
COMPACT NUMERICAL METHODS FOR STIFF

DIFFERENTIAL EQUATIONS

By

EDWARD PURBA

Sarjana S-1

Bandung Institute ofTechnology

Bandung, Indonesia

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1996

COMPACT NUMERICAL METHODS FOR STIFF

DIFFERENTIAL EQUATIONS

Thesis Approved:

8Th~
f-1. vJ

fJJtJ c /t 1,-i //7 ;/·
') / ./ .: / / ~~a·trPA . ?kdJ \L·

.:iAtJYntM (!. ~
Dean of the Graduate College

11

ACKNOWLEDGMENTS

First, I would like to express my sincere appreciation to my major adviser, Dr.

John P. Chandler, for providing continuous support in finishing this thesis, and helping

me with his intelligent supervision, constructive guidance, and insightful critiques and

suggestions from the early until the late stages of the works. My sincere appreciation is

also addressed to my other committee members Dr. Blayne E. Mayfield and Dr. Huizhu

Lu, for their cooperation, friendship, and assistance.

So many people have helped me in completing this thesis, it is impossible to

acknowledge them all personally. I have gained much value from my relationship with H.

Sinaga during my study at Oklahoma State University, and encouragement from my

friends including Y. Sofyan, T. Rahardjo and Dr. Robert A. Divali.

I also am indebted to the Government of Indonesia, who sponsored my graduate

study through the Ministry for Research and Technology, in the framework of the

implementation of the Science And Technology for Industrial Development. Many

thanks to Prof. Dr. Ing. B.J. Habibie, State Minister of Research and Technology, Prof. S.

Sapiie D.Sc., Mrs. Ir. Ina Juniarti, Vice President for IPTN Computing Center, and Mr.

Ir. Muriawan A. Kadir.

Finally, I would like to dedicate this thesis to my mother, late father and late

sister Ida Purba.

iii

TABLE OF CONTENTS

Chapter Page

I. INTitOIJlJCTION --- 1

1.1 Initial Value Problem for First-Order OIJEs --------------------------------- 2
1.2 The Existence and lJniqueness of Solution of Initial Value Problems --- 3
1.3 Taylor's Series --- 4
1.4 Stability and Instability of OIJEs -- 6
1.5 Convergence of Euler Method --- 9
1.6 The Multistep Concept -- 12

II. STABILITY ANALYSIS --- 16

2.1 Stability of Euler Methods --- 18
2.2 Stability of Explicit Itunge-Kutta Methods ---------------------------------- 24
2.3 Stability oflmplicit Itunge-Kutta Methods ---------------------------------- 30
2.4 l)ifference Equations--- 31

III. STABILITY OF MlJL TISTEP METHOIJS --------------------------------------- 35

3.1 Linear l)ifference Equations -- 3 8
3 .2 Adams Methods -- 44
3.3 Backward l)ifferentiation Formula (BIJF) ----------------------------------- 48
3 .4 Predictor-Corrector Methods --- 51
3.5 Extrapolation Methods for Solving OIJEs ----------------------------------- 53

IV. STIFF OWINAitY IJIFFEitENTIAL EQlJATIONS --------------------------- 62

4.1 Stiff l)ifferential Problems --- 66
4.2 Stiffness Concepts --- 68
4.3 Stability Concepts ofNumerical Stiffness Methods ------------------------ 72
4.4 A Modified Euler Method for Solving OIJEs ------------------------------- 75
4.5 An Explicit Exponential Method for Solving OIJEs ----------------------- 79
4. 6 0 l) E Solvers -- 83

V. ANALYSIS ANI) IJISClJSSION --- 86

5.1 Implementation of a Modified Euler Method-------------------------------- 87

iv

Chapter Page

5.2 Implementation of an Exponential Method ---------------------------------- 90
5.3 Analysis of Kidney Problems -- 92
5.4 Analysis of Autocatalytic Problems -- 95
5.5 Analysis of Problem D4 of Enright et al. ------------------------------------ 97
5.6 Analysis of Gupta and Wallace's Problem----------------------------------- 99

VI. CONCLUSION AND SUGGESTION --- 101

SELECTED BIBLIOGRAPHY -- 103

APPENDIXES -- 116

APPENDIX A-- SOFTWARE AVAILABILITY -------------------------------- 116

APPENDIX B --ROOTS OF A COMPLEX POLYNOMIAL------------------ 120

APPENDIX C-- LINEAR MULTISTEP FORMULAS ------------------------- 128

APPENDIX D-- ESTIMATION OF ERROR AND STEPSIZE
CONTROL --- 13 7

APPENDIX E -- STABILITY REGION OF SIMPLE PREDICTOR­
CORRECTOR METHODS ------------------------------------- 148

APPENDIX F --COLLECTION OF PROGRAMS ------------------------------ 152

APPENDIX G-- COLLECTION OF TABLES ----------------------------------- 174

v

LIST OF TABLES

Table Page

2.1. Stability Region of Runge-Kutta for Orders 1 to 10 ------------------------------- 28

2.2 Butcher's Array ofRunge-Kutta Methods -- 29

2.3 Butcher's Array of a Fourth-Order Runge-Kutta method------------------------- 30

3.1 A Trial Solution to Find a Particular Solution ofNonhomogeneous

Difference Equations --- 42

3 .2 Table of Extrapolation-- 56

3.3 Romberg Representation ofy'= -y, y(O) = 1 -- 59

3.4 The Computation Result ofy'= -y, y(0)=1, Using Extrapolation,
Euler, and ABM-4 Methods--- 60

G.1 Table ofPerformances ofMEBDF, VODE, LSODE, and EPSODE
for the Case of Kidney Problem -- 17 4

G.2 Table of Performances ofMEBDF, VODE, LSODE, and EPSODE
for the Case of Autocatalitic Reaction Pathway Problem------------------------- 184

G.3 Table of Performances ofMEBDF, VODE, LSODE, and EPSODE
for the Case of D4 of Enright et al. --- 186

G.4 Table of Performances ofMEBDF, VODE, LSODE, and EPSODE
for the Case of problem proposed by Gupta and Wallace------------------------- 188

G.5 The Computation Results for Problem 1 of Chapter 4.4
Using Modified Euler Method and Exact Solution -------------------------------- 190

G.6 The Computation Results for Problem 2 of Chapter 4.4
Using Modified Euler Method and Mathematica Packages----------------------- 191

vi

Table Page

G.7 The Computation Results for Problem 1 of Chapter 4.4
Using Exponential Method and the Exact Solution ------------------------------- 192

G.8 The Computation Results for Problem 2 of Chapter 4.4
Using Exponential Method and Mathematica Packages-------------------------- 193

vii

LIST OF FIGURES

Figure Page

1.1 Solution y = (3+ 3E/5)e-21 + 2E/5e31 forE= 0, 0.01, and 0.1----------------------- 7

1.2 Crude Euler Method -- 10

1.3 Numerical Results Using Exact, Euler, and Trapezoidal Methods-------------- 11

2.1 Stability Region of the Explicit Euler Method ------------------------------------- 19

2.2 Stability Region of the Implicit Euler Method ------------------------------------- 19

2.3 Euler Method with Stepsize h = 0.01, 0.03, 0.04, and 0.05 ---------------------- 21

2.4 Crude Euler, Implicit Euler Using PC, and Implicit Euler Using Newton's --- 23

2.5 Implicit Euler by Showing the Vector Gradient ----------------------------------- 24

2. 6 A Second Order of Runge-Kutta --- 26

2.7 Stability Region of Second order Runge-Kutta ------------------------------------ 27

2.8 Difference Equation Methods Using Forward, Backward and Central
for h = 0.05, 1, 2, and 3.-- 34

3.1 Computational Results ofyn+2 = -4Yn+J+ 5yn+ h(4fn+J+ 2fn)
Applied toy' = y, y(O) = 1--- 43

3.2 Computation Results ofy' = -y, y(O) = 1 Using Extrapolation,
Euler, and ABM -4 Methods--- 61

4.1 Graphical Solutions of e-t and e-Joot -- 64

4.2 A Representation of a Minimum Region of A-Stability -------------------------- 73

4.3 A Representation of a Minimum Region of A(a.)-Stability----------------------- 74

viii

Figure Page

4.4 A Representation of a Minimum Region of A0-Stability ------------------------ 74

4.5 A Representation of a Minimum Region of a Stiffly-Stable Method ---------- 75

5.1 Problem 1 of Section 4.4 Using Modified Euler Method ------------------------ 88

5.2 Problem 2 of Section 4.4 Using Modified Euler Method ------------------------ 89

5.3 Problem 1 of Section 4.4 Using Exponential Method ---------------------------- 90

5.4 Problem 2 of Section 4.4 Using Exponential Method---------------------------- 91

5.5 Kidney Problems with A= 902688359, 0.0990283499,

0. 992 5 2113 41 , and 1. 0 3 048 79 8 56 -- 92

5.6 Kidney Problems with A= 0.99, 0.9, and 0--- 93

5.7 Output ofMathematica for Robertson Problem------------------------------------ 95

5.8 Robertson Problem Solved with EPSODE --- 96

5.9 Problem D4 of Enright et al. Solved with Mathematica ------------------------- 97

5.10 Problem D4 of Enright et al. Solved with MEBDF ------------------------------- 98

5.11 Gupta and Wallace's Problem Solved with Mathematica ----------------------- 99

5.12 Gupta and Wallace's Problem Solved with VODE ------------------------------- 100

B-1 Stability Region ofRunge-Kutta Methods Orders 1, 2, 3, 4, and 5------------- 127

E-1 A PC-Method Where a Trapezoidal as a Corrector and
an Euler as a Predictor -- 150

E-2 A PC-Method Where the Implicit Euler Method as Corrector
and Crude Euler as a Predictor --- 151

ix

LIST OF SYMBOLS AND TERMS

Symbols Meanings

< less

~ less or equal

> greater

~ greater or equal

* not equal

I I absolute value

such that

{ } set

c subset

00 infinity

mm minimum

max maximum

factorial

I summation

lim limit

x~b x approaches b

V' backward difference

X

Symbols

Re(z)

Im(z)

arg(z)

u

>>

a !at

0()

[] T

~

Meanings

the real part of a complex number z

the imaginary part of a complex number z

argument of a complex number z

union

far greater

partial derivative over t

order

matrix transpose

set of real numbers

xi

CHAPTER I

INTRODUCTION

Before computers were involved in human lives, scientific practice only

recognized two terminologies; theory and experiment. However, after computers become

involved in human lives, computational science becomes one of the terminologies in

scientific practice and stands beside of the others as an essential methodology. It is

undeniable that most parts of science and engineering can be modeled by mathematical

equations. Unfortunately, most of mathematical equations are not easy to solve exactly,

so we need to approximate their solutions. The methods used to approximate these

solutions are called numerical methods. Scientific computing starts by transforming the

real-life problems into mathematical models. In this case, essential features of scientific

problems are represented in the form of mathematical equations. The second step is to

modify the mathematical models, so that they are suitable for numerical computations. In

this stage, usually we have to discretizise the domain of problems into steps of

computation, so that the formulations can be executed numerically either by computers or

by human brains manually, using the operators +,-, *, and I. The third stage is to test and

validate the solutions. This can be done by: comparing with the exact solutions,

comparing with previously validated computations, comparing with laboratory

experiments, and analyzing the convergences, the errors, and the diagnostic data. Finally,

1

2

the tested and validated codes are ready to use for various scientific and engineering

problems.

Some scientific and engineering problems are modeled by ordinary differential

equations such as y'= f(t,y), y(t0) = y0. Among them are chemical reactions (chemistry),

heat-flow problems (thermodynamics), electrical circuits (electrical engineering), force

problems (mechanics), rate of bacterial growth (biological science), decompositions of

radioactive material (atomic physics), population growth (statistics), and simulation and

control systems (control engineering). Due to difficulties in finding the exact solutions of

ordinary differential equations (ODEs), the study of numerical solution of ODEs becomes

important.

The choice of numerical methods used for the approximations depends on the

accuracy needed and the characteristic of the problem. Since every nth-order of ODE can

be transformed into a system of first-order ODEs, here the discussion will be confined

only to systems of first-order ODEs. For a similar reason, the discussion will also be

limited to initial value problems (IPVs).

1.1 Initial Value Problem for First-Order ODEs

The general form of an initial value problem for a first-order ODE can be written

as y'= f(t,y), where an initial value y(a) is given and tis in the interval [a,b]. Every nth­

order ODE in the form of d"y/dt" = y<n) = f(t,y,y< 1>,y<2>, ... ,y<n-l)) with initial conditions

y(i)(a)= ci, i=0,1, ... ,n-1, can be converted into a system of first-order ODEs ofthe form

dy/dt = fi(t,y~>y2 , ... ,yn), yiCa)=ci , i=1,2, ... ,n-1 by substituting y1=y, y2=dy/dt, ..

3

3 ()2 d Y dy 1

.,y
0
=dy0 _/dt. For example, a third-order IPV - 3 + - + 3y = e , y(O) = 1, y'(O) = 0,

dt dt

y"(O) = 0 can be converted into an initial-value problem for the variables y, dy/dt, and

d2y/dt2 by substituting y1=y, y2=dy/dt, and y3=d2y/dt2
. Applying these new variables will

transform the third-order ODE into a system of first-order ODEs that can be written as

dy I = dy 2 - dy 3 - I 2
dt y2, dt -y3, dt -e -y2 -3yi

where y 1(0)=0, y2(0)=0, yiO)=O. After transforming the problem into a system of first-

order ODEs, our problem becomes how to solve this system of first-order ODEs using

numerical computing methods. Solving the first-order ODE will lead us to nonstiff or

stiff differential systems. These problems affect the stability of the methods used to

solve the system of first-order ODEs.

1.2 The Existence and Uniqueness of Solutions of Initial Value Problems

The first interesting question in handling first-order ODEs is to ask about the

existence of a solution. By investigating the existence of a solution, we do not waste our

time trying to solve a problem that has no solution in a given domain. An understanding

of Lipschitz conditions plays an important rule in proving the existence and the

uniqueness of solutions of first-order ODEs.

A function f(t,y) is said to satisfy a Lipschitz condition with respect to y in a

region D c 9tx9t, if for all (t,y) and (t,z) in D, there exists a constant L > 0 such that

lf(t,y) - f(t,z)l ~ Lly-zl. Here, the constant L is called a Lipschitz constant for f. For

example, let f(t,y) = 1 + / for D={(t,y) I ltl < 1, IYI < 1}. It is easy to see that

4

2 2 2 2 .
lf(t,y)-f(t,z)l = l1+y - (l+z)I= IY -z I= ly+zlly-zl. Smce ltl < 1 and IYI < 1, than we can

take L=2 as a Lipschitz constant for f.

Many authors in the field of Differential Equations have proved the existence of

solutions of first-order ODEs. Usually, a constructive solution of a first-order ODE can

be accomplished using Picard iteration. Braun [10] said that if f and 8f /8y are

continuous in the rectangle D={(t,y) I t0 ::; t::; t0+a, IY- Yol ::; b }, then the initial value

problem y'=f(t,y), y(t0)=y0 has at least one solution y(t) on the interval t0 ::; t ::; t0+a,

where a= min{a,b/M} and M = max lf(t,y)l. Shampine and Gordon [99] used the
(t,y)inD

terminology of Lipschitz condition to show a necessary condition for the initial value

problem y'=f(t,y) to have a solution on a given domain.

The second interesting question in handling first-order ODEs is to ask about the

uniqueness of solution. The guarantee for uniqueness of solutions becomes important,

especially when we want to find an approximate solution for the problem. Otherwise, our

computation may never converge. Shampine and Gordon [99] claim that if f(t,y) is

continuous and satisfies a Lipschitz condition on an open regiOn

D={(t,y) I a ::; t ::; b, -oo < y < oo }, then the problem y'=f(t,y), y(a)=A has a unique

solution for all intervals [a,b]. Braun [10] used the same premises as those in the

existence solution, in order to show the uniqueness of a solution of a first-order ODE.

1.3 Taylor's Series

Newton and Taylor has introduced a monumental concept of approximating a

function using a polynomial generated involving the derivatives of the function. This

5

method of approximation has been used in many applications. Unfortunately, in order to

gain a cheap cost of computation, this method is rarely used by itself in solving problems.

But, some methods in ODE computations such as Euler, Runge-Kutta, etc. use this

Taylor's series expansion. By some mathematical manipulations, the need to calculate

derivatives occurring in Taylor's series can be omitted. The expansion of a function f

using Taylor's n-series needs the condition that f should have n+ 1 continuous derivatives.

Suppose f(t) has n+1 continuous derivatives in [a,b]. For a point t, and c in [a,b], the

Taylor expansion off(t) around cis given as

f(t) = f(c) + f'(c)(t-c) + f 2>(c)(t-c)2/2! + ... + rn>(c)(t-ct/n! + Rn+I(~),

where Rn+I(~) = rn+I)(t-ct+1 I (n+1)!, and ~ is a point between t and c. Taylor's

expansion of function f of two variables t and y, where f and all its partial derivatives of

order up to n+ 1 are continuous in a neighborhood of the point (a,b) is given as

f(t,y) = f(a,b)+ I ar+sf(a,b) ct-af (y- b/
~r s +R

l:5r+s:5n Ul 8y r! S! n+l'

where

R = " 8r+sf(~,TJ) (t-a)r (y- b/
n+l L..,. r s

r+s=n+l Ot 8y r! s! '

with the value (~,11) situated on the line segment joining the points (a,b) and (t,y).

Barton [8] has used this method to solve stiff problems. He equipped the method

with five devices: a device for estimating the local error, a device for predicting a stepsize

h, the use of predictor and corrector formulas, a device for deciding the order of Taylor

series to be used, and a device to detect when a transient has no effect on the solution.

6

Corliss and Chang [24] have developed software, ATSMCC (Automatic Taylor Series by

Morriss, Chang, and Corliss), using this Taylor approach. The software can be used to

solve nonstiff systems and moderately stiff systems of initial value problems of ODEs.

1.4 Stability and Instability of ODEs

All numerical methods are proposed to approximate the true solutions of

mathematical problems that are not easy to solve. In order to have accurate solutions, the

methods should be stable, so we can approximate the true values by controlling the errors.

When trying to solve an ODE problem, sometimes we are facing with instabilities of

solutions. The instabilities are not only caused by the approximation method of solution,

but are caused by the ODE problem itself. In general, we can classify instabilities of

ODEs solutions into two categories: inherent instability and induced instability.

Inherent instability is an instability caused merely by the property of the

differential system, and not the method of solution, while induced instability is an

instability caused by the use of a particular numerical method in solving the problem.

We will discuss the latter in the next chapter. To have a better understanding of inherent

instability, let's take a look at the following ODE problem: y" - y' - 6y = 0, with initial

conditions y(O) = 3, and y'(O) = -6. The analytical solution of this problem is y(t) = 3e-21
.

This solution will tend to zero when t goes to infinity. Suppose we change the initial

value y(O) by adding to it a small value f: > 0, so that y(O) = 3 + E. The analytical solution

for this new initial value is y(t) = (3+ 3E:/5)e-21 + (2E/5) e31
• It can be shown that no matter

how small f: is chosen, the solution will tend to infinity as t goes to infinity. In this case,

7

the solution y(t) = e-
21

is said to be unstable. The picture of the solution forE = 0, 0.01,

and 0.1 are given in Figure 1.1. In numerical analysis, the situation when a little change

in the initial condition gives an unstable solution is called an ill-conditioned problem. It

is difficult to solve an ill-conditioned ODE problem numerically since the numerical

method usually has rounding errors. The approximate solution will always tend to

infinity just like the example of changing an initial condition given above. It is important

then to look at the stability of the system before performing some numerical

computations.

10

8
I

6j

Vl ·x
<(I >-

4

2

0

0.0

y"-y'-6y=0, y(0)=3+E, y'(0)=-6

• E = 0 .

• E = 0.01

..... E = 0.1

----~
0.5 1.0 1.5

tAxis

Figure 1.1 Solution y = (3+ 3E/5)e-21 + 2E/5e31

forE= 0, 0.01, and 0.1

,.
• ___.•

2.0

8

The concept of stability of a system given here is based on the concept written by

Braun [1 0]. The question whether the solution ~(t) of the differential equation y'=f(y),

with y(O) = y
0

is stable or unstable is just the same as asking whether every solution \jl(t)

of y '= f(y) starting from a value that is very close to ~(t) at t=O remains close to ~(t) for

all t in the given interval or not. The solution y=~(t) of y ' = f(y) is said to be stable if

every solution \jl(t) of y ' = f(y) which starts sufficiently close to ~(t) at t=O must remain

close to ~(t) for all future times t. The solution ~(t) is unstable if there exists at least one

solution \jl(t) ofy' = f(y) which starts near ~(t) at t=O but which does not remain close to

~(t) for all future time. In his book, Braun said that if A is a matrix of ODEs y ' = Ay then

1. Every solution y = ~(t) of y ' = Ay is stable if all the eigenvalues of A have

negative real part.

2. Every solution y = ~(t) of y ' = Ay is unstable if at least one eigenvalue of A

has positive real part, and

3. Suppose that all the eigenvalues of A have real part ~ 0 and A-1 = icr 1, . • .,

Am= icrm have zero real part. Let A.j = icrj have multiplicity kj. This means that

the characteristic polynomial of A can be factored into the form

p(A.) = (A.-icr
1
)k 1

••• (A.-icrm)kmq(A.) where all the roots of q(A.) have

negative real parts. Then, every solution y = ~(t) of y ' = Ay is stable if A has

kj linearly independent eigenvectors for each eigenvalue A.j = icrj. Otherwise,

every solution ~(t) is unstable.

9

1.5 Convergence of Euler Method

Euler method is the simplest approximation method for the initial value problem

y' = f(t,y) with y(t0) = y0. This method is called the simplest method because it is easy to

derive directly from Taylor's series or directly from integration of the function by

assuming the tangent f(t,y) is constant at each interval. In practice, this method is not

recommended. One reason for not recommending this method is because this method has

a lack of accuracy compared to other methods at the equivalent stepsize. If f(t,y) is

assumed constant over a small interval (ti>ti+I) , a simple numerical procedure can be

derived for calculating numerical values YI> y2, .•••• ,yn, that approximate the true solution

values y(t1), y(t2), •.• , y(tn), ofy' = f(t,y) respectively. By integrating the constant value

ti+l

f(ti,yi) over the interval (ti>ti+1), we have y(ti+1) = y(t)+ Jf(ti,y(t))dt. The result of this
I;

integration gives the relation Yi+I = Yi + f(ti,yi)(ti+I-ti) where Yo= y(t0), which is Euler

method. If we examine this relation, it is none other than the first two terms of a Taylor's

series of y(t). A graphical interpretation of this method is shown in Figure 1.2, where

y ' =f(t,y) is interpreted as the slope of the integral curve at any point (t,y) on the curve.

Here, the solution curve on the range of (ti,ti+I) is approximated as a straight-line which

passes through (ti,yi) with the slope f(ti,yJ This type of explicit Euler method is

sometimes called "the crude Euler method".

The crude Euler method can be corrected by choosing the slope of the curve on

the range of (ti>ti+I) as the average of the slopes of the curve y(t) at the range endpoints.

The result of integration over the range of (ti>ti+I) then will give the approximate solution

10

of y ' = f(t,y) as Yi+I = Yi + h/2[f(ti,yi) + f(ti+I,yi+I)]. Since Yi+I appears implicitly on the

right-hand-side, this representation is called an implicit representation. This corrected

Euler method itself is sometimes called the Trapezoidal method. The value of Yi+I

appeared in f(ti+I,yi+I) is calculated using the crude Euler method. The procedure of

finding the value ofyi+I at ti+I by the Trapezoidal (corrected Euler) method is given as:

Predict Yi+I using the crude Euler method, y~!~ = Yi + hf(ti ,yJ.

h
Correct Yi+I using the Trapezoidal method, y~=~ = yi + 2[f(tpy) + f(ti+I,y~:~)].

y(ti) •··

Yi+I

Yi ···
slope=f(ti,yi)

ti ti+l t

Figure 1.2 Crude Euler Method

The formula for predicting Yi+I is usually called a predictor, while the implicit

.L...... •. _

11

formula for correcting Yi+I is called a corrector. The procedure of predicting a result by

one formula and then correcting by another formula is one of the most effective methods

for solving initial value problems and is called a predictor-corrector method. To get a

better result, the latter procedure can be used repeatedly until \Y~:~ - y~!~ \ <E. Let us

take y ' = 4.e0
·
81-0.5y with y(O) = 2 as an example problem solved both by the crude Euler

and the Trapezoidal methods. The exact solution for this problem is

y(t) = (4eo.st- 1.4e-o.st)/1.3.

Without need to iterate the Trapezoidal method, its result is still better than that of the

crude Euler method. Figure 1.3 is a graphical results of computations for stepsize

h = 0.5. It can be seen that the Trapezoidal method is better than the crude Euler method.

35

30

25

20
"' ~
>-

1 5

1 0

5

0

0.0

y'=4.e 081-0.5, y(0)=2

• Exact 1
/,.
/

/

P
~//

• Euler ..

~/
... Trapezoidal

~

0.5 1 .0 1 .5 2.0 2.5 3.0

tAxis

Figure 1.3 Numerical Results Using
Exact, Euler, and Trapezoidal Methods

12

In order to have an acceptable computation, the analysis of errors caused by the

numerical solution of ODEs becomes important [66, 78, 80]. Usually the errors are

classified into two types of errors: round-off errors and truncation or discretization errors.

Round-off errors are errors that occurred because of the limited numbers of significant

digits that can be retained by a computer. Truncation errors consist of a local truncation

error that results from computations over a single step, and a propagated truncation error

that results from the previous steps. The sum of the local truncation error and the

propagated truncation error is called a total or global truncation error [15, 44, 57, 66, 80].

Golub and Ortega [49] have shown that if the function fhas a bounded partial derivative

with respect to its second variable, and if a solution y 1 = f(t,y) with y(t0) = Yo has a

bounded second derivative, then the Euler approximation converges to the exact solution

as h ~ 0, and the global discretization error of Euler method satisfies E(h) = O(h).

1.6 The Multistep Concept

The numerical methods of solving an ODE y 1 = f(t,y) with initial value y(t0)=y0

are classified into two categories: single step methods and multistep methods. In single

step methods, the approximate value ofy(t) at ti+l is calculated merely using the values Yi,

y/ and h. In multistep methods, the approximate value of y(t) at ti+l is calculated using

the recurrence relation in terms of the function values y(t) and derivatives Y1(t) at ti+l and

at previous nodal points. Among examples of single step methods [66, 77, 80] are:

1. Yi+l = Yi + f(ti,Yi) (Euler method)

13

y: Y(n)
2. Y· I= Y· +-1 h+ + _I_hn

I+ I 1 I n!
(Taylor's series method)

3. Yi+t = Yi + hf(ti+h/2,yi+(h/2)f(tbYi)) (Midpoint rule)

Among examples of multistep methods are:

h
1. Yi+l =yi +2[3f(ti,yJ-f(ti-PYi-1)] (Adams-Bashforth)

h
2. Yi+l =yi +2[f(ti,yJ+f(ti+PYi+l)] (Adams-Moulton)

The idea of multistep methods appears when some information from previous

points has been gained using single step methods. After gaining the information, the

value of f(t,y) at the next step is based on interpolation over that information.

Computation using these multistep methods is in general more accurate than those in

single step methods. Suppose we already have information of y1, y2, ... , Yn using single

step methods. By that information, we can calculate f0, f~> , f"" A multistep method

tn+l

of solving y' = f(t,y) can be based on the relation y(tn+l) = y(tn_M) + Jf(t,y)dt, where M
tn-M

is some non-negative integer. In this case we will approximate the function f(t,y) by a

polynomial P(t) generated using information f"' fn-~> ... , fn-M· Later on we will discuss

another way of finding multistep methods. That is, instead of approximating the

integrand f(t,y), the methods will be achieved by approximating y(t) using a polynomial

and then by differentiating the polynomial. By substituting this interpolation polynomial

tn+l

P(t) for f(t,y) as the integrand, we have the relation y(tn+l) = y(tn_M) + JP(t)dt. In order
tn-M

14

to integrate this from tn-M up to 1n+I we should extrapolate P(t) through 1n+I· The

procedure of solving y' = f(t,y) is then similar with that in the Trapezoidal method:

tn+l

1. Predict Yn+l using y:
1
: 1 = Yn-M + JP(t)dt.

1n-M

2. Compute fn+l using fn+l = f(tn+P Y~~~) ·

3. Interpolate P(t) using fn+I> f"' fn-1>

tn+l

4. Correct Yn+l using y::: = y n-M + JP(t)dt.
tn-M

This procedure can be executed repeatedly until we satisfy with the desired accuracy of

the corrected result. Suppose E > 0 is the accuracy needed for the computation. Then

steps 1 through 4 will be executed repeatedly until IY~:~ - y~~~ I< E. Usually, P(t) is

approximated using Newton's backward-form (NBF). The followings are some examples

of predictors and the related correctors [66, 78, 80]:

Milne method:

Predictor
old 4h

: Y n+l = Y n-3 + 3 [2fn - fn-1 + 2fn-2] ·

Corrector
h

: Y~:~ = Yn-1 +3[fn+l +4fn +fn-1].

Adams-Moulton methods:

1. Second-order:

Predictor
old h

: Yn+l =Yn +2[3fn -fn-1].

Corrector
new h

: Y n+l = Y n + 2[fn+l + fn].

15

2. Third-order:

Predictor
old h

: Yn+l = Yn +U[23fn -16fn-l +5fn_2].

Corrector
new h

: Yn+l =Yn +U[5fn+l +8fn -fn-1].

3. Fourth-order:

Predictor
old h : Y n+l = Y n +

24
[55fn- 59fn-l + 37fn_2 - 9fn_3].

Corrector
h

: Y::7 = Y n + 24 [9fn+l + 19fn - 5fn-l + fn-2].

4. Fifth-order:

Predictor
old h

: Yn+l = Yn +
720

[190lfn -2984fn-l +2616fn_2

-1274fn-3 + 251fn-4 .

Corrector
new h

: Y n+l = Y n +
720

[25lfn+l + 646fn - 264fn-l

+ 106fn-2 -19fn-3l·

5. Sixth-order:

Predictor
old h

: Y n+l = Y n +
1440

[4277fn - 7923fn-l + 9982fn_2

-7298fn-3 + 2877fn-4- 475fn-sl

Corrector
new h

: Yn+l = Yn +
1440

[475fn+l + 1427fn -798fn-l

+ 482fn-2 -173fn-3 + 27fn-4l·

__.._____

CHAPTER II

STABILITY ANALYSIS

In the previous chapter the instability caused by the problems themselves has

been addressed. The next observations will be about the instability caused by the

approximation methods used to solve the problem. This instability is called induced

instability. As mentioned in the previous chapter, before using the approximation

method, we have to make sure that the problem does not belong to the class of ill­

conditioned problems. Due to the inaccuracy of the numerical methods used in solving

an initial value problem for an ordinary differential equation, errors occur at each step of

the integration. The total error then becomes the summation of the local truncation errors

and their propagation. If the method is unstable, the accumulation of these local errors

will make the total error becomes larger than it would be expected. This is the reason

why before using the approximation methods, we need to make sure that the problem

does not have inherent instability. The phenomenon of the growth of this error is called

numerically induced instability.

The stability of numerical methods of solving ODEs can be analyzed using the

simple linear first order differential equation proposed by Dahlquist [27, 28, 29]

Y' = 'Ay, y(to) =Yo (2.1)

16

17

where A is a constant. This ODE is also called a test problem which was first introduced

by Dahlquist [27, 28, 29] and is sometimes called Dahlquist's test problem. The solution

of (2.1) is y(t) = y
0
e).(t-to). If tn is written as tn = t0 + nh, y(t) can be given as

y(tn+I) = e"hy(tn). The value of e"h can be approximated using Taylor's series. If the

approximate value lh is denoted by E(Ah), then y(tn+I) can be approximated by

Yn+I = E(Ah)Yn· Assume E(Ah) is taken as a Taylor's series of order p, then

E(Ah) = 1 + Ah + (Ah)
2

+ (Ah)P
2

' ... + ---
. p!

(2.2)

Based on the approximate solution given above, it can be said that a numerical

method is stable, if the error Yn-y(tn) = en remains bounded as n~oo. By calculating the

error resulted from the approximate solution, we have

en+l =yn+l -y(tn+l)

= E(Ah)[y(t") +en]- e'.hy(t") (2.3)

= [E(Ah)- e'·h]y(tn) + E(Ah)en.

From (2.3), it can be shown that the error at tn+I consists of two parts. The first part,

E(Ah)- e'·h, is the local truncation error that can be chosen as small as we want by

choosing a suitable approximation of E(Ah). The second part, E(Ah)en is the propagation

error from the previous step tn to tn+I that will not grow if \E(Ah)\ ~ 1.

Definition 2.1

For a given hand A from Dahlquist's test problemy ' = Ay, a numerical method

Yn+I= E(Ah)Yn is called absolutely stable if\E(Ah)\ ~ 1.

18

Definition 2.2

For a given hand A from Dahlquist's test problemy 1 = Ay, a numerical method

y n+ 1 = E(Ah)y n is called relatively stable if IE(Ah)l ~ el.h.

The region of stability of numerical methods will be based on the methods used to

approximate the solutions [2, 4, 6, 14, 25, 66, 79].

In the case of an ODE in the form of y 1 = f(t,y), with initial value y(t0) = y0, the

problem can be transformed using the Taylor expansion about (tn,Yn), so that the problem

can be solved as a linear problem. If the Taylor series is truncated after first order terms,

the linearized form of the equation will be given as:

y I= Ay + Bt + c (2.4)

where

or or af af
A=-(t y) B=-(t y) C=f -y -(t y)-t -(t y) 8y n' n ' 8t n' n ' n n 8y n' n nOt n' n ·

The solution of (2.4) can be found in the form y = Ae'·t + p(t), where p(t) is a

polynomial of degree at most 2. It can be seen that the solution is dominated by the

exponential term.

2.1 Stability of Euler Methods

The crude Euler method is Yn+l = Yn + hf(tn,Yn). If we apply the test problem

y 1 = Ay, we will have Yn+l = (l+Ah)Yn- In this case E(Ah) = 1+ Ah. It can be said then that

the crude Euler method is absolutely stable if 11 +Ahl ~ 1. For A real, the interval of

___j,____ -~

19

absolute stability is -2 ~ Ah ~ 0. For A a complex number, the region of stability is the

region inside a circle with center (-1 ,0) and radius 1 as shown in Figure 2.1.

The implicit Euler method is Yn+I = Yn + hf(!n+t>Yn+I)· If we apply Dahlquist's test

problem y ' = Ay, we will have Yn+l = Yn + hAYn+l or Yn+l = (1-Ah)"
1
Yn· In this case

E(Ah) = (1-Ah)"1
• It can be said then that the implicit Euler method is absolutely stable if

11-Ahl ~ 1. For A real, the interval of absolute stability is {Ah I Ah ~ 2 or Ah ~ 0}. For A

complex, the region of stability is the region outside the circle with center (1,0) and

radius 1 as shown in Figure 2.2. To have a better understanding of this stability concept,

let takes an example y ' = -50y, y(O) = 1. For the implicit Euler method, the numerical

computation can be done by applying a predictor function and then applying Newton's

iteration.

Im(A.h)

II+hA.I ~l

-2 Re(A.h)

Figure 2.1 Stability Region of the
Explicit Euler Method

Im(A.h)
ll-A.h I~ 1

2 Re(A.h)

Figure 2.2 Stability Region of the
Implicit Euler Method

20

The algorithm of the implicit Euler method using a predictor-corrector scheme is as

follows [46, 72, 94]:

1. Predict Yn+I using the crude Euler method, y~~1 = y" + hf(t", y").

2 C . h . 1" . h d new hfi1 old) . orrectyn+I usmgt e1mp1C1tmet o, Yn+l =yn + ~_tn+l'Yn+l ·

The algorithm ofthe implicit Euler method applying Newton's iteration is as follows [51,

70, 72]:

1. Give the initial value for y n+ b says y gues, so that Y~1~1 = Y gues ·

old old old
2. Compute F(Yn+J), F(y n+l) = Y n+l - Y n- hf(tn+l 'Y n+l).

3. ComputeF'(Yn+I), F'(y~1~1)=1-hf, (tn+l'y~1~ 1) •
., n+l

4 C
· N , · · new old F(y~~l)

. ompute Yn+l usmg ewton s IteratiOn, y m+l = y n+l - T"'l' old
Y n+l

5. Iterate again from step 2 untiljy~:'; - y~~1 j < EPS, where EPS is an accuracy

requested to a numerical solution.

The exact solution of this problem is y = e-sot. A graphical representation of the explicit

Euler method for h = 0.01, 0.03, 0.04, and 0.05 is given in Figure 2.3. The computation

of y ' = -SOy, using the Euler method gives results as follows :

- The solution converges to the exact solution for every stepsize which is less

than 0.04. If the stepsize is close to 0.04, the solution will oscillate but it will

converge to the exact solution.

