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CHAPTER 1

INTRODUCTION

In 1974, Ed Catmull introduced an algorithm for displaying
realistic 3D surfaces on a computer screen [CATM74]. The algcritim
“paints” a digitized picture onto a 3D surface and displays the
resulting “textured” surface ontoc the screen. This is a preccess which
has come tc be known as texture mapping.

Texture mapping actually involves two mappings: One from texture
space tc object space, and then another from object space tc screen
space. Texture space is a ccordinate system where texture
representations are defined. In this paper, texture space is a 2L
coordinate system with coosrdirates (u,v), where (0<=u,v<=l. As with
Catmull’s algorithm, the textures in this thesis are represented by an
image. Cbject space, cn the other hand, is a cocrdinate system where
objects are defined. For this study, objects are defined in a 3D
coordinate system by the coordinates (x,y,z). Last, screen space 1ic
basically where screen display information is accessed. In this thesis,
screen space is 2D and represented by the coordinates (s,,s.). The
screen is also represented by a bounded 2D plane cutting thrcough 3D
object space, orthcgonal to the z-axis.

To simulate how the eye perceives light frcm cbjects in the real
world, the mapping from 3D cbject space to 2D screen space may be a
perspective mapping or perspective projection. With this type of
projection, cbjects which are closer to the screen are made tc look
larger than those which are farther from the screen. An object’s z-

coordinate is used to determine how close that object is from the

screen, and therefore how far it is from the viewer’s eye. Texture



mapping which incorporates this perspective projection is called
perspective texture mapping.

Perspective texture mapping algorithms can generally be divided
into three categories: Perspective mapping, Inverse perspectliv
mapping, and affine mapping. Ferspective mapping algorithms map forward
from texture space to okiect space and then from object space teoc screen
space, whereas inverse perspective mapping algocrithms map in the
opposite direction. Affine mappings are translated linear mappings, not
perspective mappinas, but can be used for perspective texture mapping in
rare instances (Chapter 2. Some algorithms take %this apprsach.

The differences between perspective texture mapping algorithms are
not just whichn of the above three categcries they fit in, but also what
intermediate mappings they use. Catmull’s algorithm uses a subkdivision
approach to map from texture and object space to screen space, wherea:s
other algorithms generally use a parametric mapping approach. Most oI
the theory that has been developed until now has been based on making
the parametric approach more efficient.

In this thesis, I revisit the subdivision approach with a new
algorithm called the scan-line supbdivision algorithm (Chapter 5). The
approach simplifies the texture mapping process, and 1is easily adaptable
to different levels of filtering. This allows the algorithm to
dynamically trade speed for realism and vice versa.

As with all algoeritnms, this algorithm has scme minor
disadvantages. One i1s that since it texture maps only the basic
triangle, 3D cbject silhouettes are not always smooth. Another is that
because it subdivides, it has the overhead ¢f having to implement a

stack.



1.1 Organization

Chapter 2 contains a review of the evolution of texture mapping
theory, beginning with Catmull subdivision. The chapter divides these
theories into three main groups: perspective, inverse perspective, and
affine texture mapping. t also covers scme filtering methods and
issues that apply tec texture mapping. Chapter 3 discusses Catmull
subdivision. A descripticn for subdividing the cubic curve, as well as
the bicubic surface, is presented. Chapter 4 outlines a fast, general
purpose, inverse perspective mapping algorithm for texture mapping the
basic triangle. Chapter 5 describes the scan-line subdivision method
for perspective texture mapping. The chapter describes how this method
combines the qualities of Catmull subdivision with the advantages of
inverse perspective mapping. The paper concludes with a summary in

Chapter o.



1.2 Reyword Definitions

Several t=rms used in the thesis are defined below:

Filtering
Object Space

Pixel

Projection

Screen Space

Texel

Texture Map

Texture Mapping

Texture Space

Pefining, altering, and/or reconstrusting data.

The 3D coordinate system where objects are defined

The smallest “picture element” that can be accessea in

screen space.
A mapping from 3T space to 2D space.
The 2D coordinate system where the computer screen

display information is defined.

The smallest “texture element” that can be accessed

texture space.

A representaticn of real-world texture, generally
the form of a 2D image.

The process of mapping simulated texture onto a 3D
object and displaying the textured object cntc a

computer screen.

The 2D coordinate system where texture is defined.

in



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Texture mapring, the process of mapping simulated texture cntc a
computer generated surface, was pioneered by Ed Catmull [CATM74]. His
technique was tc subdivide a mathematical surface, alcng with a
digitized image, until the resulting subdivided surfaces coverea conly
one screen pixel when projected, or mapped onto a two dimensicnal
computer screen. The color fzr each pixel was then taken from the
resulting subdivided images, giving the appearance of an image rainted
onto a surface (see Figure 2.la;.

It has since been shown that texture does net have tc be simulated
using cnly an image. Surface bumps can be simulated by mapgping a

pattern of perturbed surface normals conto an okject [BLIN7Eaj. T

e

process is called bump mapping, which is a form cf texture marping.
Although many kinds of texture mapping exist, this thesis focuses on a
particular type called perspective texture mapplng.

Perspective texture mapping is the texture mapping of a 3D object
which will undergo a perspective projection ontc a 2D ccmputer screen.
This implies that two mappings will take place: Cne from an image or
texture map onto a 3D object, and then ancther from the 3D object onto a
2D computer screen (see Figure Z.1lb). Usually these two mappings are
compesed to form cone mapping from 2D texture space tc 2D screen space,

leaving out the intermediate 3D object space [HECKS86].
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2.2 Theoretical Development

Since Catmull's subdivision algorithm,

developed te implement perspective texture mapping.

can usually be divided into three

inverse perspective mapping,

and affine mapping.

These

other techniques have been

technigues
e mapping,

3 ccmmon abcut

these technigues is that they strive to mimic the analog world using

digital methods. Because of this,

digital signal theory plays an

y




important role in perspective texture mapping. The fcllowing sections
explain some of the techniques used tc implement perspective texture
mapping, as well as some digital signal prccessing technigues found in

the literature.

2.2.1 Perspective Mapping

If a 3D surface tc be textured can be parameterized, then
individual points on that surface can be mapped tc a pecint in texture
space and vice versa. Triangles are easily parameterized using the

following equations:

£
I

(X-=2%.)Ju + (X -%X)v + X,

¥ = (y:=yilu + (y-—-y.Iv + y:, and

8]

{z:=zZ:'a + (12:—2.)Vv +

8]

Where (x:,¥y:,2:) are vertices of the triangle, (u,v) are texture
cocrdinates where 0<=u,v<=1l, and (x,y,z! are triangle ccordinates.

