
PROGRAM FLOW GRAPH DECOMPOSITION

By

SOLA YMAN MAHMOUD REFAE

Bachelor of Science

Beirut University College

Beirut, Lebanon

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July 1996

PROGRAM FLOW GRAPH DECOMPOSITION

Thesis Approved:

:!34c. .. Thesis Ad/!~
~. E.~¥-

Dean of the Graduate College

II

PREFACE

The purpose of this thesis involved the implementation, validation, complexity

analysis, and comparison of two graph decomposition approaches. The two approaches

are Forman' s algorithm for prime decomposition of a program flow graph, and

Cunningham ' s approach for decomposing a program digraph into graph-oriented

components. To validate the two implementations, each was tested with six inputs.

Comparison of these two approaches was based on these dimensions time and space

complexities, composability, repeated decomposition, and uniqueness.

Forman's algorithm appears to have four advantages over Cunningham's

algorithm 1. the algorithm overhead (i.e, the time and space complexities) was lower in

Forman ' s algorithm; 2. Forman's algorithm yields a unique set of decomposed units,

whereas Cunningham's does not; 3. in Forman' s algorithm, reconstructing the original

graph from the decomposed prime graphs results in the original graph that was

decomposed, whereas in Cunningham's algorithm, the attempt at the reconstruction of the

original graph from the decomposed parts does not always yield the graph that was

decomposed; 4 Forman's approach can be used to decompose a graph until it is

irreducible (all its part are primes), whereas in Cunningham' s algorithm, the algorithm

decomposes the graph only once even if it is still decomposable Thus, Forman's

approach could be recommended as a program flow graph decomposition algorithm.

11l

Implementation of the decomposition techniques could help in better software

comprehension and can be used in the development of some software reusability tools.

IV

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major advisor, Dr. Mansur

Samadzadeh, for his intelligent supervision, advice, guidance, assistance, and continuous

encouragement that helped me to successfully complete my degree. His constructive

criticism and his)TIoral support is greatly appreciated. My appreciation extends to my

other committee members Drs. Blayne Mayfield and Khaled Gasem for servmg on my

committee.

I would like to gIve my special appreciation and gratitude to my parents, who

always believed 10 me and my abilities, for their moral and financial support and

encouragement. Moreover, I wish to thank my brothers, sisters, aunts, and cousins for

their moral support.

v

T ABLE OF CONTENTS

Chapter Page

1. INTRODUCTION...... I

II. BACKGROUND AND RELATED WORK .. ')

.. J

2.1 Literature Review 3
2.2 Graph Theory4
2.3 Graph Models S

2.3.1 Control Flow Graph S
2.3.2 Data Dependency Graph 6
2.3.3 Program Dependence Graph 7

24 Some Decomposition Techniques ... 8
24.1 Decomposition of a Graph into Paths and Circuits8
24.2 Decomposition of a Graph into Prime Subgraphs 10

24.2.1 Fenton-Whitty's Approach. 11
24.2.2 Forman's Scheme.. 12

III. IMPLEMENTATION AND COMPARISON ... 1S

3.1 Forman ' s Algorithm..1S
3. 1. 1 Overview IS
3 12 Description of the Algorithm 16

3.2 Cunningham' s Algorithm 18
3 .2.1 Overview 18
3.2.2 Description of the Algorithm 18

3.3 Implementation Platform and Environment 21
34 Time and Space Complexities.................. 22
3.S Comparison 22

IV. SUMMARY AND FUTURE WORK 2S

REFERENCES 26

APPENDICES. 29

vi

Chapter Page

APPENDIX A- GLOSSARY 30

APPENDIX B- TRADEMARK INFORMATION 32

APPENDIX C- PROGRAM LISTING ... 33

APPENDIX D- INPUT/OUTPUT LISTING 57

"11

LIST OF FIGURES

Figure Page

1. A sample directed graph G = ({Xl, Yl, X2, Y2}, E) 4

') A program and its control flow graph

3. An if-then-else condition and its data dependency graph

4. Program dependency graph of the program in Figure 3

. .. 6

. .. 7

. .. 8

5. A program control flow graph... 9

6. Five basis paths of the control flow graph of Figure 5 9

7. Flow graph of a prime program 1 0

8. Flow graph of a program that is not prime

9. A program flow graph..

. 10

.11

10 Decomposition of the flow graph F of Figure 9 into prime subgraphs 12

11. An example of an m-graph 13

12. The two m-graphs resulting from decomposing the m-graph of Figure 11 13

13. Some control structure representations as used by Forman 18

14. Some control structure representations as used by Cunningham 21

15. The m-graph of test input 1 program 58

16. This is the decomposed spanning tree of the m-graph of Figure 15 59

17. The m-graph of test input 2 program 62

viii

Figure Page

18. This is the decomposed spanning tree of the m-graph of Figure 17 63

19. The m-graph of test input 3 program.. 66

20. This is the decomposed spanning tree of the m-graph of Figure 19 67

21. The m-graph of test input 4 program 7l

22. This is the decomposed spanning tree of the m-graph of Figure 21. 72

23. The m-graph of test input 5 program 76

24 . This is the decomposed spanning tree of the m-graph of Figure 23 77

25. The m-graph oftest input 6 program 79

26. This is the decomposed spanning tree of the m-graph of Figure 25 80

27. The digraph of test input 1 program. 82

28. The two digraphs resulting from the decomposition of the
digraph of Figure 27 83

29 . The digraph of test input 2 program. 86

30. The two digraphs resulting from the decomposition of the
digraph of Figure 2987

31. The digraph of test input 3 program 90

32 The digraph oftest input 4 program. 92

33. The two digraphs resulting from the decomposition of the
digraph of Figure 32 93

34. The digraph oftest input 5 program 96

35. The two digraphs resulting from the decomposition of the
digraph of Figure 34 97

IX

Figure Page

36. The digraph of test input 6 program 99

37. The two digraphs resulting from the decomposition of the
digraph of Figure 36 99

x

CHAPTER I

INTRODUCTION

Software development has evolved a great deal in the past decade as demand for

computer technology has increased. To remain competitive in the software market,

improved software development cycle resulting in relatively bug-free products are the key

issues to successful marketing. Software development is impeded by the complexity of

software and the lack of scalability of programming techniques and tools.

It is a well known fact that software technology lags behind hardware

advancements. Software development houses do not stop after the production of their

software products, rather they continue supporting and maintaining their products.

Maintenance of software products include errors corrections, enhancements, and

adjustments to the software [Regson 93].

An attempt to understand a piece of software has to be made before trying to

maintain it. So, it is generally easier to modify, enhance, or correct a piece of software if

it is more understandable [Regson 93] Such considerations have formed the need for a

quest for better software technology, especially in the area of software reusability, and

better software comprehension

Representation by directed graphs is one of the conventional approaches used for

understanding the structure of a complex system [Harary et al 65] [Lendaris 80] The

2

wide applicability of directed graphs can be attributed to the fact that in many types of

complex systems the directions of interactions among the elements are of importance for

understanding their structures [Burns 77].

Decomposition can be effective technique for better software comprehension. This

thesis work involved the implementation of two different decomposition techniques and

comparing them. The remainder of this thesis report is organized as follows Chapter II

introduces the definitions of some abstract representations of programs. This chapter also

presents a number of program flow graph decomposition techniques and their uses

Chapter III describes the two graph decomposition algorithms that were implemented,

namely Cunningham ' s algorithm [Cunningham 82] and Forman's algorithm [Forman 79].

This chapter also contains the comparison and analysis of the two algorithms based on a

number of inputs . Chapter IV summarizes the research and outlines the related future

work.

CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Literature Review

The main _obj ective of this research is to build on the established foundation related

to directed graph decomposition. Several decomposition techniques of graphs have been

discussed in the literature for vanous reasons Hopcroft and Tarjan discuss the

decomposition of graph into triconnected components [Hopcroft and Tarjan 73]. In the

seventies Maddux introduced the concept of a prime program [Maddux 75]. McCabe

discussed the decomposition of the control flow graph of a program into basis paths or

circuits in order to calculate the software complexity of the program using the cydomatic

number [McCabe 76]. Maurer offered two algorithms, one to decompose a directed

graph and the other is to decompose an undirected graph [Maurer 76].

Chinn and Thoelecke discuss the decomposition of a graph into primal graphs that

could be used in the formation of another graph [Chinn and Thoelecke 83]. Muller and

Spinrad discussed the modular decomposition of a graph which leads to solving problems

in graph recognition and isomorphism [Muller and Spinrad 89]. Baranov and Bregman

presented a method for the decomposition and synthesis of automata [Baranov and

Bregman 93]. Habib et at described the decomposition of inheritance graphs into

independent sub graphs, or modules, which are inheritance graphs themselves [Habib et al.

95]. Su offers an algorithm for decomposing a graph into cliques [Su 95].

Forman used program decomposition into primes to solve the abstract data flow

analysis problem [Forman 79]; the implementation and discussion of this algorithm is part

of this thesis work. Cunningham offered an algorithm [Cunningham 82] to decompose a

digraph into two digraphs; the implementation and discussion of this algorithm is part of

this thesis work.

2.2 Graph Theory

The definitions included in this section are conventional and they are based on the

three main references on graph theory [Deo 74] [Gibbons 85] [Hopcroft and Tarjan 73]

that were used for this thesis.

Geometrically, a graph IS defined to be a set of points (vertices) which are

interconnected by a set oflines (edges). Fora graph G, we denote its vertex set by V and

the edge set by E, and write G = (V, E) Figure 1 shows a directed graph G = ({ Xl, Yl , Xl,

Y2 J..--------\ X2

Figure 1. A sample directed graph G = ({Xl, Yl, Xl, Y2}, E)

5

Each edge can be specified by the two vertices (called the end points, or the tail

and the head respectively) that it connects. An edge having the same vertex as both its

end vertices (tail and head) is called a selfloop. If the edges are ordered pairs, the graph

is directed. If the edges are unordered pairs of vertices, the graph is undirected.

If E is a multiset, that is, if an edge may occur several times between the same

pair of nodes, then G is a multigraph (see Appendix A for a definition). Every digraph

(see Appendix A for a definition) yields an undirected graph by deleting its edge

directions. A graph G is said to be connected if every distinct pair of nodes is connected

by a chain. Likewise, a digraph G is said to be strongly connected (diconnected) if every

node has an entry path and an exist path.

2.3 Graph Models

A graph is a general and abstract term. There are various graph models or abstract

representations of a program that have been defined and used in the literature for different

purposes. For example, control flow graphs (CFGs) and data flow graphs (DFGs) are

used in compilers for optimization. Data dependency graphs (DDGs) can be used to

measure data dependency complexity.

2.3.1 Control Flow Graph

A control flow graph is a directed graph with the nodes representing the basic

blocks (a sequence of instructions with no branches) ofa program. A CFG is also defined

as a two-dimensional representation of a program that displays the flow of control of a

program [Aho and Ullman 73]. Formally, the control flow graph of a program is a 4-

6

tuple, F = (N, E, a, z) , where N is a finite set of nodes, E is a finite set of directed edges

(E r;;;; N X N), a is the entry node whose indegree is zero, and z is the exit node whose

outdegree is zero [Regson 93]. Figure 2 shows a program segment and its control flow

graph, where each node in the CFG represents a single executable statement in the

program.

Program e x a mple (input . o u t put) ;

1. Var
2. x: integer;

3 readln (x) ;

4. if (x > 0)

5. x: = X + 1 ;

6. end .

Figure 2. A program and its control flow graph

2.32 Data Dependency Graph

A data dependency graph (DOG) represents data dependencies among the

statements in a program. A DDG is a directed graph in which the nodes represent variable

definitions and the edges represent possible data dependencies [Regson 93]. The edges of

a DDG represent possible dependencies between definitions. A statement that may alter

the value of a variable is called a variable definition

There are two types of data dependencies flow-order and def-order There is a

flow-order dependence edge from node X to node Y, if there exists at least one variable

defined in X and used in Y and if a path exists in the corresponding CFG from X to Y In

7

order for a def-order dependence edge from node X to node Y to exist a set of condition

have to hold

1- Both X and Y must define the same variable.

2- Both X and Y should be on the same path in the corresponding CFG.

3- Another node Z exists such that there exists a flow-order dependence between X

and Z, and between Z and Y.

4- X occurs to the left ofY in the abstract syntax-tree of the program.

Figure 3 shows the data dependency graph corresponding to the given code segment.

readl n (x, y);

if (y :2 x)

i f (y = 0)
X : = 0 ;

el se
x . - - 1

Use x

...... ~ flow-order edge

'.--+ def-order edge

Cv x . ~O ... ~

e x ______ ____

Figure 3. An if-then-else condition and its data dependency graph
(Source [Premkumar 94])

23.3 Program Dependency Graph

A program dependency graph (PDG) is a graph of a program in which the nodes

represent the statements and the predicate expressions, and the edges incident to the nodes

represent both the data and control dependencies in the program [Regson 93]. An

example of a PDG is shown in Figure 4 for the sample program given in Figure 3. The

flow-order dependence edges are represented by bold face arrows, the def-order

dependence edges are represented by thin face arrows, and the dashed arrows indicate the

flow control in a program.

-------+

def-order edge

control flow edge

flow-order edge

Figure 4. Program dependency graph of the program in Figure 3

24 Some Decomposition Techniques

Several different decomposition techniques of a graph have been discussed in the

literature for various reasons. Some of those techniques are discussed in detail in the

following subsections

2.4.1 Decomposition of a Graph into Paths and Circuits

McCabe described a graph-theoretic software complexity measure called the

cyclomatic number, V(G), of a graph and illustrated how it can be used to manage and

control the complexity of programs [McCabe 76]. He developed a technique that

9

provides a quantitative basis for program modularization based on program control flow

graph decomposition.

The cyclomatic number V(G) of a graph G with n vertices, e edges, and p

connected components is V(G) = e - n + 2p. Figure 5 depicts a control t10w graph G

The maximum number of linearly independent circuits in G or V(G) is 9-6+2, with p = 1.

e

Figure 5. A program control flow graph (Source: [McCabe 76])

In a diconnected graph G, the cyclomatic number is equal to the maximum number

of linearly independent circuits. Any circuit (or path) in G can be expressed as a linear

combination of a basis set of independent circuits (or paths) . Figure 6 shows the five

paths that constitute one set of basis paths for the graph of Figure 5 .

e

f

Figure 6 Five basis paths of the control flow graph of Figure 5

10

Thus the cyclomatic number of a graph is the number of basis circuits (or paths)

that can be combined to make up any possible circuit (or path) in the graph [McCabe 76].

F or instance, the path abeabebebef is expressible as (abea) + 2(beb) + (abet).

