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PREFACE 

The following study was conducted to classify cell populations found in the 

epitenon of the deep digital flexor tendons of chickens. Tendons heal very slowly and in 

many cases the prognosis of mechanical recovery following repair is very poor. 

Although various surgical and grafting procedures exist, satisfactory healing is 

dependent on achieving a balance between initial immobilization and passive controlled 

motion following repair. Well-defined post-operative exercise regimens are not readily 

available to deal with the diversity of tendon injuries and patient variability. What is 

needed is an additional treatment option to reduce post-operative healing time. 

One approach would be the incorporation of tendon cells at the site of injury to 

decrease the time of immobilization. Cell populations present in the epitenon are actively 

involved in healing, however, the various epitenon populations have not been well 

characterized. The following study was designed to classify epitenon cell populations of 

the chicken deep digital flexor tendon which has been previously used as a model for the 

study of tendon healing. 

I sincerely thank my advisor, Dr. Larry E.Stein and committee members, 

Dr. Nicholas L. Cross and Dr. Alastair G. Watson for guidance and support through my 

introduction to research. 
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Chapter I 

INTRODUCTION AND LITERATURE REVIEW 

HISTORICAL PERSPECTIVE 

In reviews of the historical background of tendons by Mason and Sheardon (1932) 

and Forster (1989), it is concluded that tendons were described as early as the second 

century AD. by Galen and that his description overlapped with that of nerves. It was not 

until the eighteenth century that von Haller distinguished tendons from nerves by showing 

tendons to be relatively insensitive structures compared to nerves (Mason and Sheardon, 

1932; Forster, 1989). According to Forster (1989), tendons were identified as a form of 

connective tissue by Bichat (1802) who observed tendons to be made of the same fibers 

(now known as collagen) that are also present in ligaments, joint capsules and fasciae. 
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GROSS MORPHOLOGY 

Tendons are dense white fibrous structures that are distinguished from other 

connective tissue structures such as ligaments, interosseous membranes and fasciae by the 

fact that tendons join skeletal muscle fibers to their points of attachment, which are often 

on bone (Forster, 1989). 

Tendon shape and size vary considerably. They may be thick bands with concave 

lateral borders such as the prepubic tendon, which is the common insertion for the 

abdominal muscles in the horse. They may pass through the length of the muscle belly 

itself from origin to insertion - such as the internal tendon of the biceps brachii in the 

horse. Tendons may be short such as the common tendon of insertion ofthe flexor carpi 

ulnaris muscle in the forelimb of dog which extends from the level of the distal third of the 

radius to the accessory carpal bone (Dyce et aI., 1987). Tendons may be long such as the 

deep digital flexor tendons on the caudal and palmar surface of the forelimb in the dog, 

which extend from the level of the distal third of the radius and traverse the length of the 

metacarpals and phalanges before insertion onto the distal phalanges (Dyce et aI., 1987). 

Based on the presence or absence of a protective covering of synovial tissues, 

tendons are classified as either sheathed or non-sheathed tendons. The synovial sheath 

consists of outer and inner synovial membranes which are continuous on the deep surface 

of the tendon forming a double layered structure called the mesotendon (Dyce et aI., 

1987). Sheathed tendons are usually long tendons subject to significant gliding movement 

or change in direction over joints such as the tendon of the deep digital flexor muscles on 

the plantar surface of the pelvic limb in chickens. Tendons that do not possess a synovial 
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sheath such as the common calcanean tendon in dog is an example of paratenon covered 

or non-sheathed tendon. 

The nature of the vascular supply in tendons depends on whether the tendon is 

sheathed or non-sheathed. Chaplin (1973) demonstrated with microradioangiography that 

paratenon covered tendons are substantially more vascular than sheathed tendons. In non

sheathed tendons, blood vessels that branch out to supply the tendon matrix in a diffuse 

manner are found throughout the paratenon along the entire length of the tendon. In 

sheathed tendons, blood supply is restricted to the mesotendon found along the deep 

surface of the tendon (St. Clair, 1975). In regions of extensive gliding, the mesotendon is 

modified to form intermittent elastic structures called vinculae (Peacock, 1959). Vinculae 

occur at mid-phalangeal regions in chickens and serve as conduits for the blood vessels, 

lymphatics and nerves that supply the tendon (Beckham and Greenlee, 1975). 
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HISTOLOGY 

Histologically, tendons are a dense regular form of connective tissue consisting of 

vast quantities of extracellular matrix and relatively few cells (Wheater, 1993). Parry et ai. 

(1978) demonstrated that fibrillar collagen content increases steadily from birth to adult 

age where it remains relatively constant and then slowly drops in aged horses. 

Extracellular Matrix Components 

The collagen content of adult flexor tendons is 75 % by dry weight in chickens 

(Banes et aI., 1987). Collagen types include 85 - 95 % of type I collagen fibers, type II 

collagen in fibrocartilage areas, type III associated with blood vessels and epitenon, type V 

found in the basal lamina of endothelium, and type VI found diffusely throughout the 

myotendinousjunction of the chicken tendon (Swasdison and Mayne, 1989). According 

to a review by Elliott (1965), collagen fibers are embedded in a small quantity of viscous 

mucopolysaccharide which constitutes less than 1 % of the tendon. Variable amounts of 

structural matrix proteins such as elastin (Wortham, 1948), fibronectin and laminin 

(Swasdison and Mayne, 1989) are also present. 

A transverse section from the phalangeal region of the deep digital flexor tendon 

from chicken is usually elliptical or round demonstrating the presence of collagen fibers 

arranged in bundles or fascicles . The assembly of tropocollagen into its structural 

hierarchy occurs extracellularly with its formation of the collagen fiber (Kastelic et aI. , 

1977). Several fibers are organized together to form a primary bundle or fascicle which is 

surrounded by connective tissue called endotenon. Several primary bundles are grouped 
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together to constitute secondary bundles. Occasionally, two or three secondary bundles 

are organized into tertiary bundles. Connective tissue surrounding secondary and tertiary 

bundles is known as peritenon (Figure 1, pg. 48). 

The outermost connective tissue investment is called the epitenon. It is usually 

two to three cell layers in depth (Gelberman et aI., 1983) and demonstrates regional 

variation along the length of the tendon (Greenlee et aI., 1975). The epitenon also 

contains type I and type III collagen fibers (Riederer-Henderson et aI., 1983) and in areas 

of cartilage, type II collagen fibers are found . 

In the case of sheathed tendons, the visceral (inner layer of the synovial sheath) 

synovial membrane has a layer of synovial cells which is the outermost cell layer of the 

epitenon. The parietal (outer layer of synovial sheath) synovial membrane blends with 

periosteum and loose connective tissues of the skin and fascia. Between the outer parietal 

and inner visceral synovial membranes, lies the synovial space in which synovial fluid 

circulates (Greenlee et aI. , 1975). In non-sheathed tendons, the epitenon blends into 

adjacent loose areolar connective tissue called paratenon. 