If a mapping from 2D texture space tc 3D ckject space, =uch as the
one above, is comkined with a perspective projecticn from 3D ckiject
space to 2D screen space, the result is a perspective mapr:ng. A
perspective projection is a mapping from 3D ocbject space to 2I' szreen

space which simulates perspective. OCne such mapping can ke tound via

‘the law of similar triangles (see Figure 2.2.1). )
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Figure 2.2.1

The two mappings merntioned
texture space to 3D cbiect space,

okject space to ZL screen space,

Law of Similar Triangles.

abcve, the parametric mapping from 2D
and the perspective preojection from 3D

can be compcsed. Using matrix

notation, a perspective mapping cf a planar texture can be expressed as:
Eping E P

[ xw, yw, w ] = [ u,

[ADG ]
v, 11  BEH |
lLcr1 ] [HECK83] .



Solving the equation above gives:

Auw + Bv + C Du + Ev + F

Gu + Hv + I Gu + Hv + Z [MAX¥W4c] .

In the above egquaticn, the coefficients A..I are defined as

follows: A = X- - %, B=% - x., C=x.,, B=y. -%, E=%v -y, F=
v, G=2y - 2;, H=2- -2, and I = Z.. The values x and y represent
the resulting screen ccordinates. ! Note how cliosely this resenbles tne

earlier triangle example combined with the perspective prcaecticn.

This method cf texture mapping is fairly straightfcrwara, put it
can also be very calculation intensive. The reascon is that one division
per texel, or texture pixel, is generally required in order tec perferm
the perspecztive projecticn. Since different points on a surface may
project tc the same screen pixel, averaging of that pixel’s
corresponding texel values shculd generally be dene. This provides good
antialiasing, but is also very expensive. ( Antialiasing is ccvered
later in the chapter. ) Catmull and Smith democnstrate a method of
perspective mapping using a unigue two-pass shear and scale te:chnigue

[CATMBO] .



2.2.2 Inverse Perspective Mapping

The mapping in section Z.2.1 1s from texture space to screen

space. It has an inverse which mars from screen space tc texture space:

0 v e

oM
jo U]

st
I

r
[ug, vg, @] = [ %, y, 1] {

[N

[ EI-FH FG-DI DH-EG
{ %, y, 1 1 | CH-BI AI-CG BG-AH
L BF-CE CD-AF AE-BD

[HECKE83] .
Instead of scanning texture space to find the corresponding screen
coordinates, screen space is scanned tc find the correspconding texture
coordinates. This methed generally reguires only one divisicn per
screen pixel [SMIT80]. Aoki and Levine demonstrate this methca Icr

generating realistic images [ACKI78].

2.2.3 Affine Mapping

Affine mappings are translated linear mappings. A perspective
mappirg is affine iff g=h=0 and i#0 [HECKS91]. In other words, the
mapping from 2D texture space to 3D object space is typically affine,
but a perspective projection from 3D cbject space tc ZD screen space is
not. Texture can be linearly interpolated to fit a 3D cbkbject, but a
textured 3D object cannct generally be linearly interpclated teo fit its
projected screen image and still maintain ccrrect perspective. Despite
this general rule, there are a few texture mapping methods which do
affinely map from 3D cbject space to 2[' screen space while still

preserving perspective. One method, constarnt-z texture mapping, takes

10



advantage of the fact that g=h=0 when a plane in 3D space is parallel tc
the screen plane. It scans a 3D object one z cccrdinate at a time,
holding z constant and affinely mapping that pcrtion cf the object which
is cut through by this constant-z plane. Another methed affinely maps
objects, but reinterpolates every few pixels in order tc give the
appearance cf a perspective mapping. These methods are fast, but

generally trade realism for speed.

2.2.4 Filtering

The discrete digital sampling of a continuocus signal, such as
light, requires some form cf digital signal processing or filter:ing in
order to reconstruct lcst data [FCLES0]. For the same reason, filtering
is alsc needed when a digitized texture is mapped cnto a computer
screen. The follcowing sections cover a well known problem in computer
graphics called aliasing, and touch on scme of the various types cf

filtering as found in the literature.

2.2.4.1 Aliasing

Aliasing occurs when a signal has unreprcduczible high Ifregquenciecs
[CROWT77] [WHITE1]. It causes the infamcus jaggy lines tha*t plague the
computer graphics world. A mathematical lirne is continuous, but the
computer screen 1s discrate and generally displays at tco lcw of
resclution to reproduce the i1ine accurately. Tw> solutions to this
problem are (1! sample at a higher resolution and i2) dc lcw-pacs
filtering of the signal before sampling [HECKS8E].

Sampling the texture at a higher rescluticn does not necessarily
imply that the cemputer screen needs to be at a higher resclution. If

multiple samples cf texture values map tc a single screen pixel, then

11



the cclor and intensity of these values can be averaged together and
stored at that pixel lccation. The trade off is aliasing for noi:ze
[CCCKEe] .

The second solution is to band-limit the signal befcre sampling.
This means keeping the frequencies c¢f the signal below the Nyguist limit
[HECK86]. 1Inr other words, lower the frequency and/cr rescluticn cf the
texture map until it is reproducible by the computer screen when
projected. The methods used tc do this are well develcped for linear
mappings [OFPE75], kut only a few methods have been intrcduced for

nenlinear mappings suczh as the perspective projecticn [HECK3el.

2.2.4.2 Space-invariant and Space-variant Filtering

When sampling texture space for use in filtering, cften a group cf
neighboring texels are sampled together. The sample shape ard area is
determined by the filter used. Space-invariant filtering uses a filter
shape that remains constant as it moves across the texture map. This
form of filtering works best with affine mappings because of their
linear correspondence with texture space.

Space-variant filtering, on the cther hand, uses a filter size and
shape that varies as it mcves across the texture map. This type cf
filtering is good for perspective texture mapping because 1t accounts
for the nonlinear foreshortening caused by the perspective
transformation. Space-variant filters are less understoocd and generally

more complex than space-invariant £ilters [HECKZ€].

12



2.2.4.3 Direct Convolution

Ccmputing weighted averages of texture samples in the filtering
process is called direct convolution. Catmull’s subdivisicn method
covered earlier performs an unweighted average of the texture pinels
corresponding to each screen pixel. Blinn and Newell improved upcn this

with a triangular filter and a weighted average [BLIN76]. Feibush,

1]

Levoy, and Cook furthered the process with a filter function that allow
for several different £filter shapes [FEIB8(0]. Since then, other methocas

have been developed such as elliptical weighted average 'EWA' filtering
GREE86]. This method combines soms cof the earlier technigues but 1is

less costly [HECKS8&].



CHAPTER 3

CATMULL SUBDIVISION

In 1574, Ed Catmull intrecduced a method for texture mapping curved
surfaces. The method subdivides a 3D surface patch successively intec
smaller subpatches until a patch is as small as one screen pixel, at
which time it is displayed [CATM74]. These surface patches are defined
by the kicubic surface equation, as copposed tc other surface
representations, because it more closely mecdels smooth, free-form,
curved surfaces. Pictures are easily mapped onto these surfaces by
subdividing a digitized image along with the surface, and then using the
color information from the zresulting sub-images to cclor the screen
pixels. Two problems with this methcd are that the computation time
increases roughly as the sguare of the resclution, and that tne

application of anti-aliasing techniques is not straightrforward [BLIN78].

