
GENERAL-PURPOSE AUTOMATION PROGRAMMING

USING A GRAPHIC LANGUAGE

By

SYED MOHAMMAD MAHMOOD

Master of Science
Stanford University
Stanford, California

1980

Doctor of Philosophy
Stanford University
Stanford, California

1987

Master of Science
Okl.ahoma State University

Stillwater, Oklahoma
1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1996

OKLAHOMA STATE UNIVERSITY

GENERAL-PURPOSE AUTOMATION PROGRAMMING

USING A GRAPHIC LANGUAGE

Thesis Approved:

<

Thesis Adviser

~:£ev1~L-
JA~ c-.~

Dean of the Graduate College

11

PREFACE

Automation is a useful tool in enhancing the performance of laboratories/plants

where the response of several instruments need to be coordinated. The cost of developing

custom-made software as well as the cost of acquiring and configuring commercial

software are often prohibitive for many operations that could benefit from automation.

This situation is rapidly changing with the emergence of a new generation of object­

oriented graphical languages in the past few years. These new languages allow

programmers to develop sophisticated systems with unprecedented ease and speed. This

report introduces the concepts behind this new generation of languages and their use for

every day automation. A general-purpose automation program developed by the author

for the U.S. Department of Energy at NIPER (National Institute for Petroleum and

Energy Research) is presented as a case-example. Two example uses of this program are

also presented.

This menu-driven and user friendly program for data acquisition/control/ana­

lysis/presentation is a valuable tool for laboratories where test requirements change

frequently. Its features include: run-time system setup and reconfiguration; built-in

constraints to eliminate operator errors; real-time graphic display of current and previous

data with editing and smoothing; data export to other applications for report generation or

animation such as automatic 3-D rotation; pictorial display of test status for quick

troubleshooting; error and out-of-range audio/video warnings to designated users on the

network; automatic resetting of instrument(s) to rectify minor problems; and automatic

shutdown in emergencies when operator does not respond.

iii

ACKNOWLEDGMENTS

I wish to express sincere appreciation to my advisor, Dr. Jacques E. Lafrance. He

has been a source of inspiration through the course of my education in computer science.

I very much appreciated his free-spirited style of teaching which allowed both

educational and personal growth for me. I thought of him more as a friend than a

counselor.

The work was sponsored by the U.S. Department of Energy under a cooperative

agreement with NIPER (my employer) DE-FC22-83FE60l49. Parts of this report were

copied and edited from NIPER-689, September 1993, entitled "NIPER LabWARDEN:

Description and LabVIEW® Executable Code of a General-Purpose Laboratory­

Automation Program." I wish to thank the co-author of this report, Dr. David K. Olsen,

NIPER management, and Tom B. Reid of the DOE Bartlesville Project Office for

permission to copy the contents and providing assistance in completing this report. The

staff of National Instruments (the developer of LabVIEW graphical language) deserves

credit for reviewing the software. Jonathan Grigsby, Rebecca Horning, Arnee Kendall,

Danny Lemmons, William Lucas, Gautam Sharma and Yesh Tyagi tested the software

and provided help in improving the manuscript.

And finally, Annalea Kerr deserves much credit for preparing this report. Her help,

perseverance, and patience are very much appreciated.

IV

TABLE OF CONTENTS

Pa~e

Abstract 1
Executive Summary 1
Objective 2
Format of Report 2
Advantages of Object-Oriented and Graphical Programming Approach 3
Technical Requirements 4
Bibliography 5

CHAPTER 1. DESCRIPTION OF LabVIEW 6

Brief Introduction of LabVIEW 6
Programming Concepts Relevant to LabVIEW 7

A Sample of LabVlEW Progr.am Algorithm 7
Object-Oriented Programming 8
Procedure-Oriented Programming Versus Object-Oriented Programming 11
Programming Structure of LabVIEW 13
Basic Facilities in LabVIEW 14

Writing and Editing Program 14
Built-in Library 17
Control Structures 17
On-Line Help 20

Bibliography 20

TABLES

1.1 Legend for figure 1.5 10
1.2 Legend for figure 1.10 19

ILLUSTRATIONS

1.1 A simple dataflow diagram 6
1.2 Dataflow diagram simplified 7
1.3 A sample FORTRAN program 8
1.4 The control-flow diagram of the example FORTRAN program (shown in Fig. 1.3) 9
1.5 A sample program segment in LabVIEW 9
1.6 Different ways of classification of objects: (a) POP (b) OOP 11
1.7 NIPER MAIN FACILITYpanel.. 15
1.8 Descriptive hierarchy of programming for the NIPER MAIN FACILITy 16
1.9 Example of icons from LabVIEW 2 Iibrary 18
1.10 Basic control structures in LabVIEW 19

v

/

I /

I

fm
CHAPTER 2. AN OVERVIEW OF NIPER Lab WARDEN FACILITIES 23

NIPER MAIN FACILITY 23
NIPER DISPLAY FACILITY 25
NIPER GRAPHICS FACILITY 26
Bibliography 28

ILLUSTRATIONS

2.1 Major functional units of NIPER's automation program 23
2.2 Hierarchical structure and front panel of NIPER Lab WARDEN 24
2.3 NIPER MAIN FACILITIES panel 24
2.4 NIPER DISPLAY FACILITY panel 25
2.5 NIPER GRAPHIC FACILITY panel 26
2.6 A sample snapshot of automatic 3-D display of data 27

CHAPTER 3. DESCRIPTION OF NIPER MAIN FACll..ITY 29

Features 29
Technical Information fot Programmers 30
Displays and Controls 35

Control Bar 35
Other Controls and Displays 37

Installing Drivers to the Automation Program 37
To Classify Instruments on the Basis of Their Functionality 39
To Analyze a System Configuration Problem 39
To Determine Correct Parameters for the NIPER INDICATOR VI 39
To Determine Correct Parameters to be Entered into the NIPER CONTROL VI .. 41
To Configure NIPER MAIN FACILITY for Specific Automation Setups 41

TABLES

3.1 Legend for figure 3.1 32
3.2 Legend for figure 3.2 33
3.3 Legend for figure 3.3 34
3.4 Problem analysis work sheet 40
3.5 NIPER Indicator Panel settings 42
3.6 NIPER Control Panel settings 43
3.7 List of drivers and directory location(s) 44

ILLUSTRATIONS

3.1 Front panel ofNIPER MAIN FACILITy 31
3.2 Front panel of NIPER Indicator VI 33
3.3 Front panel of NIPER Control VI 34

CHAPTER 4. DESCRIPTION OF NIPER DISPLAY FACILITy 45

Features 45
Technical Information for Programmers 45
Displays and Controls 46

VI

Paie
CHAPTER 5. DESCRIPTION OF NIPER GRAPHIC FACILITy 49

Features 49
Technical Information for Programmers 49
Displays and Controls 52

Menu Buttons 52
STOP Button 52
HELP Button 52
EDIT GRAPH Button 53
EXTERNAL GRAPillC Button 53
REVIEW EX-PLOT Button 53
RECENT PLOT Button 54
CURVB FIT Button 54
ADJUST GRAPHI.C Button 54
LOG GRAPH SEITINGS Button 54

Run Number Displays 54
NO. OF EX-RUNS Display 54
RUN NO. Display 56
RUN INFORMATION Display 56

Information Displays 56
DATA & DIAGNOSTICS ALARM 56
DATA & DIAGNOSTICS Display 56
GRAPHIC MESSAGES Display 56

Graphical Display 57
Graphic Display Legend 57

Graphics Cursors 57
Cursor Position 57
Cursor Movement 57

TABLES

5.1 Legend for figure 5.1 50
5.2 Legend for figure 5.4 55

ILLUSTRATIONS

5.1 The front panel of NIPER GRAPHIC FACILITY VI 50
5.2 The front panel of NIPER HELP VI 52
5.3 The front panel of Full size graph Vr. 53
5.4 The front panel of NIPER graphic configuration VI 55

CHAPTER 6. EXAMPLE PROBLEMS 59

Problem 1. Operation of an Electronic Balance 59
Guidance for the Problem 59
Sample Solution for Problem 1 60
Panels and Diagrams for Configuration of Problem I 61

Problem 2. Operation of an Ice Cream Manufacturing Plant 67
Sample Solution for Problem 2 68

Bibliography 73

VII

TABLES

6.1 Problem analysis work sheet 69
6.2 Settings for indicator instruments 70
6.3 Settings for control instruments 71
6.4 List of drivers and directory locations 72

ILLUSTRAnONS

6.1 Schematic of electronic balance and computer set-up for problem 1 59
6.2 Schematic of the Macintosh and Mettler PI-I5 pin configuration 60
6.3 Diagram of "Indicator Driver Selector" VI after the driver has been loaded 62
6.4 Steps involved in using the "Find File" function from the menu 62
6.5 Front panel of "NIPER Lab WARDEN" VI 63
6.6 Front panel of "NIPER I/O Facility" VI 63
6.7 Front panel of "NIPER Indicator" VI.. 64
6.8 How to set default values for the current run from the menu 64
6.9 Front panel of "NIPER Control" VI 65
6.10 Front panel of "NIPER MAIN FACILITY" VI 65
6.11 Front panel of "NIPER GRAPHIC FACILITY" VI 66
6.12 Front panel of "NIPER Graph Configuration" VI.. 66
6.13 Major units in ice cream plant. 67

Vlll

GENERAL-PURPOSE AUTOMATION PROGRAMMING
USING A GRAPHIC LANGUAGE

by Syed Mohammad Mahmood

ABSTRACT

This report describes a general-purpose automation program developed by the

author for data acquisition/control/analysis/presentation. This software provides

interactive computer control of a variety of instruments typically found in laboratories

and pilot plants in order to improve operational efficiency and safe handling of

potentially hazardous operations. For example, it can be easily adapted to operate a

laboratory that conducts experiments at extreme conditions of pressure and temperature,

such as those found in a steamflooding laboratory. The software was developed in an

object-oriented graphical language around National Instruments' LabVIEW® which is the

future trend in automation programming.

EXECUTIVE SUMMARY

This report describes a computer program that occupies two 1.4 Meg floppy disks

(auto extracting compressed file). The software was originally developed to operate

NIPER's thermal oil production research laboratory (a U.S. DOE facility). This is a

general program that can be readily adapted by other users to their specific laboratory or

pilot plant application. The use of an object-oriented graphical (symbolic) computer

language in this program permits easier and faster adaptation than the typical line-code

languages such as FORTRAN. The programs look like logic flow diagrams (electrical

circuitry) rather than typical syntax line codes. Due to its open architecture, this program

is very likely to provide enhancements over custom-made programs in situation where

instrument requirements change frequently, or when several groups need to interact or

share data over a network. With a uniform, standardized, and flexible automation

program, infonnation/experience/training can be shared to increase efficiency, safety, and

reliability. More specifically, this program provides the following features:

(1) allows the user to select any number of instruments and specify their

parameters for a particular run. The selection can be made during run-time, or

one of the previous selections can be chosen prior to a run. The

devices/instruments can be added/deleted/reset anytime during a run;

(2) acts as a liaison between instrument-related software (driver programs) for

various instruments, i.e., links up or connects various driver programs in order

to bring about proper coordination of activities;

(3) provides means to monitor instruments so that the user is informed if values

go out of user-specified range;

(4) eliminates operator errors by setting constraints;

(5) allows the user to automatically rectify minor problems by specifying what to

do if an instrument's value falls into a warning range, or if there is an abrupt

change, i.e., automatically reset one or more devices to a specified percentage

of their current value;

(6) allows the user to automatically handle emergencies by specifying an

emergency response sequence so that if an instrument(s) value(s) fall outside

the acceptable range, or if there is an abrupt change, the devices can be

automatically reset to safe values in an orderly fashion;

(7) provides easy access and editing to current and previous data with advanced

graphic features; and

(8) provides a visual display of the status of a test in progress for quick trouble­

shooting.

OBJECTIVE

The objective of this report is to describe a software program that was primarily

developed to provide laboratories or pilot plants of moderate complexity: (1) a simple

yet powerful automation program that is inexpensive, flexible, easy to use/modify, and

capable of monitoring test progress and taking corrective actions automatically when

needed; (2) an effective program that does not require a workstation for effective

utilization; (3) a program that allows interaction with other major software packages to

enhance its capabilities, e.g., to automatically open Microsoft Excel, transfer data in its

preferred format, and plot this data; thus, saving time and effort over doing it manually;

and (4) a program that allows real-time access to the input and output data so that system

set-up can be changed and reports can be generated in real-time.

FORMAT OF REPORT

Chapter I of this report introduces LabVIEW®-the language used to develop this

software-and presents the concepts behind object-oriented and graphical languages.

Chapter 2 provides an overview and a conceptual framework of NIPER's automation

programs. Chapters 3, 4, and 5 provide general description of the three main facilities:

2

NIPER MAIN FACILITY, NIPER DISPLAY FACILITY, and NIPER GRAPHIC

FACILITY, respectively. Chapter 6 includes two example application Iproblem .

Individuals have different levels of proficiency in the use of computer operating

systems, object-oriented programming (LabVIEW), and communication hardware (plug­

in boards, etc.). The author has assumed two different levels of users. On one level are

operators who will take the program and adapt the current configuration to their needs.

On another level are programmers who may wish to extensively revise and develop their

own program around the NIPER programs provided. This second type of user is assumed

to be more computer literate and knowledgeable about object-oriented programming

structure. With regard to Macintosh computers, the user is assumed to have a good

understanding of the fundamentals of System 7® operations (Apple®, 1991). The second

level user should also have basic proficiency in LabVIEW programming obtained by

going through the training exercises (learn by doing), which are found in the National

Instruments LabVIEW literature (National Instruments Corp., 1991).

For automation programs (laboratory, pilot plant, or production facilities) dealing

with instrument control, it is imperative that the validity and/or reliability of the program

be established with reasonable certainty. No warranty or guarantee of the applicability of

the programs is implied by NIPER or DOE. The user must ascertain the suitability of the

system for the user's own specific needs.

ADVANTAGES OF OBJECT-ORIENTED AND
GRAPHICAL PROGRAMMING APPROACH

Object-oriented graphical programming is an approach that has received great

attention and acceptance in recent years. Since Macintosh® and Microsoft Windows®

for PC operating systems became available, most commercial software has been

developed using the object-oriented approach. The same trend is also seen in lab

automation programming, where object-oriented graphical languages are replacing line­

code programs as the language of choice.

In object-oriented graphical programming, the program is coded as a series of

symbols (objects). The related data for each object are packaged along with the program

code. Objects can be defined within objects. This hierarchical structure allows the

breaking down of complex programs into smaller objects. Since data are packaged along

with the code for each object, their present value is saved each time the program is run

and saved.

There are many advantages of object-oriented graphical languages. First, writing,

debugging, and modifying the code are easier because each object can be treated as an

3

independent program not linked to other programs (each object interacts with other

objects only by sending and receiving messages). Second, the objects and their

input/output data can be pictorially depicted by icons which increases the clarity for both

programmers and users. Third, several processes or programs can be run simultaneously

by considering eacb program as an object. By merely switching their active tatus, they

can run intermittently and interact with eacb other. This also extends a programmer's

capabilities to use external codes. The linking of multiple processes and objects increases

user-friendliness and error-handling capabilities.

TECHNICAL REQUIREMENTS

NIPER's automation software was written on an Apple Macintosh II computer using

LabVIEW®, an object-oriented language from National Instruments. The user must

acquire a licensed version of National Instruments' LabVIEW software to legally execute

the NIPER program. LabVIEW was selected as an operating platform because it allows

these programs to be run on either Macintosh, IBM-compatibles, or Sun workstations

with an appropriate version of LabVIEW software. LabVIEW 2 requires 4 megabytes of

RAM and >16 megabytes of hard disk space. The NIPER programs, along with

necessary LabVIEW software, require 6 megabytes of RAM and 6 megabytes of hard

disk space. If supporting software such as Microsoft Exce]®, Microsoft Word®, or other

graphics software such as Spyglass® are to be interacted with NIPER programs, their

memory requirement needs to be added. However, it is not necessary to run every

NIPER program simultaneously; thus, the program can be run with 2-3 megabytes of

memory at a rninimallevel.

Users do need to provide and load the driver programs for communicating with

their unique instruments. A driver program is a mediator/translator between the computer

and an instrument. Some instruments may communicate in unique command languages.

