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PREFACE

Scheduling is an important part of multiprocessor and parallel processor systems.

Over the past several years, a number of scheduling management policies have been

proposed for multiple processor systems. Among those is the hierarchical task queue

organization. The performance of this method has been shown to be better than both the

centralized organization (using a single global queue of ready tasks) and the distributed

organization (using local ready queues associated with each processor). The

aforementioned comparative performance study was carried out on and is generally

applicable to large systems such as a system in which processors are connected using a

multistage interconnection network. The performance of the hierarchical task queue

organization on smaller systems such as the Sequent had not been studied before. A

number of scheduling management alternatives have been studied on the Sequent system

Both centralized and distributed organizations were implemented and compared. In that

study, the hierarchical task queue was not mentioned. The objective of this thesis work

was to compare the performance of the scheduling management of a hierarchical task

queue to a centralized task queue and a distributed task queue.
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Each of the scheduling management systems was implemented on the Sequent

system initially using the C++ task library and subsequently using UNIX processes with

shared memory due to some constraint of the C++ task library. Benchmark programs

were applied to each scheduling method and the results were analyzed. The resulted

indicated that the Hierarchical Organization was superior to both the Centralized and

Distributed Organizations in terms of task queue contention and load sharing.
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CHAPTER I

INTRODUCTION

Increasing the power of computer systems to attain faster speeds is of continuing

interest. To satisfy the ever-increasing computing needs and to handle the increasing

complexity of the resulting programs, new technology to improve throughput and reduce

job latency is needed. Figure 1 shows the performance growth of microprocessors from

1984 to 1995.
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Figure 1. Growth in microprocessor performance from 1984 to 1995
(adapted from [Hennessy and Patterson 96])
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To achieve better system peIformance, one approach is to improve the clock rate

or the clock cycles per instruction (CPI) and instruction count of a processor. The other

approach is to use multiple processors running simultaneously. A multiprocessor has

obvious advantages over a uni-processor because a task is separated into many threads

and executed by many processors at the same time. As Steven mentioned [Steven 90]:

Multiprocessor systems have many key advantages over their uniprocessor
counterparts. One is the obvious potential for greater computing power,
allowing otherwise impossible performance levels to be achieved. This
increased computing capacity can be realized at a relatively low cost,
making cost/peIformance another important advantage. Moreover, the
scaleable design for many systems supports easy expansion of the system's
computing capacity by adding more processors. A final important benefit
is increased reliability since with careful design the failure of one processor
will only decrease the system's computing power rather than halting the
entire system

Although multiprocessor systems have advantages over uni-processors, the way to

organize a system with many processors running at the same time needs more complicated

handling and management than a single-processor system to deliver good perfOlmance.

Otherwise, it might give worse peIformance than that of one processor running alone.

Such handling and management constitute a major factor in parallel system performance,

namely system scheduling.

Scheduling is an important part of parallel processing systems. In multiprocessor

environments, the selection of a particular processor to execute an incoming task directly

impacts the performance of the system As Dandamudi and Cheng mentioned, ''processor
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scheduling is an important factor that influences the overall system performance"

[Dandamudi and Cheng 95].

There are two basic ways to approach the problem of scheduling management:

centralized organization and distributed organization. Centralized organization is the

scheduling management approach in which there is one single task queue maintained for

all processors. In contrast, distributed organization is the scheduling approach in which

there is a separate task queue for each processor. If there is no ready task queue access

contention, the centralized organization provides better performance due to its load

sharing characteristic [Dandamudi and Cheng 95]. However, when the system gets larger

(e.g., in a system in which processors are connected using a multistage interconnection

network), the increasing access to the single global task queue can decrease the

performance of the system due to task queue access contention [Dandamudi and Cheng

95]. On the other hand, the distributed organization, while eliminating the access

contention problem, suffers from the major problem of how to find an appropriate ready

task queue for the arrival tasks. As a result, the performance of the distributed

organization can be substantially worse than that of the centralized organization in the

absence ofthe ready queue access contention [Anderson et al. 89].

Although in Dandamudi and Cheng's research the hierarchical organization has

been shown to be superior to the centralized and distributed organizations, the research

was done only on large systems [Dandamudi and Cheng 95]. The performance of the
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hierarchical task queue on a shared bus system such as the Sequent, as in Anderson et al.'s

research, has not been studied before.

The main thrust of this study was to compare the performance of the scheduling--.....

management of a hierarchical task queue to centralized and distributed task queues on the

Sequent system. The study was based on Anderson et al.'s research by applying the

hierarchical task queue organization. The C++ task library [AT&T 90] was initially used

to implement and simulate each of the scheduling management systems. However, due to

the built-in synchronizing aspects among processes that are part of the C++ task library

environment, the real scenario which is composed of many non-synchronizing tasks didn't

seem to be simulated using the library. The simulation program was reconstructed by

replacing the C++ task library calls with UNIX processes along with UNIX semaphores.

The benchmark programs that work the same as the ones used in Anderson et al.' s

research [Anderson et al. 89] were used and the results were analyzed.

Chapter II ofthis thesis provides a review ofthe current literature on scheduling of

systems in parallel environments. Chapter ill provides a discussion of the design and the

implementation details of the software that was developed as part of this thesis. The

testing and evaluation of the software developed are discussed in Chapter IV. The thesis

ends with Chapter V that provides a summary, the conclusions drawn from the study, and

some suggestions for future work.



