# A SCAN-LINE SUBDIVISION APPROACH TO PERSPECTIVE TEXTURE MAPPING 

By

## DAVID S. SANDERS

## Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1994

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
December, 1996

# A SCAN-LINE SUBDIVISION APPROACH TO <br> PERSPECTIVE TEXTURE MAPPING 

Thesis Approved:


Dean of the Graduate College

## ACKNOWLEDGMENTS

I wish to thank my advisor, Dr. K. M. George, along with my other committee members, Dr. Chandler and Dr. Hedrick, for their support and faith in my work

In addition, I would like thank my family and friends for their support during the creation of this thesis.

## TABLE OF CONTENTS

Chapter Page

1. INRODUCTION ..... 1
Organization ..... 3
Keyword Definitions ..... 4
2. LITERATURE REVIEW ..... 5
Introduction ..... 5
Theoretical Development ..... 6
Perspective Mapping ..... 7
Inverse Perspective Mapping ..... 10
Affine Mapping ..... 10
Filtering ..... 11
Aliasing ..... 11
Space-invariant and Space-variant Filtering ..... 12
Direct Convolution ..... 13
3. CATMULL SUBDIVISION ..... 14
The Bicubic Surface ..... 14
Perspective ..... 17
Termination ..... 18
Hidden Surface Elimination ..... 19
Mapping an Image onto the Bicubic Patch ..... 20
Basic Problems ..... 20
4. FAST SCAN-LINE BASED TEXTURE MAPPING ..... 22
Inverse Perspective Mapping ..... 22
Representing Surfaces with Triangles ..... 23
Texture Mapping in Scan-line Order ..... 24
The Five Primary Steps ..... 25
Shading ..... 27
Chapter Page
5. THE SCAN-LINE SUBDIVISION ALGORITHM ..... 28
Scan-line Subdivision ..... 28
The Four Basic Steps ..... 20
Termination ..... 30
Similar Algorithms ..... 31
Scan-line Subdivision vs. Inverse ..... 32
Scan-line Subdivision vs. Catmull
Subdivision ..... 33
6. CONCLUSION ..... 34
Future Work ..... 35
BIBLIOGRAPHY ..... 36
APPENDIXES ..... 39
APPENDIX A-INVERSE PERSPECTIVE MAPPING IN SCAN-LINE ORDER ..... 39
APPENDIX B-THE SCAN-LINE SUBDIVISION ALGORITHM ..... 48
APPENDIX C-PICTURES ..... 55

## LIST OF FIGURES

Figure ..... Page
2.1a Subdivision ..... 6
2.1b Texture Mapping ..... 6
2.2.1 Law of Similar Triangles ..... 8
4.1 A Mapped Pixel ..... 23
44 Divide into Two Sides ..... 26
C. 1 Map of Moon ..... 55
C. 2 Map of Wooden Mask ..... 55
C. 3 Map of Wooden Fork ..... 55

## CHAPTER 1

## INTRODUCTION

In 1974, Ed Catmull introduced an algorithm for displaying realistic $3 D$ surfaces on a computer screen [CATM74]. The algoritrm "paints" a digitized picture onto a 3D surface and displays the resulting "textured" surface onto the screen. This is a process which has come to be known as texture mapping.
Texture mapping actually involves two mappings: One from texture space to object space, and then another from object space to screen space. Texture space is a coordinate system where texture representations are defined. In thls paper, texture space is a $2 D$ coordinate system with coordirates $(u, v ゙)$, where $0<=u, v<=1$. As with Catmull's algorithm, the textures in this thesis are represented by an image. Object space, on the other hand, is a coordinate system where objects are defined. For this study, objects are defined in a $3 D$ coordinate system by the coordinates $(x, y, z)$. Last, screen space is basically where screen display information is accessed. In this thesis, screen space is $2 D$ and represented by the coordinates ( $s_{v}, s_{3}$ ). The screen is also represented by a bounded 2D plane cutting through 3D object space, orthogonal to the z-axis.
To simulate how the eye perceives light from objects in the real world, the mapping from $3 D$ object space to $2 D$ screen space may be a perspective mapping or perspective projection. With this type of projection, objects which are closer to the screen are made to look larger than those which are farther from the screen. An object's zcoordinate is used to determine how close that object is from the screen, and therefore how far it is from the viewer's eye. Texture
mapping which incorporates this perspective projectior is called perspective texture mapping.

Perspective texture mapping algorithms can generally be divided into three categories: Perspective mapping, inverse perspective mapping, and affine mapping. Eerspective mapping algorithms map forward from texture space to object space and then from object space to screen space, whereas inverse perspective mapping algorithms map in the opposite direction. Affine mappings are translated linear mappings, not perspective mappinas, but can be used for perspective texture mapping ir. rare instances (Chapter 2). Some algorithms take this approach.

The differences between perspective texture mapping algorithms are not just whicn of the abore trree categories they fit in, but also what intermediate mappings they use. Catmull's algorithm uses a subdivision approach to map from texture and object space to screen space, whereas other algorithms generally use a parametric mapping approach. Most of the theory that has been developed until now has been based on making the parametric approach more efficient.

In this thesis, I revisit the subdivision approach with a new algorithm called the scan-lıne suodivision algorithm (Chapter 5). The approach simplifies the texture mapping process, and is easily adaptable to different levels of filtering. This allows the algorithm to dynamically trade speed for realism and vice versa.

As with all algoritnms, this algorithm has some minor disadvantages. One is that since it texture maps only the basic triangle, $3 D$ cbject silhouettes are not aiways smooth. Another is that because it subdivides, it has the overhead of having to implement a stack.

### 1.1 Organization

```
    Chapter 2 contains a review of the evolution of texture mapping
theory, beginning with Catmull subdivision. The chapter divides these
theories into three main groups: perspective, inverse perspective, and
affine texture mapping. It also covers some filtering methods and
issues that apply to texture mapping. Chapter 3 discusses Catmull
subdivision. A description for subdividing the cubic curve, as well as
the bicubic surface, is presented. Chapter 4 outlines a fast, general
purpose, inverse perspective mapping algorithm for texture mapping the
basic triangle. Chapter 5 describes the scan-line subdivision method
for perspective texture mapping. The chapter describes how this method
combines the qualities of Catmull subdivision with the advantages of
inverse perspective mapping. The paper concludes with a summary in
Chapter 6.
```


### 1.2 Keyword Definitions

Several terms used in the thesis are defined below:

| Filtering | Pefining, altering, and/or reconstructing dats. |
| :---: | :---: |
| Object Space | The 3D coordinate system where objects are defined. |
| Pixel | The smallest "pleture element" that can be accessed ir. |
|  | screen space. |
| Projection | A mapping from 3D space to 2D space. |
| Screen Space | The 2D coordinate system where the computer screen |
|  | display information is defined. |
| Texel | The smallest "texture element" that can be accessed in |
|  | texture space. |
| Texture Map | A representation of real-world texture, generaliy in |
|  | the form of a 2 D image. |
| Texture Mapping | The process of mapping simulated texture onto a 3D |
|  | object and displaying the textured object onto a |
|  | computer screen. |
| Texture Space | The 2D coordinate system where texture is defined. |

### 2.1 Introduction


#### Abstract

Texture mapping, the process of mapping simuiated texture onto a computer generated surface, was pioneered by Ed Catmull [CATM74]. His technique was to subdivide a mathematical surface, along with a digitized image, until the resulting subdivided surfaces coverea onl: one screen pixel when projected, or mapped onto a two dimensional computer screen. The color for each pixei was then taken from the resulting subdivided images, giving the appearance of an image rainted onto a surface (see Figure 2.1a).

It has since been shown that texture does not have to be simulated using cnly an image. Surface bumps can be simulated by mapping a pattern of perturbed surface normais onto ar object [ELIN78a]. This process is called bump mapping, which is a form of texture marping. Although many kinds of texture mapping exist, this thesis focuses on a particular type called perspective texture mapping.

Perspective texture mapping is the texture mapping of a $3 D$ object which will undergo a perspectıve projection ontc a 2 D computer screen. This implies that two mappings will take place: One from an image or texture map onto a $3 D$ object, and then another from the $3 D$ object onto a 2D computer screen (see Figure 2.1b). Usually these two mappingz are composed to form one mapping from 2D texture space to $2 D$ screen space, leaving out the intermediate 3 D object space [HECK86].




