
GUT DESIGN AND IMPLEMENTATION

FOR SITES APPLICATION

By

QI LIU

Bachelor of Arts

Suzhou University

Suzhou, Jiangsu, P. R. of China

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfilment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1996

GUI DESIGN AND llvfPLEMENfAnON

FOR SITES APPLICAnON

Thesis Approved:

lit0WUJ8 c? G£~ro...:::;.~:...&.IoIoo'n,sooI--'_

Dean of the Graduate College

II

ACKNOWLEDGMENT

I wish to express my sincere appreciation to my major advisers, Dr. J. P. Chandler

and Dr. Mitchell L. Neilsen for their guidance, supervision, encouragement and help for

the completion of my thesis work. Their patience and constructive ideas helped me make

this thesis work an enjoyable and memorable experience. I consider it a privilege to have

worked under their supervision. I would like to express my sincere thanks to Dr. K.

Kaplan for serving on my graduate committee. Her support and invaluable suggestion,

have helped me to improve the quality of this work. I would like to thank Dr. D. Temple

Plant Science & Water Conservation Laboratory, USDA, for his constructive ideas and

support, which proved to be vital during the development stages. I would like to thank

Dr. M. L. Neilsen, Dr. 1. P. Chandler and the Department of Computer Science for

providing me with this research opportunity and their generous financial support.

My greatest appreciation, thanks and love to my wife ling Xu for all the love,

support and inspiration that she has given me. Also thanks to all my friends for their

support and much needed help.

III

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. PROBLEM STATEMENT 5
2.1 Control file Defmition 5
2.2 Current Project Requirement 8

Ill. PREVIOUS RESEARCH AND LITERATURE REVIEW 9
3.1 USDA Team and Other Experts' Research 9

3.1.1 The work of the SITES Interface Committee 9
3.1.2 Experts' Research 10

3. I.2a General descriptions about SITES 10
3.1.2b The headcut technology research II

3.1.3 The full descriptions of the new SITES technology L2
3.L.4 Engineer Guide 12

3.2 Graphic User Interface and MS Visual Basic I3
3.2.1 GUI design principles 13

3.2.la Apply GUI principles to SITES project 13
4.2.lb Frequently used reference books for Visual Basic 14

[V. PROJECT DEVELOPMENT 15
4.1 Project Windows GUI design and implementation I5

4.1.1 Combining "Case" screens 16
4.1. Ia Different cases use the same screen 18
4.1.1 b Different paths use screens that are partially the same L9
4.I.lc Different cases use different screens 21

4.1.2 SDI vs. MOl 22
4.1.3 One screen, multiple functionality 22
4.1.4 Use Visual Basic Controls 26
4.1.5 Extend Visual Basic "Grid" Control Functionality 27

4.2 Data Validation and Management 35
4.2.1 Field level data validation 36

4.2.la Data field constraint enforcement.. 36
4.2.lb Input data validation check 38

4.2.2 Screen Level Data Validation 40
4.2.3 Application level data validation 56

4.3 Control File Management 58
4.3.1 New Control File 58
4.3.2 Open Existing File 60
4.3.3 Continue Working on the File 60
4.3.4 Save Control File 61
4.3.5 Exit from the program 62

4.4 Windows Help System 62

V. CONCLUSION 64

IV

BIBLIOGRAPHY

APPENDIX A

66

68

CASES, SCREENS, AND RECORDS GRAPH 68
1) Case A Graph 68
2) Case B Graph 69
3) Case C Graph 70
4) Case F Graph 71
5) Case G Graph 72
6) Case H Graph 73
7) Case I Graph 74
8) Case J Graph 75
9) Case L Graph 76

APPENDIX B 77
SELECTED SCREENS OF SITES CONTROL FILE INTERFACE 77

1.) Case A 77
2.) Case F 85

APPENDIX C 92

SAMPLE CONTROL FILES GENERATED BY THE INTERFACE PROGRAM 92
1) Case A 92
2) Case B 92
3) Case C 93
4) Case F 95

v

Figure

LIST OF FIGURES

Page

1. Sites run type screen 19

2. Watershed info.nnation screen 21

3. Rainfall data screen 23

4. Rainfall data screen 23

5. Rainfall data screen 24

6. Topsoil fill and general fill screen appearance 1 26

7. Topsoil fill and general fill screen appearance 2 26

8. Topsoil fill and general fill screen appearance 3.. 27

9. Topsoil fill and general fill appearance 4 27

10. Topsoil fill and general fill appearance 5 28

11. Topsoil fill and general fill screen appearance 6 28

12. Topsoil fill and general fill screen appearance 7 29

13. Structure table record 31

14. Structure table input screen 32

15. Key press event handler for structure table 37

16. Structure table get focus event handler 37

17. Structure table sel change event handler 38

18. Example of data filter in key press event handler .41

19. Example of data filter in lost focus event handler 42

20. Screen level data check example 59

21. Screen level data check example 61

Vi

CHAPTERl

INTRODUCTION

The Water Resource Site Analysis Computer Program (SITES) was developed

to assist the engineer in hydraulic and hydrologic analysis and dams design. The

application generates inflow hydrographs. It uses the storage-discharge relationships

at dam sites to flood route hydrographs through existing or potential reservoirs. It

provides the hydraulic and hydrologic design for Natural Resources Conservation

Service (NRCS) dams that have drainage areas ranging from a few acres to over 100

square miles. The application develops the inflow hydrographs from homogeneous

subareas, combines th.em, and routes valley to the dam site.

NRCS distributed the original Structure Site Analysis program (DAMS) to

users in 1967. An improved version of the program (DAMS2), released in 1971,

incorporated a more flexible input format as well as other improvements to the

DAMS program. In 1982 an interim personal computer (PC) version was released.

The new version, named SITES, will be released in 1996. This version of SITES

accommodates changes in NRCS design criteria and includes the earth spillway

erosion technology. Other changes assist with the design of dams that have small

drainage areas and sites in complex watersheds, including structures in series.

1

SITES is based on a FORTRAN program developed and compiled by the US

Department of Agriculture (USDA). The previous versions, DAMS and DAMS2 for

PC, are both MS DOS-based applications. To design or analyze a job using the

program, you need to follow three steps:

• First, you should generate a data file. The data file is a plain text file that

can be generated in any text editor. The data file contains all the data the

user defines for designing or analyzing specifics and criteria. The file

must follow a specific format. Otherwise, the next step cannot be

accomplished.

• Second, you should run a program input with the data file you generated in

the previous step. The program will output a control file if the input file is

correct. The control file contains all the keyWords and specific formats

that the FORTRAN program requires. All the data that the user defines in

step one will be grouped into keyword records. Some graphic files that are

used to visualize designing jobs are generated in this step too.

• After you obtain the control and graphic files, you can run the design and

analysis program using the control and graphics files as the input file. The

design program will output the design and analysis results for users to

view and implement the actual project.

The three-step procedure briefly described above has some obvious

drawbacks. First of all, this is not a user-friendly approach. A new user may need a

quite long learning curve to get used to it. When a user starts learning how to write

2

the data file, he or she will find that any small error in the datafile format or spelling

may cause failure in the next step. Even an experienced user cannot guarantee that he

will not make any mistakes when creating the data file. Second, when a user uses the

program to generate the control file in the second step, if the data file contains any

errors, the program will not provide infonnation to explain why the control file

cannot be generated. Users may spend a lot of time trying to figure out where the

problem lies. Even if the user's data file is all right, he or she may still make

mistakes due to misunderstanding of the relationship between the control file and the

data file. Some experienced users may directly generate control files manually

instead of using the computer program. In that case, the chance for creating errors is

much higher, because the control file is much more complicated than the data file.

The user must remember how to match data and control keywords and keep in mind

many detailed field formats. In the SITES Water Resource Site Analysis Computer

program User's Guide, more than 200 pages are devoted to the section, Input

Description and Preparation. It is unreasonable to expect the user to remember so

many details or to keep checking those details when designing a project, because this

is not what the user should concentrate on. The user's interest is in how to achieve a

satisfactory result for a specific dam design and analysis by using a good computer

program. The user does not like those restrictions about the input file.

SITES is a powerful application that assists the user in designing and

analyzing darns. But the application will have few users if it does not have a user-

3

friendly tool to generate the input file (control file). Clearly, developing a user

friendly tool to generate the input file or control file is a key issue in updating SITES.

My thesis project designed and implemented a user-friendly control file

generating program for SITES. I will discuss the designing and implementing details

in the thesis. Specifically, I will describe the major issues involved in the project,

discuss previous research and designing reviews, and explain how I solved different

kinds of problems.

4

CHAPTER 2

PROBLEM STATEMENT

As I described earlier, my objective is to develop a user-friendly input file (or

control file) generating program for SITES. The SITES Interface Committee has

determined that this application will be built and run on the Microsoft Windows

operating system. This means that the application is an event-driven computer

program. The application will have a graphic user interface (GUI) as the front end.

The front end will be used to accept user input data, verify and integrate the data

validation. The back end is a set of programming procedures for generating and

loading Sites data control files.

The SITES Interface Committee also has determined that, in order to make

this application acceptable to the widest range of users, the Graphic User Interface

should be able to run on MS Windows 3.x, Windows NT, and Windows 95 operating

systems. Microsoft Visual Basic 4.0 for Windows is chosen as the application

developing language.

2.1 Control file Definition

The control file consists of a set of records. Every record is headed by a

keyword which is used to perform a variety of design and simulation runs. Each

control keyword is briefly described below:

5

SITES

STRUCTIJRE

WSDATA

PDlRECT

POOLDATA

PSDATA

PSINLET

ASCOORD

ASMATERIAL

ASDATA

ASCREST

ASSPRFL

ASSURFACE

ASINLET

Indicates beginning ofjob.

Loads structure elevation - surface area data table.

Enters design criteria and data for watershed area.

Enters point design rainfall data.

Enters principal spillway crest, sediment storage~ and valley

floor information.

Specifies principal spillway conduit data.

Specifies data for a principal spillway drop inlet riser.

Defines surfaces of geologic materials in an auxiliary spillway

profile by x, y coordinates.

Describes geologic material parameters for each material

identified in the ASCOORD table.

Contains additional information for the auxiliary spillway.

Establishes auxiliary spillway crest elevation(s) for the

spillway template.

Describes the entire auxiliary spillway profile by x, y

coordinates.

Describe the surface parameters of the auxiliary spillway by x,

y coordinates when the spillway location is specified by x, y

coordinates.

Provides an inlet profile for the auxiliary spillway channel

template.

6

ASINSURF

ASEXIT

ASEXSURF

BTMWIDTH

GO,DESIGN

STORM

RAINTABLE

GO,RAINS

HYD

GO,STORM

GO,HYD

GOTDD

CLPROFILE

GO,EMB

ENDTABLE

ENDJOB

ENDRUN

Describes surface parameters of the auxiliary spillway inlet

channel template.

Provides parameters characterizing the auxiliary spillway exit

channel template.

Describes surface parameters of the auxiliary spillway exit

channel template.

Establishes auxiliary spillway bottom width(s).

Initiates the design run.

Allows entry of specific data for a given storm.

Enters a specific rainfall distribution.

Initiates a run using a series of rainfall amount.

Enters table of inflow hydrograph coordinates.

Initiates a run using a selected storm event.

Initiates a run using an input inflow hydrograph.

Initiates drawdown computations from a given elevation.

Enters coordinates of the embankment centerline profile.