CHAPTER II

LITERATURE REVIEW

The major objective of this chapter is to offer some insight into the principles

underlying the performance of scheduling strategies in parallel systems. The basic model

and policies from previous studies are shown. Studies about Centralized and Distributed

Task Queue Organizations are discussed. The new data structure for scheduling

management, the Hierarchical Organization, is introduced at the end ofthis chapter.

2. 1 Scheduling Management and Policies

2.1.1 Scheduling Management

Researchers have realized the importance of scheduling management for years. A

number of studies have been carried out and tools have been created to help in scheduling

and dispatching of tasks. According to Anderson et aI., there are five alternative job

scheduling management approaches [Anderson et a1. 89].

• Single Lock: Central data structures protected by a single lock.

• Multiple Locks: Central data structures each protected by a separate lock.

• Local Free List: Per-processor free lists without locks; a central locked ready
queue.

5
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• Idle Queue: A central queue for idle processor; per-processor free lists.

• Local Ready Queue: Per-processor ready queues; per-processor free lists.

Single Lock: All data structures are protected under a single lock. When a processor

needs access to get a task to execute, it has to acquire the lock, then do what is needed to

the shared data, and finally release the lock when finished.

Multiple Lock: Each shared data structure has its own lock. Each operation on the data

structure can then be surrounded by a lock acquisition and release. The throughput of the

system is better than that of a single lock because the activity of the job is split among

several locks. However, the latency increases because more lock accesses are needed.

Local Free List: The single lock and multiple lock approaches mentioned above apply

locks to all shared data structures including the memory list needed to execute the task.

The Local Free List reduces lock acquisitions between different processor. Each

processor itself maintains its own free list of the memory blocks while there is still a single

shared ready task queue whose accesses are locked. As a result, fewer lock acquisitions

are needed per task. Consequently, the latency is lower and the throughput is better than

multiple or single lock approaches.

Idle Queue: A queue of idle processors is maintained in addition to the central queue of

tasks. When there are ready tasks waiting to be executed in the task queue, the

procedure will be no different from the other task management strategies. When a

processor is idle, it preallocates memory, initializes the stack, and puts itself into the

processor queue before the task comes. This method will reduce latency when there are
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many idle processors. At the same time it will increase latency when all processors are

busy due to the added complexity.

Local Ready Queue: For this task management approach, each processor not only

maintains its own free memory list, but it also maintains its own task queue. The problem

of task queue contention is lessened because there is no more a need to lock a single

global queue among processors to access a task. At the same time, it introduces the new

problem of how to keep the tasks in each local queue balanced. As a result, the

performance of the system is determined by how to insert the job into those sets of local

queues, instead ofhow to dequeue the job to execute.

In this study, the major interest is on the Local Ready Queue that is the main

characteristic of the Distributed Organization, and the Local Free List that is the main

characteristic ofthe Centralized Organization.

2.1.2 Scheduling Policies

In addition to the task management approaches mentioned above, scheduling

policies playa significant factor in the performance ofparallel system Most of the parallel

scheduling literature discusses policies along with scheduling management approaches.

Basic scheduling policies can be classified into two categories [Majumdar et al. 88]

[Tanenbuam 92], as outlined below



• Policies Independent of Job Characteristics:
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Processes are scheduled

independently without explicit knowledge of job characteristics. Policies that

belong to this category include:

- First Come First Served (FCFS): When a job arrives, each of its processes is

placed consecutively at the end of the shared process queue. When a

processor becomes idle, it simply removes the first process from the queue and

runs it to completion.

- Round Robin (RR): When a job arrives, it is assigned to the ready queue and

the ready queue is served in a cyclic fashion.

- Random Scheduling: The arriving jobs are assigned to the ready queue

randomly.

• Policies Based on Job Characteristics: Processes are scheduled based on the

knowledge regarding job characteristics. Policies that belong to this category

include:

- Priority Scheduling: The processes are allocated on the basis of their pre

assigned priorities.

- Shortest Job First (SJF): The shared process queue is organized as a priority

queue, with the highest priority given to the task that has the shortest period of

execution time.

A search of the relevant literature indicates that many other policies besides those

mentioned above have been proposed and studied. Majumdar et a1. proposed the Smallest

Number of Processors First policy and the Smallest Cumulative Demand First policy

---- ._---------~---------_._.-
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[Majumdar et, a188]. Leutenegger and Vernon proposed the Coscheduling policy and the

Dynamic Partitioning policy [Leutenegger and Vernon 90]. Steven [Steven 90]

investigated the comparative aspects among various scheduling policies including Fixed

Processor (FP), Last Processor (LP), Minimum Intervening (MI), Limited Minimum

Intervening (LMI), and Limited Minimum Intervening Routing (LMR). ZahOljan and

McCann's study compared the classes of Static Policies and Dynamic Polices [ZahOljan

and McCann90].

In this study, the focus is made on the solution of the contention problem which

related principally to Scheduling Management. Only the first come first served and round

robin policies were applied in the simulation program The round robin policy was applied

to the Distributed Task queue organization simulation because of the best results obtained

compared to other policies [Andersone et a1. 89]. For the Centralized and Hierarchical

Organizations, the first come first serve policy was applied.

