PROGRAM FLOW GRAPH DECOMPOSITION

By
SOLAYMAN MAHMOUD REFAE
Bachelor of Science
Beirut University College
Beirut, Lebanon

1993

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July 1996

PROGRAM FLOW GRAPH DECOMPOSITION

" Thesis Approved:

/") PN S ue MV\—J~ v /({A

Thesis Adviso

homas C. Colllins

Dean of the Graduate College

PREFACE

The purpose of this thesis involved the implementation, validation, complexity
analysis, and comparison of two graph decomposition approaches. The two approaches
are. Forman’s algorithm for prime decomposition of a program flow graph, and
Cunningham’s approach for decomposing a program digraph into graph-oriented
components. To validate the two implementations, each was tested with six inputs.
Comparison of these two approaches was based on these dimensions: time and space
complexities, composability, repeated decomposition, and uniqueness.

Forman’s algorithm appears to have four advantages over Cunningham’s
algorithm: 1. the algorithm overhead (i.e., the time and space complexities) was lower in
Forman’s algorithm; 2. Forman’s algorithm yields a unique set of decomposed units,
whereas Cunningham’s does not; 3. in Forman’s algorithm, reconstructing the original
graph from the decomposed prime graphs results in the original graph that was
decomposed, whereas in Cunningham’s algorithm, the attempt at the reconstruction of the
original graph from the decomposed parts does not always yield the graph that was
decomposed; 4. Forman's approach can be used to decompose a graph until it is
irreducible (all its part are primes), whereas in Cunningham’s algorithm, the algorithm
decomposes the graph only once even if it is still decomposable. Thus, Forman’s

approach could be recommended as a program flow graph decomposition algorithm.

ii

Implementation of the decomposition techniques could help in better software

comprehension and can be used in the development of some software reusability tools.

iv

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major advisor, Dr. Mansur
Samadzadeh, for his intelligent supervision, advice, guidance, assistance, and continuous
encouragement that helped me to successfully complete my degree. His constructive
criticism and his _moral support 1s greatly appreciated. My appreciation extends to my
other committee members Drs. Blayne Maytield and Khaled Gasem for serving on my
committee.

I would like to give my special appreciation and gratitude to my parents, who
always believed in me and my abilities, for their moral and financial support and
encouragement. Moreover, | wish to thank my brothers, sisters, aunts, and cousins for

their moral support.

TABLE OF CONTENTS

Chapter

Page
L INTRODUCTION. .o I
I1. BACKGROUND AND RELATED WORK ... 3
2 TSIt ET RTINS vttt s s oo o S S RS SRt 3
2.2 Graph TREOTYooiiii e 4
23 Graph Models.............oooii D
2.3./1:C0titEe]l Flow Grabh. ..o s aissonnsmmmaaoaos: 5
2.3.2. Data Dependeney Graphi o mmsisssaicammssmsm 6
2.3.3 Program Dependence Graph.................................... 7
2.4 Some Décomposition Techniguies. . oo umpaanamm o, 8
2.4.1 Decomposition of a Graph into Paths and Circuits............... 8
2.4.2 Decomposition of a Graph into Prime Subgraphs................ 10
2.4.2.1 Fenton-Whitty’s Approach.............................. I
2422 Forman’s Scheme................. 12
HE-AIMPLEMENTATION AND COMPARISON...cvnvamunen smnsasmsisssiimmis 15
3.1 Forman’s Algorithm............................ 15
BTl O TREROM cxic0 0wt G B 8 S R S TR S 15
3.1.2 Descrption of the AlBomithim.....c.sumwssramsmsimissssmnsinsen 16
3.2 Cunningham’s Algorithm. ... 18
B2 OB oo v o e S S e S AL 18
3.2:2 Description of the: Algotithim. . 18
3.3 Implementation Platform and Environment.................................... 21
3.4 Timeand Space CompleRiti€s:. ..o o sseimsismmssinimm iasossm i 22,
3 O PRI i st oo oS0 S SR 6 22
IV. SUMMARY AND FUTURE WORK ... 25
R EREINICE S s miasss ensmnsmneioniosss oo s o5 o oo s i e s 5 ol 26
APPENIIITES ...« ouunmmnsoronsmennmmsmmnnss v nems 1 aomses s s s s ot s e s s 547 o ms b 29

vi

Chapter
APPENDIX A-
APPENDIX B-
APPENDIX C-

APPENDIX D-

GLOSSARY oo 30
TRADEMARK INFORMATION. ..c.ccconivnsnannmmammmmsmi 32
PROGRAM LISTING............. TR R e 33
INPUTIOUTPUT LES TING s sssessasmssmssiss R— 57

vii

LIST OF FIGURES

Figure Pave
1. A sample directed graph G = ({X1, Y1, X2, Y21, E) e 4
Z. Apregra and s CoREbl flew graph..ovvansnaaannnmnnis s 6
3. An if-then-else condition and its data dependency graph.................................... 7
4. Program dependency graph of the program in Figure 3................................... 8
5. A Propran comral oW §Eaph. couomea; somnan s TR R 9
6. Five basis paths of the control flow graph of Figure S.......................... N 9
T B O D I DI RUTINN. o0 oot 5So s A P A RN 10
8. Flow graph of a program that-16 N6t Prime.. .. s e civ e 10
9. Aprogram flow Graph.............oocoiiii e 11
10. Decomposition of the flow graph F of Figure 9 into prime subgraphs............... 12
Ll - sstattiple. GEaH MEPTABIL. oo v s R A R R N S 13
12. The two m-graphs resulting from decomposing the m-graph of Figure 11.......... 13
13. Some control structure representations as used by Forman......................... 18
14. Some control structure representations as used by Cunningham..................... .. 21
15. The m-graph of test input 1 pro@ram.................cooiiiiiiiiiieee e 58
16. This is the decomposed spanning tree of the m-graph of Figure 15.................. 59
17. The m-graph of test input 2 program...........................cooiiiiiiiiiiiin, 62

viii

Figure Page
18. This is the decomposed spanning tree of the m-graph of Figure 17.................... 63
19. The m-graph of test input 3 Program...............o.ooovviiiiiiiiiie e, 66
20. This is the decomposed spanning tree of the m-graph of Figure 19.................. 67
21 The m-graph 6F test 0Pt 4 PrOGIAML .o covivsosmtssmwt s s s s b s 71
22. This is the decomposed spanning tree of the m-graph of Figure 21.................. 72
25, "Themipraphof testinmItid PUOBPEIN. oo uonusomsmns s s 5k s e s 76
24, This is the decomposed spanning tree of the m-graph of Figure 23..................... 77
25. The m-graph of test input 6 program.......................... RSP 79
26. This is the decomposed spanning tree of the m-graph of Figure 25................... 80
27. The digraph of test input 1 program......................oooiiiiii e 82
28. The two digraphs resulting from the decomposition of the

digraph Of FIGUIE 27, ... 83
29. The digraph of test input 2 Pro@ram..............c.cooooiiiiiiiee 86
30. The two digraphs resulting from the decomposition of the

digraph of FIgure 29, 87
31. Thedigraph of testINPUE3 PrOPYAM. c..oimvimmmimn s s s s 90
32. The digraph of test INput 4 Program..................coooiiiiie e 92
33. The two digraphs resulting from the decomposition of the

digraph of Figure 32, 93
34.. The digraph of test INput 5 PrOBIA. s vt sassims siviissisos 55 96
35. The two digraphs resulting from the decomposition of the

QEraph O FAGUTE 39 cocmoiimumermimsiiei e i et e 0o s S s S 045 97

Figure Page

36. The digraph of test MPUE 6: PIOBIAM i cicmemsssssmsmssmmessasvussmsims ey s sw 99
37. The two digraphs resulting from the decomposition of the
Argraph Of FIZHIE 36 oo covnsvcoimmrmmssomiss v o e oo s e e o b 99

CHAPTER 1

INTRODUCTION

Software development has evolved a great deal in the past decade as demand for
computer technology has increased. To remain competitive in the software market,
improved software development cycle resulting in relatively bug-free products are the key
issues to successful marketing. Software development is impeded by the complexity of
software and the lack of scalability of programming techniques and tools.

It is a well known fact that software technology lags behind hardware
advancements. Software development houses do not stop after the production of their
software products, rather they continue supporting and maintaining their products.
Maintenance of software products include errors corrections, enhancements, and
adjustments to the software [Regson 93].

An attempt to understand a piece of software has to be made before trying to
maintain it. So, it is generally easier to modify, enhance, or correct a piece of software if
it 1s more understandable [Regson 93]. Such considerations have formed the need for a
quest for better software technology, especially in the area of software reusability, and
better software comprehension.

Representation by directed graphs is one of the conventional approaches used for

understanding the structure of a complex system [Harary et al. 65] [L.endaris 80]. The

wide applicability of directed graphs can be attributed to the fact that in many types of
complex systems the directions of interactions among the elements are of importance for
understanding their structures [Burns 77].

Decomposition can be effective technique for better software comprehension. This
thesis work involved the implementation of two different decomposition techniques and
comparing them. The remainder of this thesis report is organized as follows. Chapter 11
introduces the definitions of some abstract representations of programs. This chapter also
presents a number of program flow graph decomposition techniques and their uses.
Chapter TII describes the two graph decomposition algorithms that were implemented,
namely Cunningham’s algorithm [Cunningham 82] and Forman's algorithm [Forman 79].
This chapter also contains the comparison and analysis of the two algorithms based on a

number of inputs. Chapter IV summarizes the research and outlines the related future

work.

CHAPTER 11

BACKGROUND AND RELATED WORK

2.1 Literature Review

The main objective of this research is to build on the established foundation related
to directed graph decomposition. Several decomposition techniques of graphs have been
discussed in the literature for various reasons. Hopcroft and Tarjan discuss the
decomposition of graph into triconnected components [Hopcroft and Tarjan 73] In the
seventies Maddux introduced the concept of a prime program [Maddux 75]. McCabe
discussed the decomposition of the control flow graph of a program into basis paths or
circuits in order to calculate the software complexity of the program using the cyclomatic
number [McCabe 76]. Maurer offered two algorithms, one to decompose a directed
graph and the other is to decompose an undirected graph [Maurer 76].

Chinn and Thoelecke discuss the decomposition of a graph into primal graphs that
could be used in the formation of another graph [Chinn and Thoelecke 83]. Muller and
Spinrad discussed the modular decomposition of a graph which leads to solving problems
in graph recognition and isomorphism [Muller and Spinrad 89]. Baranov and Bregman
presented a method for the decomposition and synthesis of automata [Baranov and

Bregman 93]. Habib et al. described the decomposition of inheritance graphs into

lad

independent subgraphs, or modules, which are inheritance graphs themselves [Habib et al.
95]. Su offers an algorithm for decomposing a graph into cliques [Su 95].

Forman used program decomposition into primes to solve the abstract data flow
analysis problem [Forman 79]; the implementation and discussion of this algorithm is part
of this thesis work. Cunningham offered an algorithm [Cunningham 82] to decompose a
digraph into two digraphs; the implementation and discussion of this algorithm is part of

this thesis work.

2.2 Graph Theory

The definitions included in this section are conventional and they are based on the
three main references on graph theory [Deo 74] [Gibbons 85] [Hopcroft and Tarjan 73]
that were used for this thesis.

Geometrically, a graph is defined to be a set of points (vertices) which are
interconnected by a set of lines (edges). For a graph G, we denote its vertex set by V and
the edge set by E, and write G = (V, E). Figure 1 shows a directed graph G = ({x), y1, X2,

y2}, E).

®
l

()

4

W N o

Figure 1. A sample directed graph G = ({x,, y1, X2, ¥2}, E)

Each edge can be specified by the two vertices (called the end points, or the tail
and the head respectively) that it connects. An edge having the same vertex as both its
end vertices (tail and head) 1s called a self loop. If the edges are ordered pairs, the graph
i1s directed. If the edges are unordered pairs of vertices, the graph is undirected.

If E 1s a multiset, that is, if an edge may occur several times between the same
pair of nodes, then G is a multigraph (see Appendix A for a definition). Every digraph
(see Appendix A for a definition) yields an undirected graph by deleting its edge
directions. A graph G is said to be connected if every distinct pair of nodes is connected
by a chain. Likewise, a digraph G is said to be strongly connected (diconnected) if every

node has an entry path and an exist path.

2.3 Graph Models

A graph 1s a general and abstract term. There are various graph models or abstract
representations of a program that have been defined and used in the literature for different
purposes. For example, control flow graphs (CFGs) and data flow graphs (DFGs) are
used in compilers for optimization. Data dependency graphs (DDGs) can be used to

measure data dependency complexity.

2.3.1 Control Flow Graph

A control flow graph i1s a directed graph with the nodes representing the basic
blocks (a sequence of instructions with no branches) of a program. A CFG is also defined
as a two-dimensional representation of a program that displays the flow of control of a

program [Aho and Ullman 73]. Formally, the control flow graph of a program is a 4-

6

tuple, F = (N, E, a, z), where N is a finite set of nodes, E is a finite set of directed edges
(E <€ N X N), a is the entry node whose indegree is zero, and z is the exit node whose
outdegree is zero [Regson 93]. Figure 2 shows a program segment and its control flow

graph, where each node in the CFG represents a single executable statement in the

program.
Program example (input, output) ; 2
1. var -
2. x: integer;
: : N
3. readln(x); N4
4. if (x > 0)
5. X 1= X + 1; 5

(o))
]
e
=
(o]

Figure 2. A program and its control flow graph

2.3.2 Data Dependency Graph

A data dependency graph (DDG) represents data dependencies among the
statements in a program. A DDG is a directed graph in which the nodes represent variable
definitions and the edges represent possible data dependencies [Regson 93]. The edges of
a DDG represent possible dependencies between definitions. A statement that may alter
the value of a variable is called a variable definition.

