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INTRODUCTION 

Growing poultry and swine production has contributed to an increase in economic 

growth for Oklahoma agriculture. Along with economic benefits, producers are faced 

with disposal of large amounts of animal manure generated from poultry and swine 

production. Excessive land application of animal manure increases soil available P and has 

raised concerns about P runoff in eastern Oklahoma. The beneficial use of two drinking 

water treatment hydrosolids (alum sludges), cement kiln dust, and bauxite red mud to 

reduce bioavailable P in soils that contain excessive P from manure application was 

evaluated in this study. The potential environmental impact of aluminum, pH, salinity, and 

heavy metals on soil quality associated with land application of these waste materials was 

also determined. 

This thesis consists of two manuscripts that will be submitted for publication in the 

Journal of Environmental Quality, an American Society of Agronomy publication. 
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CHAPTER I. 

REDUCTION OF NON-POINT SOURCE PHOSPHORUS FROM 
AGRICULTURAL LAND USING NONHAZARDOUS WASTES 

ABSTRACT 

The beneficial use of two drinking water treatment hydro solids (HS 1, HS2), 

cement kiln dust (CKD), and bauxite red mud (RM) to reduce bioavailable P in soils that 

contain excessive P from manure application was evaluated. Two soils that contained 553 

and 296 mg kg-1 Mehlich III P from poultry or dairy manure were mixed with 100 g kg-I 

amendment and incubated at 25°C for 9 weeks. The ability of amendments to reduce 

bioavailable P and soluble P in soil was determined. Soil pH, salinity (EC), available 

aluminum, and heavy metal content and extractability were determined in amendments and 

soils to evaluate potential environmental impact. Reductions in bioavailable P from 490 mg 

kg-I to 250 mg kg-1 followed the trend HS2, CKD > HS 1 ~ RM in the slightly acidic Dickson 

soils. Reductions in bioavailable P from 275 mg kg-I to 110 mg kg-I followed the trend HS2 ~ 

HSI > RM > CKD in the calcareous Keokuk soil Reduction of soluble P by amendments 

followed similar trends. In general, increasing amendment rates from 30 to 100 g kg-I 

decreased bioavailable and soluble P. Most treatments did not result in excessive soil pH, 

increases in soil salinity, or extractable AI. Land application of hydrosolids used in this study 
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should not increase the content or availability of heavy metals in soils. Adverse potential 

environmental impacts from aluminum, pH, salinity, and heavy metals associated with 

application of amendments should be insignificant. Hydrosolid waste is currently being 

landfilled at great expense to municipalities. Hydrosolid application to soils in sensitive 

watersheds that have soils with excessive amounts of bioavailable P may improve drinking 

water quality, reduce drinking water treatment costs, and thus provide financial savings for 

municipalities. 
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INTRODUCTION 

Growing poultry and swine production has contributed to an increase in economic 

growth for Oklahoma agriculture (Sharpley et aI., 1991). Along with economic benefits, 

producers are faced with disposal of large amounts of animal manure generated from 

poultry and swine production. Excessive land application of animal manure increases soil 

available P and has raised concerns about P runoff in eastern Oklahoma (Field et aI., 1985; 

Reddyet aI., 1980; Sharpleyet aI., 1991; Singh and Jones, 1976). 

Recent benchmark Conservation Practice Standard and Waste Utilization 

guidelines passed by the Oklahoma Natural Resource Conservation Service (NRCS) limit 

animal manure applications to soils with excessive amounts of bioavailable P (NRCS, 

1994). These guidelines were designed to determine application rates of animal manure 

beneficial to soils in sensitive watersheds. Application rates are based on soil bioavailable 

P determination by Mehlich III extraction, field slope, soil depth, soil erodibility, flood 

plain, and other factors that minimize non-point source pollution. 

Recently, U.S. EPA Region VI promulgated Concentrated Animal Feeding 

Operation (CAFO) regulations and the Oklahoma Feed Yard Act adopted use of NRCS 

guidelines that limit application of animal manures to P sensitive watersheds. The NRCS 

guidelines limit animal manure applications to land with excessive amounts of available P. 
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Reduction of bioavailable P in soils that exceed CAFO levels would reduce the non-point 

source (NPS) threat to sensitive watersheds. In addition, land application of 

nonhazardous waste materials that reduce P solubility may be a feasible approach to 

reduce bioavailable P in soils. 

Soluble forms of phosphorus are readily adsorbed and precipitated by soil or 

sediment components that contain aluminum, iron, and calcium (Hsu, 1964; Hsu, 1976). 

Iron and aluminum oxides (hydrous oxides) strongly adsorb and precipitate P from 

solution in natural water and soil systems (Stumm and Morgan, 1981; Tisdale et aI., 

1985). Calcium reacts with soluble P to form very insoluble phosphorus compounds 

(Lindsay, 1979). 

Alum sludge, or hydrosolid, is a waste by-product generated from drinking water 

pretreatment. Hydrosolids contain aluminum oxides capable of adsorbing and 

precipitating soluble phosphorus. Hydrosolids as a soil amendment to improve the 

physical properties of potting media and plant growth have been investigated (Bugbee and 

Frink, 1985). Hydro so lids improved water holding capacity and acted as a liming 

material, but higher rates of hydro solids caused severe P deficiency and decreased lettuce 

yield (Bugbee and Frink, 1985). Hydro so lid additions to soil improved soil structure and 

plant growth, but large application rates (>2 MT ha-1) induced P deficiencies and reduced 

com yields (Rengasamy et al., 1980). Land application of hydrosolids have induced 

similar P deficiencies in other studies (Heil and Barbarick, 1989). The ability of 

commercial alum to reduce soluble P in field runoff water has recently been reported 

(Moore and Miller, 1994). However, the chemical properties of commercial alum and 
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hydro solids are very different. Alum (aluminum sulfate) is a very soluble salt that releases 

toxic aluminum and produces acidity when dissolved in water. Land application of alum 

may result in soil acidification and phytotoxic levels of Al3+, which is not desirable. 

Hydrosolids are predominately insoluble aluminum oxides which are neutral to slightly 

alkaline. Hydro so lids should not release toxic aluminum or produce acidity in soil or 

aqueous systems. 

Red mud contains large amounts of aluminum oxides, iron oxides, and calcium and 

is a waste product of the aluminum industry (Shiao and Akashi, 1977). Shannon and 

Verghese (1976) suggested that red mud could be economically used as an amendment for 

phosphorus removal by precipitation. After treatment with acids, red mud is an effective 

adsorbent for the removal ofP (Barrow, 1982; Shiao and Akashi, 1977; and Weaver and 

Ritchie, 1987), however, red mud has undesirable properties. Red mud contains lye, has a 

high pH (9-12), large electrical conductivity (60-350 dS m- I ), and large amounts of soluble 

sodium (9 meq I OOg-l) and aluminate. Land application of red mud results in saline and 

alkaline conditions and poor soil physical structure (Wong and Ho, 1991). Red mud is 

corrosive and is classified as a hazardous waste (Thompson, 1987). These undesirable 

properties have prevented use of red mud in natural water and soil systems (Vachon et al., 

1994). Most studies have focused on reclamation of soils rendered infertile by red mud 

(Thompson, 1987). In a study by Vlahos et al. (1989) on the effects of P reduction on 

sandy soils, red mud was found to be an extremely effective material in removal of total P 

in leachate after application of superphosphate fertilizer. Water retention, pH, calcium, 

and total soluble salt increased after application ofthe red mud amendment to soil. 
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The ability of calcium to 'fIX" phosphorus into relatively insoluble forms is well 

known (Ford, 1933). Calcium reacts with soluble P to form insoluble calcium phosphates 

in soils at moderate to high pH (>6). Reagent-grade CaO and Ca(OH)z were found to be 

effective amendments in reducing soluble P in poultry litter (Moore and Miller, 1994). 

Cement kiln dust (CKD) is a waste product generated during production of cement. 

Cement kiln dust is rich in calcium and potassium oxides. 

Land application of nonhazardous waste materials has the potential to reduce 

excessive amounts ofbioavailable P in soil but information is needed. Waste materials that 

contain hydrous oxides (e.g., alum sludge, red mud) or calcium (cement kiln dust) are 

readily available. Information is needed to access the ability of waste amendments to 

reduce bioavailable P and not cause any potential adverse environmental impacts. The 

beneficial use of two drinking water treatment hydro solids, cement kiln dust, and bauxite 

red mud to reduce bioavailable P in soils that contain excessive P from excessive manure 

application was evaluated in this study. The potential environmental impact of aluminum, 

pH, salinity, and heavy metals on soil quality associated with land application of these 

waste materials was also determined. 

7 



MATERIALS AND METHODS 

Amendments 

Four amendments used in this study were a hydro solid collected from Lake Wister, 

Oklahoma (HS 1), a hydro so lid collected from Lake Oologah in Tulsa, Oklahoma (HS2), 

cement kiln dust from Blue Circle Cement in Tulsa, Oklahoma, and treated red mud from 

Alcoa in Point Comfort, Texas. Both hydrosolid materials were alum sludges. Untreated 

red mud contains lye and is considered hazardous waste because of its high corrosivity. 

The bauxite red mud was treated with gypsum and leached with deionized water to 

remove excess lye and sodium. This was accomplished by placing a mixture of 21 kg red 

mud with 4.1 kg gypsum in a 20.3 cm Carlon PS-115 PVC gravity sewer line pipe. A cap, 

with drainage holes and a nylon screen, was placed at the bottom of the column to prevent 

the loss of the red mud solid. Deionized water was leached through the column until the 

electrical conductivity (EC) was <2 dS m- I . A total of 64 L of deionized water was added 

over approximately 70 hours. 

Amendment Properties and Chemical Characterization 

All amendments were analyzed for pH, salinity, calcium carbonate equivalent 

(CCE), total metal content, and extractable heavy metals by U.S. Environmental 
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Protection Agency Toxicity Characteristic Leaching Procedure (U.S. EPA, 1990) (Table 

1). 

Amendment pH was analyzed in 1:2 amendment:O.O 1 M CaCh solution using a 

glass electrode (McLean, 1982). Electrical conductivity (EC), or salinity, of each 

amendment was analyzed in 1:2 amendment:deionized water solution (Rhoades, 1982). 

Calcium carbonate equivalent (CCE) was determined by placing 0.5 g of amendment in 

excess standard HCI and boiling for 5 minutes. CCE was determined by back-titration of 

remaining HCI with standard NaOH (Rund, 1984). 

Total metal content of amendments was determined by wet digestion with RN03 

and HCI04 • Ten mL of RN03 was added to 2 g of each amendment in two replications. 

These samples were then placed into a heated digestion block for 2 hours at 150°C. After 

cooling, 10 mL of HCI04 was added and heated for 1.5 hours at 215°C. Next, 4 mL of 

HCI was added and the mixture was heated for 0.5 hours at 120°C. Digested samples 

were diluted with deionized water to a final volume of 25 mL and fIltered through 0.45 

micron membrane fIlters. Acid digests were analyzed for AI, Ca, Cd, Cu, Fe, 1(, Mg, Mn, 

Mo, Na, Ni, Pb, and Zn by inductively coupled plasma atomic emission spectroscopy 

(lCP). 

Metals were extracted from amendments according to the U.S. EPA TCLP 

procedure (U.S. EPA, 1990). Pretreatment tests specified by this method showed HSI 

and HS2 test solutions had pH <5.0 while CKD and RM test solutions had pH >5.0. 

Therefore, 0.2 M acetic acid, pH 5.0 (EF #1), was used for HSI and HS2 and unbuffered 

0.2 M acetic acid (EF #2) was used for CKD and RM. Amendment (2 g) was placed into 
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a 125 mL Erlenmeyer flask and 40 mL of the appropriate EF solution was added then 

placed on a shaker for 1 hour. The samples were filtered using 0.45 J..lm membrane filters 

and analyzed by ICP instrumentation for Ba, Cd, Cll, Mo, Ni, Pb, and Zn. 

Phosphorus Adsorption Index 

The ability of amendments to reduce soluble P was used as an index of their 

phosphorus adsorption capacity. A preliminary equilibration study, conducted to 

determine the shaking time needed to achieve equilibrium, showed equilibration was 

achieved after 15 hours and was used for all subsequent equilibrations. Amendments were 

equilibrated with 10, 25, 50, 100, 250, 500, 1000, 5000 and 10,000 mg P L-J standard 

solutions in three replications. The samples were then centrifuged and analyzed using the 

modified Murphy-Riley method (Murphy and Riley, 1962). 

Soil Properties 

Three soils that received large amounts of animal manures and contained large 

amounts of Mehlich III (Mehlich, 1984) available P were selected for the incubation study 

(Table 2). Mehlich III available P was 553, 510 and 296 mg P kg- J and soil pH was 5.3, 

5.8, and 8.2 for Dickson silt loam #1 (fme-silty, siliceous, Thermic Glossic Fragiudult), 

Dickson silt loam #2, and Keokuk very fine sandy loam (coarse-silty, mixed, Thermic 

Fluventic Haplustoll), respectively. The Dickson soils were from Adair county, Oklahoma 

and received > 1 0 years of poultry litter. The Keokuk soil was from Grady county, 

Oklahoma and received> 1 0 years of dairy manure. 
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Cation exchange capacity of the soils was detennined by using BaCh as described 

by Rhodes (1982). Citrate-bicarbonate-dithionite procedure described by Olsen and Ellis 

(1982) was used to measure free iron oxides. The modified Mebius method was used to 

determine the soil organic carbon content of each soil (Yeomans and Bremner, 1988). 

Incubation Study 

Soils were incubated with amendments to evaluate reductions in bioavailable P 

during the incubation period. Three different soils (two Dickson soils and a Keokuk soil) 

were analyzed after 3,5, and 9 weeks of incubation for soil pH, EC, Mehlich III P, soluble 

P, and total aluminum. 