2.2 Centralized and Distributed Task Queue Organizations

In Ni and Wu's study [Ni and Wu 89], the consequences of mutually exclusive

access to a centralized organization were studied. They showed that for the MlMJn

queueing system [Kleinrock 75] with a single shared ready queue, when the number of

processors increases, the scheduling overhead cannot be ignored (as it is in traditional

MlMJn queueing systems). According to Ni and Wu:

To ensure mutually exclusive access of the shared ready queue, only one
processor is allowed to access the ready queue at a time. Thus, the
scheduling overhead is nonnegligible and the actual system performance
will be worse than the theoretical system performance.
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Ni and Wu also proposed strategies to make the distributed organization more

effective [Ni and Wu 89]. In their model, system processors are partitioned in to k groups

where each group has a dedicated queue. When a task arrives, it is randomly routed to

one of the k queues; and when a processor becomes idle, it selects a single task from its

dedicated queue. A large value for k decreases contention for system queues but increases

load imbalance; a small value for k has the opposite effect. However, with these

strategies, the performance of a distributed organization is reportedly still worse than that

ofa centralized organization without task queue contention.

As expected, further studies have been reported in the literature that try to improve

on the performance reported previously in the literature. ZahOljan and McCann proposed

a more promising approach to solve the problem of task scheduling for shared memory

multiprocessors using a single queue of runnable tasks [ZahOJ:jan and McCann 90]. Their

proposed technique is called "two-level schedulers". This technique was reportedly

implemented by assuming that, at any point in time, each job is composed of one or more

ready tasks and that the operating system deals solely with allocating processors to those

ready tasks. The study assumed that the task queue contention is negligible, so this

method cannot be applied to large systems with a large number of processors and task

queue contentions.

In small systems, the performance of both scheduling techniques (i.e., centralized

and distributed) was studied by Anderson et al. [Anderson et al.89]. That research was

done under the DYNIX operating system on a Sequent Symmetry computer system,

which is a shared memory multiprocessor system Figure 2 shows the result from
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Anderson et al.'s work. Like the result from Ni and Wu's work [Ni and Wu 89], the graph

shows that for the centralized organization, as the number of processors increases, the

performance ofthe system decreases due to task queue contention.
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Figure 2. Performance comparison between Centralized and Distributed
Organizations (adapted from [Anderson et al. 89])

2.3 Hierarchical Task Queue Organization

Another technique ill scheduling management, called the Hierarchical

Organization, was recently proposed by Dandamudi and Cheng [Dandamudi and Cheng

95]. This technique avoids the shortcomings associated with the centralized and

distributed organizations. A set of ready task queues is organized as a tree with all the

processors attached to the bottom ofthe tree, as depicted in Figure 3. The branches ofthe

tree can be adjusted to improve performance. All incoming tasks are inserted at the root

queue. When a particular processor is looking for a job to execute, it will check the local

queue first. Ifthe local queue is empty, it moves up to check the higher level queue until
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it finds a task to be scheduled. To reduce the queue access contention, when a higher

level task queue is being accessed, a number of jobs in the queue are moved down from

that queue. In Dandamudi and Cheng's study [Dandamudi and Cheng 95], the number of

tasks moved down from a queue and the number ofbranches ofthe tree can be adjusted to

get a better performance than the centralized and distributed organizations.

The set of tasked moved down from a queue is determined by a parameter called

Figure 3. Hierarchical Organization for a branching factor of two with 8
processors (source: [Dandamudi and Cheng 95])

Root Task

Processors with
their local queues

ql

q2

defining such a parameter is that it makes sense to have the number ofjobs correlate to the

transfer factor (Tr). This parameter is defined to give the relation between the number of

jobs transferred and the number of processors below the queue. The reason behind
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number ofprocessors under each branch ofthe tree. As the result, with the different value

of the transfer factor, we can find the optimum performance of the system. The transfer

factor is defined as follows:

Tr = number of tasks moved one level down the tree

number of processors below the child task queue

To further illustrate how the Hierarchical Organization task queue works, an

example of the task queue for a 128 processor system and a tree structure with a

branching factor of 8 is shown in the Figure 4. The depth of the three therefore equals to

2 due to the number ofprocessor and branch factors. Suppose there are 200 jobs waiting

to be executed at the root queue. When a processor is available to execute jobs, which are

all initially in the root queue. With the transfer factor of one, 64 jobs are transferred from

the root queue to Q1. Of the 64 jobs, 8 jobs are transferred to Q5 leaving 48 jobs at Q1.

Finally, processor 1 schedules a task by moving one task into its local queue. The task

transfer process with the trasfer factor oftwo is also shown in Figure 4.
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Figure 4. Task transfer process in the Hierarchical Organization for a 128
processor system with a branching factor of 8 (for simplicity, the
local queues ofthe processors are not shown)

The set of task queues in the Hierarchical Organization distributes the set of tasks

to different memory modules, so task accesses can be carried out concurrently.

Consequently, it avoids the ready queue bottleneck problem and achieves good load

sharing. Moreover, the branching and transfer factors can be adjusted; hence the optimum

performance of the system can be reached. Being a superior data structure to both

Distributed and Centralized Organizations, the Hierarchical Organization nonetheless

introduces an overhead, in that more task queues will have to be accessed. As for the

actual impact of these factors, Dandamudi and Cheng showed that the average number of

queue accesses is very close to one for higher values of the branch factor and the job

transfer factor [Dandamudi and Cheng 95].