The LabVIEW package includes several driver programs, but many more standard driver

programs are available from tbird party consulting/software development companies. A

template and examples of driver programs are included in NIPER's package to ease the

task of writing a driver program. A driver: program can be written or modified by experts,

on the average, in a few hours. National Instruments also provides excellent technical

support by telephone, fax, or mail. All above options require at least a cursory

knowledge of LabVIEW. Inexperienced users should seek help from others in obtaining

driver programs.

4

BIBLIOGRAPHY

Apple Computer Inc., 1986. Macintosh 11 User Manual. Cupertino, CA.

Apple Computer Inc., 1986. Inside Macintosh, Volume VI. Cupertino, CA.

Dijkstra, E. W. Notes on Structured Programming. Contained in Reference 10, pp. 1-82.

Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare, 1972. Structured Programming.
Academic Press, London.

Kirkman, I. W. and P. A. Buksh, 1992. Data Acquisition and Control Using National
Instruments' "LabVIEW" Software. Rev. Sci. Instrurn.• v. 63. No.1. January, pp.
869-872.

Kodosky, J., J. MacCrisken, and G. Rymar, 1991. Visual Programming Using Structured
Dataflow. Proceedings of the 1991 IEEE (Institute of Electrical and Electronics
Engineers) Workshop on Visual Languages, Kobe, Japan, Oct. 8-11. Reprinted
by IEEE Computer Society, 10662 Los Vaqueros Circle, P.O. Box 3014. Los
Alamitos, CA 90720-1264.

Liles, K., 1991. Data Acquisition Software Automates Automotive Fuel Injector Test
Facility. Engineering & Management, OctoberlNovember, pp. 18-21.

Liles, K., 1992. Data Acquisition-A Mac-Based System for Fuel and Lubricant Testing.
Scientific Computing & Automation, January, pp. 19-23.

National Instruments Corp., 1991. LabVIEW 2-Getting Started Manual, Part No.
320246-01. Austin, TX, April.

National Instruments Corp., 1991. LabVIEW 2-User Manual, Part No. 320244-01.
Austin, TX, September.

National Instruments Corp., 1991. Training In-depth course on LabVIEW 2, Version lA,
Part No. 776393-01, Austin, TX, April.

National Instruments Corp., 1991. LabVIEW® 2 Lab Driver® VI Library Reference
Manual, Part No. 320249-01, Austin, TX, February.

Olsen, D. K., S. M. Mahmood, P. S. Sarathi and E. B. Ramzel, 1992. Operating Guide
and Specifications for NIPER Steamflood Laboratory. DOE Report NIPER-603,
August.

Olsen, D. K., S. M. Mahmood, P. S. Sarathi and E. B. Rarnzel, 1990. Thennal Processes
for Light Oil Recovery. DOE Report NIPER-515, December, pp. 18-20.

Sethi, R., 1989. Programming Languages: Concepts and Constructs. AT&T Bell
Laboratories, Murray Hill, NJ, Addison-Wesley, Reading, MA.

Stroustrup, B., 1986. The C++ Programming Language. Addison-Wesley. Reading,

MA.

5

Chapter 1

DESCRIPTION OF LabVIEW

BRIEF INTRODUCTION OF LabVIEW

LabVIEW® is a visual programming environment that can be effectively u ed by a

broad range of people with different levels of programming skills. The two-dimensional

graphical notations that LabVIEW uses are much easier to comprehend than textual

notations in line-code languages. Programs look like a dataflow diagram, as shown in

Fig. 1.1. Elements are pictorially represented, and data flow between elements is shown

through color-coded wire-connections (lines). With this representation, constructing or

understanding a program is easier and faster (National Instruments Corp., LabVIEW 2­

Getting Started Manual, 1991a, and LabVIEW 2-Users Manual, 1991c). Complex

process flow diagrams of large plant operations can be broken down into small logical

units and then recombined. Thus, complex operations and their interdependence can be

understood with relative ease. Kodosky, MacCrisken and Rymar (1991) have described

some of the programming structure behind LabVIEW, and a number of their examples

have been used in this section because of their clarity.

A simplified version of Fig. 1.1 is shown schematically in Fig. 1.2 and explained in

detail under "Programming Structure of LabVIEW." Input can be an electrical signal

(voltage) from an instrument, an assigned value from the front panel (which can be

numeric, a string, or a series of alphanumeric characters), a string (series of alphanumeric

characters), or a calculated value. A node is a process (addition, subtraction, integration,

data token
/

/
arc

FIGURE].1 - A simple dataflow diagram.

6

--........1 PRO~ESS I

---tI"~ I PRO~ESS 1 ----tl..~ IPRO~ESS 1---1••1OUT:1

FIGURE 1.2 - Dataflow diagram simplified.

listing, sorting, etc.). An arc is the connecting link between operations, i.e., it shows

where an input value leads to. A data token is an imaginary symbol superimposed on

arcs to indicate that the data packet has arrived. Data tokens are used to show the

execution sequence of various nodes in the program. An output terminal may be a

display on the front panel, an instrument, va~ve, alarm, or may involve printing a file, etc.

PROGRAMMING CONCEPTS RELEVANT TO LabVIEW

This section describes the concepts of programming languages that are pertinent to

LabVIEW. The following discussion is aimed at highlighting the basic differences

between the conventional languages and LabVIEW.

A Sample ofLabVIEW Program Algorithm

Consider a simple algorithm that iteratively reads data from a file, converts it to OF,

and warns the user (via an audible beep) if the value exceeds a predetermined limit.

Figure 1.3 lists a FORTRAN program to achieve this objective. To help understand the

structure of the program, a control-flow diagram is customarily used, such a the one

shown in Fig. 1.4.

A program in LabVIEW is shown in Fig. 1.5 which achieves the same objective as

the FORTRAN program shown in Fig 1.3. Notice that the LabVIEW program itself is in

the fonn of a flow diagram, so no control flow diagram is needed. Further explanation of

this program is provided in Table 1.1.

At first glance, it may appear that the FORTRAN program is easier to follow. This

may be true for small programs like the one presented in this example. However,

experience in writing and maintaining software shows that as the size and the complexity

of the program increases, line-code programs become progressively more difficult to

follow than a visual program in LabVIEW. This is because LabVIEW has some other

features not depicted in Fig. 1.5. Two of its useful features are structure and data flow.

7

These features are described later in more detail, only a brief discussion follows. A

structured language allows to write programs in a fashion that various strategic segments

of the program are lumped together in logical units, thus improving the readability and

understandability of the program. Unlike sequential processing (by default) in most other

languages, a data-flow program executes in the order in which various program elements

(or segments) receive their needed data. Since automation programming mostly involves

operation on data, data-flow languages are particularly suitable. They allow easy

comprehension and debugging of the program because the path and operations on each

set of data can be easily followed as it is being transfonned from cradle to grave. The

graphical representation is a natural choice for a data-flow language to fully exploit the

traceability of the loci of data migration,

Object-Oriented Programming (OOP)

The important concepts of object-oriented programming (OOP) are described

below, This description is included to help readers visualize the significant advantages

that this approach to programming offers over familiar line code languages such as Basic,

FORTRAN, Pascal, and C. National Instrument's LabVIEW, the basis of NIPER's

automation software, is a programming platfonn (compiler) that uses a high-level object­

oriented language called "G."

+

20

OPEN (5, FILE = 'ALLIANCE:LABVlEW 2: INPUT TEMPERATURE',
STATUS ='OLD') CELSIUS

ALLIANCE IS THE VOLUME I.E., HARD DISK, LABVIEW2 IS THE
FOLDER CONTAINING FILE NAMED INPUT TEMPERATURE

READ (5, *. END =99)

FAHRENHEIT = «CELSIUS * 9/5) + 32)

IF (FAHRENHEIT.GT.450) GOTO 20

GOTO 10

CALL BEEP (I)

BEEP IS A SUBROUTINE THAT ACI1VATES AN AUDffiLE BEEP

99 STOP

10

C

c
c

END

FIGURE 1.3 - A FORTRAN program that iteratively reads data from a file, converts it
to OF, and beeps if the value is higher than 4500 F,

8

No.-

START

Convert the reading
to Fahrenheit

Is the temperature
in Fahrenheit

higher than 450?

Beep one time

Open file and
place cursor to

the first line

Read current line,
then advance cursor

to next line

Does the current
line contain
end-of-file
character?

Clo e file

STOP

FIGURE 1.4 - The control-flow diagram of the example FORTRAN program shown in
Fig. 1.3 that iteratively reads data from a filet converts it to F, and beeps
if the value is higher than 4500 F.

~.r---I=~ CD
o

@

II]

@ ~41 True I.~

_······I~

® @

FIGURE 1.5 - A sample program segment in LabVIEW that iteratively reads data from a
file, converts it to OF, and beeps if the value is higher than 4500 F (see
Table 1.t for legend).

9

TABLE 1.1
LEGEND FOR FIGURE 1.S

1. This entire box is a "While Loop" structure. The "While Loop", which can be thought of as a single node it elf,
executes the diagram inside the box until the Boolean (frue-False) value passed to the conditional teoninal (box
S) is False.

2 This box contains the string which specifies the volume name, directory name, and file name from which the
temperature data (in Celsius) is to be read.

3. This node opens the specified file and reads the current line of temperature data into a numeric array. The nQl:!e
then closes the file, passes the array to node 6, and passes a numeric error message value to node 4.

4. This node checks to see if the error message from node 3 is equal to zero (indicating no error). If so, the node
outputs a Boolean value of True. If the error message does not equal zero, the Boolean output is False.

S. This box. is the conditional terminal for the entire "While Loop". The teoninal is checked at the end of each
iteration and exits the "While Loop" box once the Boolean value from node 4 is False.

6. This node reads a specified element of the numeric array from node 3 and then passes the value of that element
to node 12.

7. This box contains the integer value that specifies which element of the array node 6 is to read.
8. This box contains a numeric constant used in the temperature conversion from Celsius to Fahrenheit. The value

is passed to node II.
9. This box contains a numeric constant used in the temperature conversion from Celsius to Fahrenheit. The value

is passed to node 11.
10. This box contains a numeric constant used in the temperature conversion from Celsius to Fahrenheit. The value

is passed to node 13.
II. This node divides the value from box 8 by the value from box 9. The numeric result (a conversion factor of 9/5)

is then passed on to node 12.
12. This node multiplies the output value from node 6 by the output value from node I I. The numeric result is

passed on to node 13.
13. This node adds the value from box 10 to the output value from node II. The resulting numeric output

(Fahrenheit temperature) is passed on to node IS.
14. This box contains a constant numeric value specified as the temperature limit.
15. This node checks to see if the output value from node 13 is greater than the temperature limit of box 14. If so,

then the resulting Boolean output is True. If the value from node 13 is less than the temperature limit of box 14,
then the Boolean output is False.

16. This structure beeps if the Boolean output from node 15 is True, which means that the temperature value read
from the file is higher than the temperature limit specified by box 14.

GOP refers to a programming style that relies on the concepts of inheritance and

data encapsulation. Inheritance is a language facility for defining a new class of objects

as an extension of previously defined classes. The new class inherits the variables and

operations of the previous classes. Inheritance helps in building complex structures by

using the existing simpler objects. Since common properties of objects can be

preprogrammed by defining classes, programming effort can be significantly reduced.

Data encapsulation (also called implementation hiding, meaning certain details of

implementation code are deliberately hidden from the user) allows objects to be packaged

so that unnecessary details of implementation are not visible from outside the object. An

object may include a set of functions, procedures, subroutines, data, type-definitions,

arithmetic and/or other operations. Any or all entries in an object may be defined as

either public, private, or protected, depending upon their intended use. Objects can only

interact with each other by sending and receiving messages·.

10

The properties of OOP allow one module (an independent program segment like a

subroutine) to be written with little knowledge of the code in another module. Modules

can be reassembled and replaced without reassembling the whole system (program).

OOP's programming style can be practiced with widely differing languages. For

example, C++ (a line code OOP language) allows both inheritance and data encapsulation

to deal with the most demanding systems' tasks yet retains C (also a line code language)

as a subset for tasks requiring low-level programming.? LabVIEW is also an OOP

language that provides a simple yet powerful visual programming environment. It

superimposes a graphical editing and execution system upon the obJect-oriented "G"

language to create a platform for the users wherein the modules can be built by copying

the objects from the LabVIEW library and user's own library of modules. Its libraries

have essentially all of the objects needed for automation progra1llJl1ing.

Procedure-Oriented Programming (POP) Versus Object-Oriented Programming

(OOP)

Figure 1.6 illustrates the difference between procedure-oriented programming

(POP) and OOP (Sethi, 1989). The requirement in this example is to build figures, which

are basically composed of basic shapes-lines, rectangles and circles. POP will structure

a program around the operations on shapes. This may include operations for drawing,

rotating, and scaling a figure. For each shape in the figure, the procedure will classify the

shape and then execute the code that is appropriate for drawing that kind of shape.

shapes

(a) Disjoint sets of objects (b) Nested sets of objects

FIGURE 1.6 - Different ways of classification of objects: (a) POP (b) OOP.

11

However, the code for each shape will contain only very elementary operations. Because

of the use of elementary operations, the code for manipulating hape is spread aero the

various procedures, and this is often problematic. Ifa new shape is added, e.g., an arrow

head, then the code for handling the new shape has to be added to each procedure. Even

if the new infonnation is small, it is spread across procedures, each of which must be

analyzed before the new code is added to ensure that there are no conflicting directions or

assignments.

The OOP approach of handling this problem is different: A class named "shapes" is

defined, which has subclasses of lines and circles. Class shapes then collects common

properties, such as the height, the width, the position, and an operation for moving the

shape. Properties that are specific to lines, rectangles, and circles appear in the

appropriate subclasses. Inheritance, an OOP property, allows arrows to be added by

extending the subclass "hnes," without touching the code for the other objects. An arrow

inherits all the properties of a line (as a default), so the only additional code needed to

draw an arrow is the code for drawing an arrowhead. Another property of OOP--data

encapsulation-allows the drawing of various shapes by simply sending messages to the

class shape, without the need to see its implementation details. In OOP, each module is a

completely executable program in its entirety, and it does not interact with other program

segments in any way except by receiving and sending messages. This message-passing

mechanism is superior to the use of "subroutine calls" in traditional programming because

it eliminates any chances of inadvertently altering the data in the calling program. The

user does not need to know the implementation details of a module to use it in any other

module. They merely need to know the abstract information about its actions and about

the input/output data to be exchanged through messages.

Since OOP is more of a philosophy (methodology) than a specific language,

differentiating OOP from other programming styles is difficult to do with precision. In

abstract terms, OOP relies heavily on making and using objects (building blocks) in tead

of using elementary units and operations. If the objects are appropriately defined, the

task of manipulating them becomes easier. The objects are treated as complete units;

hence, operations on them are far less likely to have inadvertent side effects, i.e.,

unwanted influences on other objects or programs are avoided. The power of OOP

becomes more apparent as the size and complexity of a program increases. It is easier

and safer in OOP to extend classes, and the code for each individual operation is

relatively small, often to simply "pass the buck" by invoking operations in other objects

(Sethi, 1989).

12

Programming Structure ofLabVIEW

National Instruments LabVIEW, by using the high-level, object-oriented language

"G," allows programming in a highly structured and modular fashion. Each module (also

called "VI" by National Instruments) is a totally independent, interactively executable

program which can be used as a subprogram by other modules. To use a module as a

subprogram, its icon is copied into the program. Copying an icon into a program i

analogous to a subroutine call. Data exchange (input/output) with the module can be

accomplished by making wired-connections between the terminals shown on the icon and

other elements in the program. Large programs can be developed in an hierarchical

manner by starting with small modules and using them within other modules. Since each

module has its own independent program and a separate input/output interface,

debugging or modifying a large program is quite easy.

LabVIEW handles the execution sequence of a program in a different manner than

line-code languages. In traditional line-code languages such as Basic, FORTRAN, C, or

Pascal, the execution of instructions (statements) takes place sequentially by default; the

order is changed occasionally according to the control-flow diagram designed by the

programmer. LabVIEW, on the other hand, is based on a modified dataflow model such

that the sequence of execution need not be predefined.

Dataflow diagrams specify the data dependency between computations, but they do

not specifically force any particular sequence of independent computations. The dataflow

diagram of Fig. 1.1 is an example. It is a directed, acyclic graph consisting of node ,

arcs, terminals, and data tokens. Terminals are the connections to the external world, and

act as the sources, or sinks, of data tokens. Arcs are the directed paths over which data

tokens move, and nodes are the locations in which computations (or other instructions)

are performed. A node consumes tokens on its input arcs and produces new tokens on its

output arcs. The diagram becomes data-driven because of its firing rule, which states that

a node cannot execute until all of its input arcs have a data token available, at which time

the node consumes one token from each input are, performs the computation or

instruction, and produces one token for each output arc. In Fig. 1.1, for example, node J

has already executed, K and L are eligible to execute, and M is still ineligible because it

needs a token on its second input.