The incubator temperature was 26°C during the day (16 h) and 24°C during the 

night (8 h). The incubator was maintained at approximately 60% humidity. Soil (250 g) 

was mixed with amendment rates of 30 g kg-1 and 100 g kg-1 in plastic pots. Soils were 

maintained at field capacity (-0.3 bar) moisture content. A preliminary study with 10, 50, 

100, and 200 g kg-1 amendment rates suggested 30 and 100 g kg-I rates were needed to 

reduce bioavailable P. The experimental design was a completely randomized design with 

three replications and controls (no amendment added) for each soil. Three soils with an 

initial Mehlich III P of 553, 466, and 310 mg P kg-I were chosen due to their high 

bioavailable P levels and initial pH. Triumph 64 wheat (Triticum spp.) was planted on the 

amended soils as a qualitative indicator of amendments on crop growth. 
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Soil Analysis 

Soil pH and EC were analyzed as descnbed in the Amendment Properties and 

Chemical Characterization section. Soil pH was determined after 3 and 9 weeks of 

incubation and EC was only measured after 9 weeks of incubation. 

The ability of amendments to reduce bioavailable P was determined by measuring 

phosphorus extracted by the Mehlich III procedure from amended soils at 3, 5, and 9 

weeks of incubation (Mehlich, 1984). Twenty mL of Mehlich III extractant was added to 

2 g of soil from each sample and placed on a rotary shaker for 5 minutes. The samples 

were then filtered using Whatman #2 filter paper (McElreath and Johnson, 1990). The 

filtrate was then diluted to a 1: 10 filtrate to deionized water solution. A 0.25 mL aliquot 

was pipetted into a 20 mL test tube and 5 mL of deionized water was added followed by 1 

mL of Reagent B (Murphy and Riley, 1962). After 10 minutes of color development, 

sample absorbance at 882 nm was measured. 

Soluble P in amended soils was determined after 9 weeks of incubation. Ten mL 

of 0.01 M CaCh was added to soil (5 g) and placed on a shaker for 15 h. The Modified 

Murphy-Riley method was used to analyze soluble P in filtered soil solution. 

Extractable aluminum was determined using potassium chloride (KCI) extraction 

(Barnhisel and Bertsch, 1982). The soils (2.5 g) subjected to incubation from the 9 week 

sampling time was mixed with 25 mL of 1 N KCI and shaken for 30 minutes. Soil 

mixtures were centrifuged at 2,900 g for 3 minutes and filtered through 0.45 micron 

membrane filter paper. Aluminum in KCI extract was measured by ICP instrumentation. 
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RESULTS AND DISCUSSION 

Batch equilibration of amendments with standard solutions for 15 h containing P 

showed all four amendments adsorb soluble P. All four amendments sorbed greater than 

90% ofP fron;.~solutions with initial concentrations <500 mg P L-1 (Fig. 1). Amendments 

sorbed between 45% to 90% of dissolved P from solutions with initial concentrations 

>500 mg P L-1• In generaL the ability to reduce soluble P was greater for CKD and HS2 

than HS 1 and RM. 

The ability of the amendments to reduce bioavailable and soluble P in soil was 

determined by an incubation study with the three soils and four amendments. A 

preliminary two week incubation study showed reduction of Mehlich III (M3) P with 

amendment rate was approximately linear (Fig. 2). All amendment rates reduced M3 P, 

but the 200 g kg-1 rate, which represented 134 MT ha-1 incorporated into a 5 cm depth, 

was considered agronomically excessive. Therefore, 30 and 100 g kg-1 rates were selected 

for incubation under controlled environmental conditions. 

Reduction in Bioavailable P 

The greatest changes in M3 P and pH occurred in the first three weeks of 

incubation for the Dickson soil #1 (Fig. 3). Chemical reactions between the soils and 
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amendments were assumed to be essentially complete after nine weeks of incubation. 

Similar results were found for the Dickson #2 and Keokuk soils. Therefore, only results 

obtained after nine weeks of incubation will be presented in the following discussion. 

All three soils showed significant (P < 0.05) decreases in M3 P for all amendment 

treatments after nine weeks of incubation (Fig. 4). Reduction ofM3 P followed the trend 

HS2, CKD > HS 1 ;::: RM for both slightly acidic Dickson soils. A different trend for the 

calcareous Keokuk soil was found: HS2 ;::: HS 1 > RM > CKD. The hydrosolids followed 

the same general trend in both slightly acidic and calcareous soils: HS2 ;::: HS 1. 

Hydrosolids contain large amounts of freshly precipitated aluminum oxides (Elliott et aI., 

1988). These amorphous Al oxides are highly reactive and adsorb large amounts of P 

from solution (Elliott et aI., 1988; Young et aI., 1988). Amorphous Al oxides in the 

hydro so lids used in this study adsorbed bioavailable P in the treated soils. Because 

drinking water treatment may involve adjustment of water pH with liming materials, some 

hydro so lids can contain significant amounts of calcium. Hydrosolid additions to soil may 

reduce phosphorus solubility and bioavailability by forming calcium phosphate 

precipitates. The larger total Ca in HS2 compared to HSI (Table 3) suggests larger 

reductions in M3 P may be due to formation of Ca precipitates. The ability of CKD to 

reduce P in the calcareous soil is significantly less than P reductions in slightly acidic soils. 

Although CKD does not contain large amounts of aluminum oxides it does contain 

significant amounts of Ca (Table 3). Large amounts of Ca in CKD may reduce P 

bioavailability in soil by forming P precipitates. Reductions of M3 P from CKD 

treatments were greater in the slightly acidic Dickson soil than in the calcareous Keokuk 
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soil (Fig. 4). These differences may be related to relative contnbution of CKD to the 

soluble Ca content of the treated soils. Because calcareous soils contain free CaC03 and 

soil solution is often saturated with soluble Ca, the CKD treatment had less impact on the 

soluble Ca in the calcareous soil than the Dickson soils. Treatment of soil with CKD 

probably resulted in formation of more Ca-P precipitates in the Dickson soils than in the 

Keokuk soil. In general, increasing amendment rates from 30 to 100 g kg-I decreased soil 

M3P. 

Other studies have reported hydro so lid addition to soil induced P plant deficiencies 

(Elliott et al., 1988; Elliott et aI., 1990; Heil and Barbarick, 1989; Young et aI., 1988) 

which decreases plant yields Heil and Barbarick (1989) found sorghum-sudangrass yield 

decreased after hydro so lid addition and they attributed the decrease to P fixation. Elliott 

et ai. (1988) and Young et al. (1988) suggested decreased available P was due to the AI 

hydrous oxides, which have extremely high surface areas and are quite reactive as P 

sorbing surfaces. Bugbee and Frink (1985) found lettuce turned a purple hue after 

application of a hydro solid due to an induced P deficiency. Elliott and Singer (1988) 

noted a decrease in yield from P deficiency in tomato shoots. Elliott et al. (1988) 

recommended adding P fertilizer to offset losses of available P in soils amended with 

hydro solids. 

Recently, Conservation Practice Standard and Waste Utilization guidelines have 

been passed by the Oklahoma Natural Resource Conservation Service (NRCS) that limit 

application of animal manures to soils with excessive amounts of bioavailable P (NRCS, 

1994). These bioavailable P guidelines, determined by M3 P in soil, are used to determine 
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if a soil contains excessive amounts of P. These standards may be used to comply with 

U.S. EPA Concentrated Animal Feeding Operations regulations in Region VI (Smolen and 

Caldwell, 1994). NRCS guidelines consider soil with M3 P >200 mg kg-I as a severe non

point source threat ofP pollution. Although none of the amendments reduced M3 P <200 

mg kg- l in this study, the HS2 100 g kg-I rate lowered the M3 P from 554 to 247 mg kg- l 

in the Dickson soils. In the Keokuk soil, the HS1, HS2, and RM 100 g kg-! rate lowered 

the M3 P from 296 to <200 mg kg-I. The addition of these amendments may decrease the 

non-point source (NPS) runoff threat from phosphorus to sensitive surface waters. 

Most forms of soluble P are immediately available for uptake by aquatic life. 

However, the M3 P procedure extracts both readily soluble and insoluble P minerals that 

may not be immediately bioavailable in aquatic environments (Fixen and Grove, 1990). 

Although M3 P is related to potential P availability and NRCS guidelines are based on M3 

P, soluble P may be a better environmental indicator of impact on aquatic life. Readily 

soluble P, extracted by using 1:2 soil:0.01 M CaCh, was also determined in treated soils. 

All amendments reduced soluble P in soils (Fig. 5). Reduction of soluble P in Dickson and 

Keokuk soils followed the trend HS2 ~ HS 1 > CKD, RM. Soluble P reduction is similar 

to M3 P reduction results (Fig. 4) where P is adsorbed and precipitated by aluminum 

oxides and/or Ca in the amendments. A greater reduction in soluble P was found in the 

slightly acidic Dickson soils than in the calcareous Keokuk soil (Fig. 5). Similar to M3 P 

reduction, increasing the amendment rates from 30 to 100 g kg-! reduced soluble P in all 

treatments except for HS2 in the Keokuk soil. 
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Potential Environmental Impact 

Soil pH, salinity (EC), extractable aluminum and heavy metal content and 

extractability were determined in amendments and soils to ensure the addition of 

amendments to soil did not result in undesirable environmental impacts. During the 

incubation study, Triumph 64 wheat (Triticum spp.) was planted in the treated soils as a 

qualitative indicator for nutrient induced deficiencies. Visual indications of nutrient 

deficiencies did not occur. 

The slightly acidic Dickson soils showed significant increases in pH from 5.7 to 8.0 

after the addition of CKD at the 100 g kg-1 rate (Fig. 6). Cement kiln dust, a known 

liming material, can easily increase soil pH >7.0 (Gelderman et al., 1992). In general, 

increasing the amendment rate from 30 to 100 g kg-1 significantly increased pH for all 

amendments in the Dickson soil. In the Keokuk soil, slight but significant (P < 0.05) 

increases in pH were found for all amendment rates. A final pH <8.3 for all the treated 

soils is not considered excessive and is not typically associated with environmental 

hazards. 

Several amendments (CKD, RM) have significant amounts of soluble salts (Table 

1). Soluble components of amendments might increase soil salinity. The impact of 

amendments on soil salinity was determined by measuring the electrical conductivity (EC) 

of treated soils. All rates of hydro solids or 30 g kg-1 rates of CKD or RM did not increase 

soil salinity (Fig. 7). However, 100 g kg- 1 rates of CKD and RM resulted in small but 

significant (P < 0.05) changes in EC. Salinity levels from 100 g kg-1 rates of CKD and 
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RM may affect salt sensitive plants (Rhoades and Miyamito, 1990). Soil salinity from 

other rates and amendments should have no effect on plant yield. 

Commercial alum has a high water solubility and releases large amounts of 

phytotoxic aluminum in aqueous systems. Land application of alum may lead to aluminum 

phytotoxicity and is not recommended. Hydro so lids are derived from alum but consist of 

insoluble Al hydroxides and polymers (Bugbee and Frink, 1985). The effect of 

hydro solids and other amendments on extractable aluminum in soil was measured after 

incubation (Fig~ 8). In Dickson soil #1, the 100 g kg-I rate of HS2 showed a significant 

increase in extractable Al from the control. In Dickson soil #2, the 30 g kg-I rate of RM 

showed a significant increase in extractable Al from the control. All other amendments in 

the Dickson soils were not significantly different (P < 0.05). In the Keokuk soil, only the 

100 g kg-I rate of HS 1 showed a significant increase in extractable Al from the control. 

Amendments did not increase extractable aluminum in incubated soils >5 mg Al kg-I. 

Adverse affects are associated with much higher levels of extractable Al (>60 mg kg-I) for 

wheat (Sloan et al., 1995). Therefore, slight increases in available aluminum from 

application of amendments should not have adverse effects on soils or plants. 

Because excessive amounts of heavy metals in soils can result in agroecosystem 

pollution and contamination of the food chain, the effect of land application of hydro solids 

on heavy metal content of soil was considered. Although the heavy metal content of most 

hydro so lids is similar to soil, several types of hydro so lids have been shown to contain 

elevated levels of trace and heavy metals (Elliott et aI., 1990). Heavy metals in most 

hydro solids originate from ferric coagulant chemicals produced as by-products of other 
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processes. Ferric coagulant wastes from steel pickling or associated with bauxite 

extractions may result in hydro solids that contain elevated levels of 307 mg kg-) Ni (Elliott 

et aI., 1990; Heil and Barbarick, 1989). Heil and Barbarick (1989) found application of an 

acidic hydrosolid (PH 5.1) to an acid soil (PH 5.2) resulted in forages that contained >2 

mg Cd kg-) which may pose a threat to livestock (NRC, 1980). They recommended 

liming of acid soil to pH >6.0 before land application of acidic hydrosolids to minimize Cd 

availability and plant uptake. Most studies show that heavy metal associated with land 

application of water treatment sludges is insignificant and does not pose any 

environmental threat (Elliott et aI., 1990; Heil and Barbarick, 1989). 

Total content and TCLP extractable metals of amendments were determined to 

evaluate potential environmental threats associated with land application of amendments 

used in our study (Table 3). With the exception of total Cd in CKD and total Cd and Pb 

in RM, all amendment total metal contents were within the range of a typical soil total 

metal contents. Therefore, land application of these materials will not likely increase 

heavy metal concentrations in soil. Heavy metals extracted by TCLP were below U.S. 

EPA regulatory levels providing evidence that the amendments are not hazardous wastes. 

