No transportation times of parts from one machine to the next are considered.
- No blocking to stop the processing of parts is allowed.
- Backorders are not allowed.

The Definitions of Terms

Uncertainty or Variability. An attribute of change which can be planned or unplanned. The change can be more or less certain (or predictable) and more or less variable. Manufacturing Lead Time. The total time required to manufacture an item from placement of an order to delivery to the customer. It is typically made up of four elements: run time, set up time, move time and queue time.

Production Plan. A plan to produce products. It links strategic goals to production and is coordinated with resource availability, sales objectives, and financial budgets for optimizing.

Master Plan Schedule (MPS): A disaggregated plan for end items or product options as offered to the customers. It provides the basis for making customer delivery promises, utilizing plant capacity effectively, and attaining the firm's strategic objectives as reflected in the production plan.

Flow Shop: A manufacturing environment in which every job must be processed on machines in the same sequence of work stations: operations, machines, and departments (Askin and Standridge, 1993).

Demand Uncertainty: A type of uncertainty wherein requirements vary randomly about some mean value. It can be categorized in two types. The first type is demand quantity uncertainty. This often occurs when forecasts are more or less than the actual demand volume. The second type is demand timing uncertainty. This often occurs when timing changes shift requirements from period to period.

Supply Uncertainty: A type of uncertainty which arises when orders are not received when due, or when the received quantity is more or less than expected. Supply uncertainty can be categorized in two types also. The first type is supply timing uncertainty. It arises from variations in shop flow time or vendor lead times. The second type is supply quantity uncertainty. This occurs when the actual quantity received is not equal to the planned receipt. It can also occur when there are shortages of lower-level materials or when production is overrun.

Safety stock: A back-up supply of products which are held to use in emergency cases. It is used to satisfy the anticipated maximum demand requirements. Safety stock is
often utilized in Material Requirements Planning (MRP) systems where the production is subject to quantity uncertainty problems. For example, safety stock can be applied when confronted with scrap quantities, spare parts demand, or other unplanned usage occurring frequently. According to Waters (1992), safety stock can be categorized in several ways such as raw materials, finished goods, spare parts, and work-in-process.

Safety Lead-time : A procedure in which shop orders or purchase orders are released to arrive one or more periods before requirements. Safety lead time is applied when the major uncertainty is about timing rather than quantity. For example, when the company buys material from vendors who often deliver late.

Holding cost : A cost which occurs when organizations carry materials or finished goods to ensure that the production will continue to function smoothly. Normally, this cost is a relatively high value, with typical costs amounting to 25% of unit cost per year (Waters, 1992).

Stockout cost : A cost which occurs when there is demand for a product whose stock has been exhausted and replenishment cannot be provided in time. In this study, stockout cost per unit is applied to stockouts.

Target customer service rate: The specified probability level that an item is supplied directly from inventory to the customer. For instance, when a company specifies a service level of 95%, it implies that there is a probability of 0.05 that a demand cannot be met from on-hand stock.

Assumptions

1. Uncertainty in a production system is a real world problem.
2. Solving this problem has value.
3. Uncertainty can occur at levels which are greater than or less than expected values.
4. Traditional MRP and MPS techniques are used to plan production.

The Importance of the Study

Uncertainty is one of the major problems which hinders the successful operation of a flow shop environment. It directly impacts the cost performance of the system by increasing inventory levels. In addition, uncertainty can cause an excessive rescheduling of open production orders.

In previous research, nearly all studies analyze the behavior of systems in terms of demand uncertainty, process uncertainty, or supply uncertainty in isolation in job
shops. Especially for demand uncertainty, there are many studies involving MRP systems in job shop manufacturing environments. For example, there are many studies concerning lot sizing rules. Similarly, there are few studies about supply uncertainty and there is still a noted gap in the literature on $M R P$ and other production systems which involve this type of uncertainty. Unfortunately, there are few research studies in flow shop manufacturing, especially, considering combinations of uncertainties. The research reported in this study is in the general area of uncertainty related to flow shop manufacturing. Only supply uncertainty and process uncertainty are considered while the demand is fixed.

This study will conduct a sensitivity analysis of the cost performance and its trend, and customer service rate under the combination of supply quantity uncertainty, process quantity uncertainty, and process timing uncertainty when varying the uncertainty intensity by using simulation in a flow shop manufacturing environment. It will provide guidelines for manufacturers to understand and to analyze this concern when they confront and deal with this problem in a production system.

CHAPTER II

THE REVIEW OF THE RELATED LITERATURE

Introduction

Uncertainty is defined as an attribute of change which can be planned or unplanned (Correa, 1994). As stated in the first chapter there are three sources of uncertainty in manufacturing: process, supply, and demand uncertainty. In addition, each source of uncertainty can be classified into two types: quantity uncertainty and timing uncertainty. This framework of uncertainty was illustrated in Figure 1 in the previous chapter.

Uncertainty affects manufacturing cost directly because firms must hold buffer stocks to ensure meeting customer requirements. In the past, most of the research attempted to minimize uncertainty's negative impacts on a job shop production system. They studied uncertainty either isolated by source and type or combined uncertainties focusing on
both timing uncertainty and quantity uncertainty.
Unfortunately, there are few research studies in flow shop manufacturing, especially, examining combinations of uncertainties.

In this study, process quantity uncertainty, process timing uncertainty, and supply quantity uncertainty are considered in a flow shop system. Sensitivity analysis is conducted to observe the cost performance in terms of holding cost, stockout cost, and customer service level under combinations of all three types of uncertainties. Simulation experiments are conducted to determine the impact of process and supply uncertainty on the cost performance and customer service level.

Buffering Mechanisms for Reducing Uncertainty in Manufacturing Systems

Some researchers attempt to reduce the system nervousness created by uncertainty. Several methods have been recommended to reduce nervousness in order to minimize its negative impacts on production systems. These methods include safety stock, safety lead-time, and safety capacity.

Safety Stock

Safety stock is often used in Material Requirements Planning (MRP) Systems where production is subjected to
quantity uncertainty problems. For instance, safety stock can be applied when confronted with scrap quantities, spare parts demand, or other unplanned usage occurring frequently (Vollmann, Berry, and Whybark, 1992). Some researchers conclude that safety stock should be applied only to compensate for forecast errors at the end-item level (Ho, Law, and Rampal, 1995). Sridharan and LaForge (1989) suggest that an increase in safety stock does not necessarily lead to a reduction in schedule instability at the MPS level.

Safety Lead-times

Safety lead time is applied when the major uncertainty is about timing rather than quantity. An example would be when a company buys materials from vendors who often deliver late. Orders from vendors are subject to timing uncertainty due to variability in both transportation times and production (Vollmann, Berry, and Whybark, 1992). Grasso and Taylor (1984) also investigate the effectiveness of using safety stock and safety lead time to deal with timing uncertainty caused by variability in the lead time of purchased items which involve multi-level product structures. They conclude that the use safety lead time is more prudent to counteract supply timing uncertainty than safety stock.

Safety Capacity

Production slack is another buffering mechanism to deal with uncertainty in an MRP system. Production slack can be created by having additional machine capacity, labor, and time. slack or safety capacity, is used to allow for increasing production in a shop. Unfortunately, it can cause an increased production cost because of the additional costs associated with slack manpower or materials (Vollmann, Berry, and Whybark, 1992; Ho, Law, and Rampal, 1995). It has been shown to be beneficial when dealing with bottleneck work centers (Ho, Law, and Rampal, 1995).

Schmitt (1984) examines the effectiveness of using net change MRP updates, safety capacity, and safety stock to deal with uncertainty in production systems. Schmitt concludes that the choice between safety capacity and safety stock represents a tradeoff between regular time employment costs and costs of material investment. This means that the cost of maintaining safety capacity and the cost of holding inventory must be carefully evaluated in order to select a suitable buffering method. He also concludes that safety capacity produces lower inventory levels than does net change MRP when large set-up or purchased lead times are employed.

Uncertainty and Its Effects in a Production System

Uncertainty and Cost Performance

Uncertainty impacts directly on cost performance. It creates an increasing cost and burden on throughput. When uncertainty exists in a production system, such as, when deliveries are late or demand is higher than expected, organizations will hold additional stocks to add a margin of safety. The larger the quantity of safety stock, the higher the probability of meeting demand and the lower the probability of shortage. This means that higher safety stocks give higher customer service levels. The more assurance of a high service level, the larger safety stock expenses become (Waters, 1992).

Sridharan and LaForge (1989) examined the effectiveness and the variability of using safety stock to reduce schedule instability at the MPS level in terms of cost and customer service levels. Sridharan and LaForge conclude that an increase in safety stock at the MPS level leads to higher customer service levels. Unfortunately, increases in safety stock always lead to higher cost penalties relative to optimal cost. Furthermore, Miller (1988) concluded that material management, inspection and stocking of incoming materials, and vendor control and assessment are more costly when the uncertainty increases. The investment required for
both processes and finished goods inventories increase due to uncertainty.

Uncertainty and Customer Service Level

Customer service level is one measurement frequently used to evaluate manufacturing performance. Normally the choice of service level is made by management. They must assess all the information available and choose appropriate levels for all items. According to Waters (1992), higher safety stocks give higher service levels and lower the probability of shortages. However, it is difficult for a firm to have a high enough level of safety stock to ensure a service level of 100% because large stock quantities can become expensive. Customer service levels are typically measured in one of two ways: 1) A percentage of replenishment order cycles in which one or more units are backordered, 2) the average length of time required to satisfy backorders (Vollmann, Berry, and Whybark, 1992).

Bowman (1994) and Sridharan and LaForge (1989) also study customer service level by measuring manufacturing performance. Sridharan and LaForge (1989) conclude that an increase in safety stock at the MPS level leads to higher customer service levels.

Process Uncertainty

Most uncertainty research has been done on process uncertainty. Gupta and Brennan (1995), focusing on a multilevel product structure environment in job shop manufacturing, study the effects of supply and process uncertainty in an MRP system. Five factors, product structure, lot sizing rule, source of lead-time uncertainty, lead-time bias factor, and holding costs, are examined to study their effect on the behavior of this system in the presence of uncertain lead-times due to unpredictability in supply and process uncertainty. The study reveals that the costs increase when the lead-time bias factor is increased, the choice of lot sizing rule impacts the cost performance regardless of the presence of lead time uncertainty, and the cost structure is influence by the product structure in the presence of the uncertainty of lead time.

Quality problems are one of the difficulties in process uncertainty which effect the manufacturing cost directly because more capacity is needed for rework and extra production to replace scraps. Bowman (1994) states that there is a relationship between quality and manufacturing cost, the percent scraps, and inventory cost in a production line. When a process is faced with a high percent of scrap
because of poor quality, the firm will be confronted with a high inventory cost.

One way to reduce inventory levels is to reduce process variability. Process variability can be reduced in two ways: reducing the length of the line by reducing the labor or machine content of the product through product redesign, or by reducing the process time variation (Crandall and Burwell, 1993). Machines are one of the important factors in production systems. If they have good efficiency for operating, production yield will increase. On the other hand, if they have low operating efficiency, they may not produce product in sufficient quantities or with sufficient quality. Klastorin, Matheson, and Moinzadeh (1993) stated that when machines are unreliable, producing quality products becomes a problem.

One way to address the problem when machines are unreliable is to buffer inventory at machines which immediately follow the unreliable machines. In this case, the buffer can help to minimize the effects of unreliable machines on the next stage of the production.

Supply Uncertainty

There are two uncertainty cases for supply uncertainty: timing uncertainty and quantity uncertainty. According to Whybark and Williams(1976), supply timing uncertainty is in vendor lead-time for outside purchases. It is a variability in both production and transportation time. Timing uncertainty can be handled by planning the material deliveries earlier than the normal need (safety lead times).

Safety stock is needed when supply does not match
demand. If either supply or demand uncertainty is increased, the need for safety stock is also increased (Bowman, 1994). Etienne (1987) studied the optimal buffering strategies under uncertainties in an MRP environment. He reveals that there are three approaches to deal with the buffering problem in MRP and minimize the cost of dealing with uncertainty. The first approach is a safety lead-time. Safety lead time is preferable for the timing uncertainty case. The second approach is a service level model. High service levels favor safety stock, while low service levels favor safety lead time. The third approach deals with timing and quantity uncertainty which occur simultaneously. To deal with both quantity and timing uncertainty he suggests building safety stock for quantity
uncertainty and then applying safety lead-time to the augmented order.

Summary

It can be seen that uncertainty acts on a real world manufacturing system, flow shop or job shop system. When uncertainty exists in the manufacturing system, firms have problems to address, especially, manufacturing costs and customer service. The behaviors of the combinations of all uncertainties on cost performance and customer service levels remain an important area for research. It is distinctive that this study will consider the cost performance and customer service level of a flow shop under the combination of supply and process uncertainty. This study will determine the relationship between cost performance and customer service level and uncertainties, supply and process uncertainties, when they exist within a flow shop.

CHAPTER III

THE RESEARCH METHODOLOGY

A Simple Model

In this study, three uncertainties are considered to determine cost performance by considering holding and stockout costs and customer service level. As shown in Figure 2 in Chapter 1, a schematic of a four machine flow shop, uncertainty is often present in this type of system and also can occur anywhere through the manufacturing system. The three uncertainties considered in this study are supply quantity uncertainty, process quantity uncertainty, and process timing uncertainty.

Process Quantity Uncertainty

Process uncertainty can be caused by the variances in machining time, variances in tooling, set up adjustments, operators, materials, and production yields (Crandall and

Burwell, 1993). In this study, production yield is the only cause considered for process quantity uncertainty.

Process Timing Uncertainty

Process timing uncertainty occurs when manufacturing cycle times are longer or shorter than planned. Process timing uncertainty based on uniformly distributed processing times is considered in this study. The same mean processing time and the same distribution is assumed for all machines. A uniform distribution is suitable for simple processes which have no special causes that could enlarge the period of the time (Crandall and Burwell, 1993).

Supply Ouantity Uncertainty

Two cases related to receiving uncertain raw material quantities from suppliers will be evaluated in this study. These cases can be either less than or greater than expected order quantity.

1. When raw materials received are greater than actual order quantity, the production process will produce finished goods at a greater level than planned in the MPS assuming scrap losses occur at anticipated levels. The result is that the finished stock level is higher than expected. In
this case, the high stock levels cause unnecessary holding costs for unused units.

Thus, the holding cost $=(\mathrm{A}-\mathrm{D}) * \mathrm{HC}$
Where

```
A = Actual of quantity finished goods from
    production (units)
D = Actual demand (units)
HC= Holding cost ($/unit/period)
```

2. When raw materials received are less than the order quantity, production will produce less finished goods than planned in the MPS assuming scrap losses occur at anticipated levels. The result is that the firm will experience shortage costs because it cannot meet customer demand.

Thus, the shortage cost $=(D-A) * S C$
Where $\quad S C=$ shortage cost (\$/unit)

Performance Measures

In this study, three measures: customer service level, holding cost, and stockout cost, are used to evaluate manufacturing performance.

Customer Service Level

Customer service level is defined as the proportion of units supplied without delay to total units required. It can also be expressed as a percentage.

For example: Units supplied without delay $=90$ units Units demanded $=100$ units

Thus,

$$
\begin{aligned}
\text { Service level } & =(90 / 100) \times 100 \\
& =90 \%
\end{aligned}
$$

Holding Cost

Inventory holding costs are those costs which are directly attributable to the amount of increase in on-hand inventory and the time for which inventoried parts are held (Reisman, et al., 1972).

For periods when the amount of production quantity is greater than actual demand, there is a holding cost for unused units which is $\left(A_{i}-D_{i}\right) * H C$ per unit time.

Where $\quad A_{i}=$ manufacturing rate in each period (units)
$D_{i}=$ demand rate in each period (units) HC = holding cost (\$/unit/period)

Stockout Cost

In periods when the amount of actual demand is greater than the produced quantity, there is a shortage cost for demand not met. In this study, the shortage cost is lost sales because customers will withdraw their orders and go to another supplier.

Thus; the shortage cost that occurs is $\left(D_{i}-A_{i}\right)$ *SC per unit time.

Where $\quad S C=$ shortage cost per unit
Both holding cost and stockout cost must account for inventory available from previous periods. A detailed example which demonstrates this concept is provided in a later section of this chapter.

Description of the Model

The manufacturing system modeled is a flow shop. In a flow shop, a job is processed through a fixed sequence of operations.

For the flow shop considered in this study, the following assumptions are made.

- Set up time for all machines is zero.
- The demand for finished goods per period is constant.
- No machine breakdowns occur.
- All machines have the same processing distribution, the same mean processing time and the same processing time variance.
- Plant capacity is sufficient to produce demanded products in each period.
- Buffers between machines have unlimited capacity.
- No transportation times of parts from one machine to the next are considered.
- No blocking to stop the processing of parts is allowed.
- The jobs arriving to the process are sequenced based on the First In-First Out (FIFO) procedure.
- There are fifty-two working days per year, there are five working days per week, and there are eight working hours per day.

Experimental Design

The System Description

A simulation model is constructed using SLAM II
(Pritsker, 1995). The simulated flow shop consists of four single-machine workcenters which produce a single finished product. The experimental factors and their levels are described below.