There are two types of data dependencies flow-order and def-order. There is a
flow-order dependence edge from node X to node Y, if there exists at least one variable

defined in X and used in Y and if a path exists in the corresponding CFG from X to Y. In

order for a def-order dependence edge from node X to node Y to exist a set of condition
have to hold:
1- Both X and Y must define the same variable.
2- Both X and Y should be on the same path in the corresponding CFG.
3- Another node Z exists such that there exists a flow-order dependence between X
and Z, and between Z and Y.
4- X occurs to the left of Y in the abstract syntax-tree of the program.

Figure 3 shows the data dependency graph corresponding to the given code segment.

readln(
if (y =z x) ==
if (y = 0) y =0 reE
® = 0;
else :
W p= =k acmim ST
e D

Figure 3. An if-then-else condition and its data dependency graph
(Source: [Premkumar 94])

2.3.3 Program Dependency Graph

A program dependency graph (PDG) is a graph of a program in which the nodes
represent the statements and the predicate expressions, and the edges incident to the nodes
represent both the data and control dependencies in the program [Regson 93]. An
example of a PDG is shown in Figure 4 for the sample program given in Figure 3. The

flow-order dependence edges are represented by bold face arrows, the def-order

dependence edges are represented by thin face arrows, and the dashed arrows indicate the

flow control in a program.

> def-order edge
TR > control flow edge
—_— flow-order edge

Figure 4. Program dependency graph of the program in Figure 3

2.4 Some Decomposition Techniques

Several different decomposition techniques of a graph have been discussed in the
literature for various reasons. Some of those techniques are discussed in detail in the

following subsections.

2.4.1 Decomposition of a Graph into Paths and Circuits
McCabe described a graph-theoretic software complexity measure called the
cyclomatic number, V(G), of a graph and illustrated how it can be used to manage and

control the complexity of programs [McCabe 76]. He developed a technique that

9

provides a quantitative basis for program modularization based on program control flow
graph decomposition.

The cyclomatic number V(G) of a graph G with n vertices, e edges, and p
connected components is V(G) = e - n + 2p. Figure 5 depicts a control flow graph G.

The maximum number of linearly independent circuits in G or V(G) 1s 9-6+2, withp = 1.

Figure 5. A program control flow graph (Source: [McCabe 76])

In a diconnected graph G, the cyclomatic number is equal to the maximum number
of linearly independent circuits. Any circuit (or path) in G can be expressed as a linear
combination of a basis set of independent circuits (or paths). Figure 6 shows the five

paths that constitute one set of basis paths for the graph of Figure 5.

(a) @ © a (a)
(b 0 (& ©

(&) (@ (©
(£) f

Figure 6. Five basis paths of the control flow graph of Figure S

10

Thus the cyclomatic number of a graph is the number of basis circuits (or paths)
that can be combined to make up any possible circuit (or path) in the graph [McCabe 76].

For instance, the path abeabebebef is expressible as (abea) + 2(beb) + (abef).

2.4.2 Decomposition of a Graph into Prime Subgraphs

A prime program is a one-in-one-out subgraph (a subgraph that has only one entry
node and one exit node) that does not properly contain any one-in-one-out subgraph
[Forman 79]. Prime program decomposition consists of building a hierarchy of one-in-

one-out control structure elements.

Figure 7. Flow graph of a prime program

Figure 8. Flow graph of a program that 1s not prime

11

It is important to mention that all common control structures are considered prime
programs [Forman 82]. Figure 7 and 8 show prime and non-prime flow graphs. Two
methods of decomposing a flow graph into prime graphs are briefly discussed in the

following two subsections.

2.4.2.1 Fenton-Whitty’s Approach

The Fenton-Whitty scheme is a technique that is used to decompose a graph into

prime subgraphs.

Figure 9. A program flow graph (Source: [Fenton and Whitty 86])

A flow graph allows nodes of arbitrary outdegree. In general a node of outdegree
n i1s called an n-ary predicate node (n = 2), while nodes of outdegree | are called
procedures nodes. The decomposition of F, in F; (where F, is a subflow graph of Fy) is
the flow graph obtained by collapsing F, to a single arc (x, z’), where 2’ is the stop node
of F, and x is a new procedure “replacing” F, [Fenton and Whitty 86]. The resulting flow
graph is denoted F, (x for F;). An example of a flow graph of a program and its prime

subgraphs 1s given in Figures 9 and 10. The decomposition algorithm decomposes the

12

flow graph into its underlying atom (i.e., a prime) as well as its nested subflow graphs

[Elliot et al. 88].

F]: F}_

Note that F(x, for F,, x, for F;) =

Figure 10. Decomposition of the flow graph F of Figure 9
into prime subgraphs (Source: [Fenton and Whitty 86])

2422 Forman’s Scheme

Forman describes the decomposition of m-graphs (see Appendix A for definition)
into prime m-graphs [Forman 79]. M-graphs are uninterpreted flowchart schemas and are
used because of their close relation to control structures in programming languages
[Forman 82]. Intuitively, the prime program decomposition of an m-graph is equivalent to
a set of prime programs together with a relation that forms a tree.

Let M be an m-graph. An ordered pair of arcs (x, y) is called a subprogram cutset
if (x, y) is a cutset of M and all paths from x to the entry/exit contain y. A subprogram
cutset separates an m-graph into two blocks. The exterior block contains the entry/exit

node, while the interior block does not. M is called a prime program if it contains at least

three nodes and the only subprogram cutsets of M are either (entry(M), exit(M)) or
subprogram cutsets (X, y) such that head(x) = tail(y). Figure 12 shows the prime program

decomposition of the m-graph given in Figure 11.

7Ny
-

g — — — —

Figure 11. An example of an m-graph

HI:

<> L)

== call H2 'goto H1

Figure 12. The two m-graphs resulting from decomposing the m-graph of Figure 11

Forman proposed to decompose m-graphs into a hierarchy of primes [Forman 79].
Once the hierarchy is formed, analysis can be performed on the hierarchy rather than on
the original m-graph. The hierarchy is formed by finding subprogram cutsets and

replacing the interior with a special kind of assignment node, which is termed a call node,

14

and making the interior an m-graph to which the call node points. When this operation
can no longer be performed upon the hierarchy, the result is called prime program
decomposition, because all the m-graphs in the hierarchy are primes [Forman 82].

The concept of prime programs is applied as a decomposition technique to the

global data flow analysis problem [Forman 82].

CHAPTER III
IMPLEMENTATION AND COMPARISON

In the literature, different approaches for decomposing a digraph have been
discussed. Some of those techniques were outlined in Chapter I11. This chapter discusses
the properties and the implementation platform of the two graph decomposition
algorithms that were implemented as part of this thesis. A comparison of the two

algorithms concludes this chapter.

3.1 Forman’s Algorithm

3.1.1 Overview
In the decomposition algorithm presented by Forman [Forman 79], the problem of
decomposing an m-graph (see Appendix A for a definition) into subgraphs is transformed
from the set of m-graphs to a set of tree structures, which are called “spanning charts”
(see Appendix A for a definition). The algorithm consists of three steps:
1- Build the spanning chart.
2- Build the tier-1 paths.

3- Test the tier-i paths for subprogram cutsets.

16

3.1.2 Description of the Algorithm

The algorithm conforms with the three steps described in the last subsection. Step
| transforms the m-graph into a spanning chart. Step 2 marks each node with the number
of the tier-i path (see its definition in Appendix A) to which the node belongs. Step 3
(process_tier) searches those paths that belong to the same set of tier-1 paths for
subprogram cutsets.

The basic algorithm, which is equal to Step 3, works just the way the definitions of
prime program and prime program decomposition imply it should. There are two sets of
m-graphs, PRIMES and LEAVES, that form a hierarchical m-graph that is equivalent to
the m-graph being decomposed. LEAVES contains the m-graphs that may not be prime.
Each member of LEAVES is processed by finding subprogram cutsets, removing the
interior, and placing the interior in LEAVES. Primes contains the prime m-graphs. The

first level of a stepwise refinement looks as follows.

PRIMES = _

LEAVES := (M}

While LEAVES # @ do
Q := member (LEAVES) “selects random member’
LEAVES := LEAVES -{Q}

(*) "Find all subprogram cutsets of Q.
For each subprogram cutset found, place
the interior in LEAVES and remove the

interior
- 7
from Q.

od

Subprogram cutsets are found by testing each member of PAIRS, the set of

candidate ordered pairs for subprogram cutsets. This leads to a second level of refinement

for the step marked with an (*) above.

OMA STATE LUDAYLHOLL 2

17

PAIRS := {(x, y) | x € arcs(Q) and y € arcs(Q)
and x # y and head(x) # taill(y)

and (x, y) # (entry(Q), exitc(Q))}
While PAIRS # @ do

(x, y) := member (PAIRS)
PAIRS := PAIRS - {(x, y)}

“If (x, y) is a subprogram cutset of Q, then
place the interior of (x, y) in LEAVES and

. . "
remove the interior from Q.
od

The whole algorithm may be stated with the aid of the predicate IS CUTSET.

IS CUTSET((x, y), M) is true if and only if the ordered pair (x, y) is a subprogram cutset

of the m-graph M.

The algorithm uses m-graphs (see Appendix A for a definition) to represent a
program flow graph. An m-graph uses four types of nodes to represent a program

statement. The four different node types that comprise an m-graph are:

1- The entry/exit node.
2- The predicate node.
3- The join node.

4- The assignment node.

An m-graph representing a subprogram flow graph uses two more nodes in
addition to the four mentioned above. These two node types are:

1- The call node.

2- The goto node.

As to the representations of the control structure (see Appendix A for a
definition), some of them are different in Forman’s algorithm from what they are in

Cunningham’s algorithm. Some of the most common ones are shown in Figure 13.

IOMA STATE LUNAY EROLL L

—_—

18

(IF-THEN) (DO-UNTIL) (DO-WHILE-DO)

Figure 13. Some control structure representations as used by Forman
(Source: [Forman 79])

3.2 Cunningham’s Algorithm

3.2.1 Overview

A decomposition of diconnected digraphs has been described by Cunningham
[Cunningham 82]. In his paper, Cunningham deals with finite and simple digraphs (see
Appendix A for a definition), where E(G) or the edge set is a set that does not contain self
loops, and the vertex set is a finite set called V(G). An improvement of Cunningham’s
algorithm in terms of its complexity was introduced by Bouchet [Bouchet 87]. In his
paper, Bouchet discussed a different way for finding a split of a digraph based on

Cunningham’s algorithm.

3.2.2 Description of the Algorithm
The decomposition problem as it is described by Cunningham [Cunningham 82]

can be stated using an example as follows:

19

Given edges (xi1, y1), (X2, y2) of G and a set S ¢ V(G) satisfying x;, y2 € S, X2, y1 € S, and
[S| = 2, find, if there is a split {v;, vo} of G such that x,, y; € v, and v; € S.

Cunningham’s algorithm [Cunningham 82] to solve the above-mentioned

decomposition problem is presented below.

begin

S 1= {x1, y2}; /* initialize the set § to contain nodes
x1 and y2, S will contain one of
the split sets at the end of the
algorithm */
T 7= 85 /* initialize the set T to be equal to the
set S, T is used as a set variable
throughout the algorithm */
while T # @ do /* while the algorithm has not finished
splitting the graph */
Select p € T; /* choose p to be one of T's elements */
T := T\{p}; /* delete p from the set T */
for g € V(G) de /* choose g to be one of V(G)'s elements,
g shouldn't be in V(G) and the
predicate P should be true in order for
g to be one of the nodes that could
be split from the original graph */
if g € S and [P(x1, yl1l, p, g) or

P(x2, v2, g, p)] then

wn

:= 8 W {qg}; /* if g could be split from the original
graph, then g will be added to the sets
S and T */
T := T W {q};
endif
endfor
endwhile

end

OMA STATE UDNAYEDOLL &

20

The following definitions [Cunningham 82] are necessary for the algorithm. If (x,
y) € E(G) and p, q € V(G), we say that P(x, y, p. q) is true if the following condition fails:
(p, q) € E(G) ifand only if (p, vy), (X, q) € E(G). Likewise, 8(A): refers to the set {(x,
y): (X, y) € E(G), x € A,y ¢ A}. Cunningham’s algorithm of splitting a digraph G into
G, and G, 1s based on the following proposition:
Let G be a diconnected digraph, let S < V(G) such that [S| = 2 and |[V(G)\S| = 2, where
V(G)\S is the set containing all vertices in V(G) but not in S, and let (x;, y1) € d(S), (xa,
y2) € 0(V(G)\S). Then {S, V(G)\S} is a split of G if and only if there does not exist p €
S, q € V(G)\S such that P(x;, yi, p, q) or P(xz, y2, q, p) is true.
Upon termination of the algorithm, if we had x, € S, y; € S, or |S| =n - 1, then it
can be said that there is no split, otherwise the result of the split will be {S, V(G)\S}.
In order to improve the complexity of that algorithm, Bouchet [Bouchet 87]
decomposed it into three parts:
- The original program that initializes the set S calls subprogram FILLSTACK and
subprogram SEPAR.
2- Subprogram FILLSTACK, which is called when the program is initiated to place some
vertices in S, and that will contain one of the split sets at the end of the algorithm.
3- Subprogram SEPAR, which is called to check if a split has occurred.
Subsequently, Bouchet [Bouchet 87] shows that SEPAR and FILLSTACK, which
are O(n’), improve his algorithm over Cunningham’s [Cunningham 82], which is O(n*).
This thesis was concerned with implementing the algorithm introduced by

Cunningham [Cunningham 82]. As to the representation of the nodes, Cunningham’s

21

algorithm represents all program statements with the same node. So, it only has one node
type.

In Cunningham’s algorithm, the representation of some the control structures (See
Appendix A for a definition) is different than Forman’s. Figure 14 presents some of these

control structures as they are presented and processed in Cunningham’s algorithm.

CT
(IF-THEN) b (DO-UNTIL)
(DO-WHILE-DO)

Figure 14. Some control structure representations as used by Cunningham
(Source: [Cunningham 82])

3.3 Implementation Platform and Environment

The two algorithms were implemented on a Sequent Symmetry S/81 under the
DYNIX/ptx operating system [SEQ 90], and C was used as the programming language.