Initiates embankment quantity computations for given top darn

elevations.

Signifies end of table.

Signifies end ofjob.

Ends the computer run.

7

These control keywords are used to identify data records. Every record has a

number of fields that represent the user input data. The number of records in a file is

determined by specific design or analysis goals. Different situations have different

combinations of records (keywords markup the records.) In a specific record, there

may be different combinations of fields.

2.2 Current Project Requirement

Because of the complexity of the data sets, this version ofthe control file

generator and GUI will support ten types of SITES runs. Each has been designated as

a "Case", i.e., Case A through Case L (Case D and E are repeats of Case B and C.)

Every Case represents a unique type of designing run. For example: Case A

determines the principal spillway rating and auxiliary spillway crest elevation only;

Case B designs auxiliary spillway using spillway templates (ASINLET & ASEXIT)

with auxiliary spillway crest elevation known; Case F analyzes an auxiliary spillway

for a given storm, etc. The actual design and analysis may not be limited to the ten

cases. However, the ten cases are typical design runs.

8

CHAPTER 3

PREVIOUS RESEARCH AND LITERATURE REVIEW

The previous version, DAMS2, is a text-based application. The application

has a character-based user interface which provides limited data editing and data

verification functionality. The original character-based user interface is connected to

the DAMS2 execution program using an MS DOS batch file. This interface is a

starting point for any further improvement or development.

3.1 USDA Team and Other Experts' Research

3.1.1 The work of the SITES Interface Committee

The researchers in the USDA (United States Department of Agriculture)

Natural Resources Conservation Service have considered the SITES control file

interface issues since 1990. They formed the SITES Interface Committee to direct

and promote the building of user-friendly and functionally powerful products. The

committee consists of System Analysts, Research Scientists, Hydrologists, Design

Engineers, Program Specialists, and Resource Engineers. They have expertise in

different aspects of the project, and some of them are also end users of SITES. This

provides the development ofthe SITES control file interface with a very strong

technical background.

9

The SITES Interface Committee has done a lot of research and design work.

They redefmed the data sets to reflect the new technology adopted in the SITES

program. The ten "Case" ("A" though "L'I) runs are identified as typical runs for

SITES. They also developed the text-based control data input screens for the ten

types of runs. Although these data input screens do not make an executable program,

they can be used as the design prototype. When I began developing the OUI

program these screens served as the basis oithe Windows screens.

3.1.2 Experts' Research

Additionally, the SITES Interface Committee is directly involved in the

project development process. Some of the members did a lot of in-depth research in

dam design, which was incorporated into SITES. Such research also served as the

theoretical basis or designing references for SITES and th.e SITES control file

interface project. I will review some of the research.

3.1.2a General descriptions about SITES

To understand the new technology incorporated in SITES, we must mention

D.M. Temple, H.H. Richardson, lA. Brevard, and OJ.Hanson's SITES' The New

DAMS2(l995). In this article, they explain the three major changes in SITES

compared to the old version DAMS.

10

• Incorporation ofvegetal retardance (discharge dependent flow resistance)

into a water surface profLle routine for use in computing the head t '

discharge rating for the spillway.

• Computation oferosionally effective boundary stress for stability design

of the exit channel.

• Evaluation ofbreach potential using a three-phase erosion modal.

This article also provides an overview of the program changes and their

significance to the user.

3.J.2b The headcut technology research

D.H. Temple and GJ. Hanson (1994) also did some in-depth research in the

Headcut development in Vegetated Earth Spillways. As they concluded: "For

computational purposes, it was found that erosion of vegetated earth spillways could

be divided into three phases. These phases are vegetal cover failure, concentrated

flow erosion, and headcut advance. A computational procedure is developed for

predicting the time associated with minimize data requirements while allowing

application to a broad range of conditions. Results of applying the procedure to

predict headcut foonation are shown to be generally consistent with available field

data. This procedure may, therefore, be used to estimate the time of headcut

foonation for given flow and channel surface conditions." This is an important

element for the control file generating project.

11

Meanwhile, researchers such as D.M Temple, lA. BrevarcL J.S. Moore, GJ.

Hanson, E.H. Grissinger, and J.M. Bradford analyzed vegetated earth spillways. The

result of their analysis is the basis of data collection for spillway design and analysis.

3.1.3 The full descriptions of the new SITES technology

The SITES Water Resource Site Analysis Computer Program User's Guide

version 96.1 is the most important and useful document in designing and

implementing the control file generation interface. This User's Guide includes most

of the information on the technology used in SITES. In the User's Guide, all control

file keywords and related data records and fields are described in text, graphs, and

tables. The User's Guide was originally written to help users build control files

manually. Although it is very difficult for a user to build a complex data control file

manually just by reading the User's Guide, it was a great resource for me when

developing the SITES control file generation interface.

3.1.4 Engineer Guide

The division of Water Resources of the Kansas State Board of Agriculture

developed the Engineer Guide 1 and Engineer Guide 2. Guide 1 deals with "Earth

Dams, Hazard Classes, Spillway Requirements, Detention Storage Requirements, and

Rainfall Data." Guide 2 deals with "Administrative Requirements and Criteria for the

Design of Earth Dams." These two Guides and the User's Guide helped me

understand most of the details about the SITES control data.

12

3.2 Graphic User Interface and MS Visual Basic

The SITES Interface Committee decided to use Microsoft Visual Basic 4.0 as

the developing tool for the control file generation interface project. Visual Basic 4.0

is a powerful Windows application development tool. It allowed me to take great

advantages of the Windows application's look and feel. Almost all of the popular and

standard Windows application elements, such as controls and dialog boxes, can be

developed in a Visual Basic program.

3.2.1 GUI design principles

As Elisabeth Boonin (1986) mentioned, a good GUI application should always

keep the user in mind. The user interface is an application's primary mode of

communication with the user. Like other fonns of communication, whether your

ideas will be appreciated depends on how well they are presented. With a good

interface design, your program can be efficient and user-friendly. User-oriented is the

key element that distinguishes Windows applications from text-based applications.

3.2.1a Apply GUI principles to SITES project

Many experienced GUI developers such as Steve Potts (1996), Michael

McKelvy (1996), James A. Dooley (1996), etc. agree that a GUI developer must do a

certain level of user analysis and try to balance the needs of different levels of users.

When designing the SITES control file interface, I have always remembered and

followed this principle. SITES has different levels of users. Some users already have

13

a lot of experience with the previous versions of DAMS and/or DAMS2. These

experienced users may not need many dialog prompts, warning messages, and

advanced integrated data checks, which the new and inexperienced users would need..

The SITES committee is working hard to promote the product. They want it to be

applied in more and more designing and analysis jobs. This means the products will

have more and more inexperienced users in future. To help these inexperienced users,

we must build an application with advanced integrated data validation checks along

with detailed infonnation presented in the fonnat of both screen dialog boxes and a

help system.

According to Elisabeth Boonin (1996), a good user interface should help a

user to learn easily and efficiently and allow users to make mistakes. When I worked

on this project, I always kept these principles in mind. I also used these principles to

measure what I had done.

4.2.1b Frequently used reference booksfor Visual Basic

Many books have presented very good ideas about developing the graphic

user interface. Microsoft Visual Basic Programmer's Guide, Microsoft Visual Basic

Language Reference, and Microsoft Visual Basic On-line Documentation, especially,

were important resources for me when developing the SITES control file generation

interface.

14

CHAPTER 4

PROJECT DEVELOPMENT

The SITES control file generation interface project consisted of three parts, or

aspects, of programming work. They were Windows GUI design, data management,

and control file management. These three parts do not mean that the project involved

three separate programs. They are in terms of the project development process and

programming modeL Throughout the project, the three aspects were integrated

together.

I started the project with "Requirements Analysis". In "Requirements

Analysis," I obtained the functional requirements for the project from technical

experts and documentation in the USDA. After this stage, the project development

was a mapping from problem domain to solution domain. Many issues were involved

in this process. I will categorize the project development into the three aspects I

mentioned above.

4.1 Project Windows GUI design and implementation

Window QUI design was one of the most important parts for the project. I

made several major decisions concerning both designing and coding. The following

sections explain these decisions.

15

4.1.1 Combining "Case" screens

As I described above, this application supports nine different "Case" runs.

Every "Case" consists of a set of windows screens that allows users to input data for a

specific design and analysis. Every screen contains a set of controls that let users

input data from the keyboard or choose data from predefined data sets. Every "Case"

actually is a path leading to a different set of screens. The first welcome screen

contains a menu that let users choose between generating a new control file and

opening an existing control file. After the user selects either "New" or "Open" in

"File" menu, a screen pops up which allows the user to choose a path. The screen

snapshot in Figure 1 shows the screen that contains all the possible selections.

x

Ule Dlred Ently ofAuldlleuy Spillway
COordinatel

Figure 1. SITES Run Type Screen

Only a subset of possible paths were implemented in this version of the

project. If the user chooses a wrong path, a dialog box will pop up to explain the

error. The screen design also leaves some space to add "Cases" in the future.

16

-

There are three groups of "Radio Button" controls in this screen. They are

"Structure Option", "Hydrology Option", and "Spillway Option". The "Radio

Button" controls within anyone group are mutually exclusive. That means a user can

turn on only one "Radio Button" for a group in any particular run. The nine "Case"

combinations are listed below:

• Case A: Combination of "DAM(TR-60)" , ''NRCS Criteria Hydrology",

and "Principal Spillway Only"

• Case B: Combination of "DAM(TR-60)", "NRCS Criteria Hydrology",

and "Use Auxiliary Spillway Template"

• Case C: Combination of "DAM(TR-60)", "NRCS Criteria Hydrology",

and "Use Direct Entry of Auxiliary Spillway Coordinates"

• Case F: Combination of "DAM(TR-60)", "User Defined Precipitation

Data", and "Use Direct Entry of Auxiliary Spillway Coordinates"

• Case G: Combination of "DAM(TR-60)", "User Defined Inflow

Hydrograph", and "Use Auxiliary Spillway Template"

• Case H: Combination of "POND(NHCP-378)", "NRCS Criteria

Hydrology" and "Use Auxiliary Spillway Template"

• Case I: Combination of "DAM(TR-60)", "User Defined Precipitation

Data", and "Use Auxiliary Spillway Template"

• Case J: Combination of "DAM(TR-60)", "User Defined Inflow

Hydrograph", and "Use Direct Entry of Auxiliary Spillway Coordinates"

17

Q

• Case L: Combination of "DAM(TR-60)", "User Defined Spillway

Outflow Hydrograph", and "Use Direct Entry of Auxiliary Spillway

Coordinates"

When the user chooses a path, all the other screens will follow this specific

path. I decided how to deal with three kinds of situations when designing the

different screen paths.

4.J.la Different cases use the same screen

The screen in Figure 2 is an example. All ten case paths will use this same

screen.

Comment8:

Figure 2. Watershed Information Screen

18

o

4.1.1b Differentpaths use screens that are partially the same

From a programming point of view, building different screens for different

paths is easy, but it may cause some serious problems. If! had built different screens

for all partially different screens, the application might have had about 200 screens

total for all paths, because the control file would be generated after the user goes

through the entire specific path. The client, the SITES interface committee, required

that the user should be allowed to change paths even when he or she is in the middle

of a specific path, and the user should be able to keep the previously input data for use

in another path ifthe specific data field is the same. To meet this requirement, I

included the "Previous Screen" button in every screen to allow the user to go back to

the path selection screen. But if every path used a totally different screen even for

partially same screens, users would lose all the data they had input in a previous path.