The demand input to the simulation flow shop model is the finished goods consumption rate based on customer demand. It is a constant in this study; 300 units per day.

In these experiments, uncertainty levels are varied to examine their effects on holding costs, stockout costs, and customer service levels. Only one product is considered in these experiments and its routing visits all machines in machine numeric order. Raw material arrives at the rate of one batch per day with a mean quantity of 300 units/batch and a deviation from the mean which is a sample from a normal distribution with parameters which vary according to intensity level of supply quantity uncertainty. The required individual processing time for each unit at each machine is determined by independently sampling from uniform distributions, each with the same mean and variance.

It is assumed that production will process all materials received from suppliers. Thus, the system can be classified as a "push" system. The suppliers deliver raw materials on time but not certain in quantity. As soon as raw materials are available, the production system starts to produce products. In the production line, there are four single-machine workcenters and the parts move individually from one machine to the next. It is assumed that each machine creates scrap independently. After processing at each machine, a part will be determined to be a scrap if the
random number from simulation program (SLAM II) is less than the experimental percent scrap level.

After production is completed, at the end of each day, available finished goods are shipped immediately to meet customer demand. Costs in terms of inventory carrying costs and stockout costs and customer service rate are calculated. The diagram of the physical system of the flow shop in this study is shown in Figure 5.

Figure 5. Physical Diagram of the System.

Consider the stock of finished goods at the end of a production line in each day. If finished goods available from production (current day plus previous day surpluses) are greater than actual demand, the firm must deal with a cost for holding products which are not used but are held to service demand in future days. On the other hand, if finished goods available from production plus any prior
surplus production are less than actual demand, the firm must deal with a shortage cost for demand not met which is lost sales.

In addition, customer service rate which is defined as the proportion of units supplied without delay is calculated for each case in this study.

The Experimental Factors and Levels

To study the behavior of the system in terms of total cost and customer service level under the combination of process and supply uncertainties, the simulation model will be exercised to investigate the influence of the following experimental factors and levels.

1. Number of Machines

The number of machines represents a measure of the complexity of a flow shop environment. In this study, only one level is studied, four single-machine workcenters. A review of the literature shows that the number of machines used in nearly all research is less than ten single-machine workcenters. Several selected references related to the number of machine studied are shown in Table II. Four machines were selected for this study to maintain the focus on uncertainty levels rather than on shop size.

Additionally, the four machine shop is the least complex modeling effort.

TABLE II

REFERENCES RELATED TO THE NUMBER OF MACHINES STUDIED

Numbers of machine pattern (machines)	Reference
4	Crandall and Burwell (1993)
6	
8	Yang and Sum (1994)
9	

2. Process uncertainty and pattern

Processing time is one of the essential factors considered. In this study, process quantity uncertainty is caused by the production yield. The same mean processing time and the same process distribution is assumed for all machines. These experiments consider five processing time levels for a product in each machine. The first one is a constant processing time with zero variation which is used for a reference point. The constant is 1.00 minute per unit per machine. The other processing times are drawn by
sampling from four different uniform distributions which are $(0.75,1.25),(0.80,1.20),(0.85,1.15)$ and $(0.90,1.10)$. These distributions were also utilized in the studies by Crandall and Burwell(1993), Benton(1993), and Bowman(1994).

Percent scrap represents a process quantity uncertainty. In this study, the scrap levels are varied to investigate their effects. It is assumed that scrap is detected after every machine and the scrap rate is assumed equal for all machines. Three levels of percent scrap, $0.0 \%, 0.5 \%$, and 1.0% in each machine, are evaluated in this study. These levels were also considered by Bowman(1994), who studied six single-machine workcenters in series.

3. Supply Uncertainty

In this study, supply uncertainty occurs when the quantity delivered is either less than or greater than the order quantity. The mean of supply quantity is assumed to be equal to the actual order quantity but the standard deviation of the supply quantity is varied. Two levels of the standard deviation are evaluated in this study. Variations from the mean are generated from a Normal distribution with mean zero and standard deviations of $50^{1 / 2}$ and $100^{1 / 2}$ units. They can be presented as Normal (0,50) and Normal (0,100).

4. Cost Structure

- Holding Cost

In this study, there is only one level of the holding costs. It is fixed at $\$ 0.50$ per unit per day.

- Stockout cost per unit:

There is only one level of stockout cost per unit. The stockout cost per unit is $\$ 0.50$ per unit.

The following example illustrates how to calculate the holding costs and the stockout costs.

Example:

Day no.	Finished goods ${ }^{(1)}$ (units)	Demand (units)	Holding costs (\$)	Accumu lated holding costs (\$)	Stockout costs (\$)	Accumu- lated stockout costs (\$)
I	310	300	5	5	-	-
2	350	300	30	35	-	-
3	200	300	-	35	20	20
4	250	300	-	35	25	45

From this example, the holding costs and stockout costs at the end of the fourth day are $\$ 35$ and $\$ 45$, respectively.

Note: (1) The finished goods shown in this example are calculated based on random raw material quantities, processing times, and percent scraps.
(2) Holding cost $=[(350-300) * 0.50]+10 * 0.50$ for day no. 2
$=\$ 30$
(3) Stockout cost $=[(300-200)-60] * 0.50$ for day no. 3
$=\$ 20$

5. Summary

Table III summarizes the experimental factors and levels used in this study.

Simulation Model

A SLAM II simulation model is developed to generate the experimental data. In this study, the objective is to study the sensitivity of manufacturing performance in terms of holding costs, stockout costs, and customer service rate. To evaluate the sensitivity of the holding and stockout costs and customer service level, two models are built. The first will describe the system as it would operate in an ideal situation with no uncertainty in production: no scrap and exact supply quantity. This model will act as the

TABLE III

EXPERIMENTAL FACTOR ALTERNATIVES SELECTED

Factors	No. of levels	Pattern and Level Values
1. No. of machines (machines)	1	4
2. Supply (units)	3	300 $300+$ normal $(0,50)$ $300+\operatorname{normal}(0,100)$
3. Process (in terms of percent scraps in each machine)	3	$\begin{aligned} & 0 \% \\ & 0.5 \% \end{aligned}$ 1%
4. Processing Time in each machine (min./unit)	5	1 $\operatorname{UNFRM}(0.75,1.25)$, $\operatorname{UNFRM}(0.80,1.20)$, $\operatorname{UNFRM}(0.85,1.15)$, $\operatorname{UNFRM}(0.90,1.10)$
5. Holding cost (\$/unit/day)	1	0.50
6. Stockout cost per unit (\$/unit)	1	0.50

reference model. The second model model (an extension of the first model) will examine the system under uncertainty. It permits a parametric revision to study the uncertainty cases.

Cost Performance

For each case studied, cost performance in terms of holding and stockout costs will be calculated based on all uncertainties. Total costs at the end of simulated period can be calculated as follows.

Total cost (TC) = Accumulated holding costs (\$)+ Accumulated stockout costs (\$)

Thus;

$$
T C=C_{h}+C_{s}
$$

Total carrying costs $\left(C_{h}\right)=\sum_{i=1}^{n} I_{i} * H C$

$$
=\sum_{i=1}^{n} \max \left\{I_{i-1}+\left(A_{i}-D\right), 0\right\} * H C
$$

Where

$$
\begin{aligned}
I_{i}= & \text { Inventory quantity at the end of period i } \\
& \text { (units) } \\
I_{0}= & \text { Initial inventory }=0 \text { unit } \\
A_{i}= & \text { Actual quantity of finished goods from } \\
& \text { production in each period time (units) } \\
D= & \text { Actual demand (units) } \\
H C= & \text { Holding cost (\$/unit/day) }
\end{aligned}
$$

```
i = Period number in simulated time (day).
```

Total stockout costs $\left(C_{s}\right)=\sum_{i=1}^{n} S T K_{i} * S C$

$$
=\sum_{i=1}^{n} \max \left\{D-A_{i}-I_{i-1}, 0\right\} * S C
$$

Where

```
STK
SC = Stockout cost ($/unit)
```

Thus;

$$
\begin{aligned}
\text { Total costs }= & C_{h}+C_{s} \\
= & \sum_{i=1}^{n} \max \left\{I_{i-1}+\left(A_{i}-D\right), 0\right\} * H C+ \\
& \sum_{i=1}^{n} \max \left\{D-A_{i}-I_{i-1}, 0\right\} * S C
\end{aligned}
$$

Customer Service Level

As described in the first chapter, the customer service level can be calculated in the following way.

```
service level = (units supplied without delay) x 100
                                    (units required)
```

 \(=\frac{\text { (units required - units short) } \times 100}{\text { (units required) }}\)
 Customer service level for each possible case can be calculated as shown in Table IV.

TABLE IV

SUMMARIZED CUSTOMER SERVICE LEVELS IN EACH EVEN'T

Cases	Events	Explanations	Customer service level (\%)
1. Zero On hand inventory $\left(I_{n-1}=0\right)$ 2. Positive on hand inventory $\left(I_{n-1}>0\right)$	- Demand is met. -Demand cannot be met. - Demand is met.	-Actual quantity of finished goods (A_{n}) is greater than or equal to demand rate (D). -Actual quantity of finished goods $\left(A_{n}\right)$ is less than demand rate (D). -Actual quantity of finished goods (A_{n}) is less than demand rate (D) but actual quantity of finished goods (A_{n}) plus on hand inventory (I_{n-1}) is greater than demand rate (D) .	$\left(\mathrm{A}_{n} / \mathrm{D}\right) * 100$ 100

TABLE IV (continue)

Cases	Events	Explanations	Customer service level (\%)
	- Demand is met. - Demand cannot be met	-Actual quantity of finished goods (A_{n}) is greater than demand rate (D). - Actual quantity of finished goods (A_{n}) plus on hand inventory (I_{n-1}) is still less than demand rate (D).	$\left[\left(A_{n}+I_{n-1}\right) * 100\right] / D$

From Table IV, the formula to calculate customer service level is shown as follows.
$\operatorname{CUST}_{i}=\left[\begin{array}{l}\left.\left.\min \left[\left(A_{i}+I_{i-1}\right) \star I 00\right] / D, 100\right], n \ni I_{n-1}>0\right] \\ \left.\min \left[\left(A_{i} * 100\right) / D, 100\right], n \ni I_{n-1}=0\right]\end{array}\right.$
Thus;

$$
\operatorname{ACUST}=\sum_{i=1}^{N} \operatorname{CUST}_{\mathrm{i}} / \mathrm{N}
$$

Where

$$
\begin{aligned}
\mathrm{CUST}_{i}= & \text { Customer service level for day } i(\%) \\
\text { ACUST }= & \text { Average customer service level at the end } \\
& \text { of } \mathrm{N} \text { simulated days. }
\end{aligned}
$$

Five simulation replications will be made for each combination. A review of the literature shows that the number of replications used in nearly all research is five. Several selected references related to the number of replications of the simulation runs are shown in Table V. To ensure that the steady state performance of the system is being considered, it is necessary to eliminate the data from the initial part of the simulation run. In each run, the system simulation experiment is for 650 days (or 312,000 minutes). In order to ensure steady state conditions, the results presented are based on the last 500 days (or 240,000 minutes) of simulation output. The output generated from the first 150 days (or 72,000 minutes) simulation is eliminated.

This procedure generates a total of forty five averages for each performance measure, each based on five replications.

3	levels of process uncertainty
$\times \quad 3$	levels of supply quantity uncertainty
$\times \quad$5 45	levels of processing time
$\times \quad 5$	replications per cell
$\boxed{225}$	simulation runs

TABLE V

REFERENCES RELATED TO THE NUMBER OF REPLICATIONS OF THE SIMULATION RUNS

Number of Replications	Reference
5	Kropp, Carlson, and Juker (1983)
5	Sridharan and Berry (1990) (1989)
5	
5	

CHAPTER IV

FINDINGS

Verification and Validation

The computer model results are tested to ensure that the model corresponds accurately to the intended system. Manual calculations are performed to trace the model and verify that the model performs as intended.

To verify that the simulation model performs as intended, four test cases are evaluated. There is a 25-day simulated time in each case. The results of these experiments are shown in Table VI and the data from running the simulation to test the verification is shown in Appendix C. Given that the performance measures for the computer model and manual calculations match each other, the model is considered to be verified.

Validation is not a significant issue in this study since there is no real system against which to validate the model.

TABLE VI

THE RESULTS OF VERIFICATION

$00^{*} 66$	0＊＊66	os＇te	0s＊ 5	0s． 6	0s． 6	00＊22	$00 \% 22$	（sz＇t＇gl．0）Wadnn \％I dexos sqụun 0te $\kappa_{\text {Tddns }}$
$00 \cdot \angle 6$	00\％ 26	OS．ヵてT	05＊\ddagger ¢	0s：0］	OS．0T	00・ヵt！	00＊もLI	（sz．t．sL．0）wagnn әuṬI 6uṭssəวロォd \％ 0 dexps （0T＇0）WHON＋ şțun 00\＆Ktađns
00．00	00．001	00＊s29＇t	00＊sz9＇t	00＊sz9＇t	00＊sz9＇t	00.0	00.0	```(5z't'gL.0) WaHNn әш!̣\| butssemoxa % 0 dexos szṭun 0t\varepsilon Ktdans```
00＊00T	00．001	00%	$00 \cdot 0$	$00^{\circ} 0$	$00 \cdot 0$	00.0	00×0	 \％ 0 dexas sfțun 00\＆Ktddns
NOTL甘TกつTVO T४חNYW	II Wษ1s	NOILYTROTE тษクN甘W	II W甘TS	NOIIせTNアTシจ THONVW	II W甘TS		II WU＇S	
（\％）［əлөT］ хวแ๐วราว	pinxas ехәлу	（\＄）7502 โセプ」 рәา	бuтpton numnosy	（\＄） 7805 	бuṭptor numosy	（\＄） 7800 โеэои рәз	yous numnow	asw

The Base Experiment Results

Data was collected for the cost performance and customer service levels from 45 combinations. Each combination was formed from the following three factors:

1. Supply Quantity, 3 levels;
2. Percent Scrap, 3 levels;
3. Processing Time, 5 levels.

Statistical estimates of the treatment combination means of the performance measurements represent the measures of the impact of the various factors on the system performances. The two system performance measures used in this study are total cost (holding cost plus stockout cost) and customer service level.

Appendix D reflects the detailed experimental results which are summarized (in Tables VII through XI) and analyzed in the sections which follow. These tables contain 3 levels of percent scrap, 3 levels of supply quantity, and 5 levels of processing time. The details of the factors were presented earlier in Table III.

TABLE VII

SUMMARY OF THE AVERAGE TOTAL COST AND CUSTOMER SERVICE
FOR PROCESSING TIME (MIN./UNIT): 1.00

Supply Condition	Percent Scrap (\%)		
	0.0\%	0.5\%	1.0\%
- no variation : 300+no error term - acc.total stockout cost(\$) - acc.total holding cost (\$) - acc.total costs (\$) - Customer service rate (\%)	$\begin{gathered} 0.00 \\ 0.00 \\ 0.00 \\ 100.000 \end{gathered}$	$\begin{gathered} 1,488.00 \\ 0.00 \\ 1,488.00 \\ 98.011 \end{gathered}$	$\begin{gathered} 2,957.10 \\ 0.00 \\ 2,957.10 \\ 96.049 \end{gathered}$
- MEDIUM VARIATION: $300+$ norm $(0,50)$ - acc.total stockout cost (\$) - acc.total holding cost(\$) - acc.total costs (\$) - CuStomer service rate (\%)	$\begin{gathered} 8.00 \\ 39,604.30 \\ 39,612.30 \\ 99.989 \end{gathered}$	$\begin{gathered} 1,370.90 \\ 447.00 \\ 1,817.90 \\ 97.167 \end{gathered}$	$\begin{gathered} 2,843.20 \\ 68.30 \\ 2,911.50 \\ 96.594 \end{gathered}$
- high variation : $300+$ norm $(0,100)$ - acc.total stockout cost (\$) - acc.total holding cost(\$) - acc.total costs (\$) - Customer service rate (\%)	$\begin{gathered} 22.70 \\ 42,692.00 \\ 42,714.70 \\ 99.970 \end{gathered}$	$\begin{gathered} 1,374.20 \\ 1,117.70 \\ 2,491.90 \\ 98.162 \end{gathered}$	$\begin{gathered} 2,845.40 \\ 228.90 \\ 3,074.30 \\ 96.195 \end{gathered}$

SUMMARY OF THE AVERAGE TOTAL COST AND CUSTOMER SERVICE FOR PROCESSING TIME (MIN./UNIT): $\operatorname{UNFRM}(0.75,1.25)$