CHAPTERID

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

3. 1. 1 Sequent Symmetry S/81

The Sequent Symmetry S/81 is a mainframe class computer system with a

multiprocessor architecture that was developed by Sequent Computer System, Inc. The

multiprocessing and shared memory architecture consist of the following elements

[Sequent90]:

• A parallel architecture that utilizes multiple industry-standard microprocessors.

• Either the DYNIX v3.0 or the DYNIX/ptx operating system (both being UNIX

system ports).

• A standard set of interfaces to the network such as Ethernet, SCSI, VMEbus, and

MULTffiUS.

The operating system of the Sequent Symmetry S/81 has been engineered to

incorporate features that support its para\fl architecture. In addition, software that has

been built for the UNIX operating system can run on the Sequent Symmetry S/81 with

15
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little or no modification. In the case of multi-user applications, the operating system of

the Sequent Symmetry S/81 automatically distributes the tasks to multiple processors in an

attempt to reduce the response time and increase the system throughput [Sequent90].

The DYNIX v3.0 operating system supports the two major command sets of

UNIX, namely the Berkeley UNIX and UNIX System V. On the other hand, the

DYNIX/ptx operating system is compatible with AT&T System V v3.2 only [Sequent 90].

3.1.2 C++ Task Library

The task library is a coroutine support system for C++. Tasks can communicate

by explicit sharing of data, by messages, or by data pipes. A task is an object with the

associated coroutines. Each task is an instance of a user-defined class derived from the

class task, and the program of the task is the constructor of its class. The tools available

in the task library provide facilities for several styles of multi-thread programming in a

single-language, single-address-space environment [AT&T90].

However, due to the fact that all tasks in the task system run as a single UNIX

process, the initial commitment to utilize the library had to be reconsidered. Specifically,

each task would release the processor and let another task execute in the non-preemptive

mode, so access to the shared data structure, which needs to be done asynchronously,

seems not to be simulated. As a result, UNIX processes with shared memory and

semaphore were used in place ofthe C++ task library.
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3.1.3 Semaphore

To ensure mutual exclusion on queue accesses, semaphores were used m the

simulation program The semaphore concept was first put forward by the Dutch

theoretician, E. W. Dijkstra as a solution to the problems of process synchronization. A

semaphore sem can be seen as an integer variable on which the following operations are

allowed.

wait (sem)

if (sem! =0)

decrement sem by one

else

wait until sem becomes non-zero

signal (sem)

if(queue of waiting processes not empty)

restart first process in wait queue

else

increment sem by one

The active part of both operations must be indivisible to insure the integrity of the

value of the semaphore variable. In other words, they must run atomically, which means

that only one process can ever change sem at any time. Otherwise, it could lead to a race

condition. In UNIX system V, the implementation of semaphores is done in the kernel,

where it is possible to guarantee that a group of operations on a semaphore is done

atomically with respect to other processes. This implementation is expanded in two

directions [Stevens 91] as listed below.

1. A semaphore is not a single value but a set ofnonnegative integer values. The
number of nonnegative integer values in the set can be from one to some
system-defined maximum



18

2. Each value in the set is not restricted to zero and one. Instead each value in
the set can assume any nonnegative value, up to a system-defined maximum
value.

In the simulation program, semaphores were used together with shared memory

and UNIX processes generated by the fork () system call (in place of the e++ Task

library). The design and implementation ofthe simulation program is discussed in the next

section.

3.2 Design and Implementation

There are three major parts ill the simulation program: queue simulation,

processor simulation, and lock simulation.

3.2.1 Queue Simulation

The concept of object oriented program was utilized in the design of the queue

structure, i.e.,~:~:~ass. _:'~l.~~.~_.~f q~~_~~mposed o'!!j~J!.s.!, semaphore id

which is used to prevent two processors to access the queue at the same time, and pointer

to parent queue in the case of Hierarchical Task Queue Organization. The job list was
~

implemented as a circular link list where the next field of the last element pointed to the

first element in the list. Each element was designed to be an object such that when it is

sent a message to execute these objects, it will execute the instruction set in the assigned

task. This design made it possible to perform thread simulation where the simulated

threads were not fixed to a certain operation. The threads can help simulate a scenario

closer to the process running in the real world.
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3.2.2 Processor Simulation

shmalloc () and shfree () system calls otherwise we had to manage memory ourselves

by using the shmget () and shmat () system calls.

Each processor was simulated by a UNIX process created by fork () system call.

There was an extra process (from the number of processors) to generate jobs using the

new function and to enqueue them to the queue. The rest of the processes just access the

queue and execute jobs and delete them using delete () .

The shared memory manager was made possible bycorrespondingly replaced.

Another major requirement for "the queue class was that the instances of queue

class needed to be in shared memory so that any process can access them The new

operator of each class was overwritten to allocate the space of class instance in shared

memory before it was initialized by the constructor. The delete operator was also

3.2.3 Lock Simulation

In Hierarchical Organization, each queue object in the tree structure is equipped

with its own lock into its private part of data. The lock was formed by using a semaphore.

Three semaphores were used to simulated each lock. The first one is implemented as the

actual semaphore value that can be initialized, incremented, and decremented. Functions

are provided to increment and decrement by one, or by some other integer value. The

second semaphore is used as a counter of the number ofprocesses currently using the first

semaphore. This is so that the main semaphore can be deleted when no more processes

are using it. The third semaphore is a lock variable for the main semaphore. This setup is
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required to protect from the race condition when the main semaphore is being initialized

and closed. The initial design was to equip each queue with its own semaphores which is

composed of a set of three semaphores. However, due to the system constraint (i.e., the

kernel constraint of DYNIX/ptx) that there can be only 52 sets of semaphores in the

system, the design was changed to one set of semaphores shared by all queue classes in

the program. Before all queue objects were created, the semaphore set is initialized with

the number of semaphores equal to the number of queues in the system multiplied by 3.