In contrast to the control-flow model, the dataflow model has no concept of locus­

of-control, no program counter (Le., no sequence numbers like in text-based program

codes), and no global variables (globally accessible memory). A data token exists only

from its production by a node or input terminal to its consumption by another node or

13

output terminal. All nodes that are eligible to execute can do so in any order or even in

parallel; the results of the diagram will be the same in all cases.

The classical dataflow model, however, lacks the provisions for conditional or

iterative computations. LabVIEW provides an extension to overcome this limitation.

This extension not only preserves its firing rules and acyclic structure (thus, preserving

program clarity), but also incorporates the proven benefits of the structured programming

methodology. This extension involves redefining a node to be any program segment

enclosed in a box-like structure that separates the body (or inside) of the structure from

the rest of the program. Because the box behaves like a node as far as the rest of the

program is concerned, the overall dataflow methodology is preserved. The body of a

node (inside the box structure) behaves like an isolated diagram, in which access to the

code is only from the top (or beginning). The program structure-semantics such as loop

behavior or conditional behavior have been superimposed on the body of the box. This

can be thought of as a macro structure (program as a whole) containing some micro

structures (program segments inside the node), both of which independently follow the

dataflow model. The micro structures, however, have some additional control properties.

Using the extended dataflow strategy, LabVIEW is able to retain the important

benefits of both structured programming and dataflow strategy. Furthermore, the

performance of the executable code generated by compiler is comparable to that produced

by a C or Pascal compiler.

Bask Facilities in LabVIEW

Writing and Editing Programs

LabVIEW contains three interrelated editors, one for each of the three parts of a

module: block diagram, front panel, and icon/connector. The front panel is the means of

controlling the execution of the module (VI) and interacting with the program. It

specifies the inputs and outputs of the module and is analogous to a front panel of a real

instrument or an operators panel controlling a cluster of instruments. It is also analogous

to the data declaration and type definition section of a subroutine. The data input

terminals are called controls, whereas data display terminals are called indicators. An

example panel is shown in Fig. 1.7, which is a rendition of the "NIPER MAIN

FACILITY" panel of the NIPER automation program (some of the features removed for

clarity). Each front panel has an accompanying block diagram. The block diagram is the

actual program (source code) created by the user with LabVIEW. An example of a block

diagram is Fig. 1.8 (this is the accompanying block diagram of the panel shown in

14

ERROR MESS AGES

"1-8.30 Qeceleration INo Error.

I 187 Prev. Value

I 20 Elapsed Time

'*' -,~ ---- Tesf Sfa'hjs O'is'Pi8
__=-:E -", u.:::'__~ ~l..~ ~_" .. __ .. _~";i __ , ,.~L..__ .

I ~ '~SUMMARY nOR DIAG~OSTIC
~. - -~+::ih:=v z:iasr cd - - .l\.-~

- i
I

Fra~'e No.11 Item Nam~ I Surfae~a~t T~nk _ ~ L 1500.00 Cuto"ff Higher pmit

I I 3 Item no EMERGENCY? WARNING(S)? 110.00 CutoffLower Umit

EMRGENCYlI: /l73~00 ~alue _>::.\ • n.::it; ~.-•• ..;.: 120.00 Cutoff Accel. (90 per min)

I20.0.0. Cutoff Deeel. (90 per min) III
1400.00 Warning Higher limit

1200.00 'Warning lower limit
~ I~I

115.00 Warning Accel'(90 per min) :

I 15.00 Warning Decel. (90 per min)

......
VI

PRE-EMERGENCY ADJUSTMENTS

==llJi~

Frame
No.

CHANNE~~Yt'ITH WAR~I~G AND/OR EMERGENCY CONDITIONS

Item with Problern No. Hi

Surfactant Tank 3

Figure 1.7 - NIPER MAIN FACILITY pane).