Supply Condition	Percent Scrap (\%)		
	0.0\%	0.5\%	1.0\%
- no variation: $300+$ no error term - acc.total stockout cost(s) - acc.total holding cost(\$) - acc.total costs (\$) - CuStomer service rate (\%)	$\begin{gathered} 0.00 \\ 0.00 \\ 0.00 \\ 100.000 \end{gathered}$	$\begin{gathered} 1,474.71 \\ 0.00 \\ 1,474.71 \\ 98.030 \end{gathered}$	$\begin{gathered} 2,957.10 \\ 0.00 \\ 2,957.10 \\ 96.051 \end{gathered}$
- medium variation: $300+$ norm $(0,50)$ - acc.total stockout cost (s) - acc.total holding cost (\$) - acc.total costs (\$) - Customer service rate (\%)	$\begin{gathered} 8.00 \\ 36,604.30 \\ 39.612 .30 \\ 99.989 \end{gathered}$	$\begin{gathered} 1,369.00 \\ 445.60 \\ 1,814.60 \\ 98.169 \end{gathered}$	$\begin{gathered} 2,856.40 \\ 58.30 \\ 2,914.70 \\ 96.183 \end{gathered}$
- high variation: $300+$ norm $(0,100)$ - acc.total stockout cost (\$) - acc.total holding cost (s) - acc.total costs(\$) - Customer service rate (\%)	$\begin{gathered} 22.70 \\ 4,2692.00 \\ 4,2714.70 \\ 99.970 \end{gathered}$	$\begin{gathered} 1,374.00 \\ 1,129.00 \\ 2,503.00 \\ 98.162 \end{gathered}$	$\begin{gathered} 2,845.70 \\ 223.00 \\ 3,068.70 \\ 96.146 \end{gathered}$

TABLE IX

SUMMARY OF THE AVERAGE THE TOTAL COST AND CUSTOMER SERVICE FOR PROCESSING TIME (MIN./UNIT): $\operatorname{UNFRM}(0.8,1.2)$

Supply Condition	Percent Scrap (\%)		
	0.0\%	0.5\%	1.0\%
- no variation: $300+$ no error term - acc.total stockout cost(\$) - acc.total holding cost(\$) - acc.total costs (\$) - customer service rate (\%)	$\begin{gathered} 0.00 \\ 0.00 \\ 0.00 \\ 100.000 \end{gathered}$	$\begin{gathered} 1,484.00 \\ 0.00 \\ 1,484.00 \\ 98.020 \end{gathered}$	$\begin{gathered} 2,958.50 \\ 0.00 \\ 2,958.50 \\ 96.050 \end{gathered}$
- medium variation: $300+$ norm $(0,50)$ - acc.total stockout cost(\$) - acc.total holding cost(\$) - acc.total costs(s) - CuStomer service rate (\%)	$\begin{gathered} 8.00 \\ 39,604.30 \\ 39,612.30 \\ 99.989 \end{gathered}$	$\begin{gathered} 1,354.60 \\ 459.30 \\ 1,813.90 \\ 98.174 \end{gathered}$	$\begin{gathered} 2,831.70 \\ 61.500 \\ 2,893.20 \\ 96.215 \end{gathered}$
- high variation: $300+$ norm $(0,100)$ - acc.total stockout cost(\$) - acc.total holding cost(s) - acc.total costs (\$) - customer service rate (\%)	$\begin{gathered} 22.70 \\ 42,692.00 \\ 42,714.70 \\ 99.970 \end{gathered}$	$\begin{gathered} 1,368.90 \\ 1,152.90 \\ 2,521.80 \\ 98.170 \end{gathered}$	$\begin{gathered} 2,853.50 \\ 226.70 \\ 3,080.20 \\ 96.186 \end{gathered}$

TABLE X

SUMMARY OF THE AVERAGE TOTAL COST AND CUSTOMER SERVICE FOR PROCESSING TIME (MIN./UNIT): $\operatorname{UNFRM(0.85,1.15)~}$

Supply Condition	Percent Scrap (\%)		
	0.0%	0.5%	1.0%
- NO VARIATION: 300+NO ERROR term - acc.total stockout cost (\$) - acc.total holding cost (\$) - acc.total costs(\$) - CUSTOMER SERVICE RATE(\%)	$\begin{gathered} 0.00 \\ 0.00 \\ 0.00 \\ 100.000 \end{gathered}$	$\begin{gathered} 1,481.20 \\ 0.00 \\ 1,481.20 \\ 98.061 \end{gathered}$	$\begin{gathered} 2,958.40 \\ 0.00 \\ 2,958.40 \\ 96.049 \end{gathered}$
- MEDIUM VARIATION: $300+$ norm $(0,50)$ - acc.total stockout cost(\$) - acc.total holding cost (\$) - acc.total costs (\$) - CUSTOMER SERVICE RATE(\%)	$\begin{gathered} 8.00 \\ 39,604.30 \\ 39,612.30 \\ 99.989 \end{gathered}$	$\begin{gathered} 1,364.80 \\ 455.10 \\ 1,819.90 \\ 98.175 \end{gathered}$	$\begin{gathered} 2,838.70 \\ 63.40 \\ 2,902.10 \\ 96.207 \end{gathered}$
- high variation: $300+$ norm $(0,100)$ - acc.total stockout cost (\$) - acc.total holding cost (\$) - acc.total costs(\$) - Customer service rate (\%)	$\begin{gathered} 22.70 \\ 42,692.00 \\ 42,714.70 \\ 99.970 \end{gathered}$	$\begin{gathered} 1,371.90 \\ 1,128.90 \\ 2,500.80 \\ 98.164 \end{gathered}$	$\begin{gathered} 2,847.30 \\ 217.80 \\ 3,065.10 \\ 96.193 \end{gathered}$

TABLE XI

SUMMARY OF THE AVERAGE THE TOTAL COST AND CUSTOMER SERVICE FOR PROCESSING TIME (MIN./UNIT) : $\operatorname{UNFRM}(0.9,1.1)$

Supply Condition	Percent Scrap (\%)		
	0.0%	0.5\%	1.0\%
- NO VARIATION: $300+\mathrm{NO}$ ERROR tERM - acc.total stockout cost (\$) - AcC.total holding cost (\$) - acc.total costs (\$) - CUSTOMER SERVICE RATE(\%)	$\begin{gathered} 0.00 \\ 0.00 \\ 0.00 \\ 100.00 \end{gathered}$	$\begin{gathered} 1,480.10 \\ 0.00 \\ 1,480.10 \\ 98.023 \end{gathered}$	$\begin{gathered} 2,956.20 \\ 0.00 \\ 2,956.20 \\ 96.05 \end{gathered}$
- medium variation: $300+$ norm $(0,50)$ - acc.total stockout cost (\$) - acc.total holding cost(s) - acc.total costs (\$) - customer service rate (\%)	$\begin{gathered} 8.00 \\ 39,604.30 \\ 39,612.30 \\ 99.989 \end{gathered}$	$\begin{gathered} 1,368.20 \\ 464.80 \\ 1,833.00 \\ 98.210 \end{gathered}$	$\begin{gathered} 2,839.80 \\ 63.20 \\ 2,903.00 \\ 96.204 \end{gathered}$
- high variation: $300+$ norm $(0,100)$ - acc.total stockout cost(\$) - acc.total holding cost (s) - acc.total costs (s) - customer service rate (\%)	$\begin{gathered} 22.70 \\ 42,692.00 \\ 42,714.70 \\ 99.970 \end{gathered}$	$\begin{gathered} 1,372.30 \\ 1,187.80 \\ 2,560.10 \\ 98.184 \end{gathered}$	$\begin{gathered} 2,854.40 \\ 233.50 \\ 3,087.90 \\ 96.184 \end{gathered}$

Total Cost Analysis Results

From Tables D1-D5 (in appendix D), it can be observed that when percent scrap is 0% for both the medium variation and the high variation in supply quantity $(300+\operatorname{NOR}(0,50)$
and $300+\operatorname{NORM}(0,100)$, respectively), the holding cost for each run varies widely. This is due to the amount of variation of supply and the point in simulated time at which the variation occurs. If raw materials are released in a high volume during the early days, the holding cost will be become and remain high due to high inventories. Table XII illustrates this wide variation of the holding costs of each run for five levels of process timing uncertainty
(processing time). From table XII, the mean and standard deviation of the total cost are $\$ 39,612.30$ and $\$ 15,603.47$ for the medium variation in supply quantity case and $\$ 42,714.7$ and $\$ 18,128.18$ for the high variation in supply quantity case. The mean and standard deviation of customer service level for the medium variation in supply quantity are 99.990% and 0.017% and 99.970% and 0.037% for the high variation in supply quantity case. The 95\% confidence interval of the total cost and customer service level for the medium variation in supply quantity case are from $\$ 22,697.30$ to $\$ 57,127.29$ and from 99.97% to 100%, respectively. The 95% confidence interval of the total cost and customer service level for the high variation in supply quantity case are from $\$ 21,871.17$ to $\$ 63,558.23$ and from 99.93% to 100%, respectively.

TABLE XII

THE HOLDING COSTS OF EACH RUN FOR ALL LEVELS OF PROCESSING TIME

Supply Condition	Percent Scrap 0%				
	1	2	3	4	5
MEDICM VARIATION: $300+$ norm $(0,50)$ - acc.total stockout cost(\$) - acc. total holding cost(\$) - acc. Total costs (\$) - customer service rate (\%)	$\begin{gathered} 30.50 \\ 42,989.00 \\ 43,019.50 \\ 99.960 \end{gathered}$	$\begin{gathered} 0.00 \\ 35,603.00 \\ 35,603.00 \\ 100.000 \end{gathered}$	$\begin{gathered} 9.50 \\ 14,698.00 \\ 14,707.50 \\ 99.988 \end{gathered}$	$\begin{gathered} 0.00 \\ 51,800.50 \\ 51,800.50 \\ 100.000 \end{gathered}$	$\begin{gathered} 0.00 \\ 52,931.00 \\ 52,931.00 \\ 100.000 \end{gathered}$
- high variation: $300+$ norm $(0,100)$ - acc.total stockout cost(\$) - acc.total holding cost(s) - acc.total costs (\$) - customer service rate(\%)	$\begin{gathered} 62.00 \\ 50,854.50 \\ 50,916.50 \\ 99.917 \end{gathered}$	$\begin{gathered} 0.00 \\ 32,062.50 \\ 32,062.50 \\ 100.000 \end{gathered}$	$\begin{gathered} 42.50 \\ 16.79 \\ 16,833.50 \\ 99.944 \end{gathered}$	$\begin{gathered} 0.00 \\ 51.285 .50 \\ 51285.50 \\ 100.000 \end{gathered}$	$\begin{gathered} 9.00 \\ 62,466.50 \\ 62,475.50 \\ 99.988 \end{gathered}$

The total cost performance ANOVA results are presented in Table XIII. The R-square, which is a measure of how well the model fits data, is 0.839 . The R-square is a high value which means that the model fits the data quite well. The ANOVA results show that main effect supply quantity uncertainty, the main effect process quantity uncertainty (percent scrap), and the interaction between supply quantity uncertainty and process quantity uncertainty are significant at the 0.05 level. This is indicated because their probability of being greater than the F -test values is less
than the 0.05 level (Pr>F=0.0001). This can be interpreted to mean that supply quantity uncertainty, process quantity uncertainty, and the interaction between these factors significantly change the total cost. Process quantity uncertainty is the most significant factor affecting the total cost performance because its F-test is the highest value (F value $=245.75$) . This means that when process quantity uncertainty is applied, it will cause a larger expected change in the expected value of total costs than the other factors. The next most influential factor is supply quantity uncertainty which has an F value of 77.18. The process timing uncertainty factor (processing time) is not significant at the 0.05 level. This is indicated by its probability of being greater than the F value being 1.00 or 100%.

The F-tests (ANOVA) presented so far test whether statistically significant differences exist among the means of total cost under different treatment combinations, but they do not indicate whether the average total cost of one group (or each combination) differs significantly from another average total cost group (or another combination). Least Significant Difference tests (LSD) and Bonferroni (Dunn) T tests are performed to test these multiple comparisons.

THE SAS SYSTEM : ANALYSIS OF VARIANCE PROCEDURE DEPENDENT VARIABLE: TOTAL COST

| Source | DF | Sum of Squares | Mean Square | F Value | Pr > F |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | 44 | 9620047495.6399 | 1355001079.44636 | 21.32 | 0.0001 |
| Error | 180 | 11442520460.800 | 63569558.11556 | | |
| Corrected | 224 | 71062567956.440 | | | |
| Total | | | | | |

R-Square	C.V.	Root MSE	COST Mean
0.838980	73.90709	7973.05199504	10787.94000000

Source	DF	Anova SS	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
SUPPLY	2	9813111691.760	4906555845.880	77.18	0.0001
SCRAP	2	31244890128.407	15622445064.203	245.75	0.0001
SUPPLY*SCRAP	4	18562021112.633	4640505278.158	73.00	0.0001
PROCTIME	4	3389.296	847.324	0.00	1.0000
SUPPLY*PROCTIME	8	4617.718	577.215	0.00	1.0000
SCRAP*PROCTIME	8	6969.138	871.142	0.00	1.0000

1. When considering the factors individually:

Comparing measurement performances among all
levels at the 0.05 level, the results are shown as follows.
1.1 Supply quantity uncertainty

- Tables $E-2, G-3$, and $H-3$ (in Appendix E, G, and H respectively) show the multiple comparison procedures
for total cost, holding cost, and stockout cost for the supply quantity uncertainty factor, respectively. Interpretation of these results is presented below.
1.1.1 Changing the level of supply quantity uncertainty changes the average of total cost, the holding cost, and the stockout cost. They range from $\$ 1,480$ to \$16,104, \$0 to \$14,687, and \$1,405.033 to \$1479.43 respectively.
1.1.2 The average total cost when the supply quantity uncertainty is set at the middle or the high variation in quantity $(300+\operatorname{NORM}(0,50)$ and $300+\operatorname{NORM}(0,100)$, respectively) is not significantly different, but the average total cost of both of these cases is significantly higher than the average total cost when compared to the supply quantity uncertainty with no variation.
1.1.3 The average holding cost when the supply quantity uncertainty is set at the middle or the high variation in quantity $(300+\operatorname{NORM}(0,50)$ and $300+\operatorname{NORM}(0,100)$, respectively) is not significantly different, but the average holding cost of both of these cases is significantly higher than the average holding costs when compared to the supply quantity uncertainty with no variation.

1.1.4 The average stockout cost when the

 supply quantity uncertainty is set at the middle or the high variation in quantity $(300+\operatorname{NORM}(0,50)$ and $300+\operatorname{NORM}(0,100)$,respectively) is not significantly different, but the average stockout cost of both of these cases is significantly lower than the average stockout costs when compared to the supply quantity uncertainty with no variation. A summary of the discussion when considering just the supply quantity uncertainty is shown in Table XIV.

TABLE XIV

THE SUMMARY OF THE TOTAL COST DISCUSSION WHEN CHANGING THE SUPPLY QUANTITY UNCERTAINTY LEVELS

Factor	$\begin{array}{l}\text { Summary of the effects } \\ \text { quantity } \\ \text { uncertainty } \\ \text { (supply) }\end{array}$		
$\begin{array}{l}\text { 1. Changing the level of supply quantity } \\ \text { uncertainty changes the average total cost, } \\ \text { holding cost, and stockout cost. }\end{array}$			
2. Both of the average total cost and average			
holding cost when supply quantity uncertainty			
is set at the medium and high variation are not			
significantly different but each of them is			
significantly higher than the supply quantity			
uncertainty set at the no variation level.		$\}$	3. The stockout cost when supply quantity
:---			
uncertainty is set at the medium and high			
variation is not significantly different but			
each of them is significantly lower than the			
supply quantity uncertainty set at the no			
variation level.			

1.2 Process quantity uncertainty (percent scrap)

- Tables E-3, G-4, and H-4 (in Appendix E, G, and H), show the multiple comparison procedures for total cost, holding cost, and stockout cost for the process quantity uncertainty factor (percent scrap):
1.2.1 When changing the level of percent scrap, the total cost, the holding cost, and the stockout cost change over a wide range. They vary from \$1,939$\$ 27,442$, $\$ 96$ to $\$ 27,433$, and $\$ 10.233$ to $\$ 2,882.743$, respectively.
1.2.2 The average total cost and the holding cost when percent scrap is 0% is significantly higher than the total cost when percent scrap is either 0.5% or 1%. The total costs considered in this study are only the holding costs and stockout costs. Although the total cost is minimum when percent scrap is either 0.5% or 1.0%, there are some missing costs that are not considered in this study, for example, labor costs, material costs, and holding costs.
1.2.3 The average stockout cost when percent scrap is 1% is significantly higher than the stockout cost when percent scraps are either 0.5% or 0%. The summary of the discussion when considering just the process quantity uncertainty (percent scrap) is shown in Table XV.