The U.S. EPA extraction procedure is used to classify wastes materials but may also 

provide information on bioavailable forms of heavy metals. Dilute acetic acid, the TCLP 

extractant, determines forms of metals that are bioavailable in soil. Therefore, heavy 

metals measured by TCLP should be a better indicator of potential environmental impact 

than total metal content (Scott, 1994). Comparison of TCLP and total metal values show 

most heavy metal is not in bioavailable forms (Table 3). Amendment TCLP levels were 
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similar to metal concentrations determined by TCLP in typical soils (Scott, 1994). 

Therefore, land application of hydro so lids should not increase heavy metal availability in 

soil. Similarly, Elliott et al. (1990) found most heavy metals in hydrosolids were strongly 

bound by aluminum and iron oxides in forms that do not have potential adverse 

environmental impacts. 
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SUMMARY 

The addition of hydro solids, cement kiln dust, and bauxite red mud are beneficial in 

reducing the potential environmental impact from NPS nmoff ofbioavailable P. Increasing the 

rate of amendment will, in most cases, increase the amount of bioavailable P reduction. 

Potential adverse environmental impacts from application of these municipal and industrial 

amendments should be insignificant. Most soil treatments did not result in excessive soil pH or 

increase soil salinity. Hydrosolid applications had little or no effect on extractable AI in soil. 

Land application of hydro so lids used in this study should not likely increase the content or 

availability of heavy metals in soils. However, high rates of cement kiln dust and bauxite red 

mud may increase soil salinity in the amended soil, which may affect salt sensitive crops. 

Hydrosolid wastes are currently being landfilled at great expense to municipalities. Also, 

several municipal water treatment plants producing hydro solids in Oklahoma may have source 

water degraded by non-point source P pollution. Hydrosolid application to soils in sensitive 

watersheds that have soils with excessive amounts of bioavailable P may improve drinking 

water quality and provide financial savings for municipalities. 
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Table 1. Chemical Properties of Amendments Added to Soils 

Amendment £Ht EC;t CCE§ Total AI Total Fe 
k .] ------------ g g ------------

HSI 7.0 0.31 1.87 141 35.8 
HS2 7.6 0.58 14.8 147 29.6 
CKD 12.6 17.8 87.5 17.6 
RM 8.1 2.63 24.2 111 209 

t pH measured in 1:2 amendment:0.01 A1 CaCh 
t Electrical conductivity (dS m- 1) 

§ Calcium c~bonate equivalent expressed in percent 
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Table 2. Soil Chemical Properties and Characteristics 

Soil Series Soil pH Soil Texture Initial Mehlich III CECt I _Fe203t _ _ __ OG§ 
mg kg-1 - . cmol kit g kg- 1 g kg-1 

Dickson #1 5.3 silt loam 553 9.3 0.15 17.2 
Dickson #2 5.7 silt loam 510 12.9 0.14 35.0 

Keokuk 8.0 sandy loam 296 13.7 0.10 13.1 
t Cation exchange capacity 
~ Free iron oxides - expressed as Fe 
§ Soil organic carbon content 



.-

Table 3. Extractable TCLP and Total Metal Contents of Amendments Added to Soils 
Amendmentst 

HS1 HS2 CKD 

Total Metal ------------------------------------- mg kg-! 
Cd 0.57 0.93 2.98 
Cu 24.8 37.9 7.48 
Mo 0.12 0.25 0.70 
Ni 26.6 28.5 14.4 
Pb 14.0 15.9 29.7 
Zn 86.1 80.7 36.8 

--------------------------------------- g kg-! 

AI 141 147 17.6 
Ca 2.1 21.9 205 
Fe 35.8 29.6 
K 0.79 1.2 

Mg 3.26 7.2 7.2 
Mn 11.0 0.82 0.13 
Na 0.09 0.38 1.65 

RM Nonnal range in 
soils:j: 

6.61 0.01 - 1.3 
27.3 1.4 - 216 

0.53 0 - 40 
10.0 2.2 - 154 
56.4 3.0 - 36 
56.1 3.2-170 

111 
65.0 

209 

0.79 
0.03 
9.25 

11 - 79 
1 - 18 

0.7 - 56 
0.8 - 33 
0.6 - 12 
0-4 

0.7 - 22 

EPA Regulatory 
Limit§ 

TCLI1l --------------------------------------- mg L-! ------------------------------------
Ba 1.17 0.83 0.20 0.02 100 
Cd 0.03 0.03 0.03 0.03 1.0 
Cu 0.03 0.02 0.03 0.03 
Mo 0.06 0.05 0.08 0.03 
Ni 0.06 0.03 0.08 0.40 
Pb 0.08 0.08 0.16 0.16 5.0 
Zn 0.07 0.08 0.13 0.40 

t HS 1 = hydro so lid from Lake Wister, Oklahoma; HS2 = hydrosolid from Lake Oologah, 
Oklahoma; CKD = cement kiln dust from Tulsa, Oklahoma; and RM = bauxite red mud 
from Point Comfort, Texas. 
t Cd, Cu, Ni, Pb, Zn, from Holmgren et aI. 1993 (1st to 99th percentile); Mo from 
Alloway, 1990; AI, Ca, Fe, K, Mg, Mn, Na from Isaac and Kerber, 1971. 
§ Regulatory limit specified by U. S. EPA SW -846 Method 1311. 
~ TCLP = Toxicity Characteristic Leaching Procedure, U. S . EPA Method 1311. 
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CHAPTER II. 

USE OF ALUM SLUDGE (HYDROSOLIDS) TO REDUCE 
NON-POINT SOURCE PHOSPHORUS FROM AGRICULTURAL 

LAND IN RUNOFF WATER 

ABSTRACT 

Phosphorus losses in runoff water from land receiving surface application of 

poultry litter is becoming a non-point source (NPS) problem to sensitive watersheds and 

may result in eutrophication of surface waters. The beneficial use of two drinking water 

treatment alum sludges (hydrosolids) to reduce P in runoff water from land treated with 

poultry litter was evaluated. Poultry litter (6.5 Mg ha- I ) was applied to box plots 

containing fescue (Festuca arundinacea) to simulate permanent pasture typical of the 

Southeastern U.S. Hydrosolid treatments were a completely randomized design with 

three replications. Treatments included two types of hydrosolids (HS 1, HS2) with 

broadcast and buffer strip application methods. Simulated rainfall from a single oscillating 

nozzle was applied to fescue boxes at a rate of 3.8 cm h- I for 84 minutes. Concentration 

and total mass of soluble phosphorus (P), total P, and total aluminum (Al) in runoff 

samples were determined. Hydro so lid application significantly reduced the concentration 
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and total mass of soluble P and total P in runoff water (P < 0.05). Only slight or no 

increases in total AI concentration and mass in runoff water was found. The buffer strip 

application appears to be more effective than the broadcast application in reducing the 

concentration (Table 2) and mass (Table 3) of cumulative soluble and total P in runoff 

water. Perhaps better contact between P in the runoff water and the hydro so lid particles 

occurred in the buffer strip than the broadcast application. Both hydro so lids reduced P 

similarly for the contact times of the runoff study. Crushing of hydro so lids to finer «0.2 

mm) particles-will increase surface area and P adsorption capacity, thus increasing the 

ability of the hydro so lids to reduce Pin runoff water. Land application of hydro solids may 

provide a safe and inexpensive solution to control phosphorus runoff from agricultural 

land. Hydrosolid application to agricultural land treated with animal manure in sensitive 

watersheds may improve drinking water quality and provide financial savings for municipalities. 
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INTRODUCTION 

The land application of poultry litter and swme manure to agricultural lands 

provides an economical means of supplying beneficial nutrients to crops. However, field 

applications -of poultry litter and swine manure at rates to meet forage nitrogen 

requirements normally exceeds phosphorus (P) crop requirements and results in excessive 

levels of soil P (Shreve et aI., 1995). Phosphorus losses in runoff water from land 

receiving surface application of poultry litter is becoming a non-point source (NPS) 

problem to sensitive watersheds (Edwards and Daniel, 1993; Sharpley and MenzeL 1987) 

and may result in eutrophication of surface waters. 

Recent benchmark Conservation Practice Standard and Waste Utilization 

guidelines passed by the Oklahoma Natural Resource Conservation Service (NRCS) limit 

animal manure applications to soils with excessive amounts of bioavailable P (NRCS, 

1994). These guidelines were designed to determine the application rate of animal manure 

beneficial to soils in sensitive watersheds. Application rate is based on preventing 

excessive accumulation of P in soil. The Concentrated Animal Feeding Operations 

(CAFO) regulations in U.S. EPA Region VI have adopted the use of NRCS guidelines 

that limit application of animal manures to P sensitive watersheds. Runoff P will increase 
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with an increase in bioavailable P in soils (Sharpley, 1992). Reduction of bioavailable P in 

soils that exceed CAFO levels would reduce the NPS threat to sensitive watersheds. 

Land application of alum (aluminum sulfate) has long since been used to reduce 

lake sediment P release (Kennedy and Cooke, 1982; Knauer and Garrison, 1981; Welch et 

aI., 1982; and Young et aI., 1988). Litter amended with alum to reduce P solubility in 

runoff water on agricultural lands with excessive P has also been investigated (Shreve et 

aI., 1995). They found that soluble and total P were significantly reduced. Coale et ai. 

(1994) mixed--municipal drinking water purification facility waste material ( alum sludge) 

with soil in a column and reduced P concentration in drainage water. 

Surface application of nonhazardous alum sludges (hydro so lids) that reduce P 

solubility through precipitation and/or adsorption reactions to agricultural lands treated 

with poultry litter would effectively reduce the potential for P loss in runoff. The 

beneficial use of two drinking water treatment hydro so lids (HS1, HS2) to reduce P in 

runoff water were evaluated in this study. 
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MATERIALS AND METHODS 

Small-scale plots (fescue boxes) in a controlled greenhouse environment were used 

in the runoff study. Eighteen boxes which measured 1.0 meter square by 0.33 meter deep 

were used with a perforated bottom to hold soil and grow fescue in an effort to simulate 

permanent pasture typical of much of the Southeastern u.S. Boxes were constructed to 

determine the effects of rainfall, slope, and vegetation height on runoff water quality from 

fescue plots treated with poultry litter (Olson, 1995). The description of the boxes used in 

this study as constructed by Olson is as follows. 

The fescue (Festuca anmdinacea) boxes were constructed from a supporting 

frame of heavy angle iron with treated plywood attached as the sides of the box. Four 

steel rods provided the support for the bottom of the box. The steel rods also supported a 

section of expanded metal (4.76 mm) on which a piece of fine mesh polyethylene 

screening was then attached. The boxes were filled to a depth of 5 cm with a gravel/sand 

mixture (Fig. 1). The gravel/sand layer was covered with 2.5 cm of coarse sand. The 

remaining volume was filled with a Baxter silt loam (clayey, mixed, mesic, Typic 

Paleudult) from Delaware County, Oklahoma. The plywood side on the front of the box 

was cut 2.5 cm lower than the other three sides so runoff could leave the plot. A flume 

made of galvanized metal was attached to the lower side to direct runoff. To make the 
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fescue boxes retrievable, four 10 cm X 10 cm wooden blocks were bolted on the bottom 

of each box at the comers to allow access by a floor dolly and forklift. 

The fescue used in this study was maintained by watering with a soaker hose. One 

day prior to the rainfall event, the fescue was trimmed to 7.6 cm to simulate typical field 

conditions for poultry litter application. Poultry litter was applied by hand to the box 

surface with special attention devoted to the uniformity of application. One application 

rate of 6.S Mg ha- I was used in this experiment. 

The experimental design was a completely randomized design with three 

replications. Two types of hydro solids (HS 1 and HS2) were investigated. Both 

hydro so lids were alum sludges from municipal drinking water treatment plants and are 

descnbed in Chapter 1 of this thesis. Due to lack of uniformity in hydrosolid size, both 

hydro solids were crushed to <6 mm size. Hydrosolids were applied to box plots by 

broadcasting or as a buffer strip (Fig. 2). The buffer strip was approximately 7.6 cm from 

the runoff flume and 10.2 cm wide. Broadcast amendments were applied generously 

across the box starting 7.6 cm from the runoff flume being careful to give equal 

application over the fescue. 

Surface residue and fescue cover measurements were conducted to show 

uniformity of boxes. Percent of blade, debris, and ground cover on the box surface were 

evaluated by using a simple point measurement system where a pointed rod was placed 

downward toward the soil surface. The rod was guided by a ridge frame that had 10 sets 

of holes. The frame was set on the box surface and rods were slowly pushed through the 

guides toward the soil surface. The first material that the tip of the rod touched was the 
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measured recording for that sampling point. The three possible types of material to 

characterize the cover of the plots are defmed as follows: 

BLADE - any living green material such as a leaf or stem 

DEBRIS - any nonliving material such as leaflitter 

GROUND - bare uncovered soil 

Once the fIrst ten measurements were taken, the frame was rotated on the vertical axis 90° 

and another ten measurements were taken in the same manner. The 20 sampling points 

were used to -aetermine the percentage of blade, debris, and ground. 

The quantity of forage on each box before the treatments were applied was also 

determined by clipping all the forage from a small area of each box. The area clipped was 

defmed by a square frame with inside dimensions measuring 10 cm X 10 cm. The square 

was tossed on the box surface and all of the forage that was rooted inside the frame was 

harvested, bagged, and oven dried at 95°C for 24 h. 

Four boxes were used in a preliminary study to determine the hydro so lid 

amendment rate. Hydrosolid #2 (HS2) was used for the preliminary study at 5.0 Mg ha-I 

and 10 Mg ha-I rates with 6.5 Mg ha-I poultry litter. Poultry litter samples were collected 

and analyzed for total Kjedahl nitrogen (TKN), total P (TP), and percent moisture. TKN, 

on a dry basis, was 55.0 g kg-I, TP dry was 15.7 g kg-I, and percent moisture was 215 g 

kg-I. The hydro so lid was tested as a buffer strip and as a broadcast application. Runoff 

was collected and analyzed for soluble P reduction. 

