
A SCAN-LINE SUBDIVISION APPROACH TO

PERSPECTIVE TEXTURE r-.tAPPING

By

DAVID S. SANDERS

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the degree of
MASTER OF SCIENCE

December. 1996

-

A SCAN-LINE SUBDIVISION APPROACH TO

PERSPECTIVE TEXTURE MAPPING

Thesis Approved :

Thetis AdvIsor (J t

J~ .)

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to thank my advisor, Dr. K. M. George, along with my other committee

members, Dr. Chandler and Dr. Hedrick, for their support and faith in my work.

In addition, I would like thank my family and friends for their support during the

creation of this thesis.

iii

TABLE OF CONTENTS

Chapter Page

1. Thi'RODUCTION " "

Organization 3
Keyword Definitions "

2. LITERATURE REVIEW 5

Introduction 5
Theoretical Development 6
Perspective Mapping
Inverse Perspective Mapping 10
Affine Mapping
Filtering.

10
11

Aliasing 11
Space-invariant and Space-vanant Filtering 12
Direct Convolution ".. 13

3. CATMULL SUBDIVISION 14

The Bicubic Surface 14
Perspective 1'7
Termination 18
Hidden Surface Elimination 19

Mapping an Image onto the Bicubic Patch
Basic Problems

20
... 20

4. FAST SCAN-LINE BASED TEXTURE MAPPING

Inverse Perspective ~1apping
Representing Surfaces with Triangles .
Texture Mapping in Scan-line Order
The Five Primary Steps
Shading

i v

23
24

'27

Chapter Page

5. THE SCM-LINE SUBDIVISION ALGORITHM 28

Scan-line Subdivision. 28
The Four Basic Steps........ 2()
Termination
Similar Algorithms 31
Scan-line Subdivision vs . Inverse
Perspective Mapping ' _._ .. , , '. 32

Scan-line Subdivision vs. Catmull
Subdivision

6. CONCLUSION

Future Work

BIBLIOGRAPHY

~~

-' -'

. 34

35

36

APPENDIXES 39

APPENDIX A-INVERSE PERSPECTIVE MAPPING
IN SCAN-LINE ORDER 39

APPENDIX B-THE SCAN-LINE SUBDIVISION
ALGORITHM 48

APPENDIX C-PICTURES 55

v

LIST OF FIGURES

Figure Page

2.1a Subdivision 6

2. lb Texture Mapping 6

2.2.1 Law of Similar Triangles

4.1 A Mapped Pixel

4 4 Divide into Two Sides.

8

.., ..
.. --'

26

C.1 Map of Moon 55

C.2 Map of Wooden Mask.

C.3 Map of Wooden Fork 55

vi

CHAPTER 1

INTRODUCTION

In 1974, Ed Catmull introduced an algorithm for displa y ing

realistic 3D s'...lrfa'ces on a computer screen [CATN:4].

"paints" a digitized picture onto a 3D surface and displays the

resulting "textured" surface onto the screen.

has corne to be known as texture mapping.

This is a process which

Textu-re mapping actually involves two mappings: One from texturE

space to object space, and then another from object space to scree"

space. Texture space is a ccordinate system where texture

representations are defined. In thls paper, texture space is a 2D

coordinate system with coordinates (~,vl, where O<='...l,v<=l. As 1"1 th

Catmull's algorithm, the textures in this thesis are represented by an

image. Object space, en the other hand, is a coordinate syst err where

objects are defined. For t hi s study, objects are defined in a 3D

coordinate system by the coordinates (x,y,::) . Last, screen spa ce is

basically where screen display information is accessed. In this thesis,

screen space is 2D and represented by the coordinates (s", s ,) . The

screen is also represented by a bounded 2D plane cutting thr cugb 3D

object space, orthogonal to the z-axis.

To simulate how the eye perce1ves light frcm obJects 1D the real

world, the mapping from 3D object space to 2D screen space may b e a

perspective mapping or perspective projection. With this type of

projection, objects whlch are closer to the screen are made to look

larger than those which are farther from the screen. An object's z-

coordinate is used to determine how close that object is from the

screen, and therefore how far it is from the viewer's eye. Texture

1

mapping whish incorForates this perspectlve projectio~ is called

perspective texture mapping.

Perspecti ve texture mapping algori thIns car. generall y b e di v ided

into ~hree categories: Perspecti ve rr:.apping, inverse perspecti ve

mapping, and affine mapping. Perspective mapping algorithms map forward

from textur~ space to object space and then from object space to screen

space, whereas inverse perspective mapping algorithms map in the

opposite directior.. Affine mappings are translated linear mappings, not

perspective mappinas, but can be used for pe~spective textu~e maFF1~g i~

rare instances (Chapter 2) . Some algo~ithms take this app~oach.

The differences between perspective texture mapping algorith~s are

not just which of the above three categories they fit in, but a lso what

intermediate mappings they use. Catmull's algorithm uses a subdivisi or,

approach to map from texture and object spece to screen space, ;~herea~

other algorithms generally use a parametric mapping app~oach. Most 0:

the theory that has been developed until now has been based on making

the parametric approach more efficient.

In this thesis, I revisit the subdivision approach with a new

algori thm called the scan-llne s 'lbdi vision algorl thm (Chapter 5) . The

approach simplifies the texture mapping process, and is easi ly adaptabl e

to different levels of filte~ing. This allows the algorithm to

dynamically trade speed for rea l ism and vice versa.

As with all algorithms, this algorithm has some minor

disadvantages. One is that since it texture ~aps only the basi c

triangle, 3D object silhouettes are not always smooth. .A~'1ot he r is that

because it subdivides, it has the overhead of having to implement a

stack.

2

1.1 Organization

Chapte r 2 contains a review of the e volution of texture mapplng

theory , beginning with Catmull subdivi sion . The chapter divides these

theories into three main group s : perspect ive, invers e perspe ct i ve, and

a ffine texture mapping . I t also covers some filtering methods and

i s sues that apply to texture mapping . Chapter 3 discuss es Catmull

s ubdi v i s i on . A description fo r subdividing the cubic curve, as wel l as

the bicubic s u rface, is p resented . Ch ap ter 4 ou t lines a fa s t, genera l

purpose , inverse perspecti ve mapping al go rithm f or text ure mappi ng t he

basic triangle . Chapter 5 describes the sca n - line subdivision method

fo r perspective texture mapping . The chapter describes how thi s method

combines t he quali ti es of Catmul l s ubdivision with t he advantage s of

inverse perspective mapping.

Cha p ter 6 .

Th e paper conclude s with a summa ry in

3

1.2 Keyword Definitions

Several terms used in the thesis are defined below:

Filtering D -F' .
,.e~lnlng, altering, and/or reconstructing aac~.

Object Space The 3D coordinate syste~ where objects are defined.

Pixel T~e smallest "plcture element" that can be accesse~ ~~

screen space.

Projection A mappi ng from 3~ space to 2D space.

Screen Space The 2D coordinate system wl:.ere t:he CO:T.p'-.lt:er screen

display information is defined.

Texel The smallest "texture element" that can be accessed in

texture space.

Texture Map ~ representation of real-world texture, genera~:y

the form of a 2D image.

Texture Mapping The process of mapping simulated texture ont o a 3D

object and displaying the textured objec~ onto a

computer screen.

Texture Space The 2D coordinate system where textur e is defined.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Texture mapping, the process of mapping s:::..m:..:lated texture onto a

computer generated surface, was pioneered by Ed Catmull [CATM74] His

tec~nique was to subcivide a mctthematical surface, along wit~ a

digi tized linage, :.mtil the resul tir:.g subdivided surfaces cevere-=:! onl ','

one screen pixel when projected, or mapped onto a two dimensiona l

computer screen, The color for each pixel was then taken from the

resulting subdivided images, giving the appearance of an image painted

onto a surfc.ce \ see Figure :2, la J •

It has sin c e been shown that texture does not have t o be simulated

using only an image. Surface bumps can be simulated by mapping a

pattern of perturbed surface normals onto an obJect [3LIN78aj. TLis

process is called bump mapping, which is a form of texture ma!=p.:'.ng,

Although many kinds of texture mapping exist, this thesis focuse s on a

particular type called perspective texture mappir.g.

Perspective text~re mapping is the texture mapping of a 3 D object

which will undergo a perspec:~ve projectior: onto a 20 computer screen.

This implies that two mappings will take place: One from an image or

texture map onto a 3D ob j ect, and then ano ther from t h e 3D obJect onto a

20 computer screen (see Figure 2.lbl. Usuall~ these two mappingo are

composed to form one mapping from 20 texture space to 20 screen space,

leaving out the intermediate 3D object space [HECK86J.

5

-

I
I

- I
I

v H---
u ---------------~)

III

~\
\~~

9

•
~ •

•

•
&

Figure 2.1a

• • •

•

•
•
•

•

•

A • A A

Subdivision

y ~--------- ~
--------+) --........