THE SUMMARY OF THE TOTAL COST DISCUSSION WHEN CHANGING THE PROCESS QUANTITY UNCERTAINTY LEVELS

Factor	Summary of the effects
```Process quantity uncertainty (scrap)```	1. Changing the level of process quantity uncertainty changes the average total cost, holding cost, and stockout cost.   2. When percent scrap is zero percent $(0 \%)$, both of the average total cost and holding cost are the highest. However, this result is different from the study of Bowman (1994) in case that the inventory cost is very high when the percent scrap is high in order to meet the customer demand by giving a 95\% fill rate.   3. When percent scrap is one percent ( $1 \%$ ), the stockout cost is the highest.

### 1.3 Process timing uncertainty

- Tables E-4, G-5, and H-5 (in Appendix E, G, and $H$, respectively) show the multiple comparison procedures for the total cost, holding cost, and stockout cost for the process timing uncertainty factor (processing time).


#### Abstract

1.3.1 The average of the total cost, the holding cost, and the stockout cost are not significantly different for all levels of processing time. The summary of the discussion when considering just the process timing uncertainty (processing time) is shown in Table XVI.


TABLE XVI

THE SUMMARY OF THE TOTAL COST DISCUSSION WHEN CHANGING THE PROCESS TIMING UNCERTAINTY LEVELS.

Factor	Summary of the effects
Process   timing   uncertainty   (proctime)	I. Changing the level of process timing   uncertainty does not change the average   cost. cost, holding cost, and stockout

2. When considering the interaction between factors.

Because processing time is not significant at the 0.05 level, the interaction between percent scrap and processing time (scrap*proctime) and the interaction between supply quantity uncertainty and processing time (supply*proctime) are not significant at the 0.05 level. The interaction between supply quantity uncertainty and process quantity uncertainty is considered for testing the
multiple comparisons for interactions. From Table XVIII and Figure 6, it can be observed that the effect on one variable depends upon the levels of the other variables because when both supply and process quantity uncertainty change, the total costs change. For example, when supply quaṇtity uncertainty is set at no variation and percent scarp is zero, the total cost is $\$ 1,481.60$, but when supply quantity uncertainty is set at high variation and percent scrap is zero, the total cost is $\$ 39,612.30$. This means that when the levels of supply quantity uncertainty and process quantity uncertainty change, the total costs change, in short, the effect of supply quantity uncertainty (for all three levels) on the total costs depends upon the levels of process quantity uncertainty (percent scrap), or the effect of percent scrap on the total costs depends upon the levels of supply quantity uncertainty.

The total cost is minimum when there is no variation in supply quantity (300 units/day) and there is no scrap (percent scrap is zero) and is maximum when percent scrap is zero with the high variation in supply quantity
$(300+\operatorname{NORM}(0,100))$. However, from the Least Significant Difference test (LSD) shown in Appendix $F$, the difference in means of the total cost of each pair (or combination) are less than the LSD values. The total cost between the no variation in supply quantity case with zero percent scrap
(300 units and $0 \%$ scrap) and all levels of supply quantity uncertainty with percent scrap $0.5 \%$ and $1 \%$ are not significantly different, and the total costs between zero percent scrap with the medium and high variation in supply quantity are not significantly different at the 0.05 level. The summary of the discussion when considering the interaction between supply quantity uncertainty and process quantity uncertainty (percent scrap) is shown in Table XVII.

THE SUMMARY OF THE TOTAL COST DISCUSSION OF THE INTERACTION BETWEEN THE SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTAINTY.

Factor	Summary of the effects
The interaction between the supply quantity uncertainty and process quantity uncertainty (process*supply)	1. From LSD test at the 0.05 level, the difference in means of the total costs of each pair (or combination) are less than LSD values,   - the total cost between the no variation in supply quantity case with zero percent scrap (300 units and $0 \%$ scrap) and all levels of supply quantity uncertainty with percent scrap $0.5 \%$ and $1 \%$ are not significantly different.   - the total costs between zero percent scrap with the medium and high variation in supply quantity are not significantly different. In addition, this results in the highest total cost.

TABLE XVIII

THE COST PERFORMANCE OF THE INTERACTION BETWEEN SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTAINTY (PERCENT SCRAP)

Level of	Level of	SCRAP		ST-------	SD
	SUPPLY		N		
	0	0	25	0.0000	0.0000
	0	1	25	2957.4200	22.3158
	0	0.5	25	1481.6000	14.3425
	1	0	25	39612.3000	14243.9501
	1	1	25	2908.9000	43.9723
	1	0.5	25	1819.8600	47.2195
	2	0	25	42714.7000	16548.6859
	2	1	25	3082.4000	67.4137
	2	0.5	25	2514.2800	119.0660

CHART OF COST PERFORMANCE UNDER SUPPLY AND SCRAP CONDITIONS


Note: For supply level:
level $0=$ supply quantity $=300$ units
level $1=$ supply quantity with middle variation in mean $=$ $300+$ NORM $(0,50)$ units
level 2 = supply quantity with middle variation in mean = $300+\operatorname{NORM}(0,100)$ units

Figure 5: Chart of The Total Costs under Supply Quantity Uncertainty and Process Quantity Uncertainty (percent scrap)

## Customer Service Level Analysis Results

The customer service level (ANOVA) results are presented in Table XIX. The $R$-square of this model is 0.9974 . This means that the model fits the data very well
because the $R$-square is a high value. Based on the analysis of variance at the 0.05 level, the main effect supply quantity uncertainty, the main effect process quantity uncertainty (percent scrap), and the interaction between supply quantity uncertainty and process quantity uncertainty are significant. This can be seen since their probabilities of being greater than the $F$-test values are less than 0.05 (Pr>F=0.0001). When supply quantity uncertainty, process quantity uncertainty (percent scrap), and the interaction between supply quantity uncertainty and process quantity uncertainty are applied, the customer service level significantly changes. From Table XIX, process quantity uncertainty is the most significant factor affecting the customer service rate because its F -value is the highest value ( $F$ value $=34,800.05$ ). The next most significant is supply quantity uncertainty for which the $F$ value is 19.29. The process timing uncertainty (processing time) factor is not significant because its probability of being greater than the $F$ value is 1.00 or $100 \%$.

TABLE XIX

ANALYSIS OF VARIANCE PROCEDURE DEPENDENT VARIABLE: CUSTOMER SERVICE LEVEL


Least Significant Difference test (LSD) and Bonferroni
(Dunn) $T$ tests are performed to test multiple comparisons.

1. When considering the factors individually:

Comparing the measurement performances among all levels at the 0.05 level, the results are discussed below.

### 1.1 Supply quantity uncertainty

- From Table E-6 (in Appendix E), changing the level of supply quantity uncertainty changes the average customer service level. It ranges from $98.0394 \%$ to $98.123 \%$. The average of the customer service rates between supply quantity uncertainty with the middle and the high variation in supply quantity $(300+\operatorname{NORM}(0,50)$ and $300+\operatorname{NORM}(0,100)$, respectively) are not statistically significantly different. In addition, the customer service rates of both of these cases are statistically significantly higher than the customer service rates when supply quantity uncertainty has no variation from the mean. This is due to the fact that, in this later case, there are enough finished goods to meet customer demands. The summary discussion of the customer service level when considering only supply quantity uncertainty is shown in Table XX.

THE SUMMARY OF THE CUSTOMER SERVICE LEVEL DISCUSSION WHEN CHANGING THE SUPPLY QUANTITY UNCERTAINTY LEVELS.

Factor	Summary of the effects
Supply   Quantity   (supply)	1. Changing the level of supply quantity   uncertainty changes the average customer   service levels.
2. Customer service levels for supply	
quantity uncertainty with the medium and	
high variation are not significantly	
different but they are significantly higher	
than the supply quantity uncertainty with	
no variation.	

1.2 Process quantity uncertainty (percent scrap)

- From Table E-7 (in Appendix E), changing the level of percent scrap causes a statistically significant change in the average customer service level. It ranges from $96.1474 \%$ to $98.9864 \%$. The average customer service rates from all levels of percent scrap are statistically significantly different. It is the highest when percent scrap is $0 \%$ and the next highest when percent scrap is $0.5 \%$. The summary of the discussion when considering just the
process quantity uncertainty (percent scrap) is shown in Table XXI.

TABLE XXI

THE SUMMARY OF THE CUSTOMER SERVICE LEVEL DISCUSSION WHEN CHANGING THE PROCESS QUANTITY UNCERTAINTY LEVEIS

| Factor | $\begin{array}{l}\text { Summary of the effects } \\ \text { Process } \\ \text { quantity } \\ \text { uncertainty } \\ \text { (scrap) }\end{array}$ |
| :--- | :--- | \(\left.\begin{array}{l}I. Changing the level of process quantity <br>

uncertainty causes a change of the average <br>

customer service level.\end{array}\right\}\)| 2. When percent scrap is zero percent |
| :--- |
| (0\%), the average customer service level |
| is the highest. |
| 3. When percent scrap is one percent (1\%), |
| the average customer service level is the |
| lowest. |

1.3 Process timing uncertainty.

- From Table E-8 (in Appendix E), the average of the customer service rates are not significant different for all levels of processing time uncertainty. The summary of the discussion when considering just the process timing uncertainty (processing time) on the customer service level is shown in Table XXII.

TABLE XXII

THE SUMMARY OF THE CUSTOMER SERVICE LEVEL DISCUSSION WHEN CHANGING THE PROCESS TIMING UNCERTAINTY LEVELS

Factor	Summary of the effects
Process   timing   uncertainty   (proctime)	l. Changing the level of process timing   uncertainty does not change the average

2. When considering the interaction between factors.

Because processing time uncertainty is not significant at the 0.05 level, the interaction between percent scrap and processing time (scrap*proctime) and the interaction between supply quantity uncertainty and processing time (supply*proctime) are not significant at the 0.05 level. The interaction between supply quantity uncertainty and process quantity uncertainty is used to test the multiple comparisons. From Table XXIV and Figure 7, it can be observed that the effect of one variable depends upon the levels of the other variables because when both supply and process quantity uncertainty change, the customer service levels change. For example, when supply quantity uncertainty is set at no variation and percent scrap is zero, the customer service level is $100 \%$, but when supply
quantity uncertainty is set at high variation and percent scrap is $0.5 \%$, the average customer service level is $98.164 \%$ This means that when the levels of supply quantity uncertainty and process quantity uncertainty change, the customer service level changes, in short, the effect of supply quantity uncertainty (for all three levels) on the customer service level depends upon the levels of process quantity uncertainty (percent scrap). In the same way, the effect of percent scrap on the customer service level depends upon the level of supply quantity uncertainty. The average customer service is maximum when there is no variation in supply quantity with $0 \%$ percent scrap (300 units/day and $0 \%$ scrap) and is minimum when there is no variation in supply quantity with $1 \%$ of scrap (300 units and 1\% scrap).

However, from the Least Significant Difference Test (ISD) at the 0.05 level, shown in Appendix $F$, the difference in means of the customer service level of each pair (or combination) are less than the LSD values,

- the mean of the customer service levels are equal and the highest for all levels of supply quantity uncertainty when percent scrap is zero percent ( $0 \%$ ) because the firm has finished goods to meet most of the customer requirements.
- for the $0.5 \%$ and $1 \%$ scrap levels, at the middle and high variation in supply quantity $(300+\operatorname{NORM}(0,50)$ and
$300+\operatorname{NORM}(0,100))$, the customer service levels are not significantly different but they are significantly higher than the customer service level when there is no variation in supply quantity. The summary of the discussion when considering the interaction between supply and process quantity uncertainty (percent scrap) is shown in Table XXIII.

THE SUMMARY OF THE RESULT DISCUSSION OF THE INTERACTION BETWEEN THE SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTAINTY ON THE CUSTOMER SERVICE LEVEL.

Factor	Summary of the effects
The interaction between process quantity uncertainty (process*supply)	1. From the LSD test at the 0.05 level, because the difference in means of the customer service level of each pair (or each combination) are less than LSD values,   - the mean of the customer service levels are equal and the highest for all levels of supply quantity uncertainty when percent scrap is zero percent ( $0 \%$ ).   - for the $0.5 \%$ and $1 \%$ scrap levels, at the middle and high variation in supply quantity $(300+\operatorname{NORM}(0,50)$ and $300+\operatorname{NORM}(0,100))$, the customer service levels are not significantly different but they are significantly higher than the customer service level when there is no variation in supply quantity.   - the average customer service level is the highest when percent scrap is zero ( $0 \%$ ) for all levels of supply quantity uncertainty.   - the average customer service level is the lowest when percent scrap is one (1\%) with no variation in supply quantity uncertainty.

TABLE XXIV

THE CUSTOMER SERVICE LEVELS OF THE INTERACTION BETWEEN SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTAINTY (PERCENT SCRAP)



Note: For supply level:
level $0=$ supply quantity $=300$ units
level $1=$ supply quantity with middle variation in mean $=$ $300+\operatorname{NORM}(0,50)$ units
level $2=$ supply quantity with middle variation in mean = $300+\operatorname{NORM}(0,100)$ units

Figure 7: Chart of Customer Service Level under Supply Quantity Uncertainty and Process Quantity Uncertainty (Percent Scrap).

## CHAPTER V

## SUMMARY AND CONCLUSIONS

## Discussion of Research Findings

The results of this study provide evidence of where the existing wisdom (the combined effects of uncertainties occurring simultaneously in a production line) may not be valid. This study has focused on creating a model of a manufacturing system which, although subject to uncertainties, has the advantage of the latest information. A simulation, written using SLAM II, was used to generate the data. The data was analyzed using a multifactor analysis of variance model using the SAS programming language to assess the impact of three factors on the average total costs and customer service levels of the system. This study assesses the impact of various factors on performance measures (total costs and customer service levels) in a flow shop manufacturing environment. The three factors analyzed were supply quantity uncertainty, process quantity uncertainty, and process timing uncertainty. There are three levels for both supply quantity uncertainty and
process quantity uncertainty and five levels for process timing uncertainty. The three levels for supply quantity uncertainty are 300 units + no error term, $300+\operatorname{NORM}(0,50)$, and $300+\operatorname{NORM}(0,100)$. The three levels of process quantity are $0.0 \%$ scrap, $0.5 \%$ scrap, and $1.0 \%$ scrap for each machine. The five levels of process timing uncertainty are 1 , $\operatorname{UNFRM}(0.75,1.25), \operatorname{UNFRM}(0.8,1.2), \operatorname{UNFRM}(0.85,1.15)$, and UNFRM(0.9,1.1) minutes per part, respectively.

The experiment has provided the following answers to the question stated in the goals and objectives of this research.

1. Both supply quantity uncertainty and process quantity uncertainty (percent scrap) significantly affect the total cost and customer service level. Process timing uncertainty (processing time) is not significant because of the excess plant capacity in this study. Process quantity uncertainty causes a high stockout cost and a low customer service level. Supply quantity uncertainty results in a high inventory cost and high customer service level.
2. Process quantity uncertainty (percent scrap) is the most significant on both total cost and customer service level. The next most significant factor is supply quantity uncertainty.
3. When comparing among all factors individually.
process quantity uncertainty with zero percent scrap causes both of the highest average total costs and the highest customer service level as well. It cause a high total cost because of high inventories. When the firm has enough finished goods to meet customer demand, the customer service level is high.
4. When considering the interaction between supply quantity uncertainty and process quantity uncertainty,

- the total costs between zero percent scrap with the medium and high variation in supply quantity are not significantly different. In addition, they are the highest total costs.
- the customer service levels are not significantly different between the medium and high variation in supply quantity even when the firm has scrap in the production line but they are significantly higher than in the no variation in supply quantity case. However, the customer service levels are the highest when there is no scrap in the production line for all levels of supply quantity uncertainty.


## Practical Guidelines

A summary of practical guidelines suggested by the research are:

1. When there is no variation in supply quantity, to reduce the cost and increase the customer service level, the firm should focus on process quantity uncertainty (percent scrap) by reducing percent scrap. From this study, if the percent scrap increases, the average stockout costs will also increase.
2. Because the zero percent scrap level with the variation in supply quantity causes a high total cost, changing the level of supply uncertainty causes changes in total cost performance. To reduce the total cost, the firm should control how to release the raw material quantities. This means that when there is no scrap in the production line (percent $\operatorname{scrap}=0 \%$ ), the firm should control the raw materials to be as close as possible to the customer need to avoid excess inventories. By controlling the excess inventories, the firm can also avoid high holding costs. Another way to reduce the total costs is by having a good relationship and communications with suppliers, so that they will deliver the exact quantity of needed raw materials.
3. When the firm confronts both supply quantity uncertainty and process quantity uncertainty simultaneously, the recommendation from this study is:

- When percent scrap increases, the stockout cost increases but the change in stockout cost is relatively small. As for the holding cost, there is a sharp reduction
when the percent scrap changes from $0 \%$ scrap to either $0.5 \%$ or $1 \%$ scrap. This means that most costs which occur when there is scrap in the production line are stockout costs. To reduce the stockout cost and increase the customer service level, the firm should try to reduce percent scrap in the production line and then have a good relationship and communications with suppliers to get the exact quantity of needed raw materials.

4. Process timing uncertainty is not significant on either total costs or customer service levels in this study. This is likely due to excess plant capacity. The total costs and customer service levels are equal for all levels of processing times at the same supply quantity levels. This means that if the maximum plant capacity is enough to process the arriving raw materials, both the measures of performances are unaffected. The customer service level remains the same because the firm still has enough finished goods to meet customer requirements.
5. This study is appropriate for a firm that has the same or similar circumstances as this study. It concerns supply quantity uncertainty, process quantity uncertainty, and process timing uncertainty in a flow shop manufacturing environment that has only four machines in the production lines, percent scrap for each machine is less than or equal 1\%, and plant capacity is enough to produce products even
though it is effected by the variation in supply quantity. This study is a simple case that shows the affects and the results of three uncertainties on total cost and customer service level.

This study provides a better understanding of the impacts of supply quantity uncertainty, process quantity uncertainty, and process timing uncertainty on the performance measures of total cost and customer service level. However, several important issues need to be studied further. Uncertainty in demand quantity and uncertainty in processing time which have an effect on the plant capacity is an important area for future study. Further research addressing these issue should be encouraged.

## BIBLIOGRAPHY

Askin, R.C. and Standridge, C.R. (1993). Modeling and Analysis of Manufacturing Systems., New York: John Wiley \& Sons.

Benton, W.C. (1993). Time and cost-based priorities for job shop scheduling. International Journal of Production Research, 31(7), 1509-1513.

Bowman, R.A. (1994). Inventory: The opportunity cost of quality. IIE Transactions, 26(3),40-47.

Correa, H.L., (1994). Linking Flexibility, Uncertainty and Variability in Manufacturing Systems, Brookfield, Vermont: Avegury.

Crandall, R.E. and Burwell, T.H. (1993). The effect of work-in-process inventory levels on the throughput and lead times. Production and Inventory Management Journal, 34(4), 6-11.

Etienne, E.C. (1987). Choosing optimal buffering strategies for dealing with uncertainty in MRP. Journal of Operations Management, $7(1 \& 2), 102-120$.

Grasso, E.T. and Taylor, B.W. (1984). A simulation-based experimental investigation of supply/timing uncertainty in MRP systems. International Journal of Production Research, 22(3), 485-497.

Greene, J.H. (1974). Production and Inventory control. Homewood, Illinois: Richard D. Irwin, INC.

Gupta, S.M. and Brennan L. (1995). MRP systems under supply and process uncertainty in an integrated shop floor control environment. International Journal of Production Research, 33(1), 205-220.

Ho, C-J., Law, W-K., and Rampal, R.(1995). Uncertainty dampening methods for reducing MRP system nervousness. International Journal of Production Research, 33(2), 483-496.

Klastorin, T.D., Matheson, L., and Moinzadeh, K. (1993). On the use of buffer inventories to minimize costs with an unreliable machine. IIE Transactions, 25(5), 50-62.

Kropp, D.H., Carlson, R.C., and Juker, J.V.(1983). Concepts, theories, and techniques: Heuristic lot-sizing approaches for dealing with MRP system nervousness. Decision Sciences, 14(2), 156-168.

Miller, S.S. (1988). Competitive Manufacturing-Using Production as a Management Tool, New York: Van Nostrand Reinhol Company.

Pritsker, A.A.B. (1995). Introduction to Simulation and SLAM II, West Lafayette, Indiana: New York. Reisman, A., Dean, B.V., Salvador, M.S., and Oral, M. (1972). Industrial Inventory Control. New York: Science Publishers, Inc.

Schmitt, T.G. (1984). Resolving uncertainty in manufacturing systems. Journal of operations Management, 4(4), 331-345.

Sridharan, V. and Berry, W.L. (1990). Freezing the Master Production Schedule under demand uncertainty. Decision Sciences, 21(1), 97-120.

Sridharan, V. and Laforge, R.A. (1989). The impact of safety stock on schedule instability, cost and service. Journal of Operations Management, 8(4), 327-347. Thomas, A.B. (1980). Stock Control in Manufacturing Industries. Guildford, London: Billing \& Sons Limited. Vollmann, T.E., Berry, W.L., and Whybark, D.C. (1992). Manufacturing Planning and Control Systems. Boston, Massachusetts: Richard D. Irwin, INC.

Waters, C.D.J. (1992). Inventory Control and Management.
Chichester, New York: John Wiley \& Sons.
Whybark, D.C. and Williams, J.G. (1976). Material
requirements planning under uncertainty. Decision Sciences, I(3), 595-606.

Yang, K.K. and Sum, C.C. (1994). A comparison of job shop dispatching rules using a total cost criterion. International Journal of Production Research, $32(4)$, 807-820.

APPENDICES

APPENDIX A

THE NETWORK DIAGRAM
APPENDIX A
THE NETWORK DIAGRAM


Figure A-2: The Main Network Diagram

## APPENDIX B

THE NETWORK STATEMENT MODEL

## APPENDIX B

THE NETWORK STATEMENT MODEL
This program illustrates the case as follows: - Supply Quantity Uncertainty: 300+NORM(0,100)

- Process Quantity Uncertainty: 0.5\%
- Process Timing Uncertainty: UNFRM(0.75,1.25)