Another problem is that if a user keeps changing the paths before going

through an entire path, he or she may load all 200 screens into the memory. The

average screen size is 20KB. So 200 screens would require at least 4MB memory,

and other procedures and functions will also take up memory space. As a result, users

might have had a problem running this application if they have less than. 6 MB

memory.

r finally decided to adopt another approach. I designed the same screen for

different paths if these paths share part of the data in a screen. This design makes the

screen dynamically changeable at run time. The following is an example of such

screens. Both "Case A" and "Case B"· have "Rainfall Data" screen, but "Case B" has

19

o

more data field than "Case A." I used one screen for the two cases. lfthe user

reaches the screen from "Case A", only one screen tab is visible, and it contains the

data fields for "Case A" only.

Figure 3. Rainfall Data Screen

If the user chooses "Case B", the same screen as "Case A" will display two tab

folders:

Figure 4. Rainfall Data Screen

20

o

Fjgure S. Rajnfall Data Screen

What will be displayed is decided at run time. This design approach reduced

the total number of screens to about forty, which consumes much less system

resources. With this design, the user is also able to use previously input data should

he or she change path.

In the previous example, if the user chooses "Case A" at first, but after

inserting data for "Rainfall Data" screen, he or she decides to go back and change to

"Case B", when he reaches the "Rainfall Data" screen, the data input in "Case A" will

still be there.

4.1.1c Different cases use different screens

In case of different paths having screens that use the same title, but having

different data fields, I decided to design different screens. In this case, the user would

not expect to use any data field for a different path if no data fields are the same.

21

-

4.1.2 SUI vs. MDI

I decided whether the application should support single document interface

(SDI) or multiple document interface (MDI). Ifwe want to build a multiple

document interface, we will face the same memory problem as I discussed above,

because a user generates the control file only after he goes through all the screens

along a path. All the screens will be kept in memory before the file is written.

Multiple document interface means we must have multiple instances for every visual

basic fonn and other controls. This may very easily cause memory shortage. The

MOl approach also makes it difficult to maintain the reusability of the data from

different paths.

On the other hand, the single docwnent interface approach uses less memory

and simplifies path maintenance. Because users do not have much need for

generating multiple files at the same time, I decided to build a single document

interface for this project.

4.1.3 One screen, multiple functionality

I strived to maintain multiple screen appearances at run time. Many screens

were implemented to interact with the user at run time. Screens will automatically

change their appearances according to the user's requirements or selection. This

approach provided one screen with the functionality of several screens and minimized

the number of screens for each path. A typical example is the "Topsoil Fill and

General Fill" screen. This screen has multiple functions. It could be implemented as

22

-

several screens, but all the functions were implemented in one screen. Below are

several snapshots for this screen:

The screen in Figure 6 appears when the user selects "None" for both "Topsoil

Fill" and "General Fill."

Figure 6. Topsoil Fill and General FiJI Screen Appearance 1

The screen in Figure 7 appears when the user chooses "In-Place Material"

from "Topsoil Fill."

Figure 7. Topsoil Fill and General Fill Screen Appearance 2

23

•

The two screens in Figure 8 and Figure 9 are for the user to choose "External

Material" from "Topsoil Fill."

Figure 8. Topsoil Fill and General FiU Screen Appearance 3

Figure 9. Topsoil Fill and General Fill Appearance 4

24

The screen in Figure 10 is displayed when the user chooses "In-Place" from

"General Fill."

Figure 10. Topsoil Fill and General Fill Appearance 5

The following two screens allow the user to choose "External Material" from

"General Fill."

Figure 11. Topsoil Fill and General Fill Screen Appearance 6

25

-

Figure 12. Topsoil Fill and General Fill Screen Appearance 7

4.1.4 Use Visual Basic Controls

Microsoft Visual Basic Version 4.0 provides many windows controls for

building Windows applications. I used twelve different types of controls in this

project. Some of the major controls are listed below.

• TextBox control: most of the user input data are typed into this type of

control. All the data input into this control are integrally checked. Any

illegal data value is displayed to the user, using dialog box messages, and

cleared to let the user input again.

• Label control: all the data fields are labeled with data field names.

• Frame control: I grouped data in the same screen into different frames

according to data logic category or control type.

• ComboBox control: When data fields have predefined values, this control

lets the user select data instead of directly inputting data.

26

•

• Grid control: The SITES control data file contains many table records. I

used Grid control as the interface to let the user input table record data.

Visual Basic does not provide functions or methods for directly using grid

control as data input control. I built and implemented these functions at

the back of the control.

• Check Box control: I used check box control to allow the user to select

some constant value or path.

• OptionButton control: This control has the same function as check box

control, but it was used for mutually exclusive values or paths.

• SSTab control: This control divides data into different tab pages. I used

this control to make a screen contain more information.

4.1.5 Extend Visual Basic "Grid" Control Functionality

Visual Basic comes with a rich set of controls. Some of these controls have

good appearance but limited functionality that may not be suitable for some specific

programming requirements. The "Grid" is one ofthis kind of controls.

Many data records in Sites control file are "Table" records. "STRUCTURE",

"RAINTABLE", "ESCOORD", and "ESMATERIAL" are typical table records. For

example, the "STRUCTURE" record may appear in control file like Figure 13.

STRUCTURE 15484 Site Data From TR48 1971 Version

591

593

76.6

106.9

27

48.2 247.8

67.8 304.5

595 142.8 69.3 320.4

601 262.7 71.2 322.9

605 360.3 78.6 335.6

609 456.9 80.2 347.3

615 607.7 73.2 385.3

ENDTABLE

Figure 13. Structure Table Record

In this table, there can be up to five fields and twenty data records. The five

data fields are "Elevation (feet)", "Surface Area (Acres)", "PS Discharge (CFS)",

"Storage Vol.(Acre Feet)", and "AS Discharge (CFS)". Obviously, providing a table

like interface is an effective way for users to input data.

Visual Basic provides two kinds of table controls. One is "Grid" control,

another is "Data-Bound Grid" control. The "Data-Bound Grid" control is designed

for loading Database table. The "Grid" control is for displaying data from any kind of

resources. I used "Grid" control for most of the "Table" input interface. Following is

a snapshot of the "STRUCTURE" table input screen:

28

Figure 14. Structure Table Input Screen

One ofthe weaknesses of Visual Basic "Grid" control is that it does not

provide any function for a user to input data directly into a table. That means a user

cannot type any character into a table cell. The major function of "Grid" control is for

displaying data instead of inputting data. In this application, I need to provide a table

interface to let the user input and reload data. Using "Grid" control to reload data

does not cause any problem. But how to input data? This is a problem. There are

several choices for solving the problem. One way is to buy a third party "OCX"

control that has the functionality I need. Or I could have built a new custom control

using other tools if time and money had allowed me to do so. Another way is to

extend the functionality of "Grid" control to make it work as I want. I chose the third

solution. In this application, I successfully extended "Grid" control to have "Input"

functionality. I will explain briefly how I extended "Grid" control.

29

-

-

Like most Windows controls, the "Grid" control also provides 'KeyPress"

event handling procedure skeleton. When a user presses any key on the keyboard, a

"KeyPress" message handler will be invoked with a parameter which is an ASCII

value representing the user-pressed key. This is the major point in implementing a

"user input allowance Grid table control".

I implemented the KeyPress message handling function in this way:

• First check the user-pressed key. The valid input value must be

numeric character ("0" to "9"), point ("."), "Enter" key, or

"Backspace" key. Any other key pressed by the user will not be

displayed in the table cell.

• If the user presses an "Enter" key in keyboard, the data in the current

cell will be checked according to some specific integrated data rules.

If the data are valid, the next cell will get focus to let the user input

data. Otherwise the data in the current cell wi 11 be cleared and the

focus will still be set at the current cell to let the user input data again.

• If the user presses a key that is anyone of "0" to "9" or decimal point

".", the character will be added to a temporary string variable; then the

string variable will be displayed in the current table cell.

• Whenever the table changes focus from one cell to another, the

temporary string value will be changed to hold new cell data (string).

• If the user pressed the "Backspace" key, the temporary string which

holds the current cell data will be cut till the last character and

30

displayed in the cell. This gives the user chances to remove or change

the data in any cell.

Figure 15 is the list of "Key Press" event handler function source code for the

"STRUCTURE" table:

Private Sub grdTable_KeyPress(KeyAscii As Integer)

'Accept user input for all the fields in table

Dim NextCol As Integer

Dim NextRow As Integer

Enter = False

'In case the user pressed "Enter" key, the data will be integrally

'checked. If data is valid. The table cell will change to next.

If KeyAscii =13 Then

Enter = True

grdTableRow = grdTableRow - 1

If grrJTableRow <> 0 Then

If Val(grdTable. Text) >= Val(Temp) Then

MsgBox "The value must be increased from previous; try again", 48. "Valid data'"

grrJTableRow = grdTableRow + 1

grdTable. Text = ""

Temp = ""

Else

grdTableRow =grdTableRow + 1

NextCol = grdTable.Col + 1

NextRow =grdTableRow + 1

If NextCol >= grdTable.Cols And NextRow < grdTableRows Then

grdTable. Col =1

grdTableRow =NextRow

31

grdTable.Se/StartCol = grdTable.CoI

grdTable.Se/StartRow =grdTableRow

grdTable.SelEndCoI = grdTable.CoJ

grdTable.SelEndRow =grdTableRow

Elself NextCol < grdTable.Cols Then

grdTable.CoI =NextCol

grdTable.Se/StartCol =grdTable.Col

Elself NextCol >= grdTable. COls And NextRow >= grdTableRows Then

grdTable. Col = 1

grdTableRow = 1

grdTable.Se/SfartCol = grdTable.Col

grdTable.Se/SfartRow = grdTableRow

grdTable.SelEndCol = grdTable.Col

grdTable.SelEndRow =grdTableRow

End If

End If

Else

grdTableRow =grdTableRow + 1

NextCol = grdTable.Col + 1

NextRow =grdTableRow + 1

If NextCol >= grdTable. COls And NextRow < grdTableRows Then

grdTable.Col = 1

grdTableRow = NextRow

grdTable.SelStartCol =grdTable.Col

grdTable.SelStartRow =grdTableRow

grdTable.SelEndCol =grdTable.Col

grdTable.SelEndRow =grdTableRow

Elself NextCol < grdTable.Cols Then

grdTable.Col =NextCol

32

grdTabJe.SelStartCoI =grdTabJe.Col

grdTable.SelStartRow =grdTableRow

Elself NextCol >= grdTable.Cols And NextRow >= grdTableRows Then

grdTable.Col = 1

grdTableRow = 1

grdTable.SelStartCof =grdTable.Col

grdTable.SelStartRow = grdTable.Row

grdTable.SelEndCof =grdTable.Col

grdTable.SelEndRow = grdTable.Row

End If

End If

'In case the user pressed the backspace key, the current cell data will

'be deleted one character a time.

Elself KeyAscii =8 Then

IfgrdTable. Text <> HH Then

Temp = grdTable. Text

End If

If Len(Temp) <> 0 Then

Temp = Left(Temp, Len(Temp) - 1)

grdTable. Text =Temp

End If

'Any key press that represents ASCII code less than 48 and not

'equal to 46 is not valid data.