3.1 The Bicubic Surface

Cne of the simplest ways to approximate a curved surface is to use
planar objects such as polygons. The problem with doing this, however,
is that it generally results in a rough-lcoking surface which has a
silhouette made of straight-line segmernts. Ancther simple method to
approxXimate a cuxrved surface is to use quadric patches. While smooth in
appearance, these surface patches are not suitable for representing
free-form surfaces because they do not provide enough degrees of freedom
to satisfy slope continuity between patches [CATM74]. The bicubic

surface patch, on the other hand, maintains patch continuity while

14



providing the degrees of freedom and smccthness required for modeling
arbitrary forms.

Bicukic surface patches are based on a bivariate case of the

(i
[
T
rd’
0

curve,

f(t) = at” + bt~ + ct + d.

( The coefficients, a..d, determine the shape of the curve and are found
using several methods which are beyond the scope of this thesis. !
Subdividing the bicubic surface is much the same as subdividing the
cubic curve. The problem is to find f(t) when f(t+h! and £ t-h' are

known. First note that for the cubic curve

ﬁ
o
b
ih
I

alt +h'" +E(t £+h'” +cit+h) +4d

I

aft’ + 3ht” + 3h't = h'! + bit + 2th + h™) +

c{t £ h) + d,

and

fit+h) + f(t-h)

2a(t 4+ 3h°t) + 2b(t- + h™} + 2ct + 2d

I

EF (EY =+ 28 3at + Bl

Therefore,

£(t)

[ £tc + h) + f(t - h) 1/2 - h (3at + b),

which is the average of the endpoints minus a correcticn term. The
correction term can be generalized in the same manner:

If g(t) = h"(2at + b)  then

g(t £+ h) = h"(3a(t + h) + b),

15



and

g(t+h) + g(t-h) = 2h7(3at) + 2bh~ = 2g(t).

Therefore,

git) = [ gitth) + gtt-h! 1 / 2.

When this is all put together,

fit) = [ f£it+h! - git+h) + £(t-h) - g(t-h) ] / 2.

The method of subdividing cubic curves can be extended tc bicubic
surfaces. There are three components which describe the parametric
bicubic patch in 3D okject space: Xiu,v), ¥Y(u,v), and Z'u,v}. Each

component can be considered as:

f(u,v) = F.v' + F.v" ~ Fav + F, ,

where

F. = au + bu + cu + d, for l<=n<=4.

{ Again, the coefficients, a;..d., determine the shape cf the surface
and may be found using several methods which are beyond the scope of
this thesis. ' As can be seen, the bicubic surface equation is very
close to the cubic curve equation, particularly when cne of the
variakles is held constant. 3ince F, is a cubic, we know that there is
a correction term, G,, fcr each F,. We also note that f is a cubic
curve when F, is held constant, and therefore alsc has a correction

term, g, where

g = GV + G-V 4 GV + Gy

16



Four values are needed to represent each defining poin% during

patch subdivision. Catmull arranges these into a “register-square.”

In the register-square, £ is the value of the function at u,v,
and c;, g, aﬁd c, are correction terms [CATM74]. The c: term represents
the correction value for f when bisecting in the v direction, while g
represents the correction term for f when bisecting in the u direction.
Note that since g and c- are also zukic curves when u cr v is held
constant, they also need a correction term. The term c, serves as the
correction term for c: when bisecting in the u direction, and alsc
serves as the ccrrecticn term for g when bkisecting in the v direction.
These values are found using the same equations shown above for tne
cubic curve. As described, kisection is accomplished by holding u
constant while bisecting in the v direction, and then by helding v

constant while bisecting in the u direction.

3.2 Perspective

So far, a metheod £for subdividing the bicubic surface in 3D object
space has been given. In order to display a perspective view of the 3D
surface on the computer screen, a perspective transformaticn must be
performed betweenrn 3D object space and 2D screen space. This results in

a rational bicubic with the surface equation of:

17




anu,v}
Filu,v) = | Y(u,v) i

| Z(u,v) !

L wiu,v) J,

where W(u,v) is called the homogeneous coordinate and is generated by
the perspective transformation. The three methods for displaying a

perspective surface in screen space are:

1. Diwvide the surface components by W(u,v), which results in a
rational cubic that does not fit into the subdividing scheme.

2. Subdivide X, Y, 2, and W and perform the perspective division at
every point, which may considerably increase the complexity cf the
algorithm.

3. Take only the contrcl points which make up the coefficients of the
surface equation through the perscective transfs>rmation, then
recreate the surface in screen space. This results in a very close
approximation of the surface, but not the “correct” surface as

described earlier in the cnapt=ar.

3.3 Termination

The decision about whether or not a patch is to be subdivided
further depends upon the termination conditicns. Catmull discusses two
termination conditions which are based cn patch size and clipping. As
exXplained earlier, subdivisiorn terminates when a patch covers cnly one
screen pixel when projected. Since the edges of patches may be curved,
Catmull suggests that a polygon be used to approximate the patch by

connecting the four corners of the patch with straight line segments.

18



This allows faster determination of whether or net the supdivisicn
should continue. The other termination condition, clipping, halts the

subdivision when a patch is completely off the screen.

3.4 Hidden Surface Elimination

Hidden surface elimination seeks tos avoid displayina surfaces
which are behind other surfaces, and therefcre out of view. Two methods
are described by Catmull to solve the hidden surface problem for bicubic
patches. These are the “modified Newell algorithm” and the “z-buffer
algorithm.” The Newell algorithm [NEWL73] scrts polygons in z-order,
and displays the polygons which are furthest from the viewer first. II
twe polygons intersect so that their z-order is questicnable, then they
are divided into smaller polygons befcre being sorted. This methed 1is
modified for kbicubic surfaces to sort certain control pcints which
define the coefficients or the bicubic equatiorn, rather than sorting
some polygon’s vertices. “The z-buffer algorithm,” on the otner hand,
uses a buffer of values that represent the closest z-values dizplayed at
each particular screen element. Before a point in object space is
displayed at & point in screen space, its z-value is compared with the
z-value stored at a corresponding lccation in the buffer. I£ the z-
value for the point is greater than the z-value in the buffer, then the
object is closer to the viewer. 1In such a case, 1ts z-value replaces
the z-value in the buffer and the point is displayed at that screen
location. If the z-value for the pcint is nct greater than the z-value
in the buffer, then the buffer 1s left alone and the point is nst

displayed.

19



3.5 Mapping an Image ontoc the Bicubic Patch

Because bicubic surfaces are parametric, images can easily be
mapped ontc them. Each pcint on these surfaces are referenced b twc
variables, u and v, which can ke made to ccrrespcnd to peints in texture
space. Once a surface patch is completely subdivided and ready for
display, the (u, v) coordinates for each corner of the patch mav be useqd
to define a sampling area in texture space. This area would then ke

used by a filtering algorithm to determine the final color value £

#]

r the

screen pixel to be displayed.