```
GEN,KANCHANA,THESIS,05/15/96,5, ,NO, ,NO,YES/1;
LIMITS,4,6,1500;
EQUIVALENCE/XX(1),FG/
XX(2),SCRP/
XX(3),INVEN/
XX(4),CUST/
XX(5),NXTD/
XX(20),DAYNUM/
XX(72),STKC/
XX(73),HC/
XX(99),TSTKC/
XX(71),THC/
XX(100),TINVEN;
;
;***
;* GLOBAL VARIABLES
;*
;*ATRIB(1) : ARRIVAL TIME OF RAW MATERIALS
;*ATRIB(3) : SCRAP RANDOM NUMBER SAMPLING FROM UNIFORM DISTRIBUTION FOR MACHINE 1 *
;*ATRIB(4) : SCRAP RANDOM NUMBER SAMPLING FROM UNIFORM DISTRIBUTION FOR MACHINE 2 *
;*ATRIB(5) : SCRAP RANDOM NUMBER SAMPLING FROM UNIFORM DISTRIBUTION FOR MACHINE 3 *
;*ATRIB(6) : SCRAP RANDOM NUMBER SAMPLING FROM UNIFORM DISTRIBUTION FOR MACHINE 4 *
;*XX(1),FG :FINISHED GOODS *
;*XX(2),SCRP :SCRAPS
;*XX(3),INVEN :INVENTORY QUANTITIES IN EACH DAY
;*XX(4),CUST :CUSTOMER SERVICE LEVEL INEACH DAY
;*XX(20),DAYNUM :DAY NO.
;*XX(71),THC :ACCUMULATED HOLDING COSTS
;*XX(72),STKC :STOCKOUT COSTS IN EACH DAY
;*XX(73),HC :HOLDING COSTS IN EACH DAY *
;*XX(99),TSTKC :ACCUMULATED TOTAL STOCKOUT COSTS *
;*XX(100),TINVEN :ACCUMULATED TOTAL INVENTORIES *
;**
;
INTLC,XX(1)=0,
 XX(2)=0,
 XX(3)=0,
```

```
XX(4)=0,
 XX (51)=0;
NETWORK;
 CREATE;
 ASSIGN,DAYNUM=1;
NEXT ASSIGN,XX (50)=USERF(1),
 FG=0,
 SCRP=0,
 INVEN=0,
 STKC=0,
 CUST=0,
 STKC=0,
 HC=0; INITIALIZED VARIABLES AT THE BEGINNING OF EACH dAY
LPCR EVENT,2;
 ASSIGN,XX(51)=XX(51)+1,1;
 ACT, 0,XX(51).LT.XX(50), LOOP;
 ACT,0,XX(51).GE.XX(50),ND;
LOOP GOON,1;
 ACT, , ,LPCR;
ND GOON,1;
 ASSIGN,XX(51)=0;
 ACT,479, , ;
 EVENT,4;
 ACT,1, , ;
 ASSIGN,DAYNUM=DAYNUM+1;
 ACT, , ,NEXT;
;
;***
;*
;* MAIN NETWORK BODY *
;* MAIN NETWORK BODY *
;
ARVL ENTER,1,1;
 ACT, , ,EVT1;
EVT1 EVENT,1;
 ACT, , ,M1;
M1 QUEUE(1);
 ACT,UNFRM(0.75,1.25), ,ASN3;
ASN3 ASSIGN,ATRIB(3)=UNFRM(0,1); SAMPLING RANDOM NO. FROM UNFRM DIST.
 ACT, , ,GO1;
GO1 GOON, 1;
 ACT,0,ATRIB(3).LT.0.005,EVT3; WHEN RANDOM NO. < % SCRAP => SCRAP
 ACT;
M2 QUEUE (2);
 ACT,UNFRM(0.75,1.25), ,ASN4;
ASN4 ASSIGN,ATRIB(4)=UNFRM (0,1); SAMPLING RANDOM NO. FROM UNFRM DIST.
 ACT, , ,GO2;
GO2 GOON,1;
 ACT,0,ATRIB(4).LTT.0.005,EVT3; WHEN RANDOM NO. < % SCRAP => SCRAP
 ACT;
M3 QUEUE (3); MACHINE 3
 ACT,UNFRM(0.75,1.25), ,ASN5;
ASN5 ASSIGN,ATRIB(5)=UNFRM (0,1); SAMPLING RANDOM NO. FROM UNFRM DIST
 ACT, , ,GO3;
```

GO3 GOON, 1;
ACT, O,ATRIB(5).LT.0.005,EVT3; ACT;
M4 QUEUE (4);
ACT,UNFRM(0.75,1.25), ,ASN6;
ASN6 ASSIGN, ATRIB (6) $=\operatorname{UNFRM}(0,1)$; ACT, , ,GO4;
GO4 GOON, 1;
ACT, 0, ATRIB(6).LT. 0.005, EVT3;
ACT, 0,ATRIB (6).GE.0,ASN8;
GO5 GOON;
ACT, , ,EVT3;
EVT3 EVENT, 3;
TERM;
ASN8 ASSIGN,FG=FG+1; TERM; END;
INIT, 0, 312000;
MONTR, CLEAR, 72000; SIMULATE;
MONTR, CLEAR, 72000; SIMULATE;
MONTR, CLEAR, 72000; SIMULATE;
MONTR, CLEAR, 72000;
SIMULATE;
MONTR, CLEAR, 72000; FIN;

WHEN RANDOM NO. < \% SCRAP $\Rightarrow$ SCRAP

MACHINE 4

SAMPLING RANDOM NO. FROM UNFRM DIST

WHEN RANDOM NO. < \% SCRAP => SCRAP

Simulated time
CLEAR STATISTICS FOR WARM UP PERIOD

```
C**
C*
C* SUBROUTINE EVENT *
C**
C*
SUBROUTINE EVENT(I)
 COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR,
 +NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
 EQUIVALENCE(XX(100),TINVEN),(XX(99),TSTKC),(XX(98),TCUST),
 +(XX(97),TSCRP),(XX(1),FG),(XX(2),SCRP),(XX(4),CUST),(XX (70),TC),
 +(XX(71),THC),(XX(72),STKC),(XX(73),HC),(XX(20),DAYNUM),
 +(XX(21),INVEN),(XX(23),ACUST),(XX(24),OUT),(XX (25),A1)
C*
C*
GO TO (1,2,3,4), I
C**
C* EVENT(1)
C* INITIALIZED VARIABLES TO BE ZERO AT THE BEGINNING OF EACH DAY
C**
 1 IF (TNOW.EQ.O.O) THEN
 TINVEN=0.0
 TSTKC=0.0
 TCUST=0.0
 TSCRP=0.0
 THC=0.0
 Al=0.0
 END IF
 RETURN
C***
C* EVENT(2) *
C* CREATE RAW MATERIALS BASED ON PROBABILITY DISTRIBUTION *
C**
 2 CALL ENTER(1,ATRIB)
 RETURN
C*
C**
C* EVENT(3) *
C* SCRAP COUNTING *
C**
C*
 3 SCRP=SCRP+1.0
 RETURN
C*
C***
C* EVENT 4
C* THE CALCULATION OF PERFORMANCE MEASUREMENTS
C**
C*
 4 IF (FG .LT. 300.0 .AND. TINVEN .EQ. 0.0) THEN
 OUT=FG
 CUST=(OUT/300.0)
 STKC=((300.0-OUT) * 0.50)
 HC=0.0
 Al=1.0
```

```
END IF
IF (FG.IT.300.0 .AND. TINVEN.GE.1.0) THEN
 IF (FG+TINVEN .GE. 300.0) THEN
 OUT=300.0
 CUST=1.00
 HC=((FG+TINVEN-300.0) * 0.50)
 Al=2.0
 INVEN=300.0-FG
 TINVEN=TINVEN-INVEN
 ELSE IF (FG+TINVEN .LT. 300.0) THEN
 OUT=(FG+TINVEN)
 CUST=(OUT/300.0)
 STKC=((300.0-OUT) * 0.50)
 A1=3.0
 HC=0.0
 INVEN=0.0
 TINVEN=0.0
 END IF
 END IF
 IF (FG.GE.300.0) THEN
 A1=6
 IF (TINVEN.GE.1.0) THEN
 OUT=300.0
 CUST=1.00
 HC=((FG-300.0+TINVEN) * 0.50)
 Al=4.0
 INVEN=FG-300.0
 TINVEN=TINVEN+INVEN
 ELSE IF (TINVEN.EQ.O.0) THEN
 OUT=300.0
 CUST=1.00
 HC=((FG-300.0) * 0.50)
 Al=5.0
 INVEN=FG-300.0
 TINVEN=TINVEN+INVEN
 END IF
 END IF
 TSTKC=TSTKC+STKC
 THC=THC+HC
 TC=TSTKC+THC
 TCUST=TCUST+CUST
 ACUST=(TCUST/DAYNUM)
 IF (DAYNUM.EQ.1.0) THEN
 PRINT*,'DAY ',' FG ',' SCRP',' TINVEN ',
 +' ACTSTKC ',' ACTHC ',' ACTC', ' CUST ','ACUST',
 +' COND '
 END IF
 PRINT 10,DAYNUM,FG,SCRP,TINVEN,TSTKC,THC,TC,CUST,ACUST,A1
10 FORMAT (IX,F4.0,1X,F4.0,1X,F3.0,1X,F5.0,1X,F11.2,
 +1X,F11.2,1X,F11.2, 2X,F5.3,2X,F5.3,1X,F3.0)
 RETURN
 END
```