Figure 2.1a Subdivision


Figure 2.1b Texture Mapping

### 2.2 Theoretical Development

Since Catmull's subdivision algorithm, other techniques have been developed to implement perspective texture mapping. These techriques can usually be divided into three categories: Ferspective mapping, inverse perspective mapping, and affine mapping. One thing common about these techniques is that they strive to mimic the analog world using digital methods. Because of this, digital signal theory plays an
important role in perspective texture mapping. The following sections explain some of the techniques used to implement perspective texture mapping, as well as some digital signal prozessing techniques found in the literature.

### 2.2.1 Perspective Mapping

If a $3 D$ surface to be textured can be parameterized, then individual points on that surface car. be mapped to a point in texture space and vice versa. Triangles are easily parameterized using the following equations:

$$
\begin{aligned}
& x=\left(x_{i}-x\right) u+\left(x_{-}-x\right) v+x_{1}, \\
& y=\left(y_{i}-y_{0}\right) u+\left(y_{-}-y\right) v+y_{i}, \text { and } \\
& z=\left(z_{i}-z_{0}\right) u+\left(z_{z}-z\right) v+z .
\end{aligned}
$$

Where ( $\left.x_{i}, y_{i}, z_{i}\right)$ are vertices of the triangie, (u,v) are texture coordinates where $0<=u, v<=1$, and $(x, y, z)$ ave triangle ccordinates.

If a mapping from 2D texture space to $3 D$ object space, such as the one above, is combined with a perspective projection from 3D object space to 2D screen space, the result is a ferspective maffing. : A perspective projection is a mapping from 3 object space to 2 D screer. space which simulates perspective. One such mapping can be tound via the law of similar triangles (see Figure 2.2.1). )


Figure 2.2.1 Law of Similar Triangles.

The two mappings mentioned above, the parametric mapping from $2 D$ texture space to $3 D$ obiect space, and the perspective projection from $3 D$ object space to 2D screer space, can be composed. Using matriz notation, a perspective mapping of a planar texture can be expressed as:

$$
[x w, y w, w]=\left[\begin{array}{llll}
u & v, & 1
\end{array}\left[\begin{array}{lll}
A & E & G \\
B & E & H \\
C & E & I
\end{array}\right]\right.
$$

[HECK83].

Solving the equation above gives:

$$
x=\frac{A u+B v+C}{G u+H v+I} \quad y=\frac{D u+E v+E}{G u+H v+I}
$$

[MAXW46].

In the above equation, the coefficients A..I are defined as
 Y:, $G=Z_{1}-Z_{0}, H=Z_{Z}-Z$, and $I=Z_{i}$. The values $x$ and $y$ represent the resulting screen ccordinates. : Note how ciosely this resenbies the earlier triangle example combined with the perspective projection.

This method of texture mapping is fairly straightforwara, but it can also be very calsulation intensive. The reason is that one division per texel, or texture pixel, is generally required in order to perform the perspertive projection. Since different points on a surface may project to the same screen pixel, averaging of that pixel's corresponding texel values should generally be done. This provides good antialiasing, but is also very expensive. (Antialiasing is covered later in the chapter. ) Catmull and Smith demonstrate a method of perspective mapping using a unique two-pass shear and scale tezhnique [CATM80].

### 2.2.2 Inverse Perspective Mapping

```
    The mapping in seztzon 2.2.1 ls from texture space to screen
space. It has an inverse which maps from sareer spaze to texture spaze:
```

$$
\begin{aligned}
& {[\text { uq, vq, } q]=[x, y, l]\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right]=} \\
& {[x, y, 1]\left\{\begin{array}{lll}
E I-E H & F G-D I & D H-E G \\
C H-B I & A I-C G & B G-A H \\
B E-C E & C D-A F & A E-B D
\end{array}\right]}
\end{aligned}
$$

[HECK83].

Instead of scanning texture space to find the corresponding screen coordinates, screen space is scanned to find the corresponding texture coordinates. This method generally requires only one division per screen pixel [SMIT80]. Aoki and Levine demonstrate this methoa for generating realistic images [ACKI78].

### 2.2.3 Affine Mapping

$$
\begin{aligned}
& \text { Affine mappings are translated linear mappings. A perspective } \\
& \text { mappirg is affine iff } g=h=0 \text { and } i \neq 0 \text { [HECK91]. In other words, the } \\
& \text { mapping from } 2 D \text { texture space to } 3 D \text { object space is typicaliy affine, } \\
& \text { but a perspective projection from } 3 D \text { object space to } 2 D \text { screen space is } \\
& \text { not. Texture can be linearly interpolated to fit a } 3 D \text { object, but a } \\
& \text { textured } 3 D \text { object cannct generally be linearly interpolated to fit its } \\
& \text { projected screen image and still maintain correct perspective. Despite } \\
& \text { this general rule, there are a few texture mapping methods which do } \\
& \text { affinely map from } 3 D \text { object space to } 2 D \text { screen space while still } \\
& \text { preserving perspective. One method, constant- }
\end{aligned}
$$

```
advantage of the fact that g=h=0 when a plane in 3D space is parallel to
the szreen plane. It scans a 3D object one z cocrdinate at a time,
holding z constant and affinely mapping that portion of the object which
is cut through by this constant-z plane. Another method affinely maps
objects, but reinterpolates every few pixels in order to give the
appearance of a perspective mapping. These methods are fast, but
generally trade realism for speed.
```


### 2.2.4 Filtering

The discrete digital sampling of a cortinuous signal, such as light, requires some form of digital signal processing or filtering in order to reconstruct last data [FOLE90]. For the same reason, filtering is also needed when a diyitized texture is mapped onto a computer screen. The following sections cover a well known problem in computer graphics called aliasing, and touch on some of the various types of filtering as found in the literature.

### 2.2.4.1 Aliasing

Aliasing occurs when a signal has unreproduzible high frequencies [CROW77][WHITR1]. It aauses the infamous jaggy lines that piague the computer graphics world. A mathematical lire is continuous, but the computer screen is discrete and generally displays at too low of resolution to reproduce the inne accurately. Two solutions to this problem are (1) sample at a hiaher resolution and (2) ds low-pass filtering of the signal before sampling [HECK86].

Sampling the texture at a higher resolution does not necessarily imply that the computer screen needs to be at a higher resolution. If multiple samples of texture values map tc a single screen pixel, then


#### Abstract

the cclor and intensity of these values can be averaged together and stored at that pixel iccation. The trade off is aiiasing for noize [COOK86].

Whe second solution is to band-limit the signal before sampling. This means keeping the frequencies of the signal below the Nyguist limit [HECK86]. Ir other words, lower the frequency and/or resolution of the texture map until it is reproducible by the computer screen when projected. The methods used to do this are well developed for innear mappings [OPPE75], $k u t$ only a few methods have been intwcduced fo: nonlinear mappings such as the perspective projection [HECḩÉ!.


### 2.2.4.2 Space-invariant and Space-variant Filtering

When sampling texture space for use in filterirỵ, often à group of neighboring texels are sampied together. The sample shape ard area is determined by the filter used. Space-invariant filtering uses a filter shape that remains constant as it moves across the texture map. This form of filtering works best with affine mappings because of their linear correspondence with texture space.

Space-variant filtering, on the other hand, uses a filter size and shape that varies as it moves across the texture map. This type of filtering is good for perspective texture mapping because it avcounts for the nonlinear foreshortening caused by the perspective transformation. Space-variant filters are less understood and generaliy more complex than space-invariant filters [HECKZ6].

### 2.2.4.3 Direct Convolution

```
    Computing weighted averages of texture sampies in the filtering
process is called direct convolution. Catmull's subdivision method
covered earlier performs an unweighted average of the texture pixels
corresponding to each screen pixel. Blinn and Newell improved upon this
with a triangular filter and a weighted average [BLIN76]. Feibush,
Levoy, and Cook furthered the process with a filter function that allows
for several differen= filter shapes [EEIB80]. Since then, other methods
have been developed such as eliiptical weighted average EWA filtering
[GREE86]. This method combines some of the earlier techniques but is
less costly [HECK86].
```


## CHAPTER 3

## CATMULL SUBDIVISION

In 1974, Ed Catmull introduced a method for texture mapping curved surfaces. The method subdivides a $3 D$ surface patch successively into smaller subpatches until a patch is as small as one screen pixel, at which time it is displayed [CATM74]. These surface patches are defined by the bicubic surface equation, as opposed to other surface representations, because it more closely models smooth, free-form, curved surfaces. Pictures are easily mapped onto these surfaces by subdividing a digitized image along with the surface, and then using the color information from the zesulting sub-images to color the screen pixels. Two problems with this method are that the computation time increases roughly as the square of the resolution, and that the application of anti-aliasing techniques is not straightforward [BLIN?8].