Hydrosolid #1 (HSl) was applied at a 15 Mg ha-I rate and HS2 was applied at a 10 

Mg ha-I rate. It was noted after the selection of amendment rates that HS2 caused 
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significant damming of runoff water. A 10 Mg ha- l rate was later selected to allow the 

runoff to pass through the buffer strip. Amendment rates were determined from the 

preliminary study. 

The rainfall simulator was constructed and described by Olson (1995). The rainfall 

simulator used is a modified design of the Kentucky Rainfall Simulator described by 

Moore et al. (1983). The rainfall simulator was designed to allow fescue boxes to tilt and 

accommodate different slope settings. The simulator used in this study consists of a single 

oscillating nozzle which travels back and forth across the fescue boxes and between two 

return pans. The simulator utilizes a Vee jet 80100 nozzle with an operating pressure at 

the nozzle of 41 kPa to achieve the drop size and kinetic energy typical of natural rainfall 

(Meyer and Harmon. 1979). 

Runoff collection was similar to that descnbed by Olson (1995). Runoff was 

collected in a tank that rested on a balance with two strain gauges, one on either side. The 

strain gauges are electronic sensors that measure weight (in kg) of runoff in the collection 

tank. A data-logger recorded the strain gauge readings every 15 seconds for the duration 

of the storm event. This information was then downloaded to a personal computer and 

later summarized as a mass flow rate runoff hydro graph. 

The rain simulator was electronically programmed to deliver 3.8 cm h- l over an 84 

minute rainfall duration (Olson. 1995). The experiment was conducted in a greenhouse 

where temperatures ranged from 27 to 35°C. Boxes were saturated with water and 

allowed to drain for 72 hours prior to simulated rainfall. Poultry litter and amendments 

were applied to the fescue boxes and placed in the rainfall simulator by a forklift. Boxes 
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were tilted at a 5% slope. A plastic tarp was attached to the front of the fescue box and 

extended over the runoff weighing system to shield it from stray rainfall. Simulated 

rainfall rate was calibrated daily. 

Runoff from fescue boxes was collected in a galvanized metal container. After 84 

minutes of rainfall, the runoff was stirred vigorously for 2 to 3 minutes followed by 

collection of a 0.5 liter composite sample. Runoff samples were stored at -10°C. All 

chemical analysis were conducted within one week after sampling. 

Solubfe- phosphorus (P), total P, and total aluminum (AI) in runoff samples were 

determined. Soluble P was measured on fIltered (0.45 Jlm) runoff samples (Greenburg et 

aI., 1992). Soluble P was measured by Murphy-Riley colorimetric method based on 

formation of phospho-molybdenum blue complex (Murphy and Riley, 1962). 

Total P and total AI in unfIltered runoff samples were determined by wet digestion 

with RN03. Runoff samples (25 mL) were digested with 5 mL of RN03 for 1.5 h and 

150°C and diluted to volume (25 mL) with distilled water. Total P was measured by the 

Murphy-Riley Method (1962) and total AI by inductively coupled plasma atomic emission 

spectroscopy (ICP) instrumentation. 
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RESULTS AND DISCUSSION 

Uniformity of vegetation and debris distribution was determined by measuring 

surface coverage of blade, debris, ground, and forage density in randomly selected fescue 

boxes (Tablel). In general, the green living fescue (blade), the non-living fescue (debris), 

the uncovered soil (ground), and the forage density were similar (P < 0.05) and indicated 

vegetation was uniform among boxes. 

Treatment means of cumulative runoff flow volumes were determined from 

hydro graphs (Fig. 3). Total runoff volumes appeared larger for broadcast vs. buffer 

applications for HS2, but not HS 1. These trends suggest that the HS2 buffer strip 

application may have slowed water runoff from the box plots compared to the broadcast 

application. However, large amounts of variation were found in runoff volumes between 

box plots (LSDo.1o = 17.5) making interpretation of the HS2 trend difficult. 

The effects of hydro solid application on concentration of soluble phosphorus (P), 

total P, and total aluminum (AI) in runoff water were determined (Table 2). Hydro so lid 

application significantly reduced the concentration of soluble P and total P (P < 0.05). In 

general, buffer strip applications reduced the concentration of soluble P and total P more 

than broadcast application (P < 0.10). Total AI, determined by wet digestion with HN03, 

was determined in runoff to ensure precipitated AI in the hydrosolid did not dissolve and 
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result in undesirable potential environmental impacts. In general, only slight or no 

increase in total AI concentration in runoff water was found (Table 3). The largest 

observed AI concentration of 1.71 mg L-1 was well below levels of>50 mg L-1 associated 

with adverse effects of dissolved AI on plant growth (Sloan et al., 1995). Therefore, slight 

increases in total AI in runoff water should not result in adverse potential environmental 

impacts. 

The effect of hydro solid application on cumulative runoff losses of soluble P, total 

P, and total AI-were determined (Table 3). Hydrosolid applications significantly reduced 

cumulative losses of soluble and total P compared to untreated plots (P < 0.05). Similarly, 

Shreve et al. (1995) found that alum amended litter, with chemical properties similar to a 

hydro solid, decreased soluble and total P load in runoff from fields treated with poultry 

litter. However, no information is available on alum sludge (hydro so lid) and P reduction 

in runoff. Buffer strip application of hydro solids significantly decreased runoff loss of 

soluble P and total P compared to broadcast application for HS2 (P < 0.10) and HSI (P == 

0.10). Cumulative runoff of total AI was not increased (P < 0.10) by hydro solid 

application suggesting potentially adverse environmental impact from dissolved AI in 

runoff water is unlikely. 

The buffer strip application appears to be more effective than the broadcast 

application in reduction of concentration (Table 2) and mass (Table 3) of cumulative 

soluble and total Pin runoff water. Less runoffwater was associated with the buffer strip 

compared to the broadcast application for HS2 (Fig. 3) suggesting buffer strip application 

may have resulted in greater infiltration of water in the plots. However, little difference in 
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runoff water volumes between buffer strip and broadcast applications were found for HS 1 

(Fig. 3). Most of the runoff water passed through the buffer strips on the box plots (Fig. 

2). Perhaps better contact between P in the runoff water and the hydro solid particles 

occurred in the buffer strip than the broadcast application. 

In Chapter 1, results from soil incubated with hydro so lids for nine weeks showed 

HS2 reduced greater amounts of soluble P than HS 1. Evidently the HS2 contained more 

calcium than HS 1 and may have resulted in greater amounts of calcium phosphate 

precipitation. - A batch equilibration study where 150 rug L-1 of soluble P was shaken with 

1 g of hydro so lid was conducted to study the kinetics of the phosphate adsorption and/or 

precipitation. Although HS2 reduced more soluble P than HSI at equilibration times 

exceeding 10 minutes, HSI and HS2 reduced the same amount of soluble P for 

equilibration times less than 5 minutes (Fig. 4). Soluble P in runoff water was in contact 

for less than 2 minutes in the box plot study. These results suggest little difference in 

soluble P reduction was due to reaction kinetics. However, cumulative rainfall events may 

result in cumulative times that exceed 10 minutes. Therefore, with time, HS2 would more 

likely adsorb more P than HS 1. 

The particle size distribution affects surface area and should influence the 

adsorption properties of the hydro so lids. Adsorption of soluble P by both coarse (87% 

greater than 0.2 rum) and fine (100% less than 0.2 rum) forms of HS2 was studied to 

determine the importance of hydrosolid particle size (Fig. 5). The fine HS2 adsorbed 

more soluble P faster than coarse HS2. Crushing of hydro solids to finer «0.2 rum) 
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particles will increase surface area and P adsorption capacity, thus increasing the ability of 

the hydro so lids to reduce Pin runoff water. 
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SUMMARY 

Non-point source phosphorus pollution from agricultural land treated with animal 

manures may be reduced by using municipal alum sludge (hydrosolids). Land application 

of hydro solids may provide a safe and inexpensive solution to control phosphorus runoff 

from agricultura l land. Hydrosolids should be surface applied when poultry litter is not 

incorporated into the soil. Hydro so lids can be broadcasted or applied as a buffer strip at 

the edge of the field. Buffer strips should be more effective than broadcasting in reduction 

of phosphorus in runoff water. Potential adverse environmental impacts from land 

application of hydro solids are unlikely. However, potential environmental impacts from 

repeated application of hydro solids are not addressed by this work. 

Results from this study were completed on a small scale and may not be transferable to 

a large scale production. Other variables under field conditions (Le. circulated flow) are scale 

dependent and may effect the ability of hydro solids to reduce NPS. Further research is needed 

to evaluate the use of hydro solids to reduce NPS phosphorus under field conditions. 

Hydrosolid wastes are currently being landfilled at great expense to municipalities. 

Also, several municipal water treatment plants producing hydro solids may have source water 

degraded by non-point source P pollution. Hydrosolid application to agricultural land treated 

with animal manure in sensitive watersheds may improve drinking water quality and provide 

financial savings for municipalities. 
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Table 1. Mean Percent Cover and Forage Density of the Fescue Boxes. 

Hydro solid Application Blade Debris Ground Forage 

--------------- ~ ---------------- kg ha-1 

HS1 Buffer 35.0 30.0 35.0 3352 
HS1 Broadcast 17.5 45.0 37.5 3430 
HS2 Buffer 25.0 55.0 20.0 4185 

, 
HS2 Broadcast 27.5 42.5 30.0 2659 

LSD (u=0.05) 26.4 16.7 24.1 3804 
LSD (u=0.10) 20.7 13.1 18.9 2982 
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Table 2. The Effect of Hydro so lid Application on Mean Concentration of Soluble P, 
Total P, and Total AI in Runoff Water. 

Hydro solid Application Soluble P Total P Total AI 

-------------------------- mg L-1 -------------------------

HS1 Buffer Strip bc 8.99 c bc 8.77 
Broadcast b 13.0 b b 12.9 

HS2 Buffer Strip c 4.93 d c S.20 
Broadcast be 9.83 bc b 9.87 

Control 6.S Mg ha-] a 22.3 a a 20.8 
poultry manure 

LSD (a=O.OS) 4.94 4.19 

LSD (a=O.l 0) 4.02 3.41 

Letters to the left of application means represent LSD a = 0.05. 
Letters to the right of application means represent LSD a = 0.10. 
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c ab 1.42 b 
b bc 1.23 b 
d a 1.71 a 
bc bc 1.22 bc 
a c 0.96 c 
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Table 3. The Effect of Hydro solid Application on Mean Cumulative Runoff Losses for 
Soluble P, Total P, and Total AI 

Hydro solid Application Soluble P Total P Total AI 

b ·1 ------------------------- mg ox -----------------------
HS1 Buffer Strip b 142 bc b 141 bc a 25.3 a 

Broadcast b 278 b ab 279 b a 30.7 a 
HS2 Buffer Strip b 8.2 c b 103 c a 27.7 a 

Broadcast b 285 b ab 284 b a 35.0 a 
Control 6.5 Mg ha- I a 485 a a 455 a a 21.2 a 

poultry litter 
LSD (a=O.05) 197 193 28.7 
LSD (a=O.l 0) 159 156 23.3 

Letters to the left of application means represent LSD a = 0.05. 
Letters to the right of application means represent LSD a = 0.10. 
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Table A1. Incubation study Mehlich III reduction for 3 week sample time. 

3 Weeks 
Mlehlich dil extract dil extract Mehlich Mehlich reduction % 

Soil soil ppm amend ... amend. abs . ug in 0.25 uglmL factor uglmL soil ppm avg. in ul!!mL removed 
Dickson #1 599 HS1 3 0.140 1.222 4.89 10 48.9 489 111 18.4% 

599 HS1 3 0.129 1.126 4.50 10 45.0 450 149 24.9% 
599 HS1 3 0.133 1.161 4.64 10 46.4 464 468 135 22.5% 
599 CKD 3 0.106 0.925 3.70 10 37.0 370 229 38.3% 
599 CKD 3 0.111 0.969 3.87 10 38.7 387 212 35.3% 
599 CKD 3 0.105 0.916 3.66 10 36.6 366 375 233 38.8% 
599 HS2 3 0.119 1.038 4.15 10 41 .5 415 184 30.7% 
599 HS2 3 0.104 0908 3.63 10 36.3 363 236 39.4% 
599 HS2 3 0.118 1.030 4.12 10 41.2 412 397 187 31 .3% 
599 Red Mud 3 0.120 1.047 4.19 10 41 .9 419 180 30.1% 
599 Red Mud 3 0.134 1.169 4.68 10 46.8 468 131 21.9% 
599 Red Mud 3 0.126 1.099 4.40 10 44.0 440 442 159 26.6'!Eo 
599 HS1 10 0.088 0.768 3.07 10 30.7 307 292 48.7% 
599 HSl 10 0.097 0.846 3.39 10 33.9 339 261 43.5% 
599 HS1 10 0.095 0.829 3.32 10 33.2 332 326 268 44.7% 
599 CKD 10 0.084 0.733 2.93 10 29.3 293 306 51 .1% 
599 CKD 10 0.098 0.855 3.42 10 34.2 342 257 42.9% 
599 CKD 10 0.091 0794 3.18 10 31.8 318 318 282 470% 
599 HS2 10 0.053 0.462 1.85 10 18.5 185 414 69.1% 
599 HS2 10 0.076 0.663 2.85 10 26.5 265 334 55.7% 
599 HS2 10 0.069 0.602 2.41 10 24.1 241 230 358 59.8% 
599 Red Mud 10 0.092 0.803 3.21 10 32.1 321 278 46.4% 
599 R~Mud 10 0.100 0.873 3.49 10 34.9 349 250 41 .7% 
599 Red Mud 10 0.114 0.995 3.98 10 39.8 398 356 201 33.6'!Eo 