DIAGRAM FOR MAIN PANEL

NIA:R MAIN FAOUTY PANS­
~~~~~I=,.,IIi=I ... ­
~~

@@

,----J
""- ---'1

NIA:R SORf ENEREf>CY

n=;J '....... I_.. I.:::::: r-I------,1

I =:'. H'O, I'IL!U. 4 I

------~----------

DIAffiAM FOR SORT ~
BlEREf>CY PANS-

FIGURE 1.8 - Descriptive hierarchy of programming for the NIPER MAIN FACILITY
showing panels, diagrams, and icons for select portions of the program.

Fig. 1.7) with one of the icon/connectors expanded with its panel and block diagram icon

icon/connectors expanded with its panel and block diagram icon to show the hierarchical

structure. The icon/connector is a means of turning a module (VI) into an object that can

be used in the block diagrams of other modules (VIs) as if it were a subroutine. The icon

graphically represents a subroutine call in the block diagram of other modules. The

connector terminals on the icon of a module detennine where the inputs and outputs must

be wired (connected) on the icon. The terminals are analogous to parameters of a

subroutine, except that their location can be arbitrarily fixed in any order.

The block diagram is a directed acyclic graph containing nodes, interconnecting

wires, and source/sink terminals corresponding to the front panel controls and indicators,

respectively. It is constructed by copying built-in functions, structures, and previously

16



constructed modules (VIs), arranging them in the block diagram window, and wiring

them as needed. The front panel contains all of the input/output terminals for interactive

programming. The data types of the inputs and outputs can be defined as well a the

default values. Each front panel has a unique icon which contains tenninals (non­

overlapping sub regions) that can be linked (set in one-to-one correspondence) with

various controls and indicators on the panel.

The wiring is done using a wiring tool to establish the paths of data exchange. The

wiring tool is a cursor that looks like a spool of wire. As each edit transaction is

performed, the syntax checker detects and flags any cycles introduced into the dataflow

diagram, propagates data attributes (type) to all the tenninals, computes the data type for

each built-in function, and reconstructs any arcs whose attributes have changed. Each arc

is drawn with a distinctive pattern, width, and color code to indicate the data type, array

dimension, and numeric representation.

Built-in Library

LabVIEW comes with a large library of modules (VIs) that can take care of most

low-level programming details, freeing the programmer to concentrate more on

customizing the program. Numerous driver programs for common instruments are also

included, and many are available from a growing number of third-party vendors and user­

groups. For some unique instruments, the user may have to write their own instrument

drivers.

Some of the icons/connectors are shown in Fig. 1.9 as an example. Since

LabVIEW is a programming environment, familiarity is acquired by practice and

experience. National Instruments provides adequate training material as part of the

purchase of the LabVIEW.

Control Structures

LabVIEW provides five box-like control structures and one file-linking structure as

shown in Fig. 1.10. The legend for Fig. 1.10 (numbers in circles) is listed in Table 1.2.

The top three are quite similar to the "for loop," the "while loop," and the "case structure"

(case selector) used in other programming languages, while the sequencer, the formula

node, and the Code Interface node are used as follows: to impose an order on execution,

evaluate text-like expressions, and link the program to external subroutines. Structure

"A" depicts a "Numeric Iteration." This structure is comparable to a "For Loop" in other

languages. It executes a specified number of times. The "Repeat Until" structure, or

"Conditional Loop," is displayed in B. This loop continues execution as long as the

17



I II • I I I I I I I I I I I I I ' • I I I I I I I I I I I I I I

SLIDE (ADJUSTMENT) SWITCHES

4.0 6.0

2°0
0.0

ID·OO II
2

.D - I
I

6 .D-

.. . .liLo.oo :JJ

I I I I
•. 2. ~ •.

SCALES

INDEXING SWITCHES

(}

I tQI @)) ~
BOOLEAN {ON-OFFSWITC~

I •• ~ B
~ 1.e.rr:lis iT$mp

~~ro1!il
~ I.2frJ ~

VOLTAGE READING

b8>B>G>
E9rYB~

B8~lO>

~ [9 [?> ~.

[D~B>B>

ARITHMETIC

'.00

0.50

0.00

·0.50

·1.00

-

0 21 40 III II '0

WHILE LOOP

GRAPH

FIGURE 1.9 - Example of icons from LabVIEW Library.

18



(0)
8

(E) (F)

FIGURE 1.10 - Basic control structures in LabVIEW (see Table 1.2 for legend).

TABLE 1.2

LEGEND FOR FIGURE 1.10

1. The N holds the count value (supplied by the constant wired to it) of how many times the loop is to be
executed.

2 The arrows on the vertical edges are shift registers, which are used to pass values from one iteration cycle to the
next. Any data stored in the up-arrow (right side) is available at the beginning of next iteration cycle through
down-arrows (left side). The down-arrow may be initialized by wiring values to be u ed in the first iteration
cycle.

3. This is an example of parameter passing through the structure. A numeric constant. the value 123, is being
passed to be used in the structures.

4. The i is the iteration count symbol. It holds the current number of completed cycles.
5. This curved arrow is the loop terminator. It receives the Boolean value of the test condition at the end of each

iteration. If the test value is false, it finishes the iteration.
6. This window shows the case being displayed. The right and left arrows allow user to observe different sub

diagrams. or cases. The cases may be numeric or Boolean.
7. The question mark receives the case selection information; i.e.• the case to be executed.
8. The arrows inside the frame hold the local variables. These variables are used to pass data from one frame to

the subsequent frame. The inward arrow indicates a local variable which is wired to receive the value, whereas
the outward arrow indicates a local variable which already has a value which can be distributed.

9. An example of the parameter passing method for the formula node. Parameters may be passed through the
vertical edges. In this example, z is the output variable and x and y are input variables.

10. The "Code Interface Node," CIN. allows an external routine written in "C" or "Pascal" to be executed here. The
parameter can be passed in or out through inward or outward arrows.

specified Boolean condition is true. Since it checks for the true or false condition at the

end of each cycle, it always executes at least once. The "Case Selector," shown in

structure C, may contain one or more sub diagrams, also called "cases." One of these

19



"cases" is selected during execution as specified by the input value (which may be either

Boolean or numeric scalar). Structure D shows a "Sequencer." This structure holds

numerically numbered frames that are executed sequentially. The function of the

"Formula Node" in structure E is simply to hold one or more equations. This structure

computes the equation sequentially from top to bottom and outputs the result.

Structure F, the Code Interface Nodes (CIN), is equivalent to calling an external

subroutine that is accessible to the program yet is outside the program body itself. The

subroutine is imported during run-time and evaluated using the input parameters provided

through the input-tenninals on the nodes (arrows in the left boxes). The result is then

copied to the output-tenninals (arrows in the right boxes) where it is available for other

program elements. The CIN allows programmers to use C, Pascal, or an assembly code

language, while still enabling them to benefit from object-oriented programming; but

most importantly, LabVIEW allows a more efficient dynamic memory allocation for

arrays and strings and minimizes memory fragmentation.

On-line Help
Infonnation about any of the sub-modules can be conveniently obtained by pointing

to its icon with a wiring tool and then pressing 3C-H (or selecting help from the menu

bar). The type of information available on-line includes the name of a module, a brief

description of its intended use, and a brief visual/textual description of inputJoutput data

and tenninal locations. For more details, both the front panel (inputJoutput displays) and

the block diagram (program) can be viewed by double-clicking on the icon of a module.

The entire hierarchy of a module (or a part of it) can also be conveniently viewed.

BIBLIOGRAPHY

Dijkstra, E. W., 1972. Notes on Structured Programming in O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare Structured Programming. Academic Press, London, pp. 1-82.

Kirkman, I. W. and P. A. Buksh, 1992. Data Acquisition and Control Using National
Instruments' "LabVIEW" Software. Rev. Sci. Instrum., v. 63, No.1, January, pp.
869-872.

Kodosky, J., 1. MacCrisken and G. Rymar, 1991. Visual Programming Using Structured
Dataflow. Proceedings of the 1991 IEEE (Institute of Electrical and Electronics
Engineers) Workshop on Visual Languages, Kobe, Japan, Oct. 8-11. Reprinted
by IEEE Computer Society, 10662 Los Vaqueros Circle, P.O. Box 3014, Los
Alamitos, CA 90720-1264.

Liles, K., 1991. Data Acquisition Software Automates Automotive Fuel Injector Test
Facility. Engineering & Management, OctoberlNovember, pp. 18-21.

20



Liles, K., 1992. Data Acquisition-A Mac-Based Systemfor Fuel and Lubricant Testing.
Scientific Computing & Automation, January, pp. 19-23.

National Instruments Corp., 1991a. LabVIEW 2-Getting Started Manual, Part No.
320246-01, Austin, TX, April.

National Instruments Corp., 1991b. Training In-Depth Course on LabVIEW 2, Version
1.4, Part No. 776393-01, Austin, TX, April.

National Instruments Corp., 1991c. LabVIEW 2-User Manual, Part No. 320244-01,
Austin, TX, September.

Sethi, R., 1989. Programming Languages: Concepts and Constructs. AT&T Bell
Laboratories, Murray Hill, NI, Addison-Wesley, Reading, MA.

Stroustrup, B., 1986. The C++ Programming Language. Addison-Wesley, Reading,

MA.

21



(This page intentionally left blank)

22



Chapter 2

AN OVERVIEW OF NIPER Lab WARDEN FACILITIES

The following is a brief description of NIPER's Lab WARDEN automation

software. It consists of three main interactive sections to provide a central data

management and instrument control system. These sections are: "NIPER MAIN

FACILITY, NIPER DISPLAY FACILITY and NIPER GRAPHIC FACILITY." All

three of these facilities are independent but integrated such that while the user interacts

with one, the others may process in the background when desired. Facilities can be easily

alternated by simply pointing and clicking at the selected facilities. For example, the

"NIPER MAIN FACILITY" panel may be activated during the actual scanning of data

from pumps, pressure transducers, flow meters, etc., to display the acquired data and

report any errors. Then the "NIPER GRAPHIC FACILITY" can be used to display the

data graphically. "NIPER DISPLAY FACILITY" panel may be activated to give a visual

picture of the process. The major functional units of the program, the hierarchical

structure, and the components in relationship to National Instruments LabVIEW® are

shown in Figs. 2.1 and 2.2.

NIPER MAIN FACILITY
This facility has several features: (1) to read and control instruments; (2) to monitor

instruments and when appropriate, issue system errors; (3) to allow reconfiguration of

system set-ups, e.g., connect or disconnect instruments, define or redefine allowable

ranges outside of which a warning is issued and the system is shut down, establish

emergency shutdown sequence, define corrective actions when instrument values fall in

the warning range, and set constraints so that instruments are not operated illogically. All

of these features are controlled through the "NIPER MAIN FACILITY" panel shown in

Fig. 2.3. By pointing and clicking on the buttons in the title bar (see Fig. 2.3), the user

may select certain features. Some of these buttons open a new window, allowing new

selections. Since these sub-windows have lower priority, they do not interfere with other

activities, i.e., data acquisition and control functions continue in the background.

DATA AOOUSm(JII
ffi - 232

Plug-in Data Acquisit ion
(FIB

VXI

DATA ANALYSIS
DATA FRESENTATI(JIIDSP

•• Statistics .... Graph ical User Int art ace
Hardcopy Out put

Qjrve Fitt ing
File V0

Array Operations

FIGURE 2.1 - Major functional units of NlPER's automation program.

23



NIPER
DISPLAY
FACILITY

NIPER Lab WARDEN

• LabVtEw® COMPILER
• COMMON VI's

NIPER
GRAPHICS
FACILITY

FIGURE 2.2 - Hierarchical structure and front panel of NIPER Lab WARDEN.

~ ImwJ~I ENAILE II GETNEW IbClWK)E I~IGAAPH l~.e.p L DIALOGUE DATA RECTORV UPDATE UPDATE TO STOP

IEMERGlN¢YI~

@ ~
1'1 f I ,1SUr1. Tlnk 1 ~ Cutoff Higher Lknll

rn:::Jnllll No Em@CY WarnIng~ Culoff lower LmIt

~V_ ~ @ rrn;m CUloft _. (%JIG' "*')

t9"OUIRING PRE·EMERG.ENCV AOJUS1)lEHTS ~_ []1l!J!...._......,
11llm to be~1Id % ••IUI 10 be III ~ WI"*'!l Hlghlr Umll- -- ~Doc

Prwo.1auo l:iiiD w.mng low", Umll

rnzo v.... 11M Wamhg .....,.1. (% JIG' min

l1iiJ EIIpMd [iii] Warning Deal. (% "'" mill

ITEM WITH PROBlEM INC Drfvor Error(I) Too HIlt Too 1..00 HlghW""*,,, lowWamlng HIl;I_ HIl;IDoc* WamAoool

FIGURE 2.3 - NIPER MAIN FACILITY panel.

24



NIPER DISPLAY FACll..ITY

The front panel for this facility is shown in Fig. 2.4. "NIPER DISPLAY

FACILITY" allows the user to pictorially view the status of remote-sensing instruments

such as pumps, controllers, balances, temperature sensors, pressure sensors, fluid flow

controllers, and alarms through the computer panel. Besides pictorial representation, the

data, warning messages, and corrective actions can also be viewed in numerical fonn.

uNIPER DISPLAY FACILITY" is an optional facility that does not need to be

running during automation process (reading/controlling/monitoring instruments). Its

main usefulness is in quick recognition of possible trouble-spots that need immediate

attention since a visual examination of the status of items is faster than extracting it from

a cluster of data. Its use is recommended when enough RAM memory is available and

when the operator is only partially attentive because of other activities.

FIGURE 2.4 - NIPER DISPLAY FACILITY panel.

25



NIPER GRAPIDC FACILITY
The front panel for the NIPER GRAPHIC FACILITY is shown in Fig. 2.5. This

facility allows the user to select or manipulate any portion or combination of data from a

current or previous experimental run, e.g., analyze, compare, plot, curve-fit, add, delete,

and copy interactively. The selected data can be printed or exported to other programs

such as Microsoft Excel. Data can also be sent to a full-size graph where they can be

edited using a mouse, i.e., a point or a segment of curves can be deleted, relocated, added,

or copiedJpasted from another graph. This interaction with data for graphical display or

printing can be conducted independently, or during runtime while the program is

collecting data and monitoring the process.

The 3-D graphic display shown in Fig. 2.6 is an example of the data export and

communication capability with other applications. In this example, the data were

reviewed in "NIPER GRAPHIC FACILITY" and then exported by pressing the "External

Graphic" button, which opened a Microsoft Excel file containing the new data. The data

were plotted, and the chart was automatically rotated with different attributes such as

different angles, aspect ratios, etc. Then, the chart and the Microsoft Excel application

3:31 PM SYSTEMIS Ft.NN11Il3 ()(

BASE OiANNEL (Deg. F):

GW'HCS OJfHNTLYSHCWNG TfE fOL1.OWNG O1ANNEL(S):

21.22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,

WARNOO na.TA fOR THE fOLLCWNG~N~S) IS Nor
AVAlLA8LEfOA CJlAPHC DISPLAY:

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 18,

----
FIGURE 2.5 - NIPER GRAPHIC FACILITY panel.

26



71

70.8

70.6

70.4

70.2

FIGURE 2.6 - A sample snapshot of automatic 3-D display of data in Microsoft Excel.
DeltaGraph Professional and Spyglass Transform are similar linkable
presentation graphics programs for display.

were closed, and the control was transferred to LabVIEW. Lab WARDEN continues to

operate in the background acquiring (or waiting for) new data and checking for error and

safety messages.

Excel is one of many applications that can be integrated with LabVIEW. In fact,

any application that supports Microsoft System 7's feature of Dynamic Data Exchange

(DOE) can be integrated, and can link, subscribe, and publish to or from other files.

Also, any application that allows macro-expansion (sometimes called scripting) is a good

candidate for integration. Some of the commercial applications that have these

capabilities are Excel™, DeltaGraph Professional™, and Spyglass Transform™. Spyglass

Transform is an exceptional candidate for enhancing LabVIEW's graphic capabilities

since it can display diffused-color surreal graphics by filling in interpolated data points

along with the actual data in a multidimensional spatial field.

"NIPER GRAPHIC FACILITY" is also an optional facility, i.e., it does not need to

be running during automation (reading/controlling/monitoring instruments). Its sole

purpose is to provide off- or on-line (real time) data selection capabilities and advanced

27



graphics for review and printing purposes. The use of this facility should be minimized

while a test is in progress, unless enough RAM memory is available.

BIBLIOGRAPHY

National Instruments Corp., 1991. LabVIEW 2-Getting Started Manual, Part No.
320246-01, Austin, TX, April.

28



Chapter 3

DESCRIPTION OF NIPER MAIN FACILITY

Features

This software (facility) allows the user to:

(1) Configure the software for the desired experimental set-up,

(2) Save several experimental configurations for future recall,

(3) View and recall a previously saved configuration for use in the current run,

(4) Scan and view data from the selected instruments at fixed intervals or as

desired,

(5) Control (change settings) selected instruments at start, and set stop, warning,

emergency conditions as desired,

(6) View complete status of the test including warning and error messages,

(7) Provide data and run status information to other NlPER facilities and

commercial programs.

"NIPER MAIN FACILITY" is the core of the software program that enables the

user to interface with the instruments (read data, send control commands, define the

sequence of instruments to be set at startup/shutdown/emergency, reset instruments

during the run, analyze raw data received from the instruments, compare the data with the

user-defined ranges, and display the status of each instrument (warning, error, and normal

conditions). It also provides two safety features: it can correct a warning situation by

adjusting the value of certain instruments according to the user specifications, and it can

systematically shut-down the experiment by following the prescribed sequence.

"NIPER MAIN FACILITY" is a self-sufficient facility that doe not require any

other NIPER facility to accomplish its features. When run, it asks the user to provide

inform'ation about the instruments and the design (control) parameters of the experiment.

Such information can be saved and retrieved freely, avoiding repetition. This allows

multiple experimental set-ups to be handled easily by a single program, by saving and

recalling the settings for each set-up.

The facility provides complete infortnation about the status of the test. This is

achieved by comparing the recently acquired data of each instrument with respect to its

defined limits and the instrument's previous value. Besides providing audio-visual

warnings and error messages to the operator screen, such messages can be sent to remote

terminals. The facility can be configured to take corrective actions when the value of an

instrument exceeds user preset limits (warning limits). If a critical condition exists as

defined by the user in their configuration, the facility may automatically initiate a

29



user-defined systematic shut-down procedure. The facility also allows the user to define

a start-up sequence, i.e., the reset value (or ON/OFF status) and its position in the

sequence can be defined for as many instruments as desired. Similarly, the user may also

define a shut-down sequence to be initiated at the termination of the test.

Technical Infor1lUltion for Programmers

The program executes in three stages: (I) initialization, when files are opened and

are initialized to the default parameters, and the control-instruments are reset to their

start-up values sequentially; (2) a loop, in which the program handles service requests