2.4.2 Decomposition of a Graph into Prime Subgraphs

A prime program is a one-in-one-out subgraph (a subgraph that has only one entry

node and one exit node) that does not properly contain any one-in-one-out subgraph

[Forman 79]. Prime program decomposition consists of building a hierarchy of one-in­

one-out control structure elements.

Figure 7. Flow graph of a prime program

Figure 8. Flow graph of a program that is not prime

11

It is important to mention that all common control structures are considered prime

programs [Forman 82]. Figure 7 and 8 show prime and non-prime flow graphs. Two

methods of decomposing a flow graph into prime graphs are briefly discussed in the

following two subsections.

242.1 Fenton-Whitty ' s Approach

The Fenton-Whitty scheme is a technique that is used to decompose a graph into

prime subgraphs.

F=

Figure 9. A program flow graph (Source: [Fenton and Whitty 86])

A flow graph allows nodes of arbitrary outdegree. In general a node of outdegree

n IS called an n-ary predicate node (n ::::: 2), while nodes of outdegree 1 are called

procedures nodes. The decomposition of F2 in F I (where F2 is a subflow graph of F 1) is

the flow graph obtained by collapsing F2 to a single arc (x, z'), where z' is the stop node

of F2 and x is a new procedure "replacing" F2 [Fenton and Whitty 86]. The resulting flow

graph is denoted F 1 (x for F2). An example of a flow graph of a program and its prime

subgraphs is given in Figures 9 and 10. The decomposition algorithm decomposes the

12

flow graph into its underlying atom (ie, a prime) as well as its nested subflow graphs

[Elliot et al. 88].

Figure 10. Decomposition of the flow graph F of Figure 9
into prime subgraphs (Source [Fenton and Whitty 86])

2.4.2.2 Forman's Scheme

Forman describes the decomposition of m-graphs (see Appendix A for definition)

into prime m-graphs [Forman 79] M-graphs are uninterpreted flowchart schemas and are

used because of their close relation to control structures in programming languages

[Forman 82]. Intuitively, the prime program decomposition of an m-graph is equivalent to

a set of prime programs together with a relation that forms a tree.

Let M be an m-graph. An ordered pair of arcs (x, y) is called a subprogram cutset

if (x, y) is a cutset of M and all paths from x to the entry/exit contain y A subprogram

cutset separates an m-graph into two blocks. The exterior block contains the entry/exit

node, while the interior block does not. M is called a prime program if it contains at least

13

three nodes and the only subprogram cutsets of M are either (entry(M), exit(M)) or

subprogram cutsets (x, y) such that head(x) = tail(y). Figure 12 shows the prime program

decomposition of the m-graph given in Figure 11.

l
~-----o

Figure 11. An example of an m-graph

HI H2

- - - - ----+<

~--~ call H2J-------'

Figure 12. The two m-graphs resulting from decomposing the m-graph of Figure 11

Forman proposed to decompose m-graphs into a hierarchy of primes [Forman 79]

Once the hierarchy is formed, analysis can be performed on the hierarchy rather than on

the original m-graph. The hierarchy is formed by finding subprogram cutsets and

replacing the interior with a special kind of assignment node, which is termed a call node,

l-l

and making the interior an m-graph to which the call node points. When this operation

can no longer be performed upon the hierarchy, the result is called prime program

decomposition, because all the m-graphs in the hierarchy are primes [Forman 82].

The concept of prime programs is applied as a decomposition technique to the

global data flow analysis problem [Forman 82]

CHAPTER III

IMPLEMENTATION AND COMPARlSON

In the literature, different approaches for decomposing a digraph have been

discussed. Some of those techniques were outlined in Chapter II. This chapter discusses

the properties and the implementation platform of the two graph decomposition

algorithms that were implemented as part of this thesis. A comparison of the two

algorithms concludes this chapter.

3.1 Forman's Algorithm

3. 1 1 Overview

In the decomposition algorithm presented by Forman [Forman 79], the problem of

decomposing an m-graph (see Appendix A for a definition) into subgraphs is transformed

from the set of m-graphs to a set of tree structures, which are called "spanning charts"

(see Appendix A for a definition). The algorithm consists of three steps:

1- Build the spanning chart.

2- Build the tier-i paths.

3- Test the tier-i paths for subprogram cutsets.

15

16

3.1. 2 Description of the Algorithm

The algorithm conforms with the three steps described in the last subsection. Step

1 transforms the m-graph into a spanning chart. Step 2 marks each node with the number

of the tier-i path (see its definition in Appendix A) to which the node belongs. Step 3

(process_tier) searches those paths that belong to the same set of tier -i paths for

subprogram cutsets.

The basic algorithm, which is equal to Step 3, works just the way the definitions of

prime program and prime program decomposition imply it should. There are two sets of

m-graphs, PRlMES and LEAVES, that form a hierarchical m-graph that is equivalent to

the m-graph being decomposed. LEA YES contains the m-graphs that may not be prime.

Each member of LEAVES is processed by finding subprogram cutsets, removing the

interior, and placing the interior in LEA YES. Primes contains the prime m-graphs. The

first level of a stepwise refinement looks as follows

PRIMES : = 0
LEAVE S : = {M}
While LEAVE S * 0 do

Q : = member (LEAVE S) "se l ects random member"
LEAVES := LEAVES - {Q}
(*) "Find a ll subprogram cutsets of Q.

For e ac h subprogram cutset found, place
t he interior in LEAVES and remove the int erior
from Q."

od

Subprogram cutsets are found by testing each member of PAIRS, the set of

candidate ordered pairs for subprogram cutsets. This leads to a second level of refinement

for the step marked with an (*) above.

PAIRS {(x, y) I x E arcs (Q) and y E arcs (Q)
and x * y and head(x) * tail(y)
and (x , y) * (entry(Q), exit(Q))}

While PAIRS * 0 do

od

(x, y) : = member (PAIRS)
PAIRS : = PAIRS - {(x, y) }

"If (x, y) is a subprogram cutset of Q, then
place the interior of (x, y) in LEAVES and

remove the interior from Q."

17

The whole algorithm may be stated with the aid of the predicate IS _CUTSET

IS _ CUTSET((x, y), M) is true if and only if the ordered pair (x, y) is a subprogram cutset

of the m-graph M

The algorithm uses m-graphs (see Appendix A for a definition) to represent a

program flow graph. An m-graph uses four types of nodes to represent a program

statement. The four different node types that comprise an m-graph are

1- The entry/exit node.

2- The predicate node.

3- The join node.

4- The assignment node.

An m-graph representing a subprogram flow graph uses two more nodes In

addition to the four mentioned above. These two node types are:

1- The call node.

2- The goto node.

As to the representations of the control structure (see Appendix A for a

definition), some of them are different In Forman's algorithm from what they are In

Cunningham's algorithm Some of the most common ones are shown in Figure 13.

(IF-THEN) (DO-UNTIL)

1

6 (DO-WHILE-DO)

61
{>-J

Figure 13 Some control structure representations as used by Forman
(Source [Forman 79])

3.2 Cunningham's Algorithm

3.2.1 Overview

18

A decomposition of diconnected digraphs has been described by Cunningham

[Cunningham 82]. In his paper, Cunningham deals with finite and simple digraphs (see

Appendix A for a definition), where E(G) or the edge set is a set that does not contain self

loops, and the vertex set is a finite set called V(G) An improvement of Cunningham's

algorithm in terms of its complexity was introduced by Bouchet [Bouchet 87]. In his

paper, Bouchet discussed a different way for finding a split of a digraph based on

Cunningham's algorithm.

32.2 Description of the Algorithm

The decomposition problem as it is described by Cunningham [Cunningham 82]

can be stated using an example as follows:

19

Given edges (XI , YI), (X2, Y2) ofG and a set S <;;;;; V(G) satisfying Xl , Y2 E S, X2, YI !l S, and

lSI 2.: 2, find , ifthere is a split {VI , V2} ofG such that X2, YI !l VI and V I <;;;;; S.

Cunningham's algorithm [Cunningham 82] to solve the above-mentioned

decomposition problem is presented below.

begin

S

T . - S;

while T 7: 0 do

Select pET ;

T := T\{p};

for q E V (G) do

/* initial iz e the set S to contain node s

Xl and Y2, S will contain one of

t he split sets at the end of the

algorithm * /

/ * i n it i al i ze the set T to be equal t o the

s et S, T i s used a s a set variab l e

/ *

/*

/*

/*

throughout the algorithm * /

while the algorithm h a s not finished

splitting the g r aph */

choose p to be one of T 's el ements */

delete p fr om the s et T * /

choose q to be one o f V(G) ' s el e ment s ,

q shouldn' t be in V(G) and the

predicate P shoul d be true in order for

q to be one of the nodes that could

be split from t he or i gina l graph */

if q !l Sand [P(x l, y l , p , q) or

e nd

S S U {q};

T :=T U{q};

endif

endfor

e ndwhile

P(x2 , y2, q, p)] then

/* if q could be split from t he o riginal

graph, then q will be added t o the sets

Sand T */

20

The following definitions [Cunningham 82] are necessary for the algorithm. If (x,

y) EO E(G) and p, q EO V(G), we say that P(x, y, p, q) is true if the following condition fails

(p, q) EO E(G) if and only if (p, y) , (x, q) EO E(G). Likewise, 8(A): refers to the set {(x,

y) : (x, y) EO E(G), x EO A, y tl A} . Cunningham' s algorithm of splitting a digraph G into

G l and G2, is based on the following proposition:

Let G be a diconnected digraph, let S c;;;;: V(G) such that lSI ;::: 2 and IV(G)\S I ;::: 2, where

V(G)\S is the set containing all vertices in V(G) but not in S, and let (Xl , Yl) EO 8(S), (X2,

Y2) EO 8(V(G)\S). Then {S , V(G)\S} is a split of G if and only if there does not exist p EO

S, q EO V(G)\S such that P(x) , Yl , p, q) or P(X2, Y2, q, p) is true.

Upon termination of the algorithm, if we had X2 EO S, Yl EO S, or lSI = n - 1, then it

can be said that there is no split, otherwise the result of the split will be {S , V(G)\S}.

In order to improve the complexity of that algorithm, Bouchet [Bouchet 87]

decomposed it into three parts :

1- The original program that initializes the set S calls subprogram FILLST ACK and

subprogram SEP AR

2- Subprogram FILLST ACK, which is called when the program is initiated to place some

vertices in S ', and that will contain one of the split sets at the end of the algorithm.

3- Subprogram SEP AR, which is called to check if a split has occurred

Subsequently, Bouchet [Bouchet 87] shows that SEP AR and FILLST ACK, which

are O(n\ improve his algorithm over Cunningham's [Cunningham 82], which is O(n4) .

This thesis was concerned with implementing the algorithm introduced by

Cunningham [Cunningham 82]. As to the representation of the nodes, Cunningham's

21

algorithm represents all program statements with the same node. So, it only has one node

type.

In Cunningham' s algorithm, the representation of some the control structures (See

Appendix A for a definition) is different than Forman's. Figure 14 presents some of these

control structures as they are presented and processed in Cunningham's algorithm

(IF-THEN) ;r (DO-UNTIL)

(DO-WHILE-DO)

Figure 14. Some control structure representations as used by Cunningham
(Source: [Cunningham 82])

3.3 Implementation Platform and Environment

The two algorithms were implemented on a Sequent Symmetry S/8] under the

DYNIXlptx operating system [SEQ 90], and C was used as the programming language.

The Symmetry S/81 IS a mainframe-class multiprocessor system developed by

Sequent Computer System, Inc. Sequent S/81 is a shared memory, tightly-coupled

multiprocessor It also has hardware supporting mutual exclusion. The load is balanced

and the tasks are distributed in a multi-user environment to increase throughput and

Improve response time. UNIX compatible software can run on the Symmetry S/81

without modification or with slight modification.

22

3.4 Time and Space Complexities

This section discusses the complexity of the two graph decomposition techniques

that were discussed in Chapter III.

The complexity of Forman's algorithm is taken from Forman' s thesis [Forman 79].

Steps 1 and 2 of the Algorithm (see Subsection 3.1.2) are linear or O(A) , where A is the

number of arcs in the input m-graph. Step 3 is no worse than O(A\ Because the m-

graphs are represented by their adjacency matrix, the space complexity is 0(n2), where n is

the number of nodes in the input m-graph.

On the other hand, the time complexity of Cunningham's algorithm (see

Subsection 322) for decomposing a digraph Gis 0(n4), where n is the number of nodes

in G [Cunningham 82]. In his paper, Bouchet [Bouchet 87] introduced a new way called

local complementation to improve the time complexity of Cunningham's algorithm for

finding a split of a digraph. Bouchet succeeded in decreasing the time complexity from

0(n4) to 0(n3) The space complexity of the algorithm is O(n\ where n is the number of

the nodes in the graph. This is because a digraph is represented by its adjacency matrix.

3.5 Comparison

This section compares the two graph decomposition approaches based on the

following criteria [Regson 93].

(a) Composability - i.e., whether or not any of the resulting units of decomposition is
reusable;

(b) Repeated decomposition - 1. e, whether the decomposition process can be applied
repeatedly;

23

(c) Uniqueness - ie , whether the decomposition technique yields a umque set of
decomposed units;

Prime sub graphs, resulting from the decomposition of the flow graph of a

program, are generally good candidates for reusability. Primes can be replaced by single

nodes in the original flow graph. In the prime decomposition of a flow graph, when using

Forman's approach, reconstructing the decomposed graph from the decomposed parts (or

reusable parts) can be done by replacing the single nodes, introduced in the decomposition

process, with the subgraphs to which they correspond.

The decomposition of a diconnected digraph of a program, using Cunningham ' s

scheme, is a graph-theoretic concept that is not closely related to the semantic structure of

the program. Hence, the potential for the reuse of the decomposed parts is not high

When a digraph is decomposed into two digraphs in this method, the original digraph can

be obtained by the operation of union. This can be done by deleting the marker, which is

introduced during the decomposition process (see Subsection 3.2.2 for details), from both

of component digraphs and combining them together as follows if (x, v) E G j and (v, y)

E G2, then (x, y) E G, where x E G 1, Y E G2 and v is the marker; or, if (v, x) E G j , (y, v)

E G2, then (y, x) E G.

The prime program flow graph decomposition technique utilizing Forman' s

algorithm involves repeated decomposition in the process of building the prime

decomposition (as explained in Chapter III) In Cunningham's algorithm, this repeated

decomposition can be applied to one or both of the decomposed digraphs to find out

whether they are further reducible.

2-1-

Forman' s approach uses triconnected components for building the pnme tree

[Tarjan and Valdes 80] Hopcroft and Tarjan show that the triconnected components of a

graph are unique [Hopcroft and Tarjan 73] Therefore, decomposing an m-graph into

primes will result in a unique prime subgraphs.