In summary, a histological description of tendon fiber organization reveals that 

collagen bundles consisting primarily of dense regular type I collagen are held together by 

means of a dense irregular connective tissue frame-work. This connective tissue frame

work is named epitenon, peritenon and endotenon based on topographical location. These 

connective tissue investments are oriented perpendicular to the collagen fibers (Greenlee 

et aI. , 1975), and may allow independent movement of collagen fibers or fascicles (Woo 

and Buckwalter, 1987). 
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Cellular Components 

Tendon fibroblasts or tendinocytes are the most common cells observed in 

histological sections of tendons. Tendinocytes produce and maintain type I collagen 

within the primary collagen bundles and have been referred to as wing cells or stellate cells 

because of their extensive cytoplasmic processes which surround the collagen fibers 

(Elliott, 1965). They are star shaped in transverse sections between collagen fibers in 

primary collagen bundles, and are characteristically spindle-shaped, oriented parallel to the 

collagen fibers in longitudinal sections. The cell boundaries are not readily distinguished 

from the surrounding eosinophilic type I collagen fibers under standard light microscopic 

techniques. 

Cell types found in the connective tissue investments, namely, endotenon, 

peritenon and epitenon are mainly fibroblasts (Greenlee et aI., 1975) though not 

necessarily oriented parallel to the longitudinal axis of the tendon (Woo and Buckwalter, 

1987). Their characteristic spindle-shaped nuclei are often seen in transverse histological 

sections of the tendon. 

The cell populations of the epitenon include synovial cells, epitenon fibroblasts and 

cartilage cells. Tendon synovial cells in the chick embryo constitute the outermost layer 

adjacent to the synovial space. Electron microscopy reveals fine filaments in these cells 

(Greenlee et aI., 1975). Literature on chicken tendon synovial cells in vivo is limited to 

this study. 

A review ofliterature on joint capsule synovial cells in mammals reveals the 

presence of two cell types (Barland et aI., 1962; Williamson et aI., 1966; Southwick and 
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Bensch, 1971). The first cell type is phagocytic having vacuoles as the type A cell 

(Barland et aI., 1962), which is described as "V" cell containing large vacuoles by 

Southwick and Bensch (1971), or as type I cell reported by Williamson et aI. (1966) 

,/ containing membrane bound organelles or lysosomes. This phagocytic cell type contains a 

large round or oval nucleus (Castor, 1960: Williamson et aI., 1966). 

The second cell type is involved in protein synthesis, having large amounts of 

ergastoplasm as the type B cell described by Barland et ai. (1962) which is the ER cell 

with dilated cisternae described by Southwick and Bensch (1971), or as the type II cell 

which accounts for the basophilia described by Williamson et ai. (1966). This synthetic 

cell type has a dark staining nucleus (Southwick and Bensch, 1971; Williamson et al ., 

1966). 

An ultrastructural study of joint synovial membrane in chickens (Luckenbill and 

Cohen, 1967) suggested that there is no morphologic division of synoviocytes into distinct 

phagocytic or synthetic types. Information distinguishing synovial cells and epitenon 

fibroblasts in vivo and in vitro has not been found. 

Electron microscopy revealed epitenon fibroblasts deep to the synovial cells with 

extensive rough endoplasmic reticulum and secretory vesicles (Mass and Tuel, 1990). 

Whether or not the epitenon fibroblasts are the type B synovial cells is unknown. 

Cartilage cells are found on the surface in regions along the length of the tendon closer to 

bone. They are seen as cuboid cells in lacunae with foamy cytoplasm (Greenlee et aI., 

1975). 
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Epitenon cell populations have been demonstrated to contribute to successful 

tendon healing (Gelberman 1983; 1985; Mass and TueI1990). In a study of flexor tendon 

healing in dogs treated with total immobilization and early controlled passive mobilization, 

it was shown that with total immobilization, the site of healing consisted of ingrowth of 

reparative tissue from the digital sheath leading to adhesion formation and loss of gliding 

function. Comparatively, early passive mobilization resulted in fibroblast proliferation 

from the epitenon itself, presumably reducing adhesion formation and resulting in the 

maintenance of gliding function of tendons. 

In summary, three epitenon cell populations are identified, namely, synovial cells, 

epitenon fibroblasts and cartilage cells. However, no definite markers or morphological 

criteria currently exist to distinguish epitenon fibroblasts from synovial cells and cartilage 

cells in vitro. It is important to know more about epitenon fibroblasts so that they can be 

cultured in vitro and incorporated directly into the site of injury. The following study was 

directed at providing distinguishing criteria for synovial cells, epitenon fibroblasts and 

cartilage cells in vitro. 
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TENDON INJURY, HEALING AND REPAIR 

Tendon injuries can be divided into two broad categories, namely, mechanical 

damage and degenerative damage (Fackleman, 1973). Rupture or mechanical damage 

occurs through abrupt loss of continuity between the tendon fibers, whereas degenerative 

changes produce gradual loss of elasticity leading to disruption. 

Tendon injuries range from relatively small tears to complete rupture of the tendon 

collagen bundles. Following injury, the healing process proceeds slowly and is associated 

with vascularity (Peacock, 1959). Healing of vascular or paratenon covered tendons is 

well described (Flynn and Graham, 1965), and, although adhesion formation occurs, it 

does not usually affect function. Such tendons generally regain satisfactory mechanical 

strength post-healing. Healing of sheathed tendons however, is relatively complicated 

because of limited vascularization and the presence of a tendon sheath. Sheathed tendons 

take a longer time to heal and adhesion formation interferes with satisfactory gliding 

function post-healing. 

Hence, satisfactory tendon healing depends on a delicate balance between 

immobilization to allow strong repair and early passive motion to prevent adhesion 

formation (Mason and Sheardon, 1932). 

Tendons heal by extrinsic and lor intrinsic healing mechanisms (Gelberman et al. 

(1985). Early studies (Potenza, 1962; Lindsay and Birch, 1964; Peacock, 1964) 

demonstrated the importance of extrinsic sources of cell populations for healing. These 

populations include fibroblasts from the outer layer of the synovial sheath, periosteum, 

subcutaneous tissue, the dermis and elements of the immune system in blood. More recent 
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studies however, demonstrate the importance of intrinsic cell populations involved in the 

healing process (Lundborg and Rank, 1980; Gelberman et aI., 1982). The latter 

populations are derived from within the epitenon and endotenon connective tissues of the 

tendon. It is clear that tendons heal by both extrinsic and intrinsic activity and the relative 

contributions of these two cell populations depends on the type and site of the tendon 

injury as well as post-operative management (Gelberman, 1983). However, post

operative healing regimens aimed at optimization of the duration and the level of exercise 

have been essentially empirical, since it is dependent on variables such as the diversity of 

type of tendon injuries, patient variability and temperament. Although intrinsic healing 

mechanisms have been demonstrated, showing proliferation and production of collagen by 

cell populations of epitenon and endotenon, the specific cell types in the epitenon and 

endotenon have not been studied. 