### 3.1 The Bicubic Surface

One of the simplest ways to approximate a curved surface is to use planar objects such as polygons. The probiem with doing this, however, is that it generally resuits in a rough-looking surface which has a silhouette made of straight-line segmer.ts. Ancther simple method to approximate a curved surface is to use quadric patches. While smooth in appearance, these surface patches are not suitable for representing free-form surfaces because they do not provide enough degrees of freedom to satisfy slope continuity between patches [CATM74]. The bicubic surface patch, on the other hand, maintains patch continuity while

```
providing the degrees of freedom and smoothness required for modeling
arbitrary forms.
```

    Bicubic surface patches are based on a bivariate case of the vubic
    curve,

$$
f(t)=a t^{3}+b t^{2}+c t+d
$$

( The coefficients, a..d, determine the shape of the curve and are found using several methods which are beyond the scope of this thesis. : Subdividing the bicubic surface is much the same as subdividing the cubic curve. The problem is to find $f(t)$ when $f(t+h)$ and $f(t-h$ are known. First note that for the cubic curve

$$
\begin{aligned}
f(t \pm h)= & a(t \pm h)^{2}+b(t \pm h)^{2}+c(t \pm h)+d \\
= & a\left(t^{3} \pm 3 h t^{2}+3 h^{-} t \pm h^{2}\right)+b\left(t^{2} \pm 2 t h+h^{-}\right)+ \\
& c(t \pm h)+d,
\end{aligned}
$$

and

$$
\begin{aligned}
f(t+h)+f(t-h) & =2 a\left(t+3 h^{2} t\right)+2 b\left(t^{2}+h^{2}\right)+2 c t+2 d \\
& =2 £(t)+2 h^{2}(3 a t+b) .
\end{aligned}
$$

Therefore,

$$
f(t)=[f(t+h)+f(t-h)] / 2-h(3 a t+b)
$$

which is the average of the endpoints minus a correction term. The correction term can be generalized in the same manner:

If $g(t)=h^{2}(3 a t+b) \quad$ then

$$
g(t \pm h)=h^{2}(3 a(t \pm h)+b)
$$

and

$$
g(t+h)+g(t-h)=2 h^{2}(3 a t)+2 b h^{2}=2 g(t)
$$

Therefore,

$$
g(t)=[g(t+h)+g(t-h ;] ; 2 .
$$

When this is all put together,

$$
f(t)=[f(t+h)-g(t+h)+f(t-h)-g(t-h)] / 2
$$

The method of subdividing cubic curves can be extended to bicubic surfaces. There are three components which describe the parametria bicubic patch in $3 D$ object space: $X(u, v), Y(u, v)$, and $Z(u, v)$. Each component can be considered as:

$$
f(u, v)=E_{2} v^{3}+F_{2} \cdot v^{2}-E_{2} v+F_{4},
$$

where

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{a}_{\mathrm{r}} \mathrm{u}^{3}+\mathrm{b}_{2} \mathrm{u}^{2}+\mathrm{c}_{-} u+\mathrm{d}_{\text {, }} \text { for } 1 \leqslant=\mathrm{n}<=4
$$

( Again, the coefficients, $a_{r .} . . d_{t .}$, determine the shape of the surface and may be found using several methods which are beyond the scope of this thesis. ) As can be seen, the bicubic surface equation is very close to the cubic curve equation, particularly when cne of the variables is held constant. Since $F_{\text {: }}$ is a cubic, we know that there is a correction term, $G_{5,}$, for each $F_{t .}$. We aiso note that $f$ is a cubic curve when $F_{r}$. is held constant, and therefore also has a correction term, g, where

$$
g=G_{:} v+G_{-} v^{2}+G_{2} v+G_{4} .
$$

Four values are needed to represent each defiring point during patch subdivision. Catmull arranges these into a "register-square."

| f | g |
| :--- | :--- |
| $\mathrm{c}_{6}$ | $\mathrm{c}_{3}$ |

In the register-square, $f$ is the value of the function at $\because, v$, and $c_{f}, g$, and $c_{3}$ are correction terms [CATM74]. The $c_{t}$ term represents the correction value for $f$ when bisecting in the $v$ direction, while $g$ represents the correction term for $f$ when bisecting in the $u$ direction. Note that since $g$ and $c_{\text {: }}$ are also subic curves when $u$ or $v$ is heic constant, they also need a correction term. The term $c$, serves as the correction term for $c_{f}$ when bisecting in the $u$ direction, and also serves as the cirrection term for $g$ when bisecting in the $v$ direction. These values are found using the same equations shown above for the cubic curve. As described, bisection is accomplished by holding $u$ constant while bisecting in the $v$ direction, and then by holding $v$ constant while bisecting in the $u$ direction.

### 3.2 Perspective

So far, a method for subdividing the bicubic surface in 3D object space has been given. In order to display a perspective view of the $3 D$ surface on the computer screen, a perspective transformation must be performed betweer $3 D$ object space and $2 D$ screen space. This results in a rational bicubic with the surface equation of:

$$
F(u, v)=\left[\begin{array}{l}
X(u, v) \\
Y(u, v) \\
Z(u, v) \\
W(u, v)
\end{array}\right],
$$


#### Abstract

where $W(u, v)$ is salied the homogeneous coordinate and is generated by the perspective transformation. The three methods for displaying a perspective surface in screen space are:


1. Divide the surface components by $W(u, v)$, which results in a rational cubic that does not fit into the subdividing scheme.
2. Subdivide $X, Y, Z$, and $W$ and perform the perspective division at every point, which may considerably increase the complexity of the algorithm.
3. Take only the control points which make up the coefficients of the surface equation through the perspective transformation, then recreate the surface in screen space. This results in a very close approximation of the surface, but not the "correct" surface as described earlier in the cnapter.

### 3.3 Termination

The decision about whether or not a patch is to be subdivided further depends upon the termination conditions. Catmull discusses two termination conditions which aze based on patch size and clipping. As explained earlier, subdivision terminates when a patch covers only one screen pixel when projected. Since the edges of patches may be curved, Catmull suggests that a polygon be used to approximate the patch by connecting the four corners of the patch with straight line segments.

This allows faster determination of whether or not the subdivision should continue. The other termination condition, clipping, halts the subdivision wher a patch is completely off the screen.

### 3.4 Hidden Surface Elimination

Hidden surface elimination seeks to avoid displaying surfaces which are behind other surfaces, and therefore out of view. Two methods are described by Catmull to solve the hidden surface problem for bicubic patches. These are the "modified Newell algorithr" and the "z-buffer algorithm." The Newell alaorithm [NEWL73] sorts polygons in z-order, and displays the polygons which are furthest from the viewer first. If two polygons intersect so that their z-order is questionable, then they are divided into smaller polygons before being sorted. This method is modified for bicubic surfaces to sort certain control points which define the coefficients of the bicubic equatior, rather than sorting some polygon's vertices. "The z-buffer algorithm," on the other hand, uses a buffer of values that represent the closest z-values dizplayed at each particular screen element. Before a point in object space is displayed at a point in screen space, its z-value is compared with the $z$-value stored at a corresponding lccation in the buffer. If the $z-$ value for the point is greater than the $z$-vaiue in the buffer, then the object is closer to the viewer. In such a case, its z-value replaces the $z$-value in the buffer and the point is displayed at that screen location. If the z-value for the point is nct greater than the z-value in the buffer, then the buffer is left alone and the point is not displayed.

### 3.5 Mapping an Image onto the Bicubic Patch

Because bicubic surfaces are parametric, images can easily be mapped onto them. Each point on these surfaces are referenced b: two variables, $u$ and $v$, which can be made to correspend to points $2 n$ texture space. Once a surface patch is completely subdivided and ready for display, the (u, v) coordinates for each corner of the patch may be used to define a sampling area in texture space. This area would then be used by a filtering algorithm to determine the final color value for the screen pixel to be displayed.