CHAPTER IV

SUMMARY AND FUTURE WORK

The main purpose of this thesis was to implement the decomposition techniques

proposed by Cunningham [Cunningham 82] and Forman [Forman 79]. Two programs

were developed, the first one decomposes a digraph into two digraphs, whereas the

second one decomposes a graph into prime graphs. The two decomposition approaches

were compared and analyzed based on a number of specified dimensions.

Possible future work to extend and utilize the work done in this thesis includes the

following. A technique can be created to construct composite graphs from the previously

decomposed subgraphs By the same token, the decomposed subgraphs of program flow

graphs can be used as reusable units in the construction of other programs. Thus, a

repository of decomposed units (or subprograms) can serve as a software parts catalog

stored in the form of flow graphs (or program codes) Another area of future work would

be in extending the programs, presented in this thesis to run in the X-windows

environment. Such programs can present the output graphs pictorially and accept a

graphical input instead of an adjacency matrix

25

REFERENCES

[Aho and Ullman 73] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,
and Compiling, Vol. II: Compding, Prentice-Hall, Englewood Cliffs, NJ, 1973.

[Baranov and Bregman 93] S Baranov and L Bregman, "Automata Decomposition and
Synthesis with PLAM," Microprocessing and Microprogramming, Vol. 38, pp.
759-766, September 1993

[Bouchet 87] A. Bouchet, "Digraph Decompositions and Eulerian Systems," SIAM
Journal of AlgebraiC and])iscrete Methods', Vol. 8, No.3, pp. 323-337, July
1987.

[Burns 77] J. R. Burns, "Converting Signed Digraphs to Forrester Schematics and
Converting Forrester Schematics to Differential Equations," IEEE Transactions on
Systems, Man, andCyhernetics, Vol. SMC-7, No. 10, pp. 695-707, October 1977.

[Chinn and Thoelecke 83] P Z Chinn and P. A. Thoelecke, Factoring Graphs into
Primal Graphs, Department of Mathematics, Humboldt State University, Technical
Report, Arcata, CA, 1983-84.

[Cunningham 82] W H. Cunningham, "Decomposition of Directed Graphs," SIAM
Journal of Algehraic and Di.'i'crete Methods, Vol. 3, No.2, pp. 214-228, June
1982.

[Deo 74] N. Deo, Graph Themy with Applications to Fngineering and Computer
Science, Prentice-Hal1 , Englewood Cliffs, NJ, 1974.

[Elliot et al. 88] J. 1. Elliot, N. E Fenton, S Linkman, G. Markham, and R. Whitty
(Editors), "Structured-Based Software Measurement," Alvey Project SE/069,
1988, Department of Electrical Engineering, South Bank, Polytechnic, Borough
Road, London, UK

[Fenton and Whitty 86] N E Fenton and R. Whitty, "Axiomatic Approach to Software
Metrication Through Program Decomposition," The Computer Journal, Vol. 29,
No.4, pp. 330-339, 1986.

[Forman 79] 1. R. Forman, "On the Decomposition of Programs into Primes," Ph.D .
Thesis, Computer Science Department, University of Maryland, College Park, MD,
1979

26

27

[Forman 82] I. R. Forman, "Global Data Flow Analysis by Decomposition into Primes,"
Proceedings of the Sixth International Conference on ,Software Engineering, pp.
386-392, Tokyo, Japan, September 1982.

[Gibbons 85] A Gibbons, Algorithmic Graph TheOlY, Cambridge University Press, New
York, NY, 1985.

[Habib et al 95] M. Habib, M. Huchard, and 1 Spinrad, "A Linear Algorithm to
Decompose Inheritance Graphs into Modules," Algorithmica, Vol 13, No.6, pp.
573-591 , June 1995.

[Harary et al 65] F. Harary, R. Z. Norman, and D Cartwright, Structural Models: An
Introduction to the Theory of Directed Graphs, Wiley, New York, NY, 1965

[Hopcroft and Tarjan 73] 1 E. Hopcroft and R. E. Tarjan, "Dividing a Graph into
Triconnected Components," SIAM Journal of Computing, Vol 2, No 3, pp. 135-
158, September 1973.

[Lendaris 80] G. G Lendaris, "Structural Modeling A Tutorial Guide," IEEE
Transactions on Systems, Man, and Cyhernetics, Vol. SMC-I0, No. 12, pp 807-
840, June 1980

[Maddux 75] R. A Maddux, " A Study of Computer Program Structure," Ph.D. Thesis,
Computer Science Department, University of Waterloo, Waterloo, Canada, July
1975.

[Maurer 76] M. C Maurer, "Unite de la Decomposition d'un Graphe en Joint Suivant un
Graphe Joint-Irreductible, d'une Famille de ses Sous-Graphes," C R. Acad Sci.
Paris, Vol 283, pp. 289-292, September 1976.

[McCabe 76] T 1 McCabe, "A Complexity Measure," IE-AE hansactiolls all Software
Engneering, Vol. SE-2, No.4, pp. 308-320, December 1976.

[Muller and Spinrad 89] 1 H. Muller and 1 Spinrad, "Incremental Modular
Decomposition," Journal (~f the Association for Computing Machinery (JACM) ,
Vol 36, No 1, pp. 1-19, January 1989.

[Premkumar 94] l Premkumar, "Translation of Simple C Programs to Program
Dependence Webs," Masters Thesis, Computer Science Department, Oklahoma
State University, Stillwater, OK, July 1994.

[Regson 93] C P Regson, "Program Flow Graph Decomposition as a Model of Software
Comprehension," Masters Thesis, Computer Science Department, Oklahoma State
University, Stillwater, OK, July 1993.

28

[Sedgewick 88] R. Sedgewick, Algorithms, Addison-Wesley Publishing Company,
Reading, MA, 1988

[SEQ 90] Symmetry Multiprocessor Architecture Overview. Sequent Computer Systems,
Inc, 1990

[Su 95] Xy Su, "An Algorithm for the Decomposition of Graphs into Cliques," Journal of
Graph Theory, Vol 20, No.2, pp 195-202, 1995

[Tarjan and Valdes 80] R. E. Tarjan and 1. Valdes, "Prime Subprogram Parsing of a
Program," Prot:eedings' of the ,)'eventh Annual ,))mlposium on the Principles of
Programming LanRuClRes, pp. 95-] OS, Las Vegas, NV, January 1980

APPENDICES

29

APPENDIX A

GLOSSARY

CFG: Control flow graph.

Control Structures: The common control structures are: do-while-do loop, do-until loop,
if-then, if-then-else, and while-do loop.

DDG Data Dependency graph.

Diconnected: Strongly connected.

Digraph Directed graph.

Flow chart A pictorial representation of the algorithm of a program.

M-graph A diconnected graph that contains a unique one-in-one-out node called
entry/exit node and is constructed from the following four types of nodes

Entry/exit node Assignment node

Join node Predicate node

Multigraph A graph in which an edge may occur more than one time between the same
pair of nodes. A graph with parallel edges

Multiset A set where elements can occur several times.

PDG: Program dependency graph.

10

I

I
I

~
4
1
"

3]

Primal Graph A component graph; a graph can be written as a sum of distinct primal
graphs.

RFG Reducible t10w graph.

Simple Digraph: A digraph that has no selfloops or parallel edges.

Software Complexity The level of difficulty to understand, change, and maintain
software.

Spanning Chart A spanning tree of a graph G = (V, E) is a graph G' = (V, E'), where G'
is a tree that includes every node in G, and E' is a subset of E.

Tier-i: A path from a goto node whose corresponding join node is on a tier-(i-l) path to
the first possible predicate node on a tier-j path where j s i-I. The unique path
from the entry of the m-graph to its exit is called the tier -0 path.

I
I
I • I

1

APPENDIXB

TRADEMARK INFORMA nON

DYNIXlptx: A registered trademark of the Sequent Computer System, Inc.

Symmetry S/8]: A registered trademark of the Sequent Computer System, Inc.

UNIX: A registered trademark of AT&T.

32

APPENDIX C

PROGRAM LISTING

The following are the two files that were used in the implementation of the two

algorithms

cunn.c - This file contain the implementation of Cunningham's algorithm [Cunningham

82].

forman.c - This file contain the implementation of Forman's algorithm [Forman 79].

The following is the cunn.c file

/*** ***** ***** ******************* ***************************************

This program impl ements Cunningham' s algor ithm for digraph dec omposit ion
[Cunningham 82J . The program takes a s input a d i graph in the form of an
ad jacency ma trix. Then it tries to de compose that graph into t wo
d igraphs . Af ter that, if a split h as happened, it wi ll pr i nt the two
sets resulting from sp litt ing.

***/
#i nc lude <stdio.h>
#include <s t d lib . h>
#inc l ude <string.h>

#define Maxnd 50

int
int
void
voi d
voi d
void
vo id
void

FILE

check P() ;
check digraph();
build graph() ;
algorlthm() ;
spl i t check () ;
b uild=sub () ;
r elabel () ;
pr int_subgraphs() ;

*in;

int graph [Maxnd] [Maxnd] ,

/* maxi mum number of nodes in an
input graph */

/ * repre sentat ion of a g raph as an
input adjacency matr i x */

33

S[Maxndl,

S2 [Maxndl ,

T [Maxndl ,

Vertice[Maxndl

Subl [Maxnd l [Max ndl ,

Sub2 [Maxndl [Max ndl ,

error ,

nodenbr,
Snode,
S2node,
Tnode;

34

/ * contains the vertices of the set
S */

/* contains the vertices in the set
V(G)\S */

/* contains the vertices in the set
T */

/ * contains all the vertices in the
graph */

/* adjacency matrix of the
decomposed graph, S */

/* adjacency matrix of the
decomposed gaph, V(G)\S */

/* a flag that is turned on when
something goes wrong or if there
is a wrong input * /

/* number of nodes in the graph */
/* number of nodes in S */
/* number of nodes in S2 */
/* number of nodes in T */

main ()
{

int relabel time 0,

no split = 0 ;

/* contains the number of
relabelings done */

/* a flag to check whether a split
has occurred */

/ * open input file */
if ((in = fopen ("/v/refae/thesis/inpl" , "rOO)) == NULL)

{ printf ("Sorry, the input file cannot be opened\n")
exit(I);

}
error = 0;

build graph (&error) ;
/* initialize error flag */
/ * call procedure to start reading

the input and building the graph
*/

if (error 0) /* if no error has occurred, call
the procedure to do the

(
algorithm() ;
if (split_check () 0)

no split = 1;
whI l e ((relabel time <

}

relabel () ;
relabel time++;

if(sp l it check()
no spli t

if(no split == 1)

split and then call the split­
check procedu re to see whether a
split has occurred */

/ * check whether a split has
occurred */

(nodenbr - 1)) && (no split == 1))
/* while the number- of relabelings

done is less than t he number of
the input graph nodes and
no sp lit has occurred yet perform
the following * /

/ * call the relabeling procedure * /

/* check whether a split has
occurred */

1)

0;

printf ("There is no split. \n")

-:.c
~

~ ..

else

print subgraphs()
}

fclose(in)

35

/* if a split has occurred, print
the two graphs resul t ing fr om the
decomposition */

/* close input file */

/***

This
file

p roce dur e reads the input
into an adjacency matrix.

graph to b e d ecomposed from the input

***/

void build graph(i nt *error)
{
int

n odel,node2, /* they represent the first and
sec ond node of some edge o f the
i npu t graph, respectively */

i , j; /* used as looping variables */
/ * read t he number of nodes */ fscanf (in , "%d\n", &nod enbr)

fo r (i= O;i<node nbr ;i++)
Verti ce[il = i+l;

*error = 0;

/* initialize the array of vertices
*/

while((fscanf(in,"%d %d\n",&nodel ,&node2) != EOF) &&
(*e rror == 0))

}

/* build the graph */
if ((nodel>nodenbr) II (nodel<l) II (node2>nodenbr) II (node2<l))

{ /* improper input */

}

printf ("Invalid node number, program t erminated. \n .') ;
*error = 1;

else
if(nodel == node2)

/* check ing for self loop */

{ /* input graph has a self loop * /
printf (" Se lf loop no t accepted, program terminated, \n")
*error I, ,

}
else
{

/ * if there is an edge going from
nodel t o node2 */

graph [nodel] [node2l = 1;

i f(check d igraph ()) /* check whether the input graph is
a digraph */

printf ("The input graph is not a digraph , program terminated, \n")
*error = 1;

} }
/ ***

This procedure che cks whether the input graph is a digraph,

«
:>
~

36

***/

lnt c he ck dlgraph ()
{

i n t not di graph~O,

i, j ,
Sum ;

/ * to check whether the i nput graph
is a digraph */

/* used to check t he sum of the
co l umn s and rows of the input
graph whether every one o f them
is bigger than 1, which me an s
t hat every n ode has at least one
entry and one exit */

fo r (i~l; (i< ~nodenbr) && (! notdigraph) ; i++)
{

}

Sum ~ 0 ; / * check whether every node in the

for(j ~l ;j <~nodenbr; j ++)

Sum +~ gr aph [i] [j] ;
if (Sum>~ l)

fo r (j~ l;j < ~nodenbr ;j+ +)

Sum + ~ graph [j] [i] ;

input graph has at l east one exi t
* /

/ * if a ll n odes i n t he inpu t graphs
have a t least one ex i t node , then
che ck whether they a ls o have at
l e as t one entry arc or v ertix .
Otherwise , they won't be
r eachab le and the input graph
won't be a digr a ph * /

/ * if one of the nodes in t he input
graph d oe s n 't h ave an entry o r
exit, then the input gr aph i s not
a digraph */

if(Sum ~~ 0) notd igraph 1;

re t urn not digraph ;

/ ***

The fol lowing p r ocedure applies Cunn ingham 's decompos i tion algorithm
[Cunningh am 82] .