Surgical approaches available for repair include numerous suture techniques that 

attempt to take advantage of the mechanical strength of the tendon (Pijanowski et aI., 

1989). Suturing is used to conjoin both ends of a ruptured tendon. Tensile strength of 

repair during the first two weeks is primarily dependent on the strength and pattern of the 

suture (Mason and Allen, 1941). Orientation of the collagen fibers in tendon does not 

support suture patterns which are applied parallel to the longitudinal axis. On the other 

hand, patterns arranged perpendicular to the longitudinal axis of the tendon provide 

mechanical strength but at the expense of blood flow that compromises repair. 

Mechanical strength of a suture pattern alone is an insufficient measure of the likelihood of 

successful tendon healing. Also, the presence of sutures as foreign body material 
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magnifies the inflammatory response which contributes to an extrinsic population of cells 

responsible for adhesion formation. 

Another approach used is grafting wherein a gap between the ruptured tendon 

ends precludes conjoining with sutures. In a comparative study (Abrahamsson and 

Gelberman, 1994) between healing of extrasynovial and intrasynovial tendon grafts within 

synovial sheaths, it was observed that the surface cells of the intrasynovial tendons show 

greatly reduced adhesion formation with an epitenon primarily composed of 2 - 3 layers of 

spindle-shaped cells and a few rounded cells. Cell proliferation and neovascularization is 

not extensive, leaving the endotenon preserved. It is apparent from this study that the 

surface cells of intrasynovial tendons are well suited for cellular survival and tendon 

gliding. However, survival of grafts depends on host compatibility and immune response 

mechanisms. Since grafting necessiates suturing, the associated problems of suture 

patterns, excessive inflammatory response, adhesion formation, diminished circulation and 

gap formation occur. 

Additional treatment approaches to tendon healing which may augment intrinsic 

healing mechanisms are needed. One such possibility may be the incorporation of in vitro 

reared epitenon fibroblasts at the tendon injury site. These cells may decrease the time of 

immobilization, thereby initiating early post-operative passive motion sooner. It is 

important to incorporate cultured cells that are known to be involved in healing such as 

the epitenon or endotenon cell populations. 
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TENDON CELL ISOLATION TECHNIQUES 

Dehm and Prockop (1971) digested "leg" tendons from the phalangeal region of 

17 day old White Leghorn chick embryos with 2.5 % trypsin and 0.1 % collagenase in 

,/ approximately 40 minutes at 37 DC in 5 % carbon dioxide atmosphere with continuous 

agitation. The hydrolysate was centrifuged at 600 X g for 3 minutes at room temperature 

and the cells obtained were 88 % viable. No quantitative data was reported to indicate 

total numbers of cells isolated. Their incomplete morphological description of isolated 

cells indicate that at least two cell populations were present. One population consisted of 

rounded cells with sharp borders. This constituted the majority ofthe cells and were 

presumably tendinocytes. The other population described consisted of a few cells with 

large vacuoles with a low nuclear to cytoplasmic ratio. It is possible that these cells are 

similar to the phagocytic synovial cell type described by Barland et ai. (1962), or the Type 

I cells described by Williamson et ai. (1966), or to the V cells described by Southwick and 

Bensch (1971). 

Another study of 17 day old chick embryo tendon cell cultures was done by 

Riederer-Henderson et ai. (1983). Here, two cell populations, namely, synovial cells and 

tendon fibroblasts are reported. The cell population presumed to be synovial cells was 

reported to take a longer time to contact the substrate than the tendon fibroblast 

population. Synovial cells spread out more rapidly and were quite adherent to the 

substrate. It is postulated (Riederer-Henderson et aI., 1983) that the synovial cells 

probably need to secrete attachment proteins of a different type or in different amounts 

before attachment to the substrate compared to the tendon fibroblast population. 
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In the Riederer-Hendersons study, the cells were isolated following a 20 minutes 

digestion of deep digital flexor tendons with 0.25 % trypsin and 0.2 % collagenase. Upon 

isolation, epitheloid cells were occasionally observed but the morphology of the majority 

of the cells isolated was not described. Upon plating, the synovial and tendinocyte 

populations were both reported to assume fibroblast-like characteristics. 

In a study of tendon cell populations from eight week old chickens by Banes et al. 

(1988), a population of presumed synovial cells was obtained using elaborate enzymatic 

and physical treatment of flexor tendons obtained from the region over the 

tarsometatarsus bone of the pelvic limbs. 

Two procedures were utilized for the isolation of the synovial cell population. One 

procedure involved isolation of cells from the supernatant of a hydrosylate (900 X g) from 

tendons that were digested for 4 hours with 0.5 % collagenase. The second procedure 

provided cells in a pellet formed following digestion with 0.25 % trypsin in Hank's Salt 

Solution for 15 minutes at 37°C following centrifugation at 1,200 X g. Viability and 

total cell counts were not reported. 

Compared to cells isolated from the tendon core, the synovial cells were larger, 

more flattened cells with granules. The size of the granules was not reported. On contact 

with the substratum, spherical cells from the presumed synovial cell population measured 

28 ± 8 /-lm in diameter. On staining with Sudan black, it was noted that although some 

vesicle-containing cells demonstrated the presence of lipid, such cells were found adjacent 

to similar cells that did not stain at all . 
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In an abstract by Brigman et al. (1994), flattened cells filled with large multiple 

vacuoles were described as synovial cells. It was postulated that these vacuoles contained 

phospholipids secreted by the cells for boundary lubrication of the tendon (Brigham et al., 

1994). 

In the study by Banes et al. (1988), three morphologically recognizable forms of 

presumed synovial cells has been reported two hours post-plating. The first form 

measured 71 ± 8.5 !lm X 64 ± 2.1 !lm and consisted of round to oval cells with clear 

cytoplasm and large refractile bodies, with relatively little ruffling around their edges. The 

size of the large refractile bodies was not measured. The second form measured III ± 9.2 

!lm X 98 ± 19 !lm , and were round to oval cells with clear cytoplasm, short pseudopods 

and an active ruffling border. The third form measured 

49.5 ± 9.2 !lm X 57 ± 16 !lm and were irregular cells with 3 - 5 blunt pseudopods having 

dense granules at their ends. The cytoplasm also possessed dense granules and refractile 

bodies. The refractile bodies may have been lipid containing vacuoles or cell organelles. 

The size and nature of the dense granules was not reported. 