11
____ -~- L ______________________ ~I

u
Texture Space Screen Space

3D Object Space

Figure 2.1h Texture Mapp~ng

2.2 Theoretical Development

Since Ca~mull's subdivision algorithm, other te=hniques have been

developed to implement perspective tez,:ure mapping. "'-<hE: s E: t E: chr.i que s

can usually be divided into three categorles: Ferspe=tive mapping,

inverse perspective mapping, and affine mapping. One t~lng cc~,on about

these techniques is that they strive to mirie the analog world using

digital methods. Because of this, digital s ignal theory plays an

6

important role in perspective texture mapping. The following sections

explain some of t~e techniques used to i mpl ement perspective texture

mapping, as well as some digital signal prc=essing technique s f ound in

the literature.

2.2.1 Perspective Mapping

If a 3D surface to be textured can be parameterized, then

individual points on that surface can be mapped to a point i~ texture

space and vice versa. Triangles are easily parameterized uSlng the

:ollowing equations:

x (x:-x.)u + Ix -x) ,0 + x . ,

Y ("1:-':/:')u + (y : -y I v + y : , and

2 Iz -z.-) u + \ 2 -z ,) V T ., -

Where (X: ,y:,2: 1 are vertices of the triar.gle, It.:, v; are texture

c oo rdinates where O<=u,v<=l, and (X ,y,2i are triangle ccordlnates.

1= a mapping fr orr. :20 texture spa:::e to 3D object space, !Cucn as the

one above, is coml:::ined with a perspective projection from 3D object

space to 20 screen space, the result i s a pe::specti,,·e maFP~ng. A

perspective projection is a mapping fr om 3D object space to s :-.:reer.

space whic~ simulates perspective. One su ch mapp~ng can b e t o~nj via

,the l aw of similar triangles (see Figcue

7

Screen

Object

r Ox, O}" Oz)

l'
Oy

I
US}'

'-11
Eye (0, 0, 0) e<>==--------------''-'----------'

~(------ D -----....,)
~(-------------------------OZ----7)

\lI

Osy Oy

D Oz

Ox,Oy,Oz Object's 3D coordinates.

Osx,Osy Object's screen coordinates.

D Eye distance from screen (determined

from preferred viewing angle) .

Osx D * Ox / Oz

Osy D * Oy / Oz

Figure 2 . 2.1 Law of Similar Triangles.

The two mappings menti oned abcve, t h e par amet ric mappln g frcm 2D

t e xtur e space to 3 D obi e c t s p ace, a nd the pe rs pe ctive p r ojec t ion fr om

ob ject spa ce to 2 D s cr e e n spa c e , c an be c omp c sed . Us i ng ma tri :-:

no tat ion, a perspe c t i ve ma rp ing of a rl anar texture can be ~xpr es s ed a~'

[xw, yw, w] [U t v , 2.

8

IA. L' Gl
B E H I

L C F I J [HEe K83] .

Solving the equation above gives:

Du -I- Ev T F

x y
Gu -I- Hv + I Gu + :1'J + =

In the above equation, the coefficients A .. I are defined as

fo2.2.ows: x-- - x., C Y: - ~l_ , E = ::'"

y~, G = Zl - Z" , H = Z= - Z and I Z The values x and y represen~

the resulting screen ccordinates. , ~ote hov.;:::::"osely this resercJ)les ':n e

earlier triangle example combi!1ed wi~h the perspective pro Jec tio:-l.

This method of texture mapping is fairly stralgh~fcrv.;ar~, bu~ ,.

can also be very calcul ation intensive. The reason is that one divisi o n

per texel, or texture pixel, is generally required in order tc perform

the perspectlve projection. Since different points on a surface may

project tc the same screen pixel, averaging of that pixel' s

corresponding texel values should generally be done. This pr ovi des good

antialiasing, but is also very expensive. (Antialiasing is covered

later in the chapter. Catmull and Smith demonstrate a method of

perspective mapping using a unique two-pass shear and scale te:hni1ue

[CATMBO] .

9

2.2.2 Inverse Perspective Mapping

The mapping in se:~~on 2.2.1 1S from texture space to screen

space. It has an inverse which maps from screen space tc tex~~re spa~e:

I
~

a d g I
I

[uq, vq, q [x, v " , 1 I b e h I
L c f i J

I EI-FH FG-DI DH -EG l ,
1 I CH-BI AI-CG BG-.~ I

x, y, I

L BF-CE C~-AF AE-BD I [HECK83] . J

Instead of scanning texture space to find the correspo~di ng screen

coordinates, screen space is scanned to find the correspondlnc textur e

coordinates. This method generally requires only one division per

screen pixel [SMIT8 0]. Aoki and LeVlne demonstrate this me thoa fer

generatlng realisti c ima ges [ACKI78;.

2.2.3 Affine Mapping

Af fine mappings are translated llnear mappings. A perspecti v e

mapping is afflne iff g=h=O and i*O [HECK 91 J • In other words , the

mapping from 2D texture space to 3D object space is typically affine ,

but a perspective projection from 3D ebject space to 2D screen space is

not. Texture can be linea rly interpolated to fit a 3D object, but a

textured 3D object cannet generally be llnearly interpol ated to fit its

projected screen image and still maintain correct perspective. Despite

this general rule, there are a few texture mapping methods wh ich do

affinely map from 3D object space to 2D screen space whil e stil l

preserving perspective. On e method, constar.t-z texture mapping, takes

10

advant~ge of the fact that g=h=O when a plane in 3D space is parallel to

the s=~een p:ane. It scans a 3D obJect one::: coordinate at a time,

holding z constant and affinely mapping that portion of the object which

is cut through by this constant-z plane. AnoU:er met hod affinely map s

objects, but relnterpolates every few pixels in order to give the

appearance of a perspective mapping.

generally trade real~sm for speed.

2.2.4 Filtering

These methods are fast, but

The discrete diqi tal sampling of a cor.tinuo~s sig:-.al, su::::-: as

light, requires some form of dlgital signal processing

order to reconstruct lest data [FCLE90J. For the same reas on, filtering

is also needed when a di~itized texture is mapped onto a computer

screen. The fo l lowing sections cove r a well known problem in comput er

graphics called aliasing, and touch o n some of the various tvpes of

filtering as found in the lite rature.

2.2.4.1 Aliasing

A:iasing occurs when a signal has unreprodu:::lble high frequer.:::les

[CRGW77) [W:-!IT81) . It causes t he infamous jaggy lines that plague the

computer graphics world. A mathematical li ne is c ontinuous, but the

computer screen is discrete and generally displays at too lew of

resolution to reproduce the lin e accurate:y. Twc solutions to t his

problem are (1 .1 sample at a higher resolutlon and (2) d::: :ow-pa::s

filtering of the signal before sampling [HECK86).

Sampling the texture at a higher resolution does not necessarily

lmply that the computer screen needs to be at a higher reso lu tion. If

multiple samples of texture values map to 3. single screen pix",l, then

11

the celor and intensity of these values can be ave rage d together and

stored at tha~ pixel lecation. The trade off is ali asing for nJi~e

[COOK86] .

The second sol\.:.~ion is to band-limit the signal before sampling .

This means keeping the frequencies of the signal below the Nyq~ist l i mi=

[HECK86] . I~ otter words, lower the frequency and /or resol ut i on of t he

texture map until it is reproducible by the comp~ter screen when

projected. The methods ~sed to do this are well developed for linear

mappings [OFPE75], tut only a few methods have Deen intrcduce~ f~­

nonlinear mappings such as the perspective projectlon [EECK86 ~ .

2.2.4.2 Space-invariant and Space-variant Filtering

When sampling texture space for use in filterifl9", often 0. ?ro~p cf

neighboring texels are sampied together. The sample shape a~j 2re a is

determined by the filte: used. Space-invari an~ filtering uses a filter

shape that remains constant as it moves across the texture map. Thi s

form of f iltering work s best with affine mappings because of their

linear correspondence with texLure space.

Space-varianL filtering, on the other hand , uses a filter size and

shape that varies as it moves across the texture map . This type cf

filtering is good for perspective texture mapping because it accounts

for the nonlinear foreshortening caused by the perspectlve

transformation. Space-variant filters are less understood and generally

more complex than space-invarlant filter s l HECK26].

12

2.2.4.3 Direct Convolution

C;:;mput~:1g weighted averages of texture sarr.p:-"es in the f~~ ter2-Cl]

process is called direct convolution. Catmull's subdivisi on me thod

covered earlier perf~rms aCl ~nweighted average of the text u r e p2-xels

c o rresponding to each screen pixel. Blinn and Newell improved upo~ t hi s

wit h a triangular filter and a weighted average [BLIN76j . Feibush ,

Levoy, and Cook furthered the process with a filter function that allows

for several differen~ filter shapes [FEIB80j. Since then, other methods

have been developed such as el:-"iptical weighted average !EWA fi~ter.iCl g

[SPEE86] . This method combines some of the earlier techniques but i s

less costly [HECK86j .