The Symmetry S/81 is a mainframe-class multiprocessor system developed by
Sequent Computer System, Inc. Sequent S/81 is a shared memory, tightly-coupled
multiprocessor. It also has hardware supporting mutual exclusion. The load is balanced
and the tasks are distributed in a multi-user environment to increase throughput and

improve response time. UNIX compatible software can run on the Symmetry S/81

without modification or with slight modification.

WA STATE UNivoaoois &

22

3.4 Time and Space Complexities

This section discusses the complexity of the two graph decomposition techniques
that were discussed in Chapter I11.
The complexity of Forman’s algorithm is taken from Forman’s thesis [Forman 79].

Steps 1 and 2 of the Algorithm (see Subsection 3.1.2) are linear or O(L), where A is the

number of arcs in the input m-graph. Step 3 is no worse than O(L’). Because the m-
graphs are represented by their adjacency matrix, the space complexity is O(n”), where n is
the number of nodes in the input m-graph.

On the other hand, the time complexity of Cunningham’s algorithm (see
Subsection 3.2.2) for decomposing a digraph G is O(n*), where n is the number of nodes
in G [Cunningham 82]. In his paper, Bouchet [Bouchet 87] introduced a new way called
local complementation to improve the time complexity of Cunningham’s algorithm for
finding a split of a digraph. Bouchet succeeded in decreasing the time complexity from
O(n*) to O(n*). The space complexity of the algorithm is O(n%), where n is the number of

the nodes in the graph. This is because a digraph is represented by its adjacency matrix.
3.5 Comparison

This section compares the two graph decomposition approaches based on the

following criteria [Regson 93]:

(a) Composability - i.e., whether or not any of the resulting units of decomposition is
reusable;

(b) Repeated decomposition - i.e., whether the decomposition process can be applied
repeatedly;

NI AHOMA STATE UlNivinwoii 2

(¢c) Uniqueness - 1e., whether the decomposition technique yields a unique set of
decomposed units;

Prime subgraphs, resulting from the decomposition of the flow graph of a
program, are generally good candidates for reusability. Primes can be replaced by single
nodes in the original flow graph. In the prime decomposition of a flow graph, when using
Forman’s approach, reconstructing the decomposed graph from the decomposed parts (or
reusable parts) can be done by replacing the single nodes, introduced in the decomposition
process, with the subgraphs to which they correspond.

The decomposition of a diconnected digraph of a program, using Cunningham’s
scheme, is a graph-theoretic concept that is not closely related to the semantic structure of
the program. Hence, the potential for the reuse of the decomposed parts is not high.
When a digraph is decomposed into two digraphs in this method, the original digraph can
be obtained by the operation of union. This can be done by deleting the marker, which is
introduced during the decomposition process (see Subsection 3.2.2 for details), from both
of component digraphs and combining them together as follows: if (x, v) € G; and (v, y)
€ Gy, then (x, y) € G, where X € G, y € G; and v is the marker; or, if (v, X) € Gy, (y, v)
e Gy, then (y, x) € G.

The prime program flow graph decomposition technique utilizing Forman’s
algorithm involves repeated decomposition in the process of building the prime
decomposition (as explained in Chapter III). In Cunningham’s algorithm, this repeated

decomposition can be applied to one or both of the decomposed digraphs to find out

whether they are further reducible.

Urqi'v Lalivais &

24

Forman’s approach uses triconnected components for building the prime tree
[Tarjan and Valdes 80]. Hopcroft and Tarjan show that the triconnected components of a
graph are unique [Hopcroft and Tarjan 73]. Therefore, decomposing an m-graph into

primes will result in a unique prime subgraphs.

AVIuawIaa &

iy

CHAPTER IV

SUMMARY AND FUTURE WORK

The main purpose of this thesis was to implement the decomposition techniques
proposed by Cunningham [Cunningham 82] and Forman [Forman 79]. Two programs
were developed, the first one decomposes a digraph into two digraphs, whereas the
second one decomposes a graph into prime graphs. The two decomposition approaches
were compared and analyzed based on a number of specified dimensions.

Possible future work to extend and utilize the work done in this thesis includes the
following. A technique can be created to construct composite graphs from the previously
decomposed subgraphs. By the same token, the decomposed subgraphs of program flow
graphs can be used as reusable units in the construction of other programs. Thus, a
repository of decomposed units (or subprograms) can serve as a software parts catalog
stored in the form of flow graphs (or program codes). Another area of future work would
be in extending the programs, presented in this thesis to run in the X-windows
environment. Such programs can present the output graphs pictorially and accept a

graphical input instead of an adjacency matrix.

25

REFERENCES

[Aho and Ullman 73] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,
and Compiling, Vol. I11: Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1973,

[Baranov and Bregman 93] S. Baranov and L. Bregman, “Automata Decomposition and
Synthesis with PLAM,” Microprocessing and Microprogramming, Vol. 38, pp.
759-766, September 1993.

[Bouchet 87] A. Bouchet, “Digraph Decompositions and Eulerian Systems,” SIAM

Journal of Algebraic and Discrete Methods, Vol. 8, No. 3, pp. 323-337, July
1987.

[Burns 77] J. R. Burns, “Converting Signed Digraphs to Forrester Schematics and
Converting Forrester Schematics to Differential Equations,” /EEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-7, No. 10, pp. 695-707, October 1977.

[Chinn and Thoelecke 83] P. Z. Chinn and P. A. Thoelecke, Factoring Graphs into

Primal Graphs, Department of Mathematics, Humboldt State University, Technical
Report, Arcata, CA, 1983-84.

[Cunningham 82] W. H. Cunningham, "Decomposition of Directed Graphs," SIAM

Journal of Algebraic and Discrete Methods, Vol. 3, No. 2, pp. 214-228. June
1982,

[Deo 74] N. Deo, Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, NJ, 1974.

[Elliot et al. 88] J. J. Elliot, N. E. Fenton, S. Linkman, G. Markham, and R. Whitty
(Editors), “Structured-Based Software Measurement,” Alvey Project SE/069,

1988, Department of Electrical Engineering, South Bank, Polytechnic, Borough
Road, London, UK.

[Fenton and Whitty 86] N. E. Fenton and R. Whitty, “Axiomatic Approach to Software

Metrication Through Program Decomposition,” The Computer Journal, Vol 29,
No. 4, pp. 330-339, 1986.

[Forman 79] 1. R. Forman, “On the Decomposition of Programs into Primes,” Ph.D.

Thesis, Computer Science Department, University of Maryland, College Park, MD,
1979,

26

~ S A 4 i3 £y ¥ IUAGIA L &
QK1 AMOMA NLALL Ui¥av &

27

[Forman 82] I. R. Forman, “Global Data Flow Analysis by Decomposition into Primes,”
Proceedings of the Sixth International (Conference on Software Lngineering, pp.
386-392, Tokyo, Japan, September 1982,

[Gibbons 85] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, New
York, NY, 1985.

[Habib et al. 95] M. Habib, M. Huchard, and J. Spinrad, “A Linear Algorithm to

Decompose Inheritance Graphs into Modules,” Algorithmica, Vol. 13, No. 6, pp.
573-591, June 1995.

[Harary et al. 65] F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An
Introduction to the Theory of Directed Graphs, Wiley, New York, NY, 1965.

[Hopcroft and Tarjan 73] J. E. Hopcroft and R. E. Tarjan, “Dividing a Graph into
Triconnected Components,” SIAM Journal of Computing, Vol. 2, No. 3, pp. 135-
158, September 1973.

[Lendaris 80] G. G. Lendaris, “Structural Modeling: A Tutorial Guide,” [EEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-10, No. 12, pp. 807-
840, June 1980.

[Maddux 75] R. A. Maddux, “A Study of Computer Program Structure,” Ph.D. Thesis,

Computer Science Department, University of Waterloo, Waterloo, Canada, July
1975.

[Maurer 76] M. C. Maurer. “Unite de la Decomposition d’un Graphe en Joint Suivant un
Graphe Joint-Irreductible, d’'une Famille de ses Sous-Graphes,” (. R. Acad. Sci.
Paris, Vol. 283, pp. 289-292, September 1976.

[McCabe 76] T. J. McCabe, “A Complexity Measure,” /LEE Transactions on Software
Engneering, Vol. SE-2, No. 4, pp. 308-320, December 1976.

[Muller and Spinrad 89] J. H. Muller and J. Spinrad, “Incremental Modular
Decomposition,” Journal of the Association for Computing Machinery (JACM),
Vol. 36, No 1, pp. 1-19, January 1989.

[Premkumar 94] J. Premkumar, “Translation of Simple C Programs to Program
Dependence Webs,” Masters Thesis, Computer Science Department, Oklahoma
State University, Stillwater, OK, July 1994,

[Regson 93] C. P. Regson, “Program Flow Graph Decomposition as a Model of Software
Comprehension,” Masters Thesis, Computer Science Department, Oklahoma State
University, Stillwater, OK, July 1993.

¥V LAV L o -

NKT AHOMA NEALL viNa

N B Bl Bl B Nl ATt B =

28

[Sedgewick 88] R. Sedgewick, Algorithms, Addison-Wesley Publishing Company,
Reading, MA, 1988.

[SEQ 90| Symmetry Multiprocessor Architecture Overview. Sequent Computer Systems,
Inc., 1990,

[Su 95] Xy Su, “An Algorithm for the Decomposition of Graphs into Cliques,” Journal of
Graph Theory, Vol. 20, No.2, pp. 195-202, 1995.

[Tarjan and Valdes 80] R. E. Tarjan and J. Valdes, “Prime Subprogram Parsing of a
Program,” Proceedings of the Seventh Annual Symposium on the Principles of
Programming Languages, pp. 95-105, Las Vegas, NV, January 1980.

AHAY ddbina b o =

APPENDICES

APPENDIX A
GLOSSARY

CFG: Control flow graph.

Control Structures: The common control structures are: do-while-do loop, do-until loop,
if-then, if-then-else, and while-do loop.

DDG: Data Dependency graph.
Diconnected: Strongly connected.
Digraph: Directed graph.

Flow chart: A pictorial representation of the algorithm of a program.

M-graph: A diconnected graph that contains a unique one-in-one-out node called
entry/exit node and is constructed from the following four types of nodes:

—O— —0

Entry/exit node Assignment node
E—
.
Join node Predicate node

Multigraph: A graph in which an edge may occur more than one time between the same
pair of nodes. A graph with parallel edges.

Multiset: A set where elements can occur several times.

PDG: Program dependency graph.

30

31

Primal Graph: A component graph; a graph can be written as a sum of distinct primal
graphs.

RFG: Reducible flow graph.
Simple Digraph: A digraph that has no self loops or parallel edges.

Software Complexity: The level of difficulty to understand, change, and maintain
software.

Spanning Chart: A spanning tree of a graph G = (V, E) is a graph G’ = (V, E’), where G’
is a tree that includes every node in G, and E’ is a subset of E.

Tier-i: A path from a goto node whose corresponding join node is on a tier-(i-1) path to
the first possible predicate node on a tier-j path where j < i-1. The unique path
from the entry of the m-graph to its exit i1s called the tier-0 path.

APPENDIX B

TRADEMARK INFORMATION

DYNIX/ptx: A registered trademark of the Sequent Computer System, Inc.
Symmetry S/81: A registered trademark of the Sequent Computer System, Inc.

UNIX: A registered trademark of AT&T.

32

APPENDIX C
PROGRAM LISTING

The following are the two files that were used in the implementation of the two
algorithms,

cunn.c - This file contain the implementation of Cunningham’s algorithm [Cunningham
82].

forman.c - This file contain the implementation of Forman’s algorithm [Forman 79].

The following is the cunn.c file.

e

This program implements Cunningham's algorithm for digraph decomposition
[Cunningham 82]. The program takes as input a digraph in the form of an
adjacency matrix. Then it tries to decompose that graph into two
digraphs. After that, if a split has happened, it will print the two
sets resulting from splitting.

*******************************#*********************#************’k*ﬁ(**;’

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define Maxnd 50 /* maximum number of nodes in an
input graph */

int checkP () ;

int check_digraph () ;

void build graph() ;

void algorithm() ;

void split check () ;

void build sub();

void relabel () ;

void print_subgraphs () ;

FILE *in;

int graph[Maxnd] [Maxnd], /* representation of a graph as an

input adjacency matrix */

33

T -

S [Maxnd] ,
S2 [Maxnd] ,
T [Maxnd] ,
Vertice [Maxnd],
Subl [Maxnd] [Maxnd] ,
Sub2 [Maxnd] [Maxnd] ,
error,
nodenbr,
Snode,
S2node,
Tnode;
main () =

int relabel time = 0,

no_split = 0;

34

/* contains the vertices of the set
S */
/* contains the vertices in the set

V(GI\S */

/* contains the wvertices in the set
T */

/* contains all the vertices in the
graph */

/* adjacency matrix of the
decomposed graph, S */

/* adjacency matrix of the
decomposed gaph, V(G)\S */

/* a flag that is turned on when
something goes wrong or if there
is a wrong input */

/* number of nodes in the graph */

/* number of nodes in § */

/* number of nodes in 82 */

/* number of nodes in T */

/* contains the number of
relabelings done */

/* a flag to check whether a split
has occurred */

/* open input file */

if((in = fopen(“/v/refae/thesis/inpl”, r")) == NULL)
{ printf("Sorry, the input file cannot be opened\n") ;

exit (1) ;

error = 0;
build graph (&error) ;

if (error == 0}
algorithm() ;
if (split check () == 0)

no split = 1;

/* initialize error flag */

/* call procedure to start reading
the input and building the graph
®)

/* if no error has occurred, call
the procedure to do the
split and then call the split-
check procedure to see whether a
split has occurred */

/* check whether a split has
occurred */

while((relabel time < (nodenbr - 1)) && (no split == 1))

relabel () ;
relabel time++;

if (split_check ()
no_split =

if (no_split ==)

0

/* while the number of relabelings
done is less than the number of
the input graph necdes and
no split has occurred yet perform
the following */

/* call the relabeling procedure */

/* check whether a split has
occurred */
=l)

i’

printf ("There is no split.\n");

A i AR A N ALL Warar

35

else /* if a split has occurred, print
the two graphs resulting from the
decomposition */
print_subgraphs () ;

fclose (in) ; /* close input file */

}

/*********************'k********************-k****************************

This procedure reads the input graph to be decomposed from the input
file into an adjacency matrix.