- For stepsize h=0.04, the solution will never converge to the exact solution

even though the computation is stable. The solution just oscillates between

21

minus and plus the initial value by turns.

For every stepsize larger than 0.04, the computation will never converge and

it will oscillate and then go to minus or plus infinity by turns.

8'

6

4 r 0 Exact
v h=O.Ol
c:: h=0.03
~ h=0.04

& h=O.OS

2

y'=-50y, y(O)=l

(/). ~ ·xol ~ ~ o.bo.--Q, ~ ~~ o ~~ o o o ¥o l)-v~
!

-2'
I

i
I

-4~

-6

i
-8 L

Figure 2.3 Euler Method with Stepsize
h=O.Ol, 0.03, 0.04, and 0.05

22

The comparison of computations among crude Euler, implicit Euler usmg

predictor-corrector, and implicit Euler using Newton's iteration has been made for the

case of problem y 1 = -SOy, y(O) = 1. The conclusions taken from the computational

experiments for the case y 1 = -SOy are:

1. The implicit Euler method using Newton's iteration always converges to the

exact solution.

2. As mentioned in the previous experiments, the crude Euler method always

converges to the exact solution for a timestep less than 2/SO = 0.04. For the

timestep h=0.04, the method is still stable, but does not converge to the right

solution.

3. The computation of the implicit Euler method as a corrector and crude Euler

as predictor is convergence to the exact solution for a timestep less than

1/SO = 0.02 (see Appendix E). For the timestep h = 0.02, the computation is

still stable, but the result is not convergence to the right solution. In the crude

Euler method the computation still converges to the exact solution for

timestep h = 0.03 (even though oscillating), but the computation using this

kind of predictor-corrector does not converge for timestep h ~ 0.03. It just

goes to infinity.

If the computation using the implicit Euler method as corrector and the crude Euler as

predictor is stable, then the result converges to the result given from the implicit Euler

using Newton's iteration. This PC method may not converge yet for one iteration, but if

23

we repeatedly correct the computation, the result will be the same with the result from

the implicit Euler using Newton's iteration.

Graphical representation of the comparison among the three methods aforementioned for

stepsizes h = 0.01, 0.03, 0.04, 0.05 are given in Figure 2.4.

J
1.00 20

18

/

h=O.OJ

c Exact
" Euler

I
0 Euler+PC
t:. Euler+Newton

H /

:~ ~
0.~0 0.05 0.10

-2 L

16

14 0.75

ll\
h=O.OI

Ul

.~ l\\\ ')(
11)

:>. i 0.50 i 0 E:uct
? Euler
c Euler+ PC
6 Euler+Newton

I 1\\\
0.25

12

10

8

6

~

0.15 0.25 0.20

0.00 I ~·~
t-axis

0.00 0.05 0.10 0.15 0.20 0.25

t-axis

20

16 ~
I

16

12 ~
h-0.04 12 ~ I

b=O.OS

I I c Es.act

Exact
v Euler

Ul

I
" Euler

8 ~
0 Euler+ PC

')(
8 "

c Euler+ PC
Ul I

6 Euler+Newton

11)

I

6 Euler+Newton
')(

I

>-
11)

i I

>- 4 ~

4 L
I I Up'~

u

~.;y 0.;0 \ 0,;

t-ax~ -4 ~

.30

t-axis -8 ~

Figure 2.4 Crude Euler, Implicit Euler Using PC,
and Implicit Euler Using Newton's

24

Graphical computations ofy'=-50y, y(O)=l using implicit Euler with Newton's iteration

for h =0.01, 0.04, and 0.07 are given in Figure 2.5, where the gradient is also shown.

y-ax1s

1

0.8

0.6

0.4

0.2

y•=-50y, y(0)=1

~ ~ f f f f f f f ~ f f f ~ f f f t f f
\ \ \ ,\ ~~ \ \ \ ~ \ \ \ \ \ \ \ ~ \

~,\ ~ \ ff\J.Ut \ \ \ ~ \ \ \ ~ ~ \ \ ~ ~
\ \ \ \ \ \ \ ~ \ \ \ ~ \ \ \ ~ ~
\ \ \ ~ \ \ \ \ \ \ \ \ \ ~ \ \ \ ~ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

0.05

"t,.....)) {\1 \ \, \, \, \ \, \, \, \, \, \,
-trv·'-{, ' \

\ ' ~ ~ \ ' ~ ~ \ \ ~ ~

~ ~ ~ h=O.Q4 ~ ~ \ \
~ ~ ' ' ' ~ ~

...

0.1 0.15 0.2

Figure 2.5 Implicit Euler by Showing the Vector Gradient

2.2 Stability of Explicit Runge-Kutta Methods

t-axis

When Carl Runge and Wilhelm Kutta introduced Runge-Kutta methods, they

were motivated by Euler method and Taylor's series. There are three major

characteristics of Runge-Kutta methods:

25

- Single-step methods,

- Derived from Taylor's series with the same order, and

- A voiding the evaluation of derivatives of f.

While the Euler method only evaluates the function f(t,y) of y ' = f(t,y) at the solution

points themselves, the Runge-Kutta method is done by evaluating the function f(t,y) at

several points within the integration interval. Let us consider the second-order Runge-

Kutta method that is given as Yn+I = Yn + ak1 + bk2, where k1 = hf(tn,Yn),

k2 = hf(tn +Ah,yn +Pk1). The constants a, b, A, and P are determined so that the equation

will agree with the Taylor expansion. The Taylor expansion ofy(t) at 1n+I through terms

of order h3 is

fi
2 3

Y(1n+I) = Y(1n) + h (1n,Yn) + h /2[ft(1n, Yn) + f(1n,Yn)fy(1n,Yn)] + O(h).

By doing the same thing to f(t,y) we get

f(tn +Ah,Yn +Pk1) = f(1n,Yn) + Ah~ (1n,Yn) + Pklfy (1n,Yn) + (A
2
h

2
/2)fu (1n,Yn) +

2 2 3
APhkifty(1n,Yn) + (p k1 /2)fyy (1n,Yn) + O(h).

By substituting the latter expansion into Yn+1=yn+ ak1 + bk2, we have

2 3
Yn+l = Yn + (a+b)hf(1n,Yn) + h [bAftC1n,Yn) + bpf(1n,Yn)fy (1n,Yn)] + O(h).

This latter equation will be identical with the Taylor expansion of y(t) at tn+I through

terms in h2 if a+b = 1, bA = 1/2, and bp = 112. If a =112 then b = 1/2, A= 1, p = 1, and

Y n+ 1 is written as

Yn+l = Yn + 112[kl + k2] (2.5)

where k1 = hf(tn,yn) and k2 = hf(tn +h,yn +k1). Equation (2.5) is called a second-order

Runge-Kutta method. Its graphical interpretation is shown in Figure 2.6. The stability of

26

second-order Runge-Kutta method can be examined using Dahlquist's test problem

y' = 'Ay. By substituting the test function into (2.5), we have

2
Yn+l = Yn + l/2[h'Ayn + h'A(Yn + h'Ayn)] = [1 + 'Ah + ('Ah) /2]Yn ·

Based on Definition 2.1, it can be said that the second-order Runge-Kutta method will be

stable if Jl + 'Ah + ('Ah)212J ::; 1. A graphical representation of the region of stability when

h'A is complex is given in Figure 2.7. For h'A a real number, the interval of stability is

-2 ::; h'A ::;o.

k2
/ -?

Yn+l .]... __;;,

Yn 112[kl+k2]

kl

ln ln+I

Figure 2.6 A Second Order ofRunge-Kutta

If a is chosen 1/4, the method is called the Heun method and is written as

Yn+l = Yn + kl/4 + 3k2/4 (2.6)

where k 1 = hf(tn,Yn), and k2 = hf(tn+2h/3,yn+2k1/3).

With the same approach, Lapidus and Seinfeld [80] have showr1 :

1. Third-order Runge-Kutta

Yn+l = Yn + 1/6 [kl + 4k2 + k3] (2.7)

.....

27

where k1 = hf(tn,Y
0
), k2 = hf(tn+hl2,y0+k1/2), and k3 = hf(tn+h,y0 -k1+2k2). The region of

absolute stability for A.h complex is

{ A.h Ill+ A.h + (A.h)
2
12 +(A.h)

3
161 ~ 1}

(see Figure B-1 of Appendix B). For A.h a real number, the interval of absolute stability

satisfies -2.512745 ~ A.h ~ 0.

Order-2 Im(A.h)

Figure 2.7 Stability Region of Second Order
Runge-Kutta

2. Fourth-order Runge-Kutta

Yn+l = Yn + 1/6 [kl + 2k2 + 2k3 + k4] (2.8)

where k1 = hf(tn,Y0), k2 = hf(tn+hl2,yn+kl/2), k3 = hf(tn+hl2,yn+k2/2), k4 = hf(tn+h,yn+k3).

The region of absolute stability for A.h complex is

{A.h Ill+ A.h + (A.hil2 +(A.h)3/6 + (A.h)
4
1241 ~ 1}

(see Figure B-1 of Appendix B). For A.h a real number, the interval of absolute stability

satisfies -2.78529 ~ A.h ~ 0. For A.h real numbers, the intervals of absolute stabilities of

......

28

explicit Runge-Kutta methods for orders 1 up to 10 are shown in Table 2.1. Butcher [15]

proposed an algorithm to generate data for plotting the stability region of Runge-Kutta

methods. We developed FORTRAN (see Appendix B) and Mathematica (see Appendix

F under the name of "Mathematica 5") codes with a different approach. The approach is

based on the implementation of Newton-Raphson method for finding a root of a

polynomial. Here, the polynomial is evaluated using nested multiplication which is

recognized as Homer's rule.

TABLE2.1
Stability Region ofRunge-Kutta

for Orders 1 to 10.

Order Interval for A.h real numbers

1 SL -2 ~ A.h ~ 0

2nu -2 ~ A.h ~ 0

3m -2.5127453266 ~ A.h ~ 0

4m -2.78529 ~ A.h ~ 0

5m -3.21705 ~ A.h ~ 0

6Ln -3.55344 ~ A.h ~ 0

t" -3.95413 ~ A.h ~ 0

8m . -4.31363 ~ A.h ~ 0

9Ln -4.70083 ~ A.h ~ 0

lOrn -5.06952 ~ A.h ~ 0

I

......

29

The general expression of as-stage Runge-Kutta method for solving y' = f(t,y),

y(t0) = t0 is given as:

s

Yn+l = Yn + Lwiki
i=l

i-1

wherek1 =hf(tmYn)and ki =hf(t
0

+cih,yn + Laijk), i=2,3, ... , s
j=l

(2.9)

To maintain consistency, which will be discussed in the next chapter, these

following conditions should be satisfied:

i-1 s
ci = Laij and Lwk = 1 , i = 2,3, ... ,s (2.1 0)

j=l k=l

Here, the w' s represent the weighting coefficients on the slopes, s is the total number of

stages, the c' s represent the subinterval locations at which the derivatives are being

evaluated, and the a's represent the slope weightings for the intermediate stages.

Butcher proposed a condensed representation of the Runge-Kutta method as

shown in Table 2.2.

TABLE2.2
Butcher's Array ofRunge-Kutta Methods

0

ci I a21

c2 a31 a32

Cs ~I as2 ass-!

WI w2 Ws

30

This representation is recognized as Butcher's array. The Runge-Kutta (2.8) method is

represented in Butcher's array as shown in Table 2.3.

TABLE2.3
Butcher's Array of a Fourth-Order Runge-Kutta Method

0

1/2 I 1/2

1/2 0 1/2

1 0 0 1

116 113 113 116

2.3 Stability of Implicit Runge-Kutta Methods

The general expression of a s-stage implicit Runge-Kutta method for solving

y' = f(t,y), y(t0) = t0 is given in Equation (2.11) as follows:

where

and

s

Yn+l = Yn + Lwiki
i=l

s

ki = hf(t 0 + cih, y n + Laijk j), i = 1,2,3, ... , s
j=l

s s
ci = Laij and L wk = 1 , i = 1,2,3, ... ,s.

j=l k=l

(2.11)

31

Some derivations of implicit Runge-Kutta methods have been shown by Jain [66]. A

second-order implicit Runge-Kutta method is given as

Yn+l =yn+kl (2.12)

where k1 = hf(tn+h/2,yn+k1/2). If we apply the test problem y ' = Ay, we have

k 1 = h"J....(yn+k1/2). After finding kl> its value is substituted into Eq. (2.12) to get

l+"J....h/2
Y n+ 1 = 1 - Ah / 2 Y n . (2.13)

For Ah real, the interval of absolute stability satisfies J....h ::; 0, and for Ah complex, the

region of absolute stability satisfies I (1 + J....h/2)/(1- J....h/2)1 ::; 1. Using a similar approach,

a third-order implicit Runge-Kutta method can be written as

Yn+l = Yn + 1/4 [3kl + k2] (2.14)

with k 1 = hf(tn +h/3,yn +k1/3) and k2 = hf(tn +h,yn +k1). For Ah real, the interval of absolute

stability satisfies J....h ::; 0, and for J....h complex, the region of absolute stability satisfies

1[1 +2 J....h/3+(J....h)2/6]/[1- J....h/3]1::; 1.

2.4 Difference Equations

If y is a function oft and t is replaced by tk = t0 + kh, where k is an element of

{ .. ,-2, -1,0,1,2, ... }, then the dependent variable y(t) can be replaced by Yk as an

approximation for y(tk). The forward difference of the Yk value is denoted by L1yk and

defined as Yk+I-Yk· This definition implies that

2
L1 Yk = L1(L1yk) = L1(Yk+I-Yk) = Yk+2- 2yk+I + Yk= L1Yk+I-L1Yk·

The first derivatives of y overt are defined as

y(t +h)- y(t)

h

dy =lim
dt h--+0

y(t)- y(t- h)

h

y(t +h)- y(t- h)

2h

The finite difference approximation of the first derivative of y is defined using the first

two terms ofthe Taylor series ofy as

dy ~
dt

Yk+l -yk
h

Yk- Yk-1
h

Yk+l -yk-1
2h

forward Euler.

backward Euler

central difference scheme_

The interpretation of these methods in solving a problemy'= f(y) is as follows:

y k+l - y k = f(y k)
h

Yk- Yk-l = f(yk)
h

y k+l - y k-l = f(y k)
2h

forward Euler

backward Euler

central difference scheme

Let's take an example of the decay equation dy/dt = -y, y(O) = y0. The correspondence

of methods is

Yk+l- Yk = -yk
h

forward Euler

Yk -yk-l =-yk
h

backward Euler

= -yk central difference scheme

33

The exact solution of this problem is y(t) = y0e-t. The absolute value of the exact

solution monotonically decreases to zero as t ~ oo. The forward Euler scheme for this

problem is Yk+l = (1-h)Yk· By substituting the value ofy0, we have the relation Yk = (1-

h)k y0. The backward scheme for this problem is Yk = Yk-l - hyk or Yk = [1/(1 +h)] Yk-1·

By taking k = k+1, we can have Yk+l = [1/(1+h)]Yk· By substituting the value ofy0,

we have the relation Yk = [1/(1 +h)t y0. The relation for the central difference scheme is

Yk+l = Yk-l- 2hyk. The value ofy1 for this method is calculated using the Euler method.

All computations of this problem were done using the three methods, each for

h = 0.05,1.,2., and 3. From the observations shown in Figure 2.8, the backward method

is always stable for every 0 < h < oo. The central method is always unstable for every

h>O. For h = 1 and k>O, the value Yk of the forward method is identically equal to zero.

If 1 <h<2, the value Yk of the forward method decreases to zero with oscillating (change

in sign) amplitude. For h ~ 2, the Yk of the forward method ofthis problem does not lead

the solution to zero when t goes to infinity. The forward methods is always stable for h

in the interval 0 < h < 2. By applying the forward method to the test problemy ' = A.y

we have Yk+l = Yk +hA.yk = (1 +A.h)Yk· From the latter equation, for A.h real, the region of

stability of the forward method is an interval {A.h Ill +A.hl s 1} = -2 s A.h s 0 (similar to

the crude Euler method). In a similar way, the region of absolute stability of the

backward method for A.h real is an interval { A.h I A.h ~ 0 or A.h s 0} (similar to the

implicit Euler method). For the central method, the formula for finding the region of

stability is not simple.

1.

4

11=0.05 n ~ -,___..,;

0 Exact
(/) \1 Forwanl
·x

(/) r \ r Backwanl
ctl

-~ 0.50
6 Central

>->- .
\1 Forwanl

-sc- D Backwanl

I
6 Central

I

0.25' "Lt. -10 r
i

-12

-14

~ ooo I
2 3 4 0 1

taxis

15

12 b=J.

'~·:\·~ 9 c Exact
\1 Forwanl -

2
1- taxis

c Backwanl -4~

i 6 Central
(/) 6 -8 0 Exact \ ·x (/)

\1 Forwanl ctl ·x
ctl -8 c Backwanl >->- 6 Central

-10

·12

-14

-16

-18

-20

Figure 2.8 Difference Equation Methods Using Forward,
Backward and Central for h=O.OS, 1, 2, and 3

34

CHAPTER III

STABILITY OF MULTISTEP METHODS

We have seen that some ideas for solving Ordinary Differential Equations lead to

multistep methods. Unfortunately, the computations of multistep methods are not as

easy as those in single step methods, because in multistep methods some starting values

are needed but they are not given in the starting information. Traditionally, to support

this lack of information we can use Runge-Kutta methods with the same order accuracy.

There are two possibilities that can be used in order to provide starting values. First, use

a single step method to compute all starting values that are not given in the information.

Second, use a single step method to support information for a two-step method, then use

this two-step method to support information for a three-step method and so on until all

information needed to support the chosen multistep method is fulfilled. In general, the

multistep methods not only include explicit single step methods, but also implicit single

step methods. A general multistep or k-step method for the solution y ' =f(t,y), y(t0) =Yo

can be written as

aoy n + aly n+l + a2y n+2 + + ak.1Y n+k·I + aky n+k =
(3.1)

h~(tn 'tn+P .. 'tn+k·P tn+k 'Y~ 'Y~+ p ... 'Y~+k-P Y~+k; h)

where his the constant stepsize and ao, a~> .. , ak are real constants. If~ independent of

y n+k' then the general multistep method is called an explicit, open or predictor method;

35

36

otherwise it is an implicit, closed or corrector method. A general linear multistep or k-

step method can be written as

aoy n + aly n+l + a2Y n+2 + · · · + ak-1Y n+k-1 + aky n+k =

h(boY~ + b~y~+l + · · · + bk-IY~+k-1 + bky~+k)
(3.2)

This formula can be simplified to

p(E)y n - hcr(E)y n' = 0 (3.3)

2 k-1 k 2 k-1 k
where p(~) = ao + a1 ~ + a2~ + .. ak-I~ + ak~ , cr(~) = b0 + b 1 ~ + b2~ + .. bk-I~ + bk~ ,

and E is the shift operator which is defined as Ek Yn = Yn+k· Dahlquist [1956] was the

person who started to study a general theory of multistep methods and was the first

person who introduced the polynomials p(~) and cr(~).

In the same manner as single step methods, the theory of multistep methods also

involves the concepts of consistency, stability, and convergence. Dahlquist [27 ,28] has

defined that Equation (3.3) is said to be consistent if p(l)=O, and p ' (1) = cr(l). We

know that the initial value problemy ' = 0, y(O) = 1 has the exact solution y(t) = 1. If we

solve this problem using (3 .2), we have

aol + a11 + ... + akl = h(b00 + b10 + ... +bkO) or p(l) = 0.

Let's take another example, y ' = 1 with y(O)=O. The exact solution of this example is

y(t) = t. Substituting this exact solution into (3.2), we have

ao(nh) + a2(n+l)h + ... + ak(n+k)h = nh[a0 + a1+ ... + ak] + h[la1+2a2+ ...

+ (k-l)ak_1+kak]

= h(b0 + b1 + ... + bk)

...........____

37

where y 5 = sh, for s=O, 1, 2, n+k. Simplifying the latter equation and applying the

result of p(l)=O, we have p'(1) = cr(l). Dahlquist [27,28], Lapidus and Seinfeld [80],

and Jain [66] have shown that the multistep method (3.1) is of order p, if and only if one

of the following equivalent conditions is satisfied :

k k k

1. Lai = 0, and Laiiq = qLbiiq-I for q = 2, ... ,p,
i=O i=O i=O

2. p(eh)- hcr(eh) = O(hp+I) for h---+ 0, and

3. p(~) -cr(~) = 0((~-1)P) for~---+ 1.
log~

Definition 3.1

(3.4)

(3.5)

(3.6)

The formula (3.1) will be said to be absolutely stable in the sense of Dahlquist if

all roots ~i of the characteristic polynomial p(~)=O are such that l~d ~ 1 and those

roots for which l~d = 1 are simple.

Theorem 3.1

Consistency and stability are together necessary and sufficient conditions for the

formula (3 .1) to be convergence.

Proof: See Dahlquist [27,28].

Example 3.1:

Investigate the consistency and the order of a numerical method

Yn+2 = -4Yn+l + 5yn + h(4fn+l + 2f0).

Solution:

.....

38

For this case k = 2, ao = -5, a1 = 4, a2 = 1, b0 = 2, b1 = 4, b2 = 0, cr(s) = 2 + 4s, and

p(s) = -5 + 4s + s 2 • Since p(l) = -5 + (4)(1) + 1
2

= 0, and p'(l)= 4 + (2)(1) = cr(1), then

the method is consistent. From condition 2 (3.2), we have

p(eh) - hcr(eh) = -5 + 4eh + e2h - h(2 + 4eh)

= - 5 + 4[1 + h + h2/2 + O(h3
)] + [1 + (2h) + (2h)

2
/2 + 0((2h)

3
)

- 2h- 4h(l + h + h2/2 + O(h3
)]

= -5 + 4 + 4h + 2h2 + O(h3
) + 1 + 2h + 2h2 + O(h3

) - 2h - 4h - 4h
2

-2h3
- O(h3

) = - 2h3 + O(h3
) = O(h\

So the numerical method is of order 2.

Example 3.2:

Investigate the consistency and the order of the trapezoidal method

Yn+l = Yn + (h/2)[fn + fn+l].

Solution:

In this case k = 1, ao = -1, a1 = 1, b0 = 112, b1 = 112, cr(s) = 1/2 + (1/2)s, and

p(s) = -1 + S· Since p(1) = -1 + (1)(1) = 0, and p'(l)=1= cr(1)=1/2+(1/2)(1), then the

method is consistent. Let us now use condition 1 to show the order of the trapezoidal

method. By applying condition 1(3.1), we can see that the condition will be satisfied

only for p = 2. So the numerical method is of order 2.

3.1 Linear Difference Equations

Among other purposes of studying difference equations are the use of these

equations to formulate and analyze discrete-time systems, to approximate the integrations

....

39

of differential equations using finite-difference schemes, and to study deterministic chaos

[91, 92]. In general, an ordinary difference equations is a relation ofthe form

Yn+k = F(n,yn,Yn+b · · ., Yn+k-1), (3.7)

where the order is the difference between the highest and lowest indices that appear in

the equation. Based on this definition, the order of Equation (3. 7) is k, and shifting the

labeling of the indices will not change the order of the equation. If Equation (3. 7) is

shifted to Yn+k+r = F(n+r,Yn+r,Yn+r+b ... ,yn+r+k-1), its order is still k. A solution of difference

equation (3.7) is a function <p(n) that reduces the equation to an identity. If we substitute

<p(n)= 2" into Yn+l - 2yn = 0, we will have an identity in the form of 2n+l - (2) 2" = 0. In

this case, <p(n)=2" is said a solution of Yn+l - 2yn = 0. A difference equation can be

derived from a sequence {Yn} to which is defined as a function of n and k arbitrary

constants Ct. c2, ... , ck. The difference equation of this sequence will be of order k. If

we calculate Yn+l from Yn = A2", we will have Yn+l = A2n+l = (2)A(2)" = 2Yn· The

difference equation ofyn = A2" is a first-order equation in the form ofyn+l - 2yn = 0. By

calculating Yn+l and Yn+2 from Yn = c12" + c22", we will have a second-order of difference

equation in the form of Yn+2 - 7Yn+l + lOyn = 0. This gives a difference equation

Yn =An+ f(A) is Yn = (Yn+l - Yn)n + f(Yn+l - Yn) which can be found by calculating Yn+l

and substituting the value of A back into the first equation.

A kth-order linear difference equation with constant coefficients is a relation in

the form of

Yn+k + a1Yn+k-l + a2Yn+k-2 + · · · + akYn = Rn (3.8)

40

where a!> a2, ... , and ak are constants with ak '* 0, and R0 is a function of n. The equation

(3.8) is called a kth-order nonhomogeneous linear difference equation with constant

coefficients. If R0 = 0, then Equation (3.8) is called homogeneous and it becomes

Yn+k + a1Yn+k-I + a2Yn+k-2 + · · · + akYn = 0. (3.9)

Using the shift operator E, we can write Equation (3.9) in the form f(E)y 0 = 0, where

.c.(E) Ek Ek-I Ek-2 . h fi . Th h . . . 11 = + a1 + a2 + ... + ak 1st e operator unctwn. e c aractenst1c equatiOn

associated with Equation (3.9) is f(r) = 0.

Theorem 3.2

L b 1 . h h . . .c.() k k-1 k-2 0 et ri e any so utwn tot e c aractenst1c 11 r = r + a1r + a2r + ... + ak = ,

then Yn = rt is a solution to the homogeneous equation (3.9).

Proof:

Substituting Yn = rt into (3.9) give

n+k n+k-1 n+l n n k k-1
ri + a1ri + ... + ak-Iri + akri = ri (ri + a1ri + ... + ak-Iri + ak)

= rtf(ri) = rt.o = 0.

Hence, Yn = ri" is a solution to equation (3.9).

If the k roots of the characteristic equation f(r) = 0 are distinct, then the general

solution of (3.9) will be Yn = c1r1" + c2r2" + ... + ckrk"· In the case where ri has

multiplicity mi, i=1,2, ... ,j, where ml + m2 + + mj = k, then the solution of Equation

(3.9) becomes

"[2 ml-1] "[2 Yn=r1 aii+ai2n+a13n + ... +almln +r2 a21+a22n+a23n + ...
~ ~ ~ ' ~' ~

m2-1] "[2 mj-1] +a2,m2n + ... + rj aj, 1 + aj,2n + aj3 n + ... +aj,mP .

The solution Yn ofEquation (3.9) is usually written as YnH·

l__

41

A particular solution of the nonhomogeneous linear difference Equation (3.8) can

be derived from the relation y/ = f(Er1Rn. The general solution of Equation (3.8) then

becomes YnG = Yn" + YnP· When Rn has certain forms, we can use the trial solutions

given in Table 3.1 below. The unknown coefficients should be determined by

substituting the trial solutions into the difference equation. If a term of the trial solution

appeared in the homogeneous solution, then the entire trial solution corresponding to this

term should be multiplied by a positive integer power of n. This power should be just

large enough so that no term in the new trial solution will appear in the homogeneous

solution.

Example 3.3:

Solve Yn+2- 4Yn+1 + 4yn = 3(2)" + 5(4)"

Solution:

A homogeneous solution of this difference equation can be found by finding the

roots of the characteristic equation f(r) = r2 - 4r + 4 = 0. Since the roots are r1 = 2 and

r2 = 2, the homogeneous solution is y n H = c12" + c2n(2)". The particular solution for the

nonhomogeneous solution can be found by choosing the trial solution

y/ = A1n
2(2)" + A2(4)". By substituting this y/ into the difference equation, we have

y/ = 3n2(2)"-3 + 5(4)"-1. The general solution ofthe difference equation is

Yn°= YnH + y/ = c12" + c2n(2)" + 3n2(2)"-3 + 5(4)"-1.

Example 3.4:

Solve numerically Yn+2 = -4Yn+1 + 5yn + h(4fn+1 + 2fn) and apply to

y I= y, y(O) = 1.

____...,__

_____....,___

Solution:

TABLE 3.1
A Trial Solution to Find a Particular Solution of Nonhomogeneous

Difference Equations

Terms in Tn Trial solution y/

~n A~"

sin an or cos an A cos an + B sin an

I

polynomial P(n) of degree m A m A ,m-1 A on + In + .. + m

~"P(n) ~"(A0nm + A1nm-J+ .. +Am)

~n · ~n sm an or cos an ~"(A cos an+ B sin an)

42

Calculating the polynomials p and cr, we have p(~) = ~2 + 4~ -5, cr(~) = 4~ + 2,

and p' (~) = 2~ + 4. The multistep method is consistent because p(1) = 1 + 4- 5 = 0 and

p' (1) = 2(1) + 4 = cr(1) = 4(1) +2 = 6. Since ao = -5, a1 = 4, a2 = 1, we have

ao + a1 + a2 = -5 + 4 + 1 = 0. By observation of formula (3.4), the condition is satisfied

for q=2 and q=3. It can be said then that the multistep method is of order 3. Since the

roots of characteristic p(~) = 0 are ~ 1 = -5, and ~2 = 1, then the multistep method is

unstable. If the computation satisfies the stability condition, then the method is said to

have convergence with order 3. The linear difference equation relation is

Yn+2 + 4(1-h)Yn+I- (5+2h)Yn = 0. As starting values, we can take Yo= 1, and y1 = eh. The

roots ofthe characteristic ofr2 + 4(1-h)r- (5+2h) are

r1 =2h-2+.J4h2 -6h+9 and r2 =2h-2-.J4h2 -6h+9.

l

60

40

20

Ul

~ 0

I
I

I

I
I
I

I
I

I

I • I

• II
I I

I ..
I I II

I 1,1 I I I
I

:>. 0.00
I

1.0tll
II

-20

-40

-60

tAxis

• Exact

• h=0.025

... h=0.05

.... h=0.1

l
1

1

II
I\
I I
I

1

1

I I
I

1

1

I I

I
1

1

I I

I
1
1

I I

I
1

1 I.
Figure 3.1 Computational Results ofyn+2 = -4Yn+1+5yn+h(4fn+I+2fn)

Applied to y'=y, y(O)=l.

43

The general solution of the difference equation is Yn H = Ar1 n + Brt The computations

are done using h=0.025, 0.05, and 0.1 as shown in Figure 3.1. In this case, the smaller

the stepsize is chosen, the worse result is achieved. This occurred because as h ~ 0, y n H

will oscillate to infinity for r1 and r2 equal to 1 and -5, respectively. We can see that the

second part of y n H has a very strong growth in the solution for a small stepsize. If we

approximate the squareroot in r1 and r2 using the first two terms of Taylor's series, we

i

J..

44

have r1 = 1 + h + O(h2), and r2 = -5 + O(h). Since r1 is an approximation of eh, the first

term of Yn H approximates the exact solution e1
. The second part of Yn H is often called a

parasitic solution.

3.2 Adams Methods

John Couch Adams was motivated by a problem given by F. Bashforth when

Adams proposed Adams-Bashforth methods. The Adams-Newton Backward Difference

formula is used as approximation functions to the integrands. If y is a function oft and t

is replaced by tk = t0 + kh, the backward difference of the Yk value is denoted by V'yk and

defined as Yk- Yk-1· It can be shown then that V'nyk = V'n-IYk - V'n-IYk-l· From the k known

values Yn-k+I> Yn-k+2' · · · ,Yn-1> Ym the k points (tu-kH,fn-k+l), (tn-k+2Jn-k+2), · · .,(tn,fn) can be

determined. The Newton Backward Difference formula interpolates the function f(t,y) of

y' =f(t,y) as

k-1 (J
p•(t) = p•(tn +sh) = L(-1)j -~ V'jfn

j=O J
(3.1 0)

(-sJ · s! t-t
where-. =(-1)J .

1
(• , s=-h", andt stst 1• Thesolutionofy'=f(t,y)at

J J.S-J)! n n+

t
n + 1

tn+l is given by y(t) = y(t) + jf(t, y(t))dt, which in the numerical result is given by n+l n

t
n+l

Yn+l = Yn + fp* (t)dt

n

n

(3 .11)

By substituting (3 .1 0) into (3 .11) and using a new variable s such that the integration will

be from 0 to 1, Lambert [78] has shown that

k-1

- h"" • j Yn+l- Yn + ~y.V' f J n
(3.12)

j=O

where the coefficients Yi * satisfy

1

Y: = (-1)i J (-~J ds
0 J

(3.13)

The multistep method (3.12) is called an explicit Adams-Bashforth method. Recurrence

relations for coefficients Yi* (see Appendix C) are given as

• 1. 1. 1.
Y. +-y. I +-y. 2 +-y. 3 +

I 2 1- 3 1- 4 1-

1 •
+ i + 1 y 0 = 1 , i = 0,1 ,2 ... (3.14).

The family of explicit Adams-Bashforth methods then can be written as

1 5 2 3 3
Yn+l = Yn +h(fn +lY'fn +

1
2 Y' fn +}8Y' fn + · · .). (3.15)

By considering the multistep method (3.15), special cases of (3.12) can be shown to be

k = 1 : Y n+ I = Y n + hf n.

k=2: Yn+l =Yn +~~fn -~fn-1).

,(23 16 5 J
k = 3: Yn+l = Yn +ll__}2fn -}2fn-l + 12 fn-2 ·

,(55 59 37 9)
k = 4: Y n+l = Y n + ll__24 fn - 24 fn-1 + 24 fn-2 - 24 fn-3 .

These methods are very interesting because Yi*'s do not depend on k. They can

be determined directly from their recurrence relations (3.14). If we know the values of

46

y0*, y1*, y2*, y3*, we can create all k-step Adams-Bashforth methods with k=1, 2, 3, 4.

By observing Equation (3.12) or (3.15), we can see that from a k-step Adams-Bashforth

method, we can create a (k-1)-step Adams-Bashforth method just by throwing out the

last term of the series. We also can create a (k+ 1)-step method by adding an extra term

after calculating coefficient 'Yk+ 1 * using their recurrence relations (3 .14).

Thus, we have already shown that the k-step Adams-Bashforth methods only

involve k terms (excluding y 0) of series(3 .12), and is given as

k-1

Y n+l = Y n + hL Y ~V'jf J n.
j=O

which has order k and error constant 'Yk *. By investigating the Adams-Bashforth

methods using test equation y ' = 'Ay, Hairer and Wanner [56] said that the Adams-

Bashforth methods are not appropriate for stiff problems.

Implicit Adams methods can be derived by interpolating the function f(t,y) of

y ' = f(t,y) over k points given in the explicit methods and one unknown point (tn+I,fn+I)·

In this case the approximation function off(t,y) becomes

k (. -s+ 1 .
p(t)=p(t +sh)= '"'C-1)J)vJf n L..J J. n+l •

j=O

(3.16)

By substituting p*(t) in (3.11) with p(t), we have the implicit method

k

Yn+l = Yn + h'"' 'V .V'jf L...J 1 J n+l"
(3.17)

j=O

where the coefficients 'Yj satisfy

47

I

y; ~(-!);I (-s; l)ds. (3.18)

The multistep methods (3.17) are called implicit Adams-Moulton methods. Recurrence

relations for coefficients Yj (see Appendix C) are given as

1 1 1 1 {1 if i = 0
Yi +2Yi-l +)Yi-2 +4Yi-3 + · · · + i +1 Yo= 0 ifi = 1,2, .. (3.19).

The family of the implicit Adams-Moulton methods then can be written as

1 1 2 1 3
Yn+l = Yn +h(fn+l-2\lfn+I-UV' fn+l- 24\7 fn+l + · · .). (3.20)

By considering the multistep method (3.20), special cases ofEq. (3.17) can be obtained:

k = 1: Yn+l =Yn +{~fn+l +~fn).

k=2:
,(5 8 1)

y n+l = y n + \12 fn+l +ufn -ufn-1 .

k=3:
,(9 19 5 1)

Y n+l = Y n + \24 fn+l + 24 fn- 24 fn-1 + 24 fn-2 .

k=4: = + 1 (251 f + 646 f - 264 f + 106 f - ___!2_ f)
Y n+l Y n \720 n+l 720 n 720 n-l 720 n-2 720 n-3 .

The same arguments as in the Adams-Bashforth methods also prevail in implicit

Adams-Moulton methods. But here, the k-step Adams-Moulton methods involve (k+l)

terms (excluding y
0

) of series (3 .17); That is, truncation is done after (k+ 1) terms

(excluding y 0) of series (3 .17). For k= 1, the backward Euler method y n+ 1 = y n + hfn+ 1 is

also called a 1-step Adams-Moulton method. It also can be shown that a k -step Adams-

Moulton has order (k+ 1) and error constant Yk+ 1. Shampine and Gordon [99] used these

...

..l

48

implicit Adams-Moulton methods using PECE (will be discussed later) m

developing ODEs packages to solve non-stiff differential equations. Byrne and

Hindmarsh used Adams methods to solve nonstiff differential equations in the EPSODE

[17].