### 3.6 Basic Problems

One of the problems with this method is that the computation time increases roughly as the square of the screen resolution. For example, a square of $2 \times 2$ pixels needs only one subdivision, or 4 subdivisions. A square of $2^{2} \times 2^{2}$ pixels needs $4^{2}+4^{2}$ subdivisions, and a square of $2 \times 2^{*}$ pixels needs:

$$
\sum_{i=0}^{n-1} \quad 4^{i} \quad \text { or }\left(4^{\pi}-1\right) / 3 \text { subdivisions [©ATM74]. }
$$

At each point in the subdivision, a division by two for each surface component is performed, and a stack is lised to store the four component values: $f, g, c_{f}$, and $C_{.}$. Also, each surface component must be transformed by the perspective projection when a termination condition is met. Because the surface to be mapped is curved, some points on the surface may hide behind others. This means that nct every subdivision results in a displayed point.
Another problem occurs when filtering or anti-aliasing the sampleddisplay values of the surface patch. These processes require techniquesfor determining what is visible in each raster element square, or pixel,and a method for storing and combining intensity values at each squaveto get an average [CATM74]. After termination, a subdivided patch. zo befiltered and displayed may lie between pixel centers, etc. Because ofthese types of issues, the filtering and anti-aliasing processes neededare not completely straightforward.

## CHAPTER 4

## FAST SCAN-LINE BASED TEXTURE MAPPING


#### Abstract

Since Catmull's subdivision algorithm, methods have laгgei $\because$ been focused towards improving the parametric approach to perspective texture mapping. Because of its properties, inverse pezspective mapping has been one of the most wiaely accepted methods tc date. This chapter describes and examines the general purpose inverse perspective mapping algorithm.


### 4.1 Inverse Perspective Mapping

As explained earlier, inverse perspective mapping is the mapping
from screen space to object space, and then from object space to texture
space. These two mappings are usually composed to form one mapping from
screen space to texture space. Inverse perspective mapping differs from
perspective mapping in that screen space is scanned to obtain a texture
value, rather than the other way around. For each screen coordinates
scanned, a texture coordinate is found which represents the center of a
group of texture coordinates which also map to that screen coordinate
(see Figure 4.i). This group of texture coordinates should not be
ignored, since thelr combined values represent the final value of the
current screen pixel beiny scanned. A filtering method is commonly used
to decide which of these texture coordinates should te included, and hcw
to combine their values to form the flnal screen value. As a general
rule, the greater the number of texture values used to represent the
final screen plyel value, the more realistic the texture mapping appears
and the slower the algorithm performs.


#### Abstract

Filtering seeks to balance between speed and realism. Inverse perspective mapping algorithms are popular because they are easily adjusted to balance between the twc. For exampie, if speed is most critical, then only the center texture value may be used to color its corresponding screen plxei. This results in a crude representation of a texture, but is fast and generally recognizable. On the other hand, if realism is most critical, more texture values may be used to represent each screen pixel. The final image would appear more realistic because more data values would be used to represent the mapped texture. For this same reason, the algorithm would generally be slower in producing the image.




Figure 4.1 A Mapped Pixel

### 4.2 Representing Surfaces with Triangles

Almost any surface may be represented by a mesh of adjoining triangles. Triangles are easy to work with because the $\because$ are both simple and planar. Planar objects such as triangles are usually used in inverse perspective mapping because they are easily parameterized. One of the problems with using triangles to represent surfaces, however, is


#### Abstract

that if a surface is non-planar, a triangie mesh can cniy roughiy approximate it. This means that objects and their siihouettes may look somewhat rugged. One of the sciutions to this problem, however, is to use smaller triangles to represent the surface. This is another tradeoff between speed and realism. If smaller triangles are used to represent a surface, then more triangies must aiso be used to represent that surface. If more triangles are used, the algorithm may be slower, but the final image is generally more realistic. However, even in the real world, objects which seem smooth can appear rough when viewed through a microscope.


### 4.3 Texture Mapping in Scan-line Order

Inverse perspective mapping algorithms commonl $\because$ scar scree. space in scan-line order (left to right, top to bottom). This is bezause ar. algorithm which generates pixel values in scan-line crder has two main advantages. The first is that because the intensity of each pixel is computed completel $y$ before moving on to the next, anti-aliasing computations are relatively easy to perform [BLIN78b]. The second main advantage is that these scan-line algorithms are more suitable for hardware implementations because they generate the intensities in the same ozder as a computer moriter scans them out onto the screen [BLIN78b]. The next sezさions describe and examine a general purpose inverse perspective mapping algorithm which performs fast scan-line based texture mapping of a basic triangle.

### 4.4 The Five Primary Steps

A general purpose scan-line algorithm for the inverse perspective mapping of a basic triangle can be divided into five primary steps:

3tep 1. Calculate the mapping coefficients (section 2.2.2). This step matches the 2 D rectangular texture space to the triangle in $3 D$ object space. This process is made easier by associating each vertex of the triangle with a corresponding texture coordinate. Since we know that the three vertices of the triangle lie on the plane for which we are trying to find coefficients, we only need tc solve a set of linear equations:

$$
\begin{aligned}
& X\left(u_{i}, v_{i}\right)=A * u_{i}+B+v_{i}+C=x_{1}, \\
& Y\left(u_{i}, v_{i}\right)=D * u_{i}+E * v_{i}+E=y_{i}, \text { and } \\
& Z\left(u_{-}, v_{i}\right)=G * u_{i}+H * v_{i}+I=z_{1},
\end{aligned}
$$

where $i=0 . .2$, and $\left(u_{i}, v_{i}\right)$ and ( $\left.x_{1}, y_{i}, z_{i}\right)$ are known. The coefficients, A..I, are ther used to find the coefficients a..i (see section 2.2.2).

Step 2. Sort the three triangle vertices, $(x, y, z$, and their corresponding texture cocrdinates, $\left(u_{i}, v_{i}\right)$, by their projected screen $y$ values, Sy, where $i=0 . y_{1}$. Designate vertex $A$ the vertex with the smallest Sy, vertex $B$ the vertex with the next smallest Sy, and vertex C the vertex with the largest Sy..

Step 3. Divide the triangle vertically into two sides. Make Side 0 the edge from vertex $A$ to vertex $C$, and side 1 the edge from vertex $A$ to vertex $B$ to vertex $C$ (see Figure 4.4).


Figure 4.4 Divide into Two Sides

Step 4. Find the screen values for each of the two sides. This is done by linearly interpolating between the projected vertices cf the triangle in crder to find the three edges of the triangle on the screen. In other words, interpolate between vertex $A$ and vertex $\mathrm{C}^{\prime}$ s screen values to find side $0^{\prime} s$ screen values, and interpolate setween vertex $A$ and vertex $B^{\prime}$ s screen values as well as between vertex $B$ and vertex $C^{\prime} s$ screen values to find side 1 's screen values (see procedure find_side() in appendix A).

Step 5. Scan the screen values between each side, firding their corresponding texture values. This involves holding each side' $z$ similar screen $y$ values constant, and incrementing through the screen $x$ values between them. Note that this step is considered the scan-line step, since it is done for each screen $y$ value of the projected trianale in scan-line order. The texture values are found by using the equation in section 2.2.2.

Step five has a nested loop which scans a total of $N$ screen pixels which make up the projected triangle. Because of this, step five has the most influence over the time complexity of the algorithm, $O(N)$. A detailed algorithm for performing fast inverse perspective mapping in scan-line order is given in appendix A.