'k*'k***‘J\"#'******‘k**‘k******’k**‘#***‘k****‘k****#‘k*‘k**#***********************/

void build_graph(int *error)

{

int
nodel,node2, /* they represent the first and
second node of some edge of the
~ input graph, respectively */
1 g /* used as looping variables */
fscanf (in, "%d\n", &nodenbr) ; /* read the number of nodes */

/* initialize the array of vertices

x/
for (i= 0;i<nodenbr;i++)
Vertice[i] = i+1;
*error = 0;
while((fscanf (in,”%d %d\n", &nodel, &node2) != EOF) &&

%
o
=
ot
9]
H Q
I
i
L]

))
{
/* build the graph */
if ((nodels>nodenbr) || (nodel<1) | | (node2>nodenbr) | | (node2<1))
/* improper input */
printf ("Invalid node number, program terminated.\n 7);
*error = 1;

z

}
else /* checking for self loop */
if (nodel == node2)
{ /* input graph has a self loop */
printf (* Self loop not accepted, program terminated.\n’);
*error = 1;
}
else
{ . . '
/* if there is an edge going from
nodel to node2 */
graph [nodel] [node2] = 1;
}
if (check digraph()) /* check whether the input graph is

a digraph */
{
printf ("The input graph is not a digraph, program terminated.\n’);
*error = 1;
|

f

/***

This procedure checks whether the input graph is a digraph.

36

**************************'k**/

in% check digraph()
3
int notdigraph=0, /* to check whether the input graph
is a digraph */

i,3,

Sum; /* used to check the sum of the
columns and rows of the input
graph whether every one of them
is bigger than 1, which means
that every node has at least one

entry and one exit */
for (i=1; (i<=nodenbr) && (!notdigraph) ; i++)

Sum = 0; /* check whether every node in the
input graph has at least one exit
wf

for(j=1;j<=nodenbr;j++)

Sum += graph[i] [j];

if (Suri>=1) /* if all nodes in the input graphs
have at least one exit node, then
check whether they also have at
least one entry arc or vertix.
OCtherwise, they won't be
reachable and the input graph
won't be a digraph */

for (j=1;j<=nodenbr;j++)
Sum += graph(j] [i];

/* 1if one of the nodes in the input
graph doesn't have an entry or
exit, then the input graph is not
a digraph */

\ if (Sum == 0) notdigraph = 1;

return notdigraph;

}

/**************************************1’********************************

The following procedure applies Cunningham's decomposition algorithm
[Cunningham 82] .

ir*'**'***/

void algorithm()

{

int
P, /* the vertex chosen from T */
q. /* the vertex chosen from V(G) */
node in §, /* flag to check whether a vertex is
in § */
gins, /* to check whether g is in S */
i1,3.k; /* used as looping variables */
/* initializing the sets § and T
to contain x1 y2 */
S[0]=T[0]=1;

S[1]=T[1] =nodenbr;

Snode = Tnode = 2;

while(Tnode > 0)

{

p = T[Tnode - 1];

T[Tnode - 1] = 0;

Tnode--;

vertnb = nodenbr;

37

/* while the algorithm has not
finished splitting the graph */

/* choose p to be an element from T,
because we will try every
element in T to check whether it
can be split from the original
graph and added to the set §, so
at the end of the algorithm the
set S would be one of the split
sets */

/* deleting element p from T
because it was split from the
graph */

/* decrement the number of nodes in
T by 1 */

for(i= 0;i<nodenbr;i++)

{

q = Verticeli];

ginS = 0;
for(j= 0;j<Snode;

{

/* choose g to be one of the
vertices */
/* check if g is in 8§ */

J++)

if(g == s8[j]) ginS = 1;

}

/* if g is not in S and one of the
predicates P{x1l, v1, p, Q) or
P(x2, v2, g, p) is true, then
node q would be a good candidate
to be added to the split set S
(refer to page 4 to see how to
check whether P is true) */

if ((ginS==0) && (checkP(1,2,p,q) | | (checkP(3,4,qg.0))))

{
S [Snode] =
T [Tnode] =q;
Snode++;

Tnode++;

}
}/* end of for */

}/* end of while */

k = 0;
for(i=0;i<nodenbr;i++)

{

q;

/* increment the number of nodes in
S by one after adding node g to
it */

/* increment the number of nodes in
T by one after adding node g to
it */

/* £i11 the VI(G) /S nodes in the set
52 */

i BBl T Tl

AR O

38

/* check whether the node in VI(G) is
in § */
node_in S = 0;
for (3=0; (j<Snode) && (node_in S==0) ; j++)

if (Verticel[i] == 8[il)
node_in S = 1;
if(node_in S != 1) /* if the node is not in S, add it
to $2, which conatins the nodes
of V(G)\S */
S2[k++] = Verticel[i];
S2node = nodenbr - Snode; /* number of nodes in S2 is equal to

the number of the input graph
nodes minus the number of nodes
in 81 */

R R R R R R R S R R AR R R R R R S R R R R R R R R R R

This procedure checks whether there was a split. Then, if a split has

occurred the procedure calls build sub() procedure, to build the graphs
of the two split sets, S and V(G)\S.

*********'k************'k******'k****************'k*********‘k**************/

void split_check()

int

No_Split, /* flag to check whether a split has
occurred */

nede_in_S,; /* flag to check if & node is in the
set § */

iij. s /* used as looping variables */

/* check if x2, yl1 are in S, or if §
has n-1 nodes, i.e., no split has
occurred */

No_Split = 0; /* initialize the No split variable

B

if (Snode == (nodenbr -1)) /* if number of nodes in S after

the split is equal to (n-1),
where the number of nodes in the
graph, then no split has occurred
*f

No Split = 1; /* turn the split flag on, meaning
that no split has occurred */

else

for(i=0;i<Sncde;i++) /* if the set S contain yl or x2
after running the program, then
no split has occurred */

if((S[i] == 2) || (S[i1==3))
No Split = 1;

if (No_Split == 1) /* if no split has occurred */
printf ("There is no Split\n");

else
{ /* if a split has occurred call

build_sub procedure to start
building the graphs of the two
split sets, S and V(G)\S */

LA A S

Lisni = oY A
-

(Y Wt

39

build sub() ;
}

/***i***************************

This procedure builds the graphs of two split sets, S and V(G)\S.

t**********/
void build sub()

{

int i,3; /* used as looping variables */
for (j=0;j<Sncde; j++)

for(i=0;i<Snode;i++) /* using the original input graph
connections among nodes, the two
split graphs are built as two
adjacency matrices. Subl will
represent the adjacency matrix
of the first subgraph and Sub2
will represent the second one */
Subl1[S[j]]1[S[i]l] = graph[S[jl][S[i]];

for (§=0;j<S2node; j++)

]
o
for(i=0;i<S2node;i++) ol
. Sub2[S2[j]]1[S2[i]] = graph(S2([j]] [S2[i]]; e
} d
/* add marker to the two Subraphs */ (
nodenbr++; s
/* add the marker node to nodes in .
Subl and Sub2 */ A
S[Snode++] = S2[S2node++] = nodenbr; 1
/* connect the nodes in Subl to the =
marker */ .
for(i=0;i<(Snode-1);i++) -
for(j=0;j<(82node-1) ; j++)
{
if(graph([S[i]] [S2[]j]] == 1)
Subl[S[i]] [S[Snode-1]]1 = 1;
if (graph[S2[3]]1[8[i]] == 1)
Subl [S[Snode-1]] [S[i]] = 1;
| }
/* connect the nodes in Sub2 to the
marker */
for(i=0;i<(S2node-1) ;i++)
for (j=0;j<(Snode-1) ; j++) II
if (graph{S2[i]] [S[j]] == 1)
Sub2([S2[i]l] [S2[S2node-1]] = 1;
if (graph{S[j]] [S2([i]] == 1)
Sub2[S2[S2node-1]] [S2[i]] = 1;

}
}

/************t**t**

The following procedure print the two decomposed subgraphs. It will
print them as adjacency matrices

40

***********‘k***/

void print_ subgraphs ()

{

int i,73; /* used as looping variables */
printf(” Subgraph 1 :\n"); /* print subgraph 1 as an adjacency
matrix showing the edges among
nodes */

for(i=0;i<=nodenbr;i++)
for(j=0; j<=nodenbr; j++)

{
if(Subl[S[i]] [j] == 1)
printf (“3%d -> %d\n”,S[i],]);

}

printf (¥ Subgraph 2 :\n"); /* print subgraph 2 as an adjacency
matrix showing the edges among
- nodes */

for(i=0;i<=nodenbr;i++)
for (j=0;j<=nodenbr; j++)

if (Sub2[S2[i]l] [§] == 1)
printf ("%d -> %d\n”,S2[1i],73);

}

/***************t***

This procedure's Jjob is to do the relabeling, i.e., to £flip the
vertices' labels among each other without affecting the consistency of
the input graph.

*************************‘k**********************i’**********************/
void relabel ()

{

int Temp [Maxnd], /* a temporary array used to hold
the flipped node */
i,J; /* used as looping variables */

/* saving the graph's first node
connections, to other graph
nodes, into the array Temp */

for(i=0;i<nodenbr;i++)
Temp[i] = graph[0] [i];

/* moving up all the input graph's
nodes but the first one */
for(i=0;i<(nodenbr-1) ;i++)

for(j=0; j<nodenbr;j++)
graph(i] [§] = graphl(i+1][j];

/* moving the first input graph
node, which is saved in Temp, to
be the last node in the graph */

for(i=0;i<nodenbr;i++)
graph [nodenbr] [i] = Temp[i];

PR Ad =T

)

I Bl

41

/* call the procedure, algorithm,
trying to split the graph
vertices */

algorichm() ;

}

/***

This procedure checks whether the predicate P(x, y, p, q) is true. We
can say that the predicate is true if one of these two conditions is
true:

-(p, g) is an edge in the graph G, whereas either (p, y) or (x, g) is
not an edge in the graph G.

-(p, g) is not an edge in the graph G, whereas (p, y) and (x, g) are
edges in the graph G.

**************************************'k******'k*************************/

int checkP(x,y,p.q)
int x,y.,p.q; \

{ \
if (((graphlpl [q])&&((!graphlp] [y]l) || (!graph(x] [ql))) || l
((tgraph(pl [q]) && (graph[p] [y] && graphlix] [gl))))
return 1; /* if P(x, v, p,) is true */ .q
else Pl
return 0; /* if P(x, vy, p, Q) is not true */ +
}

(Y.

42

The following is the forman.c file.

/***

This program implements Forman's algorithm for decompesing an m-graph
into prime subgraphs. It takes as input m-graph in the form of
adjacency matrix. Then it tries to build the m-graph spanning chart, by
that the problem of finding the prime program decomposition of an m-
graph is transformed intoc a problem of decomposing spanning charts.
After that, the tier-i paths will be developed and finally, it tests the
tier-i paths for subprogram cutsets. At the end, the result is printed
in the form of decomposed spanning trees.

***/

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

/* these are the node types used in
m-graph and its decomposed parts

xf
#define entry 1
#define predicate 2
#define join 3
#define assignment 4
#define goto 5
#define call 6
struct nn /* this structure represent the data
structure of nodes in the m-graph
(and its decomposed parts */
int id; /* id number of node */
int label; /* label associated with node */
struct nn *succ(2]; /* arcs to successor nodes */
int ntype; /* node type */
struct nn *pred, /* previous node in spanning tree */
COorr; / if a join node in the spanning
tree this field points to the
corresponding goto node */
int tier; /* tier number */
int tier count; /* if more than one tier-i path

meets at this node the value of
tier count is 2 */

int gotol[10]; /* if a goto node in the spanning
tree this field contains set of
all nodes that this node goes to
*/

int joinl[10]; /* if a join node in the spanning
tree this field contains set of
all nodes that joins this node

L2
int nb_goto; /* number of nodes in gotol */
int nb_join; /* number of nodes in joinl */
3
struct mgraph /* data structure of the m-graph */
struct nn entryl, /* entry node */
vertices{100], /* nodes in the m-graph */

exit; /* exit node */

gt -

43

struct qq /* queue containing pointers to the
goto nodes in the m-graph */
{

struct nn *first;
struct gg *next;

¥

struct s /* stack containing pointers to the
goto nodes in the m-graph */

struct nn *first;
struct s *next;

}i

typedef struct mgraph graph;
typedef struct gg goto gueue;
typedef struct nn node;
typedef struct s goto_st;

void initialize();
void build_graph() ;
void stepl();

void step2();

void process tier();
void copynode() ;
void Remove();

void Print result();

e f e -

WE TR 1w
Tl s = =

graph *M; /* represents the m-graph to be
decomposed */ I
goto_queue *fr gu, /* front pocinter of the goto gueue :
* / -
rear_qu; / rear pointer of the goto gueue */ :
goto_st *fr st; /* front pointer of the goto stack
*/
int last label, /* holds the last label number used
*f
nb_goto_st = 0; /* number of elements in the goto
stack */
FILE *in; /* pointer to the input file =/
main()
if ((in = fopen(“/v/refae/thesis/forman/f_inp’,"r")) == NULL) i
printf ("We can't open the input file\n’);
exit (1),
initialize() ; /* call initialize() to initialize
the variables of the program */
build graph(); /* call build_graph() to read the
input file and start building the
m-graph */
stepl

()
step2() ;

44

Print_ result (&M->entryl, 0) ; /* print the result of the
decomposition */

/******t****'*******’k*t*************************x**********t***********

The following procedure initializes all the global variables used in
this program.