There is no race condition resulting from accessing semaphore sets among processes that

access different queues because the ids ofthe semaphores in different queues are different.

-------------------------------------------===="
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CHAPTER IV

EVALUATION

4.1 Benchmark Programs

The study assumed the input to the simulation to be a set of jobs composed of a

number of independent tasks that could be run on the system concurrently. The

benchmark programs contained one thousand threads which simulate a brief computation

burst by "sleep"ing for a specified amount of time. There were two versions of the

benchmark programs. One consisted of threads which sleep a fixed amount of time, i.e.,

have a fixed execution time. The other version used a random function to generate the

time for each thread to sleep so that the simulation would be closer to the real world in

which each thread has a potentially different execution time. Each of the benchmark

programs was created and inserted at the root queue by a process which functioned as a

job producer.

4.2 Simulation Result and Analysis

Figure 5 shows the result from running the benchmark with the fixed amounts of

execution time on all of the three task queue organizations. We can see from the graph
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that there are no differences among those three task queue organizations due to the shared

memory queue access time. The access time is much lower compared to the thread

execution time. The contention for accessing the queue therefore does not cause much

problem for the performance of the system Figure 6 shows the same result even though

the input benchmark has been changed to randomly variable execution times.



Figure 5. Performance comparison among the Centralized,
Distributed, and Hierarchical Organizations with branch
factor 2 and job transfer factor 1 (the benchmark is a set of
one thousand threads with fixed 100 ms idle time each)
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Figure 6. Performance comparison among the Centralized,
Distributed, and Hierarchical Organizations with branch
factor 2 and job transfer factor 1 (the benchmark is a set of
one thousand threads with a random execution time of 0,
100, 200, or 300 ms)
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To obtain more realistic results, a delay was introduced into the queue access times

of each queue to study the effect of access times on each queue. Figure 7 shows the result

from running the simulation program with different queue access times. The access time is

represented as a delay which is introduced by a loop with a controlled number of

iterations. The delay is made by having the loops upper bound range from zero to a

certain number (28,000 in the case ofFigure 7). The result shows that, for the Centralized

Organization, the task queue contention overhead increased when the queue access time

got larger. On the other hand, the delay does not have as much effect on the Hierarchical
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Figure 7. Time in milliseconds to finish the benchmark program
with different queue access delays introduced for queue
access time (X axis = the number of loop iterations
representing access delay); the benchmark program is a
set of threads with random execution times of 0, 100,
200, or 300 IDS
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or Distributed Organization as it does on the Centralized Organization. This result

supports Dandamudi and Cheng's study [Dandamudi and Cheng 95] in that task queue

contention doesn't cause much trouble in the Hierarchical Organization. Figure 8 shows

the slight effect ofthe task queue access delay time, which is the main cause of contention,

to the Hierarchical Organization in both fixed time and random time benchmarks. Figure

9 also shows that the characteristics of the Heretical Organization doesn't depend on the

queue access delay time.



T
I

26

1<.-

J..
1<.-

~ =

.....
~

~

4000

'0 3500

.§. 3000
41
E 2500
;;

~ 2000
41 1500
Q.B 1000

U 500

o
o 4000 8000 12000 16000 20000 24000

Access time (number of iterations)

--+- Benchmark v.4th fixed execution time for each task

......... Benchmark for random execution time for each task

Job transfer factor

Figure 9. The result from running different benchmarks in the
Hierarchical Organization

_delay 0, Random execution time

"""*"""delay 1000, Random exeution time

--+- delay 20000, Random execution time

Figure 8. The result from running the Hierarchical Organization
with branch factor 2 and task transfer factor 1 with
different queue access time delays

4500

4000

3500
'0
.§. 3000
41

:§ 2500
c
0
:;:: 2000
41
Q.

B 1500
u

1000

500

0

1 2 3 4 5 6 7 8 9 10

--+-delay 0, Fixed execution time

---ir-delay 10000, Fixed execution time

___ delay 20000, Fixed execution time



27

The preliminary results (Figure 10) were further investigated by adding a variety of

execution times to 0, 100, 200 , 300, 400, and 500 to study the advantages of the

Hierarchical Organization over the Distributed Organization in terms of load sharing,

Figure 10 shows that in the Distributed Organization with the round robin policy, the

result from running the benchmark is significantly different from the Hierarchical

Organization with a branch factor of 2. This is worse when compared to the Hierarchical

Organization with a branch factor of 8, because the load sharing is better when the number

ofbranches increases.

For the Distributed Organization with the round robin policy, the load sharing is

not possible because the scheduler has no feedback information about the processor(s)
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load. On the other hand, load sharing in both the Centralized Organization and the

Hierarchical Organization is better due to the fact that the processors themselves are

responsible for bringing the task from the queue to execute. Therefore, if a processor has

a short execution time job, there is more chance to get another job to run than with a

processor that is running job with a longer execution time. On the other tradeoff: there is

task queue contention in the Centralized Organization because each processor has to make

the other processors wait while it accesses the queue while the queue accessing can be

made parallel in the Hierarchical Organization.
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CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

The importance of scheduling in multiprocessor environments was discussed in

Chapter I. Chapter II presented a smvey of the literature on scheduling management and

policies, including on introduction to the Hierarchical Task Queue Organization. The

implementation details of the simulation program for each task queue organization were

outlined in Chapter ill. Chapter IV provided the results from running benchmark

programs in each task queue organization.