Elself KeyAscii <> 46 And KeyAscii < 48 Then

KeyAscii =0

Beep

'Any key press that represents ASCfI code larger than 57

'is not valid data.

33

Elself KeyAscii > 57 Then

KeyAscii =0

Beep

'Table cell will show up valid data input

Else

Temp = Temp + Chr(KeyAscii)

grdTable. Text =Temp

End If

End Sub

Figure 15. Key Press Event Handler for Structure Table

Besides the "Key Press" event handling, I also implemented the "Grid"

control "GotFocus" event and "SelChange" event handling functions. The

"GotFocus" event handling is for setting focus on the current cell in the "Grid"

control. The "SeIChange" event handling is for clearing the temporary string that

holds the user input data. The cleared string will be used to hold the user input for a

new cell. Figure 16 and Figure 17 are the source code for these two event handlings:

Private Sub grdTable_GotFocus()

'when grdtable get focus, all cells need to be

'set to the current cell of the table.

grdTable.SelEndCol = grdTable.Col

grdTable.SelStarlCol =grdTable.Col

grdTable.SelStarlRow =grdTableRow

grdTable.SelEndRow = grdTableRow

End Sub

Figure 16. Structure Table Get Focus Event Handler

34

•

Private Sub grdTable_SeIChange()

'Temp hold the string user input into the table celf.

'This value must be clear when cell is changed.

Temp =n"

End Sub

Figure 17. Structure Table sel Change Event Handler

Thus, I created a "Grid" control that can be used not only to display data in a

table, but also to let a user input data directly into a table cell. After the extension, the

"Grid" control becomes an interactive interface between the user and the computer

program.

The "STRUCTURE" is a typical "Table" interface in the project. Many other

data records in SITES's control file need table-like interface for a user to input data.

They are implemented in a way similar to the "STRUCTIJRE" table.

4.2 Data Validation and Management

Data are the core of the application. One of the goals for this application is to

help users generate correct control files. A correct control file is based on the correct

data set inputted by users. So the data validation check is a very important task for

this application. Actually, about one third of the program source code involved data

validation checking. Data validation is also one of the hardest part of the project to

program.

35

-

This application has three leveJs ofdata validation. They are data field level

screen level, and application levd. The following sections explain these three levels

of data validation.

4.2.1 Field level data validation

According to SITES Water Resource Site AnaLYsis Computerprogram User's

G:1Jkk , most of the data fields in this application have some kind of constraint. Those

constraints are the basis of field level data validation. Beside the data constraints, all

the data fields have some kind of valid range requirement, such as string data length,

and minimum and maximum values for numeric data, etc.

4.2.1a Data field constraint enforcement

AJI the user-input data must appear on the screen as visible characters. The

Guide defmes seven conventions which represent seven types of data characters:

• A = Alphanumeric (letters or numeric) data that may appear in any

location within specified columns.

• N = Numeric data that may appear in any location within specified

columns and may include special characters such as decimal points and

plus or minus signs. Commas are not allowed.

• I = Integer numbers (no decimal points) that may occur in any

location within specified columns.

36

•

..

Ix = Integer numbers (no decimal points) that must occur in a fixed

right justified position.

• e = Essential data for use of control word. Program prints error

massages and normally terminates job execution if user omits the data.

• = Negative, negative data required.

• (-) = Negative, negative data allowed.

I enforced these data constraint for the data in SITES control files that have

those requirements. In most cases, I used the "KeyPress" event handling function as

filters to enforce the data constraints. Any user-pressed key which is not a valid

character for the specific data will be filtered out in a "KeyPress" event handling

function. The following is an example.

There is a "Number of Conduit" field in The "PSDATA" record. This field

requires the data value to be either an "integer" or a "real". This means that only

"O"~"9" and "." can be the valid input character. Any key press that is not related to

the valid data, "Enter" key press, or "Backspace" key press will be filtered out.

The source code listed in Figure 18 shows the implementation of the data filter

idea. Most of the data inputting in this project used the same technique.

Private Sub txtNumOfConduiCKeyPress(KeyAscii As Integer)

'If a user pressed nEnter" key (ASCII code 13), the focus wiJI

'be changed to another control

If KeyAscii = 13 Then

KeyAsci; = 0

Enter =True

txtNumOfConduiCLostFocus

37

•

'Any Key Press that is less than ASCII 48 and not equal

'to ASCII code 8 (Backspace key) or 46 (". ") will be filtered out

Elself KeyAscii < 48 And KeyAscii <> 8 And KeyAscii <> 46 Then

KeyAscii =0

Beep

~ny Key Press that is larger than ASCII code 57 will be filtered out

Elself KeyAscii > 57 Then

KeyAscii =0

Beep

End If

End Sub

Figure]8. Example OCData Filter In Key Press Event Handler

4.2.1h Input data validation check

Besides the enforced data type from inputting, I also implemented data

validation checks in this application. Almost all the data fields in this application

have some predefined data range requirement such as the maximum and minimum

values for numeric data, maximum character string length for string data, etc.

The data field validation check works in this way: whenever a user finishes

inputting a data value for a field and hits the "Enter" key on keyboard, the

"LostFocus" event handler is invoked to handle the situation. One of the tasks for the

"LostFocus" event handler is to check if the data which the user input is in the valid

range or not. If the data checked is not in the valid range, the data in current control

will be cleared out and focus will still be set on the current controL Otherwise the

focus will be set on another data field.

38

..

I will still use the ''txtNumOfConduit'' control field as an example. In the

previous code listing, I already demonstrated that when the user hits the "Enter" key,

the txtNumOfConduiLLostFocus handler is invoked. The following is the code for this

event handling function.

Private Sub txtNumOfConduiLLostFocus()

'Check whether the user input value is valid or not. If the

'Value is valid, set focus to txtLengthOfConduit control.

'Otherwise clear the current control content and prompt

'User with a message box. Focus will still be set on current

'Control

Dim value 'hold the input value

Dim OutRange As Boolean 'Value is out of range or not

OutRange = False

If txtNumOfConduit. Text <> •• Then

value =Val(txtNumOfConduit. Text)

If value < 1 Then

MsgBox "Minimun Number Of Conduit is 1, try again.·, 48, "Number of Conduit"

OutRange = True

txtNumOfConduit. Text =.n

End If

End If

If Enter =True And OutRange =False Then

Enter =False

txtLengthOfConduit. SetFocus

End If

39

pa
I

End Sub

Figure 19. Example Of Data Filter [n Lost Focus Event Handler

This is a simple case for field level data validation check. There were some

cases that required much more complicated data checks, but the principles are just the

same.

4.2.2 Screen Level Data Validation

Because the field level data validation check depends on the "Enter" key press

generating "LostFocus" event handler, we can't guarantee the input data will always

be checked at field level. If a user uses a "mouse" click instead of an "Enter" key

press to change focus from one control to another, the Data field might not be

checked properly. Some data fields are required data for a specific record, which

means the data field should not be left blank, if a user uses a mouse click to move

focus from one field to another and finally clicks "Next Screen" button to jump to

another screen, the required data field might be left blank forever. To handle such

cases, I implemented the screen level data check.

It seems the screen level data check is just a repeat of the field level data

check. Doing this is to guarantee that all the data fields will be checked before the

current screen progresses to another screen. This is true for some of the screens. But

for any screen that contains the "Grid" control, this is not true.

As I described above, I extended the "Grid" control to use it as the user input

data container. I implemented some field level data checks when a user presses the

40

"Enter" key to change from the current cell to the next cell in the "Gridtt table. There

is also the possibility for some cells never to be checked if a user uses a mouse click

or "arrow" key to change focus from one cell to another. The screen level data check

is needed to solve this problemt as I already mentioned.

In addition, we have a new problem for "Gridt' table internal data check. If a

table has multiple columns and rows, we have to maintain many inter-relationships

among table cells. This make things much more complicated than a single field data

validation check. The best place to accomplish this is in screen level instead of the

cell level. In a screen level check, the user has already finished the table data input

and is ready to go to the next screen. Because the user does not plan to input any data

into the table at this point, it is the right time to do the integrated data check for the

. table cells containing data.

Let me continue to use the "STRUCTURE" table as an example. In this tablet

all the column value must be in increase order when entered. The "Elevation" ,

"Surface Area" or "Storage Vol." fields require at least two entries. The "Surface

Area" and "Storage Vol." are mutual exclusion fields. Only one of the fields should

appear in a table. "PS Discharge" and "AS Discharge" are optional fields, but once

entries are begun, they should continue to the end of the table. The last value of

"Elevation" and "Surface Area" or "Storage Vol." is the mark of end of table. All

these data requirements are enforced in a screen level data check. I implemented the

screen level data check in the "Next Screen" button click event handling procedure.

Figure 20 is the source code of the procedure:

41

-

Private Sub cmdNexLClickO

'For Case ABC F G H I J

Dim counter As Integer

'values1 and value2 are temporary value holdsrs

Dim value1 As Double

Dim value2 As Double

'hole is for deciding if table column value is continued or not

Dim hole As Boolean

'holeCounter is for counting number of holes between two data

Dim holeCounter As Integer

'ComString is for hold cases string

Dim ComString As String

'The four boolean values judge if the columns are input

Dim surface As Boolean

Dim storage As Boolean

Dim discharge As Boolean

Dim ascharge As Boolean

'Count the length of table rows that contain data

Dim length As Integer

DAMS2.bypass = False 'Global value for special case flag

surface = False

storage =False

discharge = False

ascharge =False

AScharging = False

holeCounter =0

length =0

ComString =wABCFJH

hole =False

42

-

'check data validation before going to the next screen

grdTable.Col =1

grdTable.Row =1

If grdTable. Text ="" Then

MsgBox "First entry is required for this column~ 48, "Input Data"

GoTo dataReIn

Else

value1 =Val(grdTable. Text)

minElev =value1

maxElev = value1

End If

length =length + 1

grdTableRow =2

If grdTable. Text = "" Then

MsgBox "At least two entries requried for this column", 48, "Input Data"

GoTo dataReln

Else

va/ue2 =Val(grdTab/e. Text)

If value1 >= value2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTable. Text =,,"

Temp =n"

GoTo dataReIn

Else

value1 =value2

maxE/ev =value2

End If

End If

length =length + 1

For counter = 3 To 20 Step 1

43

grdTable.Row =counter

If grdTable. Text =,. Then

hole = True

holeCounter =holeCounter + 1

Else

If hole =True Then

grdTab!e.Row =grdTable.Row· ho/eCounter

MsgBox 'This cell must contains data", 48, "Data Check Message"

GoTo dataReln

End If

value2 =Val(grdTab!e. Text)

Ifvalue1 >= value2 Then

MsgBox 'The value must be increased from previous row", 48, 'Data checko

grdTable. Text = HO

Temp =un

GoTo dataReIn

Else

value1 =value2

maxElev =value2

End If

length =length + 1

End If

Next

grdTable.Co! =2

For counter =1 To 20 Step 1

grdTab!e.Row = counter

If grdTable. Text <> 0' Then

surface = True

End!f

44

..

--

Next

grdTable.Col =3

For counter = 1 To 20 Step 1

grdTable.Row =counter

If grdTable. Text <> •• Then

discharge = True

End If

Next

grdTable.Col = 4

For counter =1 To 20 Step 1

grdTableRow =counter

If grdTable. Text <> •• Then

storage =True

End If

Next

IfgrdTabJe.Cols = 6 Then

grdTable.Col = 5

For counter =1 To 20 Step 1

grdTableRow = counter

If grdTable. Text <> N. Then

ascharge =True

AScharging =True

End"

Next

End"

'if PS Discharge column has data, several screens will be bypassed

If discharge =True Then

45

DAMS2.bypass =True

End If

'work on case of user inputting both surface and storage data.