The consistency, stability, and convergence of Adams-Bashforth and Adams­

Moulton methods can be examined using the stability concept proposed by Dahlquist.

Let us take an example for k=2. The explicit two-step Adams-Bashforth method is

Yn+ 1 = Yn + (h/2)(3fn - fn_ 1). By writing this formula in the form of Equation (3.3), we

have p*(r) = l - r and cr*(r) = (1/2)(3r - 1). Since p*(l) = 1 - 1 =0, and

p*'(1) = 2(1) - 1 = (112)(3.1-1) = cr*(1), then the explicit two-step Adams-Bashforth

method is consistent. The method is stable because the roots of the characteristic

equation p(r) are r1 = 0 and r2 = 1. By applying Equation (3.4) to this method, it can be

said that this method has order 2. The implicit two-step Adams-Moulton method is

Yn+ 1 = Yn + (h/12)(5fn+1 + 8fn - fn_ 1). As was done for the explicit two-step Adams-

Basforth method, we have
2 2 p(r) = r - r, and cr(r) = (1/12)(5r + 8r - 1).

Since p(1) = 1 - 1 = 0, and p ' (1) = 2(1) - 1 = (1/12)[5(1)2+8(1)-1] = cr(1), then the

implicit two-step Adams-Moulton method is consistent. The method is stable because

the roots of the characteristic p(r) are r1 = 0 and r2 = 1. By applying Equation (3.4) to

this method, it can be said that this method has order 3

3.3 Backward Differentiation Formulae (BDF)

49

So far, we have discussed multistep methods based on difference equations and

integrations. We will now derive multistep methods which are based on numerical

differentiation of a given function. These methods are called the backward

differentiation formulas (BDF) and can be applied to solve stiff differential systems.

These implicit multistep methods are the first methods used in solving stiff differential

equations and become the most widely and predominantly used for all stiff computations

since Gear [44] proposed the computer codes in his book. The EPSODE created by

Byrne and Hindmarsh [17] also used these methods to handle stiff system problems. The

MEBDF created by Cash [20] to solve stiff problems is also an example of package that

implements BDF concepts.

The Newton Backward difference interpolations ofk points (tn+bYn+J), (tn,Yn), ... ,

(tn-k+I,Yn-k+J),(tn-k,Yn-k) are given as

k ()
. -s+ 1 .

p(t)=p(tn+sh)=Pk(s)=~(-1/ j Y'Jyn+l" (3.21)

The values Yn-b Yn-k+b ... , Yn are known, and we would like to determine the value of

Yn+I· The methods are done by differentiating equation (3.21) and substituting the value

into y ' =f(t,y). The function of y is approximated by a polynomial p(t) of degree k.

Since the approximation ofy' = f(t,y) at tn+I is p' (tn+I) = fn+b we have (see Appendix

C)

1 d ~ ·(-s + 1) . --L,,(-1)J Y'J -
h ds j=O j Yn+l- fn+l'

which can be written as

..

k

Lbj'Vjyn+l = hfn+l"
j=O

By direct differentiating and substituting s= 1, the coefficients 8/ are obtained as

{

0, for j = 0
s: - 1 c. . .
u j - -: , 10f J ~

J

The multistep methods then can be written as

k

""! j -hf L..,. . \7 Y n+l - n+l ·
j=l J

50

(3.22)

These multistep formulas are known as backward differentiation formulae (BDF

methods). Special cases ofBDF can be obtained:

k= 1 : Y n+ 1 = Y n + hfn+ 1 •

k=2: Yn+l = (4/3)Yn- (l/3)Yn-l + (2/3)hfn+l·

k=3: Yn+l = (18/11)Yn- (9/11)Yn-l + (2/11)Yn-2 + (6/11)hfn+l·

k=4: Yn+l = (48/25)Yn- (36/25)Yn-l + (16/25)Yn-2- (3/25)Yn-3 + (12/25)hfn+l·

k=5: Yn+l = (300/137)Yn- (300/137)Yn-l + (200/137)Yn-2- (75/137)Yn-3 +

(12/13 7)y n-4 + (60/13 7)hfn+ I·

k=6: Yn+l = (360/147)Yn- (450/147)Yn-l + (400/147)Yn-2 -(225/147)Yn-3 +

(72/147)Yn-4- (10/147)Yn-5 + (60/147)hfn+l·

Since finding the roots of the polynomial p(r) of BDF methods (3.22) is not

simple, Definition 3.1 can not be used directly to investigate the stability of BDF

methods. By manipulating p(r), Hairer and Wanner [56] have shown that k-step BDF-

methods are stable only for k ~ 6.

51

3.4 Predictor-Corrector Methods

We have seen that the iterative procedures for the implicit multistep methods

require initial guess of the solution at each timestep. The simple way to handle this

problem is to use an explicit method to supply the required information. In this case, the

explicit method used to supply the information is called a predictor and the implicit

method used to correct the result is called a corrector. The combination of both

predictor and corrector is called a predictor-corrector (PC) method. The predictor-

corrector method consists of three processes: predicting (P) the next value using the

explicit method, evaluating (E) the derivative based on the latest value of y, and

correcting (C) the result using the implicit method. Normally, the algorithm of the

predictor-corrector methods are in the form of P(EC)m if they end with a correction or

P(ECtE if they end with an evaluation. The important guidelines [78] that should be

followed are:

A void choosing the order of predictor greater than that of the corrector,

because the local truncation error will still follow that of the corrector and

- Manage to choose the order of predictor equal to the order of the corrector, so

we can avoid unnecessary computations.

Suppose we use an implicit linear multistep method to solve the standard initial

value problemy' =f(t,y). An implicit linear multistep method can be written as

k-1 k-1

Yn+k + Lajyn+j = hbJ(tn+k'Yn+k)+hLb/n+j (3.23)
~0 ~0

and a linear multistep predictor as

52

k-1 k-1

Yn+k + La~yn+j = hLb~fn+j. (3.24)
j=O j=O

We are required to determine Yn+k from the formulas. Since we cannot solve Yn+k

directly, we can use the following procedure to calculate Yn+k:

P: Predict the value Yn+k(O) for Yn+k using (3.24).

(0)) E :Evaluate f(1n+k,Yn+k ·

C: Correct Yn+k(O) to obtain a new Yn+k(l) for Yn+k using (3.23).

(1)
E :Evaluate f(1n+k•Yn+k).

C: Correct Yn+k(l) to obtain a new Yn+k(2) for Yn+k using (3.21)

The sequence of operations PECECE . . . to determine the value of Yn+k is given as

(0) (1) (2)
Yn+k ' Yn+k ' Yn+k ' · · · Lambert [78] proposed a single mode P(ECtE1-t instead of

two modes P(ECtE or P(EC)m as follows:

P(EC)mE1-t:

k-1 k-1

P: [OJ +"a~ [m] = h "b•f[m~t]
Yn+k L. JYn+J L. J n+J

j=O j=O

[v] [v]
fn+k = f(tn+k,Yn+k)

l
I

(ECt: ~ v = 0,1, ... ,m-1
k-1 . k-1 1

[v+1] +"a. [m] = hb f[v] + h "b.f[m~t]J
Yn+k L. JYn+J k n+k L. J n+J

j=O j=O

E(l-t). f[m] = fi(t Y[m]) ift = 0
· n+k n+k' n+k '

53

where t = 0 or 1. He also has shown that if p and p* are the order of corrector and

predictor respectively, then

1. if p*~p (or if p* < p and m > p-p*), the PC method and the corrector have the

same order and the same principal local truncation error,

2. if p*<p and m = p-p*, the PC method and the corrector have the same order

but different principal local truncation error, and

3. ifp* < p and m~p-p*-1, the order of the PC method is p*+m (<p).

Based on Lambert [78], most of modem predictor-corrector codes for non-stiff

problems use Adams-Moulton methods as correctors and Adams-Bashforth methods as

predictors. These methods are sometimes called ABM methods. Considering the

principal local truncation error given above, it is important then to choose the predictors

and correctors with the same order. To satisfy this condition, the ABM methods should

be:

k·l

Yn+l =Yn +hLy.j'Vjfn , p*=k.
j=O

k-1

Y n+l = Y n + hLy j 'Vjfn+l ' P = k
j=O

3.5 Extrapolation Methods for Solving ODEs

The meaning of extrapolation in the sense of integration methods is the process of

deriving an improved estimate for the value of a definite integral based on two or more

applications of a formula using different stepsizes of integration. The following example

...l

is an illustration of the meaning of extrapolation. Assume Yn(h) is the approximate

solution of y ' = f(t,y) which is integrated using stepsize h, then Yn can be written as

Yn(h) = y(tn) + hP E(tn) + O(hp+1
), where y(tn) is the true solution, E(t) is called the

magnified error function. We would like to manipulate h so that we have a more accurate

estimate to the true value ofy(tn). Let us take a new stepsize Ah (0 <A <1), and apply to

the formula ofy0 • Then, we have Yn(Ah) = y(tn) + (Ah)P E(tn) + O(hp+1
), By multiplying

Yn(h) with -AP and then adding to Yn(Ah), we have

Yn(Ah)- APYn(h) = (1 - Ap) Y(1o) + O(hp+l),

and also

Yn(Ah) + [Y0 (Ah)- Yn(h)]/[(1/A)P- 1] = y(tn) + O(hp+1
).

Ifwe choose Yn(Ah) + [y0 (Ah)- Yn(h)]/[(1/A)P- 1] as the approximate value ofy(tn), the

error becomes smaller. This approximate value is called extrapolation or, sometimes

Richardson's extrapolation. Assume that a certain numerical formula has a trurJcation

error proportional to h3
. Suppose a computation of this formula with h = 0.10 gives an

output 4.5800 and with h = 0.05 gives an output 4.4350. What is the best approximation

to the true value based upon this information? In this problem A= 1/5 and p = 3. Using

the formula given above, the approximate solution is

y(0.05) + [y(0.05)-y(0.10)]/[(1/5)3-1] = 4.4350 + [4.4350- 4.5800]/[124]

= 4.4288.

In most of implementation, usually the factor A is chosen 1/2, so the Richardson's

extrapolation at point to is

55

h

(
h) Y n(-)- Y n(h)

y(t) = y - + 2 + O(hP+1)
n n 2 2P -1

(3.25)

We have seen that the extrapolation depends on the time step h. This procedure can be

done repeatedly until h ~ 0 so that the approximate value tends to the exact solution.

Deuflhard [32,33] has shown some extrapolation methods including control order and

step size.

Let y(t) be the true solution of y ' = f(t,y), y(t0) = y0, and y(t,h) be an

approximate solution satisfied by choosing the stepsize h to the appropriate numerical

method. Assume y(t,h) can be written as an asymptotic error expansion in powers ofh,

r r r r r
y(t,h) = y(t) + a 1h 1 +a2h 2 + a 3h 3 + ... +amh m + am+lh m+ 1 + ...

where 0 < r1 < r2 < ... < rm, a~> a2, a3, ... are independent of h and determined by

evaluating y(t,h) over stepsize hi> i=O, 1, 2, . . . One approach can be obtained by taking

ri = ir and the stepsize sequence hi such that ho > h1 > h2 >. . . Substituting values ri, we .
have

y(t,h) = y(t)+alhr +a2h2r +a3h3r + ... +amhmr + ...

If the superscript k is related to the approximate value with stepsize hk and the subscript

m is related to the number of times the linear combination has been applied to eliminate

a~> a2, ... , ~' and Y m (k) is defined as

hr y(k+l) _ hr y(k)
y(k) = k m-1 k+m m-1

m h~-hk+m
(3.26)

then we will have

y::> = y(t)+(-l)mh~h~+lh~+2 ... h~+m(am+l +O(h~)).

56

Form ~ oo, Y m(k) will close to y(t). The representation of this extrapolation method is

shown in Table 3.2. The Table is expressed in a graphical table as

y (k)
m-1

~
y (k+l)

m-1

Yo tu, = y(t,ho)

Yot'' = y(t,hi)

y~ =y(t,h2)

YotJJ = y(t,hJ)

Yot4J = y(t,h4)

y (k)
m

TABLE3.2
Table of Extrapolation

y
1

tUJ

ylt~J y
2

lUJ

y
1
tLJ YtJ y

3
tUJ

YtJ y2t.l) y3t1J

Equation (3.26) can be written as

y
4

lVJ

y(k) = y(k+l) h~+m (Y~~/) - hkr y(k))
m m-1 + +m m 1

hr - hr
k k+m

For h=ho:A} with 0 <A.< 1, we have

(3.27)

y(k) = y(k+l) bmr (Y(k+l) - y(k))
m m-1 + m-l m I

1- bmr

For b= 1/2, we have

y<k+1) - y(k)
y(k+1) + m-1 m-1 ifr = 2

m-1 2m _ 1 '
y(k)-

m -

y(k+1) y(k+1) - y(k)
m-1 + m-1 m-1 4m -1 ' ifr 4

Equation (3 .28) is sometimes called Romberg integration.

57

(3.28)

Let us take an example y ' = -y, y(O) = 1. We will interpolate this problem until

t = 1 using Euler extrapolation with r = 2 and the number of points in the interval chosen

to be m = 10. After that we approximate the problem using Euler extrapolation with

m = 5, Euler method and ABM method of order 4 with h = 0.25, and integrate until

t = 2.5. For the first Euler extrapolation, we choose hi= (1-0)*2-i, i=0,1, ... ,9. Using

Euler method, we have a relation Yn+l = Yn + hf(tn,yn) = (1-h)Yn· Substituting y0, we have

a relation y n = (1-h)n. To reduce the use of storage, we can use variable y with dimension

as much as m. A procedure of the Romberg extrapolation is represented as:

Y
-y (0) o- o

Y
-y (I)

1- 0

Y
-y (2)

2- o

Y1= Y1 + [yi-Yo]/[2
1
-1]

Y2= Y2 + [yz-yJl/[2
1
-1] Y2= Y2 + [yz-yJl/[i-1]

Y(m-I)=Yo (m-l) Y(m-1) = Y(m-I)+[Y(m-lrY<m-2)]/[2
1
-1] Y(m-1) = Y(m-1) + [Y(m-lrY<m-2)]/[2

2
-1]

,1

:j

An algorithm of Romberg integration using Euler method is given as:

1. h0 = (b-a) I* a and bare starting and final times respectively *I

2. Compute y(i), i = 0, 1, 2, ... ,m-1

for i = 0 to m-1 do

end do

h = ho*2-i

n=2i

y(i) = (1-h)n I* With stepsize h, y(l) is achieved after

n=2i steps *I

3. Extrapolate the values

for i = 1 to m-2 do

k=m-1

end do

for j=i+ 1 to m-1 do

end do

y(k) = y(k) + [y(k)- y(k-1)]1[2i- 1]

k =k-1

58

The computation table of the algorithm for Romberg integration using Euler method

given above for the case ofy' = -y, y(O) = 1 is given in Table 3.3.

The table is derived as follows: Let us take m = 4 and i =5.

y (i) = y (i) + [Y (i) _ y (i-1)] I [2m-1]
m m-1 m-1 m-1

=Y/5> + [Y3<5>- Y3<4>] I [24-1]

59

= 0.3678811228 + [0.3678811228-0.367920598]/15 = 0.367878603.

TABLE3.3
Romberg Representation ofy' = -y, y(0)=1

1 h m Yi,m=O Yb m=1 Yb m=2 Yi,m=3

0 ho2v 2v 0.0

1 ho2-' 2' 0.25 0.500000000

2 h0T'' 2" 0.316406250 0.382812500 0.343750000

3 h0T' 2j 0.343608916 0.370811582 0.366811275 0.370105743

4 ho2_.. 2'+ 0.356074130 0.368539345 0.367781933 0.367920598

5 h0T'' 2" 0.362055289 0.368036448 0.367868816 0.367881228

6 hoTo 20 0.364986524 0.367917759 0.367878196 0.367879536

7 hoT 2' 0.366437716 0.367888908 0.367879290 0.367879447

8 ho2-ll 21:1 0.367159755 0.367881794 0.367879423 0.367879442

9 ho2-~ 2~ 0.367519891 0.367880028 0.367879439 0.367879441

I
Yb m=4 . [_ Yi> m=5 I

y· m=6
I'

I
Y· m=7 I'

60

0.367774922

0.367878603 0.367881947

0.367879424 0.367879441 0.367879410

0.367879441 0.367879441 0.367879441 0.367879441

0.367879441 0.367879441 0.367879441 0.367879441

0.367879441 0.367879441 0.367879441 0.367879441

For the second computation of Euler extrapolation, we choose m = 5, with

stepsize for all methods h = 0.25. The computation results is given in Table 3.4. It can

be shown that we can always control the accuracy of results produced by extrapolation

methods, just by controlling the stepsizes over the entire range of computations.

Graphical representations of these computations compared to those resulted by Euler

method and Adams method of order 4 are shown in Figure 3.2. The error vs timet of

this extrapolation method tends to be accumulated as shown in Figure 3 .2.

t

0.0

0.25

TABLE3.4
The Computation Results ofy' = -y, y(0)=1

Using Extrapolation, Euler, and ABM-4 Methods

Exact Extrapolation Euler ABM-4

1. 000000000 1. 000000000 1. 000000000 1.000000000

0.778800783 0.778800747 0.750000000 0. 778808594

l_

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

rn ·x

1.00

co 0.50

>.

0.25

0.606530660 0.606528620

0.472366553 0.472345756

0.367879441 0.367774922

0.286504797 0.286148404

0.223130160 0.222179660

0.173 773943 0.171635077

0.135335283 0.131086662

0.105399225 0.097729534

0.082084999 0.069250702

Exact

Extrapolation

Euler

.. ABM-4

0.06

0.05 -

0.562500000

0.421875000

0.316406250

0.237304688

0.177978516

0.133483887

0.100112915

0.075084686

0.056313515

0.606542826

0.472380765

0.385532323

0.299920011

0.233222895

0.181836888

0.141601456

0.110261898

0.085867179

Extrapolation
Euler
ABM-4

/~
. ~

0.04 ,_ I "'"'
e 0.03·- ~-w r

0.02

0.01 /
0.00--- ------ ------- • • • • 0.5 c~~~~

1.0 -0~ ~5 1~ 1~ 2~ 2~ 1.5 2 .O 2.5

taxis taxis

Figure 3.2 Computation Results ofy' = -y, y(0)=1 Using
Extrapolation, Euler, and ABM-4 Methods

61

..L

CHAPTER IV

STIFF ORDINARY DIFFERENTIAL EQUATION

Dealing with system of differential equations will sometimes lead us into

stiffness problem. This possibility occurs especially when the solution contains a fast

mode which decreases very fast in response to initial conditions or a changing input and

a slow mode which needs longer computing time for its transient to decay. This situation

commonly occurs when standard numerical methods are implemented to find the

approximate solutions of a differential equation having the exact solution containing a

term of the form e"\ where A is a complex number with negative real part. As

mentioned before, this term will tend to zero when t increases to infinity, but

unfortunately its approximation generally will not always have the same property, except

when the stepsize is chosen such that the method used is still stable. The problem will

become serious when the exact solution has a steady-state term that does not grow

significantly with t, and a transient term that decays fast to zero. In this case, the

numerical methods can approximate the steady state solution, but they need attention

when they are applied to approximate the decaying transient term that can dominate the

computation, and can produce incorrect results. A standard numerical method can be

used to solve stiff problems, but the cost will be very high since we have to maintain an

62

63

extremely small stepsize for the entire of integration [13,105]. The two following

problems will help us to understand the stiffness concepts in ordinary differential

equations.

Problems 4.1:

Consider the following set of equations

(y;J (0 1)(y') (y,(O)) (1)
y~ = -100 -101 y2 ' Y2(0) = -1

Discussion:

The eigenvalues of the matrix

A= (-~00 -1
1
01)

are A = -1 and A= -100. These eigenvalues and the initial conditions give solution

(
y1(t)) (e-

1 J
y2(t) - -e-1

From this exact solution, we cannot see any problem at all, but when the problem is

solved numerically, the unstable computation arises unless a small stepsize is used. The

corresponding solution resulting from the eigenvalues are e-t and e-Ioot as shown in Figure

4.1. The initial condition has thrown the e-IOOt term out from the exact solution. By

considering the eigenvalues, we know that the dependent variables contain both fast and

1 I h. -lOOt d f: h"l -t d s ow components. n t IS case, e ecays ast to zero, w 1 e e ecreases to zero very

slowly. To maintain the stability of a simple Euler method, the stepsize should be

chosen such that 11 +Aminhl ~ 1. Therefore, the stepsize of the computation should be

maintained within the intervall1-1 OOhl ~ 1 or 0 ~ h ~ 2/100 = 0.020 .

•

64

1

" l
I
1
~
I
i
I

tJ)

I \ ~ ' e·t

>-

~

' \
\
\

\ 9 -1oot

' 0

0 2

tAxis

Figure 4.1 Graphical Solutions of e-t and e-Ioot

Problem 4.2:

Consider the following set of equations

(y·;) = (1 2)(Y1) , (y1(0)) = (1)
y

2
-4 -5 y2 y2 (0) -1

Discussion:

The eigenvalues of the matrix

A~(~ :5)

65

are A= -1 and A= -3. The corresponding solutions resulting from the eigenvalues are e-t

and e-Jt respectively. These eigenvalues and the initial conditions give solution

(
y1 (t)) (e-

1
)

y2(t) - -e-1

Using Euler method, the absolute stability can be maintained if 11 + Aminhl ~ 1. Thus, the

stepsize of computation should be maintained in the intervall1-3hl ~ 1 or 0 ~ h ~ 2/3.

Both problems have the same exact solutions, but they behave very differently

when they are solved numerically. In this case, we need to apply different stepsizes to

compute the two problems using Euler method. The cost of Problem 4.1 is far more than

that of Problem 4.2 when they are solved numerically. The cost for integrating Problem

4.1 from t0 = 0 to tr = 50.0 is at least 2500 steps (for h = 0.02), while the cost for

integrating Problem 4.2 from t0 = 0 to tr = 50.0 is at least 75 steps (for h=2/3). The

phenomenon illustrated in these two problems is known as stiffness. Problem 4.1 is stiff,

while Problem 4.2 is non-stiff. Since both problems have the same exact solutions, the

phenomenon should be a property of the differential system itself.

Even though the exact solution for eigenvalue A = -100 of Problem 4.1

contributes practically nothing to the solution of y1 and Y2> the criterion of absolute

stability forces us to use an extremely small value of h over the entire range of

integration. Therefore, it can be said that using the same numerical method, the

computation time needed to solve a highly stiff differential system is more expensive

than that of non-stiff one. The main objective of a good ODE solver is to minimize the

computing cost with subject to the required tolerance and the stability of computation. In

...

66

order to gain this objective, an ODE solver is usually equipped with tools for: detection

stiffness, determining a starting stepsize, and controlling stepsizes and formulae, by

considering the required tolerance.

4.1 Stiff Differential Problems

The study of stiff systems has become popular in the last twenty years because

they arise in many applications such as: radio technology, chemical kinetics, reactor and

radiation physics, hydrodynamics, process dynamic and control, electrical circuits,

diffusion, beam, and lasers. Several methods have been proposed and analyzed

carefully, but only few of the codes have been developed until recently. In this thesis,

the investigation will be done based on stiff differential equation packages such as

MEBDF, LSODE, EPSODE, and VODE, using the test cases:

1. Kidney problems introduced by Scott and Watts in the form [17, 21, 79]

Y2Y1' = ay1(Y3- YI),

Y2' = -a(y3- YI)

Y4Y3' = b- c(y3- Ys)- ay3(y3- YI)

Y4' = a(y3- YI)

YI(O) = 1

Y2(0) = 1

Y3(0) = 1

Y4(0) = -10

Ys(O) =A Ys' = -c(ys- Y3)/d

where a= 100, b = 0.9, c = 1000, d = 10,0 :$; t :$; 1, with initial conditions

Problem A

Gl 0.9902688359

G2 0.9902834990

03 0.9925211341

04 1.0304879856

05 0.99

06 0.9

07 0

2. An autocatalytic reaction pathway proposed by Robertson [21, 56]

Yl' = -0.04 Yl + 10
4

Y2Y3,

Y2' = 0.04 Yl- 10
4

Y2Y3- 3.10
7
y/,

Y
,_

3 -

for 0 ~ t ~ 4. 108
.

7 2
3.10 Y2 ,

3. Problem D4 of Enright et al. [39, 103]

Yl' =- 0.013yl- 1000YIY3

y2' =- 2500y2 y3

y3' = 0.013y1 - 1000 y 1y3 - 2500y2y3

where 0 ~ t ~ 50.

4. Problem proposed by Gupta and Wallace [53]

Y 1' = vy 1 - wy 2 + (-v + w + 1)e
1

Y2' = wyl + vy2 + (-v -w + 1)e
1

The exact solution is

vt (t y1 = c1 e cos wt + c2) + e

vt • (t y 2 = c1 e sm wt + c2) + e

YI(O) = 1

Y2(0) = 0

yJCO) = 0

Y1(0) = 1

Y2(0) = 1

Y3(0) = 0

YI(O) = 1

Y2(0) = 1

67

68

where v = -80, w =8, 0$ t $ 10.0.

4.2 Stiffness Concepts

There are two approaches that have been taken in order to define stiffness. The

first approach is to define stiffness based on various aspects of phenomena of stiffness.

The second approach is to define stiffness in mathematical terms. Even though several

definitions relating to mathematical terms of stiffness have been proposed, but they are

all still in debate until now. Stiffness can not be defined precisely in mathematical terms

[1, 62, 78], even for the class of linear constant coefficient systems. The following

differential equation concepts are useful in order to understand the stiffness concepts.

The homogeneous solutions of ODE problems are also called transient solutions,

and the particular solutions are called steady-state solutions. For the cases of linear

systems, the homogeneous solutions correspond to the characteristic roots A.i of their

matrices. If Re(A.i) < 0 and IRe(A.i)l is large, the corresponding homogeneous solution

will decay fast as t increases and is thus called a fast transient, but if the IRe(A.i)l is small,

the corresponding homogeneous solution will decay slowly and is called a slow transient.

Suppose ~and~ in {1-i ,i = 1, .. ,n} are defined by IRe(~)l $jRe(A.)j $1Re(~)l, Vi. We

will have trouble when IRe(~)l is very large and jRe(~)j is very small, because we are

forced to integrate over the whole range of integration with a very small stepsize.

69

The following discussion of stiffness concepts will be based on Lambert's

explanations [78]. If we take the ratio IRe(~)I!IRe(~)l as the stiffness ratio, the statement

as a candidate for the definition of stiffness is given as follows:

Statement 1:

A linear constant coefficient system is stiff if all its eigenvalues have negative

real part and the stiffness ratio is large (> > 1).

This statement has been used by Lambert [1973] as a definition for stiffness, but now he

realizes that the definition is not correct any longer. He used the following three systems

to show that the definition is not satisfactory with the phenomenon.

System 4.1:

(y~J (-2 1 xy1J (2sint J
ly~ = 998 -999 y 2 + 999(cost- sin t)

The general solution of this system is given as

(y 1 (t)J = c e -t(1J + c e -woot(1 J +(sintJ
y

2
(t) 1 1 2 -998 cost

The stepsize interval of stability of this system using an Euler method is

0$ h $2/1000.

System 4.2:

(y~ l (-2 1 xy1J (2 sin t J
lyJ= -1.999 0.999 y2 + 0.999(sint-cost)

The general solution of this system is given as

(
yl(t)J=ce-t(1J+ce-o.ooit(1]+(sintJ
y

2
(t) 1 1 2 1.999 cost

70

The stepsize interval of stability of this system using an Euler method is 0~ h ~2.

System 4.3:

(y~ l (-0.002 0.001 xy1J (0.002 sin(O.OOlt) J
lyJ = 0.998 -0.999 y2 + 0.999[cos(O.OOlt)- sin(O.OOlt)

The general solution of this system is given as

(
Y1 (t)J = -t(1 J -o.ooJt(1J (sin(0.001t)J
y

2
(t) c1e -998 + c2e 1 + cos(O.OOlt)

The stepsize interval stability of this system using an Euler method is 0~ h ~2.

It is easy to show that the three systems have the same stiffness ratios: 1000.

Even though they have the same stiffness ratios, System 4.1 and System 4.2 have

different stepsizes in order to maintain the absolute stability of computations. No matter

how we choose an initial condition for System 4.1, the numerical method needs a very

small stepsize for integration. The effect of stiffness is that we have to continue using

that small stepsize long after the fast transient solution has no influence. In this case,

System 4.1 is called a genuine stiff [78]. Suppose we equip System 4.2 with initial

conditions: y(O) = [2,3.999]T causing c1 = c2 = 1. It is obvious that if we want to reach

steady state solutions, the transient solutions should vanish. For System 4.2, this is only

"bl "f h 1 . -O OO!t • 1 I h" h 1 . f poss1 e 1 t e so ut10n e · 1s c ose to zero. n t 1s case, t e tota computatiOn step o

System 4.2 is comparable to that of System 4.1, because we still need to compute e-o.ooit

until it has no effect on the solution of System 4.2. In this situation, the definition of

stiffness in Statement 1 seems to be consistent. The conclusion will be different when

the initial conditions for System 4.2 is changed to be: y(O) = [2,3]T causing c1 = 2, and

...

71

c2=0. Using these initial conditions, the slow transient term disappears from the exact

solution so there is no need to integrate a long way until the steady state condition is

reached. From these two initial conditions, we see that the definition of Statement 1 is

not consistent any longer, because it depends also on initial conditions imposed by a

particular problem. In this situation, System 4.2 is not genuinely stiff, but we can called

them pseudo-stiff. By doing the same evaluation, it can be said that System 4.1 is also

pseudo-stiff. System 4.3 can be changed to System 4.1 by making the transformation

t = lOOO't. In this case, System 4.3 is stiff in exactly the same sense as System 4.1.

Statement 2:

Stiffness occurs when stability is more of a constraint than accuracy.

This statement also fails, because the stability also depends on the accumulation of

errors. By examining the local error at the very first step, it can be said that a stiff

problem has a substantially higher local error than that of a non-stiff problem.

Statement 3:

Stiffness occurs when some components of the solution decay much more rapidly

than others.

This statement also fails, because it is merely based on comparison of the rate of change

of the fastest transient solution with that of the steady-state solution. From the discussion

of Problem 4.1, this statement fails totally.

Definition 4.1:

If a numerical method with a finite region of absolute stability, applied to a

system with any initial conditions, is forced to use in a certain interval of

L

72

integration a stepsize which is excessively small in relation to the smoothness of

the exact solution in that interval, then the system is said to be stiff in that

interval.

This definition can distinguish between the genuine stiff and the pseudo-stiff systems,

and it offers the idea that stiffness can be considered to change over the interval of

integration. To get a good understanding of this definition, we have to do some

computations, otherwise it will be difficult to understand.

Statement 4:

A system is said to be stiff in a given interval of t if in that interval the

neighboring solution curves approach the solution curve at a rate which is very

large in comparison with the rate at which the solution varies in that interval.

The same case with Definition 4.1 occurs in Statement 4.

4.3 Stability Concepts of Numerical Stiffness Methods

Several definitions of stability related to stiff systems are given in order to satisfy

the needs of smaller stepsize more for stability than for accuracy.

Definition 4.2:

A method is said to be A-stable in the sense of Dahlquist if when it is applied to

the test problemy' = 'Ay, the solutions converge to 0 as n ~ oo or the region of

stability is a superset of { 'Ah I Re('Ah) < 0}. A minimum region of this stability is

shown in Figure 4.2.

lm(A.h)

A-Stable

0 Re(A.h)

Figure 4.2 A representation of a Minimum
Region of A-stability

73

It can be shown that a trapezoidal formula, a second-order Adams-Moulton

method Yn+I = Yn +(h/2(Yn+J 1 + Yn1
), is A-stable. By substituting the test function y 1

= 'Ay

into the trapezoidal formula, we have Yn = [(2+/...h)/(2-'Ah)t y0. The region of stability is

reached if 12 + 'Ahl/12 - 'Ahl ~ 1. Here, the region is the set of points z such that the distance

between z and the point z = 2 is greater than the distance between z and the point z = -2.

This region is { z I Re(z) ~ 0}. That is, the trapezoidal formula is A-stable. The backward

(implicit) Euler method Yn+I = Yn + hYn+J 1 is also A-stable (see Chapter 2.1).

Definition 4.3:

A method is said to be A(a)-stable, a E (O,n/2) in the sense ofWidlund if when it

is applied to the test problemy 1 = 'Ay, the solutions converge to 0 as n ~ oo with

h fixed for all !arg('Ah)l < a, !'AI "# 0 or the region of stability is a superset of

{'Ah I -a < n - arg('Ah) <a} ; it is said to be A(O)-stable if it is A(a)-stable for

some a E (O,n/2). Figure 4.3 illustrates a minimum region of this stability.

Definition 4.4:

lm(A.h)

Re(A.h)

Figure 4.3 A Representation of a Minimum
Region of A(a)-Stability

74

A method is said to be A0-stable if the region of stability is a superset of

{A.h I Re(A.h) < 0, Im(A.h)=O}. Figure 4.4 illustrates a minimum region of this

definition.

Im(A.h)

+---------....j-;:----.Re(A.h)
0

Figure 4.4 A Representation of a Minimum Region of A0-Stability

I

~~
' ,,

75

Definition 4.5:

A method is said to be stiffly stable ifR1uR2 is a subset ofthe region of stability,

where R1 = {.Ah I Re(.Ah) <-a} and R2 = {.Ah I -a~ Re(.Ah) < 0, -c ~ Im(.Ah) ~ c},

and a and c are positive real numbers. Figure 4.5 illustrates this definition.

Definition 4.6

Im(A.h)

I
RI

lc
R2

-a ----to Re(A.h)

-c

Figure 4.5 A Representation of a Minimum
Region of a Stiffly-Stable Method

A one-step method is said to be L-stable if it is A-stable and, in addition, when

applied to the scalar test equation y' = A.y, A. a complex constant with Re(A.) < 0,

it yields Yn+I = E(.Ah)y"' where IE(A.h)l ~ 0 as I.Ahl ~ -oo.

From the definitions, the hierarchy of stability is drawing as follows: L-stable ~ A-

stable~ Stiffly-stable~ A(a)-stable ~ A(O)-stable ~ A0-stable.

4.4 A Modified Euler Method for Solving ODEs

76

Since most of the numerical methods used to solve stiff differential problems are

implicit methods, it is almost impossible to have a cheap low-accuracy code for stiff

ODEs. The meaning of cheap here is that the methods are easy to program and the

computing time for solving the problems is not too expensive. It is true that if one

persistently solves stiff problems, one should use one of the better codes which are now

accessible. But if one needs to compute stiff problems where the accuracy is not taken

into consideration especially for a quick low-accuracy solution, Lambert [77] proposed a

method to satisfy that requirement.

The idea that Lambert suggested is to apply an automatically determined

sequence of variable stepsizes with Euler's rule. Unfortunately, there is no guarantee
i

·~
that this method can be successfully used in order to satisfy the meaning of cheap.

Lambert claims that this method is stable and the solution is not unimportant, but

sometimes the computation is trapped into unacceptably slow progress. Even though

Euler's rule using the automatic sequence of stepsizes seems not to be a likely method

for solving stiff systems, this method can provide a usable solution with an acceptable

computing time for some stiff problems.
.;

Here, this method is introduced in order to have a method for solving stiff

problems that is easy to program and gives relatively lower computing time. The test

problems that will be used are:

1. Y1' = -YI - 0.5y2- 0.5 Y3 YJ(O) = -1

y2' =- 0.5y1- 1000.75 Y2 + 999.25 Y3 Y2(0) = 1

Y3' = -0.5y1 + 999.25y2- 1000.75y3 Y3(0) = 3;

2.

A.1 = -2000, A.2 = -2, A.3 = -1/2

with the exact solution

y 1 (t) = eA.2t - 2eA.3t

y 2 (t) =-eA. It + eA.2t + eA.3t

y 3 (t) = eA.It + eA.2t + eA.3t

y1
1 = 0.01- [1+(y1 +1000)(Y1 + 1)](0.01+ Y1 +y2)

Y21 = 0.01 - (1 + y/)(0.01 + Y1+ Y2)

77

Y1(0) = 0

Y2(0) = 0

The derivation of the method for solving y 1 = f(t,y), y(t0) = Yo is done by

introducing a parameter 8, such that the method called the 8-method, and is written as

Yn+1 = Yn + h[(l-8)fn+1 + 8fnl· The parameter 8 then should be determined such that the

method is exact when applied to the test problemy'= ll-Y· By modifying Euler's rule the

method becomes Yn+1 = Yn + hvf"' where v = 1+0(h) to guarantee the consistency of the

method, and our task then is to find v such that the modified Euler method holds exactly

when applied to the test problem y 1 = ll-Y· The exact solution of the test problem is

y = y0eJ.l1• After substituting y 1 = lJ.Y into the modified Euler's rule, we have

v = [(Yn+1/Yn)-1]1hlJ. = [ehJ.l_1]1hlJ., where Yn+1 = y0e(n+1)hJ.l and Yn = e"hJ.l. Since the Taylor's

series of ehJ.l = 1 + hlJ. + O(h), we have v = 1 + O(h).