3.6 Basic Problems

One of the prokblems wixth this method is that the cocmputation time
increases roughly as the sguare of the screen resoluticn. For example,
a sguare of 2x2 pixels needs only one subdivision, or 4 subdivisions.
A square of 2°x2° pixels needs 4°+4 subdivisions, and a square of 2'x2

pixels needs:

¥ q- er {4"-1)/3 subdivisions [CATM74].

At each peint in the subdivision, a division by twc for each surface
component is perfermed, and a stack 1is used to store the four component
values: f, g, c¢, and c.. Also, each surface ccmponent must be
transformed by the perspective projection when a termination condition
is met. Because the surface to be mapped is curved, some points on the
surface may hide behind others. This means that nct every subdivision

results in a displayed point.

20



Another prcblem occurs when filtering or anti-aliasing the sampled
display values of the surface patch. These preocesses require technigues
for determining what is visible in each raster element square, or pixel,
and a method for storing and combining intensity wvalues at each sguare
to get an average [CATM74]. After termination, a subdivided patch tc be
filtered and displayed may lie between pixel centers, etc. Because cf
these types of issues, the filtering and anti-aliasing processes needed

are not completely straightforward.
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CHAPTER 4

FAST SCAN-LINE BASED TEXTURE MAPPING

Since Catmull’s subdivision algorithm, methcds have larzgely been
feccused towards improving the parametric apprecach te perspective texture
mapping. Because cf its properties, inverse perspective mapping has
been one of the mocst widely accepted methods tc date. This chapter

describes and examines the general purpeose inverse perspective mapglng

algorithm.

4.1 Inverse Perspective Mapping

As explained earlier, inverse perspective mapping is the mapping
from screen space to object space, and then from ckject space to texture
space. These two mappings are usually composed tec form cne mapping from
screen space to texture space. Inverse perspective mapping differs from
perspective mapping in that screen space is scanned to obtain a texture
value, rather than the other way around. For each screen ccocrdinates
scanned, a texture coordinate is found which represents the center of &
group of texture coordinates which alsc map to that screen coordinate
(see Figure 4.1). This group of texture coordinates should not be
ignored, since their ccmbined values represent the final value of the
current screen pixel being scanned. A filtering method is ccmmonly used
to decide which of these texture coordinates should ke inzluded, and hcw
tc ccmbine their values to form the final screen value. As a general
rule, the greater the number of texture values used to represent the
final screen pixel value, the mcre realistic the texture mapping appears

and the slower the algorithm performs.
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Filtering seeks to balance between speed and realism. Inverse
perspective mapping algorithms are popular because they are easily
adijusted to balance between the twc. For example, i speed i: most
critical, then only the center texture value may be used tc color its
corresponding screen pixel. This results in a crude representaticn cf a
texture, but iz fast and generally recognizable. On the other hang, if
realism is most critical, more texture values may be used toc represent

each screen pixel. The final image would appear more realistic because
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more data values would be used to represent the mapped texture. Fo
this same reascn, the algorithm would generally ke slower in producing

the image.

Texture Space Screen Space

—1
Nt 1/
N

— pixel —

| |
<

pixel’s center

Figure 4.1 A Mapped Pixel

4.2 Representing Surfaces with Triangles

Almost any surface may be represented by a mesh of adjoining
triangles. Triangles are easy to work with because they are both simple
and planar. Planar objects such as triangles are usually used in
inverse perspective mapping because they are easily parameterized. One

of the problems with using triangles to reprecsent surfaces, however, is
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that if a surfaze is non-planar, a triangie mesh can cnly rcughly
approximate it. This means that cbkbjects and their silhouettes may lecok
somewhat rugged. One cf the scliutions to this prcklem, however, is tc
tise smaller triangles to represent the surface. Tnis is ancther trade-
off between speed and realism. If smaller triangles are used to
represent a surface, then more triangles must also be used tec represent
that surface. If mecre triangles are used, the algorithm may be slower,
but the final image is generally more realistic. However, even in the
real world, okjects which seem smooth can appear rough when viewed

through a microscope.

4.3 Texture Mapping in Scan-line Order

Inverse perspective mapping algorithms commcnly scan =creern space
in scan-line order (left to right, top to bottom). This is bezause an
algerithm which generates pixel values in scan-line crder has twc main
advantages. The first is that because the intensity of each pixel is
computed ccmpletely before moving on to the next, anti-aliasing
computations are relatively easy to perform [BLIN78k]. The second main
advantage is that these scan-line algorithms are more suitakle for
hardware implementations because they generate the intensities in the
same order as a computer monitcr scans them out onto the screen
[BLIN78b]. The next seztions describe and examine a general purpose
inverse perspective mapping algorithm which performs fast scan-line

based texture mapping of a basic triangle.
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4.4 The Five Primary Steps

A general purpose scan-line algorithm for the inverse perspective
mapping of a basic triangle can be divided intc five primary steps:

L

Step 1. rCalculate the mapping coefficients (section Z.2.2j. Th

r da
6]

step matches the 2L rectangular texture space tc the triangle in 3D

(¢]
th

object space. This process is made easier by associating each vertex
the triangle with a ccrresponding texture coordinate. 3Since we know

that the three vertices cf the triangle lie on the plane for which ws
are trying to find coefficients, we only need tc solve a set cof linear

eguations:

Xfu:, i) = A *vu: +B™*wv: +C==x:,
Y{u;, v:) =D *u +E* vi+ F=y , and
2y vi) =6 * u + KB *v: + 1=z ,

where i=0..2, and (u:., v;) and (X., Y., 2:) are known. The coefficients,
A..I, are then used tc find the ccefficients a..i (see section 2.2.2).

Step Z. Sort the three triangle vertices, (x,,y.,2z.!, and their
correspending texture cocrdinates, (u;,v.), by their projected screen y
values, Sy:, where i=0..2. Designate vertex A the vertex with thne
smallest Sy,, vertex B the vertex with the next smallest Sy., and vertex
C the vertex with the largest Sy..

Step 3. Divide the triangle vertically intc twc zides. Make Side
0 the edge from vertex A to vertex C, and side 1 the edge from vertex A

to vertex B to vertex C (see Figure 4.4).
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Triangle Side 0 Side 1

A A A

B B

c Cc C
Figure 4.4 Divide inte Two Sides

Step 4. Find the screen values for each cf the twc sides. This
is done by linearly interpolating between the projected vertices c¢I the
triangle in crder to find the three edges of the triangle on the screen.
In other words, interpolate between wvertex A and ver+ex C’'s screen
values to find side 0’s screen values, and interpolate retween vertex A
and vertex B’s screen values as well as kbetween vertex B and vertex C's
screen values to find side 1's screen values (see procedure find side()
in appendix A).