such as opening the front panels for user interaction; and (3) termination, where the

system is shut-down systematically, Le., the control-instruments are reset to their stop

values sequentially, files are closed and the current status is saved. Thjs stage begins

when the "STOP" button is pressed. At the beginning of each loop, the program notes

the lapse time after the last reading. If this lapse time has exceeded the user-defined scan

interval, or if the "GET NEW DATA" button on the front panel is pressed, data from each

instrument are read and saved in one of the open files. These data are then analyzed and

compared to the defined ranges. The analysis of data and emergency/warning conditions

are reported on the front panel. If an emergency condition exists on any item, all control­

instruments are reset to their emergency status as defined in the "NIPER CONTROL

PANEL" VI. If a warning condition exists on one or more items, the corrective actions

are taken according to their preset sequence defined in the "NIPER INDICATOR

PANEL" VI. These corrective actions involve resetting the control-instrument to an

adjusted value.

Since the data are stored in files as soon as they arrive, a copy is immediately

available for user handling. The user can perform any operation on the data using any

software that handles "tab-delimited-text" format, e.g., Microsoft Word and Excel.

Manipulating these data does not interfere with LabVIEW operations such as data

acquisition and instrument control. The original file containing the data is locked and not

available for editing while the program is running.

A description of the "NIPER MAIN FACILITY" panel is gi ven in Fig. 3.1. The

circled reference numbers refer to the description of various attributes described in

Table 3.1. When "NIPER MAIN FACILITY" is operated, a new window named

"NIPER Indicator" is opened whose front panel is shown in Fig 3.2. The circled

reference numbers refer to the description of various elements presented in Table 3.2.

Clicking on the "Accept Changes?" or "Reject Changes?" opens the "NIPER Control"

30



panel (Fig. 3.3). Finally, clicking on 'Accep Changes' or "Reject Changes" closes this

window and re-displays "NIPER MAlN FACILITY" panel.

FIGURE. 3. - Front panel of "NIPER MAIN FACILITY."

31



TABLE 3.1

LEGEND FOR FIGURE 3.1

1. This button opens the NIPER HELP panel which provides information about LabVlEW and object-oriented
programming.

2 The ADJUST CONTROL button allows the user to adjust the parameters pertaining to various in truments
and indicators of the experiment Pressing this button first opens the "Indicator" panel. On thi panel, the
user is able to adjust the various controls of the experiment and select various instruments. After the desired
changes have been made and the "Reject Changes" and/or "Accept Changes" button has been pressed, the
"Control" panel appears. Here changes to the hardware configuration can be made.

3. The LOG CONTROL button allows the user to run the test using a previously stored elting from the log
library. This button can also be used to save one or more settings in the log library for future use. These
functions are useful when the program is being used with more than one set-up and the user wants to switch
from one to another without redefining default values.

4. When the program encounters I/O errors so frequently that the normal execution of the program becomes
impossible, a dialogue box appears allowing the user to continue by disallowing the display of I/O mes ages.
Pressing this button once will allow the program to revert to the original status of dialog display.

5. By selecting the GET NEW DATA button, an instantaneous reading of the instruments is taken. This reading
is supplemental to the readings taken at due scan intervals, adding one extra set of readings to the data. This
button is useful when the user wants to know the current status of the run.

6. The CHANGE DIRECTORY button allows the user to specify the directory where various data, error, and
log files are to be placed or searched. This allows the user to organize data in different directories for more
efficient retrieval.

7. The DATA UPDATE button allows raw data to be exported to a global VI. Pressing this button is necessary
if "NIPER Lab WARDEN" is being run and needs to receive data. If data export is not required, it is
recommended that this button not be pressed to avoid efficiency loss.

8. The GRAPH UPDATE button allows graphic data to be exported to a global VI. Pressing this button is
necessary if "NIPER GRAPHIC FACILITY" is being run so that it can receive data. If data export is not
required, it is recommended that this button should not be pressed to increase efficiency.

9. The PRESS TO STOP button stops the operation being run. The control instruments are reset to their defined
termination values or status in a systematic sequence. All of the collected data is stored, and the total number
of ex-runs is incremented by one. Stop does not quit NIPER Lab WARDEN or LabVIEW. To exit these
programs, the user must manually close the windows.

10. This emergency light flashes when the data readings do not lie within the specified acceptable range of
parameters (initially set by the user). If action is not taken when the emergency light is flashing, the
automation program will automatically shut down the entire system in an orderly fashion.

11. The warning light is less serious than the emergency light. This light flashes to warn the user that data
readings are in the warning range (initially set by the user). A set of actions is taken by the computer to
rectify the situation. These corrections involve resetting some control-instruments.

12. This box contains a list of instruments being automaticaHy reset by the computer due to a warning condition,
if any.

13. The frame numbers are the order in which the instruments (in box #12) will be reset.
14. This number identifies the instrument (in box # 12) to be reset. The number corresponds to the frame number

of the "NIPER Control" front panel box on which the item is described.
15. This number detennin.es by what percentage the current values wiH be reset. or implies the instrument will be

turned off, and 999/. implies it will be turned on.
16. This box contains information about the instruments experiencing warning or emergency conditions, if any.
17. The Summary for Diagnostics box contains information about each indicator-instrument. It is useful in

warning and emergency situations when a quick diagnostic of the situation is desired to decide whether to
override the corrective actions soon to be taken by the program.

18. This display Boolean switch shows whether the instrument displayed in box #14 will be reset to the value
shown in box #15 as a result oflower limit warning conditions or higher limit warning conditions.

32



FIGURE. 3.2 - Front panel of "NIPER Indicator" VI.

TABLE 3.2

LEGEND FOR FIGURE 3.2

1. This box contains the name of tbe experimental set-up. This name is arbitrary and does not alter tbe
functionality of the program of the displayed instrument in the Jist.

2. This button slops all active VI's. It can be used lo halt the experiment at this stage.
3. This button serves as an audio-visual reminder to the user lhal an input is needed here lo proceed.
4. This button slops the audio-visual reminder explained in number 3 above.
5. The frame number corresponds lo the sequence number of tbe displayed instrument in the list.
6. This is tbe item number that tbe user assigns to his instrument whose name appears in the ITEM NAME box

This is an arbitrary number which does not alter the functionality of the program. However.·l or any other
negative integer will deactivate it from !be Jist.

7. This display contains information about how to communicate with the instrument, i.e., board number, channel
number, and driver VI.

8. The emergency cut-off parameters are set in this oox.
9. The warning parameters are set in this box.

to. Here the user can set the value of each instrument to be reset by a certain percentage in a warning condition.
The resetting is done in the order of the frame number.

11. This display allows the user to set various controls for the experiment. The TEST STATUS sets bow the
initial data is to be read (data can be read at time zero, a continued time. or appended to a previous run). Tbe
number of multiplex boards being used can be set here. Also, the time interval at which each data reading is
to be taken by the instruments is set here.

12. The H+" and H.H buttons are used to select the information to be displayed.
13. This provides helpful information about the use of the indicator panel.
14. This is pressed to accept the current settings.
1S. This is pressed to reject any changes that may have been made.

33



FIGURE 3.3 - Front panel of "NIPER Control" VI.

TABLE 3.3

LEGEND FOR FIGURE 3.3

1. This box contains the Dame of the experimental set-up. This name is arbitrary and does not alter the
functionality of the program.

2. This button stops all active VI's. It can be used to halt tbe experiment at this stage.
3. This butto.n serves as an audio-visual reminder to the user that an input is needed here to proceed.
4. This button stops the audio-visual reminder explained in number 3 above.
5. The frame number corresponds to the sequence number of the displayed instrument in the list.
6. This is the item number that the user assigns to his instrument whose name appears in the adjaccnt box This

is an arbitrary number which does not alter the functionality of the program.
7. The user can set tbe default value at which the instrument will operate unless otherwise changed by the

program or the operator. For ON/OFF. use 999 to activate items, even though any noo-zero Dumber will
activate the instrument while zero will deactivate.

8. This box allows the user to set constraints on the instruments. Undt'C a constraint, an iostrument's acti.vatioll
is made conditional upon the active/inactive stale of other instruments. Constraining is done with two
controls inside the box. The item on frame Dumber box corresponds to the frame number (box 1#5) on which
the selected instrument is located.

9. These two boxes enable the user to establish an emergency response where the values of tbe selected
instruments are reset during the emergency. The Emerg. Sequencc position indicates the position of the
instrument (if included) in the sequence of emergency reset responses. The Emerg. value to be set is the
value at wbich the instrument will reset also if it is included in the emergency response sequence.

10. This display contains information about bow to communicate with the instrument, i.e., board number, cbannel
number, and driver VI.

11. The "+" and "-" buttons are used to select the inform'cltion to be displayed.
12. This provides helpful information about the use of the indicator panel.
13. This is pressed to accept the current settings.
14. This is pressed to reject any changes that may have been made.
15. These two boxes enable the user to establish a shut~ff response where the values of the selected instruments

are reset when stop buuon is pressed by tbe user in N[PER MAIN FACILITY. The shut-off Sequence
Position indicates the position of the instrument (if it is included) in the sequence of shut-off reset responses.
The value to be set at shut~ff is the value at which the instrument will set to if it is iocluded io the shut-off
response sequence.

34



Displays and Controls

Control Bar

The top control bar in the "NIPER MAIN FACILITY" contains 9 buttons with the

labels and functionality described below:

(1) "HELP" This button opens a panel which describes general information about

LabVIEW and this program. Itemized help information is also available as

described later.

(2) "ADJUST CONTROLS" This button opens two panels (Figs. 3.2 and 3.3)

which allow the user to feed infonnation about the desired instruments. The

first panel is for 'ndicator-instruments (sensors/gauges) and contains

information about the instrument such as identification (number and name)

and the set values (high/low and accelldecel limits). It also contains

information about any corrective actions to be taken in a warning situation. A

corrective action is defined as adjusting the current value of a control­

instrument by the specified percentage, or changing its current status

(ON/OFF). It also contains general information pertaining to all instruments,

i.e., test status, number of multiplex board in the computer, and scan interval.

The second panel is for control-instruments. It contains information

about the instrument identification (number and name), the communication

port (board number is the slot number in which the board is physically

plugged into the computer), and it also contains information about the

instrument's set values at start-up, at shut-down, in an emergency, and the

sequence for emergency and other response actions. It can also be u ed to et

constraints, e.g., to disable turning an instrument ON when another instrument

is OFF.

(3) "LOG CONTROLS" This button a)]ows selection among a set of instrument

settings previously stored by the user. This is useful when the user wants to

use the program for multiple sets of experiments. In this situation, each

setting is saved with a unique name for quick identification. Any of these

saved settings can be quickly retrieved later. This button can also be used to

store a new set of instrument settings. The function of this button is to open

the front panels of the "NIPER Control" and "NIPER Indicator" VIs without

going through the finder to open them. Alternately, these files can be opened

directly from the finder. Once these files are opened, the settings can be saved

and/or retrieved.

35



(4) "ENABLE DIALOGUE" This button allows the file I/O error messages to be

displayed in dialogue boxes. When I/O message are displayed, the u er is

given an option to discontinue displaying such messages to avoid dismption of

the test in progress. This button is used to remove this previouslyet "non­

display" flag. This error-recovery mechanism is built-in to allow the user to

continue the test even if there are errors in the system.

(5) "GET NEW DATA" Data are scanned once every time this button is pressed.

It is used to examine tbe current status of the test. Pressing this button adds an

additional set of data besides those scanned at preset intervals.

(6) "CHANGE DIRECTORY" This button opens a panel containing information

about the location of files and the directories. The most likely cause of I/O

error messages is an incorrect path description of the directory containing the

needed file. This button is used to change the directory paths and change the

file name selection.

(7) "DATA UPDATE" Pressing this button allows data to be sent to the "NIPER

DISPLAY FACILITY" when it is running. If "NIPER DISPLAY

FACILITY" facility is not mnoing, pressing this button will have no effect

except slightly reducing computer efficiency. Press this button only when

"NIPER DISPLAY FACILITY" is running.

(8) "GRAPH UPDATE" Pressing this button allows data to be sent to the

"NIPER GRAPHIC FACILITY" when it is running. If "NIPER GRAPHIC

FACILITY" is not running, pressing this button will have no effect except

slightly reducing computer efficiency. Press this button only when "NIPER

GRAPHIC FACll..ITY" is running.

(9) "PRESS TO STOP" This button alJows the main facility to stop execution

after carrying out a normal shut-down procedure (i.e., reset selected control­

instruments in prescribed sequence), completing the current cycle and closing

all files. Using this button to stop execution is safer than using "Operate"

menu, pressing '9€+.', or closing the file-all of which terminate the program

immediately without resetting instruments. It is, therefore, recommended that

the execution be stopped using this button to avoid unknown side-effects.

When this button is pressed, user is given options (through dialogue boxes) to

exit with or without system shut-down. Like emergency shut-down, the

normal shut-down procedure (sequence) is defined (or selected) by user

through "NIPER CONTROL" front panel during the run.

36



Other Controls and Displays

In the "NIPER MAIN FACILITY," the front panel contains additional controls and

display capabilities including:

"EMERGENCY?" This indicator lights up when one or more canned data fall

outside the allowable range. When this happens, user can quickly browse

through "Summary for diagnostic" indicator box to locate the channel(s)

having emergency situation(s) and examine the pertinent data to decide

whether to override emergency shut-down.

"WARNING?" This indicator lights up when one or more scanned data is in a

warning range. When this happens, the program may take some corrective

actions by resetting selected control-instruments. A list of these corrective

actions is displayed in "Channels requiring pre-emergency adjustments" box.

"Channels requiring pre-emergency adjustments." This indicator box contains a list

of the instruments that are being reset to the indicated percentage of their

current value. The box remains empty except in a warning situation. Zero

percent implies the instrument will be turned-off, and 99.9% implies it will be

turned ON. Other values indicate the percent change in the setting.

"Summary for diagnostic." This box contains comprehensive information about

each indicator-instrument. It is useful in warning and emergency situations­

when a quick diagnostic of the situation is desired-to decide whether to

override the corrective actions soon to be taken by the program.

"Channels with Warning and/or Emergency Conditions." This table provides a

summary of the status of the test. The name of items with warning or

emergency conditions are displayed along with their numbers, error message ,

and values in appropriate columns. If no such conditions exist, the table is

blank. The scroll windows can be used to browse through the table.

Installing Drivers to the Automation Program

1. By using the "Find" command under the menu option "File" (or using ~+F) in

the "Finder" mode, locate the "Instrument Drivers" folder and place the

drivers in it. Remember the name of drivers and their current locations. This

step is optional because a driver can be loaded irrespective of where it is

located, but it helps to keep all drivers in one folder for future reference.

2. Locate and open the file "Indicator Driver Selector" or the file "Control Driver

Selector," depending upon the type of driver, i.e., whether it is an indicator

37



driver or a control driver. If not sure, see "To Classify Instruments On the

Basis of Their Functionality."

3. Under the menu option "Windows," select the "Show Diagram" command.

4. The box, with the number and arrows at the top of the border, is called the

case box. For further information on the case box, refer to the instructions

provided on the VI, or LabVIEW 2 User's Manual. Using the arrows, go to

the last case; i.e., the case showing the highest number.

5. Point the mouse anywhere along the border of the case box. Hold the

command key along with the mouse button (command-click). A "Pop Up

Menu" will appear.

6. Select the command "Add Case After." An empty case window is now

created to hold the new driver that is to be installed. Alternately, select the

command "Duplicate Case" instead of "Add Case After." It will create a new

case with a copy of the contents of the previous case. In this new case,

command-click on the driver icon to select "Replace.. " from the "Pop Up

Menu" and then select "VI" from the second window that pops up. Since

connections are already made, skip Step 9 below.

7. Command click on the empty window. From the "Pop Up Menu" select "V!."

8. Select the driver (file) to be installed. The name and location of the driver

were noted in step 1.

9. Under the menu option "Tools," select the wiring tool (the spool of wire

located in the middle of the second column). The National Instruments

"Getting Started Manual" (1991) explains how the wiring tool works. Wire

the top left of the driver icon to the Indicator Panel frame (to the black spot on

the bottom of the frame); wire the top right of the driver icon to the Drivers

Outputs (to the black spot on the right side of the frame). See previous frames

to use as examples.

10. Note the case number of the window in which the driver was just installed; the

case number now corresponds to the driver number. Suppose the case number

of the window containing the PJ-15 driver is 5, hence select "driver 5" as the