Consider the initial value problemy 1 = f(t,y), y(t0) = y0, y,f E Rm and the test

problemy 1 = Ay, y(t0) = y0, where A is a constant m x m matrix with real eigenvalues "-t

, t = 1,2, ... ,m satisfying A.1 ::;; A.2 ::;; A.1 ::;; "-m-1 ::;; Am::;; 0. By adopting the idea given

above, for the ODE system where An = Bf/By!"' we have

,J

'1

78

Yn+l = Yn +hv f n n 1
v, +'"· -l]ihJ.l, f. (4.1)

Jln =(f:Anfn)l((fJJ

On the irregular-spaced point set { tn I tn+I = tn + hn , hn = hvn }, the equation (4.1)

becomes

Yn+l = Yn + h f n n 1
h = [e efln - 1] I ~. n lln

1

(4.2)

lln = (f: Anfn) I C(fn)J

Since Equation (4.2) may have a large step, which would not be good for the accuracy,

Equation (4.2) is modified as

Yn+l = Yn + h f n n

hn = min(h0 , h:)

h: = [e Sfln - 1] I lln

1
~.
I

lln = C(AJJ I (f)n)j

(4.3)

The value e should be chosen positive so that hn * is always positive. Since nothing is lost

if e is chosen very large, the modified Euler method with the automatically determined

sequence of stepsizes can be written as

' ,,

l
!i
il
I

'
79

Y =y+hf l n+l n n n I

h, = min(h,,h:) f (4.4)

h: = (f)n)ll(Anfnlj

4.5 An Explicit Exponential Method for Solving ODEs

Even though some authors define stiffness equations as problems that cannot

be solved by explicit methods [56, 62], there are others that have still tried to solve

stiffness problems using explicit methods. Among them are Treanor [79], Lawson [79],

Osborn [79], Lambert [77], and Ashour and Hanna [3]. The effort for solving stiff

problems using explicit methods is still worthwhile because implicit methods need space

and the cost of computing time per step is relatively higher than that of explicit methods.

Treanor [79] modified the fourth-order Runge-Kutta method for solving stiff problems,

Lawson [79] proposed a transformation of the stiff system into a nonstiff system, and

then applied a Runge-Kutta method, Osborn [79] used Pade fractions to approximate ehA.

, Lambert [77] modified Euler method (Chapter 4.4) and Ashour and Hanna [3] used an

exponential method by applying Watson's lemma of asymptotic expansion of Laplace

integrals. The following explicit exponential method was a method that was proposed by

Ashour and Hanna to solve stiff ODEs.

The explicit exponential method is developed based on the idea of detecting any

exponential decaying variables at each step of the computation and to approximate them

such that they are not exponential decaying any longer. To achieve this idea, Ashour and

80

Hanna [3] applied Watson's lemma. We know that integration of y ' = f(t,y) from t to

t+h is written as

t+h

y(t +h)= y(t) + Jf(s,y(s))d . (4.5)

Computations will decay exponentially if the local Jacobian fy(to,y0) is negative and

lfy(t0,y0)1 >> 1. If this situation occurs, the solutions are approximated with functions

such that computations tend not to decay exponentially any longer. The following

expansion in Laplace integrals will be used to implement the idea of choosing solution

methods aforesaid,

A

I= Je-
15
F(s)ds, t > 0 (4.6)

0

where F(s) is of exponential order. It means that function F is of exponential order ~ if

there exist positive real numbers T, c, and ~ such that IF(s)l < ce~5 , s > T. Based on

Watson's lemma, the integration (4.6) can be approximated by expanding F(s) using a

Maclaurin series and integrating it. In the case where the upper limit of A is too small

relative tot, we use an expansion that is asymptotic either for t~oo with A fixed, or for

A~O with t fixed. Using a mathematical manipulation involving the Maclaurin series,

we have

F(s) = e·msF(s)ems

= e-ms [F(O)e0 + s{F'(O)e0 + mF(O)e0
} + O(s2

)]

= e-ms[F(O) + s{F'(O) + mF(O)} + O(s2
)].

l
j
'

81

Let us take {F'(O) + mF(O)} = 0 such that the O(s) term in a Maclaurin expansion is zero.

By substituting the latter results, from (4.6) we have

I= }e-<t+m}sF(O)ds = -F(O) [e·(t+m}A- eo]= F(O) [1- e·(t+m}A].
t+m t+m

(4.7)

0

By taking s = t + u, Equation (4.5) can be transformed into

u=h

y(t +h)= y(t) + Je-muy' (t + h)emu du. (4.8)
u=O

This transformation can only be used when m > 0; otherwise we solve the problem using

an explicit method that converges to the result of transformation (4.8). Our next task is

to find m by adopting the same idea we used in finding Equation (4.7). Ifthe function

y'(t+h)emu is expanded using a Maclaurin series, we have

y'(t+h)emu = y'(t) + u[y"(t) + my'(t)] + O(h2
).

Now, we choose m such that y"(t) + my'(t) = 0 and O(s) becomes zero. From these

conditions, we have to choose m = -y"(t)/y'(t) or my'(t) = -y"(t). By considering the last

conditions and applying them to (4.8), we have

y(t+h) = y(t) + [y'(t)/m][l-e·mh] + [O(llm3)or O(h3
)]. (4.9)

Now, we investigate Equation (4.9) to find an appropriate explicit method used for

solving problems form::; 0. Let us take h small enough. We know perfectly well that

e-mh can be approximated using a Taylor series such as [1 - rnh + (rnhi/2 + O(h
3
)]. By

substituting this result into (4.9), we have

y(t+h) = y(t)- y'(t)rnh2/2 + O(h
3

)

= y(t) + y"(t)h2/2 + O(h\

82

This last result is a Taylor series which is equivalent to a second-order explicit Runge­

Kutta (RK2) method.

The numerical computation then is done as follows: If m > 0 we apply Equation

[4.9], otherwise we apply RK2. Suppose dold = f(t,y(t)) and dnew = f(t+h,y(t+h)). An

algorithm for an explicit exponential method can be given as follows:

Fori= 1 toN I* N is number of variables* I

end do

Compute doldi = f/t,y(t))

Compute dnewi = ~(t+h,y(t+h))

If doldi ::t:- 0 then

endif

Calculate mi = (doldi- dnewi)/(h*doldi)

Ifmi > 0 then

/*Calculate y(t+h) using an explicit exponential method *I

Yi(t+h) = y/t) + doldD-exp(-mi*h)]/mi

endif

if doldi = 0 or mi ~ 0 then

/*Calculate y(t+h) using RK2 */

y/t+h) = y/t) + 0.5*(doldi + dnewJ*h

endif

In order to adjust the stepsize so the computation results will compromise with the

required tolerance, we use a formula

83

(
relative error tolerance]

112

h = *h .
new II current relative local error! I current ·

(4.10)

where llcurrent relative local errorll can be written as

N {I estimated local error for ith variable!}
m~ '

i=i IYi (t + h)l+£

and £ is a positive parameter. If IYi(t+h)l > £ then the relative error TOL is controlled,

otherwise the absolute error £TOL is controlled. The integration stepsize then is chosen

as h = min {hnew• 2hcurrent}. Usually the local error can be taken as the difference between

two methods with different orders [see Appendix D]. The local error for RK2 in this

method can be taken as the difference between the solutions obtained by RK2 and those

of the Euler method. For an exponential method, the local error is estimated as the

difference between the solutions obtained by the exponential method (4.9) and those of

Equation (4.11) given below

y/t+h) = Yi(t)*exp[yi'(t)h/yi(t)] + O(h2
). (4.11)

4.6 ODE Solvers

Several ODE solvers that are available in the public domain (see Appendix A)

will be investigated using test cases such as: Kidney problems proposed by Scott and

Watts [17, 21, 79], an autocatalytic reaction proposed by Robertson [21, 56], problem D4

of Enright [39], and a problem proposed by Gupta and Wallace [53] . Among the ODE

solvers used are MEBDF, LSODE, EPSODE, and VODE. All of the software including

the explicit methods are coded in the FORTRAN language.

84

Gear was the first person who developed a widely-used code for solving stiff

ODE problems. His early code named DIFSUB [1, 17, 44, 57, 99, 105] was developed

using BDF methods for stiff problems and Adams methods for nonstiff problems.

Among other variants of DIFSUB are STIFF [17] and GEAR (modification of STIFF

and created by Gear and Hindmarsh [17]). GEAR itself has many variants including

GEARB, GEARS, GEARBI, GEARBIL, BEARIB, GEARY, GEARST [17].

LSODE (Livermore Solver for ODEs) is a package created by Hindmarsh

[http://www.netlib.org/odepack/index.html] that is based on combinations of GEAR and

GEARB. It can be used to solve stiff or nonstiff problems. The Jacobian for the case of

stiff problems is treated as either full or banded, and as either user-supplied or internally

approximated by difference equations [1].

EPISODE (Experimental Package for Integration of Systems of Ordinary

Differential Equations) was created based on DIFSUB [16]. it uses implicit BDF

methods of orders one through five for stiff ODEs and Adams-Moulton methods of

orders one through twelve for nonstiff ODEs. Both BDF and Adams-Moulton methods

are in Norsieck forms. Among variants of EPISODE are EPSODE, EPISODEB, and

EPISODEIB [17]. EPSODE [http://www.netlib.org/odelindex.html] is an early version

of EPISODE modified by Byrne and Hindmarsh.

MEBDF is a package program for stiff ODEs created by Cash and Cosidine [20,

21, http://netlib.att.com/netlib/ode/index.html, http://www.netlib.org/odelindex.html]. It

is developed using modified extended BDF methods. The advantage of this approach is

85

that the methods is A-stable up to order 4 and A(a)-stable up to order 9, while pure BDF

methods themselves are A-stable only up to order 2 [28].

VODE is a package program for ODEs created by Brown, Byrne, and Hindmarsh

[11 , http:/ /netli b .att.com/netlib/ ode/index.html, http://www .netli b. org/ ode/index.html].

This program is a combination of EPISODE and EPISODEB. It uses variable-coefficient

Adams-Moulton and BDF methods in Nordsieck form. It treats Jacobian matrices as full

or banded.

STINT is a package program created by J.M. Tendler, T.A. Bickart, and Z. Picel

[17, http://www.netlib.org/toms/index.html]. It was the first ODE solver developed based

on cyclic composite linear multistep methods. This solver can solve ODE problems that

belong to stiffly stable.

I'

j

CHAPTER V

ANALYSIS AND DISCUSSION

The criteria of evaluation will be based on the efficiency of the codes using

parameters such as computing time (CT), number of integration steps (NS), number of

evaluations off(t,y) (NF), number of evaluations ofthe Jacobian (NJ), actual stepsize (H),

and the actual order of the methods (P). The graphical interpretations for all solutions

using methods and input test cases mentioned in section 4.1, will be compared with the

graph of solutions of the same problem solved using the NDSolve function of

Mathematica. NDSolve[{equation_!, equation_2, ... , equation_n}, y, {t, t_min, t_max}]

is the function used in Mathematica to solve ODE problems numerically. The NDSolve

function will automatically apply the Adams predictor-corrector method if it detects that

the problem is non-stiff and will apply the backward differentiation formulae (Gear's

method) if it detects that the problem is stiff. Since NDSolve can detect the stiffness of an

ODE problem automatically, users do not need to know what stiffness is or even to be

aware of its existence. The selection method for solving stiff and non-stiff systems of

ODE for NDSolve is based on the method proposed by Petzold [95].

The modified Euler method will be implemented without the facility to calculate

the Jacobian matrix numerically; users should be able to supply the Jacobian

86

87

matrix analytically. Since the Jacobian matrix of an ODE problem is not always easy to

find, it is recommended that users use Mathematica or Maple or Matlab to get the

Jacobian aforementioned. In this thesis, the Jacobian matrix of system of ODE is

calculated using Mathematica. One example of Mathematica instructions for finding the

Jacobian matrix of problem 2 of section 4.4 is given as follows:

fly1_,y2__]=0.01-(l +(yl + 1 OOO)(y1 + 1))(0.01 +y1 +y2);

g[y1_,y2__]=0.01-(l +y2/\2)(0.01 +y1 +y2);

jacob={ {D[fly1 ,y2],yl],D[fly1 ,y2],y2]},

{D[g[y 1 ,y2],y1],D[g[y1 ,y2],y2]}};

MatrixFormuacob]

Output is given as follows:

-1-(1 +y1)(1 OOO+y1)-(1 001 +2y1)(0.01 +y1 +y2)

-1-y22

-1-(1 +y1)(1 OOO+y1)

-1-y22 -2y2(0.0 1 +y 1 +y2)

5.1 Implementation ofModified Euler Method

The program for this method is given in Appendix F under the name of "Program

5". For the case of problem 1 mentioned in Chapter 4.4, the solutions are compared with

the exact solution, while for problem 2 of Chapter 4.4, the results will be compared with

the output resulted from Mathematica.

To calculate problem 1 of Chapter 4.4 from 0 to 10, this program took 520 steps,

while Lambert [77] claims that his program with the same modified Euler method only

;

88

took 501 steps and Euler's rule with the maximum allowable steplength 0.001 (the

maximum steplength that is allowable for stability of the explicit Euler method for this

problem) took 10,000 steps. The comparison between the solution of problem 1 that

resulted from this modified Euler method and the exact solution is given in Table G.5 of

Appendix G.

II)

~
>-

3-e y 1'=-y 1-0.5y2-0.5y3, y 1(0)=-1

y2'=-0.5y 1-1 000.75y2+999.25y3, y2(0)=1

y3'=-0.5y1+999.25y2-1 000.75y3, y3(0)=3

2 f\,
... y1(t)

1r~ • y2(t)

• y3(t)

0~ -~~, •••••••

-1

tAxis

Figure 5.1 Problem 1 of Section 4.4
Using Modified Euler Method

10

This "Program 5" needs about 548 steps to integrate problem 2 of section 4.4

from 0 to 10, while Lambert [77] claims that his program with the same modified Euler

89

method only needs 379 steps to solve the same cases, and a fourth-order Runge-Kutta

method took 3296 steps for a tolerance ofO.Ol (the maximum steplength that is allowable

for stability for the fourth-order Runge-Kutta method for this problem). So far, there is

no known analytic solution of this problem, so that solutions of problem 2 of section 4.4,

will be compared with the solutions from Mathematica. The comparison table resulted

from this program and Mathematica software is given in Table G.6 of Appendix G. The

graphical solutions this problem 2 produced by the modified Euler method is shown in

Figure 5.2.

0.10 I

y1'=0.01-[1+(y1 +1000)(y1 +1)][0.01 +y1 +y2], y1(0)=0

y2'=0.01-(1+y2
2)(0.01+y1+y2). YiO)=O ~-

• __._.
0.05 --i / • y1(t)

...-
• ..- • y2(t)

__. ..
1_.-

-~ 0.00
<{

m\.. >-

-0.05

-0.10

? 4 6 8

tAxis

'

Figure 5.2 Problem 2 of Section 4.4
Using Modified Euler Method

10

90

5.2 Implementation of an Exponential Method

This method does not need the Jacobian matrix. A method for selecting an initial

stepsize proposed by Gl~dwell et al. [48] has been implemented in this program. The

FORTRAN coding of this method is given in Appendix F under the name of "Program

6". The two problems used in section 5.1 are also used as examples solved with this

method.

To solve the problem 1 of section 4.4 from 0 to 10, this program took 9659 steps

for a local tolerance of 1 0-4. The comparison table between solutions of this problem 1

solved by the exponential method and the exact solution is given in Table G.7 of

Appendix G. The solutions of this problem solved with the exponential method are

shown in Figure 5.3.

~ ,.,

3

2

I \

y,'=-y,-0.5y2·0.5y,, y,(0)=-1

y;=-0 .5y ,-1 000. 75y2+999 .25y,, y 2(0)= 1

y 3 '=-0 .5y, +999 .2 5y2-1 000. 75y 3 , y 3 (0)= 3

• y,(t)

• y 2(1)

... y,(t) , r''..___
0

I
-1

/ 1 Axis

Figure 5.3 Problem 1 of Section 4.4
Using Exponential Method

....

91

This "Program 6" takes 4369 steps to integrate problem 2 of section 4.4 from 0 to

10 with a local tolerance of 10-6
• The comparison between solutions of this problem 2

solved with the exponential method and solutions resulted from Mathematica is given in

Table 5.4. The solutions of this problem 2 solved with the exponential method is shown

in Figure 5.4.

0.10

0.05

Ul
~ 0.00
>-

-0.05

-0.10

y 1 '=0.01-[1 +(y 1+1 OO)(y 1+1)][0.01 +y 1+y2], y 1 (0)=0

y2 '=0.01-(1 +y/)(0.01 +y 1+y2), y2(0)=0 ----------
........ _. ..
~--- ..

• y1(t)

___. • Yz(t)

Figure 5.4 Problem 2 of Section 4.4
Using Exponential Method

92

5.3 Analysis of Kidney Problems

Due to Scott and Watts [20] and Byrne and Hindmarsh [16], kidney problems

with several initial conditions given in Problem 1 of section 4.1 are considered as non-

stiff and stiff problems. The graphical solutions of these problems using Mathematica

with coding instructions given in Appendix F under the name "Mathematica 1 ", are

shown in Figure 5.5 and Figure 5.6.

y y
1=0 .9902 688359 1=0.990283499

21 w.:r.t!.!.":::.~ .. :.:.: t 5

-2 0.20.40.60.8 1 t

-4 -5 0.2 0.40.60.8 1
-6
-81 -1

-101 , 1 1 F 1 F -15

y y
1=0 .9925211341 1=1. 0304879856

.,,.~- , •• rtl

1~1
•'' _,. ..

I''' 10
, ..

~~- , ,, t''
J , ... ' ,,

t • J t

-51 0.2 0.4 0.6 0.8 1
-10

0.2 0.4 0.6 0.8 1

-15
-201 ' -20

Figure 5.5 Kidney Problems with A= 902688359, 0.0990283499,
0.9925211341, and 1.0304879856

y
1=0.99

r 140 t

it 120 :
100 !
80 r
60 J

J 40 /
~ 20 ""! ' "t

......_-~-·-·.

0.2 0.4 0.6 0.8 1

y

600000
500000
400000
300000
200000
100000

1=0.
• ..
!I
'I

.~
;t

f
I

.J
' /

1~
' ··X: •• t

0.20.40.60.8 1

y

50000
40000
30000
20000
10000

1=0.9

..
'I
>I
v
I

,I
I

I

' i
i
I

J ,
l

~~
-+ •.. a• t

0.20.40.60.8 1

Figure 5.6 Kidney Problems with 'A= 0.99, 0.9, and 0

93

Main programs for calling MEBDF, VODE, LSODE, and EPSODE are given in

Appendix F with names "Program 1 ", "Program 2", "Program 3", and "Program 4"

respectively. All programs were run on a Sequent machine with a tolerance of 10-6
. The

performances of these four routines for the case of kidney problems are given in Table

G.l of Appendix G.

94

Byrne and Hindmarsh (17] solved this problem using LSODE for the choices of

A.= 0.99026833, 0.99, 0.9. They stated that the last two choices are stiff problems, and

the first choice is non-stiff problem. By investigating Table G.1, we can conclude that

kidney problems belong to stiff problems for the choices of A.= 0.99, 0.9, and 0.

It is difficult to analyze the performances of these four routines based on pure

CPU time of computations, because the DTIME routine supplied by Sequent can produce

different execution time for different executions of the same program with the same

problem. This occurs because Sequent uses symmetric multiprocessing (SMP) computing

concept; Multiprocessing design in which any CPU can be assigned any application task.

In all computations using MEBDF, LSODE, EPSODE, and VODE, we tried to run each

problem as many as 20 times and took the average of execution times. It is more

convenient to analyze the performances based on NS, NF, and NJ. For the case of

/....=0.9902688359, to compute this problem from 0 to 1, EPSODE needs 68 steps, 128

evaluations of f(t,y), and 23 evaluations of the Jacobian matrix of f(t,y), VODE needs 74

steps, 105 evaluations off(t,y), and 2 evaluations ofthe Jacobian matrix off(t,y), LSODE

needs 7 steps, 15 evaluations of f(t,y), and 7 evaluations of the Jacobian matrix of f(t,y),

and MEBDF needs 77 steps, 147 evaluations off(t,y), and 2 evaluations of the Jacobian

matrix of f(t,y). Since evaluations of matrices are relatively expensive, the investigation

performances will be based on the number of evaluations of the Jacobian matrix. For the

choices of A.= 0.99, 0.9, and 0.0, LSODE seems to have the best performance among the

four packages. For other choices of A., conclusions cannot be taken merely based on NJ,

since NS and NF are varying.

I
I

95

5.4 Analysis of Autocatalytic Problems

Autocatalytic reaction pathway problems are frequently called Robertson

problems to honor Robertson who was the first man who proposed these problems for

chemical kinetics problem [21, 56, 79, 1 05]. These Robertson problems will be solved

numerically using Mathematica, LSODE, MEBDF, VODE, and EPSODE, from 0 to

4. OElO. The graphical solutions will be given as functions of log10 oft. Figure 5.7

shows graphical solutions that resulted by solving these problems using the Mathematica

instructions given in Appendix F under the name "Mathematica 2".

y

1

0.8

0.6

0.4

0.2

2

r * * *-*

I

4 6

*y1
<>y2
*y3

8 10

Figure 5.7 Output ofMathematica for Robertson Problem

log10 t

96

The performances of the MEBDF, LSODE, VODE, and EPSODE routines when

solving Robertson problems are given in Table G.2 of Appendix G. Figure 5.8 is a

graphical solutions of Robertson Problems solved with EPSODE.

Figure 5.8 Robertson Problem Solved with EPSODE

The graphs that are given in Figure 5.7 and Figure 5.8 are plotted from t=IO to 4. OEIO.

Hindmarsh and Byrne [79] claimed that these problems are stiff because for the

very early stages of computation, the stepsizes should be maintained small, even though

gradually the stepsize can become larger and larger as t goes to infinity. Since NS, NF

and NJ among the four routines are varying from one to another, we cannot comment on

the best method for solving these problems among the four routines.

97

5.5 Analysis Problem D4 of Enright et al.

Enright et al. [39] proposed this problem as one example of a stiff problem. They

gave the third equation as

y3' = - 0.013 y1 - 1000 y1 Y3- 2500 Y2 Y3·

Later on, Shampine [103] commented that logically, this equation cannot match with the

initial conditions Y~> y2, and y3 at t=O that are given as 1, "1, and 0 respectively. In his

opinion, for those conditions, y3' (0) = -0.013 < 0, so that y3(t) should be negative for a

very small value of t. Shampine then improved the problem by suggesting the third

equation as

Y3' = 0.013 YI- 1000 YI Y3- 2500 Y2 Y3·

Using the Mathematica instructions given in Appendix F under the name "Mathematica

3", we get graphical solutions as shown in Figure 5.9.

y1

1

0.8

2S

y3

-6

3.S 10

+---------- t
2S so

y2

1

0.9

1
0.8
0.6

0.4
0.2

y

2S

..... t
so

""·~· ::--.---.--- .. --.
_y1 -
-- y2
-Y3

-1---------- t
0 10 20 30 40 so

Figure 5.9 Problem D4 of Enright et al. Solved with Mathematica

,,;t

98

Table G.3 of Appendix G is a table of performances of the MEBDF, VODE,

LSODE, and EPSODE routines. A graphical solutions of this D4 problems solved with

MEBDF is shown in Figure 5.1 0.

1.00
--.._

. --------- ..__

-------- ----_ ____ -...._
---_ ----__

0.75

1/)

-~

>. 0.50
• y 1(t)

• y 2(t)

0.25 ... y 3(t)

0.00

0 10 20 30 40 50

taxis

Figure 5.10 Problem D4 ofEnright et al. Solved with MEBDF

By investigating Table G.3 and assuming that evaluating the Jacobian matrix is

relatively more expensive than evaluating the function f(t,y), it can be concluded that for

these problems, MEBDF gives the best performance among the four packages.

-~·-······~- ~,J_

5.6 Analysis of Gupta and Wallace's Problem

Mathematica needs 1523 steps to solve these problems from 0 to 10. In order to

get Mathematica successfully to integrate the problems from 0 to 10, we have to supply

to the NDSolve routine of Mathematica, a parameter MaxStep with a value not less than

1523. Otherwise, Mathematica will automatically stop the execution, and gives the

message:

NDSolve :: mxst:

Maximum number of 500 steps reached at the point 3.27871.

Without supplying the parameter MaxStep, Mathematica will automatically give 500

steps as a default value for MaxStep. Figure 5.11 shows graphical solutions resulting

from Mathematica for these problems.

y1

20000

15000

10000

5000

y2

20000

15000

10000

5000

+-----------~-----t +------....::::: ___ t

20000

15000

y

5

1ooool - y1
5oool -Y2

10

+-----...e=:=----- t
2 4 6 8 10

5

Figure 5.11 Gupta and Wallace's Problem Solved with
Mathematica

10

100

Gupta and Wallace [53] stated that for the choices of v = -80 and w = 8, these problems

are stiff. Whatever the choices ofv and w, the exact solution will be found as y1 = et and

y2 = et. The problems is non-stiffifv and ware chosen to be 1 and 0 respectively.

These problems were also solved using the MEBDF, LSODE, VODE, and

EPSODE routines. The performances of the four routines in solving these problems is

given in Table G.4 of Appendix G. By assuming that evaluation of the Jacobian matrix

will take more computing time than evaluation ofthe function f(t,y), it can be said that of

the four routines, MEBDF gives the best performance. Figure 5.12 shows graphical

solutions from VODE on these problems.

"' ·x
"' >-

20000

15000

10000

5000

0

0

• y 1 (t)

• y2(t)

3 6 9

taxis

Figure 5.12 Gupta and Wallace's Problem Solved with VODE

i' !:

CHAPTER VI

CONCLUSIONS AND SUGGESTIONS

It is not easy to define stiffness of ODEs precisely in mathematical terminology.

The common approaches to understanding stiffness are to investigate problems based on

various aspects of phenomena. If the paces of decay of the past and the slow mode of

solutions are too disparate, then problems are potentially stiff. Kidney problems and the

problems proposed by Gupta and Wallace are among examples that can be either stiff or

nonstiff. In these situations, the classification depends on the choice of initial conditions.

Users who solve ODE problems using high-level languages should be aware of

stiffness' existence, since otherwise they can get solutions that do not converge to the

correct ones. Since all well-known explicit methods are not suitable for solving stiff

ODE problems, the ODE solvers are recommended to have tools for detecting stiffness.

These tools will be very useful especially when we need to minimize the CPU time of

computation. It is undeniable that explicit methods are not recommended for handling

stiff problems. The modified Euler and exponential methods are only recommended for

solving stiff ODE problems where accuracies are not taken into consideration.

From solving several stiff problems using the MEBDF, LSODE, VODE, and

EPSODE, we can see that the stepsizes vary over the whole range of computations. And

so do the orders of the methods. This occurs because in some intervals the problems can

101

102

be very stiff, stiff, mildly stiff, or even nonstiff. This is one reason why a good ODE

solver will support both implicit and explicit methods. Backward differentiation formulae

and Adam predictor-corrector methods are among the most popular methods used to

solve stiff and nonstiff problems respectively.

Recently, Shampine and Reichelt [Information taken from Netscape with address

http://www.mathworks.com/paper.html] have developed tools for solving ODE problems

using Matlab. They have introduced a new family of formulas for the solution of stiff

problems. They call these formulas numerical differentiation formulas (NDF). They also

claimed that these NDF are more efficient than the BDF, even though they agree that a

couple of the higher order formulas are rather less stable. Since Matlab, Maple and

Mathematica can access routines that are coded in high-level languages like C and

FORTRAN, it is recommended that ordinary users of ODEs learn how to use one of

those three software packages. From our experiences using Mathematica for solving

ODE problems, we highly recommend that ordinary users try to learn how to use

Mathematica. The NDSolve function of Mathematica will automatically choose an

Adam predictor-corrector method if it detects the problem is nonstiff, and will choose

BDF if the problem is stiff.

For the future, we think researchers who work in the field of numerical

computation should consider developing numerical tools that can be attached to packages

such as Matlab, Mathematica, or Maple.

SELECTED BIBLIOGRAPHY

1. Aiken, R.C., Stif!Comvutation, Oxford University Press, Inc., 1985.

2. Alexander, R.K., Stability of Runge-Kutta Methods for Stiff Ordinary Differential

Equations, SIAM J. Numer. Anal.,Vol. 31, No.4, pp. 1147-1168, August 1994.

3. Ashour, S.S., and Hanna, O.T., Explicit Exponential Method for the Integration of

Stiff Ordinary Differential Equations, J. Guidance. Control. andDvnamics, Vol. 14.,

No.6, December 1991, pp. 1234-1239.

4. Auzinger, W., On the Error Structure of the Implicit Euler Scheme Applied to Stiff

Systems of Differential Equations, Computing 43, 115-131 (1989).

5. Auzinger, W., Frank, R., and Kirlinger, G., Modem Convergence Theory for Stiff

Initial-Value Problems, J. Comvut. Aopl. Math. 45 (1993) 5-16.

6. Auzinger, W., Frank, R., and Macsek, F., Asymptotic Error Expansion for Stiff

Equations: The Implicit Euler Scheme, SIAM J. Numer. Anal, Vol. 27, No. 1, pp. 67-

104, February 1990.

7. Babuska, 1., Prager, M., and Vitasek, E., Numerical Processes in Differential

Equations, John Wiley & Sons, Ltd., 1966.

8. Barton, D., On Taylor Series and Stiff Equations, ACM Transaction on Mathematical

Software, Vol. 6., No. 3, September 1980, pages 280-294.

9. Birta, L.G., Yang, M., and Abou-Rabia, 0., An Adaptive Approach to Stepsize

Control in ODE Solvers, Mathematics and Computers in Simulation 35 (1993) 63-78.

103

j__

104

10. Braun, M., Differential Equations and Their Avvlications, Springer-Verlag New

York Inc., 1983.

11. Brown, P.N., Byrne, G.D., and Hindmarsh, A.C., VODE: A Variable-Coefficient

ODE Solver, SIAM J. Sci. Stat. Comput., Vol. 10, No. 5, pp. 1033-1051, September

1989.

12. Bui, T.D., and Poon, S.W., On the Computational Aspects ofRosenbrock Procedures

with Built-in Error Estimates for Stiff Systems, BIT 21 (1981) 168-174.

13. Burrage, K., The Dichotomy of Stiffness : Pragmatism Versus Theory, J. Comvut.

Apvl. Math. 31 (May 1989) 92-111.

14. Butcher, J.C., Optimal Order and Stepsize Sequences, IMA J. Numer. Anal. (1986) 6,

433-438.

15. Butcher, J.C., The Numerical Analvsis of Ordinary Differential Equations, John

Wiley & Sons Ltd., 1987.

16. Byrne, G.D., and Hindmarsh, A.C., A Polyalgorithm for the Numerical Solution of

Ordinary Differential Equations, ACM Transactions on Mathematical Software, Vol.

1, No.1, March 1975, pages 71-96.

17. Byrne, G.D., and Hindmarsh, A.C., Stiff ODE Solvers: A Review of Current and

Coming Attractions, J. Comvut. Phvsics 70, 1-62(1987).

18. Calvo, M., Lisbona, F., and Montijano, J., On the Stability of V ariable-Stepsize

Nordsieck BDF Methods, SIAMJ. Numer. Anal., Vol. 24, No. 4, August 1987.

19. Carroll, J., A Composite Integration Scheme for the Numerical Solution of Systems

of Ordinary Differential Equations, J. Comvut. Avvl. Math. 25 (1989) 1-13.

l

105

20. Cash, J.R., and Considine, S., An MEBDF Code for Stiff Initial Value Problems,

ACMTransactions on Mathematical Sqftware, Vol. 18, No.2, June 1992, Pages 142-

155.

21. Cash, J.R., and Considine, S., MEBDF: A FORTRAN Subroutine for Solving First­

Order Systems of Stiff Initial Value Problems for Ordinary Differential Equations,

ACM Transactions on Mathematical SQ.ftware, Vol. 18, No. 2, June 1992, pages 156-

158.

22. Chang, Y.F., Solving STIFF Systems by Taylor Series, J Comvut. Avvl. Math. 31

(May 1989) 251-269.

23. Chen, T.C., Automatic Computation of Exponential, Logarithms, Ratios and Square

Roots, IBM J Res. Develov., July 1972, pp. 380-388.

24. Corlis, G., and Chang, Y.F., Solving Ordinary Differential Equations Using Taylor

Series, ACM Transactions on Mathematical SQ.ftware, Vol. 8, No. 2, June 1982,

pages 114-144.

25. Crane, R.L., and Klopfenstein, R.W., A Predictor-Corrector Algorithm with an

Increased Range of Absolute Stability, JACM, Vol. 12, No.2 (April1965), pp. 227-

241.

26. Dahlquist, G., Bjorck, A., Numerical Methods, Prentice-Hall, Inc., 1974.

27. Dahlquist, G., Convergence and Stability In the Numerical Integration of Ordinary

Differential Equations, Math. Scand 4 (1956), 33-53.

28. Dahlquist, G.G., A Special Stability Problem For Linear Multistep Methods, BIT 3

(1963), 27-43.

106

29. Dahlquist, G.G., Liniger, W., and Nevanlinna, 0., Stability of Two-Step Methods for

Variable Integration Steps, SIAM J Numer. Anal., Vol. 20, No.5, October 1983, pp.

1071-1085.

30. Davis, M.E., Numerical Methods & Modeling for Chemical Engineers, John Wiley &

Sons, 1984.

31. Derr, L., Outlaw, C., and Sarafyan, D., A New Method for Derivation of Continuous

Runge-Kutta Formulas, Computers Math. Aaplic., Vol. 26, No.3, pp. 7-13, 1993.

32. Deuflhard, P., Order and Stepsize Control in Extrapolation Methods, Numer. Math.

41, 399-422(1983).

33. Deuflhard, P., Recent Progress in Extrapolation Methods for Ordinary Differential

Equations, SIAM Review, Vol. 27, No.4, December 1985.

34. Dieci, L., and Estep D., Some Stability Aspects of Schemes for the Adaptive

Integration of Stiff Initial Value Problems, SIAM J Sci. Stat. Comput., Vol. 12, No.

6, pp. 1284-1303, November 1991.

35. Distefano, G. P., Causes of Instabilities in Numerical Integration Techniques,

International J Camp. Math., 1968, Vol. 2, pp. 123-142.

36. Enright, W.H., A New Error-control for Initial Value Solvers, J Comput. Apvl. Math.

31 (May 1989) 288-301.

37. Enright, W.H., and Pryce, J.D., Two FORTRAN Packages for Assessing Initial Value

Methods, ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987,

pp. 1-27.

107

38. Enright, W.H., and Seward, W.L., Achieving Tolerance Proportionality in Software

for Stifflnitial-Value Problems, Comvuting 42, 341-352 (1989).
i

39. Enright, W.H., Hull, T.E., and Lindberg, B., Comparing Numerical Methods For Stiff

Systems ofO.D.E:s, BIT 15(1975), 10-48.

40. Fatunla, S.O., An Implicit Two-Point Numerical Integration Formula for Linear and

Nonlinear Stiff Systems of Ordinary Differential Equations, Mathematics of

Computation, Vol. 32, No. 141, January 1978, pp. 1-11.

41. Fox, L., and Mayers, D.F., On the Numerical Solution of Implicit Ordinary

Differential Equations, IMA J Numer. Anal. (1981) 1, 377-401.

42. Gear, C.W., and Tu, K.W., The Effect ofVariable Mesh on the Stability of Multistep

Methods, SIAM J Numer. Anal., Vol. 11, No.5, October 1974.

43. Gear, C.W., and Watanabe, D.S., Stability and Convergence of Variable Order

Multistep Methods, SIAMJ Numer. Anal., Vol. 11, No.5, October 1974.

44. Gear, C.W., Numerical Initial Value Problem In Ordinary Differential Equations,

Prentice-Hall, Inc., 1971.

45. Gear, C.W., Runge-Kutta Starters for Multistep Methods, ACM Transactions on

Mathematical Software, Vol. 6, No. 3, September 1980, pages 263-279.

46. Gear, C.W., The Automatic Integration of Stiff Ordinary Differential Equations,

Information Processing 68 - North-Holland Publishing Company - Amsterdam, 187-

193 (1969).

47. Gerlach, J., Accelerated Convergence in Newton's Method, SIAM Review, Vol. 36,

No. 2, pp. 272-276, June 1994.

............._

108

48. Gladwell, I., Shampine, L.F., and Brankin, R.W., Automatic Selection of the Initial

Step Size for an ODE Solver, J ComPut. APPI. Math. 18(1987) 175-192.