13

CHAPTER 3

CATMULL SUBDIVISION

In 1974, Ed Catmu11 introduced a method for texture mappin g c urved

surfaces. The method subdivides a 3D surface patch successively into

smaller subpatches until a patch is as small as one s~reen pixel, at

which time it is displayed [CATM74). These surfa~e patches are defined

by the bicubic surface equation, as opposed to other surface

representations, because it more closely models smoot~, free-form,

curved surfaces. Pictures are easily mapped onto these surfaces b y

subdividing a digitized image along wit~ the surface, and then using the

color information from the =esulting sub-~mages to colo r the s~re en

pixels. Two problems witt this metr.cd are that the computati on time

increases roughly as the square of the resolution, and that t~e

application of anti-aliasing techniques is not straightforward [B~IN:8 1

3.1 The Bicubic Surface

One of the slmplest ways to approximate a curved s urfa ce is to use

planar objects such as polygons. The problem with dOlng ttis, howe ve r,

is that it generally results in a rough-l oo king surface which has a

silhouette made of straight-line segments. Ancther simple method to

approximate a cu=ved surface is to use quadri~ patctes. wtile s mooth in

appearance, these surface patches are not suitable for repre senting

free-form surfaces because they do not provide enough degrees of freedom

to satisfy slope c:ontinuity between patches [CATH74]. The bicubic

surface patch, on the other hand, maintains patch continuity while

14

providing the degrees of freedom and smoothness required for modeling

arbitrary forms.

Bicutic surface patches are based on a bivariate case of the cutic

curve,

f (t) at -' + bt- + ct ... d.

(The coefficients, a .. d, determine the shape of the curv e a n d are f o u nd

using several methods which are beyond the scope of this thesis.

Subdividing the bicubic surface is much the same as subd ividing t he

cubic curve. The problem is to find f (t) when f (t+h) and f l t-h ' are

known. First note that for the cubic curve

f (t .L h) art ± h)- + c (t ± h ~: + crt ± h) + d

cr t ± h) + d,

and

f (t+h) .L f(t-h)

Zf (t) + 2h- (3 at + b) .

Therefore,

f (t) [f (t + h) + f (t - h))/2 - h =(3a t + b) ,

which is the average of the endpoints minus a correcticn term. The

correction term can be generalized in the same manner:

If g(t) t:hen

g (t ± h)

15

and

Therefore,

g(t+h) + g(t-h) 2h: (3at) + 2bh"

9 (ttl-:) + 9 (t - h : '")
L.

2 g (t) .

When this is all put together,

f (t) = [flt+h) - g (t+h) + f(t-h) - g (t-h) / 2.

The method of subdlviding cubic curves can be extended to bicubi c

surfaces. There are three components which describe the parametr~c

bicubic patch in 3D object space: Xiu,vl, Y(u,v), and Z ' u,v). Eac!1

component can be considered as:

f (u, vI

where

(Again, the coefficients, a~ .. d~ , determine the shape of the sur f a =e

and may be found using several methods which are beyond the scope of

this thesis. As can be seen, the bicubic surface equation is ve~y

close to the cubic curve equation, particularly when ene o f the

variables is held constant. 3ince F" is a cubic, we know that there i s

a correction term, Gu fer eac:-:' F! . . We also note that f i s a cubic

curve when FL is held constant, and therefore also has a corre c tlon

term, g, where

16

Four values are needed to represent each def~nin; poin~ during

patch subdlvision. Catmull arranges these ~nto a "register-square."

f g

c.

In the register-square, f is the value of ~he fu~ctlo~ a~ '.....:., 'I ' ,

and Cf , g, and c ~ are correction terms [CATM74]. The Cf term represen~s

the correction value for f when bisec~ing in the v directi on, while g

represents the correction term for f when bisecting in the u direction.

Note that since g and c: are also cubic curves when u or v is held

constant, they also ~eed a correction term. The term c, serves as the

correction term for c: when bisecting in the u direc~ion, and also

serves as the c~rrecticn teLm for g when bisecting in the v dlrection.

These values are found using the same equations shown above for tne

cubic curve. As described, Dlsection is accomplished by holding u

constant while bisecting in the v dlrection, and then by holding v

constant while bisecting in the u direction.

3.2 Perspective

So far, a method ::or subdi \'-iding the bicubic surface in 3D ob] ect

space has been given. In order to display a perspective view of the 3D

sur::ace on the computer screen, a perspective transformation must be

performed between 3D object space and 20 screen space.

a rational bicubic with the surface equation of:

17

This results in

I X (U,v)
I

F (u,v) I Y(u,v) i
I Z (u,V) I
L W(u,V) J ,

where W(u,v) is ~alled the homogeneous coordinate and is generaLed by

the perspective transformation. The three methods for displaying a

perspective surface in screen space are:

1. Divide the surface components by W(u,v) , wh~ch resu~ts in a

rational cubic that does not fit into the subdividing scheme.

2. Subdivide X, Y, Z, and Wand perform the perspective division at

every point, which may considerab l y increase the complexity of t h e

algorithm.

3. Take only the control points which make up the coefficients of the

surface equation through the perspective transf~rmation, then

recreate the surface in screen space. This results in a very close

approximation of the surface, but not the "correct" surface as

described earlier in the cnapt~r.

3.3 Termination

The decision about whether or not a patch is to be subdivided

further depends upon the termination conditions. Catmull discusses two

termination conditions which are based cn patch size and clipping. As

explained earlier, subdivision terminates when a patch covers cnly one

screen pixel when projected. Since the edges of patches may be curved,

Catmull suggests ~hat a polygon be used to approximate the patch by

connecting the four corners of the patch with straight line segments.

18

This allows faster determination of wheth~r or not the subdivlslcn

sh':lUld continue. The other termination condition, l ' .
c~lpplng,

subdivision when a patch is completely off the screen.

3.4 Hidden Surface Elimination

halts the

Hidden surface elimination seeks t8 avoid displaying surfaces

which ar~ behind other surfaces, and tterefore out of view. Two meth ods

are described by =atmull to solve the hidden s urface problem fo r bicub i c

patches. These are the "modified Newell algorithr.." and the "::-buffer

algorithm." The Newe~l alaor':'t~m [NEWL73j sorts pol ygo ns in z- o rder,

and displays the polygons HhL::r. are f"Jrtr.est from tile Vlel'ler first. :::f

two polygons intersect so that their z-order is questionab le , then t h ey

are divided into smaller polygons before be':'~g sorted. This method is

modified for bicubic surfaces to sort certain control points which

define the coefficients or the b~cublc equatlon, rather than sorting

some polygon's vertices. ~The z-buffer algorlthm," on the other hand,

uses a buffer of values that represent the closest z-values dls~l a~ed

each particular screen element. Before a pOlnt in obJect space i ~

displayed at a point in screen space, its z-va~ue is compared with the

z-value stored at a corresponalng lecation In the buffer. If ::he z-

- ~
ell

value for the point is greater than the z-value in the buffer, then the

object lS closer to the VlEwer. In such a case, ltS z-value rep la c~s

the z-value in the buffer and the point is displayed at that screen

location. If the z-value for the pClnt is net greater than the z- v alue

in the buffer, then the buffer lS left alone and the point is not

displayed.

19

3.5 Mapping an Image onto the Bicubic Patch

Because bicubic surfaces are parametric, images can easi ly be

mapped onto them. Each point on these surfaces are referenced b~ two

variables, u and v, which ca~ be made to correspond to points ~n text~re

space. Once a surface patch is completely subdivided and ready for

display, the (u, v) coordinates for each corner of the patch may be used

to define a sampling area in texture space. This area would then be

used by a ::ilterilig algorith:n to determine the flnal color v a lue f o r the

screen pixel to be displayed.

3.6 Basic Problems

One of the problems w~th this method is that the c omputation time

increases roughly as the square of the screen resolution. For example,

a square of 2x2 pixels needs only one subdivision, or 4 subdivisions.

A square of 2=x2= pixels needs 4 1 +4 subdivisions, and a square of 2 x2

pixels needs:

n-l

4' or (4 ' -lJ /3 subdlvisions [CATM74).

i=O

At each point In the subdivision, a division by two for each surface

component is performed, and a stack lS Lsed t o store the f o ur c omponent

values: f, g, C f , and c,:. Also, each surface component must be

transformed by the perspective projection when a termlnation condition

is met. Because the surface to be mapped is curved, some points on the

surface may hide behind others. This means that not every subdivision

results in a displayed point.

20

Another problem occurs when filtering or anti-aliasing the sampled

display values of the surface patct. ?hese processes require techniq~es

for determi~ing what is visible in each raster element square,
. ,

or plxe-,--,

and a method for storing and c::nnbining intensity 'Ial'..les a'.: each s:::juare

to get an average [CATM74]. After termination, a sutdivided pa:'c;-.~ c be

filtered and displayed ma y lie between pixel centers, etc. Be c ause of

these types of issues, the filtering and anti-aliasing processes needed

are not completely straightforward.