Con. NJA 0.169 1.475 5.90 10 59.0 590 
Con. NJA 0.171 1.492 5.97 10 59.7 597 
Con. NJA 0.175 1.527 6.11 10 61 .1 611 599 

Dickson #2 467 HSl 3 0.113 0.966 3.94 10 39.4 394 072 15.5% 
467 HSl 3 0.115 1003 4.01 10 40.1 401 065 14.0% 
467 HS1 3 0.111 0.969 3.87 10 38.7 387 394 079 17.0% 
467 CKD 3 0.088 0.768 3.07 10 30.7 307 159 34.2% 
467 CKD 3 0.094 0.820 3.28 10 32.8 328 139 29.7% 
467 CKD 3 0.099 0.864 3.46 10 34.6 346 327 121 25.9% 
467 HS2 3 0.108 0.942 3.77 10 37.7 377 090 19.2% 
467 HS2 3 0.104 0.908 3.63 10 36.3 363 104 22.2% 
467 HS2 3 0.111 0.969 3.87 10 38.7 387 376 079 17.0% 
467 Red Mud 3 0.108 0.942 3.77 10 37.7 377 090 19.2% 
467 Red Mud 3 0.122 1.065 4.26 10 42.6 426 041 08.7% 
467 Red Mud 3 0.107 0.934 3.73 10 37.3 373 392 093 20.0% 
467 HSl 10 0.092 0.803 3.21 10 32.1 321 145 31 .2% 
467 HSl 10 0.106 0.925 3.70 10 37.0 370 097 20.7% 
467 HS1 10 0.102 0.890 3.56 10 35.6 356 349 111 23.7% 
467 CKD 10 0.087 0.759 3.04 10 30.4 304 163 34.9% 
467 CKD 10 0.079 0.689 2.76 10 27.6 276 191 40.9% 
467 CKD 10 0 .081 0.707 2.83 10 28.3 283 287 184 39.4% 
467 HS2 10 0.061 0.532 2.13 10 21.3 213 254 54.4% 
467 HS2 10 0.088 0.576 2.30 10 23.0 230 236 5O.6'!Eo 
467 HS2 10 0.062 0.541 2.16 10 21.6 216 220 250 53.6% 
467 Red Mud 10 0.079 0.689 2.76 10 27.6 276 191 40.9% 
467 Red Mud 10 0.082 0.716 2.86 10 28.6 286 180 38.7% 
467 Red Mud 10 0.088 0.750 3.00 10 30.0 300 287 186 35.7% 

Con. NJA 0.120 1.047 4.19 10 41 .9 419 
Con. NJA 0.137 1.195 4.78 10 47.8 478 
Con. NJA 0.144 1.257 5.03 10 50.3 503 467 

Keokuk 311 HSl 3 0.089 0.802 2.41 10 24.1 241 070 22.5% 
311 HSl 3 0.Q70 0.611 2.44 10 24.4 244 066 21 .3% 
311 HS1 3 0.071 0.620 2.48 10 24.8 248 244 063 20.2% 
311 CKD 3 0 .078 0.681 2.72 10 27.2 272 038 12.3% 
311 CKD 3 0.087 0.759 3.04 10 30.4 304 007 02.2% 
311 CKD 3 0.084 0.733 2.93 10 29.3 293 290 017 05.6'!Eo 
311 HS2 3 0.076 0.663 2.65 10 26.5 265 045 14.6'!Eo 
311 HS2 3 0.074 0.646 2.58 10 25.8 258 052 16.6'!Eo 
311 HS2 3 0.080 0.698 2.79 10 27.9 279 268 031 10.1% 
311 Red Mud 3 0.094 0.820 3.28 10 32.8 328 -017 -05.6'!Eo 
311 Red Mud 3 0.082 0.716 2.86 10 28.6 286 024 07.9% 
311 Red Mud 3 0 .086 0.750 3.00 10 30.0 300 305 010 03.4% 
311 HSl 10 0.058 0.506 2.02 10 20.2 202 108 34.8% 
311 HS1 10 0.062 0.541 2.16 10 21.6 216 094 30.3% 
311 HSl 10 0.066 0.593 2.37 10 23.7 237 219 073 23.6'!Eo 
311 CKD 10 0.066 0.576 2.30 10 23.0 230 080 25.6'!Eo 
311 CKD 10 0.063 0.550 2.20 10 22.0 220 091 29.2% 
311 CKD 10 0.064 0.558 2.23 10 22.3 223 225 087 28.1% 
311 HS2 10 0.044 0.384 1.54 10 15.4 154 157 SO.6'!Eo 
311 HS2 10 0.038 0.332 1.33 10 13.3 133 178 57.3% 
311 HS2 10 0.037 0.323 1.29 10 12.9 129 138 181 58.4% 
311 Red Mud 10 0.089 0.602 2.41 10 24.1 241 070 22.5% 
311 Red Mud 10 0 .062 0.541 2.16 10 21 .6 216 094 30.3% 
311 Red Mud 10 0.069 0.602 2.41 10 24.1 241 267 070 22.5% 

Con. NJA 0.093 0.812 3.25 10 32.5 325 
Con . NJA 0.089 0.7.77 3.11 10 31 .1 311 
Con. NJA 0.085 0.742 2.97 10 29.7 297 311 
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Table A2. Incubation study pH changes for 3 week sample time 

3 Weeks 
Soil inrtial pH amend % amend. pH avg. pH incr. 

Dickson #1 5.3 HSI 3 5.6 0.3 
5.3 HSI 3 5.5 0.2 
5.3 HSI 3 5.5 5.5 0.2 
5.3 CKD 3 7.3 2 
5.3 CKD 3 7.3 2 
5.3 CKD 3 7.4 7.3 2.1 
5.3 . HS2 3 6.3 1 
5.3 HS2 3 6.3 1 
5.3 HS2 3 6.2 6.3 0.9 
5.3 Red Mud 3 6.7 1.4 
5.3 Red Mud 3 6.7 1.4 
5.3 Red Mud 3 6.7 6.7 1.4 
5.3 HSI 10 5.9 0.6 
5.3 HSI 10 5.7 0.4 
5.3 HSI 10 5.7 5.8 0.4 
5.3 CKD 10 8.3 3 
5.3 CKD 10 8.3 3 
5.3 CKD 10 8.4 8.3 3.1 
5.3 HS2 10 7.2 1.9 
5.3 HS2 10 7 1.7 
5.3 HS2 10 7.1 7.1 1.8 
5.3 Red Mud 10 7.4 2.1 
5.3 Red Mud 10 7.4 2.1 
5.3 Red Mud 10 7.4 7.4 2.1 

. - Con. NlA 5.3 
Con. N/A 5.2 
Can. NlA 5.3 5.3 

Dickson #2 5.8 HSI 3 5.9 0.1 
5.8 HSI 3 5.9 0.1 
5.8 HSI 3 5.9 5.9 0.1 
5.8 CKD 3 7.3 1.5 
5.8 CKD 3 7.3 1.5 
5.8 CKD 3 7.4 7.3 1.6 
5.8 HS2 3 6.6 0.8 
5.B HS2 3 6.5 0.7 
5.8 HS2 3 6.6 6.6 0.8 
5.B Red Mud 3 6.9 1.1 
5.8 Red Mud 3 6.9 1.1 
5.B Red Mud 3 7 6.9 1.2 
5.B HSI 10 6.3 0.5 
5.B HSI 10 6.3 0.5 
5.8 HSI 10 6.3 6.3 0.5 
5.8 CKD 10 8.2 2.4 
5.8 CKD 10 8.3 2.5 
5.B CKD 10 8.2 8.2 2.4 
5.B HS2 10 7.3 1.5 
5.B HS2 10 7.2 1.4 
5.B HS2 10 7.2 7.2 1.4 
5.8 Red Mud 10 7.3 1.5 
5.8 Red Mud 10 7.4 1.6 
5.8 Red Mud 10 7.4 7.4 1.6 

Con. NlA 5.9 
Con. NlA 5.8 
Con. NlA 5.8 5.8 

Keokuk B.2 HSI 3 7.8 -0.4 
B.2 HSI 3 7.8 -0.4 
8.2 HSI 3 7.8 7.8 -0.4 
8.2 CKD 3 8.5 0.3 
8.2 CKD 3 8.5 0.3 
8.2 CKD 3 8.5 8.5 0.3 
8.2 HS2 3 7.9 -0.3 
8.2 HS2 3 7.9 -0.3 
8.2 HS2 3 7.9 7.9 -0.3 
B.2 Red Mud 3 8 -0.2 
8.2 Red Mud 3 8 -0.2 
B.2 Red Mud 3 8 8.0 -0.2 
B.2 HSI 10 7.8 -0.4 
8.2 HSI 10 7.9 -0.3 
8.2 HSI 10 7.B 7.B -0.4 
8.2 CKD 10 8.5 0.3 
8.2 CKD 10 B.5 0.3 
8.2 CKD 10 8.6 B.5 0.4 
8.2 HSI 10 8 -0.2 
8.2 HSI 10 8 -0.2 
8.2 HSI 10 8 B.O -0.2 
8.2 Red Mud 10 8.2 0 
8.2 Red Mud 10 8.1 -0.1 
8.2 Red Mud 10 B.2 8.2 0 

Con. NlA 8.2 
Con. NlA B.l 
Con. N/A 8.2 B.2 
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Table AJ. Incubation study Mehlich III reduction for 5 week sample time. 

5 Weeks 
Mehlich dil extract dil extract Mehlich Mehlich reduction % 

Soil soil ppm amend % amend. abs. ug in 0.25 ~mL factor ugImL soil ppm avg. in ug/mL removed 
Dickson #1 556 HS1 3 0.137 1.20 4.78 10 47.8 478 77.9 14.0% 

556 HS1 3 0.155 1.35 5.41 10 54.1 541 15.1 2.7% 
556 HS1 3 0.141 1.23 4.92 10 49.2 492 504 64.0 11.5% 
556 CKD 3 0.101 O.BB 3.53 10 35.3 353 203.6 36. 6·~ 
556 CKD 3 0.121 1.06 4.22 10 42.2 422 133.8 24.1% 
556 'CKD 3 0.109 0.95 3.80 10 38.0 380 385 175.6 31 .6% 
556 HS2 3 0.115 1.00 4.01 10 40.1 401 154.7 27.8% 
556 HS2 3 0.124 1.08 4.33 10 43.3 433 123.3 22.2% 
556 HS2 3 0.121 1.06 4.22 10 42.2 422 419 133.8 24.1% 
556 Red Mud 3 0.128 1.12 4.47 10 44.7 447 109.3 19.7% 
556 Red Mud 3 0.146 1.27 5.10 10 51 .0 510 46.5 8.4% 
556 Red Mud 3 0.125 1.09 4.36 10 43.6 436 464 119.8 21 .5% 
556 HS1 10 0.093 0.81 3.25 10 32.5 325 231 .5 41 .6% 
556 HS1 10 0.092 0.80 3.21 10 32.1 321 235.0 42.3% 
556 HS1 10 0.118 1.03 4.12 10 41.2 412 353 144.2 25.9% 
556 CKD 10 0.097 0.85 3.39 10 33.9 339 217.5 39.1% 
556 CKD 10 0.079 0.69 2.76 10 27.6 276 280.4 50.4% 
556 CKD 10 0.075 0.65 2.62 10 26.2 262 292 294.3 52.9% 
556 HS2 10 0.039 0.34 1.36 10 13.6 136 420.0 75.5% 
556 HS2 10 0.071 0.62 2.48 10 24.8 248 308.3 55.4% 
556 HS2 10 0.074 0.65 2.58 10 25.8 258 214 297.8 53.6% 
556 Red Mud 10 0.108 0.94 3.77 10 37.7 377 179.1 32.2% 
556 . Red Mud 10 0.103 0.90 3.60 10 36.0 360 196.6 35.4% 
556 Red Mud 10 0.103 0.90 3.60 10 36.0 360 365 196.6 35.4% 
556 Con. NlA 0.153 1.34 5.34 10 53.4 534 
556 Con. N/A 0.161 1.40 5.62 10 56.2 562 
556 Con. N/A 0.164 1.43 5.72 10 57.2 572 556 

Dickson #2 476 HS1 3 0.124 1.08 4.33 10 43.3 433 43.1 9.1% 
476 HS1 3 0.122 1.06 4.26 10 42.6 426 50.1 10.5% 
476 HS1 3 0.126 1.10 4.40 10 44.0 440 433 36.1 7.6% 
476 CKD 3 0.095 0.83 3.32 10 33.2 332 144.3 30.3% 
476 CKD 3 0.087 0.76 3.04 10 30.4 304 172.2 36.2% 
476 CKD 3 0.095 0.83 3.32 10 33.2 332 322 144.3 30.3% 
476 HS2 3 0.111 0.97 3.87 10 38.7 387 88.5 18.6% 
476 HS2 3 0.110 0.96 3.84 10 38.4 3B4 92.0 19.3% 
476 HS2 3 0.109 0.95 3.80 10 38.0 380 3B4 95.4 20.1% 
476 Red Mud 3 0.117 1.02 4.08 10 40.8 408 67.5 14.2% 
476 Red Mud 3 0.119 1.04 4.15 10 41 .5 415 60.5 12.7% 
476 Red Mud 3 0.095 0.83 3.32 10 33.2 332 3B5 144.3 30.3% 
476 HS1 10 0.089 0.78 3.11 10 31 .1 311 165.3 34.7% 
476 HSl 10 0.101 0.88 3.53 10 35.3 353 123.4 25.9% 
476 HS1 10 0.105 0.92 3.66 10 366 366 343 109.4 23.0% 
476 CKD 10 0.076 0.66 2.65 10 26.5 265 210.6 44.3% 
476 CKD 10 0078 0.66 2.72 10 27.2 272 203.6 42.8% 
476 CKD 10 0.090 0.79 3.14 10 31.4 314 284 161.8 34.0% 
476 HS2 10 0.063 0.55 2.20 10 22.0 220 256.0 53.8% 
476 HS2 10 0.059 0.51 2.06 10 20.6 206 270.0 56.7% 
476 HS2 10 0.065 0.57 2.27 10 22.7 227 218 249.0 52.3% 
476 Red Mud 10 0.081 0.71 2.83 10 28.3 283 193.2 40.6% 
476 Red Mud 10 0.062 0.72 2.86 10 28.6 286 189.7 39.9% 
476 Red Mud 10 0.080 0.70 2.79 10 27.9 279 283 196.7 41.3% 
476 Con. N/A 0.142 1.24 4.96 10 49.6 496 
476 Con. NlA 0.124 1.08 4.33 10 43.3 433 
476 Con. N/A 0.143 1.25 4.99 10 49.9 499 476 