49. Golub, G.H., and Ortega, J.M., Scientific ComPuting and Differential Equations,

Academic Press, Inc., 1981, 1992.

50. Gottwald, B.A., and Wanner, G., A Reliable Rosenbrock Integrator for Stiff

Differential Equations, Computing 26,355-360 (1961).

51. Gragg, W.B., and Stetter, H.J., Generalized Multistep Predictor-Corrector Methods,

JACM, Vol. 11, No.2 (April1964), pp. 188-209.

52. Groeneweg, J., and Spijker, M.N., On the Error Due to the Stopping of the Newton

Iteration in Implicit Linear Multistep Methods, Proceeding Q.f the 15th Dundee

Conference, June-July 1993.

53. Gupta, G.K., and Wallace, C.S., Some New Methods for Solving Ordinary

Differential Equations, Mathematics Q,(ComPutation, Vol. 29, No. 130, April 1975,

pp. 489-500.

54. Gupta, G.K., Sacks-Davis, R., and Tischer, P.E., A Review of Recent Developments

in Solving ODEs, ComPuting Survevs, Vol. 17, No. 1, March 1985, pp. 5-47.

55. Gustafsson, K., Ludh, M., and Soderlind, G., A PI Stepsize for the Numerical

Solution of Ordinary Differential Equations, Bli. 28 (1988), 270-287.

56. Hairer, E., and Wanner, G., Solving Ordinary Differential Equations II, Springer­

Verlag Berlin Heidelberg, 1991.

57. Hairer, E., Norsett, S.P., and Wanner, G., Solving Ordinary Differential Equations I,

Springer-Verlag Berlin Heidelberg 1987, 1993 .

:I!

l__

109

58. Hall, G., A New Stepsize Strategy for Runge-Kutta Codes, Numerical Analysis

Revort No. 245. Universizy of Manchester. Manchester Centre for Comvutational

Mathematics, March 1994.

59. Hall, G., Stability Analysis of Predictor-Corrector Algorithm of Adams Type, SIAM

J Numer. Anal., Vol. 11, No.3, June 1974.

60. Havie, T., Romberg Integration As a Problem in Interpolation Theory, BIT 17 (1977),

418-429.

61. Henrici, P., Discrete Variable Methods In Ordinarv Differential Equations, John

Wiley & Sons, Inc., 1962.

62. Higham, D.J., and Trefethen, L.N., Stiffness of ODEs, BJI.33 (1993), 285-303.

63. Hindmarsh, A.C., and Petzold, L.R., Algorithms and Software for Ordinary

Differential Equations and Differential Algebraic Equations, Part I: Euler Methods

and Error Estimation, Comvuters in Phvsics, Vol. 9, No.1, Jan/Feb 1995, pp. 34-41.

64. Hindmarsh, A.C., and Petzold, L.R., Algorithms and Software for Ordinary

Differential Equations and Differential Algebraic Equations, Part II: Higher-Order

Methods and Software Packages, Comvuters in Physics, Vol. 9, No. 1, Mar/Apr

1995, pp. 148-155.

65. Hull, T.E., Enright, W.H., Fellen, B.M., and Sedgwick, A.E., Comparing Numerical

Methods For Ordinary Differential Equations, SIAM J Numer. Anal., Vol. 9., No.4,

December 1972, pp. 603-63 7.

66. Jain, M.K., Numerical Solution of Differential Equations, Wiley Eastern Limited,

1979.

110

67. Jeltsch, R., and Nevanlinna, 0., Dahlquist's First Barrier for Multistage Multistep

Formulas, BIT24 (1984), 538-555.

68. Jeltsch, R., and Nevanlinna, 0., Stability and Accuracy of Time Discretizations for

Initial Value Problems, Numer. Math. 40,245-296 (1982).

69. Jeltsch, R., and Nevanlinna, 0., Stability of Explicit Time Discretizations for Solving

Initial Value Problems, Numer. Math. 37,61-91 (1981).

70. Kirchgraber, U., Multi-Step Methods are Essentially One-Step Methods, Numer.

Math. 48, 85-90(1986).

71. Kockler, N., Numerical Methods and Scientific Comvuting Using SQ,ftware Libraries

for Problem Solving, Clarendon Press Oxford, 1994.

72. Kohfeld, J.J., and Thompson, G.T., Multistep Methods with Modified Predictors, ,L

.K;M, Vol. 14, No.1, January 1967, pp. 155-166.

73. Krogh, F.T., A Test for Instability in the Numerical Solution of Ordinary Differential

Equations, J ACMVol. 14, No.2, April1967, pp. 351-354.

74. Krogh, F.T., A Variable Step Variable Order Multistep Method for the Numerical

Solution of Ordinary Differential Equations, Information Processing 68 - North­

Holland Publishing Company-Amsterdam (1969), pp. 194-199.

75. Krogh, F.T., and Stewart, K., Asymptotic (h ~ oo) Absolute Stability for BDFs

Applied to Stiff Differential Equations, ACM Transactions on Mathematical

SQ,ftware, Vol. 10, No. 1, March 1984, pages 45-57.

76. Krogh, F.T., On Testing a Subroutine for the Numerical Integration of Ordinary

Differential Equations, J ACMVol. 20. No.4, October 1973, pp. 545-562.

L

Ill

77. Lambert, J.D., A Stable Sequence of Steplengths for Euler's Rule Applied to Stiff

Systems of Differential Equations, Comv. & Maths. with Avvl., Vol. 12B, No. 5/6,

pp. 1141-1151, 1986.

78. Lambert, J.D., Numerical Methods For Ordinary Differential Systems, John Wiley &

Sons, Ltd., 1991.

79. Lapidus, L., and Schiesser, W.E., Numerical Methods for Differential Systems,

Academic Press, Inc., 1976.

80. Lapidus, L., and Seinfeld, J.H., Numerical Solution Q,(Ordinary Differential

Equations, Academic Press, Inc., 1971.

81. Lindberg, B., A Simple Interpolation Algorithm for Improvement of the Numerical

Solution of a Differential Equation, SIAM J Numer. Anal., Vol. 9, No.4, 1972, pp.

662-668.

82. Lindberg, B., Characterization of Optimal Stepsize Sequences for Methods for Stiff

Differential Equations, SIAMJ Numer. Anal., Vol. 14, No.5, October 1977.

83. Lindberg, B., On a Dangerous Property of Methods for Stiff Differential Equations,

BIT 14 (1974), 430-436.

84. Lindberg, B., On Smoothing and Extrapolation for The Trapezoidal Rule, BIT 11

(1971), 29-52.

85. Liniger, F., and Odeh, F., A-Stable, Accurate Averaging of Multistep Methods for

StiffDifferential Equations, IBM J Res. Develop., July 1972, pp. 335-348.

112

86. Liniger, W., and Willoughby, R.A., Efficient Integration Methods for Stiff Systems

of Ordinary Differential Equations, SIAM J Numer. Anal., Vol. 7., No. 1, March

1970.

87. Lu, L., The Stability of the Block 9-Methods, IMA J Numer. Anal. (1993) 13, 101-

114.

88. Lyness, J.N., An Algorithm For Gauss-Romberg Integration, BIT 12(1972), 194-203.

89. Maeder, A.J., A General Purpose ODE Solver Implementation, J Comput. Avvl.

Math. 31 (May 1989) 316-327.

90. Marchuck, G.l., Numerical Methods and Avvlications, CRC Press, Inc., 1994.

91. Mickens, R.E., Difference Equations, Van Nostrand Reinhold Company Inc., 1987.

92. Mickens, R.E., Nonstandard Finite Difference Models of Differential Equations,

World Scientific, Co., Pte., 1994.

93. Neto, R., and Rao, R., A Stochastic Approach to Global Error Estimation in ODE

Multistep Numerical Integration, J Comvut. Apvl. Math. 30 (1990) 257-281.

94. Odeh, F., Some Stability Techniques for Multistep Methods, IBM J Res. Develov.,

Vol. 31, No.2, March 1987, pp. 178-185.

95. Petzold, L., Automatic Selection of Methods for Solving Stiff and Nonstiff Systems

of Ordinary Differential Equations, SIAM J Sci. Sta. Comvut., Vol. 4., No. 1, March

1983.

96. Rahme, H.S., Stability Analysis of a New Algorithm Used for Integrating a System

of Ordinary Differential Equations, J ACM, Vol. 17, No. 2, April 1970, pp. 284-293.

113

97. Riggs, J. B., An Introduction To Numerical Methods for Chemical Engineers, Texas

Tech University Press, 1994.

98. Seifert, P., Computational Experiments with Algorithms for Stiff ODEs, Computing,

38, 163-176 (1987).

99. Shampine, L.F., and Gordon, M.K., Comvuter Solution of Ordinarv Differential

Equations, W.H. Freeman and Company, 1975.

1 OO.Shampine, L.F ., Control of Step Size and Order in Extrapolation Codes, J Comvut.

Appl. Math. 18 (1987) 3-16.

10l.Shampine, L.F., Diagnosing Stiffness for Runge-Kutta Methods, SIAM J Sci. Stat.

Comvut., Vol. 12, No.2, pp. 260-272, March 1991.

102.Shampine, L.F., Efficient Extrapolation Methods for ODEs, IMA J Numer. Anal.

(1983) 3, 383-395.

103.Shampine, L.F., Evaluation of a Test Set for Stiff ODE Solvers, ACM Transactions

on Mathematical Software, Vol. 7, No.4, December 1981, pages 409-420.

104.Shampine, L.F., Implementation of Rosenbrock Methods, ACM Transactions on

Mathematical Software, Vol. 8, No.2, June 1982, pages 93-113.

105.Shampine, L.F., Numerical Solution ofOrdinary Differential Equations, Chapman &

Hall, Inc., 1994.

106.Shampine, L.F., Type-Incentive ODE Codes Based on Implicit A-Stable Formulas,

Mathematics ofComputations, Vol. 36, No. 154, April1981, pp. 499-510.

107.Shub, M., The Implicit Function Theorem Revisited, IBM J Res. Develov., Vol. 38, ..

No.3, May 1994, pp. 259-263.

114

108.Skeel, R.D., Thirteen Ways to Estimate Global Error, Numer. Math. 48, 1-20(1986).

109.Stetter, H.J., Global Error Estimation in Adams PC-Codes, ACM Transactions on

Mathematical Software, Vol. 5, No.4, December 1979, pages 415-430.

llO.Stewart, K., Avoiding Stability-induced Inefficiencies in BDF Methods, J Comvut.

Appl. Math. 29 (1990), 357-367.

lll.Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag,

New York, Inc., 1980.

112.Stoffer D, and Nipp, K., Invariant Curves For Variable Step Size Integrators, BIT

31(1991), 169-180.

113.Stuart, A.M., and Humphries, A.R., Model Problems in Numerical Stability Theory

for Initial Value Problems, SIAMReview Vol. 36, No.2, pp. 226-257, June 1994.

114.Vichnevetsky, R., New Stability Theorems Concerning One-Step Numerical

Methods for Ordinary Differential Equations, Mathematics and Comvuters in

Simulation 25 (1983) 199-205.

115.Walston, D.E., and Waddell, E.R., Acceleration of Convergence of One-Step

Methods for the Numerical Solution of Ordinary Differential Equations, International

Journal QfComvuter Mathematics, 1968, Vo1.2, pp. 23-33.

116.Walz, G., Error Bounds and Stopping Rules for Extrapolation Methods, IMA J

Numer. Anal. (1989) 9, 185-198.

117.Wille, D. R., Experiments in Stepsize Control for Adams Linear Multistep Methods,

Numerical Analysis Revort No. 253. University of Manchester. Manchester Centre

for Computational Mathematics, October 1994.

115

118.Wille, D. R., New Stepsize Estimators for Linear Multistep Methods, Numerical

Analvsis Revort No. 247. Universi{Jl qf Manchester. Manchester Centre for

Comvutational Mathematics, March 1994.

119.Zhang, W., The Starting Procedure in Variable-stepsize Variable-order PECE Codes,

J Comvut. Avvl. Math. 53 (1994) 73-86.

120.Zlatev, Z., Advances in The Theory of Variable Stepsize Variable Formula Methods

for Ordinary Differential Equations, J Comvut. Avvl. Math. 31 (May 1989) 209-249.

12l.Zlatev, Z., and Thomsen, P.G., Automatic Solution of Differential Equations Based

on the Use of Linear Multistep Methods, ACM Transactions on Mathematical

Software, Vol. 5., No.4, December 1979, pages 401-414.

APPENDIX A

SOFTWARE AVAILABILITY

Information about how to access software from the IMSL, NAG, and NETLIB

libraries, and a brief overview of some products for solving ODEs will be given in this

Appendix. All software in both the IMSL and NAG libraries is commercial. So, these

routines are not free of charge such as the software that is offered in the NETLIB library:

The information about the products and services available from NAG can be

obtained by sending e-mail to infodesk@nag.com or accessing the NAG pages at

http://www.nag.co.uk:70/. Among the products ofNAG for solving ODEs are:

- D02AGF : Solving boundary value problem, shooting and matching technique,
allowing interior matching point, general parameters to be determined.

- D02BAF: Solving IVP, Runge-Kutta-Merson method, over a range (simple driver).
- D02BBF : Solving IVP, Runge-Kutta-Merson method, over a range, intermediate

output (simple driver).
- D02BDF : Solving IVP, Runge-Kutta-Merson method, over a range, global error

estimate, stiffness check (simple driver).
- D02BGF : Solving IVP, Runge-Kutta-Merson method, until a component attains

given value (simple driver).
- D02BHF : Solving IVP, Runge-Kutta-Merson method, until function of solution is

zero (simple driver).
- D02CAF: Solving IVP, Adams method, over a range (simple driver)
- D02CBF : Solving IVP, Adams method, over a range, intermediate output (simple

driver).
- D02CGF : Solving IVP, Adams method, until a component attains given value

(simple driver).
- D02CHF : Solving IVP, Adams method, until function of solution is zero (simple

driver).

116

117

D02CJF : Solving IVP, Adams method, until function of solution ts zero,
intermediate output (simple driver).

- D02EAF: Solving stiffiVP, BDF method, over a range (simple driver).
- D02EBF : Solving stiffiVP, BDF method, over a range, intermediate output (simple

driver).
- D02EGF : Solving stiff IVP, BDF method, until a component attains given value

(simple driver).
- D02EHF : Solving stiff IVP, BDF method, until function of solution is zero (simple

driver).
- D02EJF : Solving stiff IVP, BDF method, until function of solution is zero,

intermediate output (simple driver).
- D02GAF : Solving boundary value problem, finite difference technique with deferred

correction, simple nonlinear problem.
- D02GBF : Solving boundary value problem, finite difference technique with deferred

correction, general linear problem.
- D02HAF : Solving boundary value problem, shooting and matching, boundary values

to be determined.
- D02HBF : Solving boundary value problem, shooting and matching, general

parameters to be determined.
- D02JAF : Solving boundary value problem, collocation and least-squares, single nth

order linear equation.
- D02JBF : Solving boundary value problem, collocation and least-squares, system of

1st order linear equations.
- D02QFF : Solving Adams method with root-finding (forward communication,

comprehensive).
- D02QGF : Solving IVP, Adams method with root-finding (reverse communication,

comprehensive).
- D02YAF: Solving IVP, Runge-Kutta-Merson method, integration over one step.

Information about the products and services available from IMSL can be obtained

by sending e-mail to mktg@imsl.com or accessing the IMSL pages at

http://www.vni.com/. Among the products ofiMSL for solving ODEs are:

- DASPG : Solving stiff and mixed algebraic-ODEs, the Petzold--Gear BDF method.
- DIVPAG: Solving stiff or mildly stiffiVP, Adams-Moulton or Gear method.
- DIVPRK: Solving nonstiff or mildly stiffiVP, Runge-Kutta-Vemer fifth- and sixth-

order method.

Public domain software for numerical methods can be accessed from the NETLIB

library by sending e-mail to netlib@oml.gov with the body message

118

send index.

After receiving the index file, the next instruction will be given in the index file. This

library can also be accessed using anonymous ftp at netlib.att.com or through the

NETLIB pages at http://www.netlib.org/. Directories /netlib/toms, /netlib/ode, and

/netlib/odepack contain some pf(')grams that can be used to solve ODEs.

Among the programs that are given in /netlib/ode are:

- RKSUITE : Created by R.W. Brankin (NAG), I. Gladwell and L.F. Shampine
(SMU), solving IVP including an error assessment facility and a sophisticated
stiffness checker, file

- DDASRT : Created by Petzold, solving stiff differential-algebraic system with root
stopping, backward differentiation formulae.

- DDASSL : Created by Petzold, solving stiff differential-algebraic system, backward
differentiation formulae.

- DP12 : Created by Cash, solving stiffiVP, Cash's extended backward differentiation
formulae.

- DRESOL : Created by Dieci, solving stiff/nonstiff matrix differential Riccati
equations (DREs) with reference SIAM J. Numerical Analysis 29-3 and symmetric
and unsymmetric DREs, Adams' and backward differentiation formulae based on
LSODE by Hindmarsh.

- DVERK : Created by Jackson, Hull, and Enright, solving IVP with global error
control, Verner's fifth and sixth order Runge-Kutta pair.

- EPSODE : Created by Byrne and Hindmarsh, solving stiff IVP, backward
differentiation formulae (variable coefficient formulae).

- ODE: Created by Shampine and Gordon, solving IVP, Adam's methods.
- RKC : Created by Sommeijer, solving nearly-stiffiVP, second-order explicit Runge-

Kutta formulae.
- RKF45 : Created by Watts and Shampine, solving IVP, Runge-Kutta Fehlberg

fourth-fifth order.
- SDEROOT : Created by Shampine, Gordon, and Allen, solving IVP with root

stopping, Adam's methods.
- SODE: Created by Shampine and Gordon, solving IVP, Adam's methods.
- VODE : Created by Brown, Byrne and Hindmarsh, solving non-stiff or stiff IVP,

backward differentiation formulae (variable coefficient formulae) with reference
SIAM J. Sci. Stat. Comput. 10 (1989) 1038- 1091, updated version ofEPSODE.

- VODPK : Created by Brown, Byrne and Hindmarsh, solving large non-stiff or stiff
IVP, backward differentiation formulae (variable coefficient formulae) with GMRES
with user-supplied preconditioner, updated version of EPSODE.

119

Among the programs that are given at /netlib/odepack are:

- LSODE : Created by Alan C. Hindmarsh, solving stiff and nonstiff IVP, Adams
methods and BDF methods, based on GEAR and GEARB packages.

- LSODA: Created by Linda R. Petzold Alan C. Hindmarsh, solving IVP with
automatic selection between stiff and nonstiff IVP, variant of LSODE with reference
SIAM J. Sci. Stat. Comput. 4 (1983) 136-148.

- SODE : Solving stiff and nonstiff systems of IVP, Adams method or Backward -
Differentiation Formula with user supplied or difference quotient Jacobians.

- LSODAR : Created by Linda R. Petzold Alan C. Hindmarsh, solving stiff and
nonstiffiVP with automatic selection, variant ofLSODE with reference SIAM J. Sci.
Stat. Comput. 4 (1983) 136-148.

Among the programs that are given at /netlib/toms are :

GERK : Created by L.F. Shampine and H.A. Watts, solving IVP with global error
estimate, Runge-Kutta-Fehlberg methods of 4th and 5th order with reference ACM
TOMS 2 (1976) 200-203, under name toms/504.

- STINT : Created by J.M. Tendler, T.A. Bickart, and Z. Picel, solving stiff IVP,
stiffly stable and cyclic composite linear multistep methods with reference ACM
TOMS 4 (1978) 399-403, under name toms/534.

- ODESSA : Created by J. R. Leis and M. A. Kramer, solving IVP with explicit
simultaneous sensitivity analysis, modified from LSODE with reference ACM
TOMS 14 (1988) 61-67, under name toms/658.

- MEBDF : Created by Cash, Considine, solving stiff IVP, modified backward
differentiation formulae with reference ACM Transaction on Math. Soft., vol. 18, No.
2 (June 1992) 142-155, under name toms/703.

..._

APPENDIXB

ROOTS OF A COMPLEX POLYNOMIAL

All roots of a complex polynomial p(z) = ao + a1z + a2i + ... +~zn, where ao, a~> .

. , ~, and z are complex numbers, can be found easily using the Newton-Raphson

method (Newton's method). The polynomials p(z) and p'(z) will be evaluated using

nested multiplication, which is also known as Homer's rule. The nested multiplication

form of the polynomial p(z) is ((.... ((~z + ~- 1)z + ~-2)z + ... + a2)z + a1)z + Clo· One

ofthe algorithms to evaluate this function can be given as follows:

p=~

for i = n-1 downto 0
p=p*z+ ai

next i

Using this algorithm, the need to perform any exponentiation can be avoided, so that we

only need n multiplications and n additions.

Assume p(z) can be written as (z - zk)q(z), where q(z) is a polynomial of degree

(n-1). If q(z) is written as bn_1zn-l + bn_2zn-2 + ... + b2i + b1z + b0, then p(z) can be

written as (z- zk)(bn-IZn-l + bn-2Zn-2 + ... + b2i +biz+ bo) = bn-IZn + (bn-2 - zk*bn-l)zn-2

+ ... + (b2 - zk*b3)z2 + (b1 - zk*b2)z + b0. From equating coefficients of power of z, we

have the recursive relations bn-l = ~ and bi-l = ai + zk*bi, for i=n-1, n-2, . . ., 1.

Differentiating p(z), we find p'(z) = q(z) + (z- zk)q'(z), which gives p'(zk) = q(zk).

120

121

A root of p(z) can be found using the recursive relation of Newton's method:

zk+1 = zk - p(zk)lp'(zk). The polynomial p'(zk) here can also be evaluated using nested

multiplication since it is none other than the polynomial q(zk). One of the algorithms for

evaluating p(z) and p'(z), for z = zk is given as follows :

p = Cln
q = Cln
fori= n-1 down to 1

p = p*zk + ai
q = q*zk + p

nexti
P = p*zk + ao

I* Since bn_1 = Cln *I

I* Evaluate p(z) *I
I* Evaluate p'(z) *I

I* The last evaluation ofp(z) *I

Here, we need only 2n multiplications and 2n additions in order to evaluate the

polynomial p(z) and the polynomial p'(z). We can avoid the need for performing any

exponentiations when evaluating p(z) and p'(z).

One of the algorithms for finding all complex roots of the complex polynomial

p(z) is given below:

z0 =1+j
while (n > 0) do

Z = z0 + 2*E
while (iz - z01 > E) do

z0 =z
p = Cln
pz = Cln
for i = n-1 downto 1

p = p*zo + ai
pz = pz*z0 + p

nexti
p = p*z + ao
z = zO- plpz

end while
root(n) = z

bn-1 = Cln
n = n- 1
for i = n-1 downto 0

I* j = ...J-1 imaginer number *I

I* Evaluate p~z) *I
I* Evaluate p (z) *I

I* The last evaluation of p(z) *I

bi = ai+I + z*bi+I
nexti
fori= 0 ton

ai=bi
nexti
if (im(z) < E) then

else

endif
end while

z = conjugate (z)

z= 1 + j

122

/* Evaluate coefficients of g(z) *I

/* Rewrite p(z) with g(z) */

The implementation of this algorithm using FORTRAN for the case p(z) = z
3

- 3z
2

- z + 9

is given as follows :

*--
* This is a main program for finding roots of polynomial p(z)

*--

*

PROGRAM POL YNOM
IMPLICIT NONE
INTEGER
PARAMETER
COMPLEX *16
REAL *8 EPS
INTEGER
DATA
DATA

ORDER=N

N
(N=3)
ROOT(N), A(N+ 1), B(N)

I, ORDER
EPS/1.D-9/
A/(9.DO,O.DO),(-1.DO,O.DO),(-3.DO,O.DO),

(l.DO,O.DO)/

CALL RTPOL(ORDER,A,ROOT,EPS,B)
DO 10 1=1,N

WRITE(6,100) I, DREAL(ROOT(I)), DIMAG(ROOT(I))
10 CONTINUE
100 FORMAT(5X,'z(',l2.2,') = ',F12.9,X,SP,F12.9,'J')

STOP
END

SUBROUTINE RTPOL(ORDER, A, ROOT, EPS,B)
IMPLICIT NONE

*---
*
*
*

This is the May 12, 1995 version of
RTPOL .. ELSP Solver For finding root of polynomial

p(z) = anz/\n + + a2z/\2 + a1z + aO.

* This version is in double precision and written using F77.

*---
*
*
*
*

Reference ..
Edward Purba, Compact Numerical Methods for Stiff Differential Equations,

Master Thesis, Computer Science, Oklahoma State University,
1996.

*---
*
*
*
*

ORDER Order of the polynomial
ROOT Roots ofthe polynomial
A Coefficient of polynomial p(z)
B Coefficient of g(z) where p(z)=(z-zst)g(z)

*---

*

*

*

*

*

*

*

*

COMPLEX *16
INTEGER
REAL *8 EPS

ROOT(l), A(1), B(l)
ORDER

COMPLEX *16 ZO, ZST, P, PZ
INTEGER I
ZO = DCMPLX(1.D0,1.DO)
DO WHILE(ORDER .GT. 1)

ZST = ZO + DCMPLX(2.DO*EPS,O.DO)
DO WHILE (CDABS(ZST- ZO) .GT. EPS)

ZO = ZST
P = A(ORDER+1)
PZ= A(ORDER+1)
DO I=ORDER,2,-1

Calculate polynomial p(z) using Horner's rule.
P = P*ZO + A(l)

Calculate polynomial p'(z) using Horner's rule.
PZ =PZ*ZO+ P

END DO
Calculate the outermost part of p(z)

P = P*ZO + A(l)
Calculate the root using Newton-Raphson

ZST = ZO- P/PZ
END DO

The root is found.
ROOT(ORDER) = ZST
B(ORDER) = A(ORDER+1)

Deflate polynomial by division (z- zst) so that p(z)=(z-zst)g(z)
ORDER= ORDER- 1

Assign coefficients ofb's
DO I=ORDER,1,-1

B(l) = A(l+ 1) + ZST*B(I+ 1)
END DO

Renew coefficient A with coefficient B

123

_L

*

DO I=l,ORDER+l
A(I) = B(I)

END DO
If the root is complex, then its conjugate is possible as a root.

IF(DABS(DIMAG(ZST)) .GT. EPS) THEN
ZST = DCONJG(ZST)

ELSE

END IF
END DO

ZST = DCMPLX(l.DO,l.DO)

ROOT(l) = -A(l)/A(2)
RETURN
END

The output of this program is given as follows:

z(Ol) = -1.525102255 + O.OOOOOOOOOJ
z(02) = 2.262551127 -0.8843675981
z(03) = 2.262551127 +0.8843675981

The output here is given in the form of complex number.

124

The idea of finding a root of the polynomial p(z) given above, can be applied in

order to find the region of stability of an explicit Runge-Kutta method. A FORTRAN

program for plotting the stability region of an explicit Runge-Kutta method is given

below:

*---
* This is a main program for STABLE-SUBROUTINE

* This program creates data for plotting of the stability region

*---
PROGRAM REGSTAB
IMPLICIT NONE
INTEGER
PARAMETER
COMPLEX *16
REAL *8
INTEGER
DATA
READ(*,*) ORDER

N,M
(N=50, M=20)
Z(N*M), COEFF(M+ 1)
EPS
I, ORDER, OPT
OPT/I/, EPS/l.D-9/

CALL STABLE(Z, COEFF, EPS, ORDER, OPT, N)
DO 10 I=l,N*ORDER

PRINT 100, DREAL(Z(I)), DIMAG(Z(I))

10 CONTINUE
100 FORMAT(2(F10.5,2X))

STOP
END

SUBROUTINE STABLE(Z, COEFF, EPS, ORDER, OPT, N)
IMPLICIT NONE

*--
*
*
*
*
*

This is the May 12, 1995 version of
STABLE .. ELSP Solver For Creating The data for plotting the region of

stability of Explicit Runge-Kutta Methods.
This version is in double precision and written using F77.
STABLE is a package based on Polynomial Algorithm for zero complex

*--
*
*
*
*

Reference ..
Edward Purba, Compact Numerical Methods for Stiff Differential Equations,

Master Thesis, Computer Science, Oklahoma State University,
1996.

*--
*
*
*
*
*
*
*
*

N
ORDER
z
COEFF

Number of dividing angle steps
Runge-Kutta ORDER>= 1
Complex variables with, dimension N*ORDER
Variable for storing the coefficient of polynomial,
dimension ORDER+1.

OPT Option of stability function
OPT= 1, Explicit Runge-Kutta with the form
I r(Z) I = I 1 +(lh)+(lh)"2/2+ +(lh)"s/s! I < 1.

*--
COMPLEX *16
REAL *8
INTEGER
COMPLEX *16
REAL *8
INTEGER
DATA

Z(1), COEFF(1)
EPS
N, OPT, ORDER
ZO,FZ,DFZ
PI, THETA, T
I,K
PI /3.14159265359DO/

IF(ORDER .LT. 1) THEN

125

PRINT*, '***ERROR ----ORDER SHOULD BE GREATER THAN 0'
STOP

END IF
IF(OPT .EQ. 1) CALL CRCOEF(COEFF,ORDER)
THETA = 2.DO*PI/FLOAT(N)
ZO = DCMPLX(O.DO,O.DO)
DO 10 K = 1, N*ORDER

l__

15

*

*

*

10

T = DFLOA T(K) * THETA
CONTINUE

FZ = COEFF(ORDER+1)
DFZ = COEFF(ORDER+1)

Homer's rule is used to represent the polynomial
DO I= ORDER, 2,-1

Calculate F(Z) = r(Z) - e"(iT)
FZ = FZ*ZO + COEFF(I)

Calculate DF(Z)/DZ
DFZ= DFZ*ZO + FZ

END DO
FZ = FZ*ZO + COEFF(1)
FZ = FZ- DCMPLX(DCOS(T),DSIN(T))
Z(K) = ZO - FZIDFZ
IF(CDABS(Z(K)-ZO) .LT. EPS) GOTO 10
ZO =Z(K)
GOTO 15

CONTINUE
RETURN
END

SUBROUTINE CRCOEF(COEFF ,ORDER)
IMPLICIT NONE

*---
*
*
*
*
*

This subroutine is used to create the coefficients of the polynomial
of the stability of an explicit Runge-Kutta Method.

ORDER Runge-Kutta ORDER>= 1
COEFF Variable for storing the coefficient of polynomial,

dimension ORDER+ 1.

*---
COMPLEX *16 COEFF(l)
INTEGER ORDER
INTEGER I,NFACT
NFACT= 1
COEFF(1) = l.DO
DO I=1,0RDER

NF ACT = NF ACT* I
COEFF(I+1) = DCMPLX(l.DO/DFLOAT(NFACT), O.DO)

END DO
RETURN
END

A graphical example of this program for input ORDER= 1, 2, 3, 4, and 5 is given in
Figure B-1 in the next page.

126

-4.0

Figure B-1 Stability Region ofRunge-Kutta Methods
Orders 1, 2, 3, 4, and 5

127

APPENDIXC

LINEAR MULTISTEP FORMULAS

There are two approaches for multistep methods that will be given in this

appendix related to ODE problems y'=f(t,y). The first is to approximate the function

f(t,y) with a polynomial and then integrate both sides. The second is to approximate the

function y(t) with a polynomial and then differentiate the approximating function. All

polynomial functions that are used in these approximations are generated by the Newton

Backward Difference formula. The backward difference of the Yk is denoted by Y'yk and

defined as Yk - Yk-l· The form of Y'
0
yk is defined as Yk,

Y'
2
Yk = Y'yk- Y'Yk-1 = Yk- 2Yk-l + Yk-2> and V"yk = V"-

1
Yk- V"-

1
Yk-l·

The Newton backward difference interpolation of the k known values Yn-k+b Yn-k+b ... ,

Y(n-1)' Yn is written as

s(s+ 1) 2
y(t) = y(tn + sh) = Y n + sY'y n +

2
! Y' Y n + · · · +

s(s+1) ... (s+k-1)vk-l
(k-1)! Yn

(C-1)

where s = (t- tn)/h, and tn ::;; t::;; 1n+l· From discrete mathematics, we know that

(
-sJ- (-s)(-s-1) ... (-s-j+1)(-s-j)! __ js(s+1) ... (s+j-1)
. - "I(")I - (1) ., . J J. -s- J . J.

Equation (C-1) then can be written as

128

129

k-1 ()
y(t) = y(t

0
+ sh) = L(-1)j -.s Vjy n·

j=O J
(C-2)

Adams-Bashforth Methods

John Couch Adams used the Newton backward difference interpolation to

approximate f(t,y) by assuming that he already had k known points Ctn-k+I,Yn-k+1),

Ctn-k+J>Yn-k+2), · · (tn.J> Yn-1), (tn,Y0). The polynomial approximation p*(t) off(t,y) is written

as

k-1 ()
p*(t)=p*(t

0
+sh)=L(-1)j -.s V'jf

0
•

j=O J

By integrating both sides, we have

tn+l k-1 ()
Yn+I=Yn+ JL(-1)j -.S V'jf

0
dt.

t
0

j=O J
(C-3)

We know that dt = hds, fort= to, s = 0, and fort= to+~> s = 1. By integrating (C-3) overs

from 0 to 1, we have

I k-1 ()
Yn+I=Yn+hJL(-1)j -.s V'jf

0
ds

0 j=O J

Since the V'jyn's do not depend on s, we can move the summation out of the integration,

so that we have

k-1 r I l
Y o+I ~Yo+ h~ l (-l)iVif,! (7J ds J

Suppose that

I

y ;* = (-J)i I (7}s,
then the methods can be written as

k-1

Y n+l = Y" +hi y j * vdf" .
j=O

These methods are called Adams methods or Adams-Bashforth methods

130

(C-4)

The coefficients Y/ are determined using Euler's method of generating functions.

The way to find these coefficients is by seeking G(t) such that G(t) can be written as

oo oo I() 1oo () I
G(t) = LY j * tj = L(-t)j J -.s ds = J:Lc -t)j -.s ds = Jo-t) -s ds.

j=O j=O 0 J 0 j=O J 0

s=l t 1
1

-1 -
= Jeln(1-t)-sds= Je-sln(l-t)ds= (1-t)sln(l-t) s=O = (1-t)ln(l-t)"

0 0

We know from Taylor series that

and

-ln(l- t) t t 2

t = l+2+3+ ...

1
-- = l+t2 +t3 +t4 + ...
1-t

From (C-5), we can have a relation

(Yo*+ Y1*t + Y2*t2+ ...)(1 + t/2 + t2/3 + e14 .. .) = 1 + t + t
2

+ e + ...

(C-5)

By comparing the coefficients of ti of both sides, we can get the recurrence relation,

.1 .1. 1.
Y. + -y. 1 + -y. + +-y -1 1.-0 1 2

I 2 1- 3 1-2 • • • i + 1 Q - ' - ' ' ' • • •
(C-6)

It can be easily shown that:

131

Fori= 0, y0*=1.

Fori= 1, y1*+y0*/2= and y1*=1-y0*/2=1/2.

Fori= 2, y2* + y1*/2 + y0*/3 = 1 and y2* = 1- y1*/2- y0*/3 = 1- 114- 1/3 = 5112.

Fori= 3, y3*+y2*/2+y1*/3+y0*/4=1 and

Y3 * =1-y2 */2-y1 * /3-y0 */4=1-5/24-1/6-114=3/8.

Fori= 4, y4*+y3*/2+y2*/3+y1*/4+y0*/5=1 and

y 4 *= 1-y3 * /2-y2 * /3-y1 * /4-y0 * 15= 1-3/16-5/36-1/8-115=251/720.

Fori= 5, y5*+y4*/2+y3*/3+y2*/4+y1*/5+y0*/6=1 and

y5* = 1-y 4 * /2-y3 * /3-y2 * /4-y1 * /5-y0 * 16= 1-251/1440-3/24-5/48-111 0-1/6=95/288.

By substituting the values of rt's into (C-4), we can write the family of Adams-

Bashforth methods as

Y n+l
* * *2 *3 *4 = Yn +h(Yo fn +yl Vfn +Y2 V fn +y3 V fn +y4 V fn + · · .)

- 1 5 2 3 3 251 4
- Yn +h(fn +2Vfn + 12 V fn +-gV fn + 720 V fn + ...) .

(C-7)

For the cases k = 1, 2, 3, 4, 5, and 6, Equation (C-7) gives

k = 1, Y n+ 1 = Y n + hfn (Explicit Euler)

k = 2 , Yn+l = Yn + h/2(3fn - fn-1)

k = 3, Yn+l = Yn + h/12(23f0 - 16fn-l + 5fn-2)

k = 4, Yn+l = Yn + h/24(55f0 - 59fn-J + 37fn-2- 9fn-3)

k = 5, Yn+l = Yn + h/720(190lf0 - 2774fn-l + 2616fn-2- 1274fn-3 + 251fn-4)

k = 6, Yn+l = Yn + h/1440(4277f0 - 7923fn-l + 9982fn-2- 7298fn-3 + 2877fn-4- 475f0 _s)

The interesting thing in this derivation of formulas is that the yj * 's do not depend on k.