As expected, the simulation model did not show much difference among the

running times for the three different task queue organizations. This was due to the queue

access time being small compared to the execution time of each task The queue access

time and the execution time do not have much difference (as in the simulation model) in

the real situation for shared memory systems. Therefore, a delay was added to represent

the queue access time to make the simulation model closer to the reality. As a result, the

outcome became much closer to what was expected. The task queue contention problem

is solved by the Hierarchical Organization, while the load sharing aspect is also

29
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maintained, hence making the Hierarchical Organization more effective than both the

Centralized Organization and the Distributed Organization.

5.2 Future Work

In this study, the Hierarchical Organization was investigated based on the first

come first served policy. Other alternatives of queue access in the Hierarchical

Organization can be explored. Another improvement to the Hierarchical Organization

would be to apply different branching factors to each queue node in the task queue

organization. In the case where the system is composed of different kinds of processors (a

heterogeneous system), it appears that the branching factor should be a major factor in

making the system reach the optimum performance.
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APPENDIX A

GLOSSARY

Benchmark: A program or a set ofprograms used for testing purposes.

Clock Cycle per Instruction: The number of clock cycles to execute one instruction of a
program.

Clock Rate: The inverse of clock cycle time, usually measured in Mhz

MlM/m: A queueing system with Markovian or Poisson arriving tasks, Markovian or
Poisson task departures and m identical processors.

Job: A system command, a user program, or a task given to a scheduler for scheduling.

Multiprogramming: Allowing more than one program to be in some state of execution
(not necessarily executing) at the same time.

Parallel Processing: A type of information processing that emphasizes the concurrent
manipulation of data elements belonging to one or more processes solving a single
problem.

Prescheduled: A type of partitioning algorithm in which each processor is allocated its
share ofthe computation at compile time.

Scheduling: An allocation oftasks to the processor(s).

Thread: A lightweight process with a separate program counter and stack of activation
records.
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TRADEMARK INFORMATION

DYNIX/ptx: A registered trademark of Sequent Computer Systems, Inc. DYNlX/ptx is
an operating system for Sequent Computers.

Symmetry S/81: A registered trademark of Sequent Computer Systems.

UNIX: A registered trademark ofAT&T.
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APPENDIXC

PROGRAM LISTING

error handling function

semaphore function written in 'C'
system call used to create a UNIX
process to simulate processors

change ascii input to integer,
used to change the parameter of
the program to a number

system call used to get process
id for the identity of a process,
used when referring to a
processor in the simulation program

system call used to terminate a
process after finishing execution

II from "C" library

II
II
II

II
II
II
II

II
II

II

II
II
II

int atoi(char *);

pid_t getpid();

void exit (int) ;

void perror(char *);

1***************************************************** ***************
FILE: thes.c
FUNCTION: main program, create a Hierarchical Task Queue Object.

Fork processes, one of them create task and add into
Hierarchical Task Queue. The rest function as a processor
to get the task from queue and execute

*********************************************************************/
#include <iostream.h>
#include <memory.h>
extern "C"{

#include <sys/types.h>
#include <sys/times.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <parallel/parallel.h>
#include <sys/wait.h>
#include <sys/types.h>
#include "sem.h"
pid t fork();

#include "queue.h"

#define CHILD 0
int Tr;

int DELAY;

II Queue Header file which is composed
II of the interface and prototype of
II various queues in the simulation
II program

II integer used for Transfer Factor
II of Hierarchical Task Queue

II integer used to specify the amount of
II iterations to create a delay

main(int argc, char **argv)

36
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int JOBSi II number of jobs to be executed

int PROCESSORi II number of simulated processors
II in the system

int BRANCHi II the branching factor of
II each Organization

int pidi II Integer for process id used to
II tell the identity of the simulated
II processors

int statusi
struct tms bufferl, buffer2i
clock t tl,t2i
clock:=t t3,t4i

PROCESSOR=atoi(argv[l]) i

BRANCH

Tr

JOBS

DELAY

=atoi(argv[2]) i

=atoi (argv[3]) i

=atoi(argv[4]) i

=atoi (argv [5] ) i

II get the number of processors used
II for the simulation program

II the number of branches of the
II tree in the queue organization

II the number of transferred jobs from
II one queue to another queue (job
II transfer factor)

II the number of all input jobs to
II be executed

II the amount of job transfer delay

hier_q *ql=new hier q(BRANCH,PROCESSOR) i

- II create Hierarchical task
II queue for incoming jobs
II by specifying how many
II processors and branches are needed

tl=times(&bufferl) i II start timer to record the
II execution time

for(int j=Oij<PROCESSOR+lij++) {
Ilif(j==l) sleep(5) i

if((pid=fork())==-l) { II create a process simulating
II processors

perror("fork") i II call the error system call if
II something happens that cannot fork
II the process

exit (1) i

}
if (pid==CHILD) {

if(j==O){

for(int
Job

II check for the process that
II functions as task producer
II this piece of code is for adding
II a task into the task queue organization

i=Oii<JOBSii++) {
*f=new Job(i) i

ql->enqueue(f) i
II add to ql which is Hierarchical

} II Queue Organization
for(i=Oii<=PROCESSORii++)

ql->enqueue(NULL) i

II send the terminating mark to
II processors to notify them that

exit(l) i II there are no more jobs



}else{ II The other processes get the job
II from queue and execute
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for (;;) {
Job* f=ql->dequeue(j);