******** * **/

vo id algori thm()
{
int

p,
q,
node in S,

qinS ,
i, j ,k;

S [O]~T[O] = l ;

S[l] ~T[l]~nodenbr;

Snode ~ Tnode = 2 ;

/* t he ver t e x chosen from T */
/* the vertex chosen from V (G) */
/* fl ag to check whether a ve rtex is

in S */
/ * to check whether q is in S * /
/* u s ed as loop ing variables * /

/ * initializing the se t s S and T
to contai n xl y 2 */

37

wh ile(Tnode > 0) /* while the algorithm has not
f inished splitting the graph * /

p T[Tnode - 1J

T [Tnode - 1J 0 ;

/* choose p to b e an element f rom T,
because we wil l try every
element in T to che ck whether it
can be split from the original
graph and added t o the s et S, so
at the end of t h e al gorithm the
set S wou ld b e o ne of the split
sets * /

/* deleting element p from T
because it was split from the
graph */

Tnode - - ; /* de crement the number of nodes in
T by 1 */

ver tnb = nodenbr;
fp r(i= 0 ; i<nodenb r ; i ++)

{
q = Ve rt i ce[iJ; /* choose q to be o ne of t he

vertices */
/* check if q i s in S */

qinS = 0;
for(j= O; j<Snode;j++)

{
if(q == S[jJ) qinS = 1 ;

/* if q is not in S and one of the
predicates P(x1, y1, p , q) or
P(x2, y2 , q, p) is tru e, then
node q would b e a good candi da te
to be added to the split se t S
(re f er to page 4 to se e how to
check whether P is true) */

if ((qinS ==O) &&(checkP(1,2 ,p, q) II (checkP(3,4,q,p))))
{

S [S node] = q ;
T[Tnode] =q ;
Snode++ ;

Tnode++ ;

/* increment the number of nodes i n
S by one a f ter adding node q to
i t */

/* increment the number of no des in
T by one after add ing node q to
i t */

}/* end of for */
}/* e nd of wh ile */

k = 0;
Eor(i =O ;i<nodenbr;i ++)

{

/* fill the V (G) /S nodes in t he set
S2 */

•
)

l
~i
~I

}

38

/* check whether the node in V(G) is
in S */

node in S = 0;
for(J=07(j<Snode)&&(node in S==O) ;j++)

if(Vertice[iJ == S[jJ)
node in S = 1 ;

if(node in S != 1)

S2 [k++J = Vertice[iJ

/* if the node i s not in S, add i t
to S2, which conatins the nodes
o f V(G)\S */

S2node = nodenbr - Snode; /* number of nodes in S2 is equal to
the numb e r of the input graph
n odes minus the number of nodes
in SI */

This procedur e checks whether there was a split. Then, i f a split has
occurred the procedure calls build sub() procedure, to build the graphs
of the two split sets, Sand V(G)\S.

***/

void split check ()
{

int No SpIlt,

node in S, -

i, j ;

No Split = 0;

if(Snode == (nodenbr -1))

No Split 1 ;

else

for (i=O;i<Snode;i++)

{

/* flag to check whether a split has
occurred */

/* flag to check if a node is in the
set S */

/* used as looping variables */

/* check if x2, yl are in S, or if S
has n-l nodes, i.e., no split has
occurred */

/* initialize the No SpIlt variabl e

*/
/* if number of nodes in S after

the s p lit i s e qu a Ito (n - 1) ,
where the nu mber of nodes in the
graph, then no split has occurred

*/
/* turn the split f lag on, meaning

that no split has occurred */

/* if the set S contain yl or x2
after running the program, then
no split has occurred */

if((S[iJ 2)II(S[iJ==3))
No Split = 1;

}
if(No Split == 1)

printf (··There is no
else

{

/* if no split has o ccurred */
Split\n") ;

/* if a split has occurred call
build sub procedure to start
buildIng the graphs of the two
split sets, Sand V(G)\S */

•
)

~
~,

~: -, ,.

,.
'.

~ -

39

build~sub ()

/******** ****************** ***** ************** ** ************* *********

This procedure b u ilds the graph s o f two split s et s , Sand V (G)\S.

***/
void build s ub()

{

}

int i, j ; /* us ed a s looping va r iabl e s * /

fo r (j =O; j< Snode ; j++)
{

f or (i =O;i <Snode;i+ +)

Sub1[S[jl l [S [i ll graph [S[jll
}

/* using the original input graph
connections among nodes , t he t wo
sp l it graphs a re built as two
ad jacency matr i ces . Sub 1 wi l l
r epresent the ad j acency matr i x
of the first subgraph and Sub2
will represent the second o n e * /

[S [il l;

for(j =O; j<S2 n o de ; j++)
{
for (i= O; i <S2 n ode ;i++)

Sub2 [S 2 [j II [S2 [ill graph [S 2 [j II [S2 [i ll ;

nodenbr++ ;
/* add ma rker to the two Subraphs * /

/ * add the marke r node t o nodes i n
Sub1 a nd Sub2 * /

S [Snode+ +l S2 [S2node++ 1 nodenbr;
/* c onnect the nodes in Sub1 t o the

marker * /
f or(i =O;i«Snode-1) ;i ++)

{
for(j=O;j«S2node-1) ;j++)

{
if(gr aph[S [ill [S 2 [jll 1)
Sub1[S[ill[S[Snode- 1 l l = 1 ;

i f(g raph [S2[j ll [S [i l l == 1)
Sub1 [S [Snode -1 l l [S [il l = 1 ;

/ * con nect the node s i n Sub2 to the
marker */

f or (i =O; i< (S2node -1); i ++)
{

f o r(j=O;j«Sn ode - ll ; j++)
{

i f (graph [S2 [ill [S [j II 1)
Sub 2 [S2 [ill [S2 [S2 nod e - 1 ll

if(graph[S[jl l[S2[ill == 1)
Sub2 [S2 [S 2node-1ll [S2 [ill

1 · ,

1 ;

/***** ** ** ** * ** ********** * ***

The followi n g procedure print the t wo deco mpo sed subgraphs .
print t hem as adjacency matric e s

It will

\

)

~
~,
'<1
'I ...

(.

40

***/

void print s ubgraphs()
{
int i ,j;

p rintf (" Subgraph 1 : \n")

for(i =O;i<=nodenbr;i++)
{
for(j =O; j<=nodenbr; j+ +)

{
if (Sub l [S[iJJ[j J == 1)

pr intf("%d -> %d\n",S[ij,j)

pr i ntf (" Subgraph 2 : \n")

for (i= O;i <=nodenbr; i ++)
{
for(j=O;j<=nodenbr;j++)

{
if (Sub2[S2[iJ J [j] == 1)

pri n tf("%d - > %d\n",S2 [iJ , j)

/* used as looping variables */

/ * print subgraph 1 as an adjacency
matrix showing the edges among
nodes */

/* print subgraph 2 as a n adjacency
matrix showing the edge s among
nodes * /

/***

Thi s procedure's
vert ices ' labels
the input graph,

job is to do the re labe ling, i.e" to flip the
among each other without affecting the consistency of

***/
void relabel ()
{

int Temp [Maxn dJ ,

i, j;

for(i=O;i<nodenbr;i++)
Temp [iJ = gr aph [O J [iJ

for(i=O;i«nodenbr-l) ;i ++)
{

fo r (j= O; j<nodenbr;j++)

/* a temporary array used to ho ld
the f lippe d node */

/* us ed as looping variables */

/ * saving the graph's f i rs t node
c onnect i ons, to other graph
no des, into the array Temp */

/* moving up all the inpu t graph's
nodes but the fir st one */

graph [iJ [j] graph [i +l J [j J ;

fo r (i=O ;i <nodenbr;i++)

/ * moving the first input graph
node, which is saved in Temp, to
be the last node in the graph */

graph [nodenbr J [iJ = Temp [i J ;

I

)

~
~ ..

.
~

(.

a l go rit h m() ;

/ * call the pro cedure, algo rithm,
t rying t o split the graph
verti c es */

41

/ ***

This procedure c heck s whether the predi c at e P (x, y, p, q) is true . We
c an s a y t ha t the pre d i cate is true if one o f these t wo cond it i o ns is
t r ue :
-(p, q) is a n e dge in the graph G, whereas eithe r (p, y) o r (x, q) is
no t an e d ge in the graph G.
- (p, q) is no t an e dge in t he graph G, whereas (p, y) a nd (x, q) a r e
e dges in the g r aph G.

***/

int c heckP (x,y~p , q)
int x,y,p, q ;
{

if (((graph[p] [q]) &&((!graph [p] [y]) I I (!graph[x] [q]))) II
((!g r aph [p] [q]) && (graph [p] [y] && gra ph [x] [q])))

r e tur n 1; /* i f P (x, y, p , q) i s true * /
e l s e

r e turn 0 ; /* if P(x, y, p, q) i s no t t ru e */

42

The following is the forman ,c file,

/ ***

This program implements Forman's a l gorithm for decompos ing an m- graph
into prime subgraphs. I t takes as input m- g r aph in the form of
adjacency matr ix. Then it trie s to bu il d t h e m-graph spanning chart, by
that the problem of f inding t he prime program decompos it i o n of an m­
graph is t r a n sformed i nt o a problem of d e compo sing spanni ng charts.
After that, t he tie r - i p a t hs will be developed and finally, it tests the
tier - i paths f or s ubprogram cu t sets. At the end, the result is p r inted
in the form of decomposed spanning trees .

*** /

#include <stdio.h>
#include<stdlib.h>
i nc l ude <string . h >

#define entry
#define p redica t e
#define join
#define assignment
#def ine goto
#define call

s tru c t nn

int i d;
i nt l abel;
struct nn
i nt ntype ;
s t r uct n n

1
2
3
4
5
6

*succ [2]

*p r e d,
*c orr;

int tier;
i n t t i er count ;

i n t go to l[10]

int joinl [10]

int nb go t o ;
int nb Join;

s truct mg r aph
{

s t ruc t nn ent ryl,
vertices [10 0] ,
exi t ;

/* these are the node t ypes used i n
m- graph a nd i t s decompo sed parts
*/

/* this structure represent the data
structu re of no d es in t h e m-graph
and its decomposed p a rt s * /

/* i d number of node * /
/* label a ssociated with node * /
/* arcs t o suc cessor n ode s */
/* node type */
/* previ ous node i n spanning tree */
/* if a j oi n node in the s p a nning

tre e t h is field points to the
corresponding goto node * /

/ * tier number * /
/ * if more than one tier - i path

meets at this nod e the value of
t ier count is 2 * /

-

/ * if a goto node in the s panning
tre e this fiel d contains se t o f
all node s that t his n ode goes to
* /

/ * if a join node i n the spann i ng
tree th i s f ield c o n tai ns s e t of
all no d e s t hat joins this node
*/

/* numbe r of nodes in gotol */
/ * number of nodes in jo inl * /

/* data s t r ucture of t he m-graph * /

/ * e ntry nod e * /
/* nodes in the m- graph * /
/* e x it node * /

~,
-I
1

-\
.}

struct qq

struct nn *first;
struct qq *next;

struct s

struct nn *first;
struct s *next;

typedef st ruct mgraph graph;
t ypedef struct qq goto que ue ;
typedef struct nn node;
t yp edef st ruct _s goto st ;

void initialize () ;
vo id bui l d graph() ;
v oid stepl () ;
void step2();
void process tier()
void copynode();
void Remove();
void Print result()

graph *M;

goto queue *fr qu,

*rear qUi

goto st *fr st ;

in t last label,

nb goto st 0 ;

FILE * in ;

main ()
{

43

/* queue containing pointers to the
goto nodes in the m-graph * /

/* stack containing pointers t o the
goto nodes i n the m-graph */

/* represents the m-graph to be
decomposed */

/* f ront pointer of the goto queue
*/

/* r ear pointer of the goto queue */

/ * f ront pointer of the goto st a ck
*/

/* ho lds the last label number us ed
* /

/* number of elements in the goto
stack */

/* pointer to the input file */

if ((in = f open ("/v/refae/thesls/forman/f lnp", "r")) NULL)
{
printf ("We
exi t (1) ;
}

init i alize()

can' t open the input fi le \n") ;

buil d_graph ()

/* call initialize () to initiali z e
the var iables of the program * /

/* call build graph() to r ead the
input file and start building the
m-graph */

stepl ()
step2 ()

Prlnt r esul t(&M->entry l ,O)

}

/ * print the re su l t o f the
d ecompos it ion */

/ ***

The follow ing procedure i ni tia li zes all the global variabl es us e d in
this p rogram.

44

**/

void initia l iz e()
{
int i,j ;

M = mal loc(siz eof(graph))

M- >entryl.labe l = 0 ;

M- >entryl.pr ed = NULL ;
M->entryl . tier = - 1;
M-> ent ryl.t l er count 0;
M-> exit . label = 0;
M- >ex it .pred = NULL;
M- >exit. t ie r = -1;
M->exit . tier cou n t 0;

for(i=0;i<10 ;I++)
{

}

M- >entryl . gotol[iJ = 0 ;
M->ent ryl.join l[iJ = 0 ;
M-> exit .gotol[i J 0 ;
M- >exit.joinl [i J 0;

M-> e ntryl. nb goto = 0;
M->en tryl. nb_join = 0 ;
M- >exit. nb_ goto 0 ;
M- >exit . nb jO ln = 0 ;

fo r (i =0 ; i<100;i++)

{

}

M->vertices[iJ . label = 0;
M->vertices [iJ .pred = NULL;
M->verti ces[iJ . tier = - 1 ;
M->ver tices [iJ . ti er c ount 0;
for(j =0 ;j<1 0 ;j++)

{
M- >verti ces[i] . gotol[j] = 0;

M- >ver tices[i] . joinl[j] 0;
}

M- >vertice s [i] .nb _go t o 0;
M->vert ices [i] . nb] Oln 0;

/ * create spac e for the graph in the
memory a nd init ial i z e it */

/ * init ialize entry a nd e xit nodes
* /

/* initia l ize a ll graph nodes but
entry a nd exit ones */

/ **

This procedure bui lds a graph as a n adj a cency matr ix.
input fr om a fil e and cons truct s the graph .

I t reads t he

*** /

~,
It
I
\
}

void bUlld graph()
{
int nb_nodes,

labe l ,
type,
succ I ,
succ2,

id,
i i

/* number of nodes */
/* label number of the node */
/* type of the node */
/* suc cessor node */

45

/* if a predicate node in the graph
this field points to its second
successor node */

/* id unmber of the node * /
/* used as looping variable */

fscanf(in," %d\n",&nb nodes); /* reads number of nodes in the
graph */

fscanf(in, " %d %d %d\ n",&id,&type,&SuccI) ;

M->entryl.id = id; /* fill the entry node with the data
read * /

M->entryl. succ[O]
M->ent r yl .ntype =

&M- >vertices [succI - 2J ;
type;

for(i =O;i«nb no des - I);i++)
{
fscanf (in, "%d %d", &id, &type) /* reads id number and node type of

t he graph nodes */
if (type ! = 2)

fscanf(in," %d\n",&suc c I)

M- >vertices [iJ .succ[OJ
}
else
{

/* if the node is not a predicate
i.e. it has only one successor */

/* reads the node's successor number
*/

/* make an arc from the node to its
successor node * /

&M ->vert i ces [succl-2J ;

/* if the node is a predicat e
i . e . it has two successors */

/* r eads the node's success o rs
numbers */

fscanf(in," %d %d\n", &suc c l, &succ2) ;

~

M- >vertices [i]
M->vertices [i]

. succ[OJ

.suc c [IJ

M->ver t ices [iJ . id id;

/ * make an arc from the node to its
successors nodes */

&M- >vertices[succl-2]
&M->vertices [succ2-2J ;

/ * fill the node wi th its type and
id number * /

M- >vertices[iJ . ntype = type ;

/************ ***

This procedure transforms M int o a span ning chart by performing a depth
first
stepl
chart .

s e arch
places

This

for the join nodes which a re then split. In additi o n,
po int ers i n nodes to their predece s sors in the spann ing

enables the spanning chart to be searched backwards.