Step 5. Scan the screen values between each side, finrnding their
corresponding texture values. This involves holding each side’=z similar
screen y values constant, and incrementing through the screen x values
between them. Note that this step is considered the scan-line step,
since it is done for each screen y value of the projected trianale in
scan-line order. The texture values are found by using the equatiosn in
section 2.2.Z.

Step five has a nested lcop which scans a total cof N screen pixels
which make up the projected triangle. Because of this, step five has
the most influence over the time complexity of the algorithm, O(N). A
detailed algorithm for performing fast inverse perspective mapping in

scan-line order is given in appendix A.




4.5 Shading

Many shading methods regquire that a surface normal re kncwn for
£

particular points on a surface. 3Since shading is a form of texture

mapping, 1t can usually be done during the texture mapping prccoes

n

Inverse perspective mapping algorithms, however, are nct easily tailcred
to find surface normals. These algorithms generally linearly
interpclate between a set of given surface ncrmals to find each
particular surface ncrmali. In cther words, an affine mapping is used tc
map the normals. The argument is that shading does not have tc be as
visually exact as basic texture mapping. Although this is true in many
instances, it is desirable for scme applications to have objezts whoase
surface normal values dc nct change while the object mcves across the

computer screen.
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CHAPTER 5

THE SCAN-LINE SUBDIVISION ALGORITHM

The scan-line subdivision algorithm ccmbines the qualities of
Catmull’s subdivision method with the advantages o5f the general purpose
inverse perspective mapping algorithm. Subdivision is a good, simple
method for finding values between points, but it does nct have the scan-
line qualities that algorithms may need for less expensive hardware
implementations. Subdivision can also be very calculation intensive if
the algorithm has computational redundancy or cemplex subdivisicon
calculations. Inverse perspective mapping, on the other hand, allows
for a scan-line approach to perspective texture mapping, kut is not very
suitable fcr finding surface normals for use in shading. Also with
inverse perspective mapping, if the surface shape to be texture mapped
does not easily ccnform to rectangular texture space, aligning the two
might not be very straightforward. Where one algorithm has
disadvantages, the other has advantages. The scan-line subdivision
approach explained in this chapter attempts to take advantage of this

fact by combining strengths from both methods.

5.1 Scan-line Subdivision

Scan-line subdivision is very different from Catmull’s subdivision
method. In fact, it more closely matches the generic inverse
perspective mapping algorithm covered in chapter four. Like the inverse
perspective mapping algorithm, it works best with planar objects such as
triangles. 1In the author’s subjective opinion, there are two major

reasons for not directly using curved surfaces to mcdel objects. One is




that using these surfaces to mcdel objects can make an algorithm very
complex, and another is that many algorithms which use curved surfaces
to model objects resort to planar approximations at a certain point in
the process anyway. { Still, there are many applications fcr which
using curved surfaces to model free-form objects is preferred. The
author leaves altering the scan-line subdivision apprecach to be used
with curved surfaces for later study. ; The szan-line subdiwvisicn
algorithm described in this chapter subdivides a triangle first in the ¥y
direction, and then in the x direction. The advantage to sukdividing
this way is that it avoids computaticns by needing only tc ccmpute the
perspective transformation of the object’s y components conce for each
“scan-line” being bisected in the x direction. This scmewhat compares
with the scan-line order imposed by the inverse perspective mapping
algerithm. However, since the subdivision 1s not completely done in
scan-line order, inverse perspective mapping maintains an advantage 1in

this area.

5.2 The Four Basic Steps

A scan-line subdivision algecrithm for perspective texture mapping
the basic triangle can be divided into these four basic steps:

Step 1. Sort the three triangle vertices, (x,,v:,2:), and their
corresponding texture ccordinates, (u:,v:), oy their projected screen y
values, S5y:, where i=0..2. Designate wvertex A the vertex with the
smallest Sy,, vertex B the vertex with the next smallest Sy,, and vertex
C the vertex with the largest Sy..

Step 2. Divide the triangle vertically into two sides. Make Side
0 the edge from vertex A to vertex C, and side 1 the edge from vertex A

to vertex B to vertex C (see figure 4.4). Make each side an array of n
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vertices, where n ccrresponds tc the maximum amcunt cof “vertical”
subdivisicns that may be done (see section £.3).

Step 3. Vertically subdivide each “side” of the triangle. This
reguires kisecting the edge from vertex A to vertex C fer side 0, and
bisecting the edges from vertex A tec vertex B to vertex C fcr side
This is accomplished by adding their compenents and then dividing the
result by twe. For example, bisecting the x component between twc

pcints, A and B, would give C, the center point’s X ccmponent wnere
C(x) = ( A(x) + B(x}) ) / 2.0.

-Any criteria may be used to stop the subdivision. When the subdivisicen
is complete, store the resulting vertices in the “side” arrays,
side (0,Sy:} and side(l,Sy.), where 0O<=1<=n.

Step 4. Horizontally subdivide between side((,Sy:) and
side(1l,Sy:), where i=0..n. This step 1s considered the “scan-line
subdivision” step, particularly when Sy: correspcnds tc each szan-line y
value. Again, any criteria may be used to stop the bisection. When the
criteria is met, use the subdivided texture coordinates which are

assocliated with each cof the subdivided vertices to color the screen

pixels at (5x;,Sy:.).
5.3 Termination

The termination conditicns used to stop the subdivision in steps
three and four largely derend on the filtering process used. If the
termination condition is set to stop the subdivision when the projected
end-points are only one pixel apart, then the algorithm would closely

match the generic inverse perspective mapping algorithm in chapter four.
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This condition leaves the rest of the texture mapping up tTc & space-
variant filtering process which would then use the resulting texture
coordinates as center points from which te work. [ For simplicity, the
algorithm covered in this chapter uses this condition tec halt the
subdivision. )

A form of dynamic filtering can be perfecrmed by allowing further
subdivisions based on certain termination conditions. For instance, by
basing the termination condition on a distance between each endpecint’s
proiected screen coordinate, a space-variant filtering car be perfcrmecd.
This distance value can be varied to kalance between speed and realism.
A small distance value results in greater realism because more texture
values are used to create the final image. A large distance value, on
the cther hand, rzsults in a faster algorithm kbecause not as many
subdivisions would be performed. Cne type of crude space-variant
filtering that can be used in this instance is a simple weighted average

of the texture values which make up each pixel.

5.4 Similar Algorithms

As one may have notized, the steps outlined above match closely
with the steps given in chapter four which cutline the basic inverse
perspective mapping algorithm ( steps cne through four correspond with
steps two through five ;. In fact, even though this algorithm is a
perspective mapping algorithm as opposed to an inverse perspective
mapping algorithm, it is closely based on the generic inverse
perspective mapping algorithm structure. The main differences are in
the final two steps. The scan-line subdivision algorithm uses
subdivision to find the texture values ketween the line segments rather

than parameterization.
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5.5 Scan-line Subdivision vs. Inverse Perspective Mapping

The scan-line subkdivision algorithm has three main advantages cver
the inverse perspective mapping algorithm. The £first is that the
criteria for stopping the subdivision can easily be altered to allow for
a form of dynamic filtering (see secticr 5.3!. If speed is not
critical, more subdivisicens may be done, resulting in mere texture
values being used in creating the final image. This generally results
in better image quality.