Keokuk 304 HS1 3 0.072 0.63 2.51 10 25.1 251 52.4 17.3% 
304 HS1 3 0.069 0.60 2.41 10 24.1 241 62.9 20.7% 
304 HS1 3 0.061 0.53 2.13 10 21.3 213 235 90.8 29.9% 
304 CKD 3 0.078 0.68 2.72 10 27.2 272 31.4 10.4% 
304 CKD 3 0.084 0.73 2.93 10 29.3 293 10.5 3.5% 
304 CKD 3 0.070 0.61 2.44 10 24.4 244 270 59.4 19.5% 
304 HS2 3 0.065 0.57 2.27 10 22.7 227 76.8 25.3% 
304 HS2 3 0.061 0.53 2.13 10 21.3 213 90.8 29.9% 
304 HS2 3 0.063 0.55 2.20 10 22.0 220 220 83.8 27.6% 
304 Red Mud 3 0.047 0.41 1.64 10 16.4 164 139.7 46.0% 
304 Red Mud 3 0.073 0.64 2.55 10 25.5 255 48.9 16.1% 
304 Red Mud 3 0.069 0.60 2.41 10 24.1 241 220 62.9 20.7% 
304 HS1 10 0.059 0.51 2.06 10 20.6 206 97.8 32.2% 
304 HS1 10 0.052 0.45 1.82 10 18.2 182 122.2 40.2% 
304 HS1 10 0.052 0.45 1.82 10 18.2 182 190 122.2 40.2% 
304 CKD 10 0.060 0.52 2.09 10 20.9 209 94.3 31 .0% 
304 CKD 10 0.063 0.55 2.20 10 22.0 220 83.8 27.6% 
304 CKD 10 0.063 0.55 2.20 10 22.0 220 216 83.8 27.6% 
304 HS2 10 0.036 0.31 1.26 10 12.6 126 178.0 58.6% 
304 HS2 10 0.033 0.29 1.15 10 11 .5 115 188.5 62.1% 
304 HS2 10 0.036 0.31 1.26 10 12.6 126 122 178.0 58.6% 
304 Red Mud 10 0.061 0.53 2.13 10 21.3 213 90.8 29.9% 
304 Red Mud 10 0.062 0.54 2.16 10 21.6 216 87.3 28.7% 
304 Red Mud 10 0.056 0.49 1.95 10 19.5 195 243 108.2 35.6% 
304 COIl . NlA 0.085 0.74 2.97 10 29.7 297 
304 con. NlA 0.084 0.73 2.93 10 29.3 293 
304 con. NlA 0092 0.80 3.21 10 32.1 321 304 
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Table M . Incubation Study Mehlich III reduction for 9 week sample time. 

9 Weeks 
Mehlich dil extract dil extract Mehlich Mehlich reduction % 

Soil soil ppm amend. % amend. abs. ug in 0.25 ug/mL factor ug/mL soil ppm avg. in ug/mL removed 
Dickson #1 554 HS1 3 0.134 1.17 4.68 10 46.8 468 86.1 15.5°'" 

554 HS1 3 0.125 1.09 4.36 10 43.6 436 117.5 21.2% 
554 HS1 3 0.119 1.04 4.15 10 41.5 415 440 138.4 25.0% 
554 CKD 3 0.111 0.97 3.87 10 38.7 387 166.4 30.0% 
554 CKD 3 0.110 0.96 3.84 10 38.4 384 169.9 30.7% 
554 . CKD 3 0.110 0.96 3.84 10 38.4 384 3B5 169.9 30.7% 
554 HS2 3 0.096 0.84 3.35 10 33.5 335 218.7 39.5% 
554 HS2 3 0.114 0.99 3.98 10 39.8 398 155.9 28.1% 
554 HS2 3 0.122 1.06 4.26 10 42.6 426 386 128.0 23.1% 
554 Red Mud 3 0.135 1.18 4.71 10 47.1 471 82.6 14.9% 
554 Red Mud 3 0.143 1.25 4.99 10 49.9 499 54.7 9.9% 
554 Red Mud 3 0.1 42 1.24 4.96 10 49.6 496 489 58.2 10.5% 
554 HS1 10 0.100 0.87 3.49 10 34.9 349 204.8 37.0% 
554 HS1 10 0.112 0.98 3.91 10 39.1 391 162.9 29.4% 
554 HS1 10 0.102 0.89 3.58 10 35.6 358 365 197.8 35.7% 
554 CKD 10 0.1OS 0.92 3.66 10 36.6 366 187.3 33.8% 
554 CKD 10 0.103 0.90 3.60 10 36.0 360 194.3 35.1% 
554 CKD 10 0.099 0.86 3.46 10 34.6 346 357 208.3 37.6% 
554 HS2 10 0.060 0.52 2.09 10 20.9 209 344.4 62.2% 
554 HS2 10 0.083 0.72 2.90 10 29.0 290 264.1 47.7% 
554 HS2 10 0.069 0.60 2.41 10 24.1 241 247 313.0 56.5% 
554 Red Mud 10 0.104 0.91 3.63 10 36.3 363 190.8 34.5% 
554 Red Mud 10 0.096 0.84 3.35 10 33.5 335 218.7 39.5% 
554 Red Mud 10 0.096 0.84 3.35 10 33.5 335 344 218.7 39.5% 
554 Con. NJA 0.151 1.32 5.27 10 52.7 527 
554 Con. N/A 0.154 1.34 5.38 10 53.8 538 
554 Con. N/A 0.171 1.49 5.97 10 59.7 597 554 

Dickson #2 511 HS1 3 0.107 0.93 3.73 10 37.3 373 137.3 26.9% 
511 HS1 3 0.108 0.94 3.77 10 37.7 377 133.8 26.2% 
511 HS1 3 0.113 0.99 3.94 10 39.4 394 382 116.4 22.8% 
511 CKD 3 0.096 0.84 3.35 10 33.5 335 175.7 34.4% 
511 CKD 3 0.093 0.81 3.25 10 32.5 325 186.2 36.5% 
511 CKD 3 0.096 0.84 3.35 10 33.5 335 332 175.7 34.4% 
511 HS2 3 0.103 0.90 3.60 10 36.0 360 151 .3 29.6% 
511 HS2 3 0.103 0.90 3.60 10 36.0 360 151.3 29.6% 
511 HS2 3 0.103 0.90 3.60 10 36.0 360 360 151 .3 29.6% 
511 Red Mud 3 0.112 0.98 3.91 10 39.1 391 119.9 23.5% 
511 Red Mud 3 0.129 1.13 4.50 10 45.0 450 60.5 11 .9% 
511 Red Mud 3 0.115 1.00 4.01 10 40.1 401 414 109.4 21.4% 
511 HS1 10 0.100 0.87 3.49 10 34.9 349 161 .8 31 .7% 
511 HS1 10 0.094 0.82 3.28 10 32.8 328 182.7 35.8% 
511 HS1 10 10 339 
511 CKD 10 0.080 0.70 2.79 10 27.9 279 231 .6 45.3% 
511 CKD 10 0.077 0.67 2.69 10 26.9 269 242.0 47.4% 
511 CKD 10 0.082 0.72 2.86 10 28.6 286 278 224.6 44.0% 
511 HS2 10 0.065 0.57 2.27 10 22.7 227 283.9 55.6% 
511 HS2 10 0.063 0.55 2.20 10 22.0 220 290.9 57.0% 
511 HS2 10 0.061 0.53 2.13 10 21 .3 213 220 297.9 58.3% 
511 Red Mud 10 0.079 0.69 2.76 10 27.6 276 235.1 46.0% 
511 Red Mud 10 0.074 0.65 2.58 10 25.8 258 252.5 49.4% 
511 Red Mud 10 0.077 0.67 2.69 10 26.9 269 268 242.0 47.4% 
511 Con. NJA 0.138 1.20 4.82 10 48.2 482 
511 Con. N1A 0.149 1.30 5.20 10 52.0 520 
511 Con. N1A 0.152 1.33 5.31 10 53.1 531 511 

Keokuk 296 HS1 3 0.066 0.58 2.30 10 23.0 230 65.1 22.0% 
296 HS1 3 0.070 0.61 2.44 10 24.4 244 51.2 17.3% 
296 HS1 3 0.066 0.58 2.30 10 23.0 230 235 65.1 22.0% 
296 CKD 3 0.082 0.72 2.86 10 28.6 286 9.3 3.1% 
296 CKD 3 0.075 0.65 2.62 10 26.2 262 33.7 11 .4% 
296 CKD 3 10 274 
296 HS2 3 0.067 0.58 2.34 10 23.4 234 61 .6 20.9% 
296 HS2 3 0.066 0.58 2.30 10 23.0 230 65.1 22.0% 
296 HS2 3 0.063 0.55 2.20 10 22.0 220 228 75.6 25.6% 
296 Red Mud 3 0.065 0.57 2.27 10 22.7 227 68.6 23.2% 
296 Red Mud 3 0.071 0.62 2.48 10 24.8 248 47.7 16.1% 
296 Red Mud 3 0.072 0.63 2 .51 10 25.1 251 242 44.2 15.0% 
296 HS1 10 0.054 0.47 1.88 10 18.8 188 107.0 36.2% 
296 HS1 10 0.053 0.46 1.85 10 18.5 185 110.5 37.4% 
296 HS1 10 0.048 0.42 1.68 10 16.8 168 180 128.0 43.3% 
296 CKD 10 0.064 0.56 2.23 10 22.3 223 72.1 24.4% 
296 CKD 10 0.071 0.62 2.48 10 24.8 248 47.7 16.1% 
296 CKD 10 0.065 0.57 2.27 10 22.7 227 233 68.6 23.2% 
296 HS2 10 0.033 0.29 1.15 10 11 .5 115 180.3 61 .0% 
296 HS2 10 0.037 0.32 1.29 10 12.9 129 166.4 56.3% 
296 HS2 10 0.032 0.28 1.12 10 11.2 112 119 183.8 62.2% 
296 Red Mud 10 0.060 0.52 2.09 10 20.9 209 86.1 29.1% 
296 Red Mud 10 0.060 0.52 2.09 10 20.9 209 86.1 29.1% 
296 Red Mud 10 0.060 0.52 2.09 10 20.9 209 242 86.1 29.1% 
296 con. NJA 0.084 0.73 2.93 10 29.3 293 
296 con N1A 0.083 0.72 2.90 10 29.0 290 
296 con. NJA 0.087 0.76 3.04 10 30.4 304 296 
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Table A5. Incubation study pH changes for 9 week sample lime. 