II dequeue job from queue
II if null, there is no more
II job in the queue

if (f==NULL) {
exit(l) ;

}
coutcc"in pid "ccgetpid()cc":";

II show the identity
II of the processor

f->execute() ;
II execute job

flush(cout) ;
delete f; II remove already executed job from

II the memory

}
for(int k=O;kcPROCESSOR+l;k++) {

II wait for all processors to finish
II before determining the execution
II time

pid=wait(&status) ;

t2=times(&buffer2) ;
coutcct2-tlcc"\n";

delete ql;

II determine the time used to
II execute input jobs

II deallocate queue from memory
II after finishing

}
/***********************************************************************
FILE: list.h
FUNCTION: Contains Job class, which is the class for each task

simulation, and list class
***********************************************************************/
#ifndef LIST
#include-cmemory.h>
extern "C"{sleep(int);}
class Job{

private:
int data;

public:
Job(int i) {data=i;}
void *operator new(size_t sz) {

II each task needs to be accessible
II from every process, so the new
II operator is overwritten to put
II the task into shared memory

Job *p=(Job *)shmalloc(sz);
return p;

}
void operator delete (void *p) {

II remove the task from shared
II memory after finishing execution

shfree((char *)p);

};

}
void execute(); II execute the task



struct slink{
Job *thread;

slink* next;

slink (Job* a) {
thread=a;
next=this;

II each element in the queue list
II is composed of a pointer
II to a task

II the pointer to next node

II constructor with a created job
II as the first job in the list
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void *operator new(size_t sz) {
II put the list into shared memory
II to make accessible to all processors

slink *p=(slink *)shmalloc(sz);
return p;

}
void operator delete(void *p) {

II remove list from shared memory
II after finishing

shfree((char *)p);

};

II the list for the node queues which are not the root
class JobList{

private:
slink* last;

public:
void insert (slink* a) ;11 insert job at the front for

II enqueuing

void append(slink* a) ;11 append job at the end of the list
Job* get(); II get a job from the list

void clear() { last=NULL; }
II clean the list

JobList () { last=NULL; }
II constructor

JobList (slink* a) { last=a- >next=a

void *operator new(size_t sz) {
II overwritten new operator to put
II the object into shared memory

JobList *p=(JobList *)shmalloc(sz);
return p;

void operator delete(void *p) {
II overwritten delete operator to clear
II shared memory

shfree((char *)p);
}
slink* transfer(int i) ;

II move i jobs from list at
II one time for transferring jobs
II down to the Hierarchical
II Organization

} ;

II The list in the root queue, which allows the task producer and the
II processors, that get tasks from queue to execute, to be able to work
II concurrently.
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class mainList:public JobList{
private:

slink *head, *tail;
public:

mainList() ;
-mainList() ;
void insert (slink&a) ; II put job in the list in the root

II queue
slink* remove(); II get job from the list in the

II root queue

void *operator new(size_t sz) {
II put the list into shared memory
II to be accessible from all
II processors

mainList *p=(mainList *) shmalloc (sz) ;
return p;

}
void operator delete (void *p) {

II remove the list from shared
II memory after finishing

shfree((char *)p);

} ;

#define LIST
#endif

1***************************************************** ******************
FILE: list.c
FUNTION: Contains the list implementation from which the processors

can insert, append, transfer, and get the job.
************************************************************************

******/
#include <iostream.h>
#include <memory.h>
extern "C"{ II from the C library

#include <sys/types.h>
#include <time.h>
#include <sys/ipc.h>
#include <sys/shm.h> II for shared memory environment
#include <parallel/parallel.h>

II for parallel system function

}
pid_t getpid();

#include "list.h"

II Execution instruction for each job inserted in the queue
void Job: :execute()
{

double random(double

int normalize(double

struct tm *t;

time t clock;
double seed;
int low=O, high=3;

*seed) ;
II random function to generate
II the random number to let the
II processor sleep for a random amount
II of time simulating computation

*seed,int lower, int upper);
II to make random function
II non-uniform
II timer for getting the seed for the
II random number generator

II the lower and upper bound of the result
II from random function
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time (&clock) ;
t=localtime(&clock) ;
seed=t->tm_sec;