### 4.5 Shading

```
    Many shading methods require that a surface normal be knowr for
particular points on a surface. Since shading is a form of texture
mapping, it can usually be done during the texture mapping process.
Inverse perspective mapping algorithms, however, are not easily tailored
to find surface normals. These algorithms generali\because linearly
interpclate between a set of given surface ncrmals to find each
particular surface normai. In other words, an affine mapping is used to
map the normals. The argument is that shading does not have to be as
visually exact as basic texture mapping. Although this is true in many
instances, it is desirable for some applications to have objezts whose
surface normal values do not change w:rle the object moves across the
computer screen.
```


## CHAPTER 5

## THE SCAN-LINE SUBDIVISION ALGORITHM

The scan-line subdivision algorithm combines the qualities of Catmull's subdivision method with the advantages of the general purpose inverse perspective mapping algorithm. Subdivision is a good, simple method for finding values between points, but it does not have the scanline qualities that algorithms may need for less expensive hardware implementations. Subdivision can also be very calculation intensive if the algorithm has computational redundancy or complex subdivision calculations. Inverse perspective mapping, on the other hand, allows for a scan-line approa=h to perspective texture mapping, but is not very suitable for firding surface normals for use in shading. Aiso with inverse perspective mapping, if the surface shape to be texture mapped does not easily conform to rectanguiar texture space, aligning the two might not be very straightforward. Where one aigorithm has disadvantages, the other has advantages. The scan-line subdivision approach explained in this chapter attempts to take advantage of this fact by combining strengths from both methods.

### 5.1 Scan-line Subdivision

Scan-line subdivision is very different from Catmull's subdivision method. In fact, it more closely matches the generic inverse perspective mapping algorithm covered in chapter four. Like the inverse perspective mapping algorithm, it works best with planar objects such as triangles. In the author's subjective opinion, there are two major reasons for not directly using curved surfaces to model objects. One is
that using these surfaces to model objects can make an algorithm very complex, and another is that many algorithms which use curved surfaces to model objects resort to planar approximations at a certain point in the process anyway. ( Still, there are many applications for which using curved surfaces to model free-form objects is preferred. The author leaves altering the scan-line subdivision approach to be used with curved surfaces for later study. , The scan-line subdivision algorithm described in this chapter subdivides a triangie first in the $\ddot{z}$ direction, and then in the $x$ direction. The advantage to subdividing this way is that it avoids computations by needing only to compute the perspective transformation of the object's $y$ components once for each "scan-line" being bisected in the $x$ direction. This scmewhat compares with the scan-line order imposed by the inverse perspective mapping algorithm. However, sirce the subdivision is not completely done in scan-line order, inverse perspective mapping maintains an advantage in this area.

### 5.2 The Four Basic Steps

A scan-line subdivision algorithm for perspective texture mapping the basic triangle can be divided into these four basic steps:

Step 1. Sort the three triangle vertices, $\left(x_{1}, y_{i}, z_{1}\right)$, and their corresponding texture coordinates, (u, vi), Dy their projected screen y values, Sy, where i=0..2. Designate vertex $A$ the vertex with the smallest $S y_{k}$, vertex $B$ the vertex with the next smallest $S y$, , and vertex C the vertex with the largest $S y_{k}$.

Step 2. Divide the triangle vertically into two sides. Make Side 0 the edge from vertex $A$ to vertex $C$, and side 1 the edge from vertex $A$ to vertex $B$ to vertex $C$ (see figure 4.4). Make each side an array of $n$
vertices, where $n$ corresponds to the maximum amount of "vertical" subdivisions that may be done (see section 5.3).

Step 3. Vertically subdivide each "side" of the triangle. This requires bisecting the edge from vertex $A$ to vertex $C$ for side 0 , and bisecting the edges from vertex $A$ to vertex $B$ to vertex $C$ for side 1 . This is accomplished by adding their components and then dividing the result by two. For exampie, bisecting the $x$ component between two pcints, $A$ and $B$, would give $C$, the center point's $x$ component where

$$
C(x)=(A(x)+B(x)) / 2.0
$$

Any criteria may be used to stop the subdivision. When the subdivision is complete, store the resulting vertices in the "side" arrays, side $\left(0\right.$, Sy $\left._{1}\right)$ and side (1,Syi), where $0<=1<=\mathrm{n}$.

Step 4. Horizontally subdivide between side(0, sy:) and side(1, $\left.\mathrm{SY}_{\mathrm{i}}\right)$, where $i=0 . . n$. This step is considered the "scan-line subdivision" step, particularly when Sy: correspords to each scar-ine Y value. Again, any criteria may be used to stop the bisection. When the criteria is met, use the subdivided texture coordinates which are associated with each of the subdivided vertices to color the screen prxels at (Sx,$\left.S y_{1}\right)$.

### 5.3 Termination

The termination conditions used to stop the subdivision in steps three and four largely depend on the filtering process used. If the termination condition is set to stop the subdivision when the projected end-points are only one pixel apart, then the algorithm would ciosely match the generic inverse perspective mapping algorithm in chapter four.

Whis condition leaves the rest of the texture mapping up to a spacevariant filtering process which wouid then use the resulting texture coordinates as center points from which to work. (For simplicity, the algorithm covered in this chapter uses this condition to halt the subdivision. )

A form of dynamic filtering can be performed by allowing further subdivisions based on certain termination conditions. For instance, $b \because$ basing the termination condition on a distance between each endpcint's projected screen coordinate, a space-variant filtering car be performei. This distance value can be varied to baiance betweer speed and realism. A small distance value results in greater realism because more texture values are used to create the finai image. A large distance value, on the other hand, results in a faster algorithm because not as many subdivisions would be performed. Sne type of crude space-variant filtering that can be used in this instance is a simple weighted average of the texture values which make up each pixel.

### 5.4 Similar Algorithms

As one may have noticed, the steps outlined above match closely with the steps given in chapter four which outline the basic inverse perspective mapping algorithm ( steps one through four correspond with steps two through five , . In fact, ever though this algorithm is a perspective mapping algorithm as opposed to an inverse perspective mapping algorithm, it is closely based on the generi= inverse perspective mapping algorithm structure. The main differences are in the final two steps. The scan-line subdivision algorithm uses subdivision to find the texture values between the line segments rather than parameterization.

### 5.5 Scan-line Subdivision vs. Inverse Perspective Mapping

The scan-line subdivision algorithm has three main advantages over the inverse perspective mapping algorithm. The first is that the criteria for stopping the subdivision can easily be altered to allow for a form of dynamic filtering (see sectior 5.3). If speed is not critical, more subdivisions may be done, resulting in more texture values being used in creating the final image. This generally results in better image quality.

Another advantage to the scan-line subdivision algorithm is that code for keeping track of each point's surface normal may be easily added at almost no extra cost, resulting in mcre accurate object shading. This is done by associating each vertex of the triangle with a surface normal, and allowing the algorithm to subdivide the surface normal vector along with the vertex values.

The third advantage involves ease of parallelization. Generally, recursive algorithms are more straightforward when it comes to converting them for use with multiple processors. The bulk of the saanline subdivision algorithr uses preorder recursion to bisect between two points.

The disadvantages of the scan-line subdivision algorithm over the inverse perspective algorithm include the fact that the algorithm is not a complete scan-line algorithm. That is, it is set to texture map top to bottom, but not necessarily left to right. Ancther disadvantage is that the scan-line subdivision algorithm has stack overhead, and although both algorithms have the same $O(n)$ time-complexity, it is slightly more calculation intensive. The bulk of the divisions used in the scan-line subdivision algorithm are divisions by two, which is often
faster than general-case floating point division. These divisions may also be converted to a multiplication by a constant for those computers which multiply floating point numbers faster than dividing them.

### 5.6 Scan-line Subdivision vs. Catmull Subdivision

Scan-line subdivision has many advantages over Catmull subdivision. One is that the algorithm is much less complex. This is largely because the scan-line subdivision algorithm subdivides simple planar objects rather than curved surfaces, but also because it subdivides in a scan-line fashion. If not done properly, subdivision of a surface into four sub-surfaces can result in computational redundancy resulting from common points which are found by subdividing separate, but adjacent surfaces. The scan-line subdivision algorithm avoids this by bisecting the surface in the $y$ direction, and then in the $x$ direction. Computation is reduced because planar objects are simpler to bisect and do not "fold over" on themselves.

Unlike the scan-line subdivision algorithm, however, Catmull's algorithm works for curved surfaces. This is an advantage for applications which need more accurate approximations of free-form objects. However, even Catmull's algorithm determines which screen pixels are covered by a curved surface patch by using the quadrilateral formed from the patch's corner points to approximate it.

## CHAPTER 6

## CONCLUSION


#### Abstract

Perspective texture mapping algorithms mostly differ in the type of mapping they incorporate between texture and object space. The two primary mappings that have been studied are the parametric mapping and mapping via subdivision. A popular parametric mapping approach is that of inverse perspective mapping in scan-line order (chapter 4!. Until this study, the only method for texture mapping via subdivision is the one introduced by Ed Catmull in 1974 (chapter 3).