In summary, the cell populations isolated from 17 day old embryos and 8 week old 

chickens obtained from the surface of tendons by brief enzyme digestion were presumed to 

be synovial cells. However, it was also demonstrated that the cell isolate consisted of a 

non-homogenous population of cells whose morphological descriptions remain presently 

unclear. The following study is a quantitative approach designed to provide in vitro and in 

vivo information on epitenon cell populations. 
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Chapter II 

EXPERIMENTS 

Experiment I: In vitro isolation of epitenon cell populations from deep digital 

flexor tendons from four and five week old chickens 

Objective 

The following experiment was conducted in order to isolate the epitenon cell 

populations from the deep digital flexors of four and five week old chickens. 

Materials and Methods 

Two male Cobb - X chickens (Tyson Farms, AR, USA) at the ages offour 

weeks and five weeks were killed by carbon dioxide asphyxiation. The deep digital 

flexor tendons over digits II, III and IV were isolated in a sterile manner. A 

transverse incision on the plantar surface was made at the level of the 

tarsometatarso-phalangeal joints. Subsequently, transverse incisions were made 

over the head of the ungual phalanx of each digit. The deep digital flexor tendons 

were individually extracted using a pair of artery forceps following a gentle tug and 

release action. Sterile isolated tendons were placed in a petri-dish containing 

sterile transport medium (100 ml Hank's Balanced Salt Solution (Cat. # 14060-

016, Gibco BRL, N.Y., USA), 0.05 ml of 10mg/ml Gentamicin (G 1272, Sigma 

Chemical, St.Louis, MO, USA). Segments measuring 2-5 mm in length were 
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removed from isolated tendons of each digit, fixed in 10 % neutral buffered 

formalin (NBF - 10 ml of37-40 % formaldehyde in 90 ml of water, 0.034 M 

NaH2P04 . H20 and 0.031 M Na2 HP04) and used as controls to verifY epitenon 

digestion. The isolated tendons were pooled within an age group. Their total 

weight was determined and they were placed in a 125 ml sterile flask with a 

magnetic stirrer for digestion in 10 ml of collagenase solution (50 mg type V -S, C-

2014, Sigma Chemical, St.Louis, MO, USA). Collagenase solution (0.5 %) was 

freshly prepared using 100 ml ofDulbecco's Minimal Essential Medium (D-8913, 

Sigma Chemical, St.Louis, MO, USA), 50 mg of type V-S collagenase, 2 ml of 

Seru-Max (S-8894, Sigma Chemical, St.Louis, MO, USA) and 0.05 ml of 

10mg/ml Gentamicin. Trypsin (as used by Banes et aI., 1988) was not preferred 

being a less specific proteolytic enzyme and more harsh on the cell membranes 

than collagenase. Digestion was conducted under constant agitation in a water 

bath maintained between 35-37 °c for 20 minutes. The digested hydrolysate was 

collected and centrifuged at 1,000 X g for 5 minutes at 4° C. The cell pellet was 

re-suspended in growth medium 

(100 ml Dulbecco's MEM with 10 ml Seru-Max and 0.05 ml of 10mg/ml 

Gentamicin). Viability and total cells were determined using 0.4 %, w/v trypan 

blue stain (T-8154, Sigma Chemical, St.Louis, MO, USA) and a standard 

hemocytometer. Cell measurements (length and width) were taken for at least 100 

viable cells using a 100 division eyepiece micrometer scale. Cells were classified 

based on shape and size. Based on shape, cells were classified as spherical if the 
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length was equal to the width. They were classified as oval if the ratio of length to 

width was ~ 2 and < 3, and as elongate if the length to width ratio was ~ 3. Based 

on length, cells were tabulated in the ranges as ~ 9.99 J.lm, 10-14.99 J.lm, 15-19.99 

J.lm, 20-24.99 J.l m and ~ 25 J.lm. 

The remaining undigested tendon segments were fixed in 10 % neutral buffered 

formalin . Segments were embedded in paraffin and 5 J.lm transverse histological 

sections were routinely prepared and stained with hematoxylin and eosin (Coolidge 

and Howard, 1979). Sections were examined under bright-field microscopy and 

the extent of epitenon removed was noted. 
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Results 

Epitenon digestion: Comparative examination of tendon histological 

sections taken prior to (Figure 1, pg. 48) and following enzymatic digestion 

(Figure 2, pg. 48) for 20 minutes with collagenase revealed incomplete epitenon 

digestion in all sections for both age groups. 

As seen in figure 3 (pg. 49), 83 ± 9 % of isolated surface cells in both age 

groups were found to be spherical cells 10 - 19.99 11m in diameter. Spherical cells 

with a diameter::; 9.99 11m constituted 4.5 ± 0.5 % of the cells. The percentage of 

cells ~ 20 11m in diameter was 10 ± 7 %. 

Viability and Total Cells: The total number of cells obtained per mg of 

tendon tissue in four week old birds was 1.13 X 106 ± 0.07 X 106 with a viability 

of 41. 1 %. The total number of cells obtained per mg of tendon tissue in five week 

old birds was 4.26 X 106 ± 0.13 X 106 with a viability of 60.4 % (Table 1, pg. 

43). 
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Discussion 

On comparative examination of histological sections prior to and following 

enzymatic treatment tendons with collagenase from both four and five week old 

birds demonstrated incomplete epitenon digestion. Possible reasons for incomplete 

epitenon digestion as compared to the study by Banes et al. (1988) include age, 

functional and regional variation. In this study, four and five week old birds were 

used compared to eight week old birds used by Banes et al. (1988). Functionally, 

tendons over the tarsometatarsal region are relatively less flexed during movement 

compared to the tendons over the phalangeal region. Anatomically, tendons over 

the phalangeal region of the chicken are similar to the human deep digital flexors 

of the fingers (Lindsay and Thomson, 1960). Also, tendons in the tarsometatarsal 

region have more extensive connective tissue between them and from the report by 

Banes et al. (1988), it is unclear if the tendons digested were separated from these 

outer layers of parietal tissue. The phalangeal region used in this study was 

preferred over the tarsometatarsal region used by Banes et al. (1988) since tendon 

injuries in the phalangeal region are common and have been studied extensively. 

Other possible reasons for incomplete epitenon digestion may be either the 

absence of enzyme trypsin during tendon digestion or the ratio of collagenase to 

tendon collagen. Since collagenase is more substrate specific than trypsin, some 

extracellular matrix components may not have been digested sufficiently to release 

all cells. In previous studies by Banes et al. (1988) and Riederer-Henderson et al. 

(1983), trypsin was used and the epitenon was reported to be completely digested, 
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however, total cells obtained and cell viability were not reported. Trypsin is 

known to be a relatively harsh enzyme capable of damaging cell membranes 

compared to collagenase. Since recovery of viable cells for measurements was 

required in our study, the use of collagenase alone was preferred. In this 

experiment it was seen that an increase in the ratio of collagenase to tendon 

collagen from 0.05 ml per mg of tendon tissue in four week old birds to 0.21 ml 

per mg of tendon tissue in five week old birds still did not completely digest the 

epiternon. However, an increase in total cells and cell viability was observed 

(Table 1, pg. 43). The determination of a time period using only collagenase 

digestion to isolate epitenon cells became critical to future work. 