21

CHAPTER 4

FAST SCAN-LINE BASED TEXTURE MAPPING

Since Catm~ll's subdivision algorithm, methods have :a~ge:~ ~ee~

focused towards improving the parametric approach to perspecti v e text u re

mapping. Because of its properties, i~verse pe~spective mapping has

been one of the most wiaely accepted methods tc date. This chapter

describes and examines the general purpose inverse perspective ~appi ng

algorithm.

4.1 Inverse Perspective Mapping

As explained earlier, lnverse perspective mapping is the ~app i ng

from screen space to ob j ect space, and t hen from object space t o texture

space. These two mappings are usually composed to form one mapping fr ·:)m

screen space to texture space. Inverse perspective mapping differ s from

perspective mapping in that screen space is scanned to obtain a textu r e

value, rather than the other way around. For each screen coordlnates

scanned, a texture coordinate is fou nd which represents the cer,ter of a

group of texture coordinates which also map to that screen coordinate

(see Figure 4.1) . This group of texture coordinates should n o t be

ignored, since thelr ccmbined values represent the flnal va l u e of the

current screen plxel being s canned. A filtering meth od i s comrno r, l y used

to decide which of these texture coordlnates should be included, and hew

to combine their values to form the flnal screen value. As a general

rule, the greater the nUIT~er of texture values used to represent the

final screen plxel value, the mere realistic the texture mapping appears

and the slower the algorithm performs.

Filtering seeks ~o balance between speed d~d realism. ~nverse

perspective mapping algorithms are popular because they are easil y

adiusted to balance between the twc. F:n exarr.ple, i: speed ~5 mas::

critical, then only the::enter texture value rr.a y be used to colo r ~ts

correspo~dl~g scree~ plxel. This results in a crude represe~~atio n c f a

texture, but is fast and generally recognizab le . On the other hand , i:

rea lism is most critical, more texture values may be used to represent

each screen pixel. The fi~a l image wou ld appear more realisti c because

more data value s would be used to represent the mapped text~re. For

this same reason, the alaorithm wo~ld generall~ be slower in producing

the image .

Texture Space .screen Space

k-- ---.....
'\. . 1

\l'" .. r;ix-= l
IV "'-"

"'"
I

" plxel's centEr

Figure 4.1 A Mapped Pixel

4.2 Representing Surfaces with Triangles

Almost any surface may be represented by a mesh of adjoln ing

triangles. Triangles are easy to work with beca use they are b8th simple

and planar. Planar obJects such as triang l es are usually used in

inverse perspective mapping because they are easily parameterized. One

of the problems with using triangles to represent surfaces, however, ~s

23

that if a surface is non-p1anar, a triangle mesh can cnly roughly

approximate i':.

somewhat rc.gged.

T~is means thac obJects and their silho~etces may look

One cf the sclutio~s to t his problem, ho~ever . is to

use smaller triangles to represent the surface. This i s another trade -

off between speed and realism. If smaller triangles are used to

represent a surface, then more triangles m~st also be used t o represent

that surface. If more triangles are used, the algorithm may be sl2~er,

but the final image is generally more realistic. However, even in che

real ~orld , objects which seem smooth can appear roug h when v i ewed

through a microscope .

4.3 Texture Mapping in Scan-line Order

InverSE: perspectlve mapp2-ng algorithms commcnl~' scan sc ree:-. siCdce

in scan-line order (lef t t o right, top to bottom) . Thls is because an

algorithm which generates pixel val~es In scan-line crder has t~c maln

advantages. The first is that because the intensity of each pixel is

computed ccmpletely before movlng on to the next, anti-alias in;:;

computations are relatively easy to perform [B~IN78bl . The second rr.ain

advantage is that these scan-llne algorithms are more suitable for

hardware implementations because they generate the intensities in the

same order as a computer monltcr scans them out onto the screen

[BLIN78bl. The next sectlons descrioe and examine a general purpose

inverse perspective mapping algorithm which performs fast scan-line

based texture mapping o f a bas i c triangle .

24

4.4 The Five Primary steps

A general purpose scan-line algorithm for the inverse perspective

mapping of a basic triangle can be divided into five primary steps:

.3tep 1 Calculate the mapping coefficienLs (section 2 . 2.2) .

step matches the 2D rectangular texture space to the triangle in 3D

object space. This process is made easier by associating each vertex of

the triangle wlth a corresponding texture coordinate. Since we know

that the three vertices of t~e triangle lie on the plane for which we

are trying to find coefficients, we only need tc solve a set of linear

equa tior.s :

x (u c, v;.l A * U · + B * v' + r- = x '

Y (Uj , Vi) D * U' -t- E * Vi + t;' y and

Z (Ui, Vi) G * u + H * V, + I

where i=O. ,..,
• L, and (u" and (x " y" are kno\..;n. The coefficients,

A .. 1, are then used to find the coef~icient s a .. i (see section 2 . 2.2) .

Step 2. Sort the three triangle vertices, \ x_,y~,z ~ , ancl their

corresponding texture coordinates, (Uj ,v,) , by their projected screen y

values, SYi , where i=O .. 2. Designate vertex A the verLex with the

smallest Sy~ . vertex B the vertex wiLh the next smallest Sy ~ , and vertex

c the vertex with the largest SYc.

Step 3. Divide the triangle vertically lnto two sides. Hake Side

o the edge from vertex A to vertex C, and side 1 the edge from vertex A

to vertex B to vertex C (see Figc.:re 4.4).

25

Triangle Side 0 Side 1

A A A

B Ii B

c c c
Figure 4.4 Divide into Two Sides

Step 4. :ind the screen values f8r each of the two s~des.

is done by linearly interpolating between the projected vertices cf the

triangle in order to find the three edges of the triangle on the screen.

In other words, interpolate between ~ertex A and vertex C's screen

values to find side D's screen val~es, and interpolate between vertex A

and v ertex B's screen values as well as retween vertex B and vertex C's

screen values to find side l's screen values (see procedure find sider)

in appendix A)

Step 5. Scan the screen values between each s~de, fi~~~nq their

corresponding texture values. This involves holding each side's slrnilar

screen y values constant, aYld incrementing through the sc reen x value s

betweeYl them. Note that this step is considered the scan-line step ,

since it is done for each screen y value of the projected triangle in

scan-line order.

section 2.2.2.

The texture values a£e found by uSlng the equati8n ln

Step five has a nested loop which scans a total of N screen pixels

which make up the proJected triangle. Because of this, step five has

the most influence over the time complexity of the algorithm, G(N). A

detailed algorithm for performing fast inverse perspective mapping in

scan-line order is given in appendix A.

26

'1\

4.5 Shading

Many shading methods require that a surface norma! be kncwn far

particular points on a surface. Since shading is a form of texture

mapping, It can usually be done dur~ng the texture ffiappin; process.

Inverse perspective mapping algorithms, however, are not easi ly tailored

to find surface normals. These algorithms general!y li~early

interpelate between a set of given sur~ace ncrffials to find ea c h

particular surface normal. In other words, an affine mapping is u s ed t o

map the normals. ~he argumen~ is that shading does not ha ve t o be a s

visually exact as basic texture mapping. Although this is true in man y

instances, it is desirable for same apFlications to have objects whose

surface normal values do net change w~lle the object moves across the

computer s C.Leen.

27

CHAPTER 5

THE SCAN-LINE SUBDIVISION ALGORITHM

The scan-line subdivision algorithm cOIT~ines the qualit~es ~:

Catmull's subdivision method with the advantages of the general p u r p ose

inverse perspective mapping algorithm. Subdivision is a good, simple

me~hod for finding values between points, but it does not have the s c an-

line qualities that algorithms may need for less expensive hardware

implementations. Subdivision can also be very calculati~n intensive if

the algorithm has computational redundancy or complex subdivision

calculations. Inverse perspective mapping, on the other hand, al lows

for a scan-line approac~ to perspective ~exture ~appjng, tu~ is n o t v ery

sui~able fcr finding surface normals for use in shading. Als o with ,.
inverse perspective mapping, if the surface shape t o be texture mapped

does not easily ccnform to rectangular texture space, aligning the two

might not be very straightforward. Where one algorithm has

disadvantages, the other has advantages. The scan-llne subdivision

approach explained in ~his chapter attempts to take advant a ge of this

fact by combining strengths from both methods.