```
C***
```


## APPENDIX C

THE VALIDATION DATA

## APPENDIX C

THE VALIDATION DATA

```
CASE 1 : SUPPLY QUANTITY = 300 UNITS
PERCENT SCRAP = 0.0%
PROCESSING TIME= UNFRM(0.75,1.25)
```

DAY	FG	SCRP	TINVEN	ACTSTKC	ACTHC	ACTC	CUST	ACUST	COND
1.	300.	0	0.	0.00	0.00	0.00	1.000	1.000	5
2.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
3.	300.	0	0.	0.00	0.00	0.00	1.000	1.000	5
4.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
5.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
6.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
7.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
8.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
9.	300.	0	0.	0.00	0.00	0.00	1.000	1.000	5
10.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
11.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
12.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
13.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
14.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
15.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
16.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
17.	300.	0.	0	0.00	0.00	0.00	1.000	1.000	5
18.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5.
19.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5.
20.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
21.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
22.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5.
23.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5.
24.	300.	0.	0.	0.00	0.00	0.00	1.000	1.000	5
25.	300.	0.	0 .	0.00	0.00	0.00	1.000	1.000	5

$S L A M \quad I I \quad S U M M A R Y \quad R E P O R T$
R

CASE 2: SUPPLY QUANTITY $=310$ UNITS

PERCENT SCRAP $=0.0 \%$

PROCESSING TIME $=\operatorname{UNFRM}(0.75,1.25)$

DAY	FG	SCRP	TINVEN
1.	310.	0.	10.
2	310.	0.	20
3	310.	0	30.
4	310.	0 .	40.
5	310	0	50.
6.	310.	0.	50.
7.	310.	0.	70.
8	310.	0.	80.
9	310.	0	90
10	310.	0	100.
11	310.	0.	110.
12	310.	0.	120.
13	310	0.	130.
14	310.	0.	140.
15	310.	0.	150.
16	310.	0.	160.
17	310.	0.	170.
18	310	0.	180.
19	310.	0 .	190.
20	310	0	200.
21	310	0	210
22	310	0	220
23	310.	0.	230.
24	310	0.	240
25	310	0.	250.


ACTSTKC	ACTHC
0.00	5.00
0.00	15.00
0.00	30.00
0.00	50.00
0.00	75.00
0.00	105.00
0.00	140.00
0.00	180.00
0.00	225.00
0.00	275.00
0.00	330.00
0.00	390.00
0.00	455.00
0.00	525.00
0.00	600.00
0.00	680.00
0.00	765.00
0.00	855.00
0.00	950.00
0.00	1050.00
0.00	1155.00
0.00	1265.00
0.00	1380.00
0.00	1500.00
0.00	1625.00

ACTC

5.00	1.000	1.000	5.
15.00	1.000	1.000	4.
30.00	1.000	1.000	4.
50.00	1.000	1.000	4.
75.00	1.000	1.000	4.
105.00	1.000	1.000	4.
140.00	1.000	1.000	4.
180.00	1.000	1.000	4.
225.00	1.000	1.000	4.
275.00	1.000	1.000	4.
330.00	1.000	1.000	4.
390.00	1.000	1.000	4.
455.00	1.000	1.000	4.
525.00	1.000	1.000	4.
600.00	1.000	1.000	4.
680.00	1.000	1.000	4.
755.00	1.000	1.000	4.
855.00	1.000	1.000	4.
950.00	1.000	1.000	4.
1050.00	1.000	1.000	4.
1155.00	1.000	1.000	4.
1265.00	1.000	1.000	4.
1380.00	1.000	1.000	4.
1500.00	1.000	1.000	4.
1625.00	1.000	1.000	4.

$S L A M$ I I SUMMARYMREPOR T


CASE 3 : SUPPLY QUANTITY = 310 UNITS

PERCENT SCRAP $=1.0 \%$

PROCESSINT TIME $=\operatorname{UNFRM}(0.75,1.25)$

DAY	FG	SCRP	TINVEN	ACTSTKC	ACTHC	ACTC	CUST	ACUST	COND
1	300.	10.	0.	0.00	0.00	0.00	1.000	1.000	5
2	297.	13.	0	1.50	0.00	1.50	0.990	0.995	1
3	302.	8.	2.	1.50	1.00	2.50	1.000	0.997	5
4	298.	12.	0	1.50	1.00	2.50	1.000	0.998	2
5	296.	14.	0.	3.50	1.00	4.50	0.987	0.995	1
6	300.	10.	0.	3.50	1.00	4.50	1.000	0.996	5
7	293.	17.	0.	7.00	1.00	8.00	0.977	0.993	1
8	301.	9.	1.	7.00	1.50	8.50	1.000	0.994	5.
9	301.	9	2	7.00	2.50	9.50	1.000	0.995	4
10	295.	15.	0.	8.50	2.50	11.00	0.990	0.994	3
11	297.	13.	0.	10.00	2.50	12.50	0.990	0.994	1
12	302.	8.	2.	10.00	3.50	13.50	1.000	0.994	5
13	301.	9.	3	10.00	5.00	15.00	1.000	0.995	4
14	299.	11.	2.	10.00	6.00	16.00	1.000	0.995	2
15	296.	14.	0.	11.00	6.00	17.00	0.993	0.995	3
16	299.	11	0 .	11.50	6.00	17.50	0.997	0.995	1
17.	290.	20.	0.	16.50	6.00	22.50	0.967	0.994	1
18	298.	12.	0.	17.50	6.00	23.50	0.993	0.994	1
19	297.	13.	0.	19.00	6.00	25.00	0.990	0.993	1
20	299.	11.	0.	19.50	6.00	25.50	0.997	0.994	1
21	298.	12.	0.	20.50	6.00	26.50	0.993	0.993	1.
22	297.	13.	0.	22.00	6.00	28.00	0.990	0.993	1
23	304.	5	4	22.00	8.00	30.00	1.000	0.994	5.
24	296.	14.	0.	22.00	8.00	30.00	1.000	0.994	2.
25	303.	7.	3.	22.00	9.50	31.50	1.000	0.994	5

SLAM II SUMMARY REPORT

$\begin{aligned} \text { CASE 4: } \quad \text { SUPPLY QUANTITY } & =300+\operatorname{NORM}(0,10) \\ \text { PERCENT SCRAP } & =1.0 \% \\ \text { PROCESSING TIME } & =\operatorname{UNFRM}(0.75,1.25)\end{aligned}$

DAY	FG	SCRP	TINVEN	ACTSTKC	ACTHC	ACTC	CuST	ACUST	COND
1.	289.	9.	0.	5.50	0.00	5.50	0.963	0.963	1
2.	295.	12	0.	8.00	0.00	8.00	0.983	0.973	1
3.	291.	14	0.	12.50	0.00	12.50	0.970	0.972	1
4.	285.	11	0.	20.00	0.00	20.00	0.950	0.967	1
5.	303.	13	3.	20.00	1.50	21.50	1.000	0.973	5
6.	297.	11	0	20.00	1.50	21.50	1.000	0.978	2
7.	295.	16.	0	22.50	1.50	24.00	0.983	0.979	1
8.	286.	11	0.	29.50	1.50	31.00	0.953	0.975	1
9.	295.	13	0	32.00	1.50	33.50	0.983	0.976	1
10.	305.	14	5	32.00	4.00	36.00	1.000	0.979	5
11.	290.	14.	0	34.50	4.00	38.50	0.983	0.979	3
12.	282.	9	0.	43.50	4.00	47.50	0.940	0.976	1
13.	300.	9	0.	43.50	4.00	47.50	1.000	0.978	5
14.	309.	12	9	43.50	8.50	52.00	1.000	0.979	5
15.	292.	15	1	43.50	9.00	52.50	1.000	0.981	2
16.	285.	15	0	50.50	9.00	59.50	0.953	0.979	3
17.	295.	14	0	53.00	9.00	62.00	0.983	0.979	1
18.	281.	14	0.	62.50	9.00	71.50	0.937	0.977	1
19.	275.	9	0.	75.00	9.00	84.00	0.917	0.974	1
20.	277.	15.	0.	86.50	9.00	95.50	0.923	0.971	1
21.	303.	14.	3.	86.50	10.50	97.00	1.000	0.973	5
22.	282	13	0.	94.00	10.50	104.50	0.950	0.972	3
23.	288	11.	0.	100.00	10.50	110.50	0.960	0.971	1
24.	286	. 11.	0.	107.00	10.50	117.50	0.953	0.970	1
25.	286	14.	0.	114.00	10.50	124.50	0.953	0.970	1



CURRENT TIME $0.1200 E+05$
STATISTICAL ARRAYS CLEARED
STATISTICAL ARRAYS CLEARED AT TIME $0.0000 \mathrm{E}+00$
**FILE STATISTICS**


MAXIMUM IDLE MAXIMUM BUSY ENTITY

E
2


TIME/SERVERS
197.5156
196.3438
195.8467
195.9814

## APPENDIX D

THE RESULTS FROM SIMULATION
APPENDIX D
THE RESULTS FROM SIMULATION
RESULTS FROM SIMULATION: PROCESSING TIME (MIN./UNIT): 1

supplyconditions	Percent Scrap(\%)														
	0.0\%					0.5\%					1.0\%				
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
* No variation:   $300+$ no error term															
- acc.total stocrout $\operatorname{cost}(\$)$	0.0	0.0	0.0	0.0	0.0	1480.5	1497.0	1486.5	1502.0	1474.0	2948.5	2951.5	2942.5	2994.0	2948.5
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- acc.total holding cost (\$)	0.0	0.0	0.0	0.0	0.0	1480.5	1497.0	1486.5	1502	1474	2948.5	2951.5	2942.5	2994.0	2948.5
- CUSTOMER SERVICE RATE(\%)	100.0	100.0	100.0	100.0	100.0	98.025	97.998	98.012	97.991	98.029	96.061	96.057	96.068	95.999	96.058
* MEDIUM VARIATION: $300+$ norm $(0,50)$															
- acc.total holding cost(\$)	42989.0	35603.0	14698.0	51800.5	52931.0	537.0	340.5	384.5	491.5	481.5	59.0	78.0	64.0	77.0	63.5
- acc.total costs ( $¢$ )	43019.5	35603.0	14707.5	51800.5	52931.0	1879.0	1765.5	1813.0	1883.5	1748.5	2871.5	2960.0	2951.0	2963.5	2811.5
- customer service rate (i)	99.96	100.0	99.988	100.0	100.0	98.209	98.094	98.087	98.142	98.305	96.239	96.143	96.1396	96.144	96.329
* HIGH VARIATION:   $300+$ norm $(0,100)$															
- acc.total stockout $\operatorname{cost}(\$)$	62.0	0.0	42.5	0.0	9.0	1342.5	1448.5	1449.5	1398.0	1232.5	2812.0	2904.0	2906.0	2892.0	2713.0
- acc.total holding cost (\$)	50854.5	32062.5	16791.0	51285.5	62466.5	1350.5	855.5	926.0	1155.5	1301	217.0	238.5	198.5	264.5	226.0
- acc.total costs (\$)	50916.5	32062.5	16833.5	51285.5	62475.5	2693.0	2304.0	2375.5	2553.5	2533.5	3029.0	3142.5	3104.0	3156.5	2939.0
- costomer service rate (\%)	99.917	100.0	99.944	100.0	99.988	98.204	98.062	98.059	98.134	98.349	96.239	96.116	96.115	96.137	96.368

TABLE D-2

$\begin{gathered} \text { supply } \\ \text { conditions } \end{gathered}$	Percent Scrap (\%)														
	0.0\%					0.5\%					1.0\%				
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
* NO Variation: 300+ no error term															
- acc.total stockout	0.0	0.0	0.0	0.0	0.0	1502.5	1453.0	1471.5	1465.5	1481.0	2934.5	2958.5	2942.5	2955.5	2994.5
- acc.total holding cost (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- acc total costs	0.0	0.0	0.0	0.0	0.0	1502.5	1453.0	1471.5	1465.5	1481.0	2934.5	2958.5	2942.5	2955.5	2994.5
- CUSTOMER SERVICE RATE(\%)	100.0	100.0	100.0	100.0	100.0	97.990	98.061	98.033	98.045	98.02	96.084	96.048	96.075	96.05	96.00
* meditm variation: $300+$ norm $(0,50)$															
- acc.total stocrout	30.5	0.0	9.5	0.0	0.0	1339.5	1404.0	1415.5	1354.5	1331.5	2792.5	2851.0	2905.0	2918.0	2815.5
acc.total holding cost (\%)	42989.0	35603.0	14698.0	51800.5	52931.0	449.5	461.5	368.0	502.0	447.0	78.0	58.0	44.0	59.0	52.5
- acc.total costs (\$)	43019.5	35603.0	14707.5	51800.5	52931.0	1789.0	1865.5	1783.5	1856.5	1778.5	2870.5	2909.0	2949.0	2977.0	2868
- custoyer service rate (\%)	99.96	100.0	99.988	100.0	100.0	98.207	98.122	98.108	98.191	98.217	96.272	96.186	96.117	96.101	96.238
* high vartation: $300+$ norm (0.100)															
- acc.total stocrout cost (\$)	62.0	0.0	42.5	0.0	9.0	1358.0	1418.5	1469.0	1370.0	1254.5	2810.0	2922.0	2922.0	2840.5	2734.0
- acc.total holding cost (s)	50854.5	32062.5	16791.0	51285.5	62466.5	1243.5	948.0	1054.0	1193.0	1206.5	221.0	214.0	219.5	223.5	237.0
- acc.total costs (\$)	50916.5	32062.5	16833.5	51285.5	62475.5	2601.5	2366.5	2523.0	2563.0	2461.0	3031.0	3136.0	3141.5	3064.0	2971.0
- customer service rate (\%)	99.917	100.0	99.944	100.0	99.988	98.182	98.099	98.032	98.171	98.324	96.242	96.094	96.097	96.204	96.347

TABLE D-3
RESULTS FROM SIMULATION: PROCESSING TIME (MIN./UNIT): UNFRM(0.8.1.2)

$\begin{gathered} \text { supply } \\ \text { conditions } \end{gathered}$	Percent Scrap (\%)														
	0.0\%					0.5\%					1.0\%				
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
* No variation: 300+ no error term   - acc. total stockout Cost (\$)   - acc.total holding cost(\$)   - acc.total costs(s)   - CUSTOMER SERVICE RATE (\%)	0   0   100	$\begin{gathered} 0 \\ 0 \\ 0 \\ 100 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 100 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 100 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 100 \end{gathered}$	$\begin{gathered} 1483.5 \\ 0.0 \\ 1483.5 \\ 98.021 \end{gathered}$	$\begin{gathered} 0.0 \\ 1477.0 \\ 98.03 \end{gathered}$	$\begin{gathered} 1489.5 \\ 0.0 \\ 1489.5 \\ 98.018 \end{gathered}$	$\begin{gathered} 1469.0 \\ 0.0 \\ 1469.0 \\ 98.038 \end{gathered}$	$\begin{gathered} 1501.0 \\ 0.0 \\ 1501.0 \\ 97.994 \end{gathered}$	$\begin{gathered} 2990.0 \\ 0.0 \\ 2990.0 \\ 96.008 \end{gathered}$	$\begin{gathered} 2921.0 \\ 0.0 \\ 2921.0 \\ 96.10 \end{gathered}$	$\begin{gathered} 2978.5 \\ 0.0 \\ 2978.5 \\ 96.024 \end{gathered}$	$\begin{gathered} 2933.5 \\ 0.0 \\ 2933.5 \\ 96.081 \end{gathered}$	$\begin{gathered} 2969.5 \\ 0.0 \\ 2969.5 \\ 96.035 \end{gathered}$
* medium variatton:   $300+$ norm $(0,50)$   - ace.total stockout $\operatorname{cost}(\$)$   - acc.total holding cost(s)   - acc.total costs (s)   - costoker service rate (\%)	$\begin{gathered} 30.5 \\ 42989.0 \\ 43019.5 \\ 99.96 \end{gathered}$	$\begin{gathered} 0.0 \\ 35603.0 \\ 35603.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 9.5 \\ 14698.0 \\ 14707.5 \\ 99.988 \end{gathered}$	$\begin{gathered} 0.0 \\ 51800.5 \\ 51800.5 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 52931.0 \\ 52931.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 1301.0 \\ 479.5 \\ 1780.5 \\ 98.187 \end{gathered}$	$\begin{gathered} 1429.0 \\ 412.0 \\ 1841.0 \\ 98.087 \end{gathered}$	$\begin{gathered} 433.0 \\ 1833.0 \\ 98.127 \end{gathered}$	$\begin{gathered} 1342.0 \\ 538.0 \\ 1880.0 \\ 98.207 \end{gathered}$	$\begin{gathered} 1301.0 \\ 434.0 \\ 1735.0 \\ 98.260 \end{gathered}$	$\begin{gathered} 2821.5 \\ 53.0 \\ 2874.5 \\ 96.230 \end{gathered}$	$\begin{gathered} 2858.5 \\ 69.0 \\ 2927.5 \\ 96.177 \end{gathered}$	$\begin{gathered} 2881.0 \\ 43.5 \\ 2924.5 \\ 96.145 \end{gathered}$	$\begin{gathered} 2836.5 \\ 75.0 \\ 2911.5 \\ 96.208 \end{gathered}$	$\begin{gathered} 2761.0 \\ 67.0 \\ 2828.0 \\ 96.314 \end{gathered}$
* high variation:   $300+$ norm $(0,100)$   - acc.total stockodt $\operatorname{cost}$ ( $\$$ )   - acc.total holding cost(s)   - acc.total costs(s)   - costomer service rate (\%)	62.0   50854.5   50916.5   99.917	$\begin{gathered} 0.0 \\ 32062.5 \\ 32062.5 \\ 100 \end{gathered}$	$\begin{gathered} 42.5 \\ 16791 \\ 16833.5 \\ 99.944 \end{gathered}$	$\begin{gathered} 0.0 \\ 51285.5 \\ 51285.5 \\ 100.0 \end{gathered}$	$\begin{gathered} 9.0 \\ 62466.5 \\ 62475.5 \\ 99.988 \end{gathered}$	$\begin{aligned} & 1359.0 \\ & 1191.0 \\ & 2550.0 \\ & 98.179 \end{aligned}$	$\begin{gathered} 1437.0 \\ 913.0 \\ 2350.5 \\ 98.077 \end{gathered}$	$\begin{aligned} & 1441.0 \\ & 1045.0 \\ & 2486.0 \\ & 98.068 \end{aligned}$	1362.0   1315.5   2677.5   98. 182	1245.5   1299.5   2545.0   98.341	$\begin{gathered} 2846.0 \\ 227.5 \\ 3073.5 \\ 96.192 \end{gathered}$	$\begin{gathered} 2866.0 \\ \cdot \\ 239.0 \\ 3105.0 \\ 96.170 \end{gathered}$	$\begin{gathered} 2896.5 \\ 214.5 \\ 3111.0 \\ 96.128 \end{gathered}$	$\begin{gathered} 2875.0 \\ 198.5 \\ 3073.5 \\ 96.159 \end{gathered}$	$\begin{gathered} 2784.0 \\ 254.0 \\ 3038.0 \\ 96.279 \end{gathered}$

ABLE D-4

$\begin{gathered} \text { supply } \\ \text { conditions } \end{gathered}$	Percent Scrap (\%)														
	0.0\%					0.5\%					1\%				
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
* NO VARIATION: 300+ no error term   - acc.total stockout cost (\$)   - acc.total holding cost (s)   - acc.total costs(s)   - Customer service rate (\%)	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 1494.0 \\ 0.0 \\ 1494.0 \\ 98.197 \end{gathered}$	$\begin{gathered} 1476.0 \\ 0.0 \\ 1476.0 \\ 98.032 \end{gathered}$	$\begin{gathered} 1493.0 \\ 0.0 \\ 1493.0 \\ 98.002 \end{gathered}$	$\begin{gathered} 1467.0 \\ 0.0 \\ 1467.0 \\ 98.04 \end{gathered}$	$\begin{gathered} 1476.0 \\ 0.0 \\ 1476.0 \\ 98.032 \end{gathered}$	$\begin{gathered} 2941.5 \\ 0.0 \\ 2941.5 \\ 96.072 \end{gathered}$	$\begin{gathered} 2943.5 \\ 0.0 \\ 2943.5 \\ 96.067 \end{gathered}$	$\begin{gathered} 2946.5 \\ 0.0 \\ 2946.5 \\ 96.064 \end{gathered}$	$\begin{gathered} 2983.5 \\ 0.0 \\ 2983.5 \\ 96.017 \end{gathered}$	$\begin{gathered} 2977.0 \\ 0.0 \\ 2977.0 \\ 96.024 \end{gathered}$
* MEDIUM VARIATION:   $300+$ norm ( 0,50 )   - acc.total stockodt cost (\$)   - acc.total holding cost(s)   - acc.total costs (s)   - customer service rate (\%)	$\begin{gathered} 30.5 \\ 42989.0 \\ 43019.5 \\ 99.96 \end{gathered}$	$\begin{gathered} 0.0 \\ 35603.0 \\ 35603.0 \\ 100 \end{gathered}$	$\begin{gathered} 9.5 \\ 14698.0 \\ 14707.5 \\ 99.988 \end{gathered}$	$\begin{gathered} 0.0 \\ 51800.5 \\ 51800.5 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 52931.0 \\ 52931.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 1346.5 \\ 472.0 \\ { }_{1818.5} \\ 98.197 \end{gathered}$	$\begin{gathered} 1407.0 \\ 395.5 \\ 1802.5 \\ 98.117 \end{gathered}$	$\begin{gathered} 1349.0 \\ 543.0 \\ 1892.0 \\ 98.198 \end{gathered}$	$\begin{gathered} 1293.0 \\ 470.5 \\ 1763.5 \\ 98.273 \end{gathered}$	$\begin{gathered} 1428.5 \\ 394.5 \\ 1823.0 \\ 98.09 \end{gathered}$	$\begin{gathered} 2834.5 \\ 61.5 \\ 2896.0 \\ 96.214 \end{gathered}$	$\begin{gathered} 2880.5 \\ 66.0 \\ 2946.5 \\ 96.152 \end{gathered}$	$\begin{gathered} 56.0 \\ 2911.0 \\ 96.184 \end{gathered}$	$\begin{gathered} 2844.0 \\ 73.0 \\ 2917.0 \\ 96.197 \end{gathered}$	2779.5   60.5   2840.0   96.286
* HIGH VARIATION:   $300+$ norm $(0,100)$   - acc.total stockout cost (\$)   - acc.total holding cost (\$)   - acc.total costs (\$)   - CUSTOMER SERVICE RATE(\%)	62.0 50854.5 50916.5 99.917	0.0 32062.5 32062.5 100.0	42.5 16791 16833.5 99.9436	0.0 51285.5 51285.5 100.0	$\begin{gathered} 9.0 \\ 62466.5 \\ 62475.5 \\ 99.988 \end{gathered}$	1380.5 1153.5 2534.0 98.15	1418.0 907.0 2325.0 98.103	1438.0 1106.0 2544.0 98.073	1367.5 1275.5 2643.0 98.175	1255.5 1202.5 2458.0 98.317	2820.0 205.5 3025.5 96.229	2895.0 236.5 3131.5 96.131	$\begin{gathered} 2915.5 \\ 205.5 \\ 3121.0 \\ 96.104 \end{gathered}$	$\begin{gathered} 2880.5 \\ 208.0 \\ 3088.5 \\ 96.148 \end{gathered}$	$\begin{gathered} 2725.5 \\ 233.5 \\ 2959.0 \\ 96.353 \end{gathered}$

TABLE D-5

$\begin{gathered} \text { supply } \\ \text { conditions } \end{gathered}$	Percent Scrap (\%)														
	0.0\%					0.5\%					1.0\%				
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
* NO VARIATION: 300 +no error term   - acc.total stockout $\operatorname{cost}(\$)$   - acc.total holding cost (s)   - acc.total costs(s)   - customer service rate (\%)	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 0 \\ 0.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 1507.0 \\ 97.986 \end{gathered}$	$\begin{gathered} 1485.0 \\ 0.0 \\ 1485.0 \\ 98.016 \end{gathered}$	$\begin{gathered} 1483.5 \\ 0.0 \\ 1483.5 \\ 98.018 \end{gathered}$	$\begin{gathered} 0.0 \\ 1465.0 \\ 98.045 \end{gathered}$	$\begin{gathered} 1460.0 \\ 0.0 \\ 1460.0 \\ 98.050 \end{gathered}$	$\begin{gathered} 2940.5 \\ 0.0 \\ 2940.5 \\ 96.071 \end{gathered}$	$\begin{gathered} 2944.0 \\ 0.0 \\ 2944.0 \\ 96.065 \end{gathered}$	$\begin{gathered} 2932.5 \\ 0.0 \\ 2932.5 \\ 96.086 \end{gathered}$	$\begin{gathered} 2965.0 \\ 0.0 \\ 2965.0 \\ 96.037 \end{gathered}$	$\begin{gathered} 2999.0 \\ 0.0 \\ 2999.0 \\ 95.995 \end{gathered}$
* medium variation: $300+$ norm $(0,50)$   - acc.total stocrout cost (s)   - acc.total holding cost (s)   - acc.total costs (s)   - custoner service rate (8)	30.5   42989.0   43019.5   99.96	$\begin{gathered} 0.0 \\ 35603.0 \\ 35603.0 \\ 100.0 \end{gathered}$	$\begin{gathered} 9.5 \\ 14698.0 \\ 14707.5 \\ 99.988 \end{gathered}$	$\begin{gathered} 0.0 \\ 51800.5 \\ 51800.5 \\ 100.0 \end{gathered}$	$\begin{gathered} 0.0 \\ 52931.0 \\ 52931.0 \\ 100.0 \end{gathered}$	1354.5   457.5   1812.0   98.188	$\begin{gathered} 1426.0 \\ 401.5 \\ 1827.5 \\ 98.291 \end{gathered}$	$\begin{aligned} & 1429.5 \\ & 447.0 \\ & 1876.5 \\ & 98.09 \end{aligned}$	1350.5   526.0   1876.5   98.195	$\begin{gathered} 1280.5 \\ 492.0 \\ 1772.5 \\ 98.289 \end{gathered}$	2815.5   61.5   2877.0   96.237	2886.5 $\begin{gathered} 66.5 \\ 2953.0 \\ 96.142 \end{gathered}$	$\begin{gathered} 2886.0 \\ 50.5 \\ 2936.5 \\ 96.141 \end{gathered}$	$\begin{gathered} 2844.0 \\ 75.5 \\ 2919.5 \\ 96.198 \end{gathered}$	$\begin{gathered} 2767.0 \\ 62.0 \\ 2829.0 \\ 96.302 \end{gathered}$
* high variation: $300+$ norm $(0,100)$   - acc.total stockout cost (s)   - acc.total holding cost (\$)   - acc.total costs(s)   - customer service rate (\%)	$\begin{gathered} 62.0 \\ 50854.5 \\ 50916.5 \\ 99.917 \end{gathered}$	$\begin{gathered} 0.0 \\ 32062.5 \\ 32062.5 \\ 100.0 \end{gathered}$	$\begin{gathered} 42.5 \\ 16791.0 \\ 16833.5 \\ 99.944 \end{gathered}$	$\begin{gathered} 0.0 \\ 51285.5 \\ 51285.5 \\ 100.0 \end{gathered}$	$\begin{gathered} 9.0 \\ 62466.5 \\ 62475.5 \\ 99.988 \end{gathered}$	1373.5 1272.5 2646.0 98.159	1434.5 923.5 2358.0 98.082	1437.5 1165.0 2602.5 98.073	1358.0 1343.0 2701.0 98.189	1258.0 1235.0 2493.0 98.321	$\begin{gathered} 219.5 \\ 3045.5 \\ 96.220 \end{gathered}$	$\begin{gathered} 2921.5 \\ 228.5 \\ 3150.0 \\ 96.100 \end{gathered}$	$\begin{gathered} 2923.5 \\ 220.5 \\ 3144.0 \\ 96.093 \end{gathered}$	$\begin{gathered} 2880.5 \\ 211.5 \\ 3092.0 \\ 96.151 \end{gathered}$	$\begin{gathered} 2720.5 \\ 287.5 \\ 3008.0 \\ 96.357 \end{gathered}$

## APPENDIX E

THE STSTISTICS RESULTS FROM SAS PROGRAM FOR THE TOTAL COSTS AND CUSTOMER SERVICE LEVELS

TABLE E-1

THE SAS SYSTEM :ANALYSIS OF VARIANCE PROCEDURE CLASS LEVEL INFORMATION FOR THE TOTAL COST

Class	Levels	Values				
SUPPLY	3	0	1	2		
SCRAP	3	0	1	0.5		
PROCTIME	5	1	2	3	4	5




TABLE E-2

THE SAS SYSTEM: THE MULTIPLE COMPARISON PROCEDURE FOR THE TOTAL COST

FACTOR: SUPPLY QUANTITY UNCERTAINTY

T TESTS (LSD) FOR VARIABLE: COST
NOTE: This test controls the type $I$ comparisonwise error rate not the experimentwise error rate.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63569558$
Critical Value of $T=1.97$
Least Significant Difference= 2569.1
Means with the same letter are not significantly different.
T Grouping Mean $N$ SUPPLY

A	16104	75	2
A	14780	75	1
B	1480	75	0

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: COST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63569558$
Critical Value of $\mathrm{T}=2.42$
Minimum Significant Difference= 3146.3
Means with the same letter are not significantly different.

Bon Grouping	Mean	N	SUPPLY
A	16104	75	2
A	14780	75	1
B	1480	75	0

TABLE E-3

THE SAS SYSTEM:THE MULTIPLE COMPARISON PROCEDURE FOR THE TOTAL COST
FACTOR: PROCESS QUANTITY UNCERTAITY
T TESTS (LSD) FOR VARIABLE: COST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.
Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63569558$
Critical Value of $\mathrm{T}=1.97$
Least Significant Difference= 2569.1
Means with the same letter are not significantly different.
T Grouping Mean N SCRAP
A $\quad 27442 \quad 750$
B $2983 \quad 75 \quad 1$

B	1939	75	0.5

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: COST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.
Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63569558$ Critical Value of $\mathrm{T}=2.42$
Minimum Significant Difference= 3146.3
Means with the same letter are not significantly different.

Bon Grouping	Mean	N	SCRAP
A	27442	75	0
B	2983	75	1
B	1939	75	0.5

TABLE E-4

THE SAS SYSTEM: THE MULTIPLE COMPARISON PROCEDURE FOR THE TOTAL COST
FACTOR : PROCESS TIMING UNCERTAINTY

T tests (LSD) for variable: COST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63569558$ Critical Value of $T=1.97$
Least Significant Difference= 3316.7
Means with the same letter are not significantly different.

T Grouping	Mean	N	PROCTIME
A	10794	45	5
A	10789	45	1
A	10789	45	3
A	10784	45	4
A	10784	45	2

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: COST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

> Alpha $=0.05$ df $=180 \quad \mathrm{MSE}=63569558$ Critical Value of $T=2.84$

Minimum Significant Difference= 4777.1
Means with the same letter are not significantly different.

Bon Grouping	Mean	N	PROCTIME
A	10794	45	5
A	10789	45	1
A	10789	45	3
A	10784	45	4
A	10784	45	2

TABLE E-5

THE SAS SYSTEM :ANALYSIS OF VARIANCE PROCEDURE CLASS LEVEL INFORMATION FOR THE CUSTOMER SERVICE LEVEL