Of the cells obtained, 83 ± 9% of the spherical cells were found in the 10 -

19.99 11m size-range which based on size are presumably surface synovial cells. 

This was in contrast to the majority of cells obtained by Banes et al. (1988) which 

measured 28 ± 8 ~m in diameter. In our study, only 10 ± 7 % were found to 

measure ~ 20 11m in diameter. It is possible that the cells in the size range reported 

by Banes et al. (1988) were not recovered because the epitenon was not 

completely digested in eight week old chickens or that such cells were not present 

in this study in four and five week old birds. Efforts were then concentrated on 

isolating all epitenon cell populations. 
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Experiment II : Determination oftime period for complete epitenon digestion 

using deep digital flexor tendons of five week old chickens. 

Objective 

The following experiment was designed to determine what time period would be 

required to completely digest the epitenon from chicken deep digital flexor tendons 

using 0.5 % collagenase. 

Materials and Methods 

Two male five week old Cobb - X chickens were killed by carbon dioxide 

asphyxiation and the deep digital flexor tendons were removed using the technique 

outlined in experiment I. Tendons were placed in sterile transport medium. 

Segments measuring 2-5 mm in length were removed from isolated tendons of 

each digit, fixed in 10 % neutral buffered formalin and used as controls to verify 

epitenon digestion. The tendon pieces were then pooled and divided into three 

aliquots and digested separately with 10 ml of collagenase solution 

(0.5 %) for 45, 75 or 105 minutes respectively. Digestion was conducted under 

constant agitation in a water bath maintained between 35-37 dc. Following 

enzymatic digestion, hydrolysates were collected and centrifuged at 1,000 X g for 

5 minutes at 4°C. Cell pellets were re-suspended in growth medium. Viability 

and total cells were determined for each sample using 0.4 % trypan blue stain. The 

remaining undigested tendons were fixed in 10 % neutral buffered formalin, 
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embedded in paraffin, sectioned and stained for examination to verify epitenon 

digestion. 
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Results 

Epitenon digestion: Examination of histological sections taken following 45 

minutes of collagenase digestion revealed the epitenon to be loosened but not 

removed. Also, all the epitenon cells were rounded up following enzymatic 

treatment. Digestion times of 75 and 105 minutes resulted in complete epitenon 

removal, similar to figure 6, pg. 51 . 

Viability and Total Cells: From Table 2 (pg. 43), it is seen that increasing 

the time and the ratio of collagenase solution to tendon collagen resulted in an 

increase in total number of cells isolated. Cell viability was not affected by length 

of digestion or by ratio of collagenase solution to tendon collagen used. 
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Discussion 

This study was done to define the digestion time period for future 

experiments that would assure complete removal of the epitenon from flexor 

tendons. Examination of histological sections indicated that 75 or 105 minutes of 

collagenase digestion may be appropriate depending on the volume of collagenase 

used. The 105 minutes digestion time period was chosen for future studies to be 

conducted in 7-9 week old birds since no detrimental effects on cell viability was 

seen and since cross-linking between collagen fibers increases with age, a longer 

digestion time period would be required. 

A standard digestion formulation of 0.02 ml/ mg of tendon tissue was 

selected in order to have sufficient volume of enzyme solution to allow thorough 

mixing of tendon pieces. This volume was also sufficient to provide epitenon cells 

in concentrations siutable for future plating experiments. 
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Experiment III: In vivo and in vitro classification of epitenon cell populations in 

deep digital flexor tendons of seven, eight and nine week old chickens 

Background 

This study was conducted to describe cell populations of the epitenon in 

vivo and compare them to isolated epitenon cells in vitro. In addition, since 

spherical cells in the 28 ± 8 11m diameter range were not recovered in experiment I, 

the effect of centrifugation speed on recovery of cells larger than 20 11m was 

examined. Banes et ai. (1988) reported that presumed synovial cells obtained from 

8 week old birds measured 28 ± 8 11m in diameter upon isolation. In addition, 

these cells attached within two hours after plating to form spherical cells in three 

size ranges. It was also suggested (Banes et aI., 1988; Brigham et aI. , 1994) that 

the population of cells obtained by brief enzyme digestion from the surface of the 

tendon contains phospholipid which aids in the smooth gliding of the tendon. 

Hence, the effect of varying centrifugation speed was tested under the hypothesis 

that larger cells would be found in the pellet at 1,500 X g. 
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Objectives 

1) 

2) 

3) 

To measure synovial cells, epitenon fibroblasts and cartilage cells in vivo. 

To isolate all the cell populations of the epitenon in seven, eight and nine 

week old birds. 

To classify epitenon cells using shape and size measurements obtained 

following two hours post-plating. 

4) To relate cells observed in vivo to cells classified in vitro . 

5) To observe the effects of varying centrifugation speeds (500 X g, 1,000 X 

g and 1,500 X g), on cell viability, total cells recovered and cells greater 

than 20 11m in diameter. 

Materials and Methods 

Two male Cobb - X chickens at seven, eight and nine weeks of age were 

killed by carbon dioxide asphyxiation. The deep digital flexor tendons were 

isolated using the procedure reported in experiment I. Random samples measuring 

2 - 5 mm in length were removed from tendons for histological evaluation and 

fixed in freshly prepared 10 % neutral buffered formalin. The remaining tendon 

pieces were then weighed and pooled for digestion in 2 ml of collagenase solution 

(0.5%) per 100 mg of tendon tissue. Enzymatic digestion proceeded with constant 

agitation in a water bath maintained between 35 - 37°C for 105 minutes. 

Following collagenase digestion, the hydrolysate was equally divided into three 

conical tubes and centrifuged at 500 X g, 1,000 X g and 1,500 X g respectively for 
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5 minutes at 40 C. Cell pellets were re-suspended in growth medium. Aliquots 

(0.4 ml) of each suspension was used to determine total cells and viability using 

0.4 % trypan blue stain. The remaining cell suspensions were plated at equal cell 

concentrations (0.5 X 10 6 cells per well in 24 well plates) and incubated for two 

hours at 37 0 C. Undigested tendon pieces were fixed in 10 % neutral buffered 

formalin . Cell measurements were recorded from at least 100 attached cells at 

each centrifugation speed using a 100 division eye-piece micrometer scale under 

phase-contrast microscopy. Cells were classified based on shape and size using the 

same criteria outlined in experiment I. 

Formalin fixed pre- and post-enzymatic treated tendon segments were 

embedded in paraffin, sectioned at 5 Ilm and stained with hematoxylin and eosin. 