One of the advantages of subdivision over cther approaches is that it is very dynamic. The goal of subdivision is to divide problems into smaller problems, until each problem is easier to solve. With Eexture mapping, the problem is that of balancing between speed and realism. For example, if an object to be texture mapped is in motion, the speed at which it is texture mapped may be more critical than how realistiz it appears. Subdivision can provide a dynamic balance cetween speed and realism based on the amount of subdivision performed (chapter 5).

Although the parametric approach is more static, it can re used to texture map very efficiently and does not need a stack. One of the most efficient texture mapping methods based on the parametric apprcach is the inverse ferspective mapping method discussed in chapter $\pm$ fur. Unlike Catmull subdivision, this method texture maps in scan-line erder, which is desirable for most inexpensive hardware implementations. The method is very simple, mainly because it only texture maps planar objects as opposed to the more complex curved surfaces that Catmull's algorithm maps. One of the problems with this method, however, is that it is not easily adapted to find surface normals for use in shading.


With subdivision, surface normais are easily somputed along with other points.

The scan-ine suodivision method introduced in this paper combines the advantages of both inverse perspective mapping and perspective mapping via subdivision (see Figures in Appendix C). It is closel $\because$ based on the scan-iine structure of the inverse perspective mapping algorithm, but maintains the desirable properties associated with subdivision. With this method, surface normals are easily computed for use in shading, and a form of dynami f filtering is possible based on the number of subdivisions ferformed. Aithough the aigorithm is not quite as efficient as the inverse perspective mapping algorithm, it has the advantages $c £$ subdivision that make it preferable.

### 6.1 Future Work

Cne obvicus extension to the scan-lıne subdivision approach is to apply the method to curved surfaces. As is, the algorithm works on $\because$ with objects that are based on the triangle. To apply the approach to curved surfaces, a method of separating the surface's sereer imaje into "sides" is needed. This task may be challenging because the curve property that makes these surfaces desirable aiso makes working with them difficult. For instance, the screen image of a projected curved surface patch has edges that do not always correspond to the actual edges of the patch. Multiple sides would need to be found, as opposed to just two, and these sides may not correspond to the ąさual edges of the surface patch.
[AOKI78] Aoki, M., and M. Levine, "Computer Generation of Realistic Pictures," Computers and Graphics, Vol. 3, 19?8, 149-161.
[BEAT82] Beatty, J.C., and K.S. Bocth, eds., Tutorial: Computer Graphics, Second Editior, IEEE Comp. Scz. Press, Silver Spring, MD, 1982.
[BIER86] Bier, E., and K. Sloan, "Two-part texture mapping." IEEE Computer Graphics and applications, September 198E, 40-53.
[BLIN76] Blinn, J.F., and M.E. Newell, "Texture and Reflecticr. in Computer Generated Images," $\triangle A C N$, 19(10), October 1976, 542-547. Also in BEAT82, 456-461.
[BLIN78a] Blinn, J.E., "Simulation of Wrinkled Surfaces," SIGGRAPH 78, 286-292.
[BLIN78b] Blinn, J.F., Computer Display of Curved Surfaces, Ph.D. Thesis, Department of Computer Science, University of Utah, Salt Lake City, UT, December 1978.
[BUIT75] Bui-Tuong, Phong, "Illumination for Computer Generated Eictures," CACM, $18(\overline{)})$. June 1975, 311-317. Also in BEAT82, 449-455.
[CATM74] Catmull, E., A Subdivision Algorithm for Computer Display of Curved Surfaces, Ph.D. Thesis, Report UTEC-CSc-74-133, Computer Science Department, University of Utah, Salt Lake City, UT, December 1974.
[CATM80] Catmuli, E., and A.R. Smith, "3-D Transformations of Images in Scanline Order," SIGGRAPH 80 , 279-285.
[C00K86] Cook, Robert, "Antialiasirg by Stozhastic Sampling," ACM Trans. Graphics, 1986.
[CROW77] Crow, Franklin, "The Aliasing Problem in Computer Generated Shaded Images," Comm. ACM, Vol. 20 , llov. 1977, 799-805.
[FEIB80] Feibush, Eliot, M. Levoy, and R. Cook, "Synthetic Texturing Using Digital Filters," Computer Graphics (Proe. SIGGRAEH 80), Vol. 14, No. 3, July 1990, 294-301.
[FOLE90] Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice, Second Edition, Addison-Wesley, Reading, MA, 1990.
[FREE80] Freeman, H. ed., Tutorial and Selected Readings in Interactive Computer Graphics, IEEE Comp. Soc. Press, Silver Spring, ML, 1980.
[GANG82] Gangnet, M., D. Ferry, and D. Coueignoux, "Perspective Mapping of Planar Textures," Eurographics 82, 57-71.
[GREE86] Greene, Ned, and E. Heckbert, "Creating Raster Omnimax Images from. Multiple Perspective Vievs Using the Elliptical Weighted Average Filter," IEEE CG\&A, Vol. 6, No. 6, June 1996, pp.こ1-27.
[GOUR71] Gouraud, H., "Continuous Shading of Curved Surfaces," IEEE Trans. On Computers, C-20(6), June 1971, 623-629. Also in FREE80, 302-308.
[HECK83] Heckbert, P.S., "Texture Mapping Polygons in Perspective," Tech. Memo No. 13, NYIT Computer Graphıcs Lab, Apr. 1983.
[HECK86] Heckbert, E.S., "Survey of Texture Mappina," CG \& A, © (11), November 1986, 56-67.
[HECK89] Heckbert, F.S., Fundamentals of Texture Mapping and Image Warping, Mastez's thesis, UCB/CCD 89/516, CS Dept, UC Berkeley, Miay 1989.
[HECK91] Heckbert, P.S., and H. Moreton, "Interpolation for Polygon Texture Mapping and Shading," State of the Art Computer Graphics: Visualization and Nodeling, Rogers, D., and R. Earnshaw, eds., SpringerVerlag, New York, 1991, 101-111.
[MAXW46] Maxwell, E.A., The Methods of Elane Projective Geometry, Based on the Use of General Homogeneous Coordinates, Cambridge U. Eress, London, 1046 .
[NEWL73] Newell, M., R. Newell, and T. Sancha, "A New Approach to the Shaded Picture Froblem," Froceedings of the ACM, 1.773 National Conference.
[OPPE75] Oppenheim, Alan, and R. Schafez, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J., 1975.
[SMIT80] Smith, A.R., "Incremental Rendering of Textures in Perspective," SIGGRAPH 80: Animation Graphics Seminar Notes, July 1980.
[SMIT83] Smith, A.R., "Digital Filtering Tutorial for Computer Graphics," parts 1 and 2, SIGGRAPH 83: Introduction to Computer Animation Seminar Notes, Jui $\because 1983,244-261$, 262-272.
[WHIT81] Whitted, Turner, "The Causes of Aliasing in Computer Generated Images," SIGGRAPH 81: Advanced Image Synthesis Seminar Notes, Aug. 1981.