*** /

void step1 ()
{
struct ss

struct nn *first,
*s econd ;

int j;

stru ct ss *next;
} ;

typedef struct ss stack;
s t a c k *top ,

*tmp;
int nb stack 0,

i , j ;
node *v,

*u,

*q;

i=O ;
top = ma l loc(sizeof(stack))
top- >firs t = &M- >entryl ;

top->second = NULL;
top->j = -1 ;
top - >next = NULL ;
nb s t a c k = 1;

while(nb stac k >0)

v
u

top- >first;
top - >second;

j top->j ;
tmp = top;
t op = t op->n ext;
free (tmp) ;

nb stac k- - ;

i f(v - >label 0)

i++;
v- >label i;
v - >pred u;

46

/* stack used in the creation of the
graph spanning tree */

/* it contains the node being
processed with its p r edecessor,
repective l y * /

/* if the predecessor node of the
node being processed i s a
pred i cate, this field specifies
which successor of that predicate
is the node being proces e d */

/* pointer to the node in the top of
the s t ack */

/* number of elements i n the stack
*/

/* used as looping variables */
/* pointer to the node being

processed */
/* the prde c essor node of the one

being processed * /
/* pointer to the go to node being

created in the process of
creating the i nput graph spann i ng
tree */

/* s tart the pro cess by initia t i ng
the entry node to be at the top
of the stack */

/* wh ile t h e r e are st ill nodes in
the stack, cont inue the process
o f placing pointers in nodes to
their predecessors i n the
spanning trees */

/ * the node being processed * /
/* the predecessor of the node b e ing

processed */

/* delete this en t ry, c ontaining t he
node being processed and its
predecessor from the stack */

/ * decrement the number of the stack
elements by one */

/* if it hasn ' t been processed
before */

}

4-7

/* add the successor node of the
node being processed to the stack
as the main node to be processed
later */

tmp = malloc(sizeof(stack))
tmp->first = v - >succ[O]
tmp->second = V ;
tmp->j = 1;
if(nb stack == 0)

{
tmp->nex t = NULL ;
top = tmp ;

}
else

{
tmp->next top ;
top = tmp;

}
nb stack++; / * increments the stack by one */

/* if the node being processed is a
predicate t hen two entries of it
should be entered to the stack .
the first wi l l be combining the
node with its first successor and
the second will be combining the
node with its second successor * /

if(v - >ntype == predicate)
{
tmp = malloc(sizeof(stack))
tmp->first = v->succ[l]
tmp->second = V;
tmp->j = 2;
if(nb stack == 0)

{

}

t mp->next NULL;
top = tmp ;

else
{

}

tmp->next
top = tmp;

nb stack++ ;
T

top ;

else
{ /* if the node on the top of the

stack was processed before. Then
a goto node will be created in
the spanning tree to be placed
between the node being processed
and its predecessor node * /

q = malloc(sizeof(node)) ;
memset(q, ' \0 ' ,sizeof(node))
q->ntype goto ;
i+ +;
q - >labe I I;

q - >gotol[q->nb_ goto+ +]
q->pred = u;
q->succ[O] = NULL ;

/ * add the label of the node being
processed to the goto array of
t he nodes that this goto node
goes to */

v - >label;

'I
I
I

}
i

.~
.~

)
-t

.~
.~
-t
)

v - >joinl[v->nb join++J
v->corr = q;

if (v->label == 1)

copynode(q,&M->exit)
free (q) ;

/* add the label of the node being
processed to the join array of
the nodes that joins this node
* /

v->label ;

48

/* if the node being processed is
the entry node, then the goto
node will be the same as the exit
node */

/* because we have substitute it
with M->exit so no need for
it, so its pred node will be
pointing to M- >exit node */

u->succ[j - 1J &M->exit;
}
else

u->sucC[j-1J q;

}
last label = i; / * holds the last label number used

*/

/** ********************* ********

Step2 marks each node with the number of the tier - i path to which it
belongs . This is done by starting with the tier-O path and following it
backwards . By the definition of a tier- 0 path, the goto nodes of the
tier- l paths correspond to the join nodes on the tier-O path. Pointers
to these goto nodes are placed both in a queue (for further processing
in step2) and in a stack (f or processing in step 3) . Processing
continues in a similar manner for higher numbered tier-i paths. In
addition, predicate nodes where two tier-i paths with the same number
come together are marked in order to enable step3 to process only those
paths that belong to the same set t i er-i paths .

***/

vo i d s t ep2 ()
{
int i,

nb goto qu,

node *v,

*w,

*n tmp,
*end of tier;

goto queue *q_tmp ;

goto st *st tmp ;

/*

/*

/*

/*

/*
/*

used in the keeping track of what
tier number the process is in * /
number of nodes in the goto queue
*/
used to hold t he elements at the
top of the goto queue */
use d to hold v - >corr if v is join
node */
temporary variable */
used to hold the node at the top
of the goto stack before it is
sent as a parameter to the
procedure process t l er */

/ * temporary pointer for a goto
queue node */

/* t emporary pointer for a go t o
stack node */

i

.~
';
) ..

49

v = &M-> exit ; /* start the p rocess from t he graph
e xi t node * /

v-> t ier = 0 ; / * the fi rs t ti er is t ie r-O whic h i s
the uniqu e pathfrom the e ntry
node o f the graph to the e xit
node o f t he g raph */

/ * Put v in the goto queue * /
fr qu = malloc(sizeof(got o queue)) ;
memset (fr_ qu , ' \0 ' , s izeof (goto_queue))
fr_qu-> fir s t = v;
f r _ qu->n ext = NULL ;
rear qu = fr qU i
nb goto qu++ ;

fr st = malloc(s izeo f(goto st)) ;
memse t (fr st ,' \0 ' , sizeof (goto st))
fr st->first = v ;
f r qu ->next NULL;
nb goto s t++ ;

whil e (nb goto qu > 0)

v = fr qu- >flrs t;
q t mp = fr qU i
f r qu = fr qu ->next ;
f ree (q_tmp) ;
nb_ goto_ qu - - ;
i = v -> t i er ;

/* Put v in the g o to stack */

/* whi le there is stil l s ome nodes
in the goto queue , the p roces s of
marking e a ch node with the number
o f the t ier-i path to which i t
belongs conti nue */

/* remove v from the goto queue */

whi le ((v- >pred ! = NULL)&&(v->pred - >t ier == - 1))
{ /* wh i le the node is not the e nt ry

no de and it s predecessor n ode
hasn't been mark e d wit h a tier-i
path */

v = v->pred;
v->tie r = i;
if(v- >ntype = = join)

w = v->corr ;
w- >tier = i +1;

/ * if the node is a join node mark
it s correspo nd ing got o node with
a tier - (i+ 1) */

/* s tore the corresponding goto node
i n the go to qu eue and the goto
stack * /

q tmp = malloc(s izeof(goto qu eue)) ;
memset(q tmp, '\0' ,slz e o f(goto queue))

q _tmp ->first = w;
q t mp - >nex t = NULL;

If(nb got o qu > 0)
{

}

re a r qu->next = q t mp;
r ear qu q_t mp;

else
{
fr qu = re a r qu q tmp ;

}
nb goto qu++ ;
st t mp = mall oc (sizeof(go to st)) ;
memset(st tmp, ' \0' ,sizeof (goto st))

..
)

st tmp - >first = v->corr;
if(nb goto st > 0)

J

{
st tmp->next = fr st;
fr st st tmp;

}
e l se

{
fr st = st tmp;
fr st - >next = NULL;

}
nb goto st++;

50

/* if more than one tier-i path
meets at this node the value path
of tier_count is 2 * /

if((v - >pred != NULL)&&(v - >tier = = v->pred->tier))

}

v->pred->tier count = 2;
}

M- >entryl.tier count 2· ,

while(nb goto st > 0)
{
end of tier = fr s t->first ;
s t tmp = fr st;
fr st = fr st->next;
free (st tmp);
nb goto st- - ;
process tler(end of tier)

} -

/* while there are still some nodes
in the goto stack, call the
process tier procedur e to process
all the t i er-i paths f rom high
tier number to low */

/ ***

This step processes all the tier-i pa ths from high tier number t o low by
us ing the stack of goto node pointers produced in s tep2. In the case of
a predicate node where two tier-i paths of the same number come
together, when the node encount e red for the second time, a pointer to
the predicate node is placed on the stack so that it is processed like a
goto node . This step maintains two pointers front and rear ; the
candidate pair of arcs is the arc e n t ering the node to wh ich front
points and the arc along the t i e r -i path exi t ing the node t o which rear
points.

***/

void process tier(node *end)
{
node *rear,

*front,
*subprog exit;

goto st *st tmp;

/* the candidate pair of arcs is the
arc entering the node to which
front points and the arc along
the tier - i path exiting the node
to which rear points */

/ * points to the cutset being
removed */

/* t emporary variable for goto stack
*/

..
)

int Rgoto [10] ,

Rjoin [10] ,
Goto[10] ,

Join[10],
I nb goto,

I nb join,

9 nb ,

j nb ,

9 J flag,

rear_pred,
i;

rear = end->pred ;
for(i=0;i<10 ; i++)

{
Rgoto [iJ end - >gotol [i]

Rjo i n[i] end->joinl[i]

Goto[i] rear->gotol[iJ

Join[i] rear - >joinl[iJ

}
9 nb end->nb goto;

j nb end->nb join;

I nb goto rear- >nb goto ;

I nb jOln rear->nb jO l n ;

rear pred 1 ·

51

/* temporary variables used to
update the rear node's goto and
join sets, when rear node type is
a predicate */

/* temporary variables used to find
the candidate pair of arcs that
could be the cutset. The two
arcs has to have same Goto and
Join nodes */

/* variable used to hold number of
goto nodes in the goto array of
the node rear */

/* variable used to hold number of
join nodes in the join array of
the node rear */

/* variable used t o hold number of
goto nodes in the goto array of
the node end * /

/* variable used to hold number of
join nodes in t he join array of
the node end */

/* flag to check whether the Goto
set is the same as Join's set */

/* variables used to ensu re that
the algorithm doesn't go behind
entry or after exit node,
otherwise it would crash */

/* used as loop i ng var i able */

/* Rgoto is initialized to the goto
set of the node end */

/* Rjoin is initialized to the join
set of the node end */

/* Goto is initialized to the goto
set of the node rear */

/* Join is i nitialized to the join
set of the node rear * /

/* 9 nb is initialized to the number
of goto nodes in the goto set of
node end * /

/* j nb is lnitiallzed to the number
of join nodes in the join set of
node end */

/* I nb goto is initialized to the
number of goto nodes in the goto
set of node rear * /

/ * I nb J o in l S lnltialized to the
numb e r of join nodes in the join
set of node rear */

52

/* while the pair of arcs, end and
rear, have the same tier path,
and the rear node doesn't have
more than one tier meeting at it ;
try to find a cutset between
these two arcs */

while((rear pred == l)&&(rear->tier == end->tier)
&&(rear - >tier count == 0))

{
i f((rear->ntype ! = assignment)&&(rear->pred ! = NULL))

{ /* if rear is not an assignment node
* /

fron t = rear->pred ;
and it is not the entry node

/ * assign front to be rear's
predecessor */

for(i=O ; i<front->nb goto ; i++)
{ /* Goto = Goto U Front's goto set * /

Goto[l nb goto++] front->gotol[i]

for(i=O ; i<front - >nb join;i++)
{ /* Join = Join U Front's join set */

}
Join[~nb_join++] = front->joinl[i];

front pred = 1 ;

whil e((front pred == 1)
&&(front - >tier == rear->tier)

&&(front->tier count 0))
/ * while Front and rear are on the

same tier path * /
9 j flag = 0 ;
for (i =0;i<10;i++) /* check whether Goto Join */

{
if(Goto[i] != Join[i])

9 j flag = 1 ;
}

if((g_ j _ flag ! = 1)&&
(! ((rear == end->pred) &&

(front->pred->pred == NULL))))
/ * if Goto = Join , and the arcs are

not the entry and e xi t arcs of
the graph */

/* when the a subprogram cuts et is
found, Remove is called to create
the spanning tree hierarchy * /

Remove(&front,&rear,&subprog_ex it)

f or(i=0 ; i<10;i++)
{

Goto[i]
1 nb goto

}

Join[i] = 0 ;
1 nb join

/ * Goto and Join are set to empty
because the goto and join nodes
have been removed */

0;

/ * put subprog e x it in t he stack in
order to be tested later on for
subprogram cutsets in the
spanning tree t hat was removed */

st tmp = malloc(sizeof(goto st)) ;
memset (st tmp, , \0' ,sizeof (goto st))
st tmp - >flrst = subprog exit;
if(nb goto st > 0) -

{
st tmp - >nex t fr st;

}

}

fr st st tmp;
}

else
{
fr st = st_tmp ;
fr st->next = NULL ;

}
nb goto st++;

}

}
if(front->pred ! = NULL)

{
front = front - >pred; /* move front back to i ts

predecessor * /
/* Goto = Goto U the goto set of

Front node */
for(i=O;i<front->nb
Goto[l nb goto++J

goto; i+ +)
front->gotol [iJ ;

/ * Join = Join U the join set of
Front node */

for(i=O ; i<front->nb join ; i++)
JOln[l nb j o in++J -: front->joinl[iJ ;

e lse
fron t pred 0 ;

/* add the set of goto nodes from
the rear node to Rgoto * /

for(i =O; i<rear->nb goto ; i++)
Rgoto [g nb+-+ J rear- >gotol [iJ ;

/ * add the set of jo in nodes from
the rear node to Rjoin * /

for(i=O;i<rear->nb join;i++)
R j 0 i n [j nb + + J = rea r - > j 0 i n 1 [i J ;

if (rear->pred != NULL)
{

}

rear = rear - >pred ;
for(i=0 ; i<10 ; i++)

{
Goto [iJ rear->gotol [iJ

Joi n[iJ rear->joinl [iJ

else rear pred = 0 ;