Sections from post-enzyme treated tendon pieces were used to evaluate epitenon 

digestion using bright-field microscopy. Sections from pre-enzymatic treated 

tendon segments were used to obtain cell measurements. Length versus width of 

at least 20 synovial and cartilage cells on transverse histological sections was 

recorded and used to calculate their size (mean ± SD). The following 

morphological and staining criteria were used to define epitenon cell populations in 

VIVO. 

Synovial cells: Since no histological description of tendon synovial cells was 

available, histological sections from interphalangeal joints of sheathed tendons 

from dog and opossum were studied. The synovial membrane with synovial cells 

were observed and assuming that synovial cells in the chicken epitenon are similar, 
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synovial cells were identified as plump cells in the outermost layer of the epitenon, 

with a round to oval nucleus and a deeply basophilic cytoplasm. 

Epitenon fibroblasts: Found embedded in layers of dense irregular eosinophilic 

collagen fibers . These cells had eosinophilic cytoplasm with indistinguishable cell 

boundaries and a characteristic deeply basophilic spindle-shaped nucleus (Mass and 

Tuel, 1990). 

Cartilage cells: Cuboid cells found in lacunae, frequently two to three cells 

together with eosinophilic foamy cytoplasm and round nuclei . Found in areas of 

fibrocartilage in the tendon (Greenlee et ai., 1975). 
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Results 

Examination of epitenon cell populations in transverse histological sections 

of pre-enzymatic tendon pieces taken from seven, eight and nine week old birds 

revealed the presence of three non-vascular cell populations in the epitenon. These 

cells were, synovial cells, epitenon fibroblasts, and cartilage cells. Cartilage cells 

in some areas were found in the peritenon. 

The synovial cell population was found on the outermost layer of the 

epitenon. Synovial cells were present in a discontinuous layer. Two types of 

synovial cells were not morphologically evident. Synovial cells were plump cells 

with a deeply basophilic cytoplasm and a centrally located nucleus. The nucleus 

contained vesiculated heterochromatin. On an average, the cells measured 7.82 ± 

1.44 /lm X 5.59 ± 1.59 /lm (Figure 1, pg. 48). 

Epitenon fibroblasts were seen deep to the synovial cells. In areas where 

the synovial cells were absent, epitenon fibroblasts were present at the surface 

similar to figure 1 (pg. 48). Epitenon fibroblasts constituted the majority of the 

cells in the epitenon. Epitenon fibroblasts were recognized by their characteristic 

spindle-shaped nucleus. It was not possible to measure their size since cell 

boundaries could not be distinguished. 

Cartilage cells were observed in two areas. Firstly, in areas of 

fibrocartilage (Figure 4, pg. 50), as in the plantar surface of the tendon. Here, the 

matrix was observed to be have eosinophilic collagen fibers. In all age groups, the 
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cartilage cells were observed in fibrocartilage areas where the epitenon merged 

into the peritenon between the deeper layers of the epitenon and the tendon 

fascicles . Secondly, close to areas of tendon insertion, the cartilage appeared to be 

a hyaline form (Figure 5, pg. 50). This form of cartilage was distinctly furrowed 

and the collagen fibers could not be seen. Cartilage cells in both forms contained 

uniform sized vacuoles measuring 2 11m within the eosinophilic cytoplasm. The 

nuclei were round and centrally located. The cells measured 14.81 ± 0.76 11m X 

12.77 ± 0.57 11m. 

Epitenon digestion: Examination of histological sections taken following 

105 minutes enzymatic digestion with collagenase revealed complete epitenon 

removal in the seven (Figure 6, pg. 51) and nine week old birds, but incomplete 

digestion occurred in the eight week old birds. 

A description of isolated cells from the epitenon plated for two hours 

revealed that the majority of cells from all age groups and at all centrifugation 

speeds were spherical in shape (Table 3, pgs. 44 - 46). Sizes of at least 100 cells 

post-plating from each centrifugation speed were recorded and classified based on 

shape and size ranges as in experiment I (Table 3, pgs. 44 - 46). It is seen from 

Table 3, that the majority of cells from all age groups and all centrifugation speeds 

are spherical in shape and in the ~ 9.99 11m, 10 - 14.99 11m and 15 - 19.99 11m 

diameter size ranges. Relating cell measurements taken in vivo on transverse 

histological sections, to cells classified in vitro, it is postulated that cells in the 
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::; 9.99 /lm range are synovial cells and that a small proportion of cells in the 10 -

19. 99 ~tm range are cartilage cells. Epitenon fibroblasts, which consituted the 

major epitenon population in vivo presumably constitute the majority of the cells 

found in vitro which lie in the 10 - 19.99 /lm diameter size range. 

An increase in the centrifugation speed did not effect the recovery of cells 

larger than 20 /lm in diameter. In seven week old birds, the percentage of 

spherical cells ~ 20 /lm was 9 % at 500 and 1,000 X g, and 12 % at 1,500 X g. In 

nine week old birds, the percentage of spherical cells greater than 20 /lm was 11 % 

at 500 X g and 14% at 1,000 and 1,500 X g. In eight week old birds, the 

percentage of spherical cells greater than 20 /lm was 15% at 500 Xg, 7% at 1,000 

Xg and 11% at 1,500 Xg (Figure 7, pg. 52). Also, at all ages and centrifugation 

speeds, spherical cells ~ 20 /lm never accounted for more than 15 % of the total 

cells isolated. The majority of the cells were in the < 9.99 - 19.99 /lm size range. 

An increase in centrifugation speed did not appear to have an effect on cells in the 

other size ranges. 

Table 4 ( pg. 47) demonstrates cell recovery in terms of the total cells 

isolated and their viability. The apparent decrease in viability with increasing 

centrifugation speed in all age groups was not significant (p = 0.2). 
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Discussion 

The above experiment is an in vitro and in vivo study of the cell 

populations from the epitenon. Examination of histological sections following 

digestion confirmed complete digestion in seven and nine week old chickens and 

incomplete digestion in the eight week old chickens. Incomplete digestion may 

have occured due to individual variability. Previous experiments in eight week old 

birds (not reported here) revealed complete epitenon digestion using the same time 

period (l05 minutes) digestion and same collagenase concentration (0.5% with 

standard formulation) . 