Another advantage to the scan-line subdivision algorithm is that
code for keeping track cf each pcint’s surface normal may be easil:
added at almost no extra zost, resulting in mcre accurate okject
shading. This is done by associating each vertex of the triangle with a
surface normal, and allowing the algorithm to subdivide the surface
normal vector along with the vertex values.

The third advantage involves ease of parallelization. Generally,
recursive algorithms are more straightforward when 1t ccmes to
converting them for use with multiple processcrs. The bulk of th= szan-
line subdivision algorithm uses preorder recursicn to bisect between two
points.

The disadvantages of the scan-line subdivision algorithm cver the
inverse perspective algorithm include the fact that the algorithm is not
a complete scan-line algorithm. That is, it 1s set to texture map tcp
to bottom, but not necessarily left tc right. Ancther disadvantage is
that the scan-line sukdivision algorithm has stack overhead, and
although both algorithms have the same O(n) time-complexity, it is
slightly more calculation intensive. The bulk of the divisions used in

the scan-line subdivision algorithm are divisions by two, which 1s cften
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faster than general-case floating point division. These divisions may
also be converted to a multiplication by a constant for those computers

which multiply floating point numbers faster than dividing them.

5.6 Scan-line Subdivision vs. Catmull Subdivision

Scan-line subdivision has many advantages over Catmull
subdivision. One is that the algorithm is much less complex. This 1is
largely because the scan-line subdivisicon algorithm subdivides simple
planar objects rather than curved surfaces, but alsc because it
subdivides in a scan-line fashion. If not done properly, subdivision of
a surface intc four sub-surfaces can result in computaticnal redundancy
resulting from common points which are found by subdividing separate,
but adjacent surfaces. The scan-line subdivision algecrithm avecids this
by bisecting the surface in the y direction, and then in the x
direction. Computation is reduced because planar objects are simpler to
bisect and do not “fold over” on themselves.

Unlike the scan-line subdivision algorithm, however, Catmull’s
algeorithm works for curved surfaces. This is an advantage for
applications which need more accurate approximations of free-form
objects. However, even Catmull’s algorithm determines which screen
pixels are covered by a curved surface patch by using the quadrilateral

formed from the patch’s corner pecints to approximate it.
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CHAPTER 6

CONCLUSION

Perspective texture mapping algorithms mostly differ in the zype
of mapping they incecrporate between texture and cbject space. The twc
primary mappings that have been studied are the parametric mapping and
mapping via subdivision. A popular parametric mapping apprcach is that
cf inverse perspective mapping in scan-line order f(chapter 4:. Until
this study, the only method for texture mapping via subdivisicn is the
one introduced by Ed Catmull in 1274 (chapter 3).

One of the advantages of subdivision over cther approaches 1: that
it 1s very dynamic. The goal cf sukdivision is tec divide proklems into
smaller problems, until each proklem is easier to solve. With texture
mapping, the problem is that of balancing between speed and realism.

For example, if an object to be texture mapped is in motion, the sreed

18 EE

at which it is texture mapped may be more critical than how reali

1]

appears. Subdivision can provide a dynamic balance cetween speed and
realism based on the amount of subdivizicn performed (chapter 5).
Although the parametric approach is more static, it can re used to
texture map very efficiently and does not need a stack. OCne of the most
efficient texture mapping methcds based on the parametric apprecach is
the inverse perspective mapping method discussed in chapter rcur.
Unlike Catmull subdivisicn, this methecd texture maps in scan-line crder,
which is desirable for most inexpensive hardware implementations. The
method is very simple, mainly because it only texture maps planar
objects as opposed to the more complex curved surfaces that Catmull’s
algorithm maps. ©One of the proplems with this method, however, is that

it is net easily adapted to find surface normals for use in shading.
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With subkdivision, surfaze normals are easily computed aleng with other
points.

The scan-line subdivision method intreoduced in this paper comkines
the advantages cf koth inverse perspective mapping and perspective
mapping via subdivision (see Figures in Appendix C/. It is clcsel:
based on the scan-line structure 2f the inverse perspective mapping
algorithm, but maintains the desirable properties asscciated with

subdivision. With this method, surface normals are easily computed for

use 1n shading, and a form of dynamic- filtering is possible kased cn the

number of subdivisions performed. Alithcugh the algecrithm is nect guite
as efficient as the i1nverse perspective mapping algcrithm, it has the

advantages cf subdivision that make it preferable.

6.1 Future Work

Cne obvicus extension to the scan-line subdivisicn appreach is te
apply the method to curved surfaces. As is, the algorithm werks cnly
with objects that are based on the triangle. To apply the apprecacn tc

curved surfaces, a methcd cf separating the surface’s screen imaje inte

“sides” is needed. This task may be challenging because the curve
property that makes these surfaces desirable also makes working with
them difficult. Feor instance, the screen 1image cof a projected curved
surface patch has edges that do net always correspond tec the actual
edges of the patch. Multiple sides would need tc be found, as opposed
te just twe, and these sides may not correspond to the actual edges c¢f

the surface patch.
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APPENDIX A

INVERSE PERSPECTIVE MAPPING IN SCAN-LINE ORDER

The fcllowing pseudo-Pascal represents

gen=ral purpocse inverse perspective mapping a

in scan-line order. These functions and procedures are

chapter 4.

{ Type vertex.is a structure containing both an (x,v,z)

coordinate. ]

Frozedure Name: texture _mag

Comment: Texture maps 1n scan-line orger using an inv
perspective mappling.

Input: An array of typs vertex with three elements
triangle’s three vertices.

Qutput: A texture mapped triangle ion the screen;.

Globals: screen neight 1s the height of the scrszen in

procedure texture map (vertex(3) :vertex)

var a, b, ¢, d, =, £, g, h, 1 :real;

var w, 4, V :real;

var sy (3) rarray of real:

var t, cur_sx, Iur_sy :integer;

var svert(3), side’2, screen height):array of real;

var sided, sidel :pointer to real;
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begin

// Step 1. Setup the coefficients..

setup coeffs (vertex(), a, bk, e, d, e, £, g, h, 1);

// Step 2: Sort the three triangle’s vertices by
// their projected y wvalue.
for ¢ := [ to Z do

sy(t) := project_ylvertex(t));

sortivertex (), syl}, svert(}));

// Steps 3 and 4 - divide triangle vertically into two
// sides and find the screen values for each
// of the two sides.

find side(side(0,), svert(0), svert(2), sy(0), syl(Z));
find side(side(l,), svert{0}), sverc(l}, sy(0), sy(l));

find side(side(l,), svert(l), svert(2}, sy(l), sy(2)}

// Step 5 - Scan the screen values between each side, while

/7 finding and plotting the texture values.