*************************************'k********************************/

void initialize()

{

int i,3;

M = malloc(sizecf (graph)); /* create space for the graph in the

memory and initialize it */
M->entryl.label = 0; /* initialize entry and exit nodes

*

/

M-sentryl.pred = NULL;
M-sentryl.tier = -1;
M-sentryl.tier count = 0;
M->exit.label = 0;
M-sexit.pred = NULL;
M-sexit.tier = -1;
M->exit.tier count |
?or(i=0;i<10;i++) .
M-sentryl.gotol[i]
M->entryl.joinl[i]
M-sexit.gotoll[i] =
M-sexit.joinl [i] =

[}
o

]
<

ool

M-sentryl.nb goto
M-»entryl.nb join
M->exit.nb_goto =
M-sexit.nb_join =

Il
o

ool

i

(W SOy PR LU PO L

for(i=0;1<100;i++) /* initialize all graph nodes but
entry and exit onesg */
{

M-svertices[i] .label = 0;
M->vertices[i] .pred = NULL;
M->vertices[i] .tier = -1;
M->vertices[i] .tier count
for(j=0;3<10;3++)

]
o

M->vertices[i] .gotol[]]
M->vertices[i] .joinl[j] =

ol
~
o
-

M-svertices[i] .nb goto
M->vertices[i] .nb_join

}

/*************t**

This procedure builds a graph as an adjacency matrix. It reads the
input from a file and constructs the graph.

***************ﬂﬁ'******‘***’k****’**‘k*********‘A"#‘k****k‘#******‘k*********‘k**,’

void build graph()

int nb_nodes,
label,

type,
succl,
succe,

id,

1;
fscanf (in, "%d\n", &nb
fscanf (in, %d %d %4\
M->entryl.id = id;

M-sentryl.succ[0] =

45

/* number of nodes */

/* label number of the node */

/* type of the node */

/* successor node */

/* if a predicate node in the graph
this field peoints to its second
successor node */

/* id unmber of the node */

/* used as looping variable */

_nodes) ; /* reads number of nodes in the

graph */
n", &id, &type, &succl) ;

/* fill the entry node with the data
read */
&M->vertices [succl -2];

M-sentryl.ntype = type;

for(i=0;i<(nb nodes - 1);i++)

fscanf (in,"%d %d”
if (type != 2)
{

fscanf (in,” %d\

M-s>verticesg[i].

else

{

fscanf (in,” %d

M-svertices[i].
M->vertices [i]

}

M-svertices[i].
M-svertices|[i].

,&id, &type) ; /* reads id number and node type of
the graph nodes */
/* if the node is not a predicate
i.e. it has only one successor */
/* reads the node's successor number
wy
n’, &succl) ;
/* make an arc from the node to its
successor node */
succ[0] = &M-svertices[succl-2];

/* if the node is a predicate
i.e. it has two successors */
/* reads the node's successors
numbers */
%d\n", &succl, &succ?) ;
/* make an arc from the node to its
successors nodes */

succ [0] = &M->vertices([succl-2];
.succ[1l] = &M->vertices[succ2-2];
/* £ill the node with its type and
id number */
id = id;

ntype = type:;

/**‘k**‘k***************************

This procedure transforms M into a spanning chart by performing a depth

first search for the
stepl places pointers

join nodes which are then split. In addition,
in nodes to their predecessors in the spanning

chart. This enables the spanning chart to be searched backwards.

R RS RS R SRS R A SRS S E A EE S

'l‘***'t***'************t****************************/

WP NS T LU POURTEEE Ly

void stepl ()

struct ss

{

struct nn *first,
*gsecond;
int §;

struct ss *next;

typedef struct ss stack;
stack *top,

*tmp;

int nb_stack = 0,
iaj?

node *y,

*u,

*q;

i=0;
top = malloc(sizeof (stack));
top->first = &M->entryl;

top-=>second = NULL;
top->j = -1;
top->next = NULL;
nb stack = 1;

while (nb_stack =>0)

v = top->first;
u = top->second;
j = top->3;
tmp = top;
top = top->next;
free(tmp) ;
nb_stack--;
if (v->label == 0)
.
1++;
v->label = 1i;
v->pred = u;

/*
/’*

/*

/*

/*
/*

/*
/*

/*

/*

/*

/*

/*

/’*
/*

16

stack used in the creation of the
graph spanning tree */

it contains the node being
processed with its predecessor,
repectively */

if the predecessor node of the
node being processed is a
predicate, this field specifies
which successor of that predicate
is the node being procesed */ |

pointer to the node in the top of I
the stack */

n?mber of elements in the stack
*

used as looping variables */
pointer to the node being
processed */

the prdecessor node of the one
being processed */

pointer to the goto node being
created in the process of
creating the input graph spanning
tree */

ATR e e =

start the process by initiating
the entry node to be at the top
of the stack */

while there are still nodes in
the stack, continue the process
of placing pointers in nodes to
their predecessors in the
spanning trees */

the node being processed */
the predecessor of the node being
processed */

delete this entry, containing the
node being processed and its
predecessor from the stack */
decrement the number of the stack
elements by one */

if it hasn't been processed
before */

47

/* add the successor node of the
node being processed to the stack
as the main node to be processed

later =/
tmp = malloc(sizeof (stack));
tmp->first = v->succ(0];
tmp->second = v;
tmp->3j = 1;
if (nb_stack == 0)
tmp->next = NULL;
top = tmp;
else
{
tmp->next = top;
top = tmp;
nb stack++; /* increments the stack by one */
/* if the node being processed is a
predicate then two entries of it
- should be entered to the stack.
the first will be combining the
node with its first successor and
the second will be combining the
node with its second successor */
if (v->ntype == predicate)

tmp = malloc(sizeof (stack));
tmp->first = v->succ(l];
tmp->second = v;

tmp->j = 2;

if (nb_stack == 0)

tmp->next = NULL;
top = tmp;

else
tmp->next = top:
top = tmp;

nb stack++;

/* if the node on the top of the
stack was processed before. Then
a goto node will be created in
the spanning tree to be placed
between the node being processed
and its predecessor node */

g = malloc(sizeof (node)) ;
memset (g, '\0',sizeof (node)) ;
g->ntype = goto;

i++;

g->label = I;

/* add the label of the node being
processed to the goto array of
the nodes that this goto node
goes to */

g->gotol [g->nb_goto++] = v->label;
g->pred = u;
g->succ (0] = NULL;

AL RAid BA DN TVl & e === =T

48

/* add the label of the node being
processed to the join array of
the nodes that joins this node

4
v->joinl [v->nb join++] = v->label;
V->COrr = q;
if (v->label == 1) /* if the node being processed is

the entry node, then the goto
node will be the same as the exit
{ node */

copynode (q, &M->exit) ;

freel(q) ; /* because we have substitute it
with M->exit so no need for
it, so its pred node will be
pointing te M-sexit node */

u->succ[j-1] = &M-sexit;
else
u-ssuccl[j-11 = g:
last label = i; /* holds the last label number used
*/

}

/******'**'k*'k*****i***************'*1(*'k***********************************

Step2 marks each node with the number of the tier-i path to which it
belongs. This is done by starting with the tier-0 path and following it
backwards. By the definition of a tier-0 path, the goto nodes of the
tier-1 paths correspond to the join nodes on the tier-0 path. Pointers
to these goto nodes are placed both in a queue (for further processing
in step2) and in a stack (for processing in step 3). Processing
continues in a similar manner for higher numbered tier-i paths. In
addition, predicate nodes where two tier-i paths with the same number
come together are marked in order to enable step3 to process only those
paths that belong to the same set tier-i paths.

****'k***************************i—*********#****************************/

void step2()

{

int 1, /* used in the keeping track of what
tier number the process is in */
nb_goto_qu, /* number of nodes in the goto queue
*
/
node *v, /* used to hold the elements at the
top of the goto queue */
W, /* used to hold v-scorr if v is join
node */
n_tmp, / temporary variable */
end of tier; / used to hold the node at the top

of the goto stack before it is
sent as a parameter to the
procedure process tier */

goto_gueue *q tmp; /* temporary pointer for a goto
queue node */
goto_st *st_tmp; /* temporary pointer for a goto

stack node */

A atda & =

19

v = &M-sexit; /* start the process from the graph
exit node */
v->tier = 0; /* the first tier is tier-0 which is

the unique pathfrom the entry
node of the graph to the exit
node of the graph */
/* Put v in the goto queue */
fr_ gu = malloc(sizeof (goto queue)) ;
memset (fr_qu, '\0', sizeof (goto_queue)) ;
fr qu->first = v;
fr gqu->next = NULL;
rear_qu = fr qu;
nb goto qu++;
/* Put v in the goto stack */
fr st = malloc(sizeof (goto_st));
memset (fr st, '\0',sizeof (goto_st));
fr st->first = v;

fr qu->next = NULL;
nb_goto_st++;
while (nb_goto qu > 0) /* while there is still some nodes

in the goto queue, the process of
marking each node with the number
of the tier-i path to which it
belongs continue */

v = fr_qu->first;

g tmp = fr qu;
fr qu = fr_ qu-=>next;
free(g_tmp) ; /* remove v from the goto queue */

nb_goto _qu--;
i = w-stier;

while((v->pred != NULL) &&(v->pred->tier == -1))

/* while the node is not the entry
node and its predecessor node
hasn't been marked with a tier-i
path */

v = v->pred;
v->tier = ij;
if (v->ntype == join) /* if the node is a join node mark
its corresponding goto node with
(a tier-(i+l) */
W = V->COrr;
w->tier = 1 +1;

/* store the corresponding goto node
in the goto gueue and the goto
stack */

g _tmp = malloc(sizeof (goto_gueue)) ;
memset (g_tmp, '\0',sizeof (goto_queue)) ;
g tmp->first = w;
g tmp-=>next = NULL;
if (nb_goto_qu > 0)

rear_qu->next = g_tmp;
rear qu = q_tmp;

else

{

fr qu = rear qu = q tmp;

nb_goto_gu++;
st _tmp = malloc(sizeof (goto st));
memset (st_tmp, '\0',sizeof (goto_st));

Sl aad

30

st _tmp->first = v->corr;
if (nb_goto_st > 0)

st _tmp->next = fr st;
fr st = st_tmp;

else
{
fr st = st_tmp;
fr st->next = NULL;

‘nb_goto_st++;
}

} /* if more than cne tier-i path
meets at this node the wvalue path
of tier_count is 2 */

if ((v->pred != NULL)&&(v->tier == v->pred->tier))
v->pred->tier count = 2;

M-sentryl.tier count = 2;

/* while there are still some nodes
in the goto stack, call the
process_tier procedure to process
all the tier-i paths from high
tier number to low */

while(nb_goto_st > 0)

end of tier = fr st->first;
st_tmp = fr_st;

fr st = fr_st->next;
free(st_tmp) ;

nb_goto_st--;
process_tier(end of tier);

/**w******

This step processes all the tier-i paths from high tier number to low by
using the stack of goto node pointers produced in step2. In the case of
a predicate node where two tier-i paths of the same number come
together, when the node encountered for the second time, a pointer to
the predicate node is placed on the stack so that it is processed like a
goto node. This step maintains two pointers front and rear; the
candidate pair of arcs 1s the arc entering the node to which front
points and the arc along the tier-i path exiting the node to which rear
points.

'*********i—***********'*‘k****‘k*'A'****i—*i-**********************************/

void process_tier (node *end)

{

node *rear, /* the candidate pair of arcs is the
arc entering the node to which
front points and the arc along
the tier-i path exiting the node
to which rear points */

*front,
subprog exit; / points to the cutset being
removed */
goto st *st_tmp; /* temporary variable for goto stack

L 4

VS L Akss A

51

int Rgoto[1l0], /* temporary variables used to
update the rear node's goto and
join sets, when rear node type is
a predicate */

Rjoin[10],

Goto[10], /* temporary variables used to find
the candidate pair of arcs that
could be the cutset. The two
arcs has to have same Goto and
Join nodes */

Join[10],

1 _nb goto, /* variable used to hold number of
goto nodes in the goto array of
the node rear */

1 nb jeoin, /* variable used to hold number of
join nodes in the join array of
the node rear */

g _nb, /* variable used to hold number of
goto nodes in the goto array of
the node end */

j_nb, = /* variable used to hold number of
join nodes in the join array of
the node end */

g j flag, /* flag to check whether the Goto
set is the same as Join's set */
front pred, /* variables used to ensure that

the algorithm doesn't go behind

entry or after exit node,

otherwise it would crash */
rear_pred,

i /* used as looping wvariable =*/

rear = end->pred;
for(i=0;1i<10;1i++)

Rgoto[i] = end->gotol[i]; /* Rgoto is initialized to the goto
set of the node end */
Rjoin[i] = end->joinl[i]; /* Rjoin is initialized to the join

set of the node end */

Gotol[i] = rear->gotoll[i]; /* Goto is initialized to the goto
set of the node rear */

Join[i] = rear->joinll[i]; /* Join is initialized to the join
set of the node rear */

}

g nb = end->nb_goto; /* g nb is initialized to the number
of goto nodes in the goto set of
node end */

j nb = end->nb_join; /* j nb is initialized to the number

of join nodes in the join set of
node end */

1 nb goto = rear->nb_goto; /* 1 nb goto is initialized to the
number of goto nodes in the goto
set of node rear */

1 nb join = rear->nb join; /* 1 _nb_join is initialized to the
number of join nodes in the join
set of node rear */

rear_pred = 1;

52

/* while the pair of arcs, end and
rear, have the same tier path,
and the rear node doesn't have
more than one tier meeting at it;
try to find a cutset between
these two arcs */

while ((rear_pred == 1)&&(rear->tier == end->tier)
&& (rear->tier count == 0))
if((rear->ntype != assignment)é&&(rear->pred != NULL))