If we already know the formula for Adams-Bashforth methods for k = m, we can create

I

L

132

the next (k+ 1) form of the Adams-Bashforth methods, just by adding the new term with

the new coefficient Yk*· Since we already know the values of y0*, y1*, ... ,ym_1*, the

value ofym *can be found just by applying the recurrence relation (C-6) with i = k.

Adams-Moulton Methods

The implicit Adams methods are generated using k known values Yn-k+I> Yn-k+2' ..

. , Yn-1> Yn and one unknown value Yn+I· These methods are called implicit because the

value Yn+I will be approximated using the previous values Yn-k+I> ... , y"' and Yn+I itself.

The Newton backward difference interpolation to approximate f(t,y) using these k+ 1

values Yn-k+I> Yn-k+2, ... , y"' Yn+I is written as

k ()
. -s+1 .

p(t) = p(t 0 + sh) = L(-1)J . ~?Jfn+I·
j=O J

By analogy with the Adams-Bashforth methods, we have

k

Y n+l = Y n + hLy j ydfn+l'
j=O

where the coefficients Yj satisfy

.~ J (-s+ 1)
Yj=(-1)J

0

j ds.

(C-8)

(C-9)

By using Euler's method of generating functions, we take G(t) as a function in the form

00

G(t)=LY}j·
j=O

As was done for the Adams-Bashforth methods, we have

133

I
s=l t

G(t) ~ (1- t);iln(l- tt, ~ In(~- t).
(C-10)

From Equation (C-1 0), we have

(Yo+ Y1t + y/+ ...)(1 + t/2 + t
2
/3 + e14 .. .) = 1.

By comparing the coefficients of ti of both sides, we can get the recurrence relation

1 1 1 {1 ifi = 0
. - . +- . + ... +-. -yo= .. -y,+ 2 Y,-l 3 Y,-2 t+1 Otft- 1, 2, ...

(C-11)

Equation (C-8) with the recurrence relation (C-11) are also called Adams-Moulton

methods.

It can be easily shown that:

Fori= 0, Yo= 1.

Fori= 1, y1+yof2=0 and y1=-yof2=-112.

Fori= 2, y2+ytf2+yof3=0 and y2=-y1/2-yof3=+ 1/4-113=-1/12.

Fori= 3, y3+y2/2+y1/3+yof4=0 and y3=-y2/2-y1/3-yof4=1/24+ 1/6-1/4=-1/24.

Fori= 4, y4+y3/2+yi3+y1/4+yof5=1 and

Y4=-y3/2-y2/3-yl/4-yof5=1148+ 1136+ 118-1/5=-19/720.

Fori= 5, y5+y4/2+y3/3+y2/4+y1/5+yof6=0 and

Ys=-y4/2-yi3-y2/4-y1/5-yof6=19/1440+ 1/72+ 1/48+ 111 0-116=-3/160.

By substituting the values of the y/s into (C-8), we can write the family of Adams-

Moulton methods as

Yn+l = Yn +h(yofn+l +yl'Vfn+l +y2Y'
2

fn+l +y3Y'
3
fn+l +y4Y'

4
fn+l+ ...)

1 1 2 1 3 19 4 (C-12)
= Y n + h(fn+l -2 V'fn+l - 12 V' fn+l - 24 V' fn+l - 720 V' fn+l + ...)

..........._ -

134

For the cases k = 0, 2, 3, 4, and 5, Equation (C-8) gives

k = 0, Yn+l = Yn + hfn+l (Implicit Euler)

k = 1, Yn+l = Yn + hf2(fn+I + fn) (Trapezoidal)

k = 2 , Yn+l = Yn + hl12(5fn+l + 8fn- fn-1)

k = 3, Yn+l = Yn + h/24(9fn+l + 19fn- 5fn-1 + fn-2)

k = 4, Yn+l = Yn + h/720(251fn+l + 646fn- 264fn-1 + 106fn-r 19fn-3)

k = 5, Yn+l = Yn + h/1440(475fn+l + 1427fn- 798fn-1 + 482fn-2- 173fn-3 + 27fn-4)

Backward Differentiation Formulae (BDF)

The approach of finding a discrete solution using these methods are different from

the Adams methods. Here, the function that will be approximated is y(t), and the

procedure of solving the solution is done by differentiating y(t). Similar to Adams

methods, the polynomial Newton backward difference interpolation will be used to

approximate y(t). The interpolation is done by considering k known values Yn-k+b Yn-k+2• .

. . , Yn-b Ym and one unknown values Yn+I· The polynomial approximation q(t) ofy(t) then

is written as

k ()
-s+1

q(t) = q(tn +sh) = Ic-1)j . vdyn+I·
j=O J

(C-13)

We know that dq/dt = (dq/ds)(ds/dt) = (1/h)dq/ds, so if we substitute this into y' = f(t,y),

we have

k ()
1 d . -s+ 1 .
h-d ~(-1)J · ~7JYn+l = fn+I·

S J=O J

.......__

l

k (J 1 . . d -s+ 1

h ~(-l)J yrJYn+l-d · =fn+I·
FO S J

Since

(
-(s-l)J __ j (s-l)(s)(s+l) ... (s-1+ j-1)

. - (1) ., '
J J.

and 1n+I = 1n + sh for s=l, then

_! (-(s - 1)J - - j _! (s - 1)(s)(s + 1) . . . (s + j - 1)
. - (1) d .,

ds J s=I s J. ls=I

For case j=O,

(-l)j
= -.

1
-{(s)(s+ 1) ... (s+ j-2)+(s-l)(s+l) ... (s+ j-2)

J.

+ ... +(s-l)s(s+l) ... (s+ j-3)}is=l

d (-(s-l)J d (-s+ 1)! d I -- =-1 =0
ds 0 s=I- ds 0!(-s+ 1)! s=I ds s=I ·

For case j=l,

!(-(s-l)J =! (-s+l)! =_!(-s+l)l =-1=(-1)10!.
ds 1 s=I dsO!(-s+l-l)!s=I ds s=I

135

(C-14)

Let us take s=l. Since for j = 2, (s)(s+l) ... (s+j-2) = (s) = 1!, for j=3, (s)(s+l) ... (s+j-2) =

(s)(s+ 1) = 2!, for j = k, (s)(s+ 1) ... (s+j-2) = (1)(2) ... (k-1) = (k-1)!, k ~ 2, then

_! (-(s-l)J = (-l)j J 0 for j = 0 = _
1
j{~ for j.=

0

ds j s=I j! lG-1)! forj ;:::I () J foq;:::
(C-15)

By substituting (C-15) into (C-14), we have

k

" z· 1 . ~(-1) J(:) VJYn+J = hfn+J•
j=l J

Since (-lij = 1 for every j ~1, then

k

" 1 . ~(-:-)VJYn+l =hfn+J·
j=l J

(C-16)

These multistep methods are called backward differentiation formulae (BDF) methods.

For the case k = 1, 2, 3, 4, 5, and 6, the equation (C-16) gives

k = 1, Yn+l = Yn + hfn+l (Implicit Euler)

k = 2, Yn+l = (4/3)yn- (1/3)Yn-l + (2/3)hfn+l

k = 3, Yn+l = (18/ll)Yn- (9/ll)Yn-1 + (2/ll)Yn-2 + (6/ll)hfn+l·

k = 4, Yn+l = (48/25)yn- (36/25)Yn-l + (16/25)Yn-2- (3/25)Yn-3 + (12/25)hfn+l·

k = 5, Yn+l = (300/137)Yn- (300/137)Yn-l + (200/137)Yn-2- (75/137)Yn-3 +

(12/137)Yn-4 + (60/137)hfn+l·

k = 6, Yn+l = (360/147)Yn- (450/147)Yn-J + (400/147)Yn-2- (225/147)Yn-3 +

(72/147)Yn-4- (10/147)Yn-5 + (60/147)hfn+l·

•

...I..

APPENDIXD

ESTIMATION OF ERROR AND STEPSIZE CONTROL

Economically, it is suggested to choose a stepsize not to be constant for the whole

range of computation. The stepsize control policy becomes important not only for

deciding the next stepsize but also for deciding the starting stepsize. The objective of

selecting the stepsize is to minimize the computing time of numerical solution of ODEs

by considering a user-specified accuracy requirement. In this case, the stepsize should be

chosen small if f(t,y) of y' = f(t,y) is varying fast; on the other hand, iff is changing

slowly, the stepsize can be chosen larger but still satisfy the accuracy of solution. In

choosing the stepsize, the instability of the numerical computation should be considered.

Usually, techniques for adaptive stepsize selection hinge on the local error at each step.

Since users of ODE solvers do not want to be involved in designating an initial stepsize

for the computation, but can be asked to supply a tolerance for the numerical results, the

ODE solvers should support the automatic selection of stepsizes.

The series solutions ofy' = f(t,y) from t0 to tfwill be given as (t0, y0), (tt> y1), ... ,

(tN,yN) with t0 < t 1 < t2 < ... < tN = tr. For every stepsize h, there are always two

solutions; the approximate solution Yn+I> and local exact solution u(tn+1). The local error

at step n+l is defined as ln+I = u(tn+1)- Yn+I· Here, u(tn+I) is the exact solution of u' =

f(t,u) at 1n+t> where u(tn)=yn and 1n::;; t::;; 1n+I· The true error or global error is defined as

137

il'
!

138

gn+l = y(tn+l) - Yn+l = y(tn+l) - u(tn+J) + ln+b where y(tn+l) is the exact solution of

y' = f(t,y), y(t0) = y0, t0 s t s tr. Since at the first step the local exact solution is the same

as the true solution, the local discretization error for the first step will also be the same as

the global error.

Accumulative Error of One-Step Methods

The general one-step method for solving y' = f(t,y) is defined as

Yn+l = Yn + h~(tn,yn;h), where~ is known as the increment function and always depends

on f(t,y). The Euler method is one example of one-step methods where~ is f itself. The

local discretization error of the one-step method is

ln+l(h) = u(tn+h)- Yn- h~(tn,yn;h) = u(tn+h)- u(tn)- h~(1n,Yn;h),

where u(tn+1) is the local exact solution of u' = f(t,u) at 1n+~> for u(tn) = Yn· The Taylor

series of u about h=O is given as

u(tn+J) = u(tn) + hu'(tn) + h2u"(tn)/2! + ... + hNu(N)(tn)/N! + O(hN+l).

Let \jl(h) = h~(1n,Yn;h). We can find that \jl(m)(h) = m~(m-l),h(1n,yn;h) + h~(m),h(tn,yn;h),

where ~(k),h(1n,Yn;h) is the kth partial derivative of ~(tn,yn;h). The Taylor series of \jl about

h=O is

2 3
\jl(h) = h.~(1n,Yn;O) + 2h ~l.h(1n,Yn;0)/2! + 3h ~2,h(tn,yn;0)/3! + · · · +

NhN~(N-l),h(1n,Yn;O)/N! + O(hN+l).

By substituting the Taylor series of u and \jl about h=O into the local discretization error

ln+b we have the Taylor series ofln+l about h= 0 as

2
ln+l(h) = h[u'(1n)- ~(tn,yn;O)] + h /2![u"(1n)- 2~l.h(t"'y";O)] + ...

~

139

N ~ ~I
+ h /N![u (1o)- N~(N-I).h(1n,yn;O)] + O(h)

N

= h { L[hk-!Gk(tn)J + O(hN)},
k=l

(k)
Gk(x) = u (x) _ ~(k-I).h (x, y;O)

k! (k -1)!

From the local discretization error, we have

N

u(tn +h)-u(tn) -~(tn,yn;h) = Lhk-IGk(tn)+O(hN).
h k=l

(D-1)

A one-step method is said to be of order p 2:: 1, if lh-1ln+II = O(hP).From (D-1), a one-step

method is of order p 2::1 if G1(x) = Gix) = ... = Gp(x) = 0, Gp+1(x) -:;:. 0. A one-step

method Yn+I = Yn + h~(1o,yn;h) is said to be convergent if for arbitrary tn E [t0,tr],

lim y(t; h)= y(t). A one-step method Yn+I = Yn + h~(1o,yn;h) is said to be consistent if
h~O

~(t,y;O) = f(t,y). It has been shown [61, 66, 115] that the necessary and sufficient

condition for convergence of a one-step method of order p 2:: 1 is consistency.

Theorem (D-1): The accumulated error of a one-step method of order pis of order hP.

Proof:

Suppose en= Y(1o) - Yn; then en+! = y(1o+ 1) - Yn+l· By manipulating y(tn+1), we

have

I ,(y(tn+l)- y(tn))l []
en+I = ly(tn)-, h j- Yn +h~(tn,yn;h). (D-2)

By doing a little manipulation on (D-2) and considering the local truncation error, we

have

140

h(
y(tn+l)-y(tn) J.)

en+I =y(tn)-Yn + h -'f'(tn,y(tn);h)+$(tn,y(tn);h)-$(tn,yn;h).

= en + hO(h P) + h($(t n , y(t n); h) - $ (t n , Y n ; h)}

Since y(tn) = Yn +em we can have en+!= en+ hFnCen) + hO(hP), where

Fn(en) = $(tn,yn+en;h)- $(tn,yn;h).

Expanding Fn using Taylor series about en= e0 = 0, we have

Fn(en) =en $1.en (tn ,Y n + d; h),

where e0 ~ d ~en. Let K =max {l$1,y(t,y;h)l}, then IFnCen)l ~ Klenl· It has been shown by

Walston and Waddel [115] that

enhK 1
Jy(tn)-Ynl=lenl~ T7.- O(hP). (D-3)

Examples:

1. Consider the Euler method y n+ 1 = y n + hf(tn,y n).

Here, u' = f(t,y), and $(t,y;h) = f(t,y).

u' = f, u" = ft + ffy, u"' = fu + 2ffty + ffyy + fy(ft + ffy)·

$1,h(t,y;h) = f(t,y), $2,h(t,y;h) = 0.

G1(t) = u'(x)/1! - $o,h(t,y;O)/O! = f(t,y)- f(t,y) = 0.

G2(t) = u"(t)/2!- $1,h(t,y;0)/1! = (~ + ffy)/2- 0 * 0.

Therefore the Euler method is of order 1.

2. Consider the Runge-Kutta method Yn+I = Yn + 1/2[hf(tn,Yn) + hf(tn +h,yn +h(f(tn,Yn))].

Here, u' = f(t,y) and $(t,y;h) = 112f(t,y) + 1/2f(t+h,y+hf(t,y)).

Let v = t + h, w = y + hf(t,y), and \jl(v,w) = f(v,w).

$1,h(t,y;h) = 112[vh.\jiJ,vCv,w) + wh.\j/Lw(v,w)] = 1/2[fv(v,w) + f(v,w)fw(v,w)].

......__.

~ 1 ,h(t,y;O) = l/2[ft(t,y) + f(t,y)fy(t,y)].

2
~2,h(t,y;h)=l/2[fvv(v,w)+2f(v,w)fvwCv,w)f(v,w) fww(v,w)+fy(v,w)(fv(v,w)+

f(V, W)fv(V, W))].

~2,h(t,y;O) = l/2[fu + 2ffty + ffyy + fy(~ + fft)].

G1(t) = u'(x)/1! - ~o.h(t,y;0)/0! = f(t,y)- l/2[f(t,y) + f(t,y)] = 0.

Git) = u"(t)/2!- ~ 1 .h(t,y;O)Il! = l/2[ft + ffy]- l/2[ft + ffy] = 0.

G3(t) = u"'(t)/3!- ~2,h(t,y;0)/2! = 116[fu + 2ffty + ffyy + fy(~ + ffy)]- l/4[fu +

2ffty + ffyy + fy(ft + ffy)] if:. 0.

Therefore the Runge-Kutta Yn+l = Yn + l/2[hf(!n,Yn) + hf(tn+h,yn+h(f(tn,Yn))] is of

order 2.

Initial Stepsize

141

Frequently, users do not know how to give a suitable initial stepsize for an ODE

solver. That is one reason why ODE solvers should support a facility to generate an

initial stepsize. Gladwell et al. [48], Hairer et al. [57], and Shampine [105] have

discussed algorithms to generate the initial stepsize for ODE solvers. The idea is based

on the hypothesis that the local error (from the expansion of Taylor series) of a method of

order pis approximately Chp+ly(p+l)(t0). The initial stepsize will be calculated if users do

not give the initial stepsize for the ODE computation, but are willing to give a tolerance

for the numerical results. Let sc be a vector that represents the desired tolerance for the

numerical results, where sci = Atoli + max { IY Oil, IY iii} Rtoli is the ith element of sc. Here,

Rtoli is the relative error for the ith element, and Atoli is the absolute error for the ith

142

element. Since calculating y<p+ 1\t0) is not easy and there is no guarantee that y<p+I)(t
0

) is

not close to zero, in order to have the local error not exceed the desired tolerance, the

initial stepsize should be computed using the following algorithm [57] :

Calculate sci = Atoli + IYoil (Rtoli)

1 Yo.i m (J2 Calculate do= II Yo II=,/- I _­
m i=I sci

1 o· m (f J2
Calculate d1 =II f(t0,y0) II=,/- I -·•

m i=I sci

If d0 :::; 10·5 or d 1 :::; 10·5 then h0 = 10-6 else h0 = O.Ol(dofd1).

Take h0 = min{l tr- t0 I, ho}-

Perform explicit Euler, y 1 =Yo+ h0 f(t0,y0).

Calculate f1 = f(t0+ho,YI)-

1
Estimate the second derivative, d2 =II f1 - f0 lllho = h

0

Calculate dmax =max { d~o d2}.

If dmax:::; 10'15 then ho =max {10-6
, 10'3 h0} else h0 =

__!_ L:(fu - f0.i J
2

m sci

I

(
O.OlJ p+l

dmax

Usually, an initial stepsize that is computed using the algorithm given above can give a

good guess for the initial stepsize, but it takes an additional cost as shown above. If users

can give initial stepsize that is obtained from computational experience, it is suggested

that they give an initial stepsize to ODE solvers.

....

143

Stepsize Strategies

There are five steps related to the process for choosing an adaptive stepsize: (i)

determine an error tolerance sc for the numerical results, (ii) determine an appropriate

value for h
0

, (iii) calculate a numerical approach Yn+I> (iv) probe the quality ofyn+I with

respect to the local solution u(fn+1) ofu' = f(t,u), u(fo) = Ym and (v) improve the numerical

results Yn+I which has a local error ln+I is greater than sc. A PI stepsize control has been

proposed by Gustafsson et al. [55, 57] and has been implemented by Hairer et al. [57] in

the DOPRI5 solver.

In general, the approach for controlling the stepsize is based on the hypothesis

that the local error ln+ 1 of a pth-order method at t0 can be approximated as

ln+I = u(fo+hn)- Yn+I = h/+
1
\l'(tn,yn),

where u(t) is an exact solution ofu' = f(t,u), u(t0) = Yn· The Problem now is that the exact

solution is unknown so that ln+ 1 is not known. This difficulty can be handled by finding

an approximate local error En+I for ln+I· Among methods that can be used to find En+I are:

1. Merson's method [71] using Richardson's extrapolation [26, 33, 57, 66, 78]. This is

done by executing the method using two stepsizes h/2 and h. Lets y* be the result for

the stepsize h/2, and y* * be the result for the step size h. We can have

En+I = ln+I + O(hp+2
) = (y**- y*)/(2P- 1), where pis the order ofthe method and

2. Embedded Runge-Kutta methods as developed by Fehlberg [71, 112]. This is done

by executing the method using two methods of order p and p+ 1. If y* is the result

from the method of order p and y* * is the result from the method of order p+ 1, then

......

144

-1 O(hp+2
)- (** *) E~J- ~I+ - y -y .

One example of determining the control stepsize is using crude Euler and implicit

Euler [30]. If the local truncation error of a pth-order method is ln+I = \jl(t0 ,Y0)h/+1
, and

we wish the error to equal sc, then for the stepsize h* we have the relation

I

+I (SC Jp+l sc = \jl(t0 ,Y0)(h*)P . By eliminating \jf, we have a relation h* = h
0

- • If for
ln+l

stepsize h0 the problem is solved using crude Euler, we have the numerical result

lin+!= lin+ hn f(t0 ,U0), with local error Un+I- y(1o+1) = -h0

2
f0 '/2 + O(h/). If for stepsize h0

the problem is solved using implicit Euler, we have the numerical result

Wn+l = W0 + h0 f(tn+J>Wn+J), with local error y(tn+J) - Wn+I = h/fn'/2 + O(h0 \ The

estimated error En+I can be taken as En+I ~ (lin+I - W0 +1)/2. In order to avoid a small error,

I

(
sc)P+I

h* can be taken ash*= J.lhn - , where 0 < J.l < 1 (J.l can be taken equal to 0.9).
En+l

Birta et al. [9] proposed several algorithms for finding the stepsizes. All

algorithms will be based on the assumption that Rn+I = max{lrn+dj}, where rn+I = En+1/rc
J

and for m-vectors a and b, alb is the vector whose jth component is a/bj. The following

algorithms will be named S 1, S2, and S3.

Algorithm S 1 :

Determine J.l, and let RT = 1.

Determine E0 , and compute sc"' where scni = Atoli +max { IY(n-I)il, IY(n)d}(Rtoli).

- - p+l (J.l Jp~l Compute gn- i!E0/scnll, Rn- hn g0 , and hn+I = Rn hn .

,
145

- p+1 Compute Rn+1- hn+1 gn.

(
f..l Jp~1 . .

IfRn+1 > RT then hn+1 = -- hn+1, and check Rn+1 agam until Rn+1 ~ RT·
Rn+1

Algorithm S2 :

Determine/..., and f..L = min{0.9, -0.1log /...}.

Determine Em and compute scm where scni = Atoli +max { IY(n-1)d, IY(n)ii}(Rtoli).

1

Compute R and h -(f..LRn_1JP+
1
(h J n• n+1- _n h R 2 h n· n n-1

Algorithm S3 :

Let f..L = 0.5, A0 = 1, and let RT = 2.

Determine Em and compute scm where scni = Atoli +max { IY(n-1)il, IY(n)ii}(Rtoli).

Compute gn = IIEn/scnll, Rn = h/+
1
gn.

Compute A, ~ (0.4 + 0.6min{ 2, ~" } },_1, n > 0

(
f..l Jp~1

Compute an = 0.5(1 +An) Rn .

1 h - d - h p+1
Calcu ate n+ 1 - anhm an Rn+ 1 - n+ 1 gn.

IfRn+1 > RT then

Compute An= 0.5 (1+-
1
-}n·

Rn+1

I

Compute an+I = min{1, 0.5(1 + A0)}(~Jp+I.
Rn+l

'

146

Calculate hn+ I = an+ I hn+ I.

Calculate Rn+l and check until Rn+l ~ RT.

endif

Birta et al. [17] also claimed that the algorithm S3 has superior performance, and

demonstrated this in their several numerical experiments. Wille [117, 118] introduced

procedures for finding a new stepsize for linear multistep methods and for Adams linear

multistep methods. Hall [58] in his report introduced a procedure for finding a new

stepsize for Runge-Kutta codes.

Optimal Order Related to Stepsize Sequences

In modem standard methods for solving ODEs, the strategy is based on the

possibility of computing the solution over the whole range of integration using variable

methods and variable stepsizes. A classic theory of constant stepsize and constant

formula methods (CSCFM) has been successful implemented in several fields of ODE

problems. Nowadays, the challenge is to solve ODE problems using a theory of variable

stepsize and variable formula methods (VSVFM). Some ideas for VSVFM have been

introduced by Shampine and Gordon [99], Kockler [71], Zlatev [120], Butcher [14],

Shampine [105], Hairer et. al [56, 57], and Zhang [119].

Butcher [14, 15] proposed an algorithm for selecting the optimal order and

stepsize from a collection of numerical methods with different orders as follows :

hmax = tr- t

ro = hmaxlhn

u=O

fori E 3 do

enddo.

if(i)e[i] r0i+I < (sc)w[i] then

else

endif

r = ro

I

r = ((sc)w[i])i+l
(i)e[i]

if (i)(r) > (i+ 1)w[i]u then

(i)(r)
u = _:.....:_:_'---

(i + 1)w[i]

p = 1

hn+l = (r)hn

endif

147

In this algorithm, 3 is a set of available orders of numerical methods, i is the order of a

method, r is a factor for the next stepsize, sc is a user-specified tolerance, w[i] is the

relative cost using the order i, hn is the current stepsize, pis the chosen order, hn+I is the

chosen stepsize, and u is an auxiliary variable. The relative cost w[i] can be the cpu time

needed to calculate one step for a method of order i. This can be done from the first

computation with stepsize h0 for all method of order i' s in 3 by investigating the cpu

time for each order.

.....

APPENDIXE

STABILITY REGION OF SIMPLE PREDICTOR-CORRECTOR METHODS

The test problem y' = f(t,y) = A.y, has been successfully used by Dahlquist in

analyzing the stability region of numerical methods of ODEs. By substituting this test

problem into the Euler method Yn+I = Yn + hf(!n,Yn), we have Yn+I = Yn + A.hyn = (1 +A.h)Yn·

Since the latter can be simplified into Yn = (l+A.h)" y0, it can be said that the Euler

method will absolutely be stable if II+ 'Ahl :::::; 1. For A.h real, the interval of absolute

stability is -2 :::::; A.h :::::; 0. In case A.h complex, the region of absolute stability is the region

inside a circle with center (-1 ,0) and radius 1. By applying the same procedure to the

implicit Euler method Yn+I = Yn + hf(!n+J>Yn+I), we have Yn+l = Yn + 'AhYn+I· From

grouping the same variables, we have Yn+I = (1-A.hr' Ym and then Yn = (1-A.hr" Yo· The

implicit Euler method will be absolutely stable if 11-A.hl ~ 1. For A.h real, the interval of

absolute stability is {A.h I A.h ~ 2 or A.h :::::; 0}. For the trapezoidal method

Yn+I = Yn + hl2[f(tn,yn) + f(!n+I,Yn+I)], we get Yn+I = Yn + hi2[AYn + AYn+I]. By grouping

the same variables, we have Yn+1=[(1+A.h/2)/(1-A.h/2)]y"' and Yn=[(l+A.h/2)/(1-A.h/2)]" Yo·

The trapezoidal method is said to be absolutely stable if I(1 + A.h/2)/(1-A.h/2)1 :::::; 1. In case

A.h is real, the region stability of the trapezoidal method is an interval A.h < 0. For the

case of A.h complex, the region of absolute stability is the set of complex z so that the

148

149

distance between z and the point z=-2 is less than or equal to that of the distance between

z and the point z=2.This region is none other than half-plane of Re(A.h) ~ 0. Let us

examine the case when the trapezoidal method is used as a corrector and the crude Euler

method is used as a predictor. This predictor-corrector method is also called a PC

method. The stability of this PC method will depend on both the predictor and the

corrector. The stability will not be dominated by the corrector alone, but the predictor

will also contribute to the stability of this PC method. Let's analyze what will happen if

we iterate the corrector up to m times. The situation is as follows:

Yn+l[O] =yn+hfn =yn+A.hyn=(1+A.h)Yn (corrector)

[I] - hi [O] - hi h Yn+l - Yn + (2)(fn + fn+l) - Yn + (2)[AYn + A.(l +A.)Yn]

= [1 +A.h+(A.hil2]yn (1st execution of corrector)

[2] [I] 21] Yn+l = Yn +(hl2)(fn + fn+l) = Yn+(hl2)[AYn +A.{ [1 +A.h+(A.h) 2]yn}

= [1 +A.h+(A.h)2/2+(A.hil22]yn (2"d execution of corrector)

Yn+I[m] = Yn + (hl2)(fn + fn+I[m-I]) = E(A.h)Yn (mth execution of corrector)

where E(A.h) = 1+A.h+(A.h)212+(A.h)3/22+ ... +(A.ht+I/2m. In order to have an absolutely

stable computation, first, the E(A.h) should converge as m goes to infinity. This is only

possible for IA.hl21 < 1 or IA.hl < 2. The region of stability here is a region inside a circle

with center 0 and radius 2. By calculating the series for E(A.h), we have

E(A.h) = 1 + A.h [1- (A.h I 2)m+l]- 1 + A.h I 2- 2(A.h I 2)m+
2

1 - A.h I 2 - 1 - A.h I 2

The second condition is I E(A.h) I ~ 1. For m ~ oo, E(A.h) = [1 +A.hi2]1[1-A.hl2]. By

considering the two conditions together, for A.h complex, we have that the region of

....

150

stability is { A.h I Re(A.h) ~ 0 and I A.h I < 2}, which is the left part of a region inside a

circle with center 0 and radius 2. For A.h real, the interval of stability is -2 < A.h < 0. It is

clear then that for the casey' =-SOy, the timestep should be less than 2/50=0.04 in order

to have a stable computation. The region of stability of a PC method where the

trapezoidal rule is used as a corrector and crude Euler is used as a predictor, is shown in

Figure E-1.

Trapezoidal
lm(A.h)

Re(A.h)

Figure E-1 A PC-Method Where a Trapezoidal as a
Corrector and an Euler as a Predictor

Let us now investigate the case when the implicit Euler method is used as a

corrector and the crude Euler method is used as a predictor. Let us analyze what will

happen if we iterate the corrector up to m times. The situation is as follows:

Yn+I[O] =yn+hfn =yn+A.hyn=(1+A.h)Yn (corrector)
[I] _ [0] _

Yn+l - Yn + hfn+l - Yn + hA.(1 +A.h)Yn

= [1 +A.h+(A.hilYn (1st execution of corrector)

[2] [I] 2
Yn+l = Yn +hfn+l = Yn+hA.{ [1+A.h+(A.h)]Yn}

= [1 +A.h+(A.hi+(A.h)3]yn (2nd execution of corrector)

151

[m) - hf [m-1] - E('~h) Yn+l - Yn + n+l - /1, Yn (mth execution of corrector)

where E('Ah) = 1 +'Ah+('Ah)2+('Ah)3+ ... +('Ah)m+l. In order to have absolutely stable

computation, first, E('Ah) should converge as m goes to infinity. This is only possible for

I'Ahl < 1. The region of stability here is a region inside a circle with center 0 and radius 1.

By calculating the series of E('Ah), we have

E('Ah) = [1- ('Ah)m+2]
1-'Ah .

The second condition is I E('Ah) I~ 1. Form~ oo, E('Ah) = [1-'Ahr1
• In the case where 'Ah

is real, from the two conditions, the region of stability is an interval -1 < 'Ah < 0. It is

clear then that for the casey' = -50y, the timestep should be less than 1150=0.02 in order

to have a stable computation. For 'Ah complex, we have that the region of stability is

{ 'Ah I 11-'Ahl ;:::: 1 and I 'Ah I < 1}. A graphical representation of this region of stability is

given in Figure E-2.

Im(A.h) I 1-A.h 1 ~ 1

Re(f.h)

Figure E-2 A PC-Method Where the Implicit Euler Method
as a Corrector and Crude Euler as a Predictor

APPENDIXF

COLLECTION OF PROGRAMS

Mathematica 1. Kidney Problems

(*Loading Graphics and MultiplePlot packages *)
<<Graphics' Graphics'
<<Graphics' MultipleListPlof
(* Create module for solving the problems*)
Clear[sols]
sols[l_,title _]:=Module[{ dsys,y1 ,y2,y3,y4,y5,

y 1 out,y2out,y3out,y4out,y5out,t},
endtime=1;
a=100;
b=0.9;
c=1000;
d=10;
tmin=O;
tmax=1;
dt=O.l;
eqone=y 1'[t]==a*y1 [t]*(y3[t]-y1 [t])/y2[t];
eqtwo=y2'[t]==-a*(y3[t]-y1 [t]);
eqthree=y3' [t]==(b-e* (y3 [t]-y5 [t])-a *y3 [t] *(y3 [t]-y 1 [t]))/y4 [t];
eqfour=y4'[t]==a*(y3[t]-y1 [t]);
eqfive=y5'[t]==-c*(y5 [t]-y3 [t])/d;
dsys=NDSolve[{ eqone,eqtwo,eqthree,eqfour,eqfive,

y1 [0]==1 ,y2[0]== 1 ,y3 [0]==1 ,y4[0]==-1 O,y5[0]==1},
{y1 [t],y2[t],y3[t],y4[t],y5[t]}, { t,O,endtime} ,MaxSteps->5000];

y1out=Table[{ t,y1 [t]/.dsys[[1]]}, { t,tmin,tmax,dt}];
y2out=Table[{ t,y2[t]/.dsys[[1]]} , { t,tmin,tmax,dt}];
y3out=Table[{ t,y3[t]/.dsys[[1]]}, { t,tmin,tmax,dt}];
y4out=Table[{ t,y4[t]/.dsys[[1]]} , { t,tmin,tmax,dt}];
y5out=Table[{ t,y5[t]/.dsys[[1]] } , { t,tmin,tmax,dt}];
Multi pleListPlot[y 1 out,y2out,y3out,y4out,y5out,

PlotRange->All,AxesOrigin->{0.,0.} ,AxesLabel->{"t" ,"y"},
PlotLabel->title,PlotJoined->True]]

(* Plot the outputs *)

152

..........._

graph1 =sols[0.9902688359,"1=0.9902688359"];
graph2=sols[0.990283499,"1=0.990283499"];
graph3=sols[0.9925211341,"1=0.9925211341 "];
graph4=sols[1.0304879856,"1= 1.0304879856"];
graph5=sols[0.99,"1=0.99"];
graph6=sols[0.9,"1=0.9"];
graph7=sols[O.,"l=O. "];
Show[GraphicsArray[{ {graph 1 ,graph2}, { graph3 ,graph4},

{graph5,graph6,graph7}}]]

Mathematica 2. Autocatalitic Reaction Pathway

(*Loading Graphics, MultiplePlot, Legend packages *)
<<Graphics' Graphics'
<<Graphics' MultipleListPlot'
<<Graphics' Legend'
(* Create symbols for legend *)
NewMakeSymbol[{a_,Line[x_]}]:=
Module[{yugh,y}, y=Line[(Scaled[#1,yugh] &) /@ x];

y=y /. yugh-># 1 ;Evaluate[{ a,y}]&]
NewMakeSymbol[Line[x _]] :=
NewMakeSymbol[{ AbsoluteThickness[0.1],Line[x]}]
diamond=RegularPolygon[4,0.02];
triangle=RegularPolygon[3,0.02];
star=RegularPolygon[5,0.02, { 0,0} ,0,2];
snowflake= Line[{ { 0,0}, { 0,0.025}, { 0,0},

{Sqrt[3]/80,0.0125}, {0,0},
{ Sqrt[3]/80,-0.0 125}, { 0,0}, { 0,-0.025},
{ 0,0}, { -Sqrt[3]/80,-0.0 125}, { 0,0},
{ -Sqrt[3]/80,0.0125}, { 0,0}}];

square= Line[{ { -0.0125,-0.0125},{0.0125,-0.0125},
{ 0.0125,0.0125} ' { -0.0125,0.0125}'
{ -0.0125,-0.0125}}];

(* end of creating symbols*)
(* Module for selecting outputs to be plotted *)
BeginPackage["OutPlot' "];
OutPlot: :usage="OutPlot[f]

selectively choose the output to be plotted.";
Begin["' Private'"];
OutPlot[f_,tO _,tf _]:=

Module[{},
1={};
For[x=tO,x<=tf,x=x 10,

l=Append[l,N[{Log[1 O,x],f[x]}]]];

153

End[];
EndPackage[];

Return[l];
];

(* end of module *)
(*Compute the ODE problem numerically*)
endtime=4 1 0"' 1 0;
Clear[yl ,y2,y3,t]
dsys=NDSolve[

{yl'[t]=-0.04 y1 [t]+ 1 0"'4 y2[t] y3[t],
y2'[t)==0.04 yl[t)-10A4 y2[t) y3[t)-

3 1 OA7 y2[t] y2[t],
y3'[t]==3 IOA7 y2[t] y2[t],
y 1 [0]== 1 ,y2[0]==0,y3 [0]=0},
{y1 [t],y2[t],y3[t]}, { t,O,endtime}];

yl[t_]= y1[t]/.dsys[[1]];
y2[t_]= y2[t]/.dsys[[l]];
y3[t_]= y3[t]/.dsys[[1]];
(*end of computation*)
(* Selecting output to be plotted *)
y1out=OutPlot[y1,10,4 10A10];
y2out=OutPlot[y2,10,4 10A10];
y3out=OutPlot[y3,10,4 10A10];
(* Plot the output *)
Show Legend[

MultipleListPlot[y 1 dat,y2dat,y3dat,
DotShapes->{NewMakeSymbol[snowflake],

NewMakeSymbol[diamond],
NewMakeSymbol[star]},

PlotJoined-> True,
AxesLabel->{"t" ,"y"},
DisplayFunction->ldentity],

{ { {Graphics[snowflake],"y1 "},
{Graphics[diamond], "y2"},
{ Graphics[star],"y3"}},
LegendSize->{0.5,0.5},
LegendShadow-> { 0,0},
LegendBorder-> None,
LegendPosition->{0.3,-0.2}}]

Mathematica 3. Problem D4 of Enright at al.