// First make sure we are going tc scan in scan-line order
if (sid=1(0, sy(lv} > zide(l, sy(l))) then begin

sidel

side(l,); sidel := =sidell,);

else begin

sidel side(0,}; sia=l := side(l,};

end;
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for zur sy := syi1d) te sv.,2) do

for cur sx¥ := sidel->cur sy to sidel->cur s de

begin
Woa= g * sur s+ ho* gux sy o+ ox;
u = la * cur sx - b * cur sy + c) [/ w;
v = {d * cur sx + e * cur sy + f! w3
display peoint(u, ¥, Cur_sx, cur sy!;
end;
end.
Procedur=s Name: setup_coeffs
Comment: Sets up coefficients for use ir the parametri:z mapping
of the texture plane as transformed te fit a 22 =riangle
in 3D object space ! see section 2.2.2 ).
Input: An array of three elements which contain the three triangle
vertices.
Output: The nine ccoefficients a, b, .., 1i.
Globals: None.
Procedure setup coeffs(vertex(! :array of vertex, var a, k&, ¢, 4, =&, £,
g, h, 1 :real)
var ax, ay, az, bx, by, bz :real;
var cu, cv, du, dv :real;
var 3, k, 1, m, n, ¢, B, 3, ¢ :real:
var x(3), y(3), z(3) rarray of real;
begin

// First we must find the czcefficients for the parametric

// equaticn of the {(u, v) texture plane as if it where

// transformed to f£it the triangle in object spa:ze.
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// We f£ind these using what we know abcut the (u,v) and

!/ i%,y,z) coordinates cf the triangle. This secticn can

// be eliminated if three vertices are added tc the triangle

// structure which get updated along side the triangle, however,
// this means transforming six vertices instead cf just th:zee

// whenever the triangle is transformed..

ax := vertex/l).x - vertex(0).x;
ay := vertex(l).y - vertex|0).y;
az := vertex(l).z - vertex((C).z;
bx := vertex(2).x - vertex(0).x;
by := vertex(2).y - vertex(d).y:
bz := vertex(2)l.z - vertex(0!.z:
cu := vertex{l'.u - vertex 0j.u;
cv := vertex(l).v - vertex(0).v;

|

du := vertex(2).u vertex (0).u;

av = vertex(2).v - vertex(0).v;

.
1]

bx *cv / (du * cv = cu * dv):

k := ( ax - 3 * cu) / cv;

1l 1= vertex(0).x - j * vertex(0!.u - k * vertex()!.v;
m:=by * cv / (du * cv - cu * dv);

n:=(ay-m?* cu) / cv;

o := vertex(0).y - m * vertex(J2).u - n * vertex(0).v;
p :=bz * cv / (du * cv - cu ™ 4dv);

g := ! az -~ p * cu) / cv;

r := vertex(0).z - p * vertex(0).u - g * vertex(0).v;
%(0) :=1; yl(0) :=o0; z(0) := r;

x(l) :=3 +1; y(l) :=m+ o; z(l) :=p + r;

x(2) =k +1; y'2) :=v + 0; z(2) :=q + r;
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// Second, we find the coefficients for the inverse

v o~

// mapping as shown in section 2.2.Z2.

a = yl2) * z(0) - v(0) * =z(2);
b o= x(0) * z(2) - ®{(2) * z{0);
c = x(2) * y(0) - x(0) * yi{2);
d o= g(0) * Z{X = 41 * 200} ;
e = x(1}y * z(0) - x(0) * z(1);
f o= x{0) * y{I) = =x{l) * v(0,;
g :=a-+d+y(li *z:i2) - y(2) * z(1);
h i=b +& + x2t2Z) * Z(l) = (1) * zi{2¥:
i =2+ E + =il) * yw{2) = 212y * yl(l);
end;
Function Hame: project x
Comment : Maps an x-value from 3D object space to 2D screen space.
Input: A vertex structure.
Qutput: Projected screen x value.
Glocbals: Eye distance from screen is defined from the
desired view angle.
Function project x(V :vertex!' :real;
begin
project x := Eye distance from screen * V.x [/ V.z;
end;
Function Name: project_vy
Comment: Maps from 3D okbject space to 2D screen space.
Input: A vertex structure.
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Output:

Globals:

Function prcject y(V

begin

project vy

end;

Prcoccedure MHame:

Projected screen y value.

Eye distance from screer is defined from the
desired view angle.

:real;

:vertex!

:= Eye distance from screen * V.y/V.z:

= R
32rT

L,

Comment: S¢rts vertices and y values using brute fcrze, which
efficient space usage for a better executicn time.
Each wvertex is sorted by its corresponding y value.
Input: An array cf three vertex structures, vertexi{l..Z:, and an
arrav of three corresponding y values, sy(0..Z2
Output: A sorted array, svert(0..2), of the three vertex st
vertex(0..2), which correspend to a scrted array cf the
thre= y values, sy(0..2).
Procedure sort(vertex(| :array of vertex, var sv() :array of real,
var svert() :array of vertex)
var temp :real;
begin
if (sy(0) <= sy(l, ) and (sy(() <= sy(l)] then begin
svert.l) := vertex(U);
if (sy(l) <= sy(2)) then begain // 3orted crder: U,
svert(l) := vertex(l);
svert2) := vertexiZ);

else begin

/7

svert(l) := vertex(Z;;
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svert (2)

vertex({l);

temp := sy.l,;
sy!l;, := sy(2);
sylZ) = temp;
end;
else if (sy(l) <= syi10,' and (sy(l -= sy 2., then begin
svert{0) := vertex(l);
temp := sy!li;
if (sy(0) <= sy!(2)) then begin f{ Sorted srdesy 1, U, £
svert (1) = wvertex(0};
svert(2) := vertex|(2);
sy 1) = syl(D);
else begin // Sorted ocrder: 1, 2, €
svert(l) := vertex(2);
svertil) := v=rtex|(0;;
sy (1) = sy(2);
sy(Zl) = syl0);
end;
syl0] := temp; Y
else if (sy/2, <= sylU)! and !sy{2) <= syll)' then begin j
sverti0! := vertex(2); %
temp := sv(2);
if (sy{0) <= syil}, then begin [/l sSotfted order: 2, u, 1
svert(l) := vertex(0);
svert(2) = vertex(lj;
syil) = sy(0);
sy{2) = syl(l);
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else begin // Sorted crder: 2, 1, 0
svert(l) := vertex(l);
svert(2) := wvertsx (!;

sy(2) := sy(0);

end;
sy (0} := temp;
end;
end;
Procedure HName: find side
Comment: Given twc screen coordinates, find the screen cocrdinates
that lie on the line which runs between the twec points
Store the x wvalues in an array which is indexed by the v
values.
Input: Two vertices, thelr corresponding y values, and an array cof '
type real which 1s at least as large as the screen’s height
Qutput: The array 1s passed back with its updated values.
Procedure find side(var sidef) rarray of real, A, B :vertex, s, =yC
treal) |
var sxl, sx2, inv_slope, sy :real;
begin ':“
sx1l := prolject x A): E
sx2 := project x(B);

inv_slcpe = (sxZ - szl) / (sy2 = syl);
for sy := syl to sy2
begin
if ((sy >= screen.min_y! and (sy <= screen.max_y)! then

side(sy) := sxl + (sy = syl! * inv slcpe;

16




end;

end;
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APPENDIX B

THE SCAN-LINE SUBDIVISION ALGORITHM

The following pseudo-Pascal represents the basic code cf the scan-
line subdivision algorithm. These functions and procedures are cutlined

in chapter 5.