/* if rear 1is not an assignment node
and it is not the entry node */
front = rear->pred; /* assign front to be rear's
predecessor */
for (i=0;i<front->nb goto;i++)
/* Goto = Goto U Front's goto set */
Goto[l nb_goto++] = front->gotolli];

for(i=0;i<front->nb_join;i++)
/* Join = Join U Front's join set */
Join[l nb_join++] = front->joinl[i];

front pred = 1;

while ((front pred == 1)
&& (front->tier == rear->tier)
&& (front->tier count == 0))
{ /* while Front and rear are on the

same tier path */
g j flag = 0;
f?r{i=0;i<10;i++) /* check whether Goto = Join */
if(Goteli]l != Joinlil])
%;_j_flag = 1;
if((g_j _flag != 1)&&
(! ((rear == end->pred)&&
(front->pred-spred == NULL))))

{ /* if Goto = Join, and the arcs are
not the entry and exit arcs of
the graph */

/* when the a subprogram cutset is
found, Remove is called to create
the spanning tree hierarchy */

Remove (&front, &rear, &subprog_exit) ;

for (i=0;1i<10;i++)

{ /* Goto and Join are set to empty
because the goto and join nodes
have been removed */

Gotoli]l = Join[i] = 0;

1 nb goto = 1 nb_join = 0;

}

/* put subprog exit in the stack in
order to be tested later on for
subprogram cutsets in the
spanning tree that was removed */

st_tmp = malloc(sizeof (goto_st));
memset (st_tmp, '\0', sizeof (goto_st));
st_tmp->first = subprog_exit;

if (nb_goto_st > 0)

st tmp->next = fr st;

fr st = st_tmp;
}
else
{
fr_st = st_tmp;
fr_st->next = NULL;

;

nb_goto_st++;

if (front-s>pred != NULL)

front = front-s>pred; /* move front back to its
predecessor */
/* Goto = Goto U the goto set of
Front node */
for(i=0;i<front->nb goto;i++)
Gote[l_nb goto++] = front->gotol[i];
/* Join = Join U the join set of
Front node */
for(i=0;i<front->nb join;i++)
Join[l_nb join++] = front->joinl[i];

else
front_pred = 0;

/* add the set of goto nodes from
the rear node to Rgoto */
for(i=0;i<rear->nb _goto;i++)
Rgotolg nb++] = rear->gotol[i];

/* add the set of join nodes from
the rear node to Rijoin */
for(i=0;i<rear->nb_join;i++)
Rjoin[j nb++] = rear->Jjoinl[i];

}

if(rear->pred != NULL)

rear = rear->pred;
for(i=0;1<10;1i++)

Goto[i] = rear->gotoll[i]; /* add the set of goto nodes from
the rear node to Goto */
Join[i] = rear->joinl[i]; /* add the set of join nodes from

the rear node to Join */

}
)

~else rear pred = 0;

!

if (rear->tier_count != 0)

if (rear->tier count == 1)

{

33

/* if the node tier is not 2 add it

to the top of the stack */
st _tmp = malloc(sizeof (goto_st));
memset (st _tmp, '\0',sizeof (goto st));
st_tmp->first = rear;
if (nb_goto_st > 0)

st_tmp-snext = fr st;
fr st = st_tmp;

54

else
{
fr st = st_tmp;
fr st->next = NULL;

}
nb_goto_st++;

}

rear->tier count = rear->tier count -1;
]
if (rear->ntype == predicate) /* if the rear node is a predicate
)

for(i=0;i<g nb;i++)

{ /* add to the nodes in the Rgoto to
the rear's goto set */

rear->gotol [rear->nb goto++] = Rgotol[i];

}

for(i=0;i<j nb;i++)

{ /* add to the nodes in the Rijoin to
the rear's join set =*/

rear->joinl [rear->nb join++] = Rjoin[i];

}

i

}
!

/’***-r******‘k****’(*********w*************‘k***************************:*k

This procedure removes the prime subgraph from the original graph.
Also, it replaces the decomposed graph with a call node in the original
graph.

R R R R R R R R R R R R R R R R R R R
i

void Remove (node **fr,node **re,node **exit)

{

node *tmp, /* variable used to create the call
node to the subprogram cutset */
temp, / variable used to create the entry
node of the subprogram cutset */
templ, / variable used to create the goto
node of the subprogram cutset */
*rear,
=front;
front = *fr;
rear = *re;

tmp = malloc(sizeof (node)) ;

memset (tmp, '\0',sizeof (node)) ;

tmp->ntype = call; /* the call node that will call the
subprogram cutset from the
original graph */

tmp->pred = front->pred;

if (rear->succ|[0] ->tier < rear->succ|[l]->tier)

/* all the nodes outside the
subprogram have there tier
number less than the ones
inside the subprogram */

{ /* connecting tmp with its successor
*/
tmp->succ[l] = rear-ssucc(0];
rear->succ (0] ->pred = tmp;
}
else
[}

1
tmp-»>succ[l] = rear-ssuccl(l];

~rear->succ(l]->pred = tmp;

}

tmp->label = ++last label;
/* check whether the prdecessor node
of the call node is a predicate

*
/
if (front->pred->ntype == predicate)
{ if (front-s>pred-ssucc(1l] == front)
front-s>pred->succ(l] = tmp;
else
front-spred-ssucc[0] = tmp;
}
else
front-spred-ssucc (0] = tmp;

temp = malloc(sizeof (node));

memset (temp, '\0',sizeof (node)) ;

temp->ntype = entry; /* create an entry node for the
subrpogram cutset and fill its
entries */

temp->tier count = 2;

temp->succ[0] = front;
front->pred = temp;
tmp->succ(0] = temp;

temp->label = ++last label;
temp->tier = front->tier;
tmp->tier = temp->tier;

templ = malloc(sizeof (node)) ;

memset (templ, '\0',sizeof (node)) ;

templ-=>ntype = goto;, /* create a goto node for the
subrpogram cutset and fill its
entries */

*exit = templ;

templ->pred = rear;

templ->tier = rear->tier;

templ->label = ++last_label;

templ->succ[0] = tmp->succ(l];
if (rear->succ (0] ->pred == tmp) /* link the goto node to its
predecessor */
rear->succ|[0] = templ;
else
rear->succ(l] = templ;
front = tmp;
rear = tmp;
*fr = front;
*re = rear;
}

/**t*****t********

This procedure's job is to copy all the data from one node to another.

i****t*/

void copynode (node *x,node *y)

int i;

/* copy all the information from the
node x to the node y, and at the
end return y */

y->id = x->id;
y->label = x->label;

y->succ[0] = x->succ[0];

y-s>succ[l] = x->succ[l];

y->ntype = x->ntype;

y->pred = x->pred;

y->COrr = X->COrr;

y-=>tier = x->tier;

y->tier_ count = x->tier count;
for(i=0;i<10;1i++)

y->gotol [i]
y->joinl [i]

x->gotol [1i];
x->joinl [i];

Won

y->nb_goto
y->nb_join

x->nb_goto;
x->nb join;

o

/**************************t**

This procedure prints the prime graphs resulting from the decomposition
of the original graph. The result is printed in the form of a spanning

tree. =
***/

void Print result (node *t,int 1)

int i,j;

if(!t) return; /* this procedure is recursive, so
when it reaches Null, the
procedure starts exiting its
processes */

for(i=0;i<l;++i) printf(™ ~);

if (t->ntype == goto)

printf (* (%d,%d,%d,”,t->1label,t->ntype,t->tier) ;

for(j=0;j<t->nb_goto;j++)
printf (7%d,”, t->gotol[j]);
printf (*)\n”) ;

else
printf (* (%d,%d,%d)\n”,t->label,t->ntype,t->tier);
if (t->ntype == predicate)

Print result(t->succ[0],1+1);
Print_result(t->succ[1],1+1);

else

Print result (t->succ[0],1+1);

APPENDIX D

INPUTS/OUTPUTS LISTING

This appendix contains the input test graphs along with their corresponding
outputs used to test the two algorithms. Forman’s algorithm was tested using six different

inputs. In what follows the test programs are presented followed by their source and a

brief discussion.
The first test input is taken from Sedgewick’s text [Sedgewick 88]. It is a
procedure that deals with sorting an array using the insertion technique, the array to be

sorted is a global variable. The algorithm whose flow graph is to be decomposed follows.

/***i******

This procedure's job is to sort an array, a, using insertion techniques.
The major variables used in the procedure, which are global, are:

a: This is the array that contains the data to be sorted.

p: It is a pointer array that is manipulated, to restrict accessing the
original array only for comparisons.

N: This is the number of elements in a.

*****************t**t*******t**/

Procedure insertion

var i /* used as loop variable */
j, v: integer; /* wvariables used by the arrays a and p for the
comparison */
begin
3 == A
while (i<N) /* the loop initializes the P array in order to
produce an algorithm that will sort the index
array */
begin
Pli] := i;
i :=1 + 1;
end;
i = 2;
while (i<N) /* this loop and compare the elements in a, that

are indexed by the array p. Process and
adjustments will happen in the array p. At

57

the end of the algorithm, the index array
will be sorted so that p(1] is the smallest
element in the array a */

begin
v = plil;
while(al[p[j-1]1] > alv]) do
begin
plil := pl3-1];
g s L
end;
p[j] = Vv
i =1 + 1;
end;
end;

The m-graph presentation of test input 1 program is to be found in Figure 15.

Legend

assignment node

O join node

< predicate node

entry/exit node

Figure 15. The m-graph of test input 1 program

58

The decomposed spanning tree of test input 1 m-graph is presented in Figure 16.

Legend

assignment node

join node
predicate node

entry node

call node

JO)O

‘ goto node

Figure 16. This is the decomposed spanning tree of the m-graph of Figure 15

60

The original program of test input 1 after being decomposed is represented here.

/******‘#*****‘k*‘k******‘A’*‘k*******‘****************'k'**********************

This procedure's job is to sort an array, a, using insertion techniques.
The major variables used in the procedure, which are glcbal, are:

a: This 1s the array that contains the data to be sorted.

p: It is a pointer array that is manipulated, to restrict accessing the
original array only for comparisons.

N: This is the number of elements in a.

***/

Procedure insertion

var i /* used as lcop variable */
j, v: integer; /* variables used by the arrays a and p
for the comparison */
begin -
1 = Qs
Subprogram 1 /* the first prime program starts here */
while (i<N) /* the loop initializes the P array in
order to produce an algorithm that will
sort the index array */
begin
P[i] := 1i;
i = 1i + 1:
end;
Subprogram 2 /* the second prime program starts here */
i : = 2;
Subprogram 3 /* the third prime program starts here */
while (i<N) /* this loop and compare the elements in
a, that are indexed by the array p.
Process and adjustments will happen in
the array p. At the end of the
algorithm, the index array will be
sorted so that pll] is the smallest
element in the array a */
begin
Subprogram 4 /* the fourth prime program starts here */
v o= plil;
Subprogram 5 /* the fifth prime program starts here */
j == i3
Subprogram & /* the sixth prime program starts here =/
while(alpl[j-1]11 > alv]) do
begin
plil :=pl[j-11;
g sE)= 33
end;
end Subprogram 6 /* the sixth prime program ends here */
p[j] HE " i+
1 := 1 + 1;
end Subprogram 5 /* the fifth prime program ends here */
end Subprogram 4 /* the fourth prime program ends here */
end Subprogram 3 /* the third prime program ends here */
end Subprogram 2 /* the second prime program ends here =*/
end Subprogram 1 /* the first prime program ends here */
end;

end;

61

The second test input is taken from Sedgewick’s text [Sedgewick 88]. It is a
function that deals with searching an array using the binary search technique, the array to
be searched, a, is a global variable. The algorithm whose flow graph is to be decomposed

follows.

/***

This function is to search for an element in an array a. It uses the
binary search technique, which divide the set of records into two parts,
determines which of the two parts the key sought belongs to, then
concentrates on that part. It keeps the set records sorted. The major
global variables used in this function are:

a: It is an array of records, where the key is the wvariable in the
record that contains the numbers to be searched.

N: It represents the number of elements to be searched.

v: It is the key to be searched for.

************************************'k********'k*************************/

Function binarysearch(v: integer): integer
Var x, 1, r: integer;

begin
1 := 1;
Y := N;

while(v <> al[x].key or 1 <= r)/* it compares v with the element at the
middle position of the table. If v
is smaller, then it must be in the
first half of the table; if v is
greater, then it must be in the second
half of the table */

begin
X := (1 + r) div 2;
if(v < al[x] .key) then
r := % - 1;
else
1 := x + 1;
end ;
if (v = alx].key) then
binarysearch := x;
else
binarysearch := N + 1;

end;

The m-graph presentation of test input 2 program is to be found in Figure 17.

.
2
12
14
13
) 3
5
8
7
6
9

Legend

assignment node

O join node
<> predicate node

@ entry/exit node

Figure 17. The m-graph of test input 2 program

The decomposed spanning tree of test input 2 m-graph is presented in Figure 18

)

~ ——»

{-
4 L_? _l
C]TQ/ 2 7 16
— 12 e = 6>
ﬁ@ e
DS &
Legend

| assignment node
O join node

<> predicate node
O entry node

C) call node

l———‘ goto node
Figure 18. This is the decomposed spanning tree of the m-graph of Figure 17

64

The original program test input 2 after being decomposed is represented here.

/**********************************'k************************************

This function is to search for an element in an array a. It uses the
binary search technique, which divide the set of records into two parts,
determines which of the two parts the key sought belongs to, then
concentrates on that part. It keeps the set records sorted. The major
global variables used in this function are:

a: It is an array of records, where the key is the variable in the
record that contains the numbers to be searched.

N: It represents the number of elements to be searched.

v: It is the key to be searched for.