'user must make decision to choose either one from the two

If surface =True And storage =True Then

frmTableDialog.Show 1

If frmTableDialog. Tag ="surface- Then

grdTable.Col =4

For counter =1 To 20 Step 1

grdTableRow =counter

grdTable.Se/StartCol =grdTable.Col

grdTable.Se/StartRow = grdTableRow

grdTable.SelEndCol =grdTable.Col

grdTable.SelEndRow =grdTableRow

grdTable. Text =""

Next

storage =False

Else

grdTable.Col =2

For counter = 1 To 20 Step 1

grdTableRow =counter

grdTable.Se/StartCol =grrJTable.Col

grrJTable.Se/StartRow =grrJTableRow

grrJTable.SelEndCol =grdTable.Col

grdTable.SelEndRow =grdTableRow

grdTable. Text =1/1/

Next

surface =False

End If

46

-

End/f

'work on case of user's choice of surface data

hole = False

hoieCounter =0

If surface =True And storage =False Then

grdTable.CoI =2

grdTableRow =1

If grdTable. Text ="" Then

MsgBox "First entry is required for this column", 48, "Input Data"

GoTo dataReln

Else

value1 = Val(grdTable. Text)

End If

grdTableRow =2

If grdTable. Text = "n Then

MsgBox 'This cell must contains data", 48, "Data Check Message"

GoTo dataReIn

Else

value2 = Val(grdTable. Text)

If value 1 >= va/ue2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTab/e.Text = on

Temp =""

GoTo dataReln

Else

value1 =value2

End If

End If

47

holeCounter =0

For counter =3 To length Step 1

grriTableRow =counter

If grriTab/e. Text = lOW Then

hole =True

holeCounter = holeCounter + 1

Bse

If hole =True Then

grriTableRow = grdTableRow - hoJeCounter

MsgBox "This cell must contain data", 48, "Data Check Message"

GoTo dataRein

End If

value2 =Va/(grdTab/e. Text)

Ifvalue1 >= value2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTable. Text =""

Temp =""

GoTo dafaReln

Else

value1 = va/ue2

End If

End If

Next

If length + 1 <= 20 Then

grdTab/eRow = length + 1

End If

If grdTab/e. Text <> "" Then

MsgBox "The number of Surface Area data must be Jess than or equal to that of Elevation

dataW, 48, WData check"

End If

48

-

For counter =length + 1 To 20 Step 1

grrJTabJeRow =counter

grrJTabJe.SelStartCol = grrJTable. Col

grrJTable.SelStartRow = grrJTableRow

grrJTable.SelEndCol =grrJTable.Col

grrJTable.SelEndRow = grrJTableRow

grrJTable. Text =~"

Next

Endff

'work on case of users choice of storage data

hole = False

holeCounter = 0

If surface =False And storage =True Then

grrJTable.Col = 4

grrJTableRow =1

ff grrJTable. Text =". Then

MsgBox "First entry is required for this column", 48, "Input Data"

GoTo dataReln

Else

value1 =Val(grrJTable. Text)

End If

grrJTableRow = 2

If grdTable. Text = uu Then

MsgBox "This cell must contain data", 48, "Data Check Message"

GoTo dataRein

Else

value2 =Val(grdTable. Text)

If value1 >= value2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

49

grdTable. Text =••
Temp =If"

GoTo dataReln

Else

value1 =value2

End If

End If

holeCounter =0

For counter = 3 To 20 Step 1

grdTable.Row =counter

If grdTable. Text = ." Then

hole =True

holeCounter = holeCounter + 1

Else

(f hole =True Then

grdTable.Row =grdTableRow - holeCounter

MsgBox "This cell must contain data", 48, "Data Check Message"

GoTo dataReln

End If

value2 = Val(grdTable. Text)

Ifvalue1 >= value2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTable. Text = ""

Temp =""

GoTo dataReln

Else

value1 =value2

End If

50

End If

Next

If length + 1 <= 20 Then

grr/Table.Row =length + 1

End If

If grr/Table. Text <> "" Then

MsgBox "The number of Storage Area data must less than or equal to that of Elevation data",

48, "Data check"

End If

For counter = length + 1 To 20 Step 1

grr/TableRow =counter

grr/Table. Se/StarlCol = grdTable. Col

grdTable.SelStarlRow =grr/TableRow

grr/Table.SelEndCol =grr/Table.Col

grdTable.SelEndRow =grr/Table.Row

grdTable. Text =""
Next

End If

'work on case ofPS Discharge data is present

hole =False

holeCounter =0

If discharge = True Then

grr/Table.Col =3

grdTableRow =1

value1 =Val(grdTable. Text)

grdTableRow =2

Ifgrr/Table.Text = "" Then

MsgBox nThis cell must contain data~ 48, nData Check Message U

GoTo dataReln

51

Else

value2 =Val(grdTable. Text)

If value1 >= va/ue2 Then

MsgBox wThe value must be increased from previous roww, 48, WData check"

grdTable. Text =W"

Temp ='"

GoTo dataReln

Else

vafue1 =vaJue2

End If

End If

holeCounter =0

For counter = 3 To length Step 1

grdTable.Row = counter

If grdTable. Text ="" Then

MsgBox "This cell must contain data~ 48, WData Check Message"

GoTo dataReln

End If

value2 =Va/(grdTable. Text)

Ifvalue1 >= value2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTable. Text =If"

Temp =""

GoTo dataReIn

Else

value1 = value2

End If

Next

If length + 1 <= 20 Then

52

t"'

grdTable.Row =length + 1

End If

If grdTable. Text <> O. Then

MsgBox "The number of PS Discharge data must be less than or equal to that ofElevation

data", 48, °Data check"

End If

For counter = length + 1 To 20 Step 1

grdTable.Row =counter

grdTable.Se/StartCol = grdTable.Col

grdTable.Se/StartRow =grdTable.Row

grdTable.SelEndCoI =grdTable.Col

grdTable.SelEndRow = grdTable.Row

grdTable. Text =""
Next

End If

hole =False

holeCounter = 0

'In case B etc. there are six columns. AS Discharge field needed.

If ascharge =True Then

grdTable. Col = 5

grdTable.Row = 1

value1 =Val(grdTable. Text)

grdTableRow = 2

If grdTable. Text = •• Then

MsgBox "This cell must contain data", 48, "Data Check Message"

GoTo dataReln

Else

value2 =Val(grdTable. Text)

Ifvalue1 >= value2 Then

53

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTable.Text =."
Temp = ""

GoTo dataReln

Else

value1 = value2

End If

End If

holeCounter = 0

For counter = 3 To length Step 1

grdTable.Row =counter

If grdTable. Text = "" Then

MsgBox "This cell must contain data", 48, "Data Check Message"

GoTo dataReln

End If

value2 = Val(grdTable. Text)

If value 1 >= value2 Then

MsgBox "The value must be increased from previous row", 48, "Data check"

grdTable. Text =""

Temp =""

GoTo dataReln

Else

value1 = value2

End If

Next

If length + 1 <= 20 Then

grdTable.Row = length + 1

End If

54

-

,If grdTable. Text <> "" Then

MsgBox "The number ofAS Discharge data must be less than or equal to that ofElevation

data", 48, "Data check"

End If

For counter =length + 1 To 20 Step 1

grdTableRow =counter

grdTable.Se/StaltCol = grdTable.Col

grdTable.Se/StaltRow =grdTableRow

grdTable. SelEndCol =grdTable. Col

grdTable.SelEndRow = grdTableRow

grdTable. Text = ."

Next

End If

'In case the data input are acceptable, advance to

'next screen according to specific cases.

frmStmctureTable. Hide

If InStr(ComString, DAMS2Record) <> 0 Then

frmWatershed. Show

Elself DAMS2.Record = "G" Or DAMS2.Record = "J" Then

frmStrlnHydro. Show

Elself DAMS2Record = 'W Then

frmWatershed. Show

End If

Exit Sub

'In case the data in the table are not correct, set

'focus to the celf and let the user input data again

dataRe/n:

grdTab/e. Se/StaltCol =grdTab/e.Col

55

paz

-

grdTable'.Se/StarlRow =grdTable.Row

grdTable.SelEndCol =grdT8ble.Col

grdTable.SelEndRow =grdTable.Row

grdTable. SetFocus

End Sub

Figure 20. Screen Level Data Check Example

All the screens except the final one in this project contain a ''Next Screen"

command button. The "Click" message handling procedure accomplishes the screen

level data validation check task.

4.2.3 Application level data validation

The field level and screen level data checks handle most part of the data

validation. In some cases the data in a specific screen not only need obey the rules of

the data themselves, such as data type, maximum and minimum value, etc., but also

are dependent on other data or some specifications in other screens. In this case, the

field and screen level data checks are not sufficient. We need application level data

validation to accomplish this check.

I did not implement the application level data validation as a separate part.

Instead, I built it into the field and screen level data check modules. This means when

a field or screen level data check is in progress, any data that require cross screen data

check will be done in the same procedure. I defined several global variables in this

project. Some ofthese global variables were used to help the application level data

check.

56

For example, the application has two global variables "maxElev" and

"minElev", which were used to hold the last and first input values for the

"STRUCTURE" table "Elevation" column. The future "Auxiliary Spillway (AS)

Crest" screen has a field for an "ESCREST" record that requires the input value to be

less than the "rnaxElev" and greater than or equal to the "minElev" values. This part

of the source code is listed below:

+

Private Sub txtAux1_LostFocus()

Dim value

Dim OutRange As Boolean

OutRange = False

Iftxtaux1. Text <>"" Then

value = Val(txtaux1. Text)

If option2 = True Then

If value >= maxElev Or value < minElev Then

MsgBox "The Crest must be less than" + Str(maxElev) + "and greater than or equal to "

Str(minElev), 48, ·Data Check'

OutRange =True

txtaux1. Text =,.

End If

Else

If value < 0 Then

MsgBox "The Crest must be greater than or equal to 0, fry again. ", 48, "Data Check"

OutRange = True

txtaux1. Text =••

End If

End If

End If

57

"'-

If Enter =True And OutRange =False Then

Enter =False

If txtaux2. Visible =True Then

txtaux2. SetFocus

Else

cmdNexf. SetFocus

End If

End If

End Sub

Figure 21. Screen Level Data Check Example

This example shows how I used global variables to help implement the

application level data check. Actually, this is not the only way to do across screen

data check. In many situations, I used screen control contained data values directly to

do this kind of check. The global variables were used only in situations where I could

not directly use other screen data to do a data check. Global variables are not good

for system modulation. It is better to avoid using many global variables.

4.3 Control File Management

The goal of the project is to generate and manage the control file. The current

version of the project contains a single menu item "File". The "File" menu has six

entries: "new", "Open", "Continue", "Save", "Save As", and "Exit". These menu

entries were used to manage the control file system.

58

--

4.3.1 New Control File

If a user selects the "New" entry from "File" menu, a new control file

generating process is started. Almost every screen in the project has a "Home

Screen" button that could lead the user back to the program starting screen that

contains the "File" menu. We need different solutions for different situations.