5.1 Scan-line Subdivision

Scan-line subdivisio~ is very different fr om Catmull's s ubdivision

method. In fact, it more closely matches the generi~ inverse

perspective mapping algorithm covered in chapter four. Like the inverse

perspective mapping algorithm, it works best wit~ planar object~ such as

triangles. In the author's subjective opinion, there are two major

reasons for not directly using curved surfaces to model objects. One is

28

that using these surfaces to mcdel objec~s ~an make an algorithm very

complex, and another is that many algorlthms l"-lh::'c!": use curv ed s u rfaces

to model objects resort to planar approximations at a ~ertain po~n~ ~n

the process anyway. (Stil~, there are many applications for which

using curved surfaces to model free-form objects is preferred. The

author leaves altering the scan-line subdivision approach to be used

with curved surfaces for :ater study. The s~an-l::'ne s~bdiv::'sic~

algorithm descr~bed in this chapter subdivides a tr::'ang:e first l~ the _

direction, and then in the x d::'rectio~. The adva~tage to subdlvidlng

this way is that it avoids COTI'.putaticns by needing only to ccmpu~e t:ne

perspective transformation of the ob j ect's y ~omponents once for each

"scan-line" being bisected In the x direction. This scmew!":at comp a res

with the scaCl-line order imposed by the i~verse perspecti'Je mappl:1g

algorithm. However, Sl~ce the subdivislon is not complete::'y eione in

scan-line order, inverse per~pective mapping maintains an advantage In

this area.

5.2 The Four Basic steps

A scan-line subdivision algorithm for perspective texture mapping

the basic triangle can be di v ided into these four basic steps:

Step 1. Sort the three triangle vertices, (x ; , y" z,), and their:

corresponding texture coordinates, (u,v:l , oy their projected screen y

values, SYi , where i= O .. 2. Designate vertex A the vertex with the

smallest SYk, vertex B the vertex with the next smallest Sy" and vertex

C the vertex with the largest SY,-,

Step 2. Divide the triangle vertically into two sides. Make Side

o the edge from vertex A to vertex C, and side 1 the edge from vert:ex A

to vertex B to vertex C (see figure 4.4). Make each side an array of n

29

. ..

vertices, where r. corresponds ::0 the maximum amount of " vertica l "

subdivisions that may be done (see section 5.3)

Step 3. Vertically subdivide each "side" of the triangl e. This

~equires bisecting the edge from vertex A to vertex C fo~ side 0 , and

bisecting the edges from vertex A to vertex B to vertex C fo r side 1 .

This is accomplished by adding their components and then divi d i n g the

result by two. For example, bisecting the x component between c:wc

pcints, A and B, would give C, the center point's x component wnere

C(x) (A(x) + B(x) / 2.0.

Any criteria may be used to stop the subdivision. When the subd ivi s i o n

is complete, store the resulting vertices in the "side" array s ,

side(O,SYi) and side (l,Sy:), where O<=l <=n.

Step 4. Horizontally subdivide between side (O,Sy ,) and

side(l,SYi)' where i=O .. n. This step 15 considered ::he "sca~-li ne

subdivision" step, particularly when Sy: correspcnds to each scan-l1ne

value. Again, any criteria may be used to stop the bisection. When the

criteria is met, use the subdivided texture coordinates whic~ are

associated with each of the subdivided vertices t o color t~e s creen

5.3 Termination

The termination conditions used to stop t~e subdivision in steps

three and four largely depend on the filtering process used. If the

termination condition is set to stop the subdivision when the projec~ed

end-points are only one pixel apart, then the algorithm would closely

match the generic inverse perspective mapping algorithm in chapter four.

30

. ..

~his condition leaves the res~ of the texture mapping up ~8 a space-

variant filtering process which would then use the resu:ting text~re

coordinates as ce~ter points from which to work. (For simplicity, the

algorithm covered in this chapter ases this condition to halt the

subdlvision.

A form of dynamic filtering can be performed by allowing further

subdivisions based on certain termination conditioLs. For instance, b:;

basing the termination condition on a distance between each endpoint's

projected screen coord~r.ate, a space-variant filterir.g car. be perfcr~e~.

This distance value can be varied to balance betweeL speed and realism.

A small distance value results in greater rea:ism because more texture

values are used to create the final image. A large distance value, on

the other hand, results in a faster algorithm because not as many

subdivisions wou:d be perfor~ed. Cne t ype of crude space-varian t . ..
filtering that can be used in this instance is a simple weighted average

of the texture values which make up each pixel.

5.4 Similar Algorithms

As one may have noticed, the steps outlined above match closely

with the steps given in chapter four which outline the basic inverse

perspective mapping algorithm steps one through four correspond with

steps two through five). In fact, even though this algorithm is a

perspective mapping algorithm as opposed to an inverse perspectlve

mapping algorithm, it is closely based on the generic ir.verse

perspective mapping algorithm structure. The main differences are in

the final two steps. The scan-line subdivision algorithm uses

subdivision to find the texture values between the line segments rather

than parameterization.

31

5.5 Scan-line Subdivision vs. Inverse Perspective Mapping

The scan-line subdiv~sion algorithm has th~ee ffiain advantages ove~

the inverse perspective mapping algorithm. The flrst is that the

criteria for stopping the subdivision can easily be altered to all ow for

a form of dynamic filtering (see section 5.3\. If speed is ::ot

c~itical, more subdivisions may be done, resulting in more texture

values being used in creating the final image. This generally res ul ts

in better image quality.

Another advantage to the scan-line subdivision algorithm is that

code for keeping track of each point's surface normal may be easily

added at almost no extra cost, ::esultin; in mo::e accurate ob J ect

shading. This is done by associating each vertex of the triangle with a

surface normal, and allowing the algorithm to subdivide the surface

normal vector along with the vertex values.

The third advantage involves ease of parallelization. Gene::ally,

recursive algorithms are more straightforward when It comes to

converting them for use with multiple processors. The bul k of the s can-

line subdivlsion algorithm uses preorder recursion to blse c t between two

points.

The disadvantages of the scan-line subdivision algorithm over the

inverse perspective algorithm lnclude the fact that the algorithm i s not

a complete scan-line algorithm. That is, it 1S set to texture map top

to bottom, but not necessarily left to right. Another disadvantage is

that the scan-line subdivision algorithm has stack overhead, and

although both algorithms have the same O (n) time-complexity, it is

slightly more calculation intensive. The bulk of the divisions used in

the scan-line subdivision algorithm are divisions by two, which is often

32

faster t han general- case floati ng point divi sion . The se divisions may

also be converted to a mul tip lication b y a constant fo r those computer s

which mult iply f lo a t ing p oint numbers faster t han dividing them .

5.6 Scan-line Subdivision vs. Catmull Subdivision

Scan-line s ubdi v ision ha s man y advantages over Catmull

subdiv ision. One is that the algo r i thm i s much less complex . This is

largely b ecause t he scan- line subdivision al go rithm subdivides simple

planar obj e ct s rat her than cu r ve d surfaces , but a l so b ecause i t

s ub d ivides i n a sca n- line f a shion. If no t done properly , subdivision of

a surface into f ou r sub - surfaces c a n res ul t in computat iona l redundan cy

res ult i ng fr om common points which are found by subdividing separate ,

but a dja cent s ur faces . The scan-l ine s ubdi v is ion a lgori thm a voids thi s

by bisecting the surface i n the y directi on, and th e n in the x

d irection. computation is reduced beca us e plana r objects a r e simpler to

b isec t and d o n o t "fold over " on thems e lves.

Unl i ke t he scan- line s ubdivision algorithm, however, Ca t mull ' s

algor i thm wo r ks f o r cu r ved surfaces . Th i s is an a dva n tage for

app l i cations which need more accurate approx imation s o f free-form

obj e cts . However , even Catmull ' s algo rithm d e t e rmi ne s which screen

pixels are covered by a curved s urface pa tch by using the quadrilate r al

formed f rom the patch ' s co rner p oint s to approx imat e it.

33

CHAPTER 6

CONCLOSION

Perspective texture mapplng algorithms mostly diffe r in the ~ype

of mapping they incorporate between texture and object space. The ~\"O

primary mappings that have been studied are the parametric mapping and

mapping via subdivision. A popular parametric mapping approach 1S tha=

of inverse perspective mapping in scan-line order ':::hapter 4 1 . Ur.t il

this study, the only method for texture mapping via subdivis ion is the

one introduced by Ed Catmull in :::'974 (chapter 3).

One of the advantages of subdivision over other approaches lS that

it 1S very dynamic. The goal of sub~ivision is to divide pr~b l ems lnt~

smaller problems, until each problem is easier to sol~e.

mapping, the problem is that of bal ancing between speed and real ism .

For example, if an object to be texture mapped is in motion, the speed

at which it is texture mapped may be more critical than how reali sti::: it

appears. Subdivision can provlde a dynamic balance cetween speed and

realism based on the amount of subdi-/isior. perforrned (:::hapter 5) .

Al though the parametric approa ch is more static, it car, r-e used t o

texture map very efficiently and does not need a stack. One of t~e TILost

efficient texture mapping methods based on the paramet~ic approach is

the inverse perspective mapping meth o d discussed in chapter !OU1.