****'k****'k***********'***i**************i*******************************/

Function binarysearch(v: integer): integer
var x, 1, r: integer;

begin
1l := 1;
Subprogram 1 /* the first prime program starts here */
r := N;
Subprogram 2 /* the second prime program starts here */

while(v <> alx] .key or 1 <= r)
/* it compares v with the element at the
middle position of the table. If v
is smaller, then it must be in the
first half of the table; if v is
greater, then it must be in the
second half of the table */

begin
Subprogram 3 /* the third prime program starts here */
x := (1 + r) div 2;
Subprogram 4 /* the fourth prime program starts here */
if(v < a[x].key) then
r = 2® = 1
else
1 :=x + 1;
end Subprogram 4 /* the fourth prime program ends here */
end Subprogram 3 /* the third prime program ends here */
end;
Subprogram 5 /* the fifth prime program starts here */
if (v = aix] .key) then
binarysearch := x;
else
binarysearch := N + 1;
end Subprogram 5 /* the fifth prime program ends here */
end Subprogram 2 /* the second prime program ends here */
end Subprogram 1 /* the first prime program ends here */

end;

65

The third test input i1s taken from Sedgewick’s text [Sedgewick 88]. It is a
procedure that deals with Gauss-Jordan elimination, the array to be processed, a, is a

global variable. The algorithm whose flow graph is to be decomposed follows.

/***

The following program represents the forward-elimination phase of
Gaussian elimination. The major variables used in the procedure, which
are global, are:

a: This the array that contains the data to be processed.
N: This is the number of elements in the array a.

*********'*****'t**'***t'k'k*'k'*****1(**t*x****t************t*****************/

Procedure eliminate
var i, j, k, max: integer;

t: real;
begin
i = 1;
while (i<N) /* for each i from 1 to N, we scan down
the ith column to find the largest
element (in rows past the ith). The
row containing this element is
exchanged with the ith, and then the
ith variable is eliminated in the
equations i+l to N */
begin
max := 1i;
:= 1 + 1;
while (j<N)
begin
if(abs(alj,i]) > abs(almax,i])) then
max := j;
J =3 + 1
end;
k := 1i;
while(k <« N + 1)
begin
t := ali,k];
ali k] := almax,k];
a[max,k] := t;
k := k + 1;
end;
o= 1 o+ 1;
while (j<N)
begin
k (=N + 1;
while(k > i) /* eliminate the ith wvariable in the jth
begin equation */
alj,k] :=alj,k] - ali,kl*alj,i]l/ali,Jl;
k := k - 1;
end;
J o= 3 + 1;
end;
i := 1 + 1;
end;

end;

The m-graph representation of test input 3 program is presented in Figure 19.

ele —
2]
-
; sl 17
| T
v + L
§)

19 16
13—

Legend

£

assignment node

Join node

O
S

predicate node

entry/exit node

66

26

— — ——

Figure 19. The m-graph of test input 3 program

67

The decomposed spanning tree of test input 3 m-graph is presented in Figure 20.

10

56

35 < 30>

v
2]

33

Legend

entry/exit
node

assignment
node

Q join node
e > predicate

node

O call node
| goto node

Figure 20. This is the decomposed spanning tree of the m-graph of Figure 19

68

The original program of test input 3 after being decomposed is presented here.

/***'k***************************

The following program represents the forward-elimination phase of
Gaussian elimination. The major wvariables used in the procedure, which
are global, are:

a: This the array that contains the data to be processed.
N: This is the number of elements in the array a.

t****/

Procedure eliminate
var i, j, k, max: integer;

t: real;
begin
i 2= 13
Subprogram 1 /* the first prime program starts here */
while (i<N) - /* for each i from 1 to N, we scan down
the ith column to find the largest
element (in rows past the ith). The
row containing this element is
exchanged with the ith, and then the
ith variable is eliminated in the
equations i+l to N */
begin
max := i;
Subprogram 2 /* the second prime program starts here */
0 = L. A L
while (j<N)
begin
Subprogram 3 /* the third prime program starts here */
if(absf{alj,i]) > abs({almax,i])) then
max := j;
§ s=9 % 1;
end Subprogram 3 /* the third prime program ends here */
end;
Subprogram 4 /* the fourth prime program starts here */
kK = &3
Subprogram 5 /* the fifth prime program starts here */
while(k <« N + 1)
begin
t := ali,k];
ali, k] := almax,k];
almax, k] := £;
k :=k + 1;
end;
Subprogram 6 /* the sixth prime program starts here */
jo:=1 + 1;
Subprogram 7 /* the seventh prime program starts here
&
/
while (j<N)
begin
Subprogram 8 /* the eighth prime program starts here */
k := N + 1;
Subprogram 9 /* the nineth prime program starts here */
while(k > i) /* eliminate the ith wvariable in the jth
equation */
begin

alj, k] :=alj, k]l - ali,kl*alj,il/ali,jl;

j o= 3 + 1;
end Subprogram 9
end Subprogram 8
end;
3 = i 4+ A
end Subprogram 7
end Subprogram 6
end Subprogram 5
end Subprogram 4
end Subprogram 2
end Subprogram 1
end;
end;

the
the

the
the
the
the
the
the

69

nineth prime program ends here */
eighth prime program ends here */

seventh prime program ends here */
sixth prime program ends here */
fifth prime program ends here */
fourth prime program ends here */
second prime program ends here */
first prime program ends here */

70

The fourth test input is taken from Premkumar’s thesis [Premkumar 94]. The

algorithm whose flow graph is to be decomposed follows.

/*****w*****w************w-xw**********w*w*-x****r*********w***t*******w**

The following program adds 5 to the input wvariable x five times, 6
twice, and 2 thrice. Each time if the wvalue of x is less than 1000, the
program adds 1 to x the difference of k and j times.

*'k******tw***t*****/

#include <stdio.h>
main()

{

int i, j, k, x, m, hl, h2, h3, h4, h5;
scanf ("%¥d %d %d %d", &i, &j, &k, &x);

i = 0;
while(i < 10) /* do 10 iterations, which are: adding 5
to x 5 times, adding 6 to x 2 times,
{ and adding 2 to x 3 times */
¥l) /* if it didn't reach the 7th iteration,
this means it is still either adding 5
to x or adding 6 to x. Otherwise, it
should start adding 2 to x */
if (i < 5) /* if it didn't reach the 5th iteration,
then keep adding 5 to x. Otherwise,
start adding 6 to x */
X =X + 5;
else
o= X o+ b
!
else
X =X + 2;
m = k;
while(k < 7j) /* this loop serves for adding 1 to x k-j
times if x is less than 1000 */
{
if(x < 1000)
X =X 4+ 1;
k =k + 1;
}
k = m;
1 =1 4 1;

}

printf (“%d”, x) ;

The m-graph representation of test input 4 program is presented in Figure 21.

2

3

Y

18 [17

Legend

assignment node

O join node

<> predicate node
entry/exit node

20

Figure 21. The m-graph of test input 4 program

71

The decomposed spanning tree of test input 4 m-graph is presented in Figure 22.

h 4

Legend
— 7
S

assignment node

Join node

predicate node

O entry node | 22— 24 0
Q call node
8 @4 21
goto node

Figure 22. This is the decomposed spanning tree of the m-graph of Figure 21

73
The test input 4 after being decomposed is represented here.

/*****************'k******‘k******'ir***************************************

The following program adds 5 to the input wvariable x five times, 6
twice, and 2 thrice. Each time if the wvalue of x is less than 1000, the
program adds 1 to x the difference of k and j times.

*******************************'**/

#include <stdio.h>
main()
{
int i, j, k, %, m, hl, h2, h3, h4, h5;

Subprogram 1 /* the first prime program starts here */
scanf ("%d %d %d 24”7, &i, &j, &k, &x);
Subprogram 2 /* the second prime program starts here */
i = 0
Subprogram.3 /* the third prime program starts here */
while(i < 10) /* do 10 iterations, which are: adding 5

to x 5 times, adding 6 to x 2 times,
and adding 2 to x 3 times */

Subprogram 4 /* the fourth prime program starts here */
if(i < 7) /* if it didn't reach the 7th iteration,
this means it is still either adding 5
to x or adding 6 to x. Otherwise, it
should start adding 2 to x =/

Subprogram 5 /* the fifth prime program starts here */
if(i < 5) /* 1f it didn't reach the 5th iteration,
then keep adding 5 to x. Otherwise,
start adding 6 to x */
X =X + 5;
else
X =X + 6;
end Subprogram 5 /* the fifth prime program ends here */

}

else
X =X + 2;
Subprogram 6 /* the sixth prime program starts here */
m:k;
Subprogram 7 /* the seventh prime program starts here
" |
while(k < 7) /* this loop serves for adding 1 to x k-j
times if x is less than 1000 */
{
Subprogram 8 /* the eighth prime program starts here */
if(x < 1000)
X =X + 13
k =k + 1;
\ end Subprogram 8 /* the eighth prime program ends here */
k = m;
i =1+ 1;
end Subprogram 7 /* the seventh prime program ends here */
end Subprogram 6 /* the sixth prime program ends here */
end Subprogram 4 /* the fourth prime program ends here */

printf (“%d”, x) ;
end Subprogram 3 /* the third prime program ends here */

end Subprogram 2
end Subprogram 1

}

/* the second prime program ends here */
/* the first prime program ends here */

74

The fifth test input is taken from Sedgewick’s text [Sedgewick 88]. It is a function
that deals with searching a string (string processing). The array to be processed, a, is a

global variable. The algorithm whose flow graph is to be decomposed follows.

/***

This function does string checking. It checks for each possible
position in the text at which the pattern could match, whether it does
in fact match. The following program searches in this way for the first
occurrence of a pattern pll..M] in a text string all..N]. The major
variables used in this function, which are global, are:

M: It represents the number of characters in the string, to be searched
for.

N: It represents_the dimension of the array to be searched for the
string.

a: It is the array to be searched for the string.

p: It is an array containing the string to be searched.

***/

Function brutesearch: integer

Var k, /* it is a pointer into the text */
j: integer; /* it is a pointer into the pattern */
begin
k := 13
J = 1;
repeat
if(alk]l = plil) /* if the two pointers are pointing to a

matching character, both of them are
incremented */

then
begin
k := k + 1;
j o= 3 + 1;
end;
else
begin /* 1f j and k point to mismatching

characters, then j is reset to point
to the beginning of the pattern and i
is reset to correspond to moving
the pattern to the right one position
for matching against text */
k :=k = J + 2;
1

J = 1;
end;
until(j > M or k > N)
if(j = M) then /* if the end of the pattern is reached
(j > M), then a match has been found
*
/
brutesearch := k - M;
else
brutesearch := k;

end.

The m-graph representation of test input 5 program is presented in Figure 23.

" ele e
-
2
3
|
4)e 15
8 6 13
|
! I
9 7
=125

Legend

assignment node

O join node

< predicate node
entry/exit node

Figure 23. The m-graph of test input 5 program

The decomposed spanning tree of test input S m-graph is presented in Figure 24.

| @

2‘ g
|

e
‘,i
=)

18 7

Legend

assignment node

Join node

predicate node

entry node

NOGo

call node

|

goto node

Figure 24. This is the decomposed spanning tree of the m-graph of Figure 23

78

The original program of test input 5 after being decomposed into prime graphs is

presented here.

/**************'k'***t1r**********'k*************'*'************t*****‘k***’****

This function does string checking. It checks for each possible
position in the text at which the pattern could match, whether it doces
in fact match. The following program searches in this way for the first
occurrence of a pattern pl[l..M] in a text string a[l..N]. The major
variable used in this function, which are global, are:

M: It represents the number of characters in the string, to be searched
for.

N: It represents the dimension of the array to be searched for the
string.

a: It is the array to be searched for the string.

p: It is an array containing the string to be searched.

******************************'k***************'k************************/

Function brutesearch: integer

Var k, /* it is a pointer into the text */
j: integer; /* it is a pointer into the pattern */
begin
ki v= 1
3 = G
repeat
if(alk] = plil) /* if the two pointers are pointing to a

matching character, both of them are
incremented */
then

+ 1y
+ XL

’

begin /* if j and k point to mismatching
characters, then j is reset to point
to the beginning of the pattern and i
is reset to correspond to moving
the pattern to the right one position

for matching against text */
k :=k - 7 + 2;

-
end;
until(j > M or k > N)
Subprogram 1 /* the first prime program starts here */
if(§ > M) then /* if the end of the pattern is reached
(j > M), then a match has been found
£ 3
/
brutesearch := k - M;
else
brutesearch := k;
end Subprogram 1 /* the first prime program ends here */

end.

79

The six test input representing an m-graph taken from Forman’s thesis [Forman

79] and presented in Figure 25.

;

ele

IS

v
KL

0O

Legend

assignment node

O join node
<> predicate node

entry/exit node

Figure 25. The m-graph of test input 6

The decomposed spanning tree of test input 6 m-graph is presented in Figure 26.

[6 J 1 5 {3]

Legend

assignment node

O join node
<> predicate node

O entry node
Cﬁ) call node
\:l goto node

Figure 26. This is the decomposed spanning tree of the m-graph of Figure 25

80

81

Cunningham’s algorithm was tested with six different inputs. The first test input is
taken from Sedgewick’s text [Sedgewick 88]. It is a procedure that deals with sorting an
array using the insertion technique, the array to be sorted i1s a global variable. The

algorithm whose flow graph is to be decomposed follows.

/************************'x*********'l-***********************************

This procedure job is to sort an array, a, using insertion techniques.
The major variables used in the procedure, which are global, are:

a: This is the array that contains the data to be sorted.

p: It is a pointer array that is manipulated, to restrict accessing the
original array only for comparisons.

N: This is thé number of elements in a.

‘A'****************************‘k*********************************t*******/

Procedure insertion

var h /* used as loop variable */
j, v: integer; /* variables used by the arrays a and p for the
comparison */
begin
i == 1;:
while (i<N) /* the loop initializes the P array in order to
produce an algorithm that will sort the index
array */
begin
Pli] := 1i;
i == 1 + 1;
end;
i 3 = 2
while (i<N) /* this loop and compare the elements in a, that
are indexed by the array p. Process and
adjustments will happen in the array p. At
the end of the algorithm, the index array
will be sorted so that pl[l] is the smallest
element in the array a */
begin
v := plil;
J oi= 1;
while(alp[j-11] > alv]) do
begin
plil 2= plj-1ls;
J =3 = 1y
end;
pl3) := v;
1 := 1 + 1;
end;

end;

82

Figure 27 presents the digraph of the algorithm in test input 1.