In the case of a user already having a file opened before he or she chooses the

"New" in "File" menu again, the solution is this: First the program will check if the

open file has anything changed since the file was opened. If nothing is changed, the

new file editing process will continue normally. Otherwise, if the open file is

changed, a dialog box will pop up to prompt the user to save the file before creating a

new file. If the user answers "yes", the program will save the changed file under its

original file name, then continue with the new file editing process. If the user

answers "No", the program will do nothing to the current open file and will let the

user work on the new file.

The program does not support multiple file creation. If the user already has a

new file in progress when he tries to create another new control file, I provided

another solution. First a dialog box pops up to ask the user if he wants to save the file

before creating another new file. If the user answers "Yes", the "Save As" routine

will be called. After the file is saved, the new file creating process continues. If the

user answers "No," the information which the user inputted for the previous "New"

file will be lost, and another "New" file creating process begins.

59

The new file creating process will lead the user through a set of screens to

input infonnation. When the user reaches the last screen, he can directly click the

"Save" button to save the control file to disk.

4.3.2 Open Existing File

A user can choose "Open" in the "File" menu. The "Open" entry has a

handling procedure that helps the user to open an existing SITES control file. Like

the "New" entry selection, the "Open" entry also need different solutions for different

situations.

If the user already has a file open before he selects the "Open" entry, the

solution is: If the previously opened file has been modified, first prompt the user to

save the previously opened file, then either save the file or do nothing according to

the user's response. After the housekeeping fmishes, the Open file process begins.

If the user has a new file creating process started before he clicks the "Open"

entry in the "File" menu, we need do the same thing as in "New" entry selection.

After that, the user will enter the open file session.

The open file process will load the control file that the user selects into a set of

screens for a specific path. In this process, the user can go back and forth in the path,

and change any data in the file. The user also can change path from the current

loaded file. Before the user selects "Save", or "Save As" entry in "File" menu, or

"Save" button in the [mal screen, nothing is really changed from the original control

file.

60

4.3.3 Continue Working on the File

The "File" menu entry. "Continue," is designed for a special situation. When

a user already has opened a file or is in the middle ofa new file creating process, a

push of the "Home Screen" in anyone of the screens will take the user back to the

starting screen. In this screen, the user has several possible selections from the "File"

menu: creating another new file, opening another file, saving the file, and exiting the

program. But there is a case when the user just wants to continue working on the file

he or she has already opened or started creating. The "Continue" entry is provided for

this purpose.

When a user initially starts the program, the "Continue" entry in the "File"

menu is not enabled. It is enabled only after the user opens or starts a new file and

jumps back to the start screen. After the user saves the control file, the "Continue"

entry will go back to the disabled state.

4.3.4 Save Control File

A user can save his or her control file to disk from tlrree places. The "Save"

and "Save As" entries from "File" menu in the program starting screen let the user

save the control file from in any point of the program. The user can push the "Home

Screen" button from most of the screens to go to the program start screen and select

"Save" or "Save As" menu entry from that screen. The file generated from these two

menu selections may be an incomplete control file which cannot be used for actual

design and analysis.

61

Another place where the user can save the control file i in the last screen for

a file generating path. That screen contains a "Save" button to allow the user to save

the file with a selected file name. This screen only appears when the user has finished

all the required data input. The control file generated from the last screen "Save"

button is a complete control file which can be used to run a design and analysis in

SITES.

The Windows standards for "Save" and "Save As" menu selection were

applied in this application. When a new file generating process starts, there is no

difference for the first time user to choose "Save" or "Save As". After first-time

saving when the file already has a file name, when the user chooses "Save" again, the

file will directly be saved to the existing file name. If the user chooses "Save As", a

standard Windows file save dialog box will pop up to let the user type in a file name

under which to save the control file.

4.3.5 Exit from the program

Users can choose the "Exit" entry from the "File" menu to exit the program.

There are housekeeping jobs for the program to do before shutting down the program.

If there are any files opened and modified but not saved yet, or a file creating

session has started but the file has not been saved yet, the "Exit" handling procedure

will prompt the user to save the file before dosing the program.

62

The "Exit" handling procedure is also responsible for unloading all the fonns

and freeing all the resources the current process has been using. Using "Exit" to exit

from the program ensures the system is in a safe state after the program has finished.

4.4 Windows Help System

The project contains a Windows standard help system. The client creates the

help file. I used the Windows help authoring tool "Help Magician Pro" to build the

standard Windows help system. The help system is on the screen level. The user

invokes help topics by clicking the "Help" button on each screen. All the data fields

are included in the help topic. The user also can search for help infonnation by

typing keywords on the main help screen.

63

CHAPTERS

CONCLUSION

The SITES control file generation interface program is a part of the series of

SITES products. A successful control file interface may win more users for the

products and it may also help increase SITES engineers' productivity.

The goal of this part of the project is make data input operations "User

friendly" and "Correct".

To achieve these goals, I always kept users's needs in mind in the interface

design and implementation. The resulted interface meets the needs of users ofany

level.

This version of the control file interface also can run on several Windows

system. The single document interface (SDI) approach and the multiple path screens

combination design enable the program to require less system resources when it is

running. Users who still use old machines such as an Intel 80386 PC can also run this

version of the program.

The three levels (data field, screen, application) of integrated data checks in

the program help users generate a correct control file used for real world design and

analysis tasks. The interface menu system helps users safely manage the control file

64

generation process. The standard window on-line help system provides enough

infonnation to assist users when they are generating the control file.

This is the first version of a SITES control file generating program for

Windows. This version only supports nine "Cases" of designing control files. It is

possible that more "Cases" will be identified when the new designing or analysis

requirements comes out. In recognition of this possibility, I built some space in the

interface design for future development. If one adopts the same approach used in

developing this version, it will not be very difficult to plug in some more "Cases" into

the current program module.

This version of the program can only be used to generate a control file which

contains single-run infonnation. The next step is to develop the multi-run control file

generating interface. Based on this version, the "control file append" function can be

added to generate a multi-run control file.

When designing and implementing this program, I attempted to make the

program upgradable. Dam design and analysis, the topics the application deals with,

are under constant research. Along with increasingly advanced programming

techniques, I expect to see more sophisticated versions in the future.

65

BffiLIOGRAPHY

D.M. Temple, H.H. Richardson, 1.A. Brevard, G.1. Hanson (1995). SITES: The New

Dams2. Applied Engineering in Agriculture. 1995 American Society of

Agriculture Engineers. Vol. 11 (6): 831-834

D.M. Temple, G.J.Hanson (1994). Headcut Development in Vegetated Earth

Spillways.

Applied Engineering in Agriculture. 1994 American Society of Agriculture

Engineers. Vol. 10 (5): 677-682

D.M. Temple, 1.S. Moore, (1994) Headcut Advance Prediction/or Earth Spillway.

Presentation at the 1994 ASAE International Winter meeting

D.M. Temple, lA. Brevard, J.S. Moore, G.1. Hanson, E.H. Grissinger, and J.M.

Bradford. (1993) Analysis ofVegetated Earth Spillways. Proceedings of

Transctions of 10th Annual Conference, The Association of State Dam Safety

Office.

Kansas State Board of Agriculture Division of Water Resource (1986) Engineering

Guide -1 EG -1.

Kansas State Board of Agriculture Division of Water Resource (1986) Engineering

Guide -2 EG -2.

66

....

Elisabeth Boonin, (1996) User Interface Design. Visual Basic 4 Expert Solutions.

Que Corporation, Indianapolis, IN.

Steve Potts, (1996) Multiple Document Interface. Visual Basic 4 Expert Solutions.

Que Corporation, Indianapolis, IN.

Steve Potts, (1996) Optimizing VB Code. Visual Basic 4 Expert Solutions. Que

Corporation, Indianapolis, IN.

Jon Oelschlaeger, (1996) Developing Online Help. Visual Basic 4 Expert Solutions.

Que Corporation, Indianapolis, IN.

S. Rama Ramachandran, (1996) Using the Windows API. Visual Basic 4 Expert

Solutions. Que Corporation, Indianapolis, IN

Microsoft Corporation, Macrosoft Visual Basic Program's Guide. (1996) Microsoft

Corporation

Microsoft Corporation, Macrosoft Visual Basic Language Reference. (1996)

Microsoft Corporation

Robert B. Heberger, (1995) The Windows Help Magician Revision 3.1. Software

Interphase Incorporated

67

APPENDIX A

CASES, SCREENS, AND RECORDS GRAPH

This appendix includes the nine Cases' screens and records relationship

graphs. Every graph has three parts from left to right. The three parts represents

"Case", visual basic screen (form) name, and records name in the screen. These

graphs are useful for understanding and maintaining the structure of the project.