driver to communicate with a PJ-15 balance.

11. Save this set-up.

12. Now the driver is ready to allow communication between the computer and

the instrument.

38



To Classify Instruments On The Basis Of Their Functionality

Instruments can be classified as follows:

Indicator instruments. Indicator instruments send si~nals to tbe computer. They do

not need or respond to commands from the computer. Examples of indicator instruments

are thermocouples, pressure sensors, etc.

Control instruments. Control instruments receive si~nals from the computer. They

respond to the commands from the computer and change their status accordingly, e.g.

turn themselves ON or OFF, change their pumping rate, etc.

Dual-Function instruments. Dual-function instruments both send si&nals to the

computer and receive signals from the computer. They send signals to the computer

when queried, as well as respond to the commands from the computer and change their

status accordingly. Thus, they act both like an indicator instrument and a control

instrument. One example of dual-function instruments is a Mettler's PI-15 balance

which sends weight reading (an indicator function) when asked by the computer, and

resets its "TARE" or turns ON/OFF when commanded by the computer. Another

example is a Scannivalve (scanning valve instrument), which expects the computer to tell

which channel's reading is desired, positions itself to the commanded channel (a control

function), and then sends the reading (an indicator function) of that channel to the

computer. The dual-function instruments require two separate drivers, one compatible

with indicator driver's fonnat and the other with control driver's format. Although dual­

function instruments can provide both functions, it is not required that both function be

used. Thus, either function can be used alone. In the Mettler PJ-15 example above, it is

OK to use the dual-function instrument for reading the weight only and not worry about

"TARE," or vice versa.

To Analyze A System Configuration Problem

The worksheet in Table 3.4 can be used to analyze a configuration problem See

problem sets in chapter 9 for example use of this worksheet.

To Determine Correct Parameters To Be Entered Into The NIPER INDICATOR VI

The worksheet in Table 3.4 can be used to organize data to be entered into the front

panel of the NIPER INDICATOR VI when it opens as the NIPER MAIN FACILITY is

run. See problem sets in chapter 9 for example use of this worksheet.

39



TABLE 3.4

Problem Analysis Work Sheet

ISTEP 1: Enlist All Automation Instruments In Three Categories (See To Classify
Instruments On The Basis OJ Their Functionality for more details):

STEP 2: Enlist all automation instruments to be reset at start-up (These instruments
have to be Control or Dual-Function Instruments and must be included in the listing in ,
STEP 1 above):
STEP 3: Enlist all automation instruments to be reset in case of emergency (These
instruments have to be Control or Dual-Function Instruments and must be included in
the listing in STEP 1 above):
STEP 4: Enlist all automation instruments to be reset at run shut-off (These instruments
have to be Control or Dual-Function Instruments and must be included in the listing in
STEP 1 above):
STEP 5: Enlist all automation mstruments to be reset in case of warning (These
instruments have to be Control or Dual-Function Instruments and must be included in
the listing in STEP 1 above):

IIndicator instruments: ~ I I
IControL instruments: ~ I I
IDuaL-Function instruments: II I

RESPONSEI II CONTROL IIWARNING CONDITIONS INSTRUMENTS'I I~~~~~~,I~~~~~~

I II ll~~~~~

I II III II 11l===:==~~~~

STEP 6: Enlist All Automation Instruments Whose Operation Is Subjected To Meetmg
Constraints With Object Instrument(s) (i.e. the control instruments which can be
operated only when the status of target instrument(s) meets the constraint conditions):

CONSTRAINED I OBJECT I LOGICAL IINSTRUMENT INSTRUMENT CONSTRAINT

I I I
I I I
I I I
I ~ I

40



To Determine Correct Parameters To Be Entered Into The NIPER CONTROL VI

The worksheet in Table 3.5 can be used to organize data to be entered into the front

panel of the NIPER CONTROL VI when it opens as the NIPER MAIN FACILITY is

run. See problem sets in chapter 9 for example use of this worksheet.

To Configure NIPER MAIN FACILITYfor Specific Automation Setups

The following general steps can be used to configure the NIPER MAIN FACILITY

for most automation requirements (See example use of these steps in example problems

of Chapter 9):

1. Using Table 3.4, analyze the system configuration.

2. Organize data to be entered into the front panel of the NIPER INDICATOR VI.

Use Table 3.5 as template to facilitate this task. Reviewing Table 3.4 carefully

helps in accomplishing this task because this table is essentially a

transfonnation of the system configuration to a fonnat readily feedable to the

NIPER INDICATOR VI.

3. Organize data to be entered into the front panel of the NIPER CONTROL VI.

Use Table 3.6 as template to facilitate this task. Again, reviewing Table 3.1

helps in accomplishing this task because this table is essentially a

transfonnation of the system configuration to a fonnat readily feedable to the

NIPER CONTROL VI.

4. Locate a suitable driver for each item and make a list of their names and

locations. Table 3.7 can be used as example.

5. Load all drivers in the "Indicator Driver Selector" VI or in the "Control Driver

Selector" VI depending upon whether the instrument is an indicator or a control

(i.e. whether it is listed in the worksheet of step 2 or step 3). The section

"Installing Drivers to the Automation Program" contains details on how to

install a driver. Load every driver in its correct case. For example, if a driver

has been designated as driver 0 in Table 3.5 (row 8, col. 2) or Table 3.6 (row 9,

col. 2), it should be loaded in case O. If a case already has a driver, the existing

driver can be replaced with the new driver. However, if previous ddvers are

desired to stay loaded, load the driver into the last case, and consequently, re­

designate the driver number in Table 3.5 or Table 3.6. For example, as the

driver 0 in Table 3.5 was being loaded into case 0, it was decided to leave the

existing driver in case 0 for future use. Instead, the driver 0 was loaded into

case 7 (case 0 through 6 already had drivers). Thus, the driver designation in

Table 3.5 had to be changed from driver 0 to driver 7.

41



TABLE 3.5

NIPER Indicator Panel Settings

I~B=O=X~N~A=ME==============~~ IEntry For Set #011 Entry For Set #1 I
IFrame No. 11 II ,

I=ITE=M~N~A~ME-----II II I

lItem No. 'I II I
ICommunication Infonnation I
I~Bo!!!!!!!ar=;=d~No!!!!!!!.~~~~~~~II------:""'''''''''''II I
IChannelNo. II 11~~~~~1
I~Dri~'ve~rv~I~~~~~~I! II I
IEMERGENCY & WARNING LIMITS I
ICutoff Higher Limit 1========= =========~
ICutoff Lower Limit I~==============~
ICutoff Accel. (% per min) I~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~============
ICutoff Decel. (% per min) I~!!!!!!!!!!!!!!!!!!!!===~==========~
IWarning Higher Limit I~=========~==========~
IWarning Lower Limit I~============~ =!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~
IWarning Accel. (% per min) I~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~ ==!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!==

IWarning Decel. (% per min) I
IIDENTIFYING NAME OF THESE SETTINGS

IInterval (seconds) ll============!!!!!!!!!!~

ITest Status ll============!!!!!!!!!!~
IMultiplex Boards II
IACTIONS DESIRED TO CORRECT WARN. COND.I

IFRAME NO =0 I
I~R=es~po=n=dl~'n~g!!7In=st~ru~m=en:;=t:;;==!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~II!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~IIl======~
I~Lo=w=e=r=or~Hi='g~h~er~L=inu!!!!!!!!!!'t=St=atu=s!!!!!!!!!!!!!!!!!!!!~ll 11l=====~
IReset at % of Value II II
IFRAME NO =1 ,
IResponding Instrument 11 II I
ILower or Higher Limit Status H II I
IReset at % of Value ~ I II I

42



TABLE 3.6

NIPER Control Panel Settings

IBOX NAME IFrame 0 Entry II Frame 1Entry II Frame 2 Entry I

IFrame No. " I II I

lITEM NAME I II II I
lItem No. I II U I
ISET VALUE I II U I
ICOMMUNICATION INFORMATION ~

IBoardNo. '1~~~~U~~~~II~~~~
IChannel No. II II II~~~~
IDriver VI II ~ I II

IEMERGENCY RESPONSE INFO I
IEmerg. Sequence Position II-----,�I~~~~II~~~~'
IEmerg. Value to be set II II II ,

ISYSTEM SHUTOFF INFO I
I~Sh~u~to~ff~S~e9~ue~n~ce~P~os!!!!J!!it!!l=io~n~~~~II-------'II~~~~II~~~===
IValue to be set at Shutoff rI II , I

lIDENTIFYING NAME OF THESE SETTINGS II

ICONSTRAINTS (If none, empty array) 1

lLogical Condition (No name on box) II II~~~~~II~~~~=
lItem on frame number II II I
IFRAME NO = 11
ILogical Condition (No name on box) II II~~~~II~~~~=
lItem on frame number II II II

FRAMENO=2

Lo ical Condition (No name on box) I II~~~~II~~~~
lItem on frame number I ,I 11'-- ____

43



TABLE 3.7

List of Drivers and Directory Location(s)

IInstrument II Driver Name

LJIDRIVER RS232 Mettler PI-IS

ITimer IIDRIVER Timer Example
IValve IIDRIVER Solenoid ON/OFF EXAMPL
IPump IIDRIVER Solenoid ON/OFF EXAMPL

II Directory Location IILa Cie 2!Xl-Q:NIPER Lab
.WARDEN: Readout & Control
Facility: Instrument Drivers:

II ditto I
II ditto I
II ditto I

6. Open and run NIPER Lab WARDEN from the pull-down apple menu or by

using "Find File" functions (sg+F).

7. Open and run NIPER MAIN FACILITY. Use of NIPER Lab WARDEN to

open this facility is more convenient than using "Find File" functions (9C+F).

As the program is run, the front panel of NIPER INDICATOR VI will open up.

8. Enter information from Table 3.5 (worksheet for indicator instruments) into this

panel. Be aware that some boxes have more than one frames. Use arrows to

select the right frame number before entering information for that frame. If you

want to save it for future use, then select "Make Current Values Default" from

the pull-down "Operate" menu. Finally, press Accept Current Settings? to use

these settings in the current run. A dialogue box may appear asking if you want

to save changes. Respond as desired.

9. The front panel of NIPER CONTROL VI will open up next. Do the same as in

step 8 except that use Table 3.6 (worksheet for control instruments) instead of

Table 3.5.

Steps 1 through 9 will configure the "NIPER MAIN FACILITY" for a specific set­

up. It is now ready to be run.

44



Chapter 4

DESCRIPTION OF NIPER DISPLAY FACILITY

Features

The "NIPER DISPLAY FACILITY" allows the u er to examine the current run in

progress and has the following attributes:

(1) Gives a pictorial representation of the physical configuration of the process

being controlled,

(2) Examines data in numeric form,

(3) Reads error messages,

(4) Examines the status of the test with regard to warning and emergency

conditions, and

(5) Examines the instruments being adjusted by the computer to overcome

warning conditions and their reset values.

In essence, this facility provides a pictorial view of the data and status of the test

currently in progress. Its pictorial representation helps to identify potential problems and

assess their urgency, and therefore is the facility of choice when a test is in progress and

operator is not fully attentive. It is an optional facility that need not run for

reading/controlling/monitoring the instruments or graphic display of the data. It only

displays data when "NIPER MAIN FACILITY" is running in the background.

Technical Information for Programmers

This program reads data to be displayed from "NIPER GLOBAL Data" VI. This

VI is initialized and updated every time new data is scanned by "NIPER MAIN

FACILITY" program. The raw data received is sorted according to each item's number

designated by the user in the "NIPER Indicator" VI. This sorted array is then indexed to

update the displays in sequential order. The advantage of this strategy is that the

instrument need not be in order and can be positioned anywhere on the "NIPER

Indicator" box. Therefore, any instrument can be added or removed easily without

worrying about the sequence.

Because of the sequential handling of the data, the following are prerequisites for

complete and proper functioning: (1) The number of active instruments (i.e., the one

whose item number defined by the user in the "NIPER Indicator" VI is not a negative

number) must be equal to the number of items on the front panel of this facility. If not,

there will not be enough data to update all items or vice versa (i.e., there will not be

enough items to display all data); (2) No two items on "NIPER Indicator" VI should

45



have the same item number. The entire ordering after each set of duplicate item numbers

will be offset by one.

It must be emphasized that the process diagram shown in Fig. 2.4 (the front panel

for "NIPER DISPLAY FACILITY") is not a universal diagram, nor is it necessary to

have this facility. Fig. 2.4 was designed for a visual display of high temperature and

pressure experiments in NIPER's steamflood laboratory. Users should build. their own

front pane] by copying the indicators from LabVIEW's built-in libraries, or other VIs

available to the user. The "NIPER DISPLAY FACILITY" VI can be used as a template

to draw/configure such a diagram. After drawing such diagram, and designating each

item in the diagram a unique number (in increment of 1, starting from zero), their

terminals have to be repositioned within the diagram (i.e., the terminals have to be

dragged into the frames of corresponding case numbers). This simple process is

explained in NIPER Manuals. National Instruments operating/programming manuals

also provide information on how to build pictorial indicators (active display items).

Displays and Controls

In the "NIPER DISPLAY FACILITY" (Fig. 2.4) some of the features that have

been incorporated include:

"STOP BUTTON" stops the execution of this VI and lets user activate another VI

without unloading the program. Use this button instead of "close file" options

when this VI is to be used again in the session to avoid unnecessary

unloading/reloading.

"DATA & MESSAGES RECEIVED" box contains a set of indicators for each item

displaying the item's name and number, its current value, and error messages.

It also displays the user-specified cutoffs (higher-limit and/or lower limit) for

each item for comparison with its current value. Information about the desired

item can be read by using the arrows on the box or typing in the frame number

on which the item is located.

"ITEMS REQUIRING PRE-EMERGENCY ADJUSTMENTS" box contains

information about the corrective actions being taken by the "NIPER MAIN

FACILITY" during a warning situation. Each frame of this box contains the

item number and the percentage change to be made to the item's current value.

(Two special numbers are: Zero percent implies the item is being turned OFF

and 999% implies it is being turned ON.) Using arrows on the box, or typing

in a frame number, all the items requiring adjustments can be seen.

"CHANNELS WITH WARNING AND/OR EMERGENCY CONDITIONS" is a

table which provides a summary of the status of the test. The names of items

46



with warning or emergency conditions are displayed along with item number,

error messages, and values in appropriate columns. If no such condition exist,

the table is blank. The scroll windows can be used to browse through the

table.

"EMERGENCY?" indicator lights up when one or more items are encountering an

emergency situation. It is recommended that the VI be closed and "NIPER

MAIN FACILITY" be activated when this button lights up to handle

emergencies more proficiently.

"CUSTOM DISPLAYS" are pictorial representations of various instruments and

their actions created by the user in the process of building the process

diagram. The user should keep adequate documentation for all the elements in

his diagram. An easy way to keep a description of an item is to package it

along with the item itself by opening the description window and typing in

necessary information. The custom displays shown in "NIPER DISPLAY

FACILITY" (Fig. 2.4) depict various elements of a high-temperature, high­

pressure experimental laboratory.

47



(This page intentionally left blank)

48



Chapter 5

DESCRIPTION OF NIPER GRAPmC FACILITY
The "NIPER GRAPHIC FACILITY" panel is shown in Fig. 5.1. The circled

references for the icons are described in Table 5.1. This chapter describes the features of

the "NIPER GRAPHIC FACILITY."

Features

This facility allows the user to:

(1) View the data from the current run or the previous runs,

(2) View the data in both numeric and graphical form,

(3) View only selected data from a run,

(4) Browse through previous data sequentially,

(5) View the smoothed data after curve fitting,

(6) Edit graphs in real-time; i.e. add, delete, copy points or segments, and

(7) Export data for viewing and processing in external applications such as

Microsoft Excel.

It is an optional facility not required for interacting with the instruments. The user

does not need to run this facility for automation needs. However, it can be used to

browse, curve-fit, reduce, copy, and print previously logged data-and current data, if a

run is in progress. The selected data can be easily edited by adding, deleting, or copying

points or plot segments in real-time using mouse. The edited graph can be printed with

LabVIEW print functions.

Technical Information for Programmers

This program reads data to be displayed from either a global VI or a log-file (in

"DATA" format) saved by "NIPER MAIN FACll...ITY." The format of log-file does not

allow it to be opened by most other applications besides LabVIEW.

The raw data received is processed before it is displayed. First, the data is reduced

to the set of channels (items) that user has selected for graphic display in ""NIPER

GRAPH CONFIGURATION" VI. This selected data is then curve-fitted according to the

user-selected curve-fitting technique.

49



FIGURE. 5.1 - The front panel of "NIPER GRAPHIC FACILITY" VI.

TABLE 5.1

LEGEND FOR FIGURE 5.1

1. This button stops the run.
2. This button opens the "NIPER HELP" panel which provides information about LabVIEW and object-oriented

programming. Like all of the other windows that are opened from the main panel. the "NIPER HELP" panel
automatically disappears after a certain time duration. and the main panel then reappears.

3. This button magnifies the graph shown in Fig. 5.1 to a full size screen-editable graph. Tbis feature provides a
better view of the data being graphed, and allows real-time editing of the plot: i.e.. points or segments can be
added, deleted, and copied from this or other plots by just clicking and pointing the mouse. The edited plot can
be saved and printed.

4. This button relays information to grapbics programs oULsiJe of the main application (or LabVIEW). Tbe
particular program may be reselected if desired. The exported data can be automatically plotted and rotated.

5. This button allows the user to view plols of previous runs one at a time. The desired run number is chosen
using the selector (11 in Fig. 5.1). The selected number is shown in the display (13 in Fig. 5.1). After tbe run
number is cbosen, pressing this button will display tbe plot of that particular run.

6. This button displays plots of tbe data scanned from a run currently in progress, provided tbat the "NIPER MAIN
FACILITY" is running and bas the "UPDATE GRAPH" button pressed. If there is no run in progress, or the
"NIPER MAIN FACILITY" is not running or does not have "UPDATE GRAPH" button pressed, the graphic
palette becomes blank and a warning message appears in box 16. Tbe display is updated automatically each
time data arrives.

7. This button provides a curve-fit (either linear. polynomial. or exponential) to the data (regression analysis
selection made by "ADJUST GRAPHIC" button, described in No.8). The curve-fit option must already be
activated when the new data arrives in order to update and display the curve-fIt to the data.

8. This button opens a panel that aUows user to adjust various aspecls of the graphic display of data. This includes
the selection of items to be plotted, data duration, x-axis time base, y-axis unit, type and order of curve-tit, and
the name and location of log-fue from which to read 10ggeJ data. Any changes made to these sellings may be
saved or canceled.

9. This bullon allows selection of one of the set of graph settings previously stored by the user. This is useful
whee the user is using the program with multiple test configurations and waets to switch frequently from one
setting to another. Each series of settings can be given a name for quick identification. This button can also be