```
Analysis of Variance Procedure
 Class Level Information
 Class Levels Values
 SUPPLY 3 0 1 2
 SCRAP 3 0 l 0.5
 PROCTIME 5 1 2 3 4 5
```

Number of observations in data set $=225$

Source	DF	Squares	Square	F Value	Pr $>$ F
Model	44	553.6330432	12.5825692	1583.90	0.0001
Error	180	1.4299299	0.0079441		
Corrected Total	224	555.0629732			


R-Square	C.V.	Root MSE	CUST Mean
0.997424	0.090865	0.089129	98.08984


| Source | DF | Anova SS | Mean Square | F Value | Pr > F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |
| SUPPLY | 2 | 0.3064373 | 0.1532187 | 19.29 | 0.0001 |
| SCRAP | 2 | 552.9070638 | 276.4535319 | 34800.05 | 0.0001 |
| SUPPLY*SCRAP | 4 | 0.2493120 | 0.0623280 | 7.85 | 0.0001 |
| PROCTIME | 4 | 0.0246193 | 0.0061548 | 0.77 | 0.5429 |
| SUPPLY*PROCTIME | 8 | 0.0323415 | 0.0040427 | 0.51 | 0.8487 |
| SCRAP*PROCTIME | 8 | 0.0526304 | 0.0065788 | 0.83 | 0.5788 |

THE SAS SYSTEM:THE MULTIPLE COMPARISON PROCEDURE FOR
THE CUSTOMER SERVICE LEVEL
FACTOR : SUPPLY QUANTITY UNCERTAINTY

T tests (LSD) for variable: CUST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

Alpha= $0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=0.007944$ Critical Value of $T=1.97$
Least Significant Difference $=0.0287$
Means with the same letter are not significantly different.

T Grouping	Mean	N	Supply
A	98.12315	75	1
A	98.10798	75	2
B	98.03839	75	0

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: CUST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=0.007944$ Critical Value of $T=2.42$
Minimum Significant Difference= 0.0352
Means with the same letter are not significantly different.

Bon Grouping
A
A

B

Mean
98.12315
98.10798
98.03839

N SUPPLY

75 1
$75 \quad 2$

750

THE SAS SYSTEM:THE MULTIPLE COMPARISON PROCEDURE FOR
THE CUSTOMER SERVICE LEVEL
FACTOR : PROCESS QUANTITY UNCERTAINTY

T tests (LSD) for variable: CUST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=0.007944$ Critical Value of $\mathrm{T}=1.97$
Least Significant Difference= 0.0287
Means with the same letter are not significantly different.
T Grouping Mean N SCRAP
A $99.98641 \quad 750$
$\begin{array}{llll}\text { B } & 98.13570 \quad 75 \quad 0.5\end{array}$
$\begin{array}{lll}C & 96.14742 & 75\end{array}$

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: CUST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=0.007944$
Critical Value of $\mathrm{T}=2.42$
Minimum Significant Difference $=0.0352$
Means with the same letter are not significantly different.

Bon Grouping	Mean	N	SCRAP
A	99.98641	75	0
B	98.13570	75	0.5
C	96.14742	75	1

## TABLE E-8

THE SAS SYSTEM:THE MULTIPLE COMPARISON PROCEDURE FOR THE CUSTOMER SERVICE LEVEL FACTOR : PROCESS TIMING UNCERTAINTY

T tests (LSD) for variable: CUST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

```
Alpha= 0.05 df= 180 MSE=0.007944
 Critical Value of T= 1.97
Least Significant Difference= 0.0371
```

Means with the same letter are not significantly different.
T Grouping
Mean N PROCTIME
A $98.11052 \quad 45 \quad 5$
A $98.08744 \quad 45 \quad 3$
$\begin{array}{llll}\text { A } & 98.08460 & 45 \quad 4\end{array}$
A $98.08421 \quad 45 \quad 2$
A $98.08244 \quad 45$ I

The SAS system
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: CUST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