(*Loading Graphics and Legend packages*)

154

<<Graphics' Graphics'
<<Graphics' Legend'
(* Define the ODE problem to be solved *)
endtime=50;
Clear[y 1 ,y2,y3 ,eqone,eqtwo,eqthree,t];
eqone=y1'[t]==-0.013 y1[t]- 10"3 yl[t] y3[t];
eqtwo=y2'[t]==-2500 y2[t] y3[t];
eqthree=y3'[t]==0.013 y1[t]- 10"3 y1[t] y3[t]-

2500 y2[t] y3[t];
(* Compute the ODE problem numerically *)
dsys=NDSolve[{ eqone,eqtwo,eqthree, y1 [0]==1 ,y2[0]==1 ,y3[0]==0},

{y1 [t],y2[t],y3[t]}, {t,O,endtime}];
y1 [t.J= y1 [t]/.dsys[[1]];
y2[t.J= y2[t]/.dsys[[1]];
y3[t.J= y3[t]/.dsys[[1]];
(* Plot the results *)
y1 out=Plot[y1 [t], { t,O,endtime} ,PlotRange->All,AxesLabel->{ 11t 11

,
11 y1 11

},

Axes0rigin->{O,y1 [endtime]-0.02},Ticks->{ {0,25,50},{0,0.8,1} },
PlotStyle-> {Absolute Thickness[1],AbsoluteDashing[{ 5,5}]},
PlotPoints-> 15];

y2out=Plot[y2[t], { t,O,endtime} ,PlotRange-> All,AxesLabel-> { 11t 11
,

11y2 11
},

Axes0rigin->{O,y2[endtime]-O.Ol },Ticks->{ {0,25,50}, {0,0.9,1}},
PlotStyle->{ AbsoluteThickness[1.2],AbsoluteDashing[{2,2}]},
PlotPoints-> 15];

y3out=Plot[y3 [t], { t,O,endtime} ,PlotRange-> All,AxesLabel-> { 11t 11
,

11 y3 11
},

Ticks->{ {0,25,50},{0,3.5 10"-6} },PlotStyle->{AbsoluteThickness[2]},
PlotPoints-> 15];

yall=Plot[{yl [t],y2[t],y3[t]},{t,O,endtime },PlotRange->{Automatic,{0,1} },
PlotStyle-> { {Absolute Thickness[1],AbsoluteDashing[{ 5,5}]},

{ AbsoluteThickness[1.2],AbsoluteDashing[{2,2}]},
AbsoluteThickness[2]},

LegendSize-> { 0. 3, 0. 3} ,LegendShadow-> N one,LegendBorder-> { 0},
LegendPosition->{ -0.2,-0.3} ,AxesLabel->{ 11 t 11

,
11 Y11

},

PlotLegend->{ 11y1 11
,

11 y2 11
,

11Y3 11
}];

Show[GraphicsArray[{ {y 1 out,y2out}, {y3out,yall}}]]

Mathematica 4. Problem Proposed by Gupta and Wallace

(*Loading Graphics and Legend packages*)
<<Graphics' Graphics'
<<Graphics' Legend'
(* Define the ODE problem to be solved *)
end time= 1 0;
Clear[y 1 ,y2,eqone,eqtwo,t];

155

v=-80;
w=8;
eqone=y1'[t]==v y1 [t] - w y2[t] +(-v+w+ 1) Exp[t];
eqtwo=y2'[t]==w y1 [t] + v y2[t] +(-v-w+ 1) Exp[t];
(* Solve the ODE problem Numerically *)
dsys=NDSolve[{ eqone,eqtwo,y1 [0]==1,y2[0]==1 },{y1 [t],y2[t]},

{ t,O,endtime} ,MaxSteps->2000];
y1 [t_j= y1 [t]/.dsys[[1]];
y2[t_j= y2[t]/.dsys[[1]];
y1 out=Plot[y1 [t], { t,O,endtime} ,PlotRange->All,AxesLabel->{ 11t 11

,
11 y1 11

},

AxesOrigin->{O,O},Ticks->{ {0,5,1 O},Automatic },
PlotStyle->{ AbsoluteThickness[1],AbsoluteDashing[{ 5,5}]},
PlotPoints-> 15];

y2out= Plot[y2 [t], { t, 0 ,endtime} ,PlotRange-> All,AxesLabel-> { 11t 11
,

11Y2 II},

Ticks->{ { 0,5, 1 0} ,Automatic },PlotStyle->{ AbsoluteThickness[2]},
PlotPoints-> 15];

yall=Plot[{y1 [t],y2[t]},{t,O,endtime },PlotRange->All,
PlotStyle->{ {AbsoluteThickness[1],AbsoluteDashing[{ 5,5}]},
AbsoluteThickness[2]},LegendSize->{0.3,0.3 },LegendShadow->None,
LegendBorder-> { 0} ,LegendPosition->{ 0.,-0.3} ,AxesLabel-> { 11t 11

,
11Y11

},

PlotLegend->{ 11 y1 11
,

11y2 11
}];

Show[GraphicsArray[{ {y 1 out,y2out}, {yall}}]]

Mathematica 5. Stability Region of Explicit Runge-Kutta

(* Loading FilledPlot package *)
<<Graphics'FilledPlot';
StabilityRungeKutta: :usage=11 StabilityRungeKutta[n,name]

Plot stability region of Runge-Kutta11
;

(* Created by Edward Purba

156

Computer-Science, Oklahoma State University, 1996 *)
StabilityRungeKutta[n _j :=Module[{ coeff,theta,zO,k,t,l, i,fz,dfz,z,nangle,sdt,tbl},
If1n<1,
(* then*)

Print[11The order should be >= 1 \n"],
(* else*)

If1n==1,
(*then*)

FilledPlot[{Sqrt[1-(x+ 1)"2],-Sqrt[1-(x+ 1)"2]},
{ x,-2, 0} ,AspectRatio-> 1 ,Fills->Gray Level [0. 9 5],

PlotStyle->Dashing[{0.01}],
PlotLabel->StringJoin["Order-", ToString[n]]],

(* else *)
coeff=Table[1/i!, { i,O,n, 1}];

];

nangle=35;
tbl={O,O,O,O,O, 70, 75, 75,60,70, 140,140,140,140,

140,210,210,210,210,210,210};
If[n < 22,
(*then*)

sdt=n*nangle-tbl[[n]],
(* else *)

sdt=n*nangle-Floor[(n-2)/5]*70;
];
theta=2 Pi/nangle;
z=O;
1={};
For[k=O, k<=sdt, k++,

zO =99999.;
t = N[k*theta,9];
While[Abs[z-zO] > lW'-6,

zO=z;
fz=coeff[[n+ 1]];
dfz=coeff[[n+ 1]];

(* Homer's rule is used to represent the polynomial *)
For[i=n i>=2 i--, , ,
(* Calculate F(z) = r(z)- e'\it) *)

fz=fz*zO+coeff[[i]];
(*Calculate df[z]/dz *)

dfz=dfz* zO+fz;
];
fz=fz*zO + coeff[[1]];
fz = fz- Cos[t] -I Sin[t];
z = zO- fz/dfz;
];
l=Append[l,N[{Re[z],Im[z]}]];
zO=z;
];
ListFilledPlot[l,Fills->GrayLevel[0.95],
AspectRatio-> 1 ,AxesOrigin-> { 0,0},
PlotLabel->StringJoin["Order-", ToString[n]]] ;
];
];

Stability RungeKutta[2]

Program 1. Main Program for MEBDF with the Case of Kidney Problems

157

c

PROGRAM RUNMEB
IMPLICIT NONE

C THE REAL WORK ARRAY NEEDS TO BE AT LEAST 2*N*N + 37*N WORDS LONG
C THE INTEGER WORK ARRAY NEEDS TO BEAT LEAST N WORDS LONG
c

REAL *8 Y(5), WORK(235), HUSED
INTEGER IWORK(5), NQUSED, NSTEP, NFE, NJE, NDEC, NBSOL
INTEGER NPSET, NCOSET, MAXORD, LOUT, L WORK, LIWORK, N
EXTERNAL FCN
EXTERNAL FEX, JEX, CLOCK

COMMON/MEBDF2/HUSED,NQUSED,NSTEP,NFE,NJE,NDEC,NBSOL,NPSET,
+ NCOSET,MAXORD

c
C THE INCLUSION OF THE COMMON BLOCK /MEBDF2/ ALLOWS THE USER TO
C ACCESS VARIOUS COUNTERS THAT MAY BE OF INTEREST TO HIM.
C THESE VARIABLES ARE EXPLAINED IN THE COMMENTS IN SUBROUTINE
C MEBDF.
C THE USER NEEDS TO SET THE UNIT ROUND-OFF ERROR FOR THE MACHINE
C BEING USED IN THE BLOCK DATA STATEMENT FOLLOWING SUBROUTINE
C MEBDF.
c

c

REAL *8
REAL *4
INTEGER
DATA
DATA
DATA
DATA
DATA

ALPHA, DELTA, TO, T, TEND, TOUT, HSTART, HO, TOL
DTIME, ETIME, TOTAL, TIMES(2)
INDEX
LOUT /6 !, L WORK/235/, LIWORK/5/, N/5/
TO/O.DO/, TENDII.DO/, DEL T A/0.1 DO/
Y(I),Y(2),Y(3),Y(4)1l.DO, !.DO, l.D0,-1 O.DO/
INDEXII/, HSTARTII.D-6/, TOL/l.D-6/
TIMES/0.0,0.0/

READ(*, *)ALPHA
Y(5)=ALPHA
T=TO
HO=HSTART
PRINT*,'ALPHA =',ALPHA

C THESE ARE THE INITIAL STEPS CHOSEN BY THE DETEST PACKAGE
C FOR THIS PROBLEM
c

TOUT=TO+DEL T A
TOTAL=DTIME(TIMES)

10 CONTINUE
IF(TOUT.LE.TEND) THEN

20 CONTINUE
CALL MEBDF(N, T, HO, Y, TOUT, TEND, TOL, 21, INDEX, LOUT,

+ L WORK, WORK, LIWORK, I WORK, FCN)
IF ((INDEX.NE.O).AND.(INDEX.NE.3)) THEN

IF(INDEX.EQ.l) THEN
INDEX=O
GOT020

ENDIF
WRITE(6 ,15) INDEX

!58

STOP
END IF

c
C HAVE COMPLETED ONE STEP
c
c
C HAVE WE FINISHED YET?
c

*
c

IF(INDEX.EQ.O) THEN
WRITE(6,250)T,NSTEP,NFE,NJE,NQUSED,HUSED, Y(1),

Y(2),Y(3),Y(4),Y(5)

C THEN WE HAVE EFFECTIVELY HIT TOUT
c

ENDIF

T=TOUT
ELSE

INDEX=3
GOT020

END IF
TOUT=TOUT+DELTA
GOT010

TOT AL=DTIME(TIMES)
WRITE(6, 690) TOL

690 FORMAT(1X, 'REQUESTED TOLERANCE',5X, 1PE10.3)
PRINT*,' User Sys Total'
PRINT*, TIMES(1),TIMES(2), TOTAL

c
C THESE VERY SMALL CONSTANTS SHOULD BE SET TO ZERO IF THERE
C ARE LIKELY TO BE DIFFICULTIES DUE TO UNDERFLOW.
c
250 FORMAT(1X,D11.6,14,14,14,13,D14.6,5(1X,D12.6))
15 FORMAT(' ***INTEGRATION HAS FAILED*** WITH INDEX=',l3)

STOP
END

SUBROUTINE FCN(T,Y,YDOT)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Y(5),YDOT(5)
A=100.DO
B=0.9DO
C=1000.DO
D=10.DO
YDOT(J)= A *Y(J)*(Y(3)-Y(l))/Y(2)
YDOT(2)=-A *(Y(3)-Y(J))
YDOT(3)=(B-C*(Y(3)-Y(5))-A *Y(3)*(Y(3)-Y(1)))/Y(4)
YDOT(4)=A *(Y(3)-Y(J))
YDOT(5)=-C*(Y(5)-Y(3))/D
RETURN
END

SUBROUTINE PDERV(T,Y,PW)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)

159

DIMENSION Y(5),PW(5,5)
A=IOO.DO
B=0.9DO
C=IOOO.DO
D=IO.DO
PW(l, 1)= (-A *Y(l) +A *(Y(3)-Y(l)))N(2)
PW(l ,2)= -A *Y(l)*(Y(3)-Y(l))/(Y(2)*Y(2))
PW(l ,3)=A *Y(l)N(2)
PW(l,4)=0.DO
PW(l ,5)=0.DO
PW(2,1)=A
PW{2,2)=0.DO
PW(2,3)=-A
PW(2,4)=0.d0
PW(2,5)=0.d0
PW(3, I)=A *Y(3)N(4)
PW(3,2)=0.DO
PW{3,3)=(-C-A *Y(3)-A *{Y(3)-Y{l)))N(4)
PW(3,4)=-(B-A *Y(3)*(Y(3)-Y(I))-C*(Y(3)-Y(5)))/(Y(4)*Y(4))
PW(3,5)=CN(4)
PW(4,1)=-A
PW{4,2)=0.DO
PW{4,3)=A
PW(4,4)=0.DO
PW(4,5)=0.DO
PW(5, I)=O.DO
PW{5,2)=0.DO
PW{5,3)=C/D
PW{5,4)=0.DO
PW(5,5)=-C/D
RETURN
END

160

Program 2. Main Program for VODE with the Case of Autocatalytic Reaction Problems.

PROGRAM RUNVODE
IMPLICIT NONE

* --
* R WORK = Real work array oflength at least..
* 22 + 9*NEQ + 2*NEQ**2 for MF=21 or 22,
* I WORK = Integer work array of length at least ..
* 30 + NEQ for MF=21, 22, 24, or 25
* LRW =Declared length of RWORK. (in User's DIMENSION statement)
* LIW = Declared length of IWORK. (in user's DIMENSION statement)
* ---

REAL *8
REAL*8
INTEGER
INTEGER
EXTERNAL
REAL *4

ATOL(3), RPAR, RTOL, RWORK(67), T, TOUT, Y(3)
DELTA, TO, TEND, HU
IWORK(33), NEQ, ITOL, ISTATE, ITASK, IOPT, LRW, LIW, MF
NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST, IPAR
FEX, JEX, CLOCK
DTIME, ETIME, TOTAL, TIMES(2)

INTEGER
COMMON

DATA
DATA
DATA
DATA
DATA
T=TO

SYSTEM
/DVOD02/HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST

TIMES/0.0,0.0/, DEL TA/0.4DO/, NEQ/3/, TOIO.DOI
Y/1.DO,O.DO,O.DO/
A TOLl I .D-6, I .D-6, I .D-6/, RTOL/I .D-6/
ITOL/2/, !TASK/I/, ISTATEII/, IOPT/0/, LRW/67/, LIW/33/
MF/211, TEND/4.DIO/

TOUT= TO+ DELTA
TOTAL = DTIME(TIMES)

IO CONTINUE
IF(TOUT. LE. TEND) THEN

CALL DVODE(FEX,NEQ, Y, T, TOUT,ITOL,RTOL,A TOL,IT ASK,IST ATE,
IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)

WRITE(6,250)DLOGIO(T), NST, NFE, NJE, NQU, HU, Y(I),
Y(2), Y(3)

TOUT = TOUT * I 0.00
GOTO IO

ENDIF
TOTAL = DTIME(TIMES)
PRINT*
PRINT*,' user sys total'
PRINT*,' seconds seconds seconds'
PRINT*, TIMES(I), TIMES(2), TOTAL

250 FORMAT(DI2.4,14,14,13,13,DI2.4,3DI4.6)
STOP
END

SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)
DOUBLE PRECISION RPAR, T, Y, YDOT
DIMENSION Y(NEQ), YDOT(NEQ)
YDOT(l) = -.04DO*Y(I) +I .D4*Y(2)*Y(3)
YDOT(3) = 3.D7*Y(2)*Y(2)
YDOT(2) = -YDOT(I)- YDOT(3)
RETURN
END

SUBROUTINE JEX (NEQ, T, Y, ML, MU, PO, NRPD, RPAR, IPAR)
DOUBLE PRECISION PO, RPAR, T, Y
DIMENSION Y(NEQ), PD(NRPD,NEQ)
PD(l,I) = -.0400
PD(I,2) = l.D4*Y(3)
PD{l,3) = I.D4*Y(2)
PD(2,I) = .0400
PD(2,3) = -PD(I,3)
PD(3,2) = 6.D7*Y(2)
PD(3,3)=0.DO
PD(2,2) =-PO(I ,2)- PD(3,2)
RETURN
END

161

Program 3. Main Program for LSODE with the Case of Problem D4 of Enright et al.

PROGRAM RUNLSODE
IMPLICIT NONE
EXTERNAL FEX, JEX, CLOCK
REAL *8 ATOL(3), RPAR, RTOL, RWORK(58), T, TOUT, Y(3)
INTEGER IWORK(33), NEQ, ITOL, IASTATE, IOPT, LRW, LIW, IT ASK
REAL *8 DELTA, TEND, TO

REAL *4 DTIME, ETIME, TOTAL, TIMES(2)
INTEGER SYSTEM, MF

DATA NEQ/3/, TIMES/0.,0./, DELTA/5.DO/, IOPT/0/,ITASK/11
DATA Y/l.DO,l.DO,O.DO/, TO/O.DO/, TEND/50.DO/, ITOL/2/
DATA ATOL/I.D-6, I.D-6, I.D-6/, IASTATE/1/, RTOL/I.D-6/
DATA LRW, LIW/58, 23/, MF/21/
T=TO
TOUT= TO+ DELTA
TOTAL = DTIME(TIMES)

10 CONTINUE
IF(TOUT.LE.TEND) THEN

162

CALL LSODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,IASTATE,
IOPT,RWORK,LRW,IWORK,LIW,JEX,MF)

WRITE(6,20)T,IWORK(Il),IWORK(l2),1WORK(l3),1WORK(I4),

ENDIF

RWORK(li),Y(l),Y(2),Y(3)
IF(IAST A TE.L T.O) GOTO 80
TOUT = TOUT + DELTA
GOTO 10

TOTAL = DTIME(TIMES)

PRINT*
PRINT*,' user sys total'
PRINT*,' seconds seconds seconds'
PRINT* ,times(1),times(2),total
STOP

80 WRITE(6,90)IASTATE
90 FORMA T(/11' Error halt.. ISTATE =',13)
20 FORMAT(Dl2.4,2I4,213,D12.4,3Dl4.6)

STOP
END

SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, !PAR)
DOUBLE PRECISION RPAR, T, Y, YDOT
DIMENSION Y(NEQ), YDOT(NEQ)
YDOT(l) = -.013*Y(l)- l.D3*Y(l)*Y(3)
YDOT(2) = -2500DO*Y(2)*Y(3)
YDOT(3) = 0.013*Y(l)- l.D3 * Y(l)*Y(3)- 2500.DO*Y(2)*Y(3)
RETURN
END

SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, !PAR)

DOUBLE PRECISION PD, RPAR, T, Y
DIMENSION Y(NEQ), PD(NRPD,NEQ)
PD(l,I) = -.OI3DO- I.D3*Y(3)
PD(l ,2) = O.dO
PD(l,3) = -I.D3*Y(l)
PD(2, I) = O.DO
PD(2,2) = -2500.DO*Y(3)
PD(2,3) = -2500.DO*Y(2)
PD(3,I) = O.OI3DO- l.D3*Y(3)
PD(3,2) = -2500.DO*Y(3)
PD(3,3) = -l.D3*Y(l)- 2500.DO*Y(2)
RETURN
END

I63

Program 4. Main Program for EPSODE with the Case of Problem proposed by Gupta and

Wallace.

10

*

PROGRAM RUNEPSODE
IMPLICIT NONE
REAL *8 Y0(2), HUSED, EPS, DELTA, HO, TO, TEND, TOUT
INTEGER NQUSED, NSTEP, NFE, NJE, N, IERROR, MF, INDEX
COMMON /EPCOM9/ HUSED, NQUSED, NSTEP, NFE, NJE
EXTERNAL DIFFUN, JACOB, CLOCK
REAL *4 DTIME, ETIME, TOTAL, TIMES(2)
INTEGER SYSTEM
DATA N/2/, EPS/l.D-6/, DELTA/I. DO/, IERROR/I/, TEND II O.DO/
DATA TIMES/0.,0./, MF/211, TO/O.DO/, HO/l.D-6/
DATA YO/l.DO, I. DO/, INDEX/1/
TOUT= TO+ DELTA
TOTAL = DTIME(TIMES)
CONTINUE
IF(TOUT. LE. TEND) THEN

END IF

CALL EPSODE(DIFFUN, JACOB, N, TO, HO, YO, TOUT, EPS,
IERROR, MF, INDEX)
WRITE(6, I 00 I)TO,NSTEP,NFE,NJE,NQUSED,HO, YO(I), Y0(2)

IF(INDEX.NE.O) STOP
TOUT = TOUT + DELTA
GOTO 10

TOTAL = DTIME(TIMES)
PRINT*
PRINT*,' user sys total'
PRINT* ,times(I),times(2),total
STOP

1001 FORMAT(! X, IPD9.1,316,14,Dl 0.2,3Dl2.4)
END

SUBROUTINE DIFFUN(N, T, Y, YDOT)

IMPLICIT NONE
INTEGER N
REAL *8 Y(l), YDOT(l), V, W, T
V = -80.DO
W= 8.DO
YDOT(l) = V*Y(l)-W*Y(2)+(-V+W+ I.DO)*DEXP(T)
YDOT(2) = W*Y(l)+V*Y(2)+(-V-W+ l.DO)*DEXP(T)
RETURN
END

SUBROUTINE JACOB(N, T, Y, PD, NO)
IMPLICIT NONE
INTEGER N, NO
REAL *8 Y(l), PD(N0,2), V, W, T
V = -80.DO
W=8.DO
PD(l,l) = V
PD(1,2) = -W
PD(2,1) = W
PD(2,2) = V
RETURN
END

Program 5. Explicit Euler with the case of problem 1 of section 4.4

*

* ---
*---------- This is a main program for SEDLER-SUBROUTINE-------------------­
*---------- Set in the PARAMETER N=3 for of dimension array -----------------

PROGRAM SCEULER
IMPLICIT NONE
INTEGERN
PARAMETER(N=3)
REAL *8 A(N,N), Y(N), YO(N),F(N),WRK(N), HO, HN,T, TO, TF
REAL*8 TOUT
INTEGER NUSED, NSTEP

* ---
* Set the input parameters
* A Jacobian matrix of dof/dot attn
* F Function fofy'=f(t,Y).
* YO The initial values of the dependent variable
* TO The initial values of the independent variable
* TF The final values of the independent variable
* TOUT The value oft at which output is desired next.
* WRK The working storage that is set as an array N dimension
* Y The outcome values of the dependent variable
* HO The initial value of stepsize
* HN The real subsequent stepsize
* NUS ED The number of dependent variable Y in the problem
* NSTEP The number of steps of integration from TO to TF
* ---

164

--I....___

EXTERNAL FUNCT
EXTERNAL JACOBY

* ---
* FUNCT The external subroutine for function f(t,Y) ofy'=f(t,Y)
* JACOBY The external subroutine for function A(t,Y) of Jacobian.
* ---

REAL * 8 YEX(N), L I ,L2,L3
* ---
* YEX The independet variable for the exact solution
* L 1 ,L2,L3 Roots of characteristic of A.
* ---

INTEGER I
REAL *8 DELTA

* ---
* INTITIALIZE DATA
* ---

DATA TO,HO,HN,TF/O.D0,0.04,0.04,20.DO/, NUSED/3/,NSTEP/0/
DATA Y0/-1.00, l.D0,3.DO/
DATA L 1, L2, L3/-2000.D0,-2.D0,-0.5DO/
DATA DELTA/0.5/

* ---
PRINT 50,(1, I=l,NUSED)
PRINT I OO,TO,O.DO,(YO(I),I= I ,NUSED),NSTEP
PRINT 100, TO,O.DO,(YO(I),I= 1 ,NUSED),NSTEP

* SET TIME STEP T EQUAL TO TO.
T=TO
TOUT = TO + DELTA

10 CONTINUE
IF(TOUT .LE. TF) THEN

* --
* CALL SUBROUTINE SEULER

CALL SEULER(FUNCT,JACOBY, Y, YO,A,F, WRK, T, TOUT,HO,HN,
NUSED,N,NSTEP)

* ADD T WITH THE REAL SUBSEQUENT STEPSIZE HN.
* COMPUTE THE EXACT SOLUTION

YEX(l) = DEXP(L2*TOUT)- 2.DO*DEXP(L3*TOUT)
YEX(2) = -DEXP(Ll *TOUT)+ DEXP(L2*TOUT) + DEXP(L3*TOUT)
YEX(3) = DEXP(Ll *TOUT)+ DEXP(L2*TOUT) + DEXP(L3*TOUT)

* PRODUCE THE OUTPUT FOR TIME STEP T
PRINT IOO,TOUT,HN,(Y(I),I=1,NUSED), NSTEP
PRINT I OO,TOUT,HN,(YEX(I),I= I ,NUSED),NSTEP

* COUNT THE NUMBER OF STEPS
TOUT = TOUT + DELTA
GOTO 10

ENDIF
PRINT 200,TO, TF, NSTEP

50 FORMAT(' TIME ',2x,'STEPSIZE ',3(Ix,' Y',Il,' '),
I ' STEP'/70('-'))

I 00 FORMAT(IX,F8.5,3X,F7.5,2X,3(1X,Fl3.6),I5)
200 FORMAT(64('-')/'# of steps of integration from ',F5.2,' to',

I F7.3,' is ',14)
STOP
END

165

SUBROUTINE SEULER(FUNG,JAC, Y ,YO,A,F, WRK,T, TOUT,
1 HO,HN,NUSED,NDIM,NSTEP)
IMPLICIT NONE

* ---
* This is the April 13, 1995 version of
* SEULER .. ELSP Solver For Ordinary Differential Equations.
* This version is in double precision.

*
* SEULER solves the initial value problem For Stiff ODE-s
* Dy/Dt = F(t,Y) , or, in component Form,
* DY(i)/Dt = F(i) = F(i,t,Y(l),Y(2), ... , Y(NEQ)), (i=l, .. ,NEQ).
* SEULER is a package based on Lambert's Algorithm.
* ---
* Reference ..
* J.D. Lambert, A Stable Sequence of Step lengths For Euler's Rule Applied
* to Stiff Systems Of Differential Equations,
* comp.Math. With Appls. Vol. 12B, No5/6,pp 1141-1151, 1986.
* ---
* Author and Contact .. Edward Purba

* Computer Science, Oklahoma State University
* -----------·---
* A Jacobian matrix of dof/dot at tn
* F Function f of y'=f(t, Y).
* YO The initial values of the dependent variable
* TO The initial values of the independent variable
* TOUT The value oft at which output is desired next.
* TF The final values of the independent variable
* WRK The working storage that is set as an array N dimension
* Y The outcome values of the dependent variable
* HO The initial value of stepsize
* HN The real subsequent stepsize
* NDIM The dimension of array (size of declaration vectors or matrix)
* NUSED The actual number of vectors used the calculation
* NSTEP The number of steps of integration from TO to TF
* ---

5

REAL *8
REAL*8

A(l), Y(l), Y0(1), F(l), WRK(l), HO, HN, T
DIST, TOUT

REAL *8
INTEGER
INTEGER
CONTINUE
DIST =TOUT- T

FINDHN
NUSED, NDIM, NSTEP
I, J

* ---
* CALL FUNCTION THAT CALCULATE f(t,Y) ofy'=f(t,Y) THAT IS DEFINED AS
* SUBROUTINE MENTIONED IN THE MAIN PROGRAM AS EXTERNAL FUNCTION.

CALL FUNG(F,YO,T)
* ---

166

* CALL FUNCTION THAT CALCULATE Jacobian A(t,Y) off(t,Y) THAT IS DEFINED AS
* SUBROUTINE MENTIONED IN THE MAIN PROGRAM AS EXTERNAL FUNCTION.

CALL JAC(T,YO,A,NDIM)
* ---
* SET SUBSEQUENT STEPSIZE SN EQUAL TO THE VALUE OF FUNCTION FINDHN.

HN = FINDHN(A,F,WRK,NUSED,NDIM)

* ---
IF (HN .GT. HO) HN=HO

* ---
* CALCULATE THE VALUE OF DEPENDENT V ARlABLE Y FOR TIME STEP T

NSTEP = NSTEP + 1
IF(DIST.GE.HN) THEN

DO 10 1=1,NUSED
Y(l) = YO(I) + HN*F(I)
YO(I)=Y(I)

10 CONTINUE

ELSE

30

ENDIF

T=T+HN
GOT05

DO 30 I=1,NUSED
Y(l) = YO(I) + DIST*F(I)

CONTINUE
HN=DIST

* ---
RETURN
END

REAL *8 FUNCTION FINDHN(A,F,WRK,NUSED,NDIM)
* ---
* T T
* Function FINDH .. Calculate Hn=(fn fn)/lfn A fnl
* ---

IMPLICIT NONE
REAL * 8 A (I), F(l), WRK(l)
REAL *8 TEMP, TPU, TPD

* ---
* A Jacobian matrix of dof/dot attn
* WRK The working storage that is set as an array N dimension
* F Function f ofy'=f(t,Y).
* NDIM The dimension of array (size of declaration vectors or matrix)
* NUS ED The actual number of vectors used the calculation
* ---

INTEGER NUSED, NDIM
INTEGER I, J, IND
TPU = O.ODO
TPD = O.ODO

* ---
* CALCULATE AF

DO 10 1=l,NUSED
WRK(I)= O.DO
DO 20 J=I,NUSED

IND =I+ (J-1)*NDIM
WRK(I)= WRK(I) + A(IND)*F(J)

20 CONTINUE
* ---
* T
* CALCULATE F F

TPU = TPU+F(I)*F(I)
* ---

167

~

* T
* CALCULATE F AF

TPD = TPD + F(I)*WRK(I)
*---

10 CONTINUE
TPD = DABS(TPD)
FINDHN = TPU/TPD
RETURN
END

* ---
SUBROUTINE FUNCT(F,Y,T)
IMPLICIT NONE

* --
* Subroutine Derive is a subroutine to calculate f(t,Y) from y' = f(t,Y)

*
*
*
*

END

REAL*8 T, Y(l), F(l)
DYI/DT = Fl(T,Yl,Y2,Y3, ..)
DY2/DT = F2(T,Yl,Y2,Y3, ..)

F(1) = -Y(l)- 0.5DO*Y(2)- 0.5DO*Y(3)
F(2) = -0.5DO*Y(I)-I 000. 75DO*Y(2)+999.25DO*Y(3)
F(3) = -0.5dO*Y(l)+999.25dO*Y(2)-l 000. 75d0*Y(3)
RETURN

* ---
SUBROUTINE JACOBY(T,Y,A,NDIM)
IMPLICIT NONE

* SUBROUTINE JACOBY .. To initiate Jacobian matrix A = dof/dot
INTEGER NDIM
REAL *8 T, Y(l), A(NDIM,NDIM)
A(l,l) = -l.DO
A(l ,2) = -0.5DO
A(1,3) = -0.5DO
A(2,1) = -0.5DO
A(2,2) = -1000.75DO
A(2,3) = 999.25DO
A(3,1) = -0.5DO
A(3,2) = 999.25DO
A(3,3) = -1000.75DO
RETURN
END

Program 6. Exponential Method with the case of problem 2 of section 4.4

* --
* ------ This is a main program for episod-Subroutine
*------Set in the PARAMETER N=2 for the number of variable.

168

*

PROGRAM EPISOD
IMPLICIT NONE
INTEGER N
PARAMETER(N=2)
REAL *8 T, TO, TF, YO(N), Y(N), F(N), WRK(N),FN(N),HN
REAL *8 HO, TOL
EXTERNAL DERIVE
INTEGER NUSED, NSTEP, NF

* --
* Set input parameters
* T Time independent variable
* TO Initial values ofT
* TF Final values ofT
* Y The outcome values of the dependent variables
* WRK The working storage that is set as an array ofN.
* F Function f ofy' = f(t,Y)
* HO Initial stepsize
* HN The actual stepsize
* TOL Tolerance; user specified
* TOUT The value oft at which output desired next.
* NUS ED # of independent variable Y in the problem
* NSTEP # of steps of integration from T to TF
* NF #of evaluation f(t,y)
* --

INTEGER
REAL *8 DELTA, TOUT

DATA
DATA
DATA
DATA

TO/O.dO/, TF IIO.DO/, HO/O.ODO/, HN/O.ODO/
TOL/l.D-6/, NF/0/, NSTEP/0/
YO/O.DO, O.DO/
NUSED/2/, DEL TA/0.5/

INTEGER NPRINT

OPEN(UNIT=3,FILE='expis2.out')
WRITE(3,50)(I, 1=1 ,NUSED)
WRITE(3,100) TO,O.DO, (YO(I), I=l,NUSED)

* Set timestep T equal to TO
T=TO
TOUT= TO+ DELTA

10 CONTINUE
IF(TOUT. LE. TF) THEN

* Call subroutine EXPISOD

ENDIF

CALL EXPISOD(DERIVE, T, HO, HN, YO, Y, F, FN, WRK, TOL,
NUSED,NSTEP,NF,TOUT,TF,TO)

WRITE(3, 1 00) TOUT,HN,(Y(I),l= 1 ,NUSED)
TOUT = TOUT + DELTA
GOTO 10

WRITE(3,200)TO, T-HO, NSTEP, NF
50 FORMAT(' TIME ',2X,'STEPSIZE ',2(1X,' Y',ll,' ')/

169

~

64('-'))
100 FORMAT(lx,F8.1,3x,F7.5,2x,2(1x,Fl3.6))
200 FORMAT(64('-')/'# of steps of integration from ',F5.2,' to',

I F7 .1 ,' is ',18, "# of evaluaton off:" ,18)
STOP
END

SUBROUTINE INIT(FUNG,TO,TF,YO,Y,F,HO,WRK,TOL,NUSED)
IMPLICIT NONE

* --
*
*
*
*
*
*
*
*
*
*
*
*
*

This subroutine is used to determined initial stepsize of ODE
Solvers.

The algorithm is based on concepts given on :
I. Gladwell, 1., Shampine, L.F., and Brankin, R.W.

"Automatic Selection of the Initial Step Size for an ODE Solver"
J. Comput. Appl. Math. 18(1987) 175-192.

2. Hairer, E., Norsett, S. P., and Wanner, G.
"Solving Ordinary Differential Equations I,
Springer-Verlag, Berlin Heidelberg 1987, 1993.

3. Purba, Edward
"Compact Numerical Methods for Stiff Differential Equations"
Master Thesis, Computer Science, Oklahoma State University,
1996.

* ---
* TO Starting time
* YO The initial value of the dependent variables
* WRK The working storage that is set as an array ofN.
* F Function f ofy' = f(t,Y)
* HO Initial stepsize
* TOL Desired local relative error; user specified.
* NUS ED # of independent variable Y in the problem
* N size of the declaration of dimension

*

*

REAL*8 TO, TF, HO, YO(l),Y(l), F(l), WRK(l), TOL
INTEGER NUSED
REAL*8
INTEGER
EXTERNAL

TEMPO=O.DO
TEMPI= O.DO

DO, Dl, D2, TEMPO, TEMPI, TEMP
I
FUNG

TOL = DMAXI(TOL,l.D-10)
TEMP= TOL *TOL

Calculate f(tO,yO)
CALL FUNG(TO, YO, F)
DO I= 1 ,NUSED

Calculate DO and D I
TEMPO= TEMPO+ YO(l)*YO(l)
TEMPI =TEMPI + F(l)*F(l)

END DO
TEMPO = TEMPO/TEMP
TEMPI =TEMPI/TEMP
DO= DSQRT(TEMPO/DFLOA T(NUSED))
Dl = DSQRT(TEMPI/DFLOAT(NUSED))
IF(DO .LE. l.D-5 .OR. Dl .LE. l.D-5) THEN

170

*

*

*

HO = l.D-6
ELSE

HO = O.OlDO*(DO/Dl)
ENDIF
HO = DMINl(DABS(TF-TO),HO)

Perform explicit Euler
DO 1=1, NUSED

Y(I) = YO(I) + HO*F(I)
END DO

Calculate f(t 1, y 1)
CALL FUNG(TO+HO, Y, WRK)

Estimate the second derivative
DO 1=1, NUSED

TEMP= (WRK(I)-F(l))*(WRK(I)-F(I))
END DO
TEMP= TEMP/(TOL *TOL)
D2 = DSQRT(TEMP/DFLOAT(NUSED))IHO
DO= DMAX1(Dl,D2)
IF(DO .LE. l.D-15) THEN

HO = DMAXl(l.D-6, l.D-3*HO)
ELSE

HO = (0.01DO/DO)**(l.D0/3.DO)
ENDIF
RETURN
END

SUBROUTINE EXPISOD(FUNCT, T, HO, HN, YO, Y, F, FN, WRK, TOL,
1 NUSED,NSTEP,NF,TOUT,TF,TO)

IMPLICIT NONE
* ---
* This is the August 7, 1995 version of
* EXPISOD .. ELSP Solver for Ordinary Differential Equations.
* This version is in double precision.