Unlike Catmull subdivisi on , this me thod texture maps in scan- l ine erder,

which is desirable for most inexpensive hardware implementations. The

method is very simple, mainly because it only text'.lre maps planar

objects as opposed to the more complex curved surfa c es that Catmull's

algorithm maps. One of the proclems with this method, however, is tha t

it is not easily adapted to find surface normals for use in shading.

34

.-«

E
t

':-vi th sucdi '-,i sion , E' .. ura:e norrr,a: s are eas i 1 Y .::ompu t:ed al ong wi th ot:r.e:-

p8ints.

The scan-L; .. ne subdiv~sion method introduced in thi" paper corrJ::: :.ne s

the advan~ages of both inverse perspec t ive mapping and perspe=~ive

ITlapping via subdivision (see Figures in Appendix C) . It i s c~ c sel \.

based on the scan-line st:-~cture 8f the i~verse pe:-spect ive mapping

algorithm, but maintains t~e desi r able properties associated with

subdivision . With this wethod , surface normalE are easil y computed f o r

use In snading, and a forw of dynami: filterinG i s possib le based C~ t h e

number of subdivisions :;:e:-fo:-r:led. Althouqh t:he algorithm is not qui t e

as efficient as the lnverse pe:-spect i ve mapping algorithm , it has t h e

advantages c f subdivision that make it preferable.

6 . 1 Future Work

Cne obvious extension to the scan - ll~e ~ubdivisi2~ approa.::h is t o

apply the method to curved surfaces. As is, the a l~ o:-lthm works Oll~:'

with objects that are based on the triangle. To apply the approacn to

cu:-ved surfaces , a method of separat:.~g the surface's screen ima.]E :"'nto

"sides" is needed. ~hl ~ task ma y be challenging b ecause the

property that makes these surfaces desirable also makes worklng Wl t~

therr, difficult. For instance , the Ecreen lmage o f a projected cu r ved

surface patch has edges t hat do not always corre s pond to the actual

edges of the patch . Mu ltlple sides would need to be f o und, as opp os ed

to just two, and these sides ma~' not correspond to t:he a c tual edges of

the surface patch.

35

'·001

C·
t.

[AOKI7 8]

[BE.;;'T82J

[BIER8E]

[ELIN7E]

[BLIN78a]

[BLIN78b]

[BCIT 7S]

[CATM74]

[CATM80]

[eOOK8 E]

[CROW77]

[FEIB80]

[FO LE90]

BIBLIOGRAPHY

Aoki, M., and M. Levine, "Compute..: Ger.eratior. 0:
Realistic Pictures," Computers and Graphics, Vo l.
3, 19"78, 149- :1.61.

Beatty, J.e., and K.S. Eoct~, eds., Tutoria l:
Computer Graph ics, Second Edltior., IEEE Compo Sec.
Press, Silver Spring, MD, 1982.

Bier, E., and K. Sloan, "Two-part texture
mapping." IEEE ComFuter ~raphics and applications,
Se~ter:l.ber 1':136, 4 C-53 .

Blinn, :.F .. and M.E. Newell, "Texture a~d
Ref1ectie~ in Comp1-:ter Generated Images," CAG"S,
19 (1 0), C-.::tober 19 76, 542-54'. _;;.lso in BEJI.T8 2 ,
456-461.

Blinn, J.F., "Simulation of Wrinkled Surfaces,"
SIGGRAPH 7S, 286-292.

Blinn, J.F. , Cowp uter Display of Curved Surfaces,
Ph.D. Thesis, Department of Computer Science,
Ur.ivers ity of Utah, Salt Lake City, UT , December
1978.

Bui-Tuong, Phong, "Illumination for Computer
Generated Pictures," CACM, 18 (6) , Ju~e 1975,
311- 31 7 . Al SOl n BEAT 8 2, 449 - 455 .

Catmull, E., A Subdivision Algorithm for Computer
Display of Curved Surfaces, Ph.D. Thesis, Peport
UTEC-CSc- 74 -133, Computer Science Departme~t,
University Clf Utah, Salt Lake City , UT, DecelT..Der
1974.

Catmu!::', E., and A.P. Smith, "3-D TransformatlClns
of Images in Scanline Order ," SIGGRAPH 80,
279-285.

Cook, Robert, "Antialias:Lr,g by Stochastic Samplin g ,"
ACM Trans. Graphics , 1980 .

Crow, Franklin, "The Aliasing Pr o blem in Computer
Generateci Shaded Images," Comm. ACM, Vo l . 2C , l;Cl'J.
1977, 799-805.

Feibush, Eliot, M. Levay, and P. Cook, "Synthetic
Texturing Usi ng Digital Filters ," Computer Graphics
(Proe:. SJ.:GGKAFH 80) , Vol. 14, No.3, July 1950,
294-301.

Foley, J., A. van Dam, S. Feir.er, and J. Hughes,
Computer Graphics: Princlples and Pr:Jctice, Secon d
Edi tion, Addisor.-We sl eji, Reading, MA, 1990.

36

,.

[FFEE8 0]

[G}U~G82]

[GPEE86]

[GOUF71]

[HECK8:3]

[HECK86]

[HECK89J

[HECK91]

[Ml0(W46]

[NEWL73j

[OPPE75]

[SMIT80]

[SMIT83]

Freema~, H. ed., T~c~rial and Selected Read~ngs ~n
InteracciFe Computer Graphics, :::EEE Compo Soc.
Press, Silver Spring, ML, ':'9S0.

Gangnet, M., D. Pe=~y, a~d P. Coueignoux,
"Perspective Mapplng of Planar Textures,U
Eurographi~s 8~, 57-7~.

Greene, Ned, and F. Heckbert, "Creating Faster
Omnimax Images fr::rc Mul tiple Perspe;::ti ve V1e\:s
Using the Elliptical We ighted Average Fi l ter,U
IEEE CG&A, Vol . 6, No.6, June 19~E, pp.:':'-:7.

Go~raud, H., "ContinuoGs Shading of Cu rved
Surfa::::es,u IEEE Trans. On Computers, C-2 0 (6) , Jun e
1971, 623-629 .. l\lso ln FFEES O, 3 02-3 0 8 .

Heckbert, P.S., "Texture Mapping Polygons in
Perspective, U Tec:-" Hemo No. 13 , NYIT Computer
Graphlcs ~ab, Apr. 1983.

Heckbert, F.S., "S~rve y of Texture Mappina,u
CG & A, 6,11\, November 19 86, 56-67.

Heckbert, F. S., Fundar.Jent"ds of Texture I'1app~ng

a."Jd Image W3:ping, Maste.:' s t!1esis, UCB / C;::D
89/516, CS Dept, DC BerKeley, May 1989.

Heckbert, P.S., and H. Moreton, "Interpolati o n for
Polygon Texture Mapping and Shading,U State cf che
Art Computer Graphics: Visualization and ~caellng,
Fogers, D., and F. Earnshaw, eds., Springer­
Verlag, New York, 1991, 101-111.

Maxwel l , E.A., T.'"le Met h ods of Pla.'1e Projective
Geometry, Bas ed c n the Us e of Gene:al Hom ogen ea us
Coordinates, Cambri.dge U . Fress, Lendon, 1 9 40.

Newell, M., F. Newell, and T . Sancha, "A New Appro~::::h
to the Shadea Picture Froblem,u Froceedlngs of the ACM,
1?73 National Conference.

Oppenheim, Alan, and R. Schafe=, Digit al Signal
Processing, Prenti::::e-Hall, Englewood Cliffs, N.J.,
19 75.

Smith, A.F., "In c remental Fendering of Textures in
Perspecti'Je," SIGGRl\PH 80 : Animation Graphics
Seminar Notes, July 1980.

Smith, A.F., " Di gital Filtering Tutorial for Computer
Graphics," parts land :2, SIGGAAPH 83: In:roduction to
Computer Animati on Seminar No:es, Jul:/ 19 83 , 24 4- :r:: :.,
262-272.

37

[WHIT 81] Wh i tted, Turner , "The Caus e s of iU i asing in Compute r
Generat e d Imag e s , " S I GGRAPH 81 : Advanced Image
Syn t hesis Semi n ar No tes, Aug . 1 98 1 .

38

APPENDIX A

INVERSE PERSPECTIVE MAPPING IN SCAN-LINE ORDER

The following pseudo -Pasca l r epresents the basic cede fe;:- 3

general purpose inverse perspective mapp ing a lgorithm wh ich texture ma ps

in scan-line orde r . These functl~ns and procedures are ou t l i ned in

chapter 4.

Type vertex- is a structure containing both a n I X , y ,z) and a I U , V '

coordinate.

Procedure Name: texture IT,a F

Comment : Texture maps l~ sC6n-line ortier us~ na an i nve r se

p erspective mapping.

:::npu t : An array of type ver~ex wi th three elements containinq the ."
triangle's three vert1ces.

Output : A texture mapped t r iangle {on the screen } .