```
Alpha= 0.05 df= 180 MSE= 0.007944
```

                                    Critical Value of \(T=2.84\)
    Minimum Significant Difference= 0.0534
Means with the same letter are not significantly different.
Bon Grouping
Mean
N PROCTIME

A	98.11052	45	5
A	98.08744	45	3
A	98.08460	45	4
A	98.08421	45	2
A	98.08244	45	1

## APPENDIX F

THE LEAST SIGNIFICANT DIFFERENCE TEST (LSD)
FOR TOTAL COSTS AND CUSTOMER SERVICE LEVEL UNDER BOTH SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTANITY (PERCENT SCRAP)

## APPENDIX F

THE LEAST SIGNIFICANT DIFFERENCE TEST (LSD) FOR TOTAL COSTS AND CUSTOMER SERVICE LEVEL UNDER BOTH SUPPLY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTANITY (PERCENT SCRAP)

## A. The LSD Test for Total Costs:

- The first step: Order the average of total costs in each combination from the maximum value to the minimum value.

No.	Combination	Symbol	$\begin{aligned} & \text { Total } \\ & \text { Costs }(\$) \end{aligned}$
1	Level of supply:2, Level of Scrap $0 \%$	$\mu_{1}$	42714
2	Level of supply:1, Level of Scrap $0 \%$	$\mu_{2}$	39612.3
3	Level of supply:2, Level of Scrap 1\%	$\mu_{3}$	3082.4
4.	Level of supply:0, Level of Scrap 1\%	$\mu_{4}$	2957.42
5.	Level of supply:1, Level of Scrap 1\%	$\mu_{5}$	2908.9
6.	Level of supply:2, Level of Scrap 0.5\%	$\mu_{6}$	2514.28
7.	Level of supply:1, Level of Scrap 0.5\%	$\mu_{7}$	1819.86
8.	Level of supply:0, Level of Scrap 0.5\%	$\mu_{8}$	1481.6
9.	Level of supply:0, Level of Scrap $0 \%$	$\mu_{9}$	0.0

- The second step: Calculation LSD for each pair of combinations. If the difference between each pair is greater than or equal the LSD value, the mean of the first combination is greater than the second combination.
$\operatorname{LSD}=t_{\text {af of obs., } \alpha / 2}\left[(\mathrm{MS} \text { within }) *\left(1 / n_{1}+1 / n_{1}\right)\right]^{1 / 2}$

Thus;
$\operatorname{LSD}(1,2)=1.97[(63569558)(2 / 25)]^{1 / 2}$

$$
=4442.58
$$

$$
=\operatorname{LSD}(1,3)=\operatorname{LSD}(1,4), \ldots \operatorname{LSD}(1,9)
$$

$$
=\operatorname{LSD}(2,3)=\operatorname{LSD}(1,4), \ldots \operatorname{LSD}(2,9)
$$

$$
=\operatorname{LSD}(7,9)=\operatorname{LSD}(8,9)
$$

$$
\begin{array}{ll}
\mu_{1}-\mu_{2}=3101.7<\operatorname{LSD}: \text { not significant } & \text { so, } \mu_{1}=\mu_{2} \\
\mu_{1}-\mu_{3}=39631.6>\operatorname{LSD}: \text { significant } & \text { so, } \mu_{1}>\mu_{3}
\end{array}
$$

$$
\mu_{1}-\mu_{9}=42714>\operatorname{LSD}: \text { significant } \quad \text { so, } \mu_{1}>\mu_{9}
$$

Thus: $\mu_{1}=\mu_{2}>\mu_{3}>\mu_{4} \ldots>\mu_{9}$

$$
\begin{aligned}
& \mu_{3}-\mu_{4}=124.98<\operatorname{LSD}: \text { not significant so, } \mu_{3}=\mu_{4} \\
& \mu_{3}-\mu_{5}=173.5<\operatorname{LSD}: \text { not significant so, } \mu_{3}=\mu_{5} \\
& : \\
& \mu_{3}-\mu_{9}=3082.4<\text { LSD : not significant so, } \mu_{3}=\mu_{9} \\
& \text { Thus: } \mu_{3}=\mu_{4}=\mu_{5}=\ldots=\mu_{9}
\end{aligned}
$$

Conclusions:

$$
\begin{aligned}
& \text { 1. } \mu_{1}=\mu_{2}>\mu_{3}>\mu_{4} \ldots>\mu_{9} \\
& \text { 2. } \mu_{3}=\mu_{4}=\mu_{5}=\ldots=\mu_{9}
\end{aligned}
$$

## B. The LSD Test for Customer Service Levels:

To calculate the multiple comparisons between each pair of combinations, it is prepared the same way as the total cost method.

- The first step:

No.
Combination
Symbol
Customer Service Level (\%)

1. Level of supply:0, Level of Scrap $0 \%$
$\mu_{1} \quad 100$
. Level of supply:1, Level of Scrap $0 \%$
$\mu_{2} \quad 99.98944$
2. Level of supply:2, Level of Scrap $0 \%$
$\mu_{3} \quad 99.9698$
. Level of supply:1, Level of Scrap $0.5 \%$
$\mu_{4}$
98.17857
3. Level of supply:2, Level of Scrap $0.5 \%$
$\mu_{5} \quad 98.1646$
4. Level of supply:0, Level of Scrap $0.5 \%$
$\mu_{6}$
98.063828
5. Level of supply:1, Level of Scrap $1 \%$
$\mu_{7}$
96.20135
6. Level of supply:2, Level of Scrap $1 \%$
$\mu_{8}$
96.18955
7. Level of supply:0, Level of Scrap $1 \%$
$\mu_{g}$
96.05135

- The second step:
$\operatorname{LSD}=t_{d f}$ of obs., $\alpha / 2\left[(\mathrm{MS} \text { within }) *\left(1 / n_{1}+1 / n_{1}\right)\right]^{1 / 2}$
Thus;

```
\(\operatorname{LSD}(1,2)\)
 \(=1.97[(0.0079441)(2 / 25)]^{1 / 2}\)
 \(=0.05\)
 \(=\operatorname{LSD}(1,3)=\operatorname{LSD}(1,4), \ldots \operatorname{LSD}(1,9)\)
 \(=\operatorname{LSD}(2,3)=\operatorname{LSD}(1,4), \ldots \operatorname{LSD}(2,9)\)
 :
 :
 \(=\operatorname{LSD}(7,9)=\operatorname{LSD}(8,9)\)
 \(\mu_{1}-\mu_{2}=0.01<\operatorname{LSD}:\) not significant so, \(\mu_{1}=\mu_{2}\)
```

$$
\begin{aligned}
& \mu_{1}-\mu_{3}=0.02<\operatorname{LSD}: \text { not significant so, } \mu_{1}=\mu_{3} \\
& \mu_{1}-\mu_{4}=1.1211>\operatorname{LSD}: \text { significant so, } \mu_{1}>\mu_{4} \\
& \mu_{1} \mu_{9}=3.95>\operatorname{LSD}: \text { significant so, } \mu_{1}>\mu_{9} \\
& \text { Thus: } \mu_{1}=\mu_{2}=\mu_{3}>\mu_{4} \ldots>\mu_{9} \\
& \mu_{4}-\mu_{5}=0.014<\operatorname{LSD}: \text { not significant so, } \quad \mu_{4}=\mu_{5} \\
& \mu_{4}-\mu_{6}=0.115>\operatorname{LSD}: \text { significant so, } \mu_{4}>\mu_{6} \\
& \mu_{4} \mu_{9}=2.127>\operatorname{LSD}: \text { significant so, } \mu_{4}>\mu_{9} \\
& \text { Thus: } \mu_{4}=\mu_{5}>\mu_{6} \ldots>\mu_{9} \\
& \mu_{6}-\mu_{7}=1.86>\operatorname{LSD} \text { : significant so, } \mu_{6}>\mu_{7} \\
& \mu_{6} \mu_{9}=2.012>\operatorname{LSD}: \text { significant so, } \mu_{6}>\mu_{9} \\
& \text { Thus: } \mu_{6}>\mu_{7}>\ldots>\mu_{9} \\
& \mu_{7}-\mu_{8}=0.02<\operatorname{LSD} \text { : not significant so, } \mu_{7}=\mu_{8} \\
& \mu_{7}-\mu_{9}=0.15>\operatorname{LSD}: \text { significant so, } \mu_{7}>\mu_{9} \\
& \text { Thus: } \mu_{7}=\mu_{8}>\mu_{9} \\
& \mu_{8}-\mu_{9}=0.13>\operatorname{LSD}: \text { significant so, } \mu_{8}>\mu_{9}
\end{aligned}
$$

Conclusions:

$$
\begin{aligned}
& \text { 1. } \mu_{1}=\mu_{2}=\mu_{3}>\mu_{4} \ldots>\mu_{9} \\
& \text { 2. } \mu_{4}=\mu_{5}>\mu_{6}>\mu_{7} \ldots>\mu_{9} \\
& \text { 3. } \mu_{7}=\mu_{8}>\mu_{9}
\end{aligned}
$$

## APPENDIX G

## THE STATISTICS RESULTS FROM SAS SYSTEM

 FOR THE HOLDING COSTS
## APPENDIX G

THE STATISTICS RESULTS FROM SAS SYSTEM FOR THE HOLDING COSTS

TABLE G-1
THE SAS SYSTEM: ANALYSIS OF VARIANCE PROCEDURE CLASS LEVEL INFORMATION

Class	Levels	Values			
SUPPLY	3	0	1	2	
SCRAP	3	0	1	0.5	
PROCTIME	5	1	2	3	4

Number of observations in data set $=225$

TABLE G-2

THE SAS SYSTEM ANALYSIS OF VARIANCE PROCEDURE INDEPENDENT VARIABLE: HOLDING COST

Sum of Source	Mean   DF	Squares	Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	44	65131515155	1480261708	23.27	0.0001
Error	180	11448098763	63600549		
Corrected Total	224	76579613918			
R-Square		C.V.	Root MSE		HCOST Mean
0.850507		85.26083	7974.995		9353.644
Source	DF	Anova SS	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
SUPPLY	2	9907368278	4953684139	77.89	0.0001
SCRAP	2	36775573264	18387786632	289.11	0.0001
SUPPLY*SCRAP	4	18448555616	4612138904	72.52	0.0001
PROCTIME	4	3408	852	0.00	1.0000
SUPPLY* PROCTIME	8	4008	501	0.00	1.0000
SCRAP*PROCTIME	8	5395	674	0.00	1.0000

TABLE G-3

THE SAS SYSTEM : THE MULTIPLE COMPARISON PROCEDURE FACTOR : SUPPLY QUANTITY UNCERTAINTY
$T$ tests (LSD) for variable: HCOST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

$$
\begin{gathered}
\text { Alpha }=0.05 \mathrm{df}=180 \mathrm{MSE}=63600549 \\
\text { Critical Value of } \mathrm{T}=1.97 \\
\text { Least Significant Difference }=2569.8
\end{gathered}
$$

Means with the same letter are not significantly different.

T Grouping	Mean	N	SUPPLY
A	14687	75	2
A	13374	75	1
B	0	75	0

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: HCOST
NOTE: This test controls the type I experimentwise error rate,
but
generally has a higher type II error rate than REGWQ.
Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63600549$
Critical Value of $\mathrm{T}=2.42$
Minimum Significant Difference= 3147.1
Means with the same letter are not significantly different.

Bon Grouping	Mean	N	SUPPLY
A	14687	75	2
A	13374	75	1
B	0	75	0

THE SAS SYSTEM : THE MULTIPLE COMPARISON PROCEDURE FACTOR : SUPPLY QUANTITY UNCERTAINTY

T tests (LSD) for variable: HCOST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

```
Alpha \(=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63600549\)
```

Critical value of $T=1.97$
Least Significant Difference $=2569.8$
Means with the same letter are not significantly different.

T Grouping

Mean

27432
533

96
75 1

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: HCOST
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63600549$
Critical Value of $\mathrm{T}=2.42$
Minimum Significant Difference= 3147.1
Means with the same letter are not significantly different.

Bon Grouping	Mean	N	SCRAP
A	27432	75	0
B	533	75	0.5
B	96	75	1

## TABLE G-5

THE SAS SYSTEM : THE MULTIPLE COMPARISON PROCEDURE FACTOR: PROCESSING TIMING UNCERTAINTY

T tests (LSD) for variable: HCOST
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

```
 Alpha= 0.05 df= 180 MSE=63600549
Critical Value of \(\mathrm{T}=1.97\)
```

Least Significant Difference= 3317.5
Means with the same letter are not significantly different.
T Grouping Mean N PROCTIME

A	9361	45	5
A	9355	45	3
A	9351	45	4
A	9351	45	1
A	9350	45	2

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: HCOST
NOTE: This test controls the type 1 experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=63600549$
Critical Value of $\mathrm{T}=2.84$
Minimum Significant Difference= 4778.3
Means with the same letter are not significantly different.
Bon Grouping
Mean $N$ PROCTIME

A	9361	45	5
A	9355	45	3
A	9351	45	4
A	9351	45	1
A	9350	45	2

THE HOLDING COSTS UNDER SUPPIY QUANTITY UNCERTAINTY AND PROCESS QUANTITY UNCERTAINTY

The SAS system Analysis of Variance Procedure

Level of SUPPLY	Level of	N	Mean	SD
	SCRAP			
0	0	25	0.0000	0.0000
0	1	25	0.0000	0.0000
0	0.5	25	0.0000	0.0000
1	0	25	39604.3000	14245.8956
1	1	25	62.9400	9.8872
1	0.5	25	454.3600	54.7048
2	0	25	42692.0000	16553.9117
2	1	25	225.9800	20.4738
2	0.5	25	1143.2200	154.3355

## APPENDIX H

THE RESULTS FROM SAS SYSTEM FOR THE STOCKOUT COSTS
APPENDIX H
THE RESULTS FROM SAS SYSTEM
FOR THE STOCKOUT COSTS
TABLE H-1THE SAS SYSTEM : ANALYSIS OF VARIANCE PROCEDUREFOR THE STOCKOUT COST
CLASS LEVEL INFORMATION
Class Levels Values
$\begin{array}{lllll}\text { SUPPLY } & 3 & 0 \quad 2\end{array}$
SCRAP 3010.5
PROCTIME $5 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
Number of observations in data set $=$ ..... 225

TABLE H-2

THE SAS SYSTEM : ANALYSIS OF VARIANCE PROCEDUREDEPENDENT VARIABLE: STOCKOUT COST

Sum of Source	Mean   DF	Squares	Square	F Value	Pr > F
Model	44	309935561.2	7043990.0	3252.84	0.0001
Error	180	389788.6	2165.5		
Corrected Total	224	310325349.8			
R-Square		c.v.	Root MSE		STKC Mean
0.998744		3.247227	46.53485		1433.064
Source	DF	Anova SS	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
SUPPLY	2	245342.1	122671.1	56.65	0.0001
SCRAP	2	309506092.4	154753046.2	71463.22	0.0001
SUPPLY*SCRAP	4	180645.5	45161.4	20.86	0.0001
PROCTIME	4	281.5	70.4	0.03	0.9980
SUPPLY*PROCTIME	8	1427.2	178.4	0.08	0.9996
SCRAP*PROCTIME	8	433.9	54.2	0.03	1.0000

TABLE H-3

THE SAS SYSTEM : THE MULTIPLE COMPARISON PROCEDURE FACTOR : SUPPLY QUANTITY UNCERTAINTY
$T$ tests (LSD) for variable: STKC
NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

> Alpha $=0.05$ df $=180 \quad \mathrm{MSE}=2165.492$
> Critical Value of $\mathrm{T}=1.97$
> Least Significant Difference $=14.995$

Means with the same letter are not significantly different.
T Grouping Mean N SUPPLY
$\begin{array}{llll}\text { A } & 1479.427 & 75 & 0\end{array}$
$\begin{array}{llll}\text { B } & 1414.733 & 75 & 2\end{array}$
B $1405.033 \quad 751$

The SAS system
Analysis of Variance Procedure
Bonferroni (Dunn) T tests for variable: STKC
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=2165.492$
Critical Value of $T=2.42$
Minimum Significant Difference= 18.364
Means with the same letter are not significantly different.

Bon Grouping
Mean
N SUPPLY

A $\quad 1479.427 \quad 750$
$\begin{array}{llll}\text { B } & 1414.733 & 75 & 2\end{array}$

B $\quad 1405.033 \quad 75 \quad 1$

TABLE H-4

THE SAS SYSTEM : THE MULTIPLE COMPARISON PROCEDURE FACTOR : PROCESS QUANTITY UNCERTAINTY

The SAS System

> Analysis of Variance Procedure
> T tests (LSD) for variable: STKC

NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

Alpha= $0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=2165.492$
Critical Value of $\mathrm{T}=1.97$
Least Significant Difference= 14.995
Means with the same letter are not significantly different.

T Grouping

Mean
$2882.747 \quad 75 \quad 1$
$\begin{array}{llll}\text { B } & 1406.213 & 75 & 0.5\end{array}$

C
10.233

750

The SAS System
Analysis of Variance Procedure

Bonferroni (Dunn) $T$ tests for variable: STKC
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= $0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=2165.492$
Critical Value of $\mathrm{T}=2.42$
Minimum Significant Difference= 18.364

Means with the same letter are not significantly different.

Mean
2882.747

751
$\begin{array}{llll}\text { B } & 1406.213 & 75 & 0.5\end{array}$
$\begin{array}{llll}C & 10.233 & 75 & 0\end{array}$

TABLE H-5

THE SAS SYSTEM : THE MULTIPLE COMPARISON PROCEDURE FACTOR : PROCESS TIMING UNCERTAINTY

The SAS System
Analysis of Variance Procedure

> T tests (LSD) for variable: STKC

NOTE: This test controls the type I comparisonwise error rate not the experimentwise error rate.

Alpha $=0.05 \quad d f=180 \quad$ MSE $=2165.492$
Critical Value of $T=1.97$
Least Significant Difference= 19.358
Means with the same letter are not significantly different.

T Grouping	Mean	N	PROCTIME
A	1434.156	45	2
A	1433.978	45	1
A	1433.511	45	5
A	1432.556	45	4
A	1431.122	45	3

The SAS System
Analysis of Variance Procedure
Bonferroni (Dunn) $T$ tests for variable: STKC
NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha $=0.05 \quad \mathrm{df}=180 \quad \mathrm{MSE}=2165.492$
Critical Value of $\mathrm{T}=2.84$
Minimum Significant Difference= 27.882
Means with the same letter are not significantly different.

Bon Grouping
Mean $N$ PROCTIME

A	1434.156	45	2
A	1433.978	45	1
A	1433.511	45	5
A	1432.556	45	4
A	1431.122	45	3

TABLE H-6

THE STOCKOUT COSTS UNDER SUPPLY QUANTITY UNCERTAINTY AND PROCESS TIMING UNCERTAINTY


## VITA

KANCHANA SETHANAN

Candidate for the Degree of<br>Master of Science

Thesis: COST PERFORMANCE AND CUSTOMER SERVICE LEVEL UNDER SUPPLY QUANTITY, FROCESS QUANTITY, AND PROCESS TIMING UNCERTAINTIES IN A FLOW SHOP MANUFACTURING ENVIRONMEN'T

Major Field: Industrial Engineering and Management
Biographical:
Personal Data: Born in Roi-Et, Thailand, On Jan 18, 1969, the daughter of Pichai and Sunee Sethanan.

Education: Graduated from Selaphumpittayakhom school, Roi-Et, Thailand in Mar 1987; received Bachelor of Engineering in Industrial Engineering from Khon Kaen University in Apr. 1991.

Experience: Industrial engineer, NEC Technologies Thailand, April, 1991, to May 1992. Instructor, Department of Industrial Engineering, Khon Kaen University, May, 1992, to July, 1994.