used to store a new set of graphic settings.

50



TABLE S.l-Continued
LEGEND FOR FIGURE 5.1

10. This display shows the total number of ex-runs that are currently saved in the selected log-file.
11. This digital control allows the user to choose a specific ex-run number for plotting on the graphical display. It

is operated by clicking on the arrows to increase or decrease the number shown in the adjacent box.
12. These displays are used to give the date and time of the selected ex-run, or the current run.
13. This display identifies the run which is being displayed on the graph.
14. This display changes color from green to red when there is an error message.
15. This display box shows the current data values received from an active test in progress. It also warns the user

with diagnostic messages of any values that are outside the set limits.
16. This display shows messages concerning graphics. The display indicates the channels that are currently being

plotted and the channels that are sel for plotting but inactive for data acquisition.
17. This scroll bar gives a view of all the information presented in the "GRAPHIC MESSAGES" box (16 in Pig.

S.I).
18, This display presents data from a current run or an ex-run in a graphic format. The scales along the X-axis and

Y-axis can be altered manually (expanded or reduced) in order to present any part of the plot desired for
viewing.

19. These scroll bars along the bottom and right hand sides of the graphic display are another way the user can view
parts of the plot not currently shown. However, using these scrolls does nol rescale the graph. They merely
unveil the hidden parts of the graph.

20. This is an indirect legend to the curves on the plot (No. 18). These color-coded lines determine the sequence
number of various curves on the plot. The sequence number relates in ascending order, to the item selected for
display. For example, if item number 2, S and 9 are selected for plotting, then the curve on the plot matching
the legend line 0 will correspond to the item number 2; the legend line I will correspond to the item number 5,
and the legend line 2 will correspond to the item number 9.

21. These displays both indicate and control the locations of lhe two cursors and their relative displacement from
one another. If a cursor is moved by dragging, the current location of that cursor is automatically updated here
to show accurate data values from the plot. Or, the desired cursor location (coordinates) can be typed ill here,
which will move the cursor to the typed-in position. The part of the plot displayed will change to follow the
moving cursor. The X-column values indicate the X-coordinate locations of the cursors on the plot. The Y­
column values indicate their Y-coordinate locations. The.<lX value indicates the horizontal displacement
between the two cursors, and the liY value indicates their vertical displacement from one another.

22. These buttons are used to move the two cursors around the graph by small incremental distances. The part of
the plot displayed will change to follow the moving cursor. The circle and square ymbols in front of the
bullons represent the two cursors, and the arrows on the bullons indicate the direction of movement on the plot.
These bullons are particularly useful when jumping from one point on a curve to another directly, which
happens when the cursor is locked over a point.

23. This display provides unit information (temperature, pressure, etc.) for the Y-axis.
24. This display provides the unit information (seconds, minutes, hours, etc.) for the X-axis.

The processed data is displayed on the graphic palette of the panel, on an editable

full-size graph of another VI, or exported to another application according to the user's

choice. The export of data is carried out by storing the processed data in a temporary file.

A macro or script file of an external application is then opened to accomplish these

functions. An example macro in Microsoft Excel® is provided with NIPER programs.

The macro file should be auto-executable so that it can perform the tasks associated with

the external application upon its opening. This macro should call LabVIEW just before

finishing the execution.

51



Displays and Controls

Menu Buttons

Located across the top of the "NIPER GRAPHIC FACILITY" panel, Fig. 5.1, are

menu buttons that control various features of the program's operation. Each button is

herein discussed.

STOP Button

The STOP button (1) allows the graphic facility to stop execution after completing

the current cycle. This button is different than stopping execution by pressing the

hexagon in the control palette, selecting "Abort" from the pull-down "Operate"

menu, pressing '3€+.', or closing the file-all of which tenninate the program

immediately. Use of this button to stop execution avoids any unlikely side-effects.

HELP Button

The HELP button (2) opens a panel titled "NIPER HELP" (Fig. 5.2), which

provides information about LabVIEW and object-oriented programming. Like all

of the panels that are opened from the main panel, "N1PER HELP" automatically

disappears after a certain time duration. The main panel then reappears.

FIGURE. 5.2 • The front panel of "NlPER HELP" VI.

52



1.­

~'ei\-------=__~......,.L\II-----==--+==;~-~=--2. --

3.

4.

S.

6.
~If--+JL..-+-------:f------+--.,L-~II-------7.

B.
9 ... - ...

II,

FIGURE 5.3 .- The front panel of "Full Size Graph" VI.

EDIT GRAPH Button

The EDIT GRAPH button (3) magnifies the graph shown in Fig. 5.1 to the graph

shown in Fig. 5.3. This feature allows the data currently being displayed on the

graphic palette to be displayed, printed, and saved in a full screen size format. The

selected data can be easily edited by adding, deleting, or copying points or plot

segments in real-time using a mouse. The edited graph can be printed with

LabVIEW print functions and saved for future reference.

EXTERNAL GRAPIDC Button

The "EXTERNAL GRAPHIC" button (4) allows the data cUlTently being displayed

on the graph to be displayed and saved in an external application program. The

LabVIEW saves the selected data in a temporary file in "tab-delimited-text" format,

and opens a macro or script file anywhere on the network. The script file is then

supposed to graph data and return to LabVIEW.

REVIEW EX·PLOT Button

The "REVIEW EX-PLOT" button (5) allows viewing a selected plot from previous

runs. After the run number is chosen, pressing this button will display the plot of

that particular run.

53



RECENT PLOT Button

The "RECENT PLOT" button (6) displays the graph associated with the current run

in progress. If no run is in progress at the time, the screen will become (or stay)

blank.

CURVE FIT Button

This button (7) smoothes whatever data is selected prior to displaying it according

to the type of curve-fit selected by the user.

ADJUST GRAPHIC Button

The "ADJUST GRAPHIC" button (8) opens a panel titled "NIPER GRAPHIC

CONFIGURATION" as shown in Fig. 5.4. The circles in Fig. 5.4 are reference

numbers that are described in Table 5.2. Through this panel, several data selection

and graphic choices can be made such as the item numbers for which data is to be

displayed, the name of the log-file to be used during the current graphic session, the

type and order of curve-fit desired, the time scale to be used (e.g. hours), and the X­

axis units to be displayed (e.g., temperature and pressure). One could also select a

previously saved set of graphic settings for the current session and/or for future

sessions by making the selection as default. The identifying names (12 in Fig. 5.4)

of the previously logged settings are helpful in locating a particular configuration.

LOG GRAPH SETTINGS Button

The "LOG GRAPH SETTINGS" button (9) opens the front pane] of "NIPER

GRAPH CONFIGURATION" (Fig. 5.4) and stops all VIs. This allows to select a

set from graph settings previously saved by the user. This button can also be used

to add a new set of graphic settings. This function is useful with multiple test

configurations in which user wants to switch frequently from one setting to another.

Each setting can be given a name for quick identification.

Run Number Displays

There are various displays on the "NIPER GRAPHIC FACILITY" (Fig. 5.l) that

keep the user informed of different experimental conditions, as discussed below:

NO. OF EX-RUNS Display

The display "NO. OF EX-RUNS" (10) shows the total number of ex-runs that are

currently saved in the selected log-file.

54



FIGURE. 5.4 - The front panel of r'NlPER GRAPHIC CONFIGURATION" VI.

TABLE 5.2

LEGEND FOR FIGURE 5.4

1. This control allows plaiting of only selecled data The options include no data display, all daLa display, new
zero time, new append time. These functions are useful when multiple runs are carried out sequentially, or
when a run has been iuterrupted for some reason and resumed later.

2. This control changes the time base of the plot in Fig. 5.1. The available time unit options include the
following: HOURS, MINUTES, SECONDS (PORE VOLUMES and PICTORIAL are currently D t

available).
3. The "TYPE OF CURVE FIT" bullon is used to set tbe type of curve-filling. Three curve· fit option are

available: LINEAR, POLYNOMIAL, and EXPONENTIAL.
4. The "ORDER OF FIT" control selects the degree of the curve to be fitted. If either LINEAR or

EXPONENTIAL is selected from REGRESSION ANALYSIS, the ORDER OF FIT etting is ignored.
However, if the POLYNOMIAL option is selected, then lbe degree (order) of the polynomial fll needs to be
set.

5. The "PLOT CHANNELS ON" button selects tbe channels (items) to be displayed on tbe plot located in Fig.
5.1. The circular button indicates tbe status of lbe currently selected channel. If the bullOD is "in" (darker
shade), the channel is active for graphical display. If lbe button is "out" (ligbter shade), the selected channel
is inactive.

6. These boxes describe the log-file's name and location (directory path name) for reading logged data. Several
log-files can be stored and used selectively by using this function.

7. This box describes the units to be displayed on the Y-axis of the graph,
8. This button activates the selection made in the "DATA DISPLAY OPTION" box (# I in Fig. 5.4).
9. All active VI's are stopped by this bUUon. Useful for immediate termination of tbe fun.

10. This button is used for accepting the changes for use in the current session.
11. Pressing this button will default to the original settings, tbus nullifying the changes made during the current

session.
12. This identifying name is useful in selecting this setting for future use.
13. This is an indicator version of tbe cluster containing boxes I through 8. It has been reduced in size to save

tile space, tbus biding the boxes.

55



RUN NO. Display

The "RUN NO." (11) control box allows the user to select the run number to be

displayed when the "REVIEW EX-PLOT" button on the control bar is pressed. The

value can be typed in or the arrows can be used to move up and down. For quick

browse of data, these arrows can be used directly to review data sequentially. Any

time a new input is selected on this control, the corresponding data is automatically

displayed without pressing the "REVIEW EX-PLOT" button again.

RUN INFORMATION Display

This box displays the date, time (12), and run # (13) of the run being displayed on

the graphic palette. If the data displayed is of the run currently in progress, it shows

the current date, time, and the word "Current" in their respective indicators.

Information Displays

At the bottom of the main panel are three displays and an alarm which provide

various diagnostic messages about the experiment and inform if there is a warning or

error message as described below.

DATA & DIAGNOSTICS ALARM

This indicator (14) changes color from green to red when a run currently in progress

has an error or warning message. Like the previous box, it only functions when a

run is currently in progress. When no run is in progress, it stays green.

DATA & DIAGNOSTICS Display

The "DATA & DIAGNOSTICS" display (15) shows the messages received from

the "NIPER MAIN FACILITY" if a run is currently in progress. The messages

include data, errors and their probable causes, and warnings. This box keeps the

user informed of the current run status. It only displays information when a run is

currently in progress, otherwise it stays blank.

GRAPHIC MESSAGES Display

The "GRAPHIC MESSAGES" display (16) gives information concerning graphics.

The scrolling indicator box displays the item numbers of the data being displayed in

the plot and other graphic error messages. When pertinent, it also suggests possible

causes of any problems and remedial actions. These graphic messages pertain to

the run selected, which could be the current run or one of the previously logged

runs.

56



Graphical Displllys

In the center of the "NIPER GRAPIDC FACILITY" panel is the display (18) that

presents data from the current runs or previous runs in a graphic format. The scale is

automatically selected to show the entire plot every time new data is added; however, the

numbers on the X-axis and Y-axis can also be altered manually in order to present any

part of the plot desired for viewing. The scales on the X and Y-axis can also be expanded

or reduced automatically using the mouse. The scroll bars along the bottom and right

hand sides are another way the user can view parts of the plot not currently shown (19).

Graphic Display Legend

This legend (20) matches the colored lines on the plot with data channels activated

for graphic display. However, the numbers in the legend do not correspond directly

with the channel number. Instead, the numbers in the legend correspond to the

index numbers of the series of selected channels arranged in ascending order and

displayed in GRAPHIC MESSAGES display (See Table 5.1, item #20 for details).

Graphic Cursors

The graphic cursor controls (21) are located above the graphic display (18). The

circle and square symbols left of the arrow buttons (22) represent the two cursors. The

purpose of these cursors is to help obtain accurate data values from the plot.

Cursor Position

Located near the top of the graphic display (18) are columns (21) that pertain to the

cursors' position. Both the square and circle cursors share the X, Y, ~X, and ~Y

columns. The X column values indicate the X coordinate locations of the cursors.

The Y column values indicate the Y coordinate locations of the cursors. The~

value indicates the horizontal displacement between the two cursors. The ~Y value

indicates the vertical displacement between the two cursors. These windows are

dual-purpose. They can be used to move cursor(s) to desired locations(s) by typing

in coordinates, and they can be used to read accurate data when the cursor is placed

over a point in the graph using mouse or arrows.

Cursor Movement

Located near the top of the graphic display (18) are buttons (22) that pertain to the

cursors' movement. The arrows on the buttons indicate the directions of movement

of the cursor in the graphic display. As discussed in the above section "Cursor

Position," the cursor can also be moved by typing in the coordinates.

57



(This page intentionally left blank)

58



Chapter 6

EXAMPLE PROBLEMS
The two sample problems described in this chapter use each of the three main

interactive sections in NIPER's automation software: NIPER MAIN FACILITY, NIPER

DISPLAY FACILITY, and NIPER GRAPHIC FACILITY. Each problem is briefly

described, and the operator is asked to configure the software to accommodate the

operation of a different experiment or plant set-up.

Problem l-Operation ofan Electronic Balance

Using NIPER Lab WARDEN software, control an electronic balance (Mettler® PJ­

15) using the modem port or the printer port of a low-end Macintosh computer. Using

the software, record the weights at pre-determined time intervals and then plot the results

as a function of time. Use the schematic of the major components as shown in Fig. 6.1.

The driver for PJ-IS Mettler balance "DRIVER RS232 Mettler PJ-I5" is located in

"Instrument Drivers" folder.

Guidance for the Problem

Problem 1 was designed for inexperienced users. This step-by-step approach was

taken by some of the students (who were first time users) testing NIPER's software. The

problem is intentionally explained in more detail than necessary to assist first time users.

Additional guidance can be obtained by working through the "Getting Started Manual"

supplied with the LabVIEW software (l991a) and "Training In-Depth Course on

LabVIEW 2" (l991b), both by National Instrument. The RS-232 connection for the

Mettler PJ-I5 electronic balance is shown in detail in Fig. 6.2. Refer to the Mettler PI-15

user's manual for the description of the electronics within the balance (Mettler, 1991).

PJ 15 DATA I/O
PORT

RS-232
FROM MODEM

PORT

ELECTRONIC
BALANCE

D
d

FIGURE 6.1 - Schematic of electronic balance and computer set-up for problem I.

59



b "0 '0 '0 '0 1

tl '0'0 "0 "'0 It) ~~:"0 "0 "0 '<0 "0 "7 a: ()·0
0..1- 6 GND 00
a:() 7 "4 Z-

METTLER PJ-15 W W 8 Z~
CONNECTOR

.....JZ 9 .... 5 mm
I=Z 1O~fW) ~~
w O 11 6 Oz
~() 12 JJ

13 7
14
15 8

FIGURE 6.2 - Schematic of the Macintosh and Mettler Pl-15 pin configuration.

Sample Solution for Problem 1

1. Install the driver for the Mettler PI-iS, as shown in Fig. 6.3, using the installation procedure under
Installing The Driver to the Automation Program section of chapter 3, if it has not been already
installed.

2. Using the "Find" command (Fig. 6.4), locate the NIPER Lab WARDEN program (Fig. 6.5), or
select it from pull-down apple menu (if you have installed it there). Use the program to open and
run the "NIPER MAIN FACILITY." It will open "NIPER I/O Facility" panel (Fig. 6.6).

3. After reviewing and editing the NlPER I/O Facility, click the blue button.
4. The NIPER Indicator Panel (Fig. 6.7) now appears. Refer to chapter 3 for a thorough description

of the NIPER Indicator Panel.
a Select the "Frame No." to be O. Note that the frame number corresponds to the channel

number in the NIPER GRAPHlC FACILITY.
b. Choose a name for the instrument next to the label "Item Name."
c. Next set the "ITEM NO" to 3. The number 3 was chosen at random. If other in truments ar

being used make sure they do not have conflicting item numbers.
d. Below the "ITEM NO" are 8 parameters that pertain to the data values that are read from the

balance. Set these ranges as desired.
e. Now set the parameters under the "Communication Infonnation." Since the balance is hooked

to the modem port, the board number is set to 0 (the default for modem port).
£ Here the channel number is irrelevant because a board with multiple channels is not being

used. Recall that the modem serial port is a unique singular port.
g. Now choose the correct "Driver VI." Remember that the case number of tbe location of the

driver is now selected in the Driver VI box. The case number of the window in which the PI­
15 driver was installed was 5 (see step 10 in the section Installing the Driver to the
Automation Program). Therefore, select "DRIVER 5" in the DRIVER VI box.

h Under "Common Configuration," set the interval of time between each data reading to 300
seconds.. Again, this value was assumed to be desirable for this experiment.

I. Set the "Test Status" to "NEW: ZERO TIME."
j. The "MULTIPLEX BOARDS" selector can be ignored since no multiplex boards are being

used in this example.
Ie. After adjusting the parameters, press "enter" or click outside any control box (but still on the

panel).
I. Select "Make Current Values Default," which is located under the menu option "Operate,"

Fig. 6.8.
m. Press the "Accept Current Changes" button when finished. A dialogue box will ask whether

to save changes. Respond as you wish.
5. Now the Control Panel (Fig. 6.9) appears; since the balance is nol being used as a control

instrument in this example (i.e., it does not receive any command. it only sends data), no changes
need to be made here except erasing previous entries or disabling them.

60



a Deactivate aU the instruments on this control panel to speed up the response of the balance.
To deactivate an instrument, enter -1 (a negative integer) in ITEM NO box.

b. To turn the instruments off, the "SET VALUE" has to be 0 for each frame number that has an
instrument active. In this example, there is no active control instrument involved, thus the
value in this box is irrelevant, and this step is optional.

c. Select "Make Current Values Default," which is located under the menu option "Operate."
d. Press the "Accept Current Changes" button when finished. A dialogue box will ask whether