9 Weeks 

Soil initial pH amend % amend. pH avg. pH incr. 
Dickson #1 5.3 HS1 3 5.6 0.3 

5.3 HS1 3 5.6 0.3 
5.3 HS1 3 5.7 5.6 0.4 
5.3 CKD 3 7.3 2 
5.3 CKD 3 7.4 2.1 
5.3 CKD 3 7.5 7.4 2.2 
5.3 HS2 3 6.4 1.1 
5.3 HS2 3 6.5 1.2 
5.3 HS2 3 6.3 6.4 1 
5.3 Red Mud 3 6.8 1.5 
5.3 Red Mud 3 6.8 1.5 
5.3 Red Mud 3 6.7 6.8 1.4 
5.3 HSl 10 5.9 0.6 
5.3 HSl 10 5.7 0.4 
5.3 HSl 10 5.7 5.8 0.4 
5.3 CKD 10 8 2.7 
5.3 CKD 10 8.1 2.8 
5.3 CKD 10 8.2 8.1 2.9 
5.3 HS2 10 7.3 2 
5.3 HS2 10 6.9 1.6 
5.3 HS2 10 6.9 7.0 1.6 
5.3 Red Mud 10 7.3 2 
5.3 'Red Mud 10 7.4 21 
5.3 Red Mud 10 7.3 7.3 2 

Con. NlA 5.4 
Con. N/A 5.2 
Con. N/A 5.2 5.3 

Dickson #2 5.6 . HS1 3 5.9 0.3 
5.6 HS1 3 6 0.4 
5.6 HSl 3 5.9 5.9 0.3 
5.6 CKD 3 7.2 1.6 
5.6 CKD 3 7.3 1.7 
5.6 CKD 3 7.3 7.3 1.7 
5.6 HS2 3 6.4 0.8 
5.6 HS2 3 6.4 0.8 
5.6 HS2 3 6.3 6.4 0.7 
5.6 Red Mud 3 6.7 1.1 
5.6 Red Mud 3 6.7 1.1 
5.6 Red Mud 3 6.8 6.7 1.2 
5.6 HS1 10 6 0.4 
5.6 HSl 10 6 0.4 
5.6 HSl 10 5.9 6.0 0.3 
5.6 CKD 10 8 2.4 
5.6 CKD 10 8 2.4 
5.6 CKD 10 8 8.0 2.4 
5.6 HS2 10 7.2 1.6 
5.6 HS2 10 7.1 1.5 
5.6 HS2 10 7.1 7.1 1.5 
5.6 Red Mud 10 7.4 1.8 
5.6 Red Mud 10 7.4 1.8 
5.6 Red Mud 10 7.4 7.4 1.8 

Con. NlA 5.6 
Con. N/A 5.6 
Con. NlA 5.6 5.6 

Keokuk 7.9 HSl 3 7.7 ~.2 
7.9 HS1 3 7.8 ~.1 
7.9 HSl 3 7.8 7.8 ~. 1 
7.9 CKD 3 B.2 0.3 
7.9 CKD 3 8.2 0.3 
7.9 CKD 3 B.l 8.2 0.2 
7.9 HS2 3 7.B ~. 1 
7.9 HS2 3 7.B ~.1 

7.9 HS2 3 7.8 7.8 ~. 1 

7.9 Red Mud 3 7.8 ~.1 
7.9 Red Mud 3 7.8 ~.1 
7.9 Red Mud 3 7.B 7.8 ~. 1 
7.9 HS1 10 7.7 ~.2 

7.9 HS1 10 7.7 ~.2 

7.9 HS1 10 7.7 7.7 ~.2 

7.9 CKD 10 B.3 0.4 
7.9 CKD 10 8.3 0.4 
7.9 CKD 10 B.4 B.3 0.5 
7.9 HSl 10 7.8 ~.1 

7.9 HS1 10 7.8 ~.1 
7.9 HS1 10 7.8 7.8 ~.1 

7.9 Red Mud 10 7.9 a 
7.9 Red Mud 10 7.9 a 
7.9 Red Mud 10 7.9 7.9 a 

Con. NlA 7.9 
Con. NlA 7.8 
Con. NlA 7.9 7.9 
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Table A6. Incubation study 80luble salt (ECl changes for 9 week sample time. 

9 Weeks 

Soil Initial EC amend % amend EC avg. EC inc/dec 
Dickson 11'1 0.163 HS1 3 0.061 

0.163 HS1 3 0.067 
0.163 HS1 3 0.062 0.063 .().100 
0,163 CKD 3 0.256 
0,163 CKD 3 0.235 
0.163 ,CKD 3 0,275 0.255 0.092 
0.163 HS2 3 0.115 
0,163 HS2 3 0.093 
0.163 HS2 3 0,102 0.103 ,(),060 
0,163 Red Mud 3 0.239 
0.163 Red Mud 3 0.213 
0.163 Red Mud 3 0,302 0.251 0,088 
0,163 HS1 10 0.119 
0.163 HS1 10 0,185 
0.163 HS1 10 0,183 0,162 ,(),OO1 
0,163 CKD 10 0.571 
0.163 CKD 10 0,634 
0,163 CKD 10 0.505 0.570 0.407 
0,163 HS2 10 0,196 
0.163 HS2 10 0,115 
0,163 HS2 10 0,191 0,167 0,004 
0,163 Red Mud 10 0.491 
0.163 !teJ;l Mud 10 0.514 
0.163 Red Mud 10 0,608 0,538 0,375 
0.163 Con, NlA 0,163 
0.163 Con. NlA 0.161 
0.163 Con, N/A 0.144 0,163 NlA 

Dickson #2 0,338 HS1 3 0.25 
0,338 HS1 3 0.21 
0.338 HS1 3 0,219 0.226 ,(),112 
0,338 CKD 3 0,296 
0,338 CKD 3 0.327 
0.338 CKD 3 0,256 0,294 .(),Q44 

0.338 HS2 3 0.139 
0.338 HS2 3 0,222 
0,338 HS2 3 0.212 0,191 .().147 
0.338 Red Mud 3 0.315 
0.338 Red Mud 3 0,297 
0.338 Red Mud 3 0376 0,329 .().OO9 
0.338 HS1 10 0,318 
0.338 HS1 10 0,272 
0,338 HS1 10 0.241 0,277 ,(),061 
0.338 CKD 10 0,685 
0,338 CKD 10 0.897 
0,338 CKD 10 0.693 0,758 0.420 
0.338 HS2 10 0.269 
0.338 HS2 10 0,202 
0.338 HS2 10 0,277 0.256 .().082 
0.338 Red Mud 10 0.455 
0,338 Red Mud 10 0,409 
0,338 Red Mud 10 0.567 0.477 0.139 
0,338 Con, NlA 0,368 
0.338 Con, NlA 0.292 
0,336 Con, NJA 0.355 0,338 NJA 

Keokuk 0,368 HS1 3 0,305 
0.368 HS1 3 0.296 
0,368 HS1 3 0,237 0.279 .().OB7 
0.368 CKD 3 0.325 
0,368 CKD 3 0,468 
0,368 CKD 3 0,419 0.404 0.038 
0.368 HS2 3 0.437 
0,368 HS2 3 0.314 
0.368 HS2 3 0,254 0.335 ,(),031 
0.368 Red Mud 3 0.495 
0.368 Red Mud 3 0,692 
0.368 Red Mud 3 0.494 0.580 0,194 
0.368 HS1 10 0,357 
0.368 HS1 10 0.439 
0.368 HS1 10 0,453 0,416 0.050 
0,368 CKD 10 0.52 
0,368 CKD 10 0.626 
0,368 CKD 10 0.957 0,701 0,335 
0.368 HS1 10 0.484 
0.368 HS1 10 0,289 
0,368 HS1 10 0.441 0.405 0,039 
0,368 Red Mud 10 0.665 
0.368 Red Mud 10 0,616 
0,368 Red Mud 10 0.754 0.678 0.312 
0.368 Con, NJA 0.392 
0,368 Con. NlA 0.325 
0.368 Con. NJA 0.36 0,368 NlA 
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Table A7. Incubation study soluble P reduction for 9 week sample time. 

9 Weeks 
CaCl, dil extract dil extract CaCl, CaCl, reduction % 

Soil soil ppm amend % amend. abs. uginl.0 uglmL factor uglmL soil ppm avg. in uglmL removed 
Dickson #1 67.5 HSI 3 0.156 1.36 1.36 I 1.4 13.6 53.9 79.8% 

67.5 HSI 3 0.127 I 11 1.1 I I I 1 11.1 56.4 83.6% 
67.5 HSI 3 0.106 0.92 0.92 1 0.9 9.2 11 .3 58.3 86.3% 
67.5 CKD 3 0.229 2.00 2.00 1 2.0 20.0 47.5 70.4% 
67.5 CKD 3 0.222 1.94 1.94 1.9 19.4 46.1 71 .3% 
67.5 · CKD 3 0.229 2.00 2.00 2.0 20.0 19.8 47.5 70.4% 
67.5 HS2 3 0.056 0.49 0.49 0.5 4.9 62.6 92.8% 
67.5 HS2 3 0.056 0.49 0.49 0.5 4.9 62.6 92.8% 
67.5 HS2 3 0.053 0.46 0.46 0.5 4.6 4.8 62.9 93.1% 
67.5 Red Mud 3 0.204 178 1.7B 1.8 17.8 49.7 73.6% 
67.5 Red Mud 3 0200 1.75 1.75 1.7 17.5 50.0 74.1% 
67.5 Red Mud 3 0.215 1.88 1.88 1.9 lB.8 18.0 46.7 72.2% 
67.5 HSI 10 0.030 0.26 0.26 0.3 2.6 64.9 96.1% 
67.5 HSI 10 0.031 0.27 0.27 0.3 2.7 64.8 96.0% 
67.5 HSI 10 0.037 0.32 0.32 0.3 3.2 2.9 64.3 95.2% 
67.5 CKD 10 0.118 1.03 1.03 1.0 10.3 57.2 84.7% 
67.5 CKD 10 0.122 1.06 106 1.1 10.6 56.9 84.2% 
67.5 CKD 10 0.125 1.09 1.09 1.1 10.9 10.6 56.6 83.8% 
67.5 HS2 10 0.016 0.14 0.14 0.1 1.4 66.1 97.9% 
67.5 HS2 10 0.021 0.18 0.1B 0.2 1.8 65.7 97.3% 
67.5 HS2 10 0.018 0.16 0.16 0.2 1.6 1.6 65.9 97.7% 
67.5 Red Mud 10 0.140 1.22 1.22 1.2 12.2 55.3 81 .9% 
67.5 . Red Mud 10 0.140 1.22 1.22 1.2 12.2 55.3 81 .9% 
67.5 Red Mud 10 0.141 1.23 1.23 1.2 12.3 12.2 552 81.8% 

Con. NJA 0.060 0.70 0.70 10 7.0 69.8 
Con. N/A 0.D79 0.69 0.69 10 6.9 68.9 
Con. N/A 0.073 0.64 0.64 10 6.4 63.7 67.5 

Dickson #2 75.9 HSI 3 0.114 0.99 0.99 1 1.0 9.9 66.0 86.9% 
75.9 HSI 3 0.103 0.90 0.90 1 0.9 9.0 66.9 68.2% 
75.9 HSI 3 0.083 0.72 0.72 0.7 7.2 B.7 68.7 90.5% 
75.9 CKD 3 0.204 1.7B 1.7B 1.6 17.6 56.1 76.5% 
75.9 CKD 3 0.256 2.23 2.23 2.2 22.3 53.6 70.6% 
75.9 CKD 3 0216 1.90 1.90 1.9 19.0 19.7 56.9 74.9% 
75.9 HS2 3 0.043 0.36 0.36 0.4 3.6 72.1 95.1% 
75.9 HS2 3 0.044 0.36 0.36 0.4 3.8 72.1 94.9% 
75.9 HS2 3 0.055 0.46 0.46 0.5 4.B 4.1 71.1 93.7% 
75.9 Red Mud 3 0.000 0.00 000 0.0 0.0 0.0 00.0% 
75.9 Red Mud 3 0.208 lB2 1.82 lB 18.2 57.7 76.1% 
75.9 Red Mud 3 0.195 1.70 1.70 1.7 17.0 17.6 56.9 77.6% 
75.9 HSI 10 0.031 0.27 0.27 0.3 2.7 73.2 96.4% 
75.9 HSI 10 0.030 0.26 0.26 0.3 2.6 73.3 96.6% 
75.9 HSI 10 0.033 0.29 0.29 0.3 2.9 2.7 73.0 96.2% 
75.9 CKD 10 0.121 1.06 1.06 1.1 10.6 65.3 86.1% 
75.9 CKD 10 0.116 1.01 1.01 1.0 10.1 65.B 86.7% 
75.9 CKD 10 0.119 1.04 1.04 1.0 10.4 10.4 65.5 86.3% 
75.9 HS2 10 0.010 0.09 0.09 0.1 0.9 75.0 98.9% 
75.9 HS2 10 0.009 0.06 0.08 0.1 0.8 75.1 99.0% 
75.9 HS2 10 0.009 O.OB 0.08 0.1 0.8 0.8 75.1 99.0% 
75.9 Red Mud 10 0.108 0.94 0.94 09 9.4 66.5 87.6% 
75.9 Red Mud 10 0.117 1.02 1.02 1 1.0 10.2 65.7 86.5% 
75.9 Red Mud 10 0.112 0.98 0.98 1 1.0 9.8 9.6 66.1 67.1% 

Con. NJA 0.084 0.73 0.73 10 7.3 73.3 
Con. N/A 0.093 O.Bl 0.61 10 B.l 61 .2 
Con. NJA 0.084 0.73 0.73 10 7.3 73.3 75.9 

Keokuk 20.4 HSI 3 0.080 0.70 0.70 1 0.7 7.0 13.4 65.8% 
20.4 HSI 3 0.073 0.64 0.64 1 0.6 6.4 14.0 66.8% 
20.4 HSI 3 0.042 0.37 0.37 1 0.4 3.7 5.7 16.7 82.0% 
20.4 CKD 3 0.140 1.22 1.22 1 1.2 12.2 B.2 40.1% 
20A CKD 3 0.118 1.03 1.03 1 1.0 10.3 10.1 49.5% 
20.4 CKD 3 0.145 1.27 1.27 1.3 12.7 11 .7 7.7 38.0% 
20.4 HS2 3 0.042 0.37 0.37 0.4 3.7 16.7 82.0% 
20.4 HS2 3 0.045 0.39 0.39 0.4 3.9 16.5 60.8% 
20.4 HS2 3 0.037 0.32 0.32 0.3 3.2 3.6 172 84.2% 
20.4 Red Mud 3 0.149 1.30 1.30 1.3 13.0 7A 36.3% 
20.4 Red Mud 3 0.160 1.57 1.57 1.6 15.7 4.7 23.0% 
20.4 Red Mud 3 0.199 1.74 1.74 1.7 17A 15.4 3.0 14.9% 
20.4 HSI 10 0.019 0.17 0.17 0.2 1.7 18.7 91 .9"A. 
20.4 HSI 10 0.020 0.17 0.17 0.2 1.7 lB.7 91.4% 
20.4 HSI 10 0.013 0.11 0.11 0.1 1.1 1.5 19.3 94.4% 
20.4 CKD 10 0.062 0.54 0.54 0.5 5.4 15.0 73.5% 
20.4 CKD 10 0.056 0.51 0.51 0.5 5.1 15.3 75.2% 
20.4 CKD 10 0.058 0.51 0.51 0.5 5.1 5.2 15.3 75.2% 
20.4 HS2 10 0.096 0.84 0.84 O.B 8.4 12.0 56.9% 
20.4 HS2 10 0.024 0.21 021 0.2 2.1 lB.3 89.7% 
20.4 HS2 10 0.000 0.00 0.00 0.0 0.0 52 0.0 00.0% 
20.4 Red Mud 10 0.097 0.85 0.85 0.8 8.5 11.9 58.5% 
20.4 Red Mud 10 0.000 0.00 0.00 1 0.0 0.0 0.0 00.0% 
20.4 Red Mud 10 0.098 0.86 0.86 1 0.9 8.6 8.5 11 .8 58.1% 

Con. NJA 0.023 0.20 0.20 10 2.0 20.1 
Con. N/A 0.023 0.20 0.20 10 2.0 20.1 
Con. NJA 0.024 0.21 0.21 10 2.1 20.9 20.4 
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Table AB. Incubation study KCI extractable AI totals for 9 week sample time. 