1) Case A Graph

• fnnRunType

frmWaterlnfo

• frmStructable

• fnnWatershed•
• frmRainfa1l2

• frmPoolData

ICASE A I frmSpillwayType I•
• frmSingleCir•

• fnnSingleRec

• fnnTwoCir

• fnnTwoRect•
• frmHoodinlet•
• fnnOutOption•

CASE mark SCREEN name

68

RECORD keywords

GO,DESIGN

DASM2 WSDATA COMMENT

STRUCTURE

WSDATA BASEFLOW PDJRECT

PDlRECT QDIRECT

POOLDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSHOOD PSDATA

GO,DESIGN

2) Case B G'raph

CASE mark SCREEN name RECORD keywords

I frmRunType

• frmWatershlnfoI

• frmStructureTable

• fimWatershed

• frmRainfal12

• frmRainfallTable

ICASE B I
fimPoolData•

• fnnSpillwayTvoe 1

• fnnSingleCir

• frmSingleRec

I fimTwoCir•

• frmTwoRect

• frmHoodInlet•
• frmValleyElev

• frmCenterProfLIe

• fnnEmbankTemplate•
I

fnnAsCrestI

I
fnnAuxlnTemplateI

I
fnnAuxExitTmo

• fnnAuxCross•
• fnnMaterial•
• fnnTopAndGen•
• frmOutputOption•

69

GO,DESIGN

DAMS2 WSDATA COMMENT

STRUCTURE

WSDATA BASEFLOW PDlRECT

PDIRECT QDlRECT GO,DESIGN

RAINTABLE GO,DESIGN

POOLDATA GO,DESIGN ASCREST

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSHOOD PSDATA

POOLDATA GO,DESIGN

CLPROFILE

CROWN TEMPLATE STABERM

ASDATA ASCREST

ASINSURF ASINLET

ASEXIT ASDATA ASEXSURF

ASDATA BTMWIDTH

ASMATERIAL ASCOORD

ASMATERIAL ASCOORD

GO,DESIGN ASINSURF

3) Case C Graph

CASE mark SCREEN name RECORD keywords

I
frmRunType: I

I frmWatershlnfo

I frmStructureTable

I
fnnWatershedI

fnnRainfaU2

I- I frmRainfaUTable

~ CASEC I I
frmPoolData

I fnnSpiUwayType I
I

frmSingleCir

I frmSingleRec

I frmTwoCir

I
frmTwoRect

I fnnHoodInlet

I
frrnValleyElevI

I
frmCenterlineProftle

I
frmEmbankTernplate

I frmAuxSurfProfile

I fnnAuxSurfCondition

I frmAuxCrossI

I fimMaterial

I fnnTopAndGenI

I frmOutputOption

70

GO,DESIGN

DAMS2 WSDATA COMMENT

STRUCTURE

WSDATA BASEFLOW PDlRECT

PDIRECT QDIRECT GO,DESIGN

RAINTABLE GO,DESIGN

POOLDATA GO,DESIGN ASCREST

POOLDATA PSfNLET

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSHOOD PSDATA

POOLDATA GO,DESIGN

CLPROFILE

CROWN TEMPLATE STABERM

ASCOORD ASSPRFL

ASSURFACE

ASDATA BTMWIDTH

ASMATERIAL ASCOORD

ASMATERIAL ASCOORD

GO,DESIGN ASINSURF

• frmRunType

• frmWatershInfo

• frmStructable

• frmWatershed•
• fnnStonnRainfall

• frmRainfallTable

~ CASE F I • frmPoolData

• frmSpillwayType I

• frmSingleCir

• frmSingleRec

frmTwoCir

• frmTwoRectI

• frmHoodInlet

• frmValleyElev

• frmAuxSurfProfile

: fnnAuxSurfCondition

• frmAuxCross

• frmMaterial

• frmTopAndGen

• frmOutputOption

4) Case F Graph

CASE mark SCREEN name

71

RECORD keywords

GO,STORM

DAMS2 WSDATA COMMENT

STRUCTURE

WSDATA STORM PDlRECT

STORM GO,STORM

RAINTABLE GO,STORM

POOLDATA GO,STORM

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSHOOD PSDATA

POOLDATA

ASCOORD ESSPRFL

ASSURFACE GO,STORM

ASDATA BTMWIDTH

ASMATERrAL ASCOORD

ASMATERIAL ASCOORD

GO,STORM ASINSURF

5) Case G Graph

CASE mark SCREEN name RECORD keywords

• frmRunTyoe ,

• frmWatershInfo, •

• fnnStructureTable

• fnnStrInHydro

• frmHydroData,
• frmPoolData

ICASE GI I
frmSoillwayType 1

• frmSingleCir

r
frmSingleRec

• frmTwoCir

• frmTwoRect

• ftmHoodlnlet

• ftmValleyElev

I frmAsCrest

• frmAuxInTemolate

• fimAuxExitTmp

• frmAuxCross•

• fimMaterial

• frmTopAndGen

• frmOutputOption

72

GO,HYD

DAMS2 WSDATA COMMENT

STRUCTURE

HYD

HYD GO,HYD

POOLDATA GO,HYD

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSHOOD PSDATA

POOLDATA

ASDATA ASCREST

ASINSURF ASINLET

ASEXIT ASDATA

ASDATA BTMWfDTH

ASMATERlAL ASCOORD

ASMATERlAL ASCOORD

GO,HYD ASINSURF

6) Case H Graph

t

ASDATA ASEXIT

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

ASEXlT ASDATA ASEXSURF

ASMATERlAL ASCOORD

GO,DESIGN ASfNSURF

ASDATA BTMWIDTH

ASINSURF ASfNLET

RECORD keywords

POOLDATA PSHOOD PSDATA

GO,DESIGN ASINSURF

SlRUCTURE

WSDATA BASEFLOW

PDIRECT QDlRECT GO,DESIGN

RAINTABLE GO,DESIGN

POOLDATA GO,DESIGN ASCREST

POOLDATA GO,DESIGN

CLPROFILE

CROWN TEMPLATE STABERM

ASDATA ASCREST

GO,DESIGN

DAMS2 WSDATA COMMENT

SCREEN nameCASE mark

• frmRunType

• frmWatershInfo

I
frmStructureTable

I
frmWatershed

I fimRainfal12

frmRainfallTable

~ CASE H~ I frmPoolData

, . frmSpillwayType 1
I frmSingleCir..

frmSingleRec

I frmHoodlnlet

I frmValleyElev

I
frmCenterProfileI

I frmEmbankTemplate

• frmAsCrest

• fnnAuxlnTemplate

• fimAuxExtTmp I~

• frmMaterial•
• frmTopAndGen•

frmAuxCross

• frmAuxLength•
• frmOutputOption•

73

1...-

.-
fimRunTypeI

.-
frmWatershlnfo•

-. frmStructable

--. fimWatershed

.-
frmStonnRainfall•

• frmRainfallTable•lCASE [I frmPoolData-.
.-

fnnSpillwayType I•
-. frmSingleCir

.-
frmSingleRec•

• fimTwoCir•
I frmTwoReC1

• fimHoodInlet•
• frmValleyElev•

-. frmAsCrest

.-
frmAuxlnTempLateI

• frmAuxExitTmp•

• frmAuxCross

• frmMaterial•
• frmTopAndGen•
• frmOutputOption•

7) Case I Graph

CASE mark SCREEN name

74

RECORD keywords

GO,STORM

DAMS2 WSDATA COMMENT

STRUCTURE

WSDATA STORM PDIRECT

STORM GO,STORM

RAINTABLE GO,STORM

POOLDATA GO,STORM

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSINLET PSDATA

POOLDATA PSHOOD PSDATA

POOLDATA

ASDATA ASCREST

ASINSURF ASll{LET

ASEXIT ASDATA ASEXSURF

ASDATA BTMWlDTH

ASMATERlAL ASCOORD

ASMATERIAL ASCooRD

GO,STORM ASINSURF

I
f

8) Case J Graph

CASE mark SCREEN name RECORD keywords

1

• frmRunType

• frmWatershlnfo

• frmStructureTabIe

• frmStrInHvdro

• frmHydroData•

• frmPoolData

ICASEl I • frmSpillwayTypel

• frmSingleCir

• frmSingleRec

• frmTwoCir

• frmTwoRect•
I

I frmHoodlnlet

• frmVaUeyElev

I frmA uxSurfProfile

: frmAuxSurfCondition

• frmAuxCross

• frmMateriaI• I

• frmTopAndGen•
• fnnOutputOption•

75

GO,HYD

DAMS2 WSDATA COMMENT

STRUCTURE

HYD

HYD GO,HYD

POOLDATA GO,HYD

....
POOLDATA PSINLET PSDATA

POOLDATA PSTNLET PSDATA p..
POOLDATA PSINLET PSDATA

II'..
)

POOLDATA PSlNLET PSDATA ~
oj..

POOLDATA PSHOOD PSDATA ~
]

POOLDATA i
ASCOORD ESSPRFL)

•
ASSURFACE GO,HYD

,
I

ASDATA BTMWlDTH •r
ASMATERIAL ASCOORD

ASMATERIAL ASCOORD

GO,HYD ASINSURF

-

9) Case L Graph

CASE mark SCREEN name RECORD keywords

• frmRunType•

• frmWatershlnfo

• frrnStrInHydro

• frrnHydroData•
frrnValleyElev•

ICASE L I • fnnAuxSurfProfile

• fimAuxSu.rfCondition

• frmAuxCross

frmMaterial

• frmTopAndGen

• fnnOutputOption•

76

GO,HYD

DAMS2 WSDATA COMMENT

HYD

HYD GO,HYD

POOLDATA

ASCOORD ESSPRFL

ASSURFACE GO,HYD

ASDATA BTMWIDTH

ASMATERIAL ASCOORD

ASMATERIAL ASCOORD

GO,HYD ASINSURF

,....

..
4....
)

~....
~,
i
~,
I
h
t

APPENDIXB

SELECTED SCREENS OF SITES CONTROL FILE INTERFACE

This Appendix includes "Case A" and "Case F" control file generation interface

screens. The interface actually has nine different "Case". The two "Case" displayed here

is for demonstrating the screen designing.

1.) Case A

Comments: This is the first screen when the program
starts. The user can choose "new" or "open" from the "file"
menu. "new" means start to build a new control file.
"open" means open an existing control file.
File name: frmSite

77

I....

•..••)
~

~
4
~,
i
)
t,
t

.. Choo\"t" Run T VPf> ... r;; 1:1

UeeAUldlelYS~Templ"

Uee DiradEnby ofAUldliary SpY
COordinsn

POND (NHCP-378)

H)Idrology Option

• NRCS CritBtlll H)Idrology

U.e, DlIfin.1f Prec:lpitation Oatil

Ueer DlIIinllCllnftow1-\'dlC!Q~

U.., Olllinelf SpllIwe)i OutIlow H)/dlOgraph

Comments: This is the first screen for control file editing.
Any cases of control file should start from here. Radio
buttons provide the selections for different cases.
File Name: frmRunType

.1
•
I

.11"11)C

wat.rahad 10: I II 0 ••1;"008':,1,11,1. <3000 J:JJ
TItle: t - .1.-- _.

Comments:

II t!lIlllS_ Ilr fntYioua SCIlIII"l -Ill ii_ I

..
•••J
~

••
~
J

I
1,
I
f
t

Comments: Design class is not a user input field. The user
should choose from the push-down combo box.
File Name: frmWatershInfo

78

~, y:.:-,
'T1Ie; ;.

._--

I.t_~loa,=,," .-- CPJi

- f-
1"-

--
~--- - -- _.- ._--- ---ih

1 ."
,:U· !i_.- I n~'S_ I rh~~:';' .'.:c'.-;-t.

5

Comments: In all the table cells, if the user hit the "enter"
key after entering value, the program will automatically
check data validation. Otherwise the integrated data check
will be done when the user push "Next Screen".
File Name: frmStructureTable

File Name: frmWatershed

Comments: This a run time dynamic change screen for
different cases. When a user change path (case), the new
fold will be added.
File Name: frmRainfa1l2

79

• I••!,

Comments: This is also a run time change screen for
different cases.
File Name: frrnPoolData

Comments: From this screen, different path inside one case
are chosen.
File Name: frrnSpillwayType

Comments: This is the first selection path from the
previous screen. It has two folders. This is one of the
folders.

80

• I••I
i

File Name: frmSingleCir

Comments: This is another folder in the same screen with
preVIOUS screen.
File Name: frmSingleCir

Comments: This is the second selection from
"frmSpillwayType" .
File Name: fnnSingleRec

Comments: This is another folder for the previous screen.
File Name: frmSingleRec

81

J

Comments: This is the third selection path from
t1frmSpillwayType" .
File Name: frmTwoCir

Comments: This is another folder of the previous screen.
File Name: frmTwoCir

Comments: This is the fourth selection from
"frmSpillwayType".
File Name: frmTwoRect

82

J

Comments: This is another folder for the previous screen.
File Name: frmTwoRect

Comments: This is the fifth selection from
"frmSpillwayType" .
File Name: fimHood

itInlet

Horir. DIstence.lnletto e.nd. F.et
E1lM1llon of Send. Fellt 1----l111

Horir. Olatance. Send to Oulet. F.1It

E1W811on ofOUllet F8Itt r:==1~U:-=::: ~ -,...----!lL
Menning" ·n· Value: I-
Elevallon. HGLei 0ulItrt. F.1It

Comments: This is the another folder for the previous
screen.
File Name: fnnHood

83

~1I1.oIlnlaw~hCoordln""

Gene,. Ill. 01 0ulII0w H)ldrov"'Ph CoorcIintdU
G fil.oI~gTebl••

• ~ 0 - Column Output

Comments: This is the final screen for a Case A run. A
user can click the "Save" button to the control file. When
Save is clicked, a file save dialog appears.
File Name: frmOutputOption

Comments: This is file selection dialog box. When a
previous "Save" button has been pushed, this will pop up.
It is not a single file. It is a common dialog box built into
Visual Basic program.

84

2.) CaseF

Case F has several screen may dynamically change according to a user's selection.