## APPENDIX A

## INVERSE PERSPECTIVE MAPPING IN SCAN-LINE ORDER

```
    The following pseudo-Pascal represents the basic code fov a
general purpose inverse perspective mapping algorithm which texture maps
in scan-line order. These functions and procedures are outlined in
chapter 4.
{ Type vertex is a structure containing both an ( }x,y,z)\mathrm{ and à (u,v
coordinate. )
Frozedure Name: texture_map
Comment: Texture maps in scan-line order using an inverse
    perspective mapping.
Input: An array of type vertex with three elements containing the
    triangle's three vertices.
Output: A texture mapped triangle on the screen:.
Globals: screen_height is the height of the screen in flxels.
procedure texture_map(vertex(3) :vertex
var a, b, c, d, e, f, g, h, i :real;
var w, u, v :real;
var sy(3) :array of real:
var t, cur_sx, zur_sy :integer;
var svert(3), side(2, screen_height):array of real;
var side0, side1 :polnter to real;
```

begin
// Step 1. Setup the coefficients..
setup_coeffs(vertex(), $a, b, c, d, e, f, g, h, i)$;
// Step 2: Sort the three triangle's vertices by
// their projected $y$ value.
for : : = 0 to 2 do sy(t) := project_y(vertex(t));
sort(vertex(), sy(), svert());
// Steps 3 and 4 - divide triangle vertically into two
// sides and find the screen values for each
// of the two sides.
find_side(side(0,), svert(0), svert(2), sy(0), sy(2));
find_side(side(1,), svert(0), svert(1), sy(0), sy(1));
find_side(side(1,), svert(1), svert(2), sy(1), sy(2));
// Step 5 - Scan the screen values between each side, while
// finding and plotting the texture values.
// First make sure we are going to scan in scan-line order
if (side(0, sy(1)) > side(1, sy(1))) then begin

$$
\text { side0 }:=\text { side (1,); sidel }:=\text { side }(0,) \text {; }
$$

else begin

```
    side0 := side(0,;; siael := side(1,);
```

end;

```
    for cur_sy := sy(0) to sy:2) do
    for cur_sx := side0->cur_sy to sidel->cur_s: do
```

        begin
                    w := g* sur_sx + h * cur_sy + 2 ;
                    \(u:=\left(a+c u r \_s x+b+c u r \_s y+c\right) / w ;\)
            \(v:=(d\) * cur_sx + e * cur_sy \(+f) / w ;\)
            display_pozne(u, v, cur_sx, cur_sy!;
    end;
end.

Procedure Name: setup_coeffs
Comment: Sets up coefficients for use in the parametri= mapping of the texture plane as transformed to fit a 22 triangle in 3 D object space ( see section 2.2 .2 ).

Input: An array of three elements which contain the three triangle vertices.

Output: The nine coefficients $a, b, \ldots, i$.
Globals: None.
Procedure setup_coeffs(vertex() :array of vertex, $\operatorname{var} a, b, c, d, e, f$, g, h, i :real
var $a x, a y, a z, b x, b y, b z \quad$ :real;
var $c u, c v, d u, d v$
:real;
var j, $k, 1, m, n, c, p, \exists, L$
:real;
var $x(3), y(3), z(3)$
:array of real;

## begin

// First we must find the coefficients for the parametric
// equation of the $(u, v)$ texture plane as if it where
// transformed to fit the triangle in object spaze.

```
/! We find these using what we know about the (u,v) and
{ (x,y,z) coordinates &f the triangle. This section can
I/ be eliminated if three vertices are added to the triangle
// structure which get updated along side the triangle, however,
// this means transforming six vertices instead of just three
// whenever the triangle is transformed..
ax := vertex(1).x - vertex(0).x;
ay := vertex(2).y - vertex(0).y;
az := vertex(1).z - vertex(0).z;
bx := vertex(2).x - vertex(0).x;
by := vertex(2).y - vertex(0).y;
bz := vertex(2).z - vertex(0).z;
cu := vertex(1).u - vertex(0).u;
cv := vertex(1).v - vertex(0).v;
du := vertex(2).u - vertex(0).u;
dv := vertex(2).v - vertex(0).v;
j := bx * cv / (du * cv - cu * dv);
k := (ax - J * cu) / cv;
1 := vertex(0).x - j * vertex(0;.u - k * vertex(0).v;
m := by * cv / (du * cv - cu * dv);
n := ( ay - m * cu) / cv;
o := vertex(0).y - m * vertex(0).u - n * vertex(0).v;
p := bz * cv / (du * cv - cu * dv);
q := (az - p * cu) / cv;
r := vertex(0).z - p * vertex(0).u - q * vertex(0).v;
x(0) := 1; y(0) := 0; z(0) := r;
x(1) := j + 1; y(1) := m + o; z(1) := p + r;
x(2) := k + 1; y(\hat{2}):=v + 0; z(2) := q + r;
```

```
// Second, we find the coefficients for the inverse
// mapping as shown in section 2.2.2.
a :=y(2) * z(0) - y(0) * z(2);
b}:=\textrm{x}(0)* z(2)-x(2) * z(0)
c:=x}(2)*y(0)-x(0)*y(2)
d := y (0) * z(1) - y 11)* z(0);
e := x(1) * z(0) - x(0) * z(1);
f := x(0) * y(1) - x(1) + %(0);
g := a + d + y(1) * z(2) - y(2) * z(1);
h := b + e + x(2) * z(1) - x(1) * z(2);
i := = + f + x(1) * y(2) - y(2) * y(1);
```

end;
Function Name: project_x
Comment: Maps an x-value from $3 D$ object space to 2D screen space.
Input: $\quad$ A vertex structure.
Output: $\quad$ Erojected screer $x$ value.
Globals: Eye_distance_from_screen is defined from the
desired view angle.
Function project_x(V :vertex $\quad$ :real;
begin
project_x :=Eye_distance_from_screen * V.x / V.z;
end;
Function Name: project_ $\because$
Comment: Maps from 3D object space to 2D screen space.
Input: A vertex structure.

```
Output: Projected screen y value.
Globals: EyE_distance_from_screer is defined from the
    desired view angle.
Function project_y(V :vertex) :real;
begin
    project_y := Eye_distance_from_screen * v.y/V.z:
end;
Procedure Name: sort
Comment: Sorts vertices and y values using brute fcrze, which tzades
    efficient space usage for a better execution time.
    Each vertex is sorted b: its correspondirg y value.
Input: An array of three vertex structures, vertexi0..2, , and an
    array of three corresponding y values, sy(0..2).
Output: A sorted array, svert(0..2), of the three vertex structures,
    vertex(0..2), which correspond to a scrted array =f the
    three y values, sy(0..2).
Procedure sort(vertex() :array of vertex, var sy() :array of real,
    var svert() :array of vertex)
var temp :real;
begin
    if (sy(0)<= sy(1,) and {sy(0)<= sy(2)) then began
    svert:0) := vertex(0);
    if (sy(1) <= sy(2)) then begin I/ Sorted order: 0, 1, 2
                svert(1) := vertex(1);
                svert(2) := vertex(2);
            else begin // Sorted order: 0, 2, 1
                svert(1) := vertex(2);
```

```
        svert(2) := vertex(1);
        temp := syil;;
        sy(1) := s`讠(2);
        sy(2) := temp;
    end;
else if (sy(1)<= sy(0)) and (sy(1)<=s\dddot{ 2,) then began}
    svert(0) := vertex(1);
    temp := sy!1);
    if (sy(0)<= sy(2)) then begin // Sorted oxdez: 1, 0,=
        svert(1) := vertex(0);
        svert(2) := vertex(2);
        sy(1) := sy(0);
    else begin // Sorted ordez: 1, 2, O
        svert(1) := vertex(2);
        svert(2) := v=rtex(0);
        \varepsilony(1) := sy(2);
        sy(2) := sy(0);
    end;
    sy(0) := temp;
else if (sy(2)<= sy(0)! and (sy(2)<= sy(1): then begin
    svert(0):= vertex(2);
    temp := sy(2);
    if (sy(0) <= sy:1), then begin // Sorted order: 2, ,, 1
        svert(1) := vertex(0);
        svert(2) := vertex(1);
        sy(1) := sy(0);
        sy(2) := sy(1);
```

```
else begin // Sorted order: 2, 1, 0
    svert(1) := vertex(1);
    svert(2):= vertex(0);
    sy(2) := sy(0);
end;
sy(0) := temp;
end;
end;
```

```
Procedure Name: find_side
```