Soil Amend. Rate Re~ KCIAI Ava AI 
Dickson #1 HS1 3 1 12.7 

HS1 3 2 15.9 14.3 
HS1 10 1 7.47 
HS1 10 2 3.36 5.42 
CKD 3 1 1.57 
CKD 3 2 1.32 1.45 
CKD 10 1 136 
CKD 10 2 1.62 1.49 
HS2 3 1 0.94 
HS2 3 2 4.74 2.84 
HS2 10 1 4.57 
HS2 10 2 3.31 3.94 

Red Mud 3 1 1.64 
Red Mud 3 2 1.50 1.57 
Red Mud 10 1 0.89 
Red Mud 10 2 0.67 0.78 

CON 0 1 1.51 
CON 0 2 2.23 1.87 

Dickson #2 HS1 3 1 2.38 
HS1 3 2 1.52 1.95 
HS1 10 1 1.08 
HS1 10 2 0.89 0.99 
CKD 3 1 1.00 
CKD . 3 2 1.42 1.21 
CKD 10 1 1.29 
CKD 10 2 1.16 1.22 
HS2 3 1 1.14 
HS2 3 2 1.40 1.27 
HS2 10 1 0.90 
HS2 10 2 0.88 0.89 

Red Mud 3 1 3.22 
Red Mud 3 2 8.42 5.82 
Red Mud 10 1 2.15 
Red Mud 10 2 0.96 1.55 

CON 0 1 0.82 
CON 0 2 1.54 1.18 

Keokuk HS1 3 1 1.37 
HS1 3 2 1.97 1.67 
HS1 10 1 3.45 
HS1 10 2 4.98 4.22 
CKD 3 1 0.42 
CKD 3 2 1.51 0.97 
CKD 10 1 0.47 
CKD 10 2 0.28 0.38 
HS2 3 1 0.70 
HS2 3 2 1.70 1.20 
HS2 10 1 1.23 
HS2 10 2 1.16 1.19 

Red Mud 3 1 0.00 
Red Mud 3 2 1.04 0.52 
Red Mud 10 1 0.74 
Red Mud 10 2 0.39 0.56 

CON 0 1 0.88 
CON 0 2 1.18 1.03 
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Table A9. Greenhouse runoll study soluble P reduction data. 

dil extract sol. P 
amend. type box abs. ug in 0.25 uglmL avg. 

nla bkg 4 0.020 0.21 0.848 
0.011 0.117 0.487 0.657 

nla bkg 23 0.009 0.095 0.382 
0.019 0.201 0.806 0.594 

nla bkg 26 0.010 0.106 0.424 
0.007 0.074 0.297 0.361 

nla bkg 30 0.036 0.382 1.53 
0.031 0.329 1.31 1.42 

0.5 kg HS2 buffer 9 0.308 3.27 13.1 
0.316 3.35 13.4 13.2 

0.5 kg HS2 broad 5 0.364 3.86 15.4 
0.368 3.90 15.6 15.5 

1.0 kg HS2 buffer 16 0.183 1.94 7.76 
0.193 2.05 8.19 7.97 

1.0 kg HS2 broad 13 0.254 2.69 10.8 
0.262 2.78 11.1 10.9 

nla con 3 0.513 544 21 .8 
0.483 5.12 20.5 21.1 

nla con 7 0 .604 6.41 25.6 
0.571 6.06 24.2 24.9 

nla con 29 0.490 5.20 20.8 
0.494 5.24 21.0 20.9 

nla bkg 3 0.021 0.223 0.891 
0.017 0.180 0.721 0.806 

nla bkg 7 0.028 0.297 1.19 
0.027 0.286 1.15 1.17 

nla bkg 29 0.021 0.223 0.891 
0.023 0 .244 0.976 0.933 

HSl buffer 3 0.154 1.63 6.53 
0.160 1.70 6.79 6.66 

HSl buffer 8 0.187 1.98 7.93 
0.170 1.80 7.21 7.57 

HSl buffer 19 0.306 3.24 13.0 
0.294 3.12 12.5 12.7 

HSl broad 7 0.378 4.01 16.0 
0.402 4.26 17.1 16.5 

HSl broad 23 0.249 2.64 10.6 
0.248 2.63 10.5 10.5 

HSl broad 28 0.292 3.10 12.4 
0.275 2.92 11.7 12.0 

HS2 buffer 4 0.092 0.976 3.90 
0.066 0.700 2.80 3.35 

HS2 buffer 17 0.204 2.16 8.65 
0.198 2.10 8.40 8.53 

HS2 buffer 27 0.071 0.753 3.01 
0.066 0.700 2.80 2.91 

HS2 broad 11 0 .196 2.08 8.31 
0 .200 2.12 8.48 8.40 

HS2 broad 26 0.249 2.64 10.6 
0.249 2.64 10.6 10.6 

HS2 broad 29 0.252 2.67 10.7 
0.245 2.60 10.4 10.5 
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Table AlD. Greenhouse runoff sludy Iota I P reduction data. 

dil extract dil Total P Total P 
amend. type box rep. abs. ug in 0.25 uglmL factor uglmL average 

nla bkg 4 1 0.017 0.180 0.721 1.6 1.2 
2 0.011 0.117 0 .467 1.6 0.7 1.0 

nla bkg 23 1 0.012 0.127 0.509 1.6 0.8 
2 0.014 0.148 0.594 1.6 1.0 0.9 

nla bkg 26 1 0.010 0.106 0.424 1.6 0.7 
2 0.010 0 .106 0.424 1.6 0.7 0.7 

nla bkg 30 1 0.024 0.25 1.02 1.6 1.6 
2 0.021 0.223 0.891 1.6 1.4 1.5 

0.5 kg HS2 butfer 9 1 0.200 2.12 8 .48 1.6 13.6 
2 0.164 1.95 7.80 1.6 12.5 13.0 

0.5 kg HS2 broad 5 1 0.199 2.11 8.44 1.6 13.5 
2 0.206 2.18 8.74 1.6 14.0 13.7 

1.0 kg HS2 bu!fer 16 1 0 .120 1.27 5.09 1.6 8 .1 
2 0.111 1.18 4.71 1.6 7.5 7.8 

1.0 kg HS2 broad 13 1 0.148 1.57 6.28 1.6 10.0 
2 0.149 1.58 6.32 1.6 10.1 10.1 

nla con 3 1 0.307 3.26 13.0 1.6 20.8 
2 0.308 3.27 13.1 1.6 20.9 20.9 

nla con 7 1 0.320 3.39 13.6 1.6 21 .7 
2 0.340 3.61 14.4 1.6 23.1 22.4 

nla con 29 1 0.288 3.05 12.2 1.6 19.5 
2 0.279 2.96 11 .8 1.6 18.9 19.2 

nla bkg 3 1 0.020 0.212 0.648 1.6 1.4 
2 0.023 0.244 0.976 1.6 1.6 1.5 

nla bkg 7 1 0.030 0.318 1.27 1.6 2.0 
2 0.022 0.233 0.933 1.6 1.5 1.8 

nla bkg 29 1 0.021 0.223 0 .891 1.6 1.4 
2 0.021 0.223 0.891 1.6 1.4 1.4 

HSI bu!fer 3 1 0.095 1.01 4.03 1.6 6.4 
2 0.098 1.04 4.16 1.6 6.7 6.5 

HSI buller 8 1 0.109 1.16 4.62 1.6 7.4 
2 0.120 1.27 5.09 1.6 8.1 7.8 

HSI butfer 19 1 0.197 2.09 8.36 1.6 13.4 
2 0.157 1.66 6.66 1.6 10.7 12.0 

HSI broad 7 1 0.225 2.39 9.54 1.6 15.3 
2 0.237 2.51 10.1 1.6 16.1 15.7 

HSI broad 23 1 0.169 1.79 7.17 1.6 11 .5 
2 0.163 1.73 6.91 1.6 11.1 11 .3 

HSI broad 28 1 0.170 1.80 7.21 1.6 11.5 
2 0.171 1.81 7.25 1.6 11.6 11.6 

HS2 buffer 4 1 0.051 0.541 2.16 1.6 3.5 
2 0.053 0.562 2.25 1.6 3.6 3.5 

HS2 butfer 17 1 0.125 1.33 5.30 1.6 8.5 
2 0.129 1.37 5.47 1.6 8.8 8.6 

HS2 butfer 27 1 0.053 0.562 2.25 1.6 3 .6 
2 0.049 0.520 2.08 1.6 3.3 3.5 

HS2 broad 11 1 0.122 1.29 5.17 1.6 8.3 
2 0.134 1.42 5.66 1.6 9.1 8.7 

HS2 broad 26 1 0.150 1.59 6.36 1.6 10.2 
2 0.154 1.63 6.53 1.6 10.5 10.3 

HS2 broad 29 1 0.154 1.63 6.53 1.6 10.5 
2 0 .159 1.69 6.74 1.6 10.8 10.6 

71 



TableA11. Percent cover and forage yield of all fescue boxes. 

Treatment Box # Blade Debris Ground Forage Yield 

% % % kglha 
HS2 buffer 4 25 50 25 4129 
HS1 buffer 8 50 25 25 2757 
HS2 broad 11 20 45 35 2553 
HS2 buffer 17 25 55 20 6495 
HS1 buffer 19 20 35 45 3947 
HS1 broad 23 20 50 30 2804 
HS2 broad 26 35 40 25 2765 
HS2 buffer 27 25 65 10 1929 
HS1 broad 28 15 40 45 4056 
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Table A12. Kinetics study of hydrosolids . 
dil extract dil extract 

Amend Time abs. ug in 0.25 uglmL factor uglmL 

HS1 0.5 0.340 3.61 14.4 10.00 144 
1 0.281 2.98 11.9 10 119 
3 0.277 2.94 11.7 10 117 
5 0.264 2.80 11.2 10 112 
10 0.206 2.18 8.74 10 87.4 
20 0.258 2.74 10.9 10 109 
25 0.257 2.73 10.9 10 109 
30 0.233 2.47 9.88 10 98.8 
45 0.235 2.49 9.97 10 99.7 
60 0.207 2.20 8.78 10 87.8 
90 0.192 2.04 8.14 10 81 .4 
120 0.177 1.88 7.51 10 75.1 
150 0.160 1.70 6.79 10 67.9 
180 0.149 1.58 6.32 10 63.2 
300 0.121 1.28 5.13 10 51.3 
420 0.101 1.07 4.28 10 42.8 
600 0.771 8.18 32.7 1 32.7 
900 0.537 5.69 22.8 1 22.11 
1500 0.247 2.62 10.5 1 10.5 
1800 0.200 2.12 8.48 1 8.48 
2100 0.226 2.40 9.59 9.59 
2400 0.170 1.80 7.21 7.21 .. 
3000 _ 0.134 1.42 5.68 5.68 
3300 0.119 1.26 5.05 5.05 

HS2 0.5 0.309 3.28 13.1 10 131 
Coarse 1 0.281 2.98 11.9 10 119 

3 0.273 2.90 11 .6 10 116 
5 0.266 2.82 11.3 10 113 
10 0.252 2.67 10.7 10 107 
20 0.240 2.55 10.2 10 102 
25 0.225 2.39 9.54 10 95.4 
30 0.209 2.22 8.87 10 887 
45 0.190 2.01 8.06 10 80.6 
60 0.166 1.76 7.04 10 70.4 
90 0.130 1.38 5.51 10 55.1 

120 0.109 1.16 4.62 10 48.2 
150 0.087 0.923 3.69 10 36.9 
180 0.076 0.806 3.22 10 32.2 
300 0 .038 0.403 1.61 10 16.1 
420 0.021 0.223 0.891 10 8.91 
600 0.066 0.700 2.80 1 2.80 
900 0.014 0 .148 0.594 1 0.59 
1500 0.001 0.011 0.042 1 0.04 
1800 0.000 0.000 0.000 0.00 

HS2 0.5 0.969 10.3 41.1 41.1 

Fine 1 0.906 9.61 38.4 38.4 
3 0.847 8.98 35.9 35.9 
5 0.766 8.12 32.5 32.5 
10 0.578 6.13 24.5 24.5 
20 0.369 3.91 15.7 15.7 
25 0.292 3.10 12.4 12.4 
30 0.208 2.21 8.82 8.82 
45 0.132 1.40 5.60 5.60 

60 0.088 0.933 3.73 3.73 
90 0.050 0.530 2.12 2.12 
120 0.043 0.456 1.82 1.82 
150 0.030 0.318 1.27 1.27 
180 0.022 0.233 0.933 0.933 
300 0.006 0.085 0.339 0.339 
420 0.004 0.042 0.170 0.170 
600 0.001 0.011 0.042 0.042 
900 0.000 0.000 0.000 0.000 
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Figure A 1. Runoff hydrographs for Hydrosolid # I broadcast treatment. 
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Figure A4. Runoffhydrographs for Hydrosolid #2 buffer strip treatment. 
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