{ Type vertex 1z a structure containing both an (x,v,z) and a (u, v

ccorcinate. |}

Procedure Name: scan_line_ subdivide

Input: An array cf type vertex with three elements ceontaining the
triangle’s three vertices.

Qutput: A texture mapped triangle (on the computer screen).

Globals: screen height >3 the height of the screen in pixels

Procedure scan line subdivide(vertex(2) :vertex)

var svert (3) :array of vertex;
var side (2, screen height) :array of vertex; i
|
var sy (3) rarray of real; .
var i, cur sy tinteger; : i
Y |
begin |
I
for 1 := 0 to 2 do // Step 1 - Sort by projected y values '

syl(i) := project yl(vertex(i));

sort(vertex (), sy(), svert());

// Steps 2 and 3 - (sub)divide vertically
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bisect side(side(0,), svert(0), svert(2), sy(0)l, sy(21);

bisect side(sideil,), svert(0), svercti(l), svi(0), syil)!
bisect side(side(l,), svert(l)}, svert(2), syl(l), sy
// Step 4 - subdivide herizontall:

for cur sy := sy(0) teo sy(2) do

begin
bisect_inner(side(f%, cur sy}, side(l, cur_svi);
end;
end.
Function Name: prcject x
Comment: See appendix A.
Function Name: preciect y
Comment: See appendix A.
Procedure Name: sort
Comment: See appendix A.
Procedure Name(s): bisect_side and doc_kisect side
Comment: Sukdivides or kisects one side cf a triargle,
storing the resulting cocrdinates in an array.
bisect side sets up the bkisection, while
do bisect side actually implements the kisection.
Input: Two vertices which represent the ends of a

line segment, which denotes one side of a triangle,

passed. The corresponding projected screen vy values of the

<

two vartices are also passed, as well as ar array cf type

Fas




vertex which is capable cf holding at least n slement

this example, r is the height of the screen in pixels

Procedure dc bisect side has an extra parameter called

deptk which keeps track of the recursion depth.
Cutput: Tne passed array is updated with the new coordinates

resulting from the bisection.

Glokals: screen.min y and screen.max y dencte the minimum and maximum

v values that the screen can plet. max depth represen

maximum recursion depth allowed.

Procedure bisect sidelvar side() :array of vertex, A, E :vertex,
syl, syZ :real)
begin
If ((sy2 >= screen.mirn V) and (sy2 <= screen.max y)) then
side(sy2) := B; .+ Store the “cdd” vert=x
do _bisect side(side!),A,B,l,syl,572); // Begirn *the bisecticn
end;
Procedure do _bisect side(var side(! :array of vertex, %A, B :vertex,
depth :integer, =syl1, syl :real)
var sy, disty :real; // disty = distance between syl and svl
var c :vertex; // T = temporary vertex stcrage
begin E
// Do necessary clipping
if (((syl > screen.max_y) and (sy2 > screen.max y)| or
((syl < screen.min y) and (s5y2 < screen.min y)) or

{depth :» max depth)), then
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begin
deptn := depth - 1;
return;
end;
disty := sy - syl; // Find the distance betwesen syl and =22
// Check tec se= if “stop recursion” criteria has been met.
// In this case, check if syl and sy2 are cne pixel aparc:.
if ((disty >= -1.0) and (disty <= 1.0 | then
begin
if ((syl >= screen.min y) and (syl <= screen.max }'l then
side(syl) := A; // Store A in array..
depth := depth - 1:
return;
end;

// Do actual bisection

b
ra
L

)

sy := project ¥y 1 // Find screen 7y value for the new point

de bisect sidei{side{!,A,C,depth+l,syl,sy); // Preocrder recursicn

do bisect side(sidet),<l,B,depth+l,sy,sv2);

depth := depth - 1;
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end;

Procedure Namel(s): bisect inner and dec_kisect inner
Comment: Subdivides or bisscts kbetween two vertices c¢i type
vertex. These twec vertices are expected tc lie or the same

y plane, and the subdivisicn is expected tc stop wnen the

projected x screen values of each subdi-rided pcint are only

one pixel apart. The resulting (u, v: coordinates are used

tc find the color for the resulting screen cccrdinates.
Input: Twc vertices which represent the ends cf a

line segment are passed. Procedure dc bkisect side has a

parameter called gepth which keeps track of the

recursion depth, as well as two other parameters which

correspond tc eacn passed vertex’'s projected screern =
value.

Output: A texture mapped scan-line {on the screen).

Globals: screen.min x and screen.max x denote the minimum and maximum
X values that the screen can plot. cur sy is the zurrent
screen y value for the scan-line. max depth represents the
maximum recursion depth allowed.

Procedure bisect inner(A, E :vertex)

var sxl, sx2 :real; // Temporary s:reen ¥ value storage

begin

sxl := project x( A |;

SXZ := project x( B J;

if ((sx2 >= screen.min x) and (sx2 <= screen.max x), then
display point(B, sx2, cur sy);

do bisect inner(A,B,1l,sxl,sx2): // Begin the bisection



end;

Procedure dc¢_bisect_inner (A, b :vertex, depthk :integer, snl, =xl

var
var

begin

C :vertex;

sx, distx ireal;

// do necessary clipping
if ((sxl > screen.max x) and /sx2 > scresn.max X)' or
((sxl < screen.min x) and (sx2 < screen.min x|/ or

(depth > max depth'; then

i

begin
depth := depth - 1;
return;
end;
distx = sx2 - B8xi;
if ((distx >= -1.0) and (distx <= 1.0)) then
begin
if ((sxl >= screen.min xi and (sxl <= screen.max_Xx)|
display_peint (A, sxl, cur_sy);
depth := depth - 1;
return;
end;

// Do actual bisection..

C.x := ( A.x + B.x ) / 2.0;
// C.y does nct need toc be bisezted.. (not used;
Ciz := (A.= + B.z } / 2.0
C.u := { A.u + B.u ) / 2.0;
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c.v := ( A.v + B.v ) [/ 2.0;

sx := project x( C );

do_bisect inner(A, C, depth+l, sxl, sx);

do_bisect inner(C, B, depth+l, sx, sxZ);

depth := depth - 1;

end;
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APPENDIX C

PICTURES

Figure C.1

Triangle meshed sphere textured
with a map of the moon.

Figure C.2 Figure C.3
Texture map of a Texture map of a
wooden mask. wooden fork.
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