to save changes. Respond as you desire.
6. Now the NIPER MAIN FACILITY (Fig. 6.10) is ready to take data readings from the balance.

Review "SUMMARY FOR DIAGNOSTICS" display for useful information such as the warning
and emergency values (which were set in the NIPER Indicator Panel), recent and previous data
readings from the scale, and other parameters. For further description and use of the NIPER
MAIN FACILITY refer to chapter 3 of the manual.
a Wait for 10 seconds for data values to be read, or press the button "Get New Data" to obtain

additional data readings in addition to the selected scan intervals.
b. After some data readings have been taken, press the Graph Update bulton. This will allow

data to be graphed on the NIPER GRAPHIC FACILITY.
7. Find or use "NIPER Lab WARDEN" to open the NIPER GRAPHIC FACILITY (Fig. 6.11). Refer

to chapter 5 for detailed information on the NIPER GRAPHIC FACILITY.
a The NIPER Graph Configuration Panel (Fig. 6.12) should now be displayed. Under "Data

Display Options," select the option "All Data Display."
b. Select the proper time base and the Y-axis units for the graph to be plotted.
c. Since we are not curve fitting the graph, ignore the "Order of Fit" and "Type of Curve Fit."
d. Now select which plot channels need to be turned "ON." RecalI that the frame number from

the NIPER Indicator Panel (Step 5) corresponds to the plot channel on the NIPER GRAPHIC
FACILTIY. In step 5, the balance was configured on frame No. 0, thus tum channel #0 ON.

e. Press the Accept button after making the changes. Respond to the dialogue box a~ you desire.
8. The front panel now showing is the NIPER GRAPHIC FACILITY. Press the Recent Plot button

to display the plot of the data values received from the balance.

Panels and Diagrams for Configuration of Problem 1

The solution to problem 1, configuration of the software for the Mettler PJ-15

balance, is shown in Figs. 6.3 through 6.12 that resulted from sequentially going through

the sample solution. The settings shown in these figures are an appropriate set of

configurations for the balance. The driver used for this problem to interface with the

balance was "DRIVER RS-232 Mettler PJl5" program. This program is included with

NIPER Lab WARDEN's library of example instrument drivers. Whereas configuring

NIPER Lab WARDEN does not require much familiarity with LabVIEW (even though it

is highly recommended), writing a driver program does require proficiency in LabVIEW.

61



=D== Indicator Driuer Selector Diagram~0~ NIPER
:~ rAllI :r-J rr-;n : fAi[llA";41 r . dr;vt'r
j~~ L:.:.:J !1=1- W!.J ~ ~~ ~o st'lctr

"St't" instruotions in the- de-scrip1ion of
case" box on. hoW' t.o a; nt'''' dr;ve-rs"

(To SH ;nstructions, po;nfcursor to ~DlJvhK~

on~ border of C4S~box, pt"~ss ~f)(} hold
"C~nd" k~, ~f)(} s~lect "()~SCf"'iption" from
~ pop-up ~1'ItJ.)

Driver's Outputs

Ii"fRR;::;ea:rld"P:zz;cii4 [~~] I
PJ15
Mtler

~~I 5 I~~

I[ill]t-r~

Driver VI No.

[fuJI

AGURE 6.3 - Diagram of "Indicator Driver Selector" VI after the driver has been
correctly loaded. The icon "Read PH5 Mtler" was copied from
"Instrument Drivers" folder and represents "DRIVER RS 232
Mettler PH5" VI.

FIGURE 6.4 - Steps involved in using the "Find File" function from the menu.

62



FIGURE 6.5 - Front panel of "NIPER Lab WARDEN" VI.

t!J§ NIPER
110

OPEN

'---SEE OUTPUT HERE---~

(If a zero appt'ars, try again
by correcting the names and
pressing "TRY AGAIN")

FIGURE 6.6 - Front panel of "NIPER va Facility" VI.

63



FIGURE 6.7 - Front panel of "NIPER Indicator" VI showing an
appropriate set of entries for Problem 1 of this chapter.

~ File Edit I I' • • Controls Functions Windows Tools

Run UI ~R

Abort ~.

I' •

Set RII To Defltult Uolues

FIGURE 6.8 - How to set default values for the current run from the menu. These
default settings will become permanent (till the next selection) if the VI is
also saved. Otherwise, the selection will be effective for the current test
only.

64



FIGURE 6.9 - Front panel of "NTPER Control" VI showing an appropriate set of entries
for Problem 1 of this chapter.

FIGURE 6.10 - Front panel of "NIPER MAIN FACILITY" VI showing the
appropriate selection of the menu bar buttons and the type of data
received if Problem 1 of this chapter has been properly configured.

65



FIGURE 6.11 - Front panel of "NIPER GRAPHIC FACILITY" VI showing the data plot
and run infonnation. Note that "RECENT PLOT" button is pressed (not
discernible in the figure because of lack of color) to receive data from
"NIPER MAIN FACILITY" configured for Problem 1 of this chapter.

FIGURE 6.12 - Front panel of "NIPER Graph Configuration" VI. This pane] opens
automatically (or manually when operator desires) to allow the
selection of graphic representation of data.

66



Problem 2-0peration ofan Ice Cream Manufacturing Plant

Problem 2 is an example of the versatility of NIPER Lab WARDEN and the user is

asked to configure the simplified ice cream plant shown in Fig. 6.13. The plant is a three

component plant having a dispensing section, blending/mixing section, and a filling

operation. The plant is operated on a batch basis with various batches switched to

different flavors. Each flavor is a combination of three premixed liquids in separate

flavor tanks each sitting on an electronic balance (Mettler PH5). The pumps have

manual speed control th.at are set for the specific recipe. The pumps have a computer

controlled on/off switch. The blending tank is refrigerated and has two thennocouples to

indicate the temperature at the bottom and to caution when the tank is overfiHed. The

viscosity of the blend is monitored by an ammeter connected to the motor that rotates the

blades/paddles in the blending tank. Past experience with this equipment indicates that

the mixing is complete when the viscosity of the ice cream causes the ammeter to exceed

9 amps. Only the bottom blade is attached to the shaft, the others are free-rotating.

Therefore, even as the tank is depleted the amp load is not much reduced. The ammeter

reading should be monitored by the computer and when it exceeds the preset limit of 9

amps, a solenoid valve should be activated and pump 5 should be started.

TANK

CONVEYER BELT
WITH CARTONS

FILLING

COOLING
FLUID TO

TANK

10 HORSEPOWER
3 ep

480 VAC
MOTOR
WITH

AMMETER

COOLANT TOt----. REFRIGERATION
UNIT

SOLENOID
VALVE

BLENDING

"""""""""""""""""""""""""

BALANCE 4

CHERRY

IN-LINE
MIXERMILK

TANK

TANK

BALANCE 1

FIGURE 6.13 - Major units in ice cream plant.

67



During the filling operation, containers ride a conveyor belt under a dispensing head

where the cartons are filled with ice cream. The operation is designed to fill six cartons

by activating pumps for 10 seconds, then stopping and advancing the conveyor belt. This

filling cycle continues until all of the ice cream in the mixer tank has been dispensed.

The flavor chosen for this batch is cherry-vanilla and the appropriate pump rates have

been manually set. The recipe calls for pump 1 to operate 15 minutes, pump 2 for 3

minutes, pump 3 for 5 minutes and pump 4 for 1 minute.

The user is to configure the plant.

Sample Solution for Problem 2

It is recommended that problem 1 be completed before starting this problem.

Follow the step-by-step procedure described in Chapter 3, To Configure NIPER MAIN

FACILITYfor Specific Automation Setups. The resulting tables from steps 1 through 4 of

this procedure are Tables 6.1 through 6.4, respectively.

In summary, there are four balances, five timers (computer clock), an ammeter, and

two thermocouples that function as indicator instruments (i.e. send signals to the

computer), and eight control instruments (the valve, motor, conveyer, and pumps 1

through 5) that receive commands from the computer and change their status. The

problem requires, at startup, that any filling operation (Fig. 6.13) in progress be stopped

(pump 5, valve, and conveyor be turned OFF), and the dispensing (pumps 1 through 4)

and blending (motor) operation be started automatically.

As the dispensing is completed, the pumps 1 through 4 are turned off after 15,3,5,

and 1 minutes, respectively. These timing correspond to each ingredients quota in the ice

cream recipe. The timers 1 through 4 (for pump 1 through 4) perform the function of

turning them ON/OFF. As each timer exceeds its warning limit, the corresponding pump

is turned OFF as a consequence. The four timers use the same driver because they

exactly have the same functionality. (An alternate solution for this task may be to

manually set the rate of each pump in the right proportion and use only one timer to shut

all four pumps simultaneously. The more involved route was chosen for illustrative

purposes).

68



TABLE 6.1

Problem Analysis Work Sheet

STEP 1: Enlist All Automation Instruments In Three Categories (See To Classify
Instruments On The Basis 0'Their Functionality for more details):

IIndicator instruments: IBalance 1, Balance 2, Balance 3, Balance 4, Ampmeter, Timer
1 through 5, Thermocouple 1 and 2

STEP 2: List all automation instruments to be reset at start-up (These instruments have to be
Control or Dual-Function Instruments and must be included in the listing in STEP 1 above):
Pump 5 (OFF), Valve (OFF), Conveyer (OFF), Pumps 1 through 4 (ON), Motor (ON)

STEP 3: List all automation instruments to be reset in case of emergency (These instruments
have to be Control or Dual-Function Instruments and must be included in the listing in STEP
1 above): Pump 5 (OFF), Valve (OFF), Conveyer (OFF), Pumps 1 through 4 (OFF), Motor
(OFF)

STEP 4: List all automation instruments to be reset at run shut-off (These instruments have
to be Control or Dual-Function Instruments and must be included in the listing in STEP 1
above): Same as in STEP 3 above

STEP 5: List all automation instruments to be reset in case of warning (These instruments
have to be Control or Dual-Function Instruments and must be included in the listing in STEP
1 above): Pump 1 through 4 (OFF), Pump 5 (ON or OFF), Valve (ON or OFF), Conveyer
(ON or OFF)

IControl instruments: IIValve, Motor, Conveyer, Pump 1 through 5

IDual-Function instruments: IINone

I
I
I

I
I
I
I
I

IWARNING CONDITIONS II CONTROL II
INSTRUMENTS . . RESPONSE

ITimer 1 ~ 15 min Pump I II Turn OFF (Reset to 0)
ITimer 2 ~ 3 min Pump 2 II Tum OFF (Reset to 0)
ITimer 3 ~ 5 min Pump 3 I Tum OFF (Reset to 0)
ITimer 4 ~ 1 min Pump 4 Tum OFF (Reset to 0)

IAmpmeter> 9 amp Valve, Pump 5, Conveyer Tum ON (Reset to 999)

ITimer 5 ~ 20 min Pump 5 Tum OFF (Reset to 0)
IWt. Balance 1 ~ 1000 kgms None AudioNideo Warning

IWt. Balance 2 ~ 100 kgms None AudioNideo Warning

IWt. Balance 3 ~ 100 kgms None AudioNideo Warning

IWt. Balance 4 ~ 100 kgms None AudioNideo Warning

IThermocouple 1 < 35 0 F Pump 1 through 4 Tum OFF (Reset to 0)

STEP 6: List all automation Instruments whose operation is subjected to meeting constraints
with object instrument(s) (i.e., the control instruments which can be operated only when the
status of target instrument(s) meets the constraint conditions):

LOGICAL
CONSTRAINT

Valve Pump Can tum ON "ONLY
WITH" Valve ON

Conveyer Pump Can tum ON "ONLY
WITH" Conveyer ON

I CONSTRAINED II OBJECT II
INSTRUMENT INSTRUMENT

I fump5 I
69



TABLE 6.2
Settings for Indicator InstnJmeDts

IBox Name II EntrY For SelllO ( I Enlry For Sel.1 II Eocrv Foc Sel .2 II Eotrv For Set 113 I
Frame No II 0 (I 1 II 2 II 3 I

ITEM NAME II BsieCle 1 CPJl5) (I BslanCle HPJ6) II Balance 3 CPJlS) II Press, Tnnsd. I
hem No. II 0 (I I " 2 II 3 I

COMMUNICATION INFORMAnON I
Board No. 0 2 2 2
Channel No. 0 0 I 3
Driver VI Driver 0 Driver I Driver 0 Driver 2

EMERGENCY & WARNING LIMITS I
Culoff Hillher Limit 0 120 0 30
Culoff Lower Limil 0 0 0 0
Cutoff AcceJ. (%~ miu) 0 0 0 0
Cutoff Decel, (% per min) 0 0 0 0

Wamin~ Hillher Limir 0 liS 450 2S
Wamin~ Lower Limit 100 100 0 0

Waruinll Acce1, (% ocr min) 0 0 0 0

Wamiu DeceI. (% ocr min) 0 0 0 0

II Prob 4 of Chapler 9IIDENTIFYING NAME OF THESE SETTINGS

COMMON CONFIGURATION (ALL ITEMS) I
Interval (Seconds) 60

Tesl SI81LU New:Zero Time

Multiplex Boards Select Any

fACTIONS DESIRED TO CORRECT WARN. CONDo

din Inslrumenl :
2 (Li,uu 1) II 3 (Li~ht 2) II 4 (Li~hl 3) S (Li hl4

Lower or Hillher Limil Slatus Lower Limit I Lower Limil ,I Hi2her Limit Hillher Limil

IReselsl % of Value II 999 II 999 J 999 999
FRAMNO=1 I

Resoondin1! Instrument ,I Empty /I I (Pump) " Empty II Empty

Lower or Hillher Limit Sl8lUS II Empty " Lower Limil " EmplY 'I :::;IReset al % of Value II EmplY II 999 II Empty I
IFrame No = 2 I
Respondin2 Instrument II Empty I 3 (Liaht 2) : :::y 'i ~!Lower or Hillher Limit Status I Empty I Hi1!her Limit

Reset al % of Value ! Empty " 999 II Empty I

70



Box Name

Frame No

ITEM NAME

Item No.

Frame 0 Entr

o

Valve

5

TABLE 6.3

Settings for control instruments

-.J
>-'

IsCI Value U 999 LI 0 U 0 U 0 [IOU 0 I
COMMUNICATION INFORMATION

Board No. 3 3 3 3 3 3
OIanoel No. 0 1 2 3 4 5
Driver VI Driver 0 Driver 0 Driver 0 Driver 0 Driver 0 Driver 0

EMERGENCY RESPONSE INFO

Emera. Sequence PositiOD II 1 II 2 II 0 II 0

:I
0 I: 0 I

Emera. Value to be set II I (Drain) II 0 II 0 II 0 0 0 I

SYSTEM SHUfOFF INFO

Shutoff SCQuence Position I I II 2 II 3 II 4 II 5 II 6 I
Value to be set at Shutoff I 0 II 0 II 0 II 0 II 0 II 0 I

IIDENTIITING NAME OF THESE SE'ITINGS ~! »rob 4 of OIapter 9 l _
tCONSTRAINTS (If none. empty array) I
IFRAME NO '" 0 I
La ieal Condition (No name OD box 1 Empty II Only With II Empty II EmgY 11 Emp:y IF Emp:r-I
Item on frame Dumber Empl.y 5 Empty Empty Empty Empty



TABLE 6.4

List of Drivers and Directory Location(s)

II DIRECTORY LOCATIONDRIVER NAME
Balance 2 Driver RS232 Mettler PJ6 La Cie 200-Q:NIPER Lab
Balance 3 WARDEN: Readout & Control
Balance 4 Facility: Instrument Drivers:

IINSTRUMENT II

Pump I through 4, Driver Solenoid ON/OFF EXAMPL
•Valve, Motor,
Conveyer

IBalance I ,IDnver RS232 Mettler PHS 11~============!!!d!!!ltt=!!O============-=
ITimer I through 511Driver Timer Example II~!!!!!!!!!!!!!!!!!!~!!!!!!!!!!!!!!!!!!!!!!!!=
IAmpmeter IIDriver Analog Input Example II ditto
IPump 5 IIDriver Timed ON/OFF EXAMPLE 11~~~~d:;:;:i::==tto~~~==

I ditto

As the ingredients in the blending are whipped by the mixer and cooled down, the

viscosity of the ice cream begins to increase causing the motor to draw more power.

When the ammeter shows more than 9 amps, a warning is issued that ice cream is ready

to be dispensed, and as a result, the dispensing unit is activated in the fonowing sequence:

the valve is turned ON (open), pump 5 is turned ON, and the conveyer is turned ON.

Pump 5 requires a different driver than the one for pumps 1 through 4 so that it can

dispense in a ON-1O-seconds/OFF-2-seconds cycles when it is turned ON. The driver is

a simple modification of the driver for other pumps and other ON/OFF instrument. The

choice to handle the timed-cycle sequence of pump 5 at the driver level was made

because of the small time intervals (10 and 2 seconds). For imprecise operation, it can be

handled by the same driver. Timer 5 is used to tum this cyclic operation of pump 5 OFF

at appropriate time (see next paragraph).

The conveyer is assumed to have an adjustable feed rate, where it can be manually

set to advance one step in 2 seconds and stay there for 10 seconds (like in most stepper­

motor operations). It also has a manual synch mechanism, where an operator can

synchronize it with pump 5 by pressing the "GO" button exactly when the pump has

stopped dispensing.

With previous experience, the operator has determined the most efficient batch time

to be 20 minutes, i.e. the time it takes to dispense, blend, and fill the entire ice cream

batch. The software has to be configured such that the timer 5 issues a warning every 20

minutes that the batch time has ended, and as a result of this warning, pump 5, valve, and

the conveyor are turned OFF sequentially. (Alternately, a warning condition such as

ammeter ~ 5 can be used to tum these three instruments OFF because the load on the

motor is drastically reduced when the mixer tank is emptied. This drastic reduction is

72



due to the fact that most high efficiency mixers have fixed blades only at the tip of the

shaft-other blades are freely rotating),

To start a new batch every 20 minutes, operator selects (from the driver panels) that

all the timers (timer 1 through 5) be reset to 0 every 20 minutes, which removes warning

conditions from all the control instruments, and resets them to their startup values (the

NIPER Lab WARDEN program code automatically resets instruments to their original

values when a warning situation is corrected), i,e., pump 5, valve, and conveyor are

turned OFF; and pump 1 through 4 and the motor is turned ON. The batch process

automatically continues.

Other warning, emergency, and constraints for the process are as follows. When the

weight of Milk Tank falls below 1,000 kilograms or the weight of other tanks falls below

100 kilograms, audio/video warning is issued; if no action is taken by the operator and

the weight falls below 500 or 50 kilograms, respectively, the instruments are shut down

in this sequence: pump 5, valve, and conveyor, pump I through 4, and motor. If the

cooling in the blending tank is not complete (thermocouple 2> 32 0 F), the emergency shut

down sequence is initiated. If the tank is overfilled (thermocouple 1 ~ 35° F, indicating

that the level has exceeded the thermocouple level), a warning is issued, and if not

overridden by the operator, pumps 1 through 4 are turned OFF. The operator may shut

the system down at any time. The selected sequence for nonnal shut down is the same as

the emergency shut down sequence. The only safety constraint in the process is that the...
pump can not be turned ON unless both the valve and the conveyer are ON.

BmLIOGRAPHY

Circle Seal Controls, 1988. Seven SVIO-40 and SV400 Series, 2- and 3-Way Leakproof
Solenoid Valves, Circle Seal Controls, 1111 N. Brookhurst, Anaheim, CA, 92803,
January.

Eurotherm Corp., 1987. Products Catalog l027-A, Eurotherm Corp., 11485 Sunset Hills
Road, Reston, VA, 22090, January.

Eurotherm Corp., 1982. Eurotherm Operation and Maintenance Manual For Digital
Temperature Controller Model 9/8, Eurotherm Corp., 11485 Sunset Hills Road,
Reston, VA, 22090-5286, July.

Gordos, 1993. Specifications for PB24 Relay Board. Newark Electronic, Part No.
21F858 Mounting Board PB-24, Newark Electronics, Tulsa, OK, August.

Greensprings Computer Inc., 1990. Operation Manual for Multiport (4) Serial Board,
PIN M51001A, Greensprings Computer Inc., 1204 O'Brian Drive, Menlo Park,
CA, 94025, January.

73



Mettler, 1990. Mettler Balance PJJ5 User's Manual, Mettler Instrument Corp., Box 71,
Hightstown, NJ, 08520-9944, April

National Instruments Corp., 1991 a. LabVIEW 2-Getting Started Manual, Part No.
320246-01, Austin, TX, April.

National Instruments Corp., 1991b. Training In-Depth Course on LabVIEW 2, Version
1,4, Part No. 776393-01, Austin, TX, April.

National Instruments Corp., 1991c. LabVIEW 2-User Manual, Part No. 320244-01,
Austin, TX, September.

National Instruments Corp., 1992. NB-DIO-24-User Manual, Part No. 320094-01,
Austin, TX, October.

Paroscientific, Inc., 1990. Digiquartz Precision Pressure Instruments, Programming and
Operation Manual, Document No. 8107-001, 4500 148th Avenue N.E.,
Redmond, WA 98052, August.

74



VITA

Syed Mohammad Mahmood

Candidate for the Degree of

Master of Science

Thesis: GENERAL-PURPOSE AUTOMATION PROGRAMMING USING A
GRAPHIC LANGUAGE

Major Field: Computer Science

Biographical:

Personal Data: Born in Karachi, Pakistan, On July 23, 1952, the son of Mr.
and Mrs. Farooq.

Education: Received Bachelor of Science degree with a major in Mechanical
Engineering at Peshawar University, Pakistan, in 1975; Received Master of
Science and Doctor of Philosophy degrees with a major in Petroleum
Engineering at Stanford University in January 1987; Completed the
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in May 1996.

Experience: Worked as Mechanical Engineer (1975-1978) in a Cement
Manufacturing Factory; employed by Stanford University, Department of
Petroleum Engineering as a graduate research and teaching assistant (1978­
1984); Provided Engineering Consultancy Services to Schlumberger (1985);
employed by National Institute for Petroleum and Energy Research as a
Research Engineer (1986-1993); currently employed by BDM­
OKLAHOMA as Senior Petroleum Engineer (Starting January 1, 1994).

Professional Memberships: Society of Petroleum Engineers (SPE), Society of
Core Analysts (SCA), Instrument Society of America (ISA), Marquis
Who's Who in Science and Engineering, Strathmore's Who's Who in
America.