/ * add the set of goto nodes fro m
the rear node to Goto * /

/ * add the set of join nodes from
the rear node to Join * /

if(rear->tier count ! = 0)
{
if(rear->t i er count == 1)

{

53

/ * if the node tier is not 2 add it
to the top of the stack * /

st tmp = malloc(sizeof(goto st)) ;
memset (st tmp , I \0 I, slzeof (goto st)) ;
st tmp->first = rear ;

If(nb goto st > 0)
{
st tmp->nex t = fr s t;
fr s t s t t mp ;

}

}

}

54

else
{
fr st = s t~tmp;

fr st->next = NULL;
}

nb goto st++;
}
rear - >tier count = rear ->tier count - 1;

if (rear- >ntype predicate)

{

{

{

}
}

for(i=O ;l<g nb;i++)

rear->gotol[rear->nb goto ++]
}

for(i =O;i<j nb;i++)

rea r->j 9 inl[rear -> nb~join++]

/* if the rear node is a predicat e
*/

/* add to the nodes in the Rgoto to
the rear' s goto se t * /

= Rgoto [i] ;

/* add to the nodes i n the Rjo in t o
the rear's join set */

= Rjoin[i];

/**

Th is procedure removes the prime subgraph from the origina l graph.
Also, it replaces the d ecomposed graph wi th a call node in t he orig ina l
graph.
***/

void Remove (node **fr,node **re,node ** exi t)
{
node *tmp,

*temp,

*temp1,

*rear,
*front;

f ront = *fr;
r ea r *re;

tmp malloc (si zeof(node));
memset(tmp, '\0' ,sizeof(node))
tmp ->ntype = ca ll ;

tmp ->pred = fr ont - >pred ;

/ *

/*

/*

va riable used to create the ca ll
node to the subprogram cutset */
variable used to create the entry
node of the subprogram cuts et * /
variable us ed to c reate the goto
node of the subprogram cutset */

/* the call node t hat wi ll call the
subprogram cut set from the
original graph */

if(rear->suc c[O] - >tie r < rear->succ[l] -> tier)

}

tmp - >su cc [1] = rear->succ [0]
rear- >succ[O] - >pre d = tmp ;

else
{
tmp->succ [l] rear->succ[l]

/* all the nodes outside the
subprogram have there tier
number le ss than the ones
ins i de the subprogram */

/* conne cting tmp with its successor
*/

}

rear->succ[l] ->pred = tmp;
}
tmp->label = ++last label;

55

/* check whether the prdecessor node
of the call node is a predicate
*/

if(front->pred->ntype == predicate)
{ if (front->pred->succ [1] == front)

front->pred - >succ[l] tmp;
else
front - >pred -> succ[O] tmp;

}
else

front->pred->succ[O] = tmp;
temp = ma lloc(sizeof(node));
memset (temp, '\0' ,sizeof (node))
temp - >ntype = entry;

temp -> tier count = 2;
temp -> succ[O] = front;
front->pred = temp;
tmp->succ[O] = temp;
temp->label = ++last label;
temp->tier = front ->tier;
tmp->tier = temp->tier;

temp1 = malloc(sizeof(node));
memset (temp1, '\0' ,sizeof (node))
temp1- >ntype = goto; .

*exit = temp1;
temp1->pred = rear;
temp1-> t ier = rear->tier ;
temp1 - >label = ++last label;
temp1->succ[0] = tmp -;sucC[l]

if(rear->succ[O] - >pred == tmp)

rear - >succ [0]
else
rear - >succ[l]

front = tmp;
rear = tmp;
*fr front;
*re = rear;

temp1;

temp1;

/* create an entry node for the
subrpogram cutset and fill its
entries */

/* create a goto node for the
subrpogram cutset and fill its
entries */

/* link the goto node to its
predecessor */

/***

This procedure's job is to copy all the data from one node to another.

***/

{
void copynode(node *x,node *y)

int i;

y->id = x->id;
y->label = x - >label;

/* copy all the information from the
node x to the node y, and at the
e nd return y */

}

y- >succ [0] = x - >suc c [0]
y- >SU CC [1] = x ->succ [1]
y- >nty p e = x- >ntype ;
y->pred x - >pre d ;
y ->corr = x- >corr ;
y - >ti e r = x ->t i e r ;
y - >ti e r count = x ->tier

f o r (i =O ; i <1 0 ; i ++)
{

count ;

y- >goto l [i]
y -> j o inl [i]

x - >gotol [i]
x ->joinl [i]

}
y - >nb goto
y ->nb- j o in

x - >nb g o to ;
x->nb join ;

56

/ ***

This procedure prints the prime gra phs resulting fro m the de compo sitio n
o f the o rigina l graph . The result is print e d in the f o rm o f a spanning
tree .
** * ** ** ** * ********* /

voi d Print result (n o d e * t , int 1)
{
int i , j ;

if (! t) return ;

f o r (i =O ; i<l ; ++ i) printf (" ")

if (t- >n t ype == goto)
{

/ * this pro cedure is rec ursive , so
when it reac hes Null , the
procedure s ta r t s e x iting its
processes * /

printf (" Pod , %d , %d , " , t - >lab e l, t->ntype , t ->t ier)
fo r (j=O ; j<t->nb goto ; j ++)
printf("%d,",t ->gotol[j])
printf n \n")
}
e l se
printf (' (%d , %d , %d) \ n" , t - >label , t- >ntype , t - >ti er)
if (t->ntype == pre di ca t e)

{

}

Print resu l t (t-> s u cc [OJ , 1+1)
Print -resu lt (t->succ [lJ , 1+1) ;

el se
{
Pr int result (t-> succ [OJ , 1+1)

} }

APPENDIXD

INPUTS/OUTPUTS LISTING

This appendix contains the input test graphs along with their corresponding

outputs used to test the two algorithms. Forman's algorithm was tested using six different

inputs. In what foJlows the test programs are presented followed by their source and a

brief discussion.

The first test input IS taken from Sedgewick's text [Sedgewick 88] It IS a

procedure that deals with sorting an array using the insertion technique, the array to be

sorted is a global variable. The algorithm whose flow graph is to be decomposed follows

/** **

This procedure's job is to sort an array , a, using insertion techniques .
The major variables used in the procedure, which are global, are:

a: This is the array that contains the data to be sorted.
p: It i s a pointer array that is manipulated, to restrict accessing the

original array only for comparisons .
N: This is the number of elements in a.

***/

Procedure insertion
var i,

j, v : integer ;

begin
i : = 1 ;
while(i<N)

begin
P [iJ
i : =

end;

. - i;
i + 1;

i : = 2;
while (i<N)

/* used as loop variable */
/ * variables used by the arrays a and p for the

comparison */

/ * the loop initializes the P array in order to
produce an algorithm that will sort the index
array * /

/* this loop and compare the elements in a, that
are indexed by the array p. Process and
adjustments will happen in the array p. At

57

begin
V : = p [i J ;
j : = i ;

t h e end of the al gorithm , t h e index array
will be sorted so that p [lJ i s the smalles t
element in the a r ray a */

while(a [p[j - 1JJ > a[vJ) do
begin

prj] : = p[j - 1J ;
j : = j - 1 ;

end ;
p [j J V;

l : = i + 1 ;
e nd ;

e nd ;

The m-graph presentation of test input 1 program is to be found in Figure 15.

Legend

D assignment node

o join node

<> predicate node

® entry/exit node

Figure 15. The m-graph of test input 1 program

5X

59

The decomposed spanning tree oftest input 1 m-graph is presented in Figure 16.

19

dJ en
Legend 22

D assignment node

0 join node

<> predicate node

0 entry node

0 call node

D goto node

Figure 16. This is the decomposed spanning tree of the m-graph of Figure 15

60

The original program of test input 1 after being decomposed is represented here.

/ ** **

This procedure' s job is to sort an ar ray, a, us ing inserti on techniques.
The major variab l es used in the p rocedure, wh ich are globa l , are:

a : This is t he ar ray that conta ins the data t o be sorted .
p : It is a poin t er ar ray t ha t i s man ipu lat ed, to restrict acce ss ing t he

or i gina l array only for comparisons.
N: This is t he numb e r o f elements in a .

*** /

Proc edure insertion
var i,

j, v: integer ;

begin
i . - 1 ;

Subprogram 1
whil e(i<N)

beg in
P[iJ .- l;
l . - i + 1;

end ;
Subprogr am 2

i = 2;
Subp rogram 3

whil e (i<N)

begi n
Subprogram 4

v : = p [iJ ;
Subprogram 5

j : = i ;
Subprogr am 6

whi le (a [p [j -l J J

/ * u sed as loop variable */
/* variable s used by the arrays a and p

for the comparison */

/* the first prime program starts here */
/* t he loop initi a lizes the P array in

orde r to produce a n a lgori thm that wi ll
sor t the i ndex array * /

/ * the s econd pr ime program starts here * /

/ * the t hird prime program s tarts he re */
/* th is l oop and compare the elements i n

a, tha t are i ndexed by t he array p .
Proces s and adjustments will happen in
the array p . At the end of the
al gorithm, t he index array will be
sorted so t h a t p [lJ is the s mal les t
e lement in the array a */

/* the fou rth p rime program starts he re */

/ * the fifth prime prog ram starts h e re * /

/* the six th prime program start s h ere */
> a[vJ) do

begin
p [j J p [j - l J

j : = j - 1;
end;

e nd Subprogram 6 / * t he sixth prime program ends here * /
p [j J : = v ;

i i + 1;
end Subprogram 5

e nd Subprogram 4
end Subp r ogram 3

end Subprogram 2
end Subprogram 1
end ;
end ;

/ *
/ *
/ *
/*
/ *

the
the
t h e
the
the

f i f t h p rime progr am ends here * /
fourth prime program ends he r e * /
t h i rd p rime program ends here * /
second prime program ends here * /
fi rst prime program ends he re */

61

The second test input is taken from Sedgewick's text [Sedgewick 88]. It is a

function that deals with searching an array using the binary search technique, the array to

be searched, a, is a global variable The algorithm whose flow graph is to be decomposed

follows

/ ***

This funct i on is t o s e a rc h f o r an element in an array a. It use s the
binary sear c h technique , which divide the set o f re cords into two parts,
determine s whi ch of t h e t wo parts the key sought bel ongs to , then
concent r a tes on that par t . I t k eeps the s e t records sorted . The maj or
g lobal vari ab l es u sed in t hi s funct i on are :

a: It i s an a rray of r eco r ds , where t he k e y is the vari abl e in the
record t hat cont a ins t h e numbers t o be sea r c hed.

N: It repre s e nts t h e number o f e lements t o be s earched.
v : It is t he k ey t o b e search e d for.

***/

Func tion binarysearc h (v : integer) : integer
Var x, 1, r : int e g e r;
beg in

1 : = 1 ;
r : = N;
whil e (v < > a [xl .key o r 1 < = r) /* it compar e s v with the element at t he

middl e p osition of the table . I f v
is smaller, the n it must be in the
first half of the table; if v is
grea t e r, then it mus t be in the second
half o f t he table */

b e gin
x : = (1 + r) d i v 2 ;
if (v < a [xl. k ey) then

r : = x - I;
else

1 : = x + 1 ;
e nd;

if (v = a [xl. k ey) t he n
binarys e arch x;

e ls e
binary s earch .- N + 1;

e nd;

The m-graph presentation oftest input 2 program is to be found in Figure 17.

4

Legend

D assignment node

o join node

<> predicate node

(;) entry/exit node

e/e

14

Figure 17. The m-graph of test input 2 program

62

63

The decomposed spanning tree of test input 2 m-graph is presented in Figure 18.

28
19

22 5 25

Legend

D assignment node

0 join node

<> predicate node

0 entry node

0 call node

D goto node

Figure 18. This is the decomposed spanning tree of the m-graph of Figure 17

64

The original program test input 2 after being decomposed is represented here.

/** ***

This function is to search for an element i n an array a. It uses the
binary search technique, wh ich divide the s et of records into two part s ,
determi nes which of the t wo parts the key sought belongs to, then
concentrates on that part. It keeps the se t records sor t ed. The major
g lobal v ari ab les used in this function a re:

a: I t is an array of records, where the key is the variable in the
record that contains the numbers to be searched .

N: It represents the number of e lements to be searched.
v: It is the key to be searched for .

***/

Function binarysearch (v: integer): integer
var x, 1, r: integer;
begin

1 : = 1;
Subprogram 1 /* the fi rs t prime program starts he re */

r := N;
Subprogram 2

while (v <> a [x l .key or 1

begin
Subp rogram 3

/* the second prime program starts here */
<= r)
/* it compares v with the element at the

middle position of the table. If v
is smaller, then it must be in the
first ha lf of the table ; if v is
greater, then it mus t be in the
second half of the table */

/* the third p rime program starts here */
x := (1 + r) div 2 ;

Subprogram 4
if (v < a [x l .key)

r : = X ~ 1 ;

/* the fourth prime program starts here */
then

else
1 x + 1 ;

end Subprogram
end Subprogram 3
end;

Subprogram 5
i f(v = a[xl .key)

b inarysearch
el s e

4

then
x;

binarysearch .- N + 1 ;
end Subprogram 5

end Subprogram 2
end Subprogram 1

end;

/* the fourth prime program ends h ere */
/* the third prime program ends here * /

/* t he fi fth p rime program starts here * /

/* the fifth prime program ends here * /
/* the second prime program ends here */
/* t he first prime program ends here */

65

The third test input is taken from Sedgewick's text [Sedgewick 88] It IS a

procedure that deals with Gauss-Jordan elimination, the array to be processed, a, IS a

global variable. The algorithm whose flow graph is to be decomposed follows .

/** ***

The f o l lowing program represents t he f orward -el imi n ation p has e of
Gaus s i an elimination. The majo r vari ables used in the proc edure, whi c h
a re g loba l , a re :

a : Th is the ar ray that contains t he data to be processed .
N: Th i s is t he number of el ement s in the array a .

*** /

Procedu r e el i mi~at e
var i, j , k, max: int eger ;

t: rea l;
beg in

i : = 1 ;
wh i l e(i< N)

begin
ma x : = i;
j : = i + 1;
while (j<N)
begin

/* for e a ch i from 1 to N, we scan d own
the ith co lumn to find the largest
e l ement (in rows past the it h) . The
r ow c ontaini ng th i s e lement is
e x changed with t he ith, and then the
it h vari able i s el imi nated i n the
equations i+1 to N * /

if(abs(a [j,i]) > ab s(a[max, i])) then
max := j;
j j + 1 ;

e nd;
k : = i;
while(k < N + 1)
beg i n

t : = a [i ,k];
a [i , k] : = a [max , k]
a [max , k] . - t ;
k := k + 1 ;

e nd ;
j : = i + 1;
whi le(j <N)

begi n
k : = N + 1 ;
while(k > i)
begin

a [j, k] . - a[j,k]
k := k - 1 ;

e nd;
j : = j + 1;

e nd;
l i + 1 ;
e nd ;

end ;

/ * e liminate the ith var iab l e in the jth
equation * /

- a[i ,k]*a[j ,i] /a[i , j] ;

The m-graph representation of test input 3 program is presented in Figure 19

- ---- - - - - - - - - --+--

15 --.,-----.1

Legend

D
o

<>

assignment node

join node

predicate node

entry/exit node

Figure 19. The m-graph oftest input 3 program

66

67

The decomposed spanning tree of test input 3 m-graph is presented in Figure 20.