On examination of histological sections, it was observed that epitenon cell 

populations varied from region to region within the same tendon of a bird. For 

example, in regions at the tarsometatarsophalangeal joint and in regions of pulleys 

(close adherance of the synovial sheath to the tendon at interphalangeal joints), 

areas of fibrocartilage were seen. In mid-phalangeal regions, remnants of elastic 

vinculae were seen with blood vessels. The major part of the tendon however, 

constituted the epitenon with epitenon fibroblasts and synovial cells. Cell 

measurements of the synovial, epitenon fibroblasts and cartilage cell populations 

taken from transverse histological sections represent epitenon cell populations in 

vivo. Synovial cells and cartilage cells are spherical in vivo and in vitro. From 

partially digested epitenon histological sections, all epitenon cells (synovial cells 

and epitenon fibroblasts) were rounded up to form spherical cells in vitro. 
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On relating the cell populations found in vitro to the in vivo measurements, 

the in vivo cell measurements of synovial cells closely relate to the cells in the :s; 

9.99 Ilm diameter size range in vitro. The measurement of cartilage cells in vivo 

are in the middle of ranges 10 - 14.99 Ilm and 15 - 19.99 Ilm. The epitenon 

fibroblast population is presumably present in the range between 10 - 19.99 Ilm, 

since it constitutes the major population both in vivo and in vitro, and also since all 

epitenon cell populations round up to form spherical cells in vitro . Since the 

measurements of epitenon fibroblasts could not be taken in vivo, it is not clear 

whether they are larger, equal or smaller in size compared to cartilage cells. Also, 

it is not clear if the type, concentration and volume of collagenase used would have 

digested the cartilage matrix. One method to resolve the presence of cartilage cells 

would be to use a specific cell marker for cartilage cells such as antibodies to type 

II collagen. 

For all age groups and at all centrifugation speeds, the population of 

spherical cells ~ 20 Ilm was never more than 15%. The only population of cells 

close to this size range seen in vivo were adipocyte-like cells which measured 

23 .81 ± 5.63 Ilm X 15.50 ± 2.04 Ilm. However, these adipocyte like cells were 

found deep to the epitenon and not investigated in this study. It is therefore 

postulated that the cells representing the synovial population by Banes et al. (1988) 

and Brigham et al. (1994) may actually be the adipocyte-like cell population 

observed in histological sections. 
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On centrifugation at 500, 1,000 and 1,500 X g to locate spherical cells ;:::: 

20 Jlm , it was observed that increasing the centrifugation did not enhance the total 

number of cells recovered. It was observed that increasing centrifugation speed 

appeared to decrease viability of the cells isolated. (p= 0.2). 
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Chapter III 

SUMMARY AND DISCUSSION 

The objective of experiment I was to isolate epitenon cell populations in vitro. Cell 

measurements revealed that the a 83 ± 9 % of the cells were found in the 10 - 19.99 11m 

diameter size range. Spherical cells ~ 20 11m in diameter constituted less than 

10 % of the total cells contrary to the report by Banes et al. (1988) where the majority of 

cells isolated measured 28 ± 8 11m on contact with the substratum. Possible reasons for 

non recovery of cells in the size range reported by Banes et al. (1988) included age 

differences, functional variation, regional variation, differences in enzyme treatment 

and incomplete digestion of the epitenon. Efforts were then concentrated on isolating all 

epitenon cells for a future study (Experiment III) of in vivo cell populations (synovial, 

epitenon fibroblast and cartilage cells) using criteria that may be applicable in vitro to 

distinguish each cell type as a distinct population. 

Since our initial digestion time frame did not completely digest the epitenon and 

provide surface synovial cells as reported by Banes et al. (1988), experiment II was 

designed to determine how long 0.5 % collagenase digestion needed to be continued to 

remove epitenon completely thereby isolating all epitenon cells. From the results of 

experiment II, a standard formulation of2 ml of 0.5% collagenase per 100 mg of tendon 

tissue was set with a 105 minutes of digestion time period. This time period and 

concentration of collagenase was found to be sufficient for complete epitenon digestion in 

seven, eight and nine week old chickens. 
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Experiment III was designed to study epitenon cell populations in vivo and to 

apply information gathered to cells seen in vitro. Also, since the cells reported by Banes et 

al. (1988) and Brigman et al. (1994) were not found in experiment I, it was thought that 

increasing centrifugation speed may concentrate the cells into a pellet. Hence, the 

experiment was conducted over a range (500, 1,000 and 1,500 X g) of centrifugation 

speeds. In vitro cell measurements 2 hours postplating revealed that the majority of the 

cells measured were again in the size range between s 9.99 - 19.99 f..lm. No cells in any of 

the three size ranges reported by Banes et al. (1988) reported 2 hours postplating were 

observed. In fact, less than 15% of the cells isolated from tendons of any birds between 

four and nine weeks of age were greater than 20 f..lm in diameter. 

In vivo observations of histological sections from experiment III revealed synovial 

cells to measure approximately 7.82 ± 1.44 f..lm X 5.59 ± 1.59 f..lm and cartilage cells to 

measure 14.81 ± 0.76 f..lm X 12.77 ± O. 5 ~Lm . In vivo measurements of cells were taken 

on transverse histological sections only on cells with a visible nucleus measuring 5 f..lm to 

ensure that measurements were obtained at mid-sections of synovial and cartilage cells. 

Two measurements, namely, longest diameter (length) and shortest diameter (width) were 

recorded. In vitro measurements were taken on whole cells settled on the substratum 

following two hours postplating. Here also, two measurements, namely, longest diameter 

(length) and shortest diameter (width) were recorded. Longitudinal sections examined 

showed synovial and cartilage cells as spherical cells with centrally located nuclei, and 

epitenon fibroblasts as elongated cells in vivo. However, in sections revealing incomplete 

digestion of the epitenon with collagenase solution, all cells of the epitenon (synovial cells, 
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epitenon fibroblasts) were rounded up. In vitro, it was seen that 95 ± 2 % of the cells 

obtained in vitro were spherical. The size of epitenon fibroblasts could not be measured in 

vivo because the cell boundaries were not distinct. About 5 % of the cells were elongated 

/ or oval and these were probably epitenon fibroblasts which were not completely freed 

from the undigested collagen fibers . Of the three populations observed in vivo, the 

measurements of two (synovial cells, cartilage cells) are known. No histological sections 

showing cartilage digestion or release of cartilage cells from its matrix was seen. It is 

therefore not known if the cartilage cells were found in vitro. Of the spherical cells found 

in vitro following digestion and centrifugation, 17 ± 8% of the cells measured ~ 9.99J..lm 

and 67 ± 9.5 % of the cells were in the 10 - 19.99 J..lm size range. 

Correlating measurements taken in vivo to measurements of cells seen in vitro 

under the assumption that neither synovial cells, epitenon fibroblasts or cartilage cells were 

selectively altered during isolation procedures, synovial cells probably constituted the 

cells observed in the ~ 9.99 J..lm size range. The spindle-shaped epitenon fibroblasts which 

is the major population in vivo is likely to be the major population in vitro constituting 

cells in the 10 - 19.99 J..lm size range in vitro, assuming that the epitenon fibroblasts were 

not selectively destroyed during digestion and centrifugation. Whether or not the epitenon 

fibroblasts deep to the synovial cells are, in fact, the synthetic type of synovial cells 

remains open to question. Although the cells in histological-sections have been identified 

by their characteristic spindle-shape, literature review indicates morphological 

characteristics of the synthetic synovial cells to have extensive rough endoplasmic 

reticulum and a dark staining nucleus to be involved in protein synthesis. Cartilage cells 
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are likely to lie in the size range of 10 - 19. 99 ~m on isolation in vitro, assuming that type 

V -S collagenase is capable of digesting cartilage. The only population ~ 20 ~m in vivo 

constitute an adipocyte-like cell population which measured 23 .81 ± 5. 63 ~m X 15.50 ± 

,/ 2.0 ~m seen deep to the epitenon. It is postulated that these may be the cells observed by 

Banes et al. (1988) as synovial cells found in the supernatant. It is also postulated that the 

synovial cell population observed by Brigman et al. (1994) constituting cells with large 

vacuoles are adipocyte-like cells seen deep to the epitenon. 