Procedure Name: find_side
Comment: Given two screen coordinates, find the screen coordinates
Comment: Given two screen coordinates, find the screen coordinates
that lie on the line which runs between the two points.
that lie on the line which runs between the two points.
Store the x valuiss in an array which is indexed by the }
Store the x valuiss in an array which is indexed by the }
values.
values.
Input: Two vertices, their corresponding y values, and ar. array of
Input: Two vertices, their corresponding y values, and ar. array of
type real which is at least as large as the screen's height.
type real which is at least as large as the screen's height.
Output: The array is passed back with its updated values.
Output: The array is passed back with its updated values.
Procedure find_side(vaz side() :array of real, A, B :vertex, s%1, sy:
Procedure find_side(vaz side() :array of real, A, B :vertex, s%1, sy:
:real)
:real)
var sxl, sx2, inv_slope, sy :real;

```

\section*{begin}
```

sx1 := project_x (A):
sx2 := project_x(B);
inv_slope := (sx2 - sxI) / (sy2 - syl);
for sy := sy1 to sy2

```
begin
```

if ((sy >= screen.min_y) and (sy <= screen.max_y)) then
side(sy) := sxl + isy - syl! * inv_slope;

```
end;
end;

\section*{APPENDIX B}

\section*{THE SCAN-LINE SUBDIVISION ALGORITHM}

The following pseudo-Pascal represents the basic code of the scanline subdivision algorithm. These functions and procedures are outlined in chapter 5 .

1 Type vertex 1 e a structure containing both an \((x, y, z)\) and \(a(u, v)\) coordinate. ?

Procedure Name: scan_line_subdivide
Input: An array of type vertex with three elements containing the triangle's three vertices.

Output: A texture mapped triangle (on the computer screen).
Globals: screen_height is the height of the sczeen in pixels.
Procedure scan_line_sukdivide(vertex (3) :vertex)
```

var svert(3) :array of vertex;

```
var side (2, screen_height! :array of vertex;
var sy(3) :array of real;
var i, cur_sy :integer;
begin
```

for i := 0 to 2 do // Step 1 - Sort by projected y values
sy(i) := project_s(vertex(i));
sort(vertex(), sy(), svert());

```
i/ Steps 2 and 3 - (sub)divide verticaily
```

bisect_side(side(0,), svert(0), svert(2), sy(0), sy(2));
bisect_side(side(1,), svert(0), svert(1), sy(0), sy(1));
bisezt_side(side(1,), svert(1), svert(2), sy(1), sY(2);
// Step 4 - subdivide horizontal\y

```
for cur_sy := sy(0) to sy(2) do
begin
    bisect_inner(side(0, cur_sy), side(1, cur_sy));
end;
end.
Function Name: project_x
Comment: See appendix A.
Function Name: project_y
Comment: See appendix A.

Procedure Name: sort
Comment: See appendix A.

Procedure Name (s): bisect_side and do_bisect_side
Comment: Sukdivides or kisezts one side ct a triargle, storing the resulting coordinates in an array. bisect_side sets up the bisection, while do_bisect_side actually implements the bisection.

Input: Two vertices which represent the ends of a line segment, which denotes one side of a triangle, are passed. The corresponding projected screen \(Y\) vallies of the two vertices are aiso passed, as well as ar array of type

begin
```

If ((sy2 >= sareen.min_v) and (sy2<= screen.mar:y)) then
side(sy2) := B; , , Store the "odd" verte:
do_bisect_side(side!),A,B,L,sy1, 3%2); // Beglr the bisection

```
end;

Procedure do_bisect_side(var side(!) :array of vertex, A, B :vertex, depth :integer, \(s y 1, s y 2\) :real
var sy, disty \(\quad\) real; \(/ /\) disty \(=\) distance between syl and sy-
var \(C\) :vertex; \(/ / C=\) temporary vertex storage
begin
```

// Do necessary clipping
if (((sy1>screen.max_y) and (s⿲2> sureen.max_y)) or
((syl < screen.min_y) and (sy2 < screen.min_y)) or
(depth : max_depth), then

```

\section*{begin}
```

    depth := depth - 1;
    ```
    return;
end;
```

disty := sy2 - syl; // Find the distance between syl and s:2
// Check tc see if "stop rezursion" criteria has been met.
// In this case, check if syl and sy2 are one pixel apart.
if ((disty >= -1.0) and (disty <= 1.0) ) then
begin

```
    if ((syl >= screen.min_y) and (syl <= screen.max_y) then
        side(syl) := A; // Store A in array..
depth := depth -1 .
return;
end;
```

// Do actual bisection

```
C. \(\mathrm{x}:=(\mathrm{A} . \mathrm{x}+\mathrm{B} \cdot \mathrm{x}) / 2.0\);
C.y : \(=(\mathrm{A} . \mathrm{y}+\mathrm{B} . \mathrm{Y})\); 2.0 ;
C.z := (A.z + B.z) \(z .0\);
C.u \(:=(\mathrm{A} . \mathrm{u}+\mathrm{B} . \mathrm{u}) / 2.0\);
C.V := A.v + B.v) 2.0 ;
sy := project_y( C ); // Find screen \(\ddot{y}\) value for the new point
do_bisect_side(side(),A,C,depth+1,syl,sy); // Ereorder recursicr.
do_bisect_side(side(), C, B, depth+1,sy,sy2);
depth := depth - 1;
end;
```

Procedure Name(s): bisect_inner and do_bisect_inner
Comment: Subdivides or bisects betweer two vertices of twpe
vertex. These two vertices are expected to lie or. the same
Y plane, and the subdivision is expected to stop when the
projected x screen values of each subdivlded point are onl\because
one pixel apart. The resulting (u, vi coordinates are used
to find the color for the resulting soreen coordinates.
Input: Two vertices which represent the ends cf a
line segment are passed. Procedure do_bisect_side has a
parameter called gepth which keeps track of the
recursion depth, as well as two other parameters which
correspond to eacn passed vertex's projected screer:
value.
Output: F texture mapped saan-line (on the sareen).
Globals: screen.min_x and sareen.max_x denote the manimum and maximum
x values that the screen can plot. cur_sy is the currer.t
screen y value for the scan-line. max_depth represents the
maximum recursion depth allowed.
Procedure bisect_inner(A, E :vertex)
var sxl, sx2 :real; /! Temporary s=reen x value storage
begin
sxl := project_x( A );
sx2 := project_x( B );
if ((sx2 >= screen.min_x) and (sx2 s= sereen.max_x), then
display_point(B, sx2, cur_sy);
do_bisect_inner(A,B,1,s\times1,s\times2); // Begir. the bisection

```
end;
```

Procedure do_bisect_inner(A, B :vertex, depth :integer, s:1, EMO :real
var C :vertex;
var sx, distx :real;
begin

```
    // do necessary clipping
    if ( \(\left(s x_{1}>\right.\) screen.max_x) and (sx2 > szreen.max_x) or
        \(\left(\left(s \times 1<\right.\right.\) screen.min_x) and \(\left.\left(s x 2<\operatorname{screen} \cdot m i n \_x\right)\right)\) or
        (depth > max_depth), then
    begin
        depth := depth -1 ;
        return;
    end;
    distx := sx2 - sxi;
    if \(((\operatorname{distx}>=-1.0)\) and \((\) distx \(<=1.0))\) then
    begin
        if \(((s \times 1\rangle=\) screen.mın_x) and \((s \times 1<=\operatorname{screen} \cdot \max x)\) ) then
                display_point(f, sx1, cur_sy);
        depth := depth -1 ;
        return;
    end;
    // Do actual bisection..
    C. \(x:=(A \cdot x+B \cdot x) / 2.0 ;\)
    // C.y does nct need to be bisected. (not used;
    C. z \(:=(\mathrm{A} . z+\mathrm{B} . z) ; 2.0 ;\)
    C.u \(:=(\mathrm{A} . \mathrm{u}+\mathrm{B} \cdot \mathrm{u}) / 2.0\);
```

C.v := (A.v + B.v ) / 2.0;
sx := project_x( C );
do_bisect_inner(A, C, depth+1, sxl, sx);
do_bisect_inner(C, B, depth+1, sx, s:2);
depth := depth - 1;

```
end;


Figure C. 1

Triangle meshed sphere textured with a map of the moon.


Figure C. 2

Texture map of a wooden mask.


Figure C. 3

Texture map of a wooden fork.

VITA

\section*{David Sterling Sanders}

Candidate for the Degree of
Master of Science

\section*{Thesis: A SCAN-LINE SUBDIVISION APPROACH TO PERSPECTIVE TEXTURE MAPPING}

Major Field: Computer Science
Biographical:
Education: Graduated from Broken Arrow High School. Broken Arrow.
Oklahoma, in May, 1990; received Bachelor of Science degree in Computing and Information Science with a minor in Mathematics from Oklahoma State University, Stillwater, Oklahoma in May. 1994. Completed the requirements for the Master of Science degree with a major in Computer Science at Oklahoma State University in December. 1996.

Experience: Employed at Creative Labs. Inc. as a technical support agent. Lead Agent, and Agent in Charge of the Legacy Sound group. 1993 to 1996.```