Legend

0 entry/exit
node

D assignment
node

0 join node

k> predicate
55 node

0 call node
31

D goto node

Figure 20. This is the decomposed spanning tree of the m-graph of Figure 19

68

The original program of test input 3 after being decomposed is presented here.

/* ** ** **********

The following program represents the forward-elimination phase of
Gaussian elimination. The major variables used in the procedure, which
are global, a re :

a : This the ar r ay that contains t h e data to be processed.
N: This is the number of e lements in the array a.

***/

Procedure elimi nat e
var i, j, k, max : integer;

t : real;
begin

i 1;
Subprogram 1

whi le(i <N)

beg in
max := l;

Subprogram 2

/* the first prime program starts h e re * /
/* f o r each i from 1 to N, we scan down

the ith c o lumn to find the largest
el ement (in rows past the ith) . The
row containing t h is element is
e xchanged wi th the ith, a nd then the
i th variable is e l iminated in the
equations i+1 to N */

/* the s econd p r ime program s t ar t s he r e */
j := i + 1 ;
wh i le(j<N)
begin

Subprogram 3
if (ab s (a [j , i])

/* the t hird prime program start s here * /
> abs (a [max,i])) then

max : = j ;
j := j + 1 ;

end Subprogram 3
e nd;

Subp r ogram 4
k : = i;

Subprogram 5
wh i le(k < N + 1)
begin

t := a[i ,k] ;
a [i , k] : = a [max, k]
a [[flaX, k] t ;
k := k + 1;

e nd;
Subprogr am 6

j : = i + 1 ;
Subprogram 7

whi le (j<N)
b egin

Subprogram B
k := N + 1;
Subprogram 9
while(k > i)

b e gi n

/* the third prime program ends here * /

/* the f ourth prime prog ram s tarts here */

/ * the fifth prime program sta r ts here */

/* the sixth pr i me program starts he r e */

/* t h e s event h prime program starts here
*/

/* the eighth prime pro gram starts here */

/* the ni neth p r ime program s tarts here * /
/ * eliminate the ith var iabl e in the jth

equat ion * /

a[j , k] .- a[j ,k] - a[i,k]*a[j,i]/a[i,j]

k : = k - 1 ;
e n d ;

j : = j + 1 ;
end Subprogram 9

e nd Subprogram 8
e nd ;

i := i + 1;
end Subpr ogram 7

e n d Subprogram 6
end Subprogram 5

end Subprogram 4
end Subprogram 2

e nd Subprogram 1
end ;

end ;

/ *
/*

/ *
/*
/ *
/ *
/ *
/ *

the
the

the
the
the
the
t he
the

69

nineth prime program ends here * /
e ight h prime program ends here */

seve nth prime program ends here * /
sixth prime program ends here */
fifth prime pro gram ends h ere * /
fourth pr ime program ends h ere */
second prime program ends here */
first prime program e nds here * /

70

The fourth test input is taken from Premkumar's thesis [Premkumar 94]. The

algorithm whose now graph is to be decomposed follows

/ ***

The f o ll o wing p rogram adds 5 to the input variable x five time s, 6
t wi ce , and 2 thri ce . Ea c h time if the value of x is less t han 1 000 , the
p r o gram a d ds 1 t o x the d if ferenc e of k and j time s .

***/

#inc lud e <stdi o .h>
ma in ()
{
int i. j . k , x, m, hl, h2 , h3, h4, h5 ;
s c a nf (" ' %- d %- d %- d %- d", &i, &j , &k, &x);
i = 0 ;
wh i l e (i < 1 0) -

i f(i < 7)

if (i < 5)

x = x + 5 ;
else

x = x + 6 ;
}

e l se
x = x + 2· ,

m = k;
wh il e(k < j)

if(x < 10 0 0)
x = x + 1;

k = k + 1 ;
}

k m;
i = l + 1 ;

p r int f (·· %- d" ,x)

J

/* do 10 iteratio ns. whi c h are : add i ng 5
to x 5 times, adding 6 to x 2 times,
and adding 2 t o x 3 times */

/* if it didn't reac h the 7th iteratio n,
this me ans it is s t ill e i ther adding 5
to x or adding 6 t o x. Otherwis e , it
should start adding 2 t o x * /

/ * if it didn't reach the 5th iteratio n,
t hen ke e p adding 5 t o x. Ot herwis e ,
start adding 6 t o x */

/* thi s l oop s e rves f o r adding 1 t o x k - j
t i me s if x is l e ss than 10 0 0 * /

The m-graph representation of test input 4 program is presented in Figure 21.

Legend

D assignment node

o join node

<> predicate node

entry/exit node

5

16

19

6

15~

~-----~ 2~-----GJ

~-----.t 20 f------'

Figure 21 . The m-graph of test input 4 program

71

The decomposed spanning tree of test input 4 m-graph is presented in Figure 22.

37

Legend

D
o

<>
o
o
D

assignment node

join node

predicate node

entry node

call node

goto node

29

Figure 22. This is the decomposed spanning tree of the m-graph of Figure 21

72

73

The test input 4 after being decomposed is represented here.

/********** * * ** * * ** * ** * * **********

The following program adds 5 to the input variable x five times, 6
tw i ce , and 2 thrice. Each time i f the value of x is less than 1000, the
progr am adds 1 to x the difference of k and j times.

****** * * ******* ************* * * ** ****************** * ****************** * * /

i nclude <stdio.h>
main ()
{
int i , j, k, x,

Subprogram 1
m, hI, h2, h3, h4 , h5;

scanf("%d %d %d %d", &i, &j,
Subprogram 2

i = 0;
Subprogram_3
while(i < 10)

{
Subprogram 4
if(i < 7)

}

Subprogram 5
i f (i < 5)

x = x + 5 ;
else

x = x + 6;
end Subprogram 5

else
x = x + 2 ;
Subprogram 6

m = k ;
Subprog ram 7

whi le(k < j)

}

Subprogram 8
if (x < 1000)

x = x + 1 ;
k = k + 1;

e n d Subprogram 8

k = m;
i = i + 1;

end Subprogram 7
end Subprogram 6

end Su bprogram 4

pr intf ("%d" , x)
e nd Subprogram 3

/* the first prime program starts here * /
&k , &x)
/ * the second prime program starts here */

/* the third pr i me program starts here */
/ * do 1 0 iterations , which a re : adding 5

to x 5 times, adding 6 to x 2 t i mes ,
and add i ng 2 to x 3 t i mes */

/ * the fourth prime program st arts here */
/* if it didn 't reach the 7th iteration,

this means i t is still either adding 5
to x o r a dding 6 to x. Otherwise, it
should start addi n g 2 to x */

/* the fifth prime program starts here */
/* if it didn't reach the 5th i tera t ion ,

t hen k eep adding 5 to x . Otherwise ,
start adding 6 t o x * /

/* the fifth prime program ends h e re * /

/ * the sixth prime program start s here */

/ * the seventh prime program starts here
* /

/ * this loop s e rve s for adding 1 to x k-j
t imes i f x is less than 1000 * /

/* the eighth p rime program starts here */

/* the eighth prime program ends here */

/ * the seventh prime program ends here */
/ * the sixth pr i me program ends here * /
/ * the fourth prime program ends here */

/* t he third prime p rogram ends here */

end Subprogram 2
e nd Subprogram 1
}

/* the second prime program ends here */
/ * the fi rst prime program ends he re * /

74

75

The fifth test input is taken from Sedgewick's text [Sedgewick 88]. It is a function

that deals with searching a string (string processing). The array to be processed, a, IS a

global variable. The algorithm whose flow graph is to be decomposed follows

/**** ***

This function does str ing check i ng. It check s for each possible
position in the text at which the pattern could match, whether it does
in fac t match. The fol lowing program searches in th is way fo r the first
occurr ence of a pat tern p [1. .M] in a text str i ng a [1. .N] The ma jor
variables us ed in th is function , which ar e global , are:

M: It represents the numbe r of characters in the st ring, to be searched
for .

N: It represents_ the di mension of t he ar ray to be searched for the
string.

a: It i s the array to be searched for the string.
p: It is an array conta i ning the string to be searched.

***/

Function brute search : int eger
Var k,

j: integer;
begin
k : = 1 ;
j : = 1 ;
repeat

if (a [k]

then
begin

p [j])

k := k + 1;
j j + 1;

end;
el se

beg in

k k -

j 1 ;
end;

until(j > M or
if (j > M) then

brutes earch
els e

brutesearch
end.

j +

k >

: = k

: = k

2 ;

N)

- M· ,

;

/* it is a poin te r into the text */
/* it is a pointer int o the pattern */

/* if the two pointers are pointing to a
mat ching character, both of them are
incremented */

/ * if j and k point t o misma tch ing
charac ters, then j is rese t to point
to the beg inning of the pattern and i
is reset to correspond to moving
the pattern to the ri ght one position
for ma tching against text */

/* if t he end of the pattern is reached
(j > M), then a match has been found
*/

The m-graph representation of test input 5 program is presented in Figure 23.

Legend

D assignment node

o join node

<> predicate node

Q entry/exit node

11

Figure 23. The m-graph of test input 5 program

15

12

76

The decomposed spanning tree of test input 5 m-graph is presented in Figure 24.

4

Legend

D
o

<> o
o
D

assignment node

join node

predicate node

entry node

call node

goto node

Figure 24. This is the decomposed spanning tree of the m-graph of Figure 23

77

78

The original program of test input 5 after being decomposed into prime graphs is

presented here.

/***

This f unction does s t ring c hecking. I t checks for each possible
p o sition in the text at which t he pattern could match, whether it does
i n fact match. The foll owing program searches in this way fo r the f irst
oc currence of a pattern p [1. .M] in a text string a [1. . N] The major
variable used in this function , which are global, are:

M: It represents the number of characters in the string, to be searched
f o r.

N: It r epresents the dimension of the array to be searched for the
str i ng.

a: I t is the array to be searched for the string.
p : It is an a r r ay conta i n ing the string t o b e searched .

***/

Function brutesearch : in teger
Var k,

j : integer ;
begin
k : = 1;
j : = 1;
r e peat

if(a[k]

then
begin

p [j])

k : = k + 1;
j . - j + 1;

end;
else
begin

k .- k - j + 2 ;
j . - 1;

end ;
until(j > M or k > N)

Subprogram 1
if (j > M) t hen

brutesearch .- k - M;
else

brute search k ;

/* it is a pointer into the tex t */
/* it is a pointer i nto the pattern */

/* if the two pointers are pointing to a
matching character, both of them are
incremented */

/* if j and k point t o mismatching
characters, then j is reset t o point
to t he beginning of the pattern and i
is reset t o correspond to moving
the pattern t o the right one position
for matching against text */

/ * the first prime program starts here */
/* if the end of the pattern is r eached

(j > M), then a match has been found
*/

end Subprogram 1 /* the first prime progra m ends here */
end .

79

The six test input representing an m-graph taken from Forman's thesis [Forman

79] and presented in Figure 25.

2

3

Legend

D assignment node

o join node

<> predicate node

Q entry/exit node

6

5

4

Figure 25. The m-graph of test input 6

The decomposed spanning tree of test input 6 m-graph is presented in Figure 26.

Legend

D
o
<>
o
o
D

7

assignment node

join node

predicate node

entry node

call node

goto node

Figure 26. This is the decomposed spanning tree of the m-graph of Figure 25

80

81

Cunningham's algorithm was tested with six different inputs. The first test input is

taken from Sedgewick's text [Sedgewick 88]. It is a procedure that deals with sorting an

array using the insertion technique, the array to be sorted is a global variable. The

algorithm whose flow graph is to be decomposed follows

/********* ********** ***** **

This pro c edure job is to sort an array, a, using inser t ion te c hnique s.
The major variables used i n the pro cedure, which are global , are:

a : This i s the a rray that contai n s the da t a to be sorted.
p: It is a p o inter array that is manipulated , to restrict accessing the

or iginal array only f or comparisons.
N: This i s the number of elements in a.

*** * ******************* /

Procedure insertion
var i ,

j, v: int e ger;

begin
i : = 1 ;
while(i<N)

beg i n
P [i]
i : =

end ;
i : = 2;
while (i<N)

beg i n

i;
i + 1;

v : = p [i] ;
j i ;

/* used as l oop variable */
/* variables used by the arrays a and p for the

c omparison */

/* the loop i nitializes the P array in order to
p r oduce an algorithm that wi ll sort the index
array */

/* this loop a nd compare the elements in a, that
are ind ex ed by the array p . Process and
adjustments will happen in the array p. At
the end of the algor i thm, the index array
will be sorted so that p [1] is the smallest
e l ement in t he array a * /

while(a[p[j-l]] > a[v]) do
begin

end ;

prj] := p[j-l]
j . - j - 1;

end ;
p [j]
i : =

end ;

v ;
i + 1;

82

Figure 27 presents the digraph of the algorithm in test input 1.

Legend

@
I

8 start node

I

Figure 27. The digraph of test input 1 algorithm

83

The two digraphs that resulted from the decomposition of test input 1 digraph are

presented in Figure 28, where node 15 is the marker.

Digraph 1.

Digraph 2

15 ------~.0------~

Legend

CD start node

Figure 28. The two digraphs resulting from the decomposition of the digraph of Figure 27

84

The algorithm of test input 1 after being decomposed is presented here.

/************* ***************** ***************** ********************** *

This procedure job is to sort an array, a, using insertion techniques.
The major variables used in the procedure, which are global, are :

a: This is the array that contains the data to be sorted .
p : It is a pointer array that is manipulated, to restrict accessing the

original array only for comparisons .
N: This is the number of elements in a .