Here I pick one possible path screens for this case.

SpiI",,-,OplIon--...............................

P!llI~Sp~PnIy

u..~SpiI"""'>',..mpl_

• ~. DnClEntlyatAaDdl1ely8pl~

Ooardin.....

File Name: frmRunType

'T1lIe: SAMPlE JOB F

,
DATA DEVELOPED TO ILWSTRATE 110
hlODIAEO F TO USE ESSPAFl----~- -- --- -

1

I

File Name: fnnWatershInfo

85

Comments: This is the same screen as in "Case A", but one
more column is added at run time.
File Name: frmStructureTable

Comments: This is the same screen as in "Case A", but
some fields are loaded differently at run time.
File Name: frmWatershed

86

File Name: frmStonnRainfall.

TllblelO: ~T'"

, TltI--;IPMP

II" DuralIanIn~: 2.4 II

I~', ~.lil~~f1DFIJe.OI!~ ..

0.0 0.2 0.5 O,B 1.1
~ 1_.4__ 1.7 2.4 __ ~L_ 3.9
~ F - iiS--- &:3' B.9 -t:":,:..:Bo----.....l'~11I
I:- ,4.8 __ €'_,9__ --3:2.1... _ 35c2 _ _ 35.5

,UIlH35.=B----t=~o=.---_;_=~L-,--~,---~.:Q.---___iI;l;,11I

~
lE8-/------i!------+-----.- ---- ------I~~I

9
D

~ :----=---=---- _-::.-=-._~=--=-
1. __ ----- -_ -_._~- _..--

File Name: fnnRainfallTable.

87

•

File Name: frmPoolData.

File Name: frmSpillwayType

e__Loe. eo...clenl. Ke:

File Name: frmSingleCir

88

File Name: [nnValleyElev

.. 1\1I)!"lh.uy "'-'.1111...,.1", SUI'." t" Plul.I.·

ProfIle EnlIy Opt!o".:

• E_AS~ PIJDlIIe

File Name: frmAuxSurfProfile

End of eon..&ItCheNleI: .L':":'~2;;7~O;;;;;~
DIa. SUIfIIceriaL In~ ':"001

89

File Name: frmAuxSurfCondition

Comments: This screen will dynamically change according
to different cases at run time.
File Name: frmAuxCross

Comments: This is one of the folder for the screen.
File Name: fnnAuxMaterial

90

2
1000 1270

209~ 2090

Comments: This is another of the folder for the screen.
File Name: frmAuxMaterial

a-'e1F11'
Non.

r.J In-PI.-~

~m"t.CeIerI..

File Name: frmTopAndGen

.nende fll. of Inftow Hydrognlph Coord!"'"

J a.ner_lil. of OulIIaw HydraQl'IIIPh COordIn-'

,aenende fli. of ReIIn; Tebl••

·10 - Column OulpUl

File Name: frmOutputOption

91

APPENDIXC

SAMPLE CONTROL FILES GENERATED BY THE INTERFACE

PROGRAM

Following is a sample "Demo.d2c" file generated by using the SITES control

file Interface Program:

1) CaseA

DAMS 2

*
03/01/95 A CASE A SAMPLE JOB A

o
81.33
315.62
596
929.18
1322.14
1767.54
2252.66
2777.35
3341.82
3946.92
4606.82
4751.02
4900

* THESE DATA ARE DEVELOPED TO ILLUSTRATE PROGRAM I/O
* FOR CASE A: DETERMINE A PRINCIPLE SPILLWAY RATING
* AND AN AUXILIARY SPILLWAY CREST ELEVATION.
* NO ACTUAL SITE IS REPRESENTED.
STRUCTURE SITE1 ELEVATION VOLUME DATA

2063
2065
2070
2075
2080
2085

2090
2095
2100
2105
2110
2115
2116
2117

ENDTABLE
WSDATA
PDIRECT
POOLDATA
PSINLET
PSDATA
GO, DESIGN
ENDJOB
ENDRUN

2) Case B

OC A
1. 39
ELEV

1

LPN

73
6

0.7
560

13.52
11
2063
19.33
42

2.17

2063

0.012 2033

SC

SITES

*
03/01/96 B SAMPLE JOB B B

*
*
*

DATA DEVELOPED TO ILLUSTRATE PROGRAM AND INTERFACE I/O
AUXILIARY SPILLWAY TEMPLATE
NO ACTUAL SITE OR DESIGN REPRESENTED

92

STRUCTURE SITEI STRUCTUREB
2063 0
2065 81.33
2070 315.62
2075 596.00
2080 929.18
2085 1322.14
2090 1767.54
2095 2252.66
2100 2777.35
2105 3341.82
2110 3946.92
2115 4606.82
2116 4751.02
2117 4900.00

ENDTABLE
WSDATA 2C A 73 13.52 2.17
PDIRECT 1 6 11 12 28.3
POOLDATA ELEV 2063 2063 2030 2055 SC
PSINLET .7 19.33
PSDATA 1 560 42 .012 2033
ASDATA 41 1000 1. 75
ASCREST ELEV 2094
AS I NSURF 41 6 5
ASINLET 41 0.0 0.0 30 0.0
ENDTABLE
AS INLET 41 315 2088
ASEXSURF 41 6

.85
1
1
.001

ENDTABLE
ASEXIT 41 Y 1.0 1270 2090
BTMWIDTH FEET 190
ASMATERIAL1

1 15 0.001 20 105 .08
2 0 10 0 140 3
3 0 36 0 140 150

ENDTABLE
ASCOORD 1 TOPSOIL

355 2088 970 2097 1000 2096
1270 2090 1272 2089

ENDTABLE
AS COORD 2 SHALE 1

355 2087 970 2093 1000 2093
1101 2091. 5

ENDTABLE
AS COORD 3 SHALE 2

355 2085 980 2087 1101 2091.5
1272 2089 1310 2065 1360 2055

ENDTABLE
GO/DESIGN LP 2064.13
ENDJOB
ENDRUN

3) CaseC

93

DAMS 2 03/01/96 C SAMPLE JOB C C

*
* DATA DEVELOPED TO ILLUSTRATE PROGRAM AND INTERFACE I/O

* EXISTING AUXILIARY SPILLWAY

* NO ACTUAL SITE OR DESIGN IS REPRESENTED
STRUCTURE SST1 STRUCTUREC

68 0.04
70 11.8
72 18.9
74 27.8
76 36.69
78 49.43
80 59.74
82 71.03
84 81.55
86 92.8
88 104.8
90 117.5

ENDTABLE
WSDATA 2B A 70 2.31 3.5
PDIRECT 1.0 6 11 9.4 16
POOLDATA ELEV 81 81 65.7 67 SC
PSINLET 1 33
PSDATA 1 1.60 66 .012 70.6
ESSPRFL 41 0.5

50 82 65 82.5 500 84.7
550 84.7 826 77 .8 1000 77
1130 74 1300 67

ENDTABLE
ESSURFACE 41 1000 0.01

50 65 7.6 .5 1 5
65 1000 5.6 .75 1 5
1000 1300 7.6 .5 2 5

ENDTABLE
ESDATA 41 3
BTMWIDTH FEET 100
ESMATERIAL1 2

1 a .03 100 .01
2 a .01 a 115 .02
3 9 .002 25 100 .04
4 0 .01 5 115 .02
5 14 .01 18 95 .1
6 0 .01 0 106 .02
7 87 .0004 46 100 .14
8 16 .001 45 85 .04
9 0 .02 0 100 .01

ENDTABLE
ESCOORD 1 SP1

315 94 435 91. 5 475 92
550 91. 5 600 92 650 91
735 88 750 85.5 800 83.5

ENDTABLE
ESCOORD 2 SM1

120 85 220 88.5 275 93
315 94 550 87

ENDTABLE
ESCOORD 3 ML

250 87 315 91 400 87
ENDTABLE
ESCOORD 4 SM2

94

600 87 800 83.5 985 78
1000 77 1130 74 1300 67

ENDTABLE
ESCOORD 5 CL

50 82 120 85 250 87
315 88.2 400 87 475 86
550 87 600 87 800 77
1300 60

ENDTABLE
ESCOORD 6 SM3

50 74.7 300 79 600 72
650 71.5 900 70 1300 56

ENDTABLE
ESCOORD 7 CH

300 79 475 80 600 72
ENDTABLE
ESCOORD 8 MH

650 71.5 800 75 900 70
ENDTABLE
ESCOORD 9 SP2

50 64.5 475 70 800 68
1300 51

ENDTABLE
GO, DESIGN LCP 81
ENDJOB
ENDRUN

4) CaseF

DAMS 2 03/01/96 F SAMPLE JOB F F

*
* DATA DEVELOPED TO ILLUSTRATE I/O

* MODIFIED F TO USE ESSPRFL
STRUCTURE SITEF STRUCTUREF

2063 0.0
2065 81.33
2070 315
2075 596
2080 929
2085 1322
2090 1767
2095 2252
2100 2777
2105 3341
2110 3946
2115 4606
2116 4751
2117 4900

ENDTABLE
WSDATA 2A1 A 73 13.52 2.17
STORM 24
RAINTABLE RTA 24 PMP

0.0 0.2 0.5 0.8 1.1
1.4 1.7 2.4 3.1 3.9
4.7 5.5 6.3 8.9 11.8
14.8 29.9 32.7 35.2 35.5
35.8 36.1 36.4 36.7 37.0

ENDTABLE

95

POOLDATA ELEV 2063 2030 2055 SC
PSINL.ET 0.70 19.33
PSDATA 1 560 42 .012 2033
ESSPRFL 41 0.0

355 2088 970 2094 1000 2094
1270 2090 1272 2089 1310 2065
1360 2055

ENDTABLE
ESSURFACE 41 1270 .001

355 1000 5 0.8 1 1
1000 1270 5 .8 2 1
1270 1360 4 .7 3 .5

ENDTABLE
ESDATA 41 1. 75
BTMWIDTH FEET 190
ESMATERIAL1 1

1 15 ().1 105 .4
2 0 10 0 140 3
3 0 36 0 140 150
4 10 .01 20 100 .2

ENDTABLE
ESCOORD 1 TOPSOIL

355 2088 970 2094 1000 2094
1270 2090 1272 2089

ENDTABLE
ESCOORD 2 SHALE 1

355 2087 970 2093 1000 2093
1101 2091.5

ENDTABLE

ESCOORD 3 SHALE 2
355 2085 980 2087 1101 2091. 5
1262 2089.15 1300 2055

ENDTABLE
ESCOORD 4 SOIL

1262 2089.15 1272 2089 1310 2065
1360 2055

ENDTABLE
GO, STORM L RTA 1
ENDJOB
ENDRUN

96

VITA

QiLiu

Candidate for the Degree of

Master of Science

Thesis: GUI DESIGN AND IMPLEMENTATION FOR SITES APPLICATION

Major Field: Computer Science

Biographical :

Personal Data: Born in SuZhou, P.R. Of China, On May 27, 1962, the son of Chen
Wang and Dar Lin Liu.

Education: Graduated from Dongshan High School, Suzhou, Jiangsu, China in June
1979; received Bachelor of Arts degree in History from Suzhou University,
Suzhou, Jiangsu, China in June 1983; received Master of Arts degree in History
from East China Normal University, Shanghai, China in June 1989. Completed the
requirements for the Master of Science degree at Oklahoma State University in
December 1996.

Professional Membership: History Society of China.