Gl obals: screen_height 15 the height o f the screen ~n r~xels.

procedure texture_maplvertex (3) :vertex i

var a, b, c , d, e, f, g, h, i :real;

var w, '-1, v :real; t
to
(

var sy(3) :array of real ;

var t, cur sx, ~ur sy : integer;

var svert (3), side!2, screen_ height) : array of real;

var sideD, sidel :po~nter to real;

39

begin

I I step 1. Setup the coeff~cients ..

setup coeffs (ve rt e x () , a, b , c , d, e, f, g, h , i !

II step 2: Sort the three triangle i s vertices by

II their projected y value.

for ~ := Q to 2 do

sy (t) .- project y (ve r tex (t))

sort (vertex () , sy () , s v ert ())

II steps 3 and 4 - divide triangle vertically into two

II s~des and find the screen values for each

II of the two s~des.

find side (side (O ,) , s vert (O) , sve r t (2) , s y(O) , sy (2)

find_s i de(side(l ,) , svert (O) , 3ve r t (1) , sy (O) , sy (l)

fi n d_side (side (l ,) sve r t (l) , s v ert (2) , sy (l) , s y(2) 1

II Step 5 - Scan the screen values between each side, wh~le

II finding and plotting the texture values.

II First make su re we are g oi ng t o scan in scan - line o r der

if (sid~(O , s y(l ') ~ 31de(1, sy (l))) then begin

s ide O .- side (1 ,) ; s i d e l := side (O,) ;

else begin

side O . - si:ie (O , sl:iel .- side (1 ,)

end;

4 Cl

I::
t

for ~ur sy := sy,O) to sy:2 1 do

for cu :: sx sideO->cur sy to si::ie::'-'>cc:r s~' do

begin

w g * =u r sx + h * =~r sy ~ ~;

1..... .- I,a -1-- cur sx . .,... b * cur sy + c) y...T;

\/ ' " * cur sx + e * cur 5 'j' + ." / -.. ".l ; .- \~
.. ,

di splay pO'::1": (. U, 'J, cu:: sx, C:...l!" sn \
l' -

end;

end.

Procedure Na:ne: setup coeffs

Comment: Sets up coefficients for use i~ the parametric mappin g

of the texture plane as transf~rmed to fi~ 3 2~ t::l3ngle

in 3D object spa=e see section 2 .2.2) .

Input: An array of three elements whi=h contain t he three triangle

vertices.

Out-put: The nine coef ficients a, b, .. , i.

Globals: ~one.

Procedure setup coeffs(vertex(' :array of vertex, var a, b, e, f' L.

g, h, i :real J

var ax, ay, a:: , bz, by, bz :real;

var cu, cv, du, dv :real;

var k
, m, n, c, p, r .J , , ~,

':1 ' :real:

var x (3) , Y (3) , z (3) :array of real;

begin

II First we must find the coefficients for the p3rametric

II equaticn of t he (u, \/) texture plane as if it wher e

II transformed to fit the triangle in object spa~e.

41

II We fi~j these using what we know about the (u,v) and

I ' , , . 'x,y,z) coordinates the triangle. This section can

/1 be eliminated if three vertices are added to the triangle

II str~c~ure which get uPQa~ed along side trie triangle , howe v er ,

II this mea~s transforming six vertices instead of j ust three

I I whenever the triangle is transformed.

ax vertex (l) .x - vertex (O) .x;

ay vertex (':') .y - vertex(O) · y;

az .- vertex (l) .Z - vertez (O) · ~ ,

bx vertex (2) .x - vertex (O) · x;

by .- vertex (2 } .y - vertex \O) .y;

bz vertex(2) . z - vertex(O) · Z;

cu .- vertex (l l • '.1 - vertex l O) · U;

c\· ve rtex (l) . v - 'v'ertex (0 I v' · ,

du .- vertex (2) .u - ve .rtex (0) · u;

dv ,- 'Jertex (2) .v - vertex (O) · v;

j . - bx * cv / (du * cv - cu * dv)

k . - (ax - J * eu) I cv;

.- vertex (O) .x - j * verte>:(O).u - k *

m by * cv / (du * cv - cu * dv)

n (ay - m * cu) I cv ;

vertex ((; 1 " ' , 0 ,

o vertex(Oi.y - m * vertex(J) .u - n * vertex(O) . v ;

P bz * cv I (du * cv - cu * dv)

q . - (a z - p * eu) I cv;

r .- vertex(O) .z - p * vertex(O).u - q * vertex(OI .v;

x (0) .- 1; y (0) .- 0; z (0) .- r;

x (1) ~ + 1; y (1) m + 0; z (1) p + r; ~

x (2) k + 1; y (;::) .- v + 0; z (2) q + r;

42

end ;

II Se~or.d , we find the coefficients f o r the inverse

II mapping as shown in secti2D 2.2.2.

a y (2)

b .- x (O)

c .- x (2)

* z (O) - y (O) * z (2) ;

* z (2) - x (2) * z (O) ;

* y(O) - x lO) * y (2) ;

d Y I 0) * :: ! 2. , - ~. I 1 " * z (G) ;

e x (l) * z (O) - x (O) * z (l) ;

f . - x (O: * y\:\ - ;·: \ 1) * ~'(C j ;

:;J a ~ d -"- y (l , * z ~ 2) - y (2) * z (l) ;

h . - b + e + x (2) * z(l) - x (l) * z (2)

i .- - + f + x(l) * y!21 - x l ::') * y (l)

Function lJa.me:

Comment:

Input:

Output :

Globals:

Maps an x-value from 3D object space t o 2D screen spa~e .

A vertex structure.

Projected screer. x value .

Eye _ distance_ fr om_ :screen is defined fr:Jlf, the

desired view angle.

Function prcj e ·::t x (V : vertex I :real ;

begin

proj ect x . - Eye_distance._fr om_screen * V . x / V . z;

end ;

Function Name : pr .:Jj ect ~!

Comment :

Input :

Maps from 3D object space to 2D screen space.

A vertex structure .

43

O'-..ltpu~: ?r~jected screen y value.

Globals: Eye distance from screen ~" defl:-.ed froIT, ::~e

desired view angle.

Function pro j ect y(V : vertex I :real;

begin

end;

Procedure Harne:

Comment: Strts vertices and y value s uSln; bru::e fcr~e, whic~ t= ad e s

efficient space usage for a better execution time.

Each vertex is sorted b~ its corresponding y va lue .

Input: An array of three vertex structures , vertex (J .. ::: 3.nd an

~rray of three corresponding y values, sy (O .. 2)

Output: A so=te d array , svertl O .. 2) , of the three vertex structures ,

vertex (O .. 2) , which correspond to a scrted arra; of the

thre-=; y values, sy(O .. 2).

Procedure sort(vertex () :array of vertex, var sYI) :array of real,

var svert() :array of vertex)

var temp :real;

begin

if (sy(O) <= sy(l and (sy l OI <= syl2J then beg~n

svert;O) vertex(Oi

if (sy(l) <= sy(2)) then beg~n

svert(l) .- vertexll)

svert , 2) .- vertex (2)

else begin

svertll) .- vertex(:)

44

I(Sorted order : I'
~ , 1 , 2

II Sorted order: 0 , L, 1

"')

,~ ,­
I~
,~

~
" (

svert(2) := vertex (l)

cemp : = 5'1 \ 1 1 ;

sy 'l , .- 5'./(21;

S'Ij \ 2) . - temp ;

end;

else if (5 '1 (1) <= 5'1 (0,) and (s y(l

s v ert (O) .- vertex ,.l)

temp := 5'1 11,

if (s '1I O) <= 5 y(2) then begin

sver t l i) 'Je rtex (iJ;

svert (2) .- ve rtex ,2 }

s'1 : l) . - 5 1(0)

else begin

svert (l) vertex(21

svert i 2 \ .- vE;!:t eX (C,

sy (:::) .- sylO)

end;

s'1IO) .- temr ;

else if 15y (2: <= 5'1 (0)! and (s'1 (2)

svert rO) := vertex (2)

temp : = s'1 (2) ;

if is Y 10; then begin

svert l l) .- ve !:tex (O)

5vert(2) := vertex (l)

S:; 11 \ .- sy l O)

sy(2) .- sy(l)

45

sy then beg~n

/ / S o r t ed s:.-de:::

// Sorted o rder:

5 '1(1) ~ then begin

/1 Sorted o rder:

1
~ ,

"
J... , .:... ,

~ - , , ,
~ ,

else begl.n I I Sorteci o reer: L , J.. ,

svert (l) vertex (l)

5vert(2 } := ver-tex'\ O)

sy(2) .- sy (O)

end;

s y (0) . - temp;

end;

end;

Procedure Name: find side

COIllillen t : Given twc screen coordinates , find the screen coo rdina te s

that lie on the line which runs between the two p o int s .

Store the x val~es in a~ array which is indexed by the y

values.

:':nput: Two vertices , their corresponding y va l ues , an d an arra~· o f

type real which is at least as large as the s c reen' s he ight .

Output: The ar ray ~s pass e d back with its updat e d value s .