*
* EXPISOD solves the initial value problem for stiff ODE-s
* DY/Dt = f(t,Y), or, in component form,
* DY(i)/Dt = F(i) = F(i,t,Y(l),Y(2), , Y(NEQ), (i=l, ... ,NEQ)
* EXPISOD is a package program for solving stiff and nonstiff ODEs
* based on algorithm written by Ashour, S.S, and Anna, O.T
* Reference ..
* Sami S. Ashour and Owen T. Anna
* "Explicit Exponential Method fo Integration of Stiff
* Ordinary Differential Equations"
* J. Guidance, Vol. 14, No.6, pp.1234-1239.
* ---
* Author and Contact .. Edward Purba

* Computer Science, Oklahoma State University
* ---
* T Time independent variable
* Y The outcome values of the dependent variables
* WRK The working storage that is set as an array of N.
* F Function f of y' = f(t, Y)
* FN -y"(t)/y'(t)
* H Initial stepsize

171

__.__

* HN The actual stepsize
* TOL Desired local relative error; user specified
* TOUT The value oft at which output desired next.
* NUS ED # of independent variable Y in the problem

REAL*8 T, HO,HN, YO(!), Y(l), F(l), FN(l), WRK(l),TF, TO
REAL*8 TOL, TOUT
INTEGER NUSED, NF, NSTEP
REAL *8 DIST, FUNCT
EXTERNAL FUNCT
INTEGER

IF(DABS(HO).L T. l.D-33) THEN
CALL INIT(FUNCT, TO, TF, YO, Y ,F,HO, WRK, TOL,NUSED)
NF=2
HN=HO

ENDIF
10 CONTINUE

DIST=TOUT-T
NSTEP = NSTEP + I
NF=NF+2
IF(DIST.GE.HN)THEN
CALL EPSOD(FUNCT, T, HO, HN, YO, Y, F, FN, WRK, TOL,

I NUSED)
DO 20 I=l,NUSED

YO(I)=Y(I)
20 CONTINUE

T=T+HN
HN=HO
GOTOIO
ELSE

CALL EPSOD(FUNCT, T, HO, DIST, YO, Y, F, FN, WRK, TOL,
NUSED)

ENDIF
RETURN
END

SUBROUTINE EPSOD(FUNCT, T, HO, HN, YO, Y, F, FN, WRK, TOL,
I NUSED)

IMPLICIT NONE
* ---
* T Time independent variable
* Y The outcome values of the dependent variables
* WRK The working storage that is set as an array of N.
* F Function f of y' = f(t, Y)
* FN -y"(t)/y'(t)
* H Initial stepsize
* HN The actual stepsize
* TOL Desired local relative error; user specified
* NUS ED # of independent variable Y in the problem

REAL*8 T, HO,HN, YO(!), Y(l), F(l), FN(l), WRK(l)
REAL*8 TOL
INTEGER NUSED, NF

REAL*8 CURLERR

172

.__.____

INTEGER
EXTERNAL

I
FUNCT

CURLERR = -l.DO
CALL FUNCT(T, YO, F)
DO 10 I=l,NUSED

FN(I) = l.DO
Y(I) = YO(I) + HO*F(I)

10 CONTINUE

CALL FUNCT(T+HN, Y, WRK)
DO 20 I=l,NUSED

IF(DABS(F(I)) .GE. l.D-16) THEN
FN(I) = (F(I)-WRK(I))/(HN*F(I))
IF(FN(I) .GT. O.DO) THEN

*----------Calculate Exponential approximation

ENDIF
ENDIF

Y(I) =YO(I)+ F(I)*(l.DO-DEXP(-FN(I)*HN))/FN(I)
WRK(I)=YO(I)*DEXP(F(I)*HN/(YO(I)+ l.D-15))

IF(DABS(F(I)).L T. l.D-16 . OR. FN(I) .LE. O.DO) THEN
*----------Calculate using RK.-2
* Calculate coefficient of K2's

ENDIF

FN(I) = HN*WRK(I)
WRK(I) = Y(I)
F(I) = HN*F(I)
Y(I)=YO(I)+0.5DO* (FN(I)+F(I))

CURL ERR= DMAX I (DABS(Y(I)-WRK(I))/(Y(I)+ 1.D-15),CURLERR)
20 CONTINUE

HO = DSQRT((TOLICURLERR))*HN
HO = DMIN1(HO, 2*HN)
RETURN
END

c ---
c Define the function of the problem in terms of the F's and the X's
c ---

SUBROUTINE DERIVE(T,Y,F)
IMPLICIT NONE
REAL*8 T, Y(l), F(l)

F(l) = 0.0100-(l.DO+(Y(l)+ 1000.DO)*(Y(l)+ l.DO))*
* (0.0100+Y(1)+Y(2))

F(2) = 0.0100- (l.DO+Y(2)*Y(2))*(0.0100+Y(l)+y(2))
RETURN
END

173

Name

____......__

APPENDIX G

COLLECTION OF TABLES

Table G.l Table ofPerformances ofMEBDF, VODE, LSODE,
and EPSODE for the Case of Kidney Problems

A. CT Time H NS NF NJ

(sc)

0.0 0 0 0 0

0.1 1.23D-02 33 56 13

0.2 1.84D-02 38 65 14

0.3 2.77D-02 43 72 15

0.4 5.80D-02 46 76 17

0.9902688359 0.008 0.5 5.80D-02 47 78 17

0.6 1.62D-02 52 88 19

0.7 3.64D-02 55 93 21

0.8 2.63D-02 59 103 22

0.9 2.46D-02 64 115 23

1.0 2.46D-02 68 123 23

0.0 0 0 0 0

0.1 1.23D-02 33 56 13

0.2 1.85D-02 38 65 14

0.3 2.77D-02 43 73 15

0.4 2.77D-02 46 79 15

0.990283499 0.007 0.5 1.95D-02 51 91 16

0.6 1.91D-02 57 105 17

0.7 1.42D-02 63 119 18

174

p

0

5

5

4

4

4

4

4

4

5

5

0

5

5

4

4

4

5

5

175

0.8 8.02D-03 72 141 20 5

0.9 6.07D-03 86 171 21 5

1.0 6.02D-03 108 209 23 5

0.0 0 0 0 0 0

0.1 l.llD-02 30 52 11 5

0.2 1.62D-02 36 63 14 5

0.3 1.23D-02 44 81 15 5

0.4 6.63D-03 56 109 17 5

0.9925211341 0.008 0.5 6.63D-02 71 139 18 5
I

0.6 6.63D-03 86 154 18 5

0.7 1.61D-02 96 165 20 5

0.8 1.61D-02 102 176 20 5

0.9 2.79D-02 108 182 21 5

1.0 2.79D-02 Ill 188 22 5

0.0 0 0 0 0 0

0.1 8.24D-03 36 63 12 5

0.2 6.10D-03 52 97 13 5

0.3 6.10D-03 68 118 14 5

0.4 1.06D-02 81 131 16 5

EPSODE 1.0304879856 0.008 0.5 1.90D-02 87 140 17 5

0.6 1.90D-03 92 150 17 5
.

0.7 1.9D-03 97 155 17 5

0.8 3.44D-02 101 161 19 5

0.9 3.44D-02 104 167 19 5

1.0 3.44D-02 106 171 19 5
'

0.0 0 0 0 0 0

0.1 9.62D-03 38 64 9 4

0.2 1.94D-02 44 75 11 4

. 0.3 1.40D-02 49 87 12 4

0.4 2.00D-02 55 99 12 5

0.99 0.013 0.5 1.49D-02 61 113 13 5

0.6 6.41D-03 71 137 17 4

0.7 3.29D-03 95 185 25 4

0.8 4.72D-03 114 226 29 4

_ _.L_

176

0.9 2.71D-03 168 333 47 4 I

1.0 5.85D-03 207 407 69 5

0.0 0 0 0 0 0

0.1 4.88D-03 50 91 10 5

0.2 7.85D-03 69 132 19 5

0.3 3.86D-03 103 204 35 4

0.4 6.39D-03 118 237 38 5

0.9 0.013 0.5 3.04D-03 164 339 55 4

0.6 3.84D-03 222 441 89 5

0.7 1.14D-03 298 599 108 4

0.8 2.83D-03 335 677 115 5

0.9 1.44D-03 417 855 136 5

1.0 1.60D-03 490 1031 156 5

0.0 0 0 0 0 0

0.1 3.63D-03 113 198 32 4

0.2 5.88D-03 147 270 46 5

0.3 4.27D-03 166 324 51 5

0.4 2.66D-03 217 444 64 5

0.0 0.008 0.5 1.51D-03 264 549 78 4

0.6 5.7D-04 336 715 96 4

0.7 8.29D-08 458 967 Ill 4

0.8 1.79D-04 554 1181 131 5

0.9 1.24D-03 659 1415 161 5

1.0 l.OSD-03 799 1708 190 5

0.0 0 0 0 0 0

0.1 0.92D-02 35 48 1 4

0.2 0.38D-Ol 40 54 1 3

0.3 0.38D-Ol 43 58 1 3

0.4 0.38D-Ol 45 60 1 3

0.9902688359 0.007 0.5 0.38D-O 1 48 68 2 3

0.6 0.38D-Ol 51 71 2 3

0.7 0.23D-01 54 77 2 3

0.8 0.14D-Ol 59 85 2 3

0.9 0.14D-Ol 66 93 2 3

177

1.0 0.88D-01 74 105 2
..,
.)

0.0 0 0 0 0 0

0.1 0.92D-02 35 48 1 4

0.2 0.21D-01 41 55 1 3

0.3 0.21D-01 45 59 1 3

0.4 0.21D-01 50 65 1 3

0.990283499 0.008 0.5 0.13D-01 58 78 1 3

0.6 0.73D-02 67 96 2 3

0.7 0.11D-01 77 108 2 4

0.8 0.77D-02 87 122 2 4

0.9 0.53D-02 104 145 2 4

1.0 0.56D-02 131 175
..,

5 .)

0.0 0 0 0 0 0

0.1 0.12D-01 35 49 1 4

0.2 0.12D-01 44 59 1 4

0.3 0.81D-02 53 72 1 4

0.4 0.55D-02 66 89 2 4

0.9925211341 0.003 0.5 0.55D-02 85 110 2 4

0.6 0.84D-02 100 126 2 5

0.7 0.84D-02 112 138 2 5

0.8 0.15D-01 121 148 3 4

0.9 0.24D-01 127 155 3 4

1.0 0.24D-01 131 159 3 4

0.0 0 0 0 0 0

0.1 0.69D-02 43 58 1 5

0.2 0.69D-02 57 72 1 5

0.3 0.69D-02 72 88 2 5

0.4 0.11D-01 82 100 2 5

VODE 1.0304879856 0.008 0.5 0.16D-01 89 108 2 5

0.6 0.16D-01 95 114 2 5

0.7 0.16D-01 101 121 2 5

0.8 0.16D-01 107 128 2 5

0.9 0.16D-01 113 136 2 5

178

1.0 0.16D-Ol 120 147 2 5

0.0 0 0 0 0 0

!

0.1 O.llD-01 33 48 I 4

0.2 0.17D-Ol 41 57 I 4

0.3 0.17D-Ol 47 63 I 4

0.4 O.llD-01 53 76 2 4

0.99 0.015 0.5 O.IID-01 62 86 2 4

0.6 0.76D-02 74 116 4 4

0.7 0.22D-02 104 171 6 4

0.8 0.24D-02 !53 257 10 3

0.9 0.24D-02 195 348 15
.,
.)

1.0 0.24D-02 238 444 21
.,
.)

0.0 0 0 0 0 0

0.1 0.45D-02 52 74 2 4

0.2 0.96D-03 100 176 6 4 i
I

0.3 0.62D-03 175 313 10 3 '

0.4 0.17D-02 240 441 16 3

0.9 0.012 0.5 0.17D-02 300 564 23
.,
.)

0.6 0.26D-02 358 689 29 3

0.7 0.26D-02 397 777 35 3

0.8 0.26D-02 435 855 41 3

0.9 0.5ID-02 473 932 47 4

1.0 0.37D-02 531 1032 48 3

0.0 0 0 0 0 0

0.1 0.98D-03 141 214 8 3

0.2 0.70D-03 259 426 14 3

0.3 0.12D-02 363 626 20 3

0.4 0.12D-02 450 796 27
.,
.)

0.0 0.027 0.5 0.32D-02 505 919 33 3

0.6 0.32D-02 536 989 38
.,
.)

0.7 0.32D-02 567 1057 43 3
:

0.8 0.14D-02 622 1137 47 3

0.9 0.60D-02 657 1199 51 4
- ---- ---·----

___.__

I79

1.0 O.I20-02 885 I650 69 3

0.0 0 0 0 0 0

0.1 3.390-0I 5 10 5 I

0.2 3.390-0I 5 10 5 I

0.3 3.390-0I 5 10 5 1

0.4 3.390-0I 5 IO 5 I

0.9902688359 O.OI5 0.5 3.390-0I 6 I4 6 I

0.6 3.390-0I 6 I4 6 I

0.7 3.390-0I 6 I4 6 I

0.8 3.390-01 6 I4 6 I

0.9 3.390-0I 6 I4 6 I

1.0 I.350+00 7 I5 7 I

0.0 0 0 0 0 0

O.I 3.940-0I 5 IO 5 I

0.2 3.940-01 5 IO 5 I

0.3 3.940-0I 5 IO 5 I

0.4 3.940-01 5 IO 5 I

0.990283499 O.OI 0.5 3.940-0I 6 I4 6 I

0.6 3.940-0I 6 I4 6 I

0.7 3.940-0I 6 I4 6 I

0.8 3.940-01 6 I4 6 I

0.9 3.940-0I 7 I5 7 I

1.0 I.360+00 7 I5 7 I

0.0 0 0 0 0 0

O.I 3.690-0I 5 IO 5 I

0.2 3.690-0I 5 IO 5 I

0.3 3.690-0I 5 10 5 I

0.4 3.690-0I 5 10 5 I

0.992521I34I O.OI7 0.5 3.690-0I 6 14 6 I

0.6 3.690-0I 6 14 6 I

0.7 3.690-0I 6 I4 6 I

0.8 3.690-0I 6 I4 6 I

0.9 3.690-0I 7 I5 7 I
L___ ________ -- ---

I80

1.0 I.72D+OO 7 I5 7 I

0.0 0 0 0 0 0

O.I I.32D-01 5 IO 5 I

0.2 I.32D-OI 6 I3 6 I

0.3 1.32D-OI 6 I4 6 I

0.4 8.11D-01 7 I4 7 1

LSODE I.0304879856 0.011 0.5 8.IID-01 7 I4 7 1

0.6 8.IID-01 7 I4 7 1

0.7 8.IID-OI 7 I4 7 I

0.8 8.11D-OI 7 14 7 1

0.9 8.IID-01 7 14 7 1

1.0 8.IID-OI 7 I4 7 I

0.0 0 0 0 0 0

O.I 3.86D-01 5 10 5 I

0.2 3.86D-01 5 IO 5 I

0.3 3.86D-01 5 IO 5 I

0.4 3.86D-01 5 IO 5 I

0.99 0.008 0.5 3.86D-OI 6 I4 6 I

0.6 3.86D-01 6 I4 6 I

0.7 3.86D-01 6 I4 6 I

0.8 3.86D-01 6 I4 6 I

0.9 3.I7D-OI 7 I7 8 I

1.0 3.I7D-01 7 I7 8 I

0.0 0 0 0 0 0

O.I 8.02D-02 5 10 5 1

0.2 4.12D-OI 7 I4 7 I

0.3 4.I2D-OI 7 I4 7 I

0.4 4.I2D-OI 7 I4 7 I

0.9 O.OI4 0.5 4.I2D-OI 7 I4 7 I

0.6 4.12D-01 7 I4 7 I

0.7 1.03D-01 8 20 9 I

0.8 5.I5D-02 II 29 I3 2

0.9 5.15D-02 I3 35 I5 2

I8I

1.0 1.090-0I I4 36 I6 3

0.0 0 0 0 0 0

O.I 3.310-0I 7 I4 7 I

0.2 3.310-0I 7 I4 7 I

0.3 3.310-0I 7 I4 7 I

0.4 3.310-0I 7 I4 7 I

0.0 O.OI2 0.5 3.310-0I 8 I8 8 I

0.6 3.310-0I 8 I8 8 I

0.7 3.310-0 I 8 I8 8 I

0.8 1.370+00 9 I9 9 I

0.9 1.370+00 9 I9 9 I

1.0 1.370+00 9 I9 9 I

0.0 0 0 0 0 0

0.1 0.600-2 38 60 1 5

0.2 0.320-0I 46 7I I 4

0.3 0.320-0I 49 77 I 4

0.4 0.50-01 52 85 2 4

0.9902688359 0.005 0.5 0.320-01 55 92 2 4

0.6 0.320-0I 58 98 2 4

0.7 0.320-0I 6I I07 2 4

0.8 0.220-0I 65 II7 2 4

0.9 O.I50-0I 70 I32 2 4

1.0 O.I40-0I 77 I47 2 5

0.0 0 0 0 0 0

O.I 0.600-02 38 60 I 5

0.2 0.280-0I 46 72 I 4

0.3 0.280-0I 50 84 I 4

0.4 O.I10-0I 56 94 I 5 I
I

0.990283499 0.013 0.5 O.I10-0I 65 II7 I 4

0.6 O.IOO-OI 74 I38 I 4

0.7 0.910-02 83 I6I I 4

0.8 0.820-02 94 I82 I 5

0.9 0.590-02 I08 224 2 6

......J....__

182

1.0 0.550-02 125 251 2 6

0.0 0 0 0 0 0

0.1 0.670-02 37 59 I 5

0.2 0.130-01 46 72 I 5

0.3 0.130-01 53 92 I 6

0.4 0.770-02 63 120 I 6

0.9925211341 0.014 0.5 0.600-02 78 145 I 5

0.6 0.800-02 94 171 I 5

0.7 0.860-02 106 189 2 4

0.8 0.150-01 114 203 2 4

0.9 0.21D-Ol 119 210 2 5

1.0 0.330-01 123 215 2 5

0.0 0 0 0 0 0

0.1 0.670-02 43 68 1 6

0.2 0.61D-02 60 100 1 6

0.3 0.740-02 76 122 1 6

0.4 0.840-02 88 144 1 5

MEBOF 1.0304879856 0.027 0.5 0.11D-01 98 158 2 4

0.6 0.180-01 105 166 2 4

0.7 0.250-01 110 175 2 5

0.8 0.250-01 113 181 2 5

0.9 0.41D-01 116 186 2 5

1.0 0.41D-01 119 189 2 5

0.0 0 0 0 0 0

0.1 0.600-02 38 60 1 5

0.2 0.200-01 47 74 1 5

0.3 0.200-01 52 89 I 5

0.4 0.640-02 61 118 I 6

0.99 0.012 0.5 0.280-02 88 176 I 4

0.6 0.170-02 Ill 245 3 5

0.7 0.240-02 138 299 5 5 i
I

0.8 0.160-02 210 498 9
..,
.)

0.9 0.31D-02 251 597 14 3

__.___

183

1.0 0.14D-02 305 728 19 4

0.0 0 0 0 0 0

0.1 0.27D-02 58 113 2 5

0.2 0.26D-02 95 184 5 4

0.3 0.34D-02 135 286 9 ...
.)

0.4 0.31D-02 186 402 14 3

0.9 0.005 0.5 0.21D-02 229 505 19 ...
.)

0.6 0.22D-02 276 620 24 ...
.)

0.7 0.28D-02 324 728 29 3

0.8 0.10D-02 384 861 35 2

0.9 0.13D-02 434 985 41 3

1.0 0.19D-02 482 1095 44 3

0.0 0 0 0 0 0

0.1 0.41D-02 142 318 6 4

0.2 0.16D-02 190 434 12 3

0.3 0.89D-03 239 551 17 3

0.4 0.58D-02 303 705 22 4

0.0 0.008 0.5 0.27D-02 351 810 26 4

0.6 0.27D-02 402 925 31 4

0.7 0.25D-02 452 1050 36 3

0.8 0.13D-02 513 1183 40 4

0.9 0.31 D-02 590 1390 47 3

1.0 0.64D-02 620 1456 51 4

~~

_.L__

Table G.2 Table of Performances ofMEBDF, VODE, LSODE, and EPSODE
for the Case of Autocatalitic Reaction Pathway Problem

Name CT Time H NS NF NJ p

(sc) (in Log10)

6.D-OI 4.17D-Ol 36 59 16 5

1.6DOO 1.73DOO 84 164 33 3

2.6DOO 2.22DOI 126 244 40 5

3.6DOO 3.1ID02 171 336 53 5

4.6DOO 1.30D03 214 421 58 4

EPSODE 0.012 5.6DOO 2.88D04 253 490 66 4

6.6DOO 4.25D05 286 545 83 3

7.6DOO 6.43D06 305 574 90 5

8.6DOO 3.5ID07 331 622 98 3

9.6DOO 4.79D08 344 641 104 4

!.IDOl l.OODIO 366 681 121 1

6.D-Ol 2.64D-Ol 66 101 3 3

1.6DOO 6.85D-Ol 129 213 5 3

2.6DOO 1.28D01 216 410 7 3

3.6DOO 2.02D02 291 544 8 4

4.6DOO 1.82D03 346 640 9 4

VODE 0.007 5.6DOO 2.40D04 390 693 10 4

6.6DOO 1.25D05 453 784 11 4

7.6DOO 3.29D06 480 816 11 4

8.6DOO 9.90D07 494 843 12 2

9.6DOO 3.68D09 500 854 13 1

I. IDOl 1.79Dl0 508 869 14 1

6.D-Ol 3.05D-Ol 41 57 11 4

1.6DOO 2.25DOO 80 105 16 4

2.6DOO 1.98D01 138 179 24 4

3.6DOO 1.72D02 185 245 30 4

4.6DOO 3.76D03 234 312 38 5

i
I

LSODE 0.012 5.6DOO 2.76D04 282 383 45 4 I

184

185

6.6000 3.31D05 313 420 51 4

7.6000 6.34006 336 448 56
,.,
.)

8.6000 1.08008 349 464 60 3

9.6000 1.34009 358 477 64 1

I. IDOl 2.36010 363 483 66 1

6.0-01 3.080-01 61 121 4 4

1.6000 1.57000 98 185 6 4

2.6000 1.61D01 212 494 8 4

3.6DOO 1.89002 284 646 11 5

4.6000 1.82003 346 755 13 5

MEBOF 0.010 5.6000 2.35004 396 842 14 6

6.6DOO 3.28005 435 909 15 3

7.6000 4.87006 460 949 17 3

8.6000 6.14D07 476 972 17 2

9.6000 9.83008 485 986 18 1

1.1D01 2.64010 493 1003 20 1

___.___

__.L_

Table G.3 Table ofPerformances ofMEBDF, VODE, LSODE,
and EPSODE for the Case of D4 of Enright et al.

Name CT Time H NS NF NJ

(sc)

O.ODOO O.ODO 0 0 0

5.0DOO 2.2IDOO 25 29 21

1.0D01 3.05DOO 27 31 22

l.5D01 4.52DOO 28 32 23

2.0D01 4.52DOO 29 34 23

EPSODE 0.003 2.5D01 4.52DOO 30 36 23

3.0D01 6.04DOO 31 38 23

3.5D01 6.04DOO 32 39 24

4.0D01 9.06DOO 33 40 25

4.5D01 9.06DOO 33 40 25

5.0D01 9.06DOO 34 42 25

O.ODOO 0 0 0 0

5.0DOO l.lODOO 22 36 1

l.OD01 2.32DOO 26 44 1

l.5D01 2.32DOO 28 46 1

2.0D01 2.32DOO 30 48 1

VODE 0.012 2.5D01 2.32DOO 32 50 1

3.0D01 4.39DOO 33 52 1

3.5D01 4.39DOO 35 55 1

4.0D01 4.39DOO 36 56 1

4.5D01 4.39DOO 37 57 1

5.0D01 4.39DOO 38 58 1

O.ODOO 0 0 0 0

5.0DOO 1.54DOO 17 27 9

1.0D01 2.06DOO 21 32 10

l.5D01 2.06DOO 23 34 10

2.0D01 4.86DOO 25 39 11

LSODE 0.010 2.5D01 4.86DOO 26 40 11

186

p

0

3

4

4

4

4

5

5

5

5

5

0

2

3

3

3

3

4

4

4

4

4

0

3

3

3

4

4

I87

3.000I 4.86000 27 4I I I 4

3.500I 4.86000 28 42 I I 4

4.000I 4.86000 29 43 I I 4

4.500I 4.86000 30 44 I I 4

5.000I 4.86000 3I 45 I I 4

0.0000 0 0 0 0 0

5.0000 1.70000 23 34 I 3

I .OOOI 3.87000 26 38 I 4

1.500I 3.87000 27 39 I 4

2.000I 3.87000 28 40 I 4

MEBOF O.OI8 2.500I 3.87000 29 4I I 4

3.000I 3.87000 3I 43 I 4

3.500I 5.58000 32 46 I 5

4.000I 5.58000 33 48 I 5

4.500I 5.58000 34 50 I 5

5.000I 5.58000 35 52 I 5

_ _....,L,____.

___...L_.______

Table G.4 Table of Performances ofMEBDF, VODE, LSODE,
and EPSODE for the Case of Problems Proposed by
Gupta and Wallace.

Name CT Time H NS NF NJ

(sc)

O.ODOO O.ODO 0 0 0

l.ODOO 9.10D-02 31 57 10

2.0DOO 9.10D-02 42 78 11

3.0DOO 9.10D-02 53 100 12

4.0DOO 6.90D-02 66 124 13

EPSODE 0.012 5.0DOO 6.90D-02 80 151 14

6.0DOO 5.26D-02 99 191 15

7.0DOO 4.02D-02 121 229 17

8.0DOO 4.02D-02 146 265 18

9.0DOO 3.06D-02 177 320 21

l.OD01 2.34D-02 212 367 23

O.ODOO O.ODO 0 0 0

1.0DOO 9.12D-01 28 45 1

2.0DOO 9.12D-01 39 56 1

3.0DOO 9.12D-01 50 69 1

4.0DOO 9.12D-01 61 80 1

VODE 0.007 5.0DOO 9.12D-01 72 93 2

6.0DOO 9.12D-01 83 104 2

7.0DOO 9.12D-01 94 117 2

8.0DOO 9.12D-01 105 129 2

9.0DOO 9.12D-01 116 141 2

l.OD01 9.12D-01 127 154 3

O.ODOO O.ODO 0 0 0

1.0DOO 9.79D-02 27 37 6

2.0DOO 1.15D-01 37 53 7

3.0DOO 1.15D-01 45 61 7

4.0DOO 1.15D-01 54 71 8

188

p

0

5

5

5

5

5

5

5

5

5

5

0

4

4

4

4

4

4

4

4

4

4

0

5

5

5

5

189

LSODE 0.010 5.0DOO 1.15D-01 63 80 8 5

6.0DOO 1.15D-01 71 88 8 5

7.0DOO 1.15D-01 80 98 9 5

8.0DOO 1.15D-01 89 107 9 5

9.0DOO 1.15D-01 97 116 10 5

l.OD01 1.15D-01 106 125 10 5

O.ODOO O.ODO 0 0 0 0

1.0DOO 9.47D-01 25 38 1 6

2.0DOO 1.27D-01 33 52 1 6

3.0DOO 1.38D-01 43 69 1 6

4.0DOO 1.46D-01 50 80 1 6

MEBDF 0.010 5.0DOO 1.46D-01 57 97 1 6

6.0DOO 1.38D-01 64 106 1 6

7.0DOO 1.46D-01 71 117 1 6

8.0DOO 1.36D-O 1 78 126 1 6

9.0DOO 1.46D-01 85 138 1 6

l.OD01 1.46D-01 92 154 2 6

Table G.5 The Computation Results for Problems 1 of Chapter 4.4
Using Modified Euler Method and Exact Solution

Time Modified Euler Exact solution

t y1 y2 y3 y1 y2 y3

0.0 -1.0 1.0 3.0 -1.0 1.0 3.0

0.5 -1.200338 1.134247 1.126747 -1.189722 1.146680 1.146680

1.0 -1.082320 0.729724 0.727378 -1.077726 0.741866 0.741866

1.5 -0.893776 0.513017 0.513006 -0.894946 0.522154 0.522154

2.0 -0.713064 0.380666 0.379127 -0.717443 0.386195 0.386195

2.5 -0560552 0.288582 0.288459 -0566272 0.293243 0.293243

3.0 -0.437826 0.222322 0.221329 -0.443782 0.225609 0.225609

3.5 -0.340953 0.171567 0.171442 -0.346636 0.174686 0.174686

4.0 -0.265178 0.133271 0.132632 -0270335 0.135671 0.135671

4.5 -0.206110 0.103236 0.103131 -0.210675 0.105523 0.105523

5.0 -0.160163 0.080331 0.079922 -0.164125 0.082130 0.082130

5.5 -0.124439 0.062276 0.062194 -0.127839 0.063945 0.063945

6.0 -0.096680 0.048476 0.048215 -0.099568 0.049793 0.049793

6.5 -0.075110 0.037587 0.037527 -0.077546 0.038776 0.038776

7.0 -0.058352 0.029260 0.029094 -0.060394 0.030198 0.030198

7.5 -0.045333 0.022688 0.022645 -0.047035 0.023518 0.023518

8.0 -0.035218 0.017662 0.017556 -0.036631 0.018316 0.018316

8.5 -0.027361 0.013695 0.013665 -0.028528 0.014264 0.014264

9.0 -0.021256 0.010661 0.010594 -0.022218 0.011109 0.011109

9.5 -0.016514 0.008267 0.008247 -0.017303 0.008652 0.008652

10. -0.012829 0.006436 0.006393 -0.013476 0.006738 0.006738

190

Table G.6 The Computation Results for Problems 2 of Chapter 4.4
Using Modified Euler Method and Mathematica Software

Time Modified Euler Mathematica

t y1 y2 y1 y2

0.0 0.0 0.0 0.0 0.0

0.5 -0.014776 0.004980 -0.0149596 0.00497987

1.0 -0.019692 0.009970 -0.0199493 0.0099697

1.5 -0.024607 0.014960 -0.024939 0.0149595

2.0 -0.029935 0.019949 -0.0299286 0.0199492

2.5 -0.034852 0.024939 -0.0349182 0.0249389

3.0 -0.039768 0.029929 -0.0399077 0.0299285

3.5 -0.044686 0.034918 -0.0448972 0.0349181

4.0 -0.049604 0.039908 -0.0498866 0.0399076

4.5 -0.054522 0.044898 -0.0548759 0.044897

5.0 -0.059855 0.049887 -0.0598651 0.0498864

5.5 -0.064775 0.054876 -0.0648543 0.0548757

6.0 -0.069696 0.059865 -0.0698435 0.0598649

6.5 -0.074617 0.064855 -0.0748326 0.0648541

7.0 -0.079539 0.069844 -0.0798216 0.0698433

7.5 -0.084462 0.074833 -0.0848105 0.0748323

8.0 -0.089799 0.079822 -0.0897994 0.0798213

8.5 -0.094723 0.084811 -0.0947882 0.0848102

9.0 -0.099648 0.089800 -0.0997769 0.0897991

9.5 -0.104573 0.094788 -0.104766 0.0947879

10. -0.109499 0.099777 -0.109754 o.o997766 I

191

~~

Table G.7 The Computation Results for Problems 1 of Chapter 4.4
Using Exponential Method and the Exact Solution

Time Exponential method Exact solution

t y1 y2 y3 y1 y2

0.0 -1.0 1.0 3.0 -1.0 1.0

0.5 -1.189366 1.45198 1.145291 -1.189722 1.146680

1.0 -1.076826 0.740041 0.739956 -1.077726 0.741866

1.5 -0.893643 0.520202 0.520259 -0.894946 0.522154

2.0 -0.715909 0.384379 0.384339 -0.717443 0.386195

2.5 -0.564626 0.291533 0.291501 -0566272 0.293243

3.0 -0.442145 0.224069 0.224091 -0.443782 0.225609

3.5 -0.345085 0.173349 0.173364 -0.346636 0.174686

4.0 -0.268921 0.134550 0.134539 -0270335 0.135671

4.5 -0.209407 0.104548 0.104558 -0.210675 0.105523

5.0 -0.163005 0.081310 0.081302 -0.164125 0.082130

5.5 -0.126863 0.063247 0.063253 -0.127839 0.063945

6.0 -0.098727 0.049213 0.049209 -0.099568 0.049793

6.5 -0.076828 0.038290 0.038293 -0.077546 0.038776

7.0 -0.059785 0.029797 0.029795 -0.060394 0.030198

7.5 -0.046523 0.023518 0.023185 -0.047035 0.023518

8.0 -0.036203 0.018044 0.018042 -0.036631 0.018316

8.5 -0.028172 0.014039 0.014041 -0.028528 0.014264

9.0 -0.021923 0.010925 0.010926 -0.022218 0.011109

9.5 -0.017059 0.008502 0.008502 -0.017303 0.008652

10. -0.013275 0.006616 0.006616 -0.013476 0.006738

192

y3

3.0

1.146680

0.741866

0.522154

0.386195

0.293243

0.225609

0.174686
.

0.135671 I

o.to5523 1

0.082130

0.063945

0.049793

0.038776

0.030198

0.023518

0.018316

0.014264

0.011109

0.008652

0.006738

Table G.8 The Computation Results for Problems 2 of Chapter 4.4
Using Exponential Method and Mathematica Software

Time Exponential method Mathematica

t y1 y2 y1 y2

0.0 0.0 0.0 0.0 0.0

0.5 -0.014960 0.004982 -0.0149596 0.00497987

1.0 -0.019951 0.009972 -0.0199493 0.0099697

1.5 -0.024941 0.014961 -0.024939 0.0149595

2.0 -0.029935 0.019951 -0.0299286 0.0199492

2.5 -0.034928 0.024941 -0.0349182 0.0249389

3.0 -0.039904 0.029932 -0.0399077 0.0299285

3.5 -0.044894 0.034923 -0.0448972 0.0349181

4.0 -0.049885 0.039914 -0.0498866 0.0399076

4.5 -0.054876 0.044906 -0.0548759 0.044897

5.0 -0.059867 0.049898 -0.0598651 0.0498864

5.5 -0.064858 0.054890 -0.0648543 0.0548757

6.0 -0.069850 0.059882 -0.0698435 0.0598649

6.5 -0.074842 0.064875 -0.0748326 0.0648541

7.0 -0.079834 0.069867 -0.0798216 0.0698433

7.5 -0.084826 0.074860 -0.0848105 0.0748323

8.0 -0.089818 0.079853 -0.0897994 0.0798213

8.5 -0.094811 0.084846 -0.0947882 0.0848102

9.0 -0.099803 0.089839 -0.0997769 0.0897991

9.5 -0.104796 0.094832 -0.104766 0.0947879

10. -0.1097789 0.099826 -0.109754 0.0997766

193

VITA

Edward Purba

Candidate for the Degree of

Master of Science

Thesis: COMPACT NUMERICAL METHODS FOR STIFF
DIFFERENTIAL EQUATIONS

Major Field: Computer Science

Biographical:

Personal Data: Born in Rantau Prapat, Propinsi Sumatera Utara, Indonesia, on
October 10, 1958, the son of Daulat Purba and Siti Minar Siringo-ringo.

~

Graduated from SMA Negri I Medan, in December 1976; received Sarjana S-
1 in Applied Mathematics from Bandung Institute of Technology, Bandung,
Indonesia, March 1984. Completeq the requirements for the Master of
Science degree with a major in Computer Science at Oklahoma State
University in May, 1996.

Experience: Lecturer, Polytechnic of the Bandung Institute of Technology, from
July 1984 to June 1986; Researcher, Agency for the Assessment and
Application ofTechnology (BPP Teknologi), from 1989 to 1991; Engineering
System Analyst, Indonesian Aircraft Industries (IPTN), from 1984 to 1988;
Head ofNumerical Intensive Computing, IPTN Computing Center, from 1989
to 1991; Teaching Assistant, Department of Computer Science, Oklahoma
State University, in Spring 1995.

Professional Memberships: Former Representative for West Java to the
Indonesian Remote Sensing Society (MAPIN); Organizer of Indonesian
Association of Artificial Intelligence (HAIAI); Member of Association for
Computing Machinery (ACM).