Correlation of in vivo measurements to in vitro measurements involves comparison 

of cells in section versus whole cells. The probability that synovial cells constitute cells in 

the.:::; 9. 99 ~m size range in vitro and that epitenon fibroblasts and possibly cartilage cells 

constitute the 10 - 19. 99 ~m size range of cells in vitro was based on the assumption that 

the difference in diameter measurements in vivo was not significantly altered following 

digestion and centrifugation to influence the relative proportions of each cell type 

measured in vitro. 

Future studies include; 

a) Testing whether or not cartilage cells are released by collagenase type V-S digestion. 

b) Confirmation of a population of spherical cells in the 10 - 19. 99 ~m size range as 

cartilage cells with antibodies to type II collagen 

c) An in vivo study of epitenon fibroblast rich regions in the tendon 

d) Isolation of the epitenon fibroblasts 

e) Epitenon fibroblast culture in vitro followed by incorporation at the site of tendon 

injury to study their effects on healing. 
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Table 1 

Classification of cells isolated in vitro based on shape and size in 
four and five week old chickens 

Age (week) Total Tendon Collagenase Cells (X 106) Viability (%) 
Weight (mg) (ml/mg) per mg tissue 

Four 184 0.05 1.13 ± 0.07 41.1 ± 0.9 

Five 23 0.21 4.26 ± 0.13 60.4 ± 2.2 

Table 2 

Viability and recovery of isolated cells following different enzymatic digestion time 
periods in five week old chickens. 

Time 
digestion 

45 min 

75 min 

105 min 

Cells (X 106) 

per mg tissue 

1.60 ± 0.15 

2.52 ± 0.48 

8.18 ± 0.21 

Viability (%) 

68.6 ± 0.4 

66.9 ± 1.8 

70.8 ± 0.3 

43 

Number of ml of 
collagenase per 
mg of tissue 

0.13 

0.19 

0.29 
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Table 3 A 

Effect of centrifugation speed on cell sizes two hours post-plating in seven week old 
chickens 

Xg 

500 spherical 
oval 
elongate 

1000 spherical 
oval 
elongate 

1500 spherical 
oval 
elongate 

:-:;9. 99!lm 10-14.99 

!lm 

30 25 

21 32 

26 41 

15-19.99 

!lm 

29 
1 

33 

17 

44 

20-24.99 

!lm 

4 

1 

6 
1 
1 

9 
1 
1 

> 25!lm 

5 

5 

3 
1 
2 

3 
1 
1 



Table 3 B 

Effect of centrifugation speed on cell sizes two hours post-plating in eight week old 
chickens 

Xg 

500 spherical 
oval 
elongate 

1000 spherical 
oval 
elongate 

1500 spherical 
oval 
elongate 

< 9.99!J.m 10-14.99 

!J.m 

9 32 

22 36 

21 33 

15-19.99 

!J.m 

45 

38 
2 

27 
2 

28 
2 

20-24.99 

!J.m 

10 

1 

1 

1 

10 

1 

>25!J.m 

5 

3 

6 
3 
2 

1 
1 
3 
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Table 3 C 

Effect of centrifugation speed on cell sizes two hours post-plating in eight week old 
chickens 

Xg 

500 

1000 

1500 

spherical 
oval 
elongate 

spherical 
oval 
elongate 

spherical 
oval 
elongate 

<9.99Ilm 10-14.99 

Ilm 

13 49 

16 50 

18 33 

15-20 20-25 

Ilm Ilm 

20 

15 

33 

46 

9 
,., ... 
3 

12 

1 

11 
1 

> 251lm 

2 
1 
1 

2 
3 
1 

3 

1 
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Table 4 

Effect of centrifugation speed on viability and total cells isolated 

Age 

(week) 

Seven 

Eight 

Nine 

Centrifugation 

speed 

500Xg 

1000 Xg 

1500Xg 

500Xg 

1000 Xg 

1500 Xg 

500Xg 

1000 Xg 

1500 Xg 

Viability (%) 

per mg tissue 

60.22 ± 1.0 2.22 ± 0.07 

55.61 ± 0.6 1.71 ± 0.09 

47 .16 ± 1.3 1.39 ± 0.02 

71.07± 1.1 0.64 ± 0.01 

64.61± 1.1 0.91 ± 0.01 

56.90± 1.3 0.81 ± 0.06 

73 .86± 2.3 0.73 ± 0.03 

69.09 ± 1.8 0.77 ± 0.04 

64.19 ± 3.8 0.93 ± 0.01 
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Figure 1: Transverse section of deep digital flexor tendon from a five week old chicken 
demonstrating primary (P) and secondary collagen bundles (S), endotenon fibroblast (ef), 
peritenon (p) and epitenon (e). Cell types seen are synovial cells (sc) and epitenon 
fibroblasts (epf) . Magnification X 440. Hematoxylin and eosin. 
Bar measures 20 Jlm 

Figure 2: Transverse section of deep digital flexor tendon from five week old chicken 
following digestion with 0.5 % collagenase for 20 minutes showing incomplete digestion 
of epitenon. Arrows point to rounded epitenon cells. Magnification X 220. Hematoxylin 
and eosin. Bar measures 65 Jlm 
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Figure 3 

Classification of cells isolated in vitro based on shape (spherical, oval, elongate) and 
diameter size ranges (~m) in four and five week old chickens 
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Figure 4: Transverse section of deep digital flexor tendon from nine week old chicken 
demonstrating fibrocartilage. Arrows point to cartilage cells (cc) and to eosinophilic 
collagen fibers (t). 
Magnification X 220. Hematoxylin and eosin. Bar measures 65 /lm 

Figure 5: Transverse section of deep digital flexor tendon from nine week old chicken 
showing hyaline cartilage. Arrows point to chondrocytes in lacunae. Note furrows 
(F).Magnification X 220. Hematoxylin and eosin. Bar measures 65 /lm 
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Figure 6: Transverse section of deep digital flexor tendon from seven week old chicken 
showing complete digestion of the epitenon following 0.5 % collagenase digestion for 105 
minutes. Magnification X 220. Hematoxylin and eosin. Bar measures 65 !J.m 
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Figure 7: 

Effect of centrifugation speed on isolated spherical cells greater than 20 /lm in diameter 
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