/'l‘\#

Legend
(o)
@ start node

Figure 27. The digraph of test input 1 algorithm

83

The two digraphs that resulted from the decomposition of test input 1 digraph are

presented in Figure 28, where node 15 is the marker.

Digraph 1:

Digraph 2:

esend () (10
‘—
@ start node 0

Figure 28. The two digraphs resulting from the decomposition of the digraph of Figure 27

84

The algorithm of test input 1 after being decomposed is presented here.

/*‘k***************'!“A'******************t********************************

This procedure job is to sort an array, a, using insertion techniques.
The major variables used in the procedure, which are global, are:

a: This is the array that contains the data to be sorted.

p: It is a pointer array that is manipulated, to restrict accessing the
original array only for comparisons.

N: This is the number of elements in a.

*********************************t*************************************/

Procedure insertion
var I

j, v: integer;
begin -

Subprogram 1

4 o= L
while (1i<N)
begin
P{1] == i;
I o= 1 4+ 13
end;

end Subprogram 1

¥op o= e
while (i<N)

begin
v := plil;

j o= i
while(alplj-1]] > alv]) do

begin

pl3l := pl3-11;

] = J = 1
end;
plil := v;
i := 1 + 1;
end;
end;

/*
/*

/*

/*

/*

used as loop variable */
variables used by the arrays a and p
for the comparison */

the first decomposed digraph starts
here */

the loop initializes the P array in
order to produce an algorithm that will
sort the index array */

the first decomposed digraph ends here

*i

this loop and compare the elements in
a, that are indexed by the array p.
Process and adjustments will happen in
the array p. At the end of the
algorithm, the index array will be
sorted so that pl[l] is the smallest
element in the array a */

85

The second test input is taken from Sedgewick’s text [Sedgewick 88]. It is a
function that deals with searching an array using the binary search technique, the array to
be searched, a, is a global variable. The algorithm whose flow graph is to be decomposed

follows.

/*****‘k****1*********************************-***************#***********

This function is to search for an element in an array a. It uses the
binary search technique, which divides the set of records into two
parts, determines which of the two parts the key sought belongs to, then
concentrates on that part. It keeps the set records sorted. The major
global variables used in this function are:

a: It is an ar¥rray of records, where key is the wvariable in the record
that contains the numbers to be searched.

N: It represents the of elements to be searched.

v: It is the key to be searched for.

*********************************t‘i\‘******'#***‘k*************************/

Function binarysearch(v: integer): integer
var x, 1, r: integer;
begin

1 = B

r &= N;

while (v <> al[x] .key or 1 <= r)/* it compares v with the element at the
middle position of the table. If v
is smaller, then it must be in the
first half of the table; if v is
greater, then it must be in the second
half of the table */

begin
X (1l + r) div 2;
a[x] .key) then
% - 1;

if

A

(v
£
else
L o= iR e L
end;
if(v = a[x] .key) then
binarysearch := x;
else
binarysearch := N + 1;
end;

Figure 29 presents the digraph of the algorithm in test input 2.

36

“ O
1)
o o Legend
@ de
e . start no

Figure 29. The digraph of test input 2 algorithm

The two digraphs that resulted from the decomposition of test input 2 digraph are

presented in Figure 30, where node 14 is the marker.

Digraph 1:

4
[@
e Legend
o @ start node

Digraph 2:

Figure 30. The two digraphs resulting from the decomposition of the digraph of Figure 29

88
The algorithm of test input 2 after being decomposed is presented here.

/***************************************t*********t*t*******************

This function is to search for an element in an array a. It uses the
binary search technique, which divides the set of records into two
parts, determines which of the two parts the key sought belongs to, then
concentrates on that part. It keeps the set records sorted. The major
global wvariables used in this function are:

a: It is an array of records, where key is the variable in the record
that contains the numbers to be searched.

N: It represents the of elements to be searched.

v: It is the key to be searched for.

*'k***/

Function binarysearch(v: integer): integer
vVar x, 1, r: integer;
begin
1 its Ly
roa= N
Subprogram 1 /* the first decomposed digraph starts
here */
while(v <> a[x] .key or 1 <= r)/* it compares v with the element at the
middle position of the table. If v
is smaller, then it must be in the
first half of the table; if v is
greater, then it must be in the second
half of the table */

begin
X := (1 + r) div 2;
if(v < al[x] .key) then
r =% = 1;
else
l »=x% & 1;
end;
if (v = a[x] .key) then
binarysearch := x;
else
binarysearch := N + 1;
end Subprogram 1 /* the first decomposed digraph ends here

xf

end;

89

The third test input is taken from Sedgewick’s text [Sedgewick 88]. It is a
procedure that deals with Gauss-Jordan elimination, the array to be processed, a, is a

global variable. The algorithm whose flow graph is to be decomposed follows.

/*i******************i**t****t**i***************************************

The following program represents the forward-elimination phase of
Gaussian elimination. The major wvariables used in the procedure, which
are global, are:

a: This the array that contains the data to be processed.
N: This is the number of elements in the array a.

t**w*******************/

Procedure eliminate
var i, j, k, max: integer;

t: real;
begin
i 2= Lo
while (i<N) /* for each i from 1 to N, we scan down
the ith column to find the largest
element (in rows past the ith). The
row containing this element is
exchanged with the ith, and then the
ith variable is eliminated in the
equations i+l to N =/
begin
max := 1;
J o= 1 4+ I;
while (j<N)
begin
if(abs{alj,i]) > abs(almax,i]l)) then
max := Jj;
j =3 + 1;
end;
k= 3
while(k < N + 1)
begin
t := ali,kl;
ali,k] := almax, k];
almax,k] := t;
k :=k + 1;
end;
3 o= A F ol
while (j<N)
begin
k := N + 1;
while(k > i) /* eliminate the ith variable in the jth
begin equation */
ali, k]l := alj,k]l - ali,kl*alj,il/ali,j];
k :=k - 1;
end;
Jos=3 + 1;
end;
1 3= 1 + 1;
end;

90

The digraph of the algorithm in test input 3 is presented in Figure 31.

Legend

@ start node

Figure 31. The digraph of test input 3 algorithm

The digraph of test input 3 could not be decomposed by Cunningham’s algorithm.

91

The fourth test input is taken from Premkumar’s thesis [Premkumar 94]. The

algorithm whose flow graph is to be decomposed follows.

/******‘k**'k‘k**

The following program adds 5 to the input variable x five times, 6 twice

and 2 thrice. Each time

if the wvalue of x is 1less than 1000, the

program adds 1 to x the difference of k and j times.

*************************t***t***/

#include <stdio.h>
main ()

{

int i, 9., k&, X m;

scanf (2d %d %d 34"

i=0; -
while(i < 10)

1
if(i <« 7)

if(x « 1000)
x

= X + 1;

}

printf (%47, x) ;

hl, h2, h3,
&i, &j, &k,
/*
/*
/t
/’*

h4, hS5;
&X) ;

do 10 iterations, which are: adding 5
to x 5 times, adding 6 to x 2 times,
and adding 2 to x 3 times */

if it didn't reach the 7th iteration,

this means it is still either adding 5
to x or adding 6 to x. Otherwise, it

should start adding 2 to x */

if it didn't reach the 5th iteration,
then keep adding 5 to x. Otherwise,
start adding 6 to x */

this loop serves for adding 1 to x k-j
times if x is less than 1000 */

—

92

Figure 32 presents the digraph of the algorithm in test input 4.

Legend

@ start node I @

Figure 32. The digraph of test input 4 algorithm

93

The representation of the two digraphs that resulted from the decomposition of

test input 4 digraph is shown in Figure 33, where node 21 is the marker,

Digraph 1:
— (O
&
Legend
@ start node
Digraph 2:

Figure 33. The two digraphs resulting from the decomposition of the digraph of Figure 32

94
The test input 4 algorithm after being decomposed is presented here.

/****#**'k******‘#*‘#***‘k‘k‘k****‘k*********‘k**‘k**1\‘***************************

The following program adds 5 to the input variable x five times, 6 twice
and 2 thrice. Each time if the walue of x 1is less than 1000, the
program adds 1 to x the difference of k and j times.

**********r*r*****s\-r*-x*x*x*wx*******w*******r*************x***w********/

#include <stdio.h>
main()

int i, j, k, x, m, hl, h2, h3, h4, h5;
scanf ("%d %4 %d %d", &i, &j, &k, &x);

3= 10
Subprogram 1 /* the first decomposed digraph starts
here */
whilel(i < 10) /* do 10 iterations, which are: adding 5

- to x 5 times, adding 6 to x 2 times,
and adding 2 to x 3 times */

if(i < 7) /* if it didn't reach the 7th iteration,
this means it is still either adding 5
to x or adding 6 to x. Otherwise, it
should start adding 2 to x */

{
if(i < 5) /* if it didn't reach the 5th iteration,

then keep adding 5 to x. Otherwise,
start adding 6 to x */

X =X + 2
m = k;
while(k < j) /* this loop serves for adding 1 to x k-j
times if x is less than 1000 */
{

if(x < 1000)

X =X + 1;
k=k+1_;
k= m;
i =14+ 1;

!
printf ("%d”,x) ;
end Subprogram 1 /* the first decomposed digraph ends here

*i

95

The fifth test input is taken from Sedgewick’s text [Sedgewick 88]. It is a function
that deals with searching a string (string processing). The array to be processed, a, is a

global variable. The algorithm whose flow graph is to be decomposed follows.
/**‘k***‘k**

This function does string checking. It checks for each possible
position in the text at which the pattern could match, whether it does
in fact match. The following program searches in this way for the first
occurrence of a pattern pl[l..M] in a text string all..N]. The major
variables used in this function, which are global, are:

M: It represents the number of characters in the string, to be searched
for.

N: It represents the dimension of the array to be searched for the
string.

a: It is the array to be searched for the string.

p: It is an array containing the string to be searched.

************'***********t**************t********************************/

Function brutesearch: integer

Var k, /* it is a pointer into the text */
j: integer; /* it is a pointer into the pattern */
begin
I = s
j o= 1;
repeat
if(alk] = plil) /* 1f the two pointers are pointing to a

matching character, both of them are
incremented */

then
begin
k 1= k + 1;
5 Pl e S [
end;
else
begin /* if j and k point to mismatching

characters, then j ig reset to point
to the beginning of the pattern and i
is reset to correspond to moving
the pattern to the right one positicn
for matching against text =/

k :=k - § + 2;

o= 1
end;
until(j > M or k > N)
if(j > M) then /* 1if the end of the pattern is reached
(j > M), then a match has been found
*
/
brutesearch := k - M;
else
brutesearch := k;

end.

v6

The digraph presentation of test input 5 algorithm is shown in Figure 34.

®‘_ S

Legend

@ start node

Figure 34. The digraph of test input 5 algorithm

The two digraphs that resulted from the decomposition of test input 5 digraph are

presented in Figure 35, where node 15 is the marker.

97

Digraph 1
@,7
(19
D
Legend
@ start node
Digraph 2:

Figure 35. The two digraphs resulting from the decomposition of the digraph of Figure 34

98
The algorithm of test input 5 after being decomposed is presented here

X***1*

This function does string checking. It checks for each possible
position in the text at which the pattern could match, whether it does
in fact match. The following program searches in this way for the first
occurrence of a pattern p[l..M] in a text string all..N]. The major
variables used in this function, which are global, are:

M: It represents the number of characters in the string, to be searched
for.

N: It represents the dimension of the array to be searched for the
string.

a: It is the array to be searched for the string.

p: It is an array containing the string to be searched.

***/

Function brutesearch: integer

Var K /* it is a pointer into the text */
j: integer; /* it is a pointer into the pattern */

begin
ke w= 13

J = 1;

Subprogram 1 /* the first decomposed digraph starts

here */
repeat
iftalk] = pljl) /* if the two pointers are pointing to a

matching character, both of them are
incremented */

then
begin
k ==k + 1;
j o= 3 + 1;
end;
else
begin /* if § and k point to migmatching
characters, then j is reset to point
to the beginning of the pattern and i
is reset to correspond to moving
the pattern to the right one position
for matching against text */
k :=k - j + 2;
i o= 1;
end;
until(j > M or k > N)
if(j = M} then /* if the end of the pattern is reached
(j > M), then a match has been found
*
/
brutesearch := k - M;
else
brutesearch := j;
end Subprogram 1 /* the first decomposed digraph ends here
*
/

end.

99

The sixth test input has been taken from Cunningham’s paper [Cunningham 82].

The digraph in test input 6 is presented in Figure 36.

Legend

@ start node

Figure 36. The digraph of test input 6
(Source: F(‘unnmgham 821)

Digraph 1:

Legend

O,
@ start node

Digraph 2:

Figure 37. The two digraphs resulting from the decomposition of the digraph of Figure 36

100

The two digraphs that resulted from the decomposition of test input 6 digraph are

presented in Figure 37, where node 5 is the marker.

VITA
SOLAYMAN MAHMOUD REFAE
Candidate for the Degree of

Master of Science

Thesis: PROGRAM FLOW GRAPH DECOMPOSITION
Major Field: Computer science
Biographical:

Personal Data: Born in Sour, Lebanon, January 1, 1971, son of Mahmoud and
Fatina Refae.

Education: Graduated from Cadmous High School, Sour, Lebanon, in June 1988,
received Bachelor of Science degree in Computer Science from Beirut
University College, Beirut, Lebanon. Completed requirements for the
Master of Science degree at The Computer Science Department at
Oklahoma State University in July 1996.

Professional Experience: Computer Programmer, Ezsoft Company, Beirut,
Lebanon, November 1992-December 1993