Procedure fi~d side(var sidel) :array of real, E : vertex, s y l ,

:real)

var sxl, s x 2 , inv slope, sy :real;

begin

sxl .- project x A)

sx2 .- project x (B)

inv slope .- (SXL - sx l) I (sy2 - syl \

for sy .- syl to sy2

begin

if (sy >= screen.min y l and Is y <= s c r een.max y) then

side (s y) sxl + ; Sj' - s yl:

46

end;

end;

47

APPENDIX B

THE SCAN-LINE SUBDIVISION ALGORITHM

The followlng pSEud o-Pascal represents the basic c ode c f t he s =a~ -

line subdi v ision a l g o rithm. These functions and p r ocedu r es a re ou~l i n e d

iIi chapter 5.

7ype vertex l~ a s tructure containing both an (x , y ,z ! an d a (u , v)

c oo rc!inate.

Procedure N.=.me: s ca n Ilne subdivide

Input: An array of t ype v ertex wit h t h ree elements c ontai ning t h e

triangle' s t h ree vertices.

Output: A texture ma p ped triangle (on the c omputer sc ree n) .

Globals: screen_height lS the height 0: t:he sc::een I n pixel ::: .

Procedure scan l~ne su.tdivi de(vertex (3) :vertex)

J:
var svert (3) : array of vertex;

: array of vertex;
o'!

var side (2, screen_height\

' ..
var sy(3) : array of real; ..

~

-I

: integer; t
~

va= i, cur sy

(
begin

for ~ := 0 to 2 do / / Step 1 - Sort by pro ject e d y valu es

sy(i) := pro j ect y(vertex (i)

sort(vertex() , syl), svert ()

/ / Steps 2 and 3 - (sub) di vide vertica~jy

4 8

bisect s~de (side (O,) , svert (O) , s vert (2) , sy (O) , sy (2)

bisest sicieiside(l,) , svert (O) , s v ert ill , s y (O) , sy (l)

bisect side(side(l,) , svert(l) , svert (2) , s y (l) , s y (2 ,11

/ / S t ep 4 - subdi v ide hcri:: o!:tall :: -

for cur sy .- sy (O) to s y (2) do

begin

bisect inner(slcie (O, cur sy) , side l l, cu r sy)

end;

end.

Function Name: prcJect x

Comrr,ent: See appendix A.

Function Name: project y

Comment: See appendix A.

Procedure Name: sort

Comment: See appendix A.

Procedure Name(s): bisect side and do bisect side

Comment: Subdivides or bisects one sid~ c~ a tria~gle,

storing the resulting coordinates in an arra y .

bisect side sets up the bi s ection, while

do_bisect_side a::tuall,,· im!=>lements the bisect::'or ..

Input: Two vertices which represent the ends or a

line segment, ~hlsh denotes one side of a triangle, are

passed. The corresponding projected screen y values of the

two vertices are also passed, as well as an array of type

49

vertex which is capable of holding at least ~ elements. I n

this example, n is the height of the s::~een ~;, r~xel s.

Procedure do_bisect side has an extra parameter called

deFth which KeeFs track of the recursion derL h .

Output : The passed array is updated with the new coordina ~ es

resulting from the bisection.

Glol::;als: screen .min_y and screen .max_ .. y den::~e the rr.inirnu;-c and rnax~rrlurr,

y values that the screen can ploL. max_depth r epreser:::s ~h e

maximum recursion depth allowed.

Procedure bisect sideivar side l l :array of vertex, A, E :vertex,

sy l , sy;: :real)

begin

If ((s y2 >= screen. min _y) and (s y2 <= screen. max_y)) then

side (sy2) := B; Store the "odd n ver~~x

do bise::t sicie (s i de () ,A, B: L, syl , ::;~'21 ; // Begln the bise c tion

end;

Procedure do bisect side\var sidel l :array of vertex, ;:c . " B :vertex,

depth : integer, syl, sy'::: :real :

var sy, disty :real; // dlsty = distance between syl and syZ ::

var C :vertex; 1/ ~ = temporary vertex stor a ge

begin

1/ Do necessary clipping

if (((syl > screen.max_y) and (s~'2 > screen .max_y)) or

((syl < screen.min_yl and \ sy2 < screen.min_y) I or

Idep th :- max_depth) then

begin

depth := depth - 1;

retur:1;

end;

dlsty .- syZ - sy1; II Find the distance between sv 1 an d s vZ

II ChecK t c see ~f "stop recurs ion u criteria has been me~ .

II In this case, check if sy1 and sy2 are one pixel apart.

if ((dlSty , = -1. 0) and (dist'l <= 1.0 then

begin

if I (syl >= screen.min_y) and IS'll <= screen.max_.y : then

side(sy1) := A; I I Store A in arra y .

depth := depth - 1:

return;

end;

II Do actual bisecti o n

C. x .- A. x + B. x I 2 0 ;

C. Y .- A. 'l ..I- E. " I
,.., 0 ; 1 ~

,-. z .- A. z + B. z 0; -

C.u A.u + B.u / ~ n · .- J,

C.v A. v + B.v n G; .- "-

sy .- project y(C I I Find screen 1 va l ue for the new point

do_blsect slde (slde () ,A,C,depth+l,s yl ,sy) II 2reorder recursion

do_blsect side(slde l) ,': ,B,depth+1,s y ,s'l2)

depth .- depth - l;

.51

;:
(

end;

Procedure ~amels): bisect inner and do bisect inner

Comment: Subdlvides o~ bisects between two vertices

vertex. These t wo vertices are expected to lie e n ~~e sa~e

y planE, and the subdivision is expected to stop wh en t h e

projected x screen val u es of each subd~vlded point are onl~

one pixel apart:. The resulting IU, v coordinate s a r e use d

to find the color for the resulting screen coordinates.

Input: Two vertices which represent the ends c~ a

line segment are cassed. Procedure do bisect side has a

parameter called depth '''hi:::h keeps tLl.:::k of the

re:::ursion depth, as well as two other parameters whlch

correspond to eaoh passed vertex's proje c ted screen x

value.

Output: A texture mapped scan-line (on the screen).

Globals: screen.min x and screen.max x denote the mlnlmurn and maximum

x values that the screen can plot. cur_sy i s the current

screen y value for the scan-line. max_depth rep~esents the

maximum recurSlon depth allowed.

Procedure bisect inner lA , B :vertex)

var sxl, sx2 :real; Ii Temporary s::reen x value storage

begin

sxl .- project x(A

sx2 := project_xl B)

if ((sx2 >= screen.min x) and Isx2 <= screen .max X I I then

display_point(B, sx2, cur sy)

do bisect inner(A,B,l,sxl,sx2) /1 begin the bisection

S2

end;

Procedure de bisect inner(A, B : vertex , der::tr. :~nteger, 5:-:1, s:-:_ :real,

var

var

begin

C :vertex;

sx, distx :real;

II do necessary clipping

if (i sxl > scree~.max xl and isx2 > s=reen.reax X I or

((sx1 < screen.min xl and (s x2 < screen.min x l or

(dep th> max dept h !) then

begin

depth := depth - 1;

return;

end;

distx .- sx2 - SXL;

if ((distx >= -1.0) and (distx <= 1 .0) I then

begin

if I (s x1 >= s~reen.m~n x l and (sxl <= screen. max x l! then

display_point (J..., sx1 , cur syl

depth : = depth - l.

return;

end;

II Do actual bisection ..

C.X := (A.x + B.x I I 2. 0 ;

II C.y does net need to be bisected.

C.2 .- A.z+B.z ;' 260;

C.u := (A.u ~ B.u I 2.0;

53

Inot used;

end;

C. v .- (A.v + B.v) / 2 . 0 ;

sx .- project x (C)

d o_ bisect_inner (A, C, depth+ 1 , s x1 , sx)

do_bisect inne r (C, B, depth+1 , s x , sx2)

depth := depth - 1 ;

54

APPENDIX C

PICTURES

Figure C.l

Triangle meshed sphere textured
with a map of the moon .

Figure C.2

Texture map of a
wooden mask.

55

Figure C.3

Tex:=:ure map of a
wooden fork.

VITA

David Sterling Sanders

Candidate for the Degree of

Master of Science

Thesis: A SCAN-LINE SUBDIVISION APPROACH TO PERSPECTIVE TEXTlTRE
MAPPING

Major Field: Computer Science

Biographical:

Education: Graduated from Broken Arrow High School. Broken Arrow.
Oklahoma, in May, 1990; received Bachelor of Science degree in
Computing and Information Science with a minor in Mathematics
from Oklahoma State University, Stillwater. Oklahoma in May. 1994.
Completed the requirements for the Master of Science degree \cvith a
major in Computer Science at Oklahoma State University in December.
1996.

Experience: Employed at Creative Labs. Inc. as a technical support agent. Lead
Agent, and Agent in Charge of the Legacy Sound group. 1993 to 1996.