** *** ****************************/

Procedure insertion
var i,

j, v: integer;

begin

Subprogram 1

i : = 1 ;
while (i<N)

begin
P [i] := i ;

. - i + 1; i
end;

end Subprogram 1

i : = 2;
while (i<N)

begin
v : = p [i] ;
j i;

/* used as l oop variable */
/* variables used by the arrays a and p

for the comparison */

/* the first decomposed digraph starts
here * /

/* t he loop i nitializes the P array in
order to produce an algorithm that will
sort the index array */

/* the first decomposed digraph ends here
*/

/* this loop and compare the elements in
a , that are indexed by the array p .
Process and adjustments will happen in
the array p. At the end of the
algor i thm , the index array will be
sorted so that p [1] is the smallest
element in the array a */

while(a[p[j - 1]] > a[v]) do
begin

end ;

prj] : = p [j-1]
j j - 1;

end ;
p [j] v ;

l .- i + 1 ;
end ;

85

The second test input is taken from Sedgewick's text [Sedgewick 88]. It is a

function that deals with searching an array using the binary search technique, the array to

be searched, a, is a globaJ variable. The algorithm whose flow graph is to be decomposed

follows

/ ************************** ** ** ** ****** * ************************** ** ****

Thi s f un c ti on is to s e arc h f o r an e l ement in an array a . I t u ses t h e
b ina ry s e a rch t echn i qu e , whi c h di v ides t h e s e t o f rec o rds int o t wo
parts , d e t e rmines whi c h o f the t wo p a rts the k ey s ou g ht b elongs t o , then
con centra tes on that part . I t keeps t h e se t rec o rds s o rt ed. The ma j o r
gl oba l vari abl e s used i n this func ti on are :

a : I t is a n aFray o f records, wh e r e key is the v ariabl e in t he r ecord
t hat cont a ins t he numbe rs t o be s e arche d .

N: I t r epre s e nts the o f eleme n t s t o be s e arc h e d .
v : I t i s t h e k ey to b e sea r c h ed f o r .

* * ** ** ** ** ** ****** ** *** ** /

Function binarysearc h (v : int e ger) : int e g e r
Va r x , 1 , r : i nt e ge r ;
begin

1 : = 1 ;
r : = N;
whi l e (v < > a [x l . key o r 1 <= r) / * i t compares v wi th the e leme n t a t the

midd l e posi t ion o f the t a ble. If v
i s small e r , t h e n i t mus t be in t h e
first half o f t he tab l e ; if v i s
g reat e r , the n it must b e in the s econd
ha lf o f t h e tabl e * /

beg i n
x : = (1 + r) div 2 ;

e nd ;

i f (v < a [x l . k ey) the n
r : = X - 1;

e ls e
1 : = x + 1 ;

i f (v = a [xl . k ey) the n
b i na rys earc h . - x;

e l se
b inary searc h . - N + 1;

e nd ;

86

Figure 29 presents the digraph of the algorithm in test input 2.

Legend

Q start node

Figure 29. The digraph of test input 2 algorithm

87

The two digraphs that resulted from the decomposition of test input 2 digraph are

presented in Figure 30, where node 14 is the marker.

Digraph 1.

14

4

-------0
Legend

start node

Digraph 2

Figure 30. The two digraphs resulting from the decomposition of the digraph of Figure 29

xx

The algorithm of test input 2 after being decomposed is presented here.

/ * * ** * **** * ******** * ** * * * ************** * ********** * ** * ********* * **** * * * *

This fun c t i o n is to s e arc h for a n elemen t in an array a . I t uses the
binary search technique , whi c h divides the s et o f records int o t wo
parts , d e t e rm i n e s whi c h o f the t wo p a rt s t h e key s o ught belongs to , then
c o ncentrates o n that par t . I t keeps the set re cords sorted . The maj o r
global variables used in t his functi o n a r e :

a : It is a n ar ray o f r ecords , wh e re key is the variab l e in the record
that con ta ins the numbers t o be s ear c h e d .

N : It r e pre sen ts the of e l ements t o be s e arched .
v : I t i s the k e y t o be searc hed f o r .

** * **** * * ** * * * * ****** * * ** * * **** * ************* * ** * * * *** * ***** * ** * * * * * * * * /

Fu n c ti o n binarysea r c h (v : int e g e r) : i nt eger
Var x , 1, r : i n teg er ;
b eg in

1 : = 1;
r : = N;
Subprogram 1 /* the firs t decompo sed digraph start s

h e re * /
while(v <> a [x l . k ey o r 1 <= r)/ * it compares v wi t h the eleme nt at the

middle positio n o f the tab l e . If v
i s s ma l l e r, then it must b e i n the
first half o f the table ; if v is
gre a ter , then it must b e in the seco nd
h a lf o f the tabl e * /

beg in
x . - (1 + r) d i v 2 ;

e nd ;

i f (v < a [xl . k e y) the n
r

el se
1

x- I;

x + 1 ;

if (v = a [xl . k ey) t h e n
b inarysea r c h . - x;

else
bina rysearch N + 1 ;

e nd Subpro gram 1

end ;

/ * the fir st de compo s ed d igra ph ends h ere
* /

89

The third test input is taken from Sedgewick's text [Sedgewick 88]. It IS a

procedure that deals with Gauss-Jordan elimination, the array to be processed, a, IS a

global variable The algorithm whose flow graph is to be decomposed follows

/* ********* ** ******* * ********** * **

The following program represe n ts the forward - elimination p h ase of
Gaussia n elimination. The major variables used in the p r ocedure , which
are g l oba l, are:

a: This the array that contains the data to be processed.
N: Thi s is the number of elements in the array a.

***/

Procedure eliminate
var i, j, k, max: integer;

t: real;
begin

i : = 1;
while (i<N)

begin
max : = l'

j : = i + 1;
while(j<N)
begin

/* for each i from 1 to N, we scan down
t he ith column to find the largest
e lement (in rows pa s t the i t h) . The
row containing th i s element is
exchanged with the ith , and then the
i th variable is eliminated in the
equations i +1 to N */

if(abs(a[j,i]) > abs(a[max,i])) then
max : = j;
j . - j + 1;

end;
k : = i;
while(k < N + 1)
begin

t : = a[i,k];
a [i , k] : = a [max, k]
a[max ,k] t ;
k := k + 1;

end;
j : = i + 1;
while(j<N)
begin

k := N + 1;
whi le(k > i)
begin

a[j,k] . - a[j,k]
k : = k - 1;

end;
j : = j + 1 ;

end;
i i + 1 ;
end;

end;

/* elimi nate the ith va r iable in the jth
equat i on */

- a[i ,k]*a[j, i]/a[i,j] ;

90

The digraph of the algorithm in test input 3 is presented in Figure 31 .

24

Legend

Q start node

Figure 31. The digraph of test input 3 algorithm

The digraph of test input 3 could not be decomposed by Cunningham's algorithm.

91

The fourth test input is taken from Premkumar's thesis [Premkumar 94]. The

algorithm whose flow graph is to be decomposed follows.

/***

The f o ll o wing pro gram adds 5 to the input v a riable x five times, 6 twi c e
and 2 t hrice . Ea c h time if t he value o f x is l ess than 1 000 , the
program a dds 1 to x the difference o f k and j t ime s .

*** /

#inc lude <s td i o . h>
ma in ()
{
int i, j , k, x, m, hI, h2, h3, h4, h5;
scanf (" 90 d %d %d %d" , &i , &j, &k, &x) ;

}

i = 0 ;
while(i < 1 0)

if (i < 7)

if(i < 5)

x x +
else

x = x +

e l se
x = x + 2 ;

m = k· ,
whil e (k < j)

5 ;

6 ;

if(x < 1 00 0)
x = x + 1 ;

k = k + 1 ; .,
r

k m;
l = l + 1;

p rint f (" %d" , x)

/ * do 10 i terati ons, which are: addi ng 5
t o x 5 times , adding 6 to x 2 t imes,
a nd adding 2 to x 3 times * /

/ * if it didn't r each the 7th i t erati o n,
t h is means it is still either adding 5
t o x o r adding 6 to x. Othe rwise, it
should st a rt adding 2 t o x */

/* i f it didn't r e a c h the 5th iterati o n,
t h e n keep a dding 5 t o x. Otherwise ,
start adding 6 to x * /

/ * t h is l oop serves f o r a dding 1 to x k- j
time s if x is less than 1 000 * /

92

Figure 32 presents the digraph of the algorithm in test input 4.

10

9

Legend

Q start node

Figure 32. The digraph of test input 4 algorithm

93

The representation of the two digraphs that resulted from the decomposition of

test input 4 digraph is shown in Figure 33, where node 21 is the marker.

Digraph 1:

1 .---

21

4 --~

10

9 \--------------------,

Legend

(2) start node

Digraph 2

Figure 33 The two digraphs resulting from the decomposition of the digraph of Figure 32

94

The test input 4 algorithm after being decomposed is presented here.

/ ***

The f o llowing program adds 5 t o the input variable x five times, 6 t wi ce
and 2 thri ce . Each time if the value o f x is less than 100 0 , the
program adds 1 t o x the difference o f k a nd j times.

*** /

#include <stdio .h >
main ()
{
int i, j, k, x, m, hl , h2, h3 , h4, h 5 ;
s c anf ("% d %d %d %d" , &i, &j , &k, &x)
i = 0;
Subprogram 1

whil e(i < 10)

if(i < 7)

if(i < 5)

x = x +
else

x = x +
}

else
x = x + 2 · ,

m = k;
whil e (k < j)

5 ;

6 ;

if (x < 1 00 0)
x = x + 1·

k = k + 1;

k
i

m' ,
l + 1 ;

printf C' %d" , x) ;
e nd Subprogram 1

/* the firs t decomposed digraph start s
here * /

/* do 1 0 i te rations, which are: adding 5
to x 5 times, adding 6 to x 2 time s ,
a nd a dding 2 to x 3 times * /

/* if i t didn't reach the 7th iteratio n,
this means it is still either a dding 5
t o x o r adding 6 to x. Otherwise, i t
shoul d start adding 2 to x */

/* i f it didn't reac h the 5th it e rati o n ,
t h en keep adding 5 to x. Othe rwis e ,
start a dding 6 t o x */

/* thi s l oop s e rves f o r adding 1 t o x k- j
t imes if x is less than 100 0 * /

/ * the first de compo sed digraph ends he r e
*/

95

The fifth test input is taken from Sedgewick's text [Sedgewick 88]. It is a function

that deals with searching a string (string processing). The array to be processed, a, is a

global variable. The algorithm whose flow graph is to be decomposed follows

/** ** * **********

This fu nction does string checking . It c he cks for each p os sible
position in the text at which the pattern cou ld match, whether it does
in fact match . The fol l o wing program searches i n this way for t he fi rst
occurrence of a p a ttern p[l .. M] in a tex t string a[l .. N] The major
variables used i n t his f unction , which a re global, are:

M: I t represents t he number of characters in the string, to be searched
for.

N: It represents the dimen s ion o f the array to be searched for the
string.

a: It is the ~rray to be searched f or the string .
p: It is an array containing the string to be searched .

***/

Function brutesearch: i ntege r
Var k ,

j: integer ;
begin
k : = 1;
j : = 1;
repeat

if(a[k]

t hen
begin

p [j])

k : = k + 1 ;
j .- j + 1 ;

end;
else
begin

k := k - j + 2 ;
j . - 1;

end;
until(j > M or k > N)
if(j > M) t hen

brutesearch k -

else
brutesearch . - k;

end.

M;

/* i t is a pointer into the text * /
/* it is a point er into the p attern */

/* if the two pointers are pointing to a
ma t c hing characte r, both of them are
incremented */

/* if j and k point to mismatching
characters, the n j is rese t LO point
t o the beginning of the pattern a nd i
is r es et to correspond to moving
the p attern to the right one position
fo r mat chi ng against t ext ~/

/* if the end of the pattern is reached
(j > M) , then a match has been found
*/

96

The digraph presentation of test input 5 algorithm is shown in Figure 34 .

...--- - ---------,

1

4

Legend

Q start node

Figure 34 The digraph oftest input 5 algorithm

The two digraphs that resulted from the decomposition of test input 5 digraph are

presented in Figure 35 , where node 15 is the marker.

97

Digraph 1:

15

1-----~4

Legend

CD start node

Digraph 2

G)---

15

Figure 35. The two digraphs resulting from the decomposition of the digraph of Figure 34

98

The algorithm of test input 5 after being decomposed is presented here

/**** ***

This function does s t ring checking. It checks for each possible
position i n the text at which the pattern could match, whether it does
in f a ct match . The following program searches in this way for the first
occurrence of a pattern p[l .. M] in a text string all .. N] The major
variables used in this function, which are global, are :

M: It represents the number of characters in the string, to be searched
for .

N: It represents the d imens ion of the array to be searched for the
string.

a: It i s the array to be searched for the string .
p: I t is an array containing the string to be searched .

***/

Function brutesearch: integer
Var k,

j : in t eger;
begin
k : = 1;
j : = 1 ;

Subprogram 1

repeat
if (a [k]

then
begin

p [j])

k := k + 1;
j . - j + 1;

end;
e l se
begin

k . - k -

j . - 1 ;
end;

until (j > M or
if(j > M) then

brutesearch
else

brutesearch
end Subprogram

end .

j +

k >

: = k

: = j
1

2 ;

N)

- M;

;

/* it is a pointer into the text */
/* it is a pointer into the patter n */

/* the first decomposed digraph starts
here */

/* if the two pointers are pointing to a
matching character, both of them are
incremented */

/ * if j and k point to mismatching
characters , then j is reset to point
to the beginning of the pattern and i
i s reset to correspond to moving
the pattern to the right one position
for match i ng against text */

/* if the end of t he pattern is reached
(j > M), then a match has been found
* /

/* the f i rst decomposed digraph ends here
* /

99

The sixth test input has been taken from Cunningham' s paper [Cunningham 82].

The digraph in test input 6 is presented in Figure 36.

Digraph] •

Digraph 2.

2

Legend

4 1.---------------------4

CD start node

Figure 36. The digraph of test input 6
(Source l Cunningham 82])

Legend

4 CD start node

4

Figure 37 . The two digraphs resulting from the decomposition of the digraph of Figure 36

100

The two digraphs that resulted from the decomposition of test input 6 digraph are

presented in Figure 37, where node 5 is the marker.

VITA

SOLA YMAN MAHMOUD REF AE

Candidate for the Degree of

Master of Science

Thesis: PROGRAM FLOW GRAPH DECOMPOSITION

Major Field Computer science

Biographical:

Personal Data: Born in Sour, Lebanon, January 1, 1971, son of Mahmoud and
F atina Refae.

Education: Graduated from Cadmous High School, Sour, Lebanon, in June 1988;
received Bachelor of Science degree in Computer Science from Beirut
University College, Beirut, Lebanon. Completed requirements for the
Master of Science degree at The Computer Science Department at
Oklahoma State University in July 1996.

Professional Experience: Computer Programmer, Ezsoft Company, Beirut,
Lebanon, November 1992-December 1993.