II get time for picking seed

sleep(normalize(&seed,low,high)) i

II simulating computation by sleeping
II for a random amount of time

cout«data«"\n"i

II The list in the root queue, which allows the task producer and the
II processors, that get tasks from queue to execute, to be able to work
II concurrently.
mainList: :mainList()
{

slink* end=new slink (NULL) i

head=tail=endi

delete(tail) i

}
mainList::-mainList()
{

}

II remove from memory after finishing

void mainList::insert(slink &a)
II put the coming job into the list

*tail=ai II add node to the end of the list

tail->next=end;
tail=endi

slink* end=new slink (NULL) i

II
II

II

create space for the next new coming
job

add to the end of the list

slink* mainList: :remove()
{

slink *ai
if (head->thread==NULL)

else{
a=head;
head=head->nexti
return ai

II bring job from the list to execute

return NULLi
II empty, no job in the list

II remove the job at the head
II and move the pointer to the next

void JobList: :insert(slink* a)11 insert job to the end of the list
{

if(last)
a->next=last->nexti

else
last=ai

last->next=ai

II if there is already a job in the
II list, put the coming job next to it

II if there is no job in the list
II the coming job is the last

II if there is already a job in the
II list, put the coming job on head

if(last) {
slink* tmp=a->nexti
a->next=last->nexti

void JobList::append(slink* a)11 append job to the head of the list
{
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last->next=tmp;
}
last=a;

slink* JobList::transfer(int JobAmount)
II transfer a number of jobs down to the
II Hierarchical Organization queue

if (last==NULL) return NULL;
II empty list

slink* f=last->next;
slink* m=last->next;
if(last->next==last) {

last=NULL;
return m;

II if there is only one job in the
II list, return that job

if (m->next==last) {
m=last;
last=NULL;
return m;

}else
m=m->next;

}
for(int i=l;i<JobAmount;i++) {

II create a
II that are
II from the

small list of the jobs
going to be removed
list

}
last->next=m->next;
m->next=f;
return m; II return the created list

Job* JobList: :get()
{

II used in leave node of hierarchical
II task queue to dequeue the job and
II execute

prepare the thread in the node
to be executed
delete the node
return the thread to the caller to
be executed

empty list, quit
get the node from the list
adjust list after the dequeue

II
II
II
II
II

NULL;
II
II
II

if (last==NULL) return

delete f;
return i;

slink* f=last->next;
if(f==last)

last=NULL;
else

last->next=f->next;
Job* i=f->thread;

list interface
transfer job factor from command line
delay access time from command line

II
II
II

/***********************************************************************
FILE: queue.h
FUNCTION: Contains the declaration of the queue structure.
***********************************************************************/
#ifndef QUEUE
#include-"list~h"

extern int Tr ;
extern int DELAY

II base class of queue to collect the
II common characteristic between root queue
II and the other queues in the Hierarchical
II task queue
class baseQueue{

protected:
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static int count; II number of queues in the organization
class baseQueue *parent;

II parent of each node in the
II Hierarchical task queue

int semid; II semaphore id for locking each
II queue access the number of
II processors below this queue

operator new (size t sz);
II make the queue accessible to
II all processor by putting itself
II into shared memory

operator delete (void *p);
II remove from shared memory after
II finishing

SetProcBelow(int proc) {ProcBelow=proc;};
II set the number of processors below
II this queue

void

void

int ProcBelow;
public:

void*

virtual slink* transfer()=O;
II transfer job to the child queue or
II processor in the case if they
II have no job to be executed

};

II transfer a number of jobs
II from the queue
II this number is used if the
II queue is non-leaf node
II remove only one job from the
II queue, this is used if the queue
II is the leaf node

II key to access the semaphore
II list of jobs in each node of the queue

GetJob() ;Job*

II class of the queue that is not at the root of
II task queue organization
class queue:public baseQueue{

int sem key;
JobList-*list;
public:

queue(baseQueue *papa);
-queue() ;
slink* transfer();

};

IIClass of the root queue of the hierarchical task queue
class rootQueue:public baseQueue{

int sem keyl; II two semaphores for the concurrent job
int sem-key2; II addition and job removal
mainList *list; II list of jobs in the root queue
public:

rootQueue() ;
-rootQueue() ;
void AppendJob(Job*a) ;11 insert job into this queue
slink* transfer(); II remove many jobs down to the

II hierarchical task queue
};

II Hierarchical Task Queue Organization
class hier_q{

private:
int sem id;
class baseQueue **~array;

II array of all child queues in
II the organization

class baseQueue **~access;
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II array of construction of queue
int leaf; II keep the number of processors in the

II system which are at the leaf node
int sub_queue; II the number of queues in the

II organization
int dept (int,int) ; II function to determine the depth

II of the organization
int proc_numb(int); II function to determine the number of

II processors in the organization
int number queue (int) ;11 function to determine the number of

- II queues in the organization
int create hier(baseQueue *,int);

- II create hierarchical queue

new (size t sz);
17 make the queue organization
II from processors

operator delete(void *p);
II remove the queue organization
II from shared memory after finishing

dequeue (int) ; II insert job into queue organization
enqueue(Job *); II remove job from queue organization

void

Job*
void

public:
hier q(int,int);
-hier q () ;
void*-operator

};
#define _QUEUE_
#endif
/********************************************************************

}
#include "queue.h"

#include <sys/wait.h>
#include "sem.h"
void exit (int) ;
pid_t getpid () ;

II from C library

II interprocess functions
<sys/shm.h> II shared memory functions
<parallel/parallel.h>

II some shared memory functions

II semaphore functions

II get process id

FILE: queue.c
FUNCTION: Contains the implementation of queue.
*********************************************************************/
#include <iostream.h>
#include <memory.h>
#include <math.h>
extern "C"{

#include <sys/types.h>
#include <sys/ipc.h>
#include
#include

II overwritten new operator to put the object into the shared memory
void* baseQueue: : operator new (size t sz)
{ -

baseQueue *p=(baseQueue *)shmalloc(sz);
return p;

shfree ((char *) p) ;

II overwritten delete operator to remove the object from the shared
II memory
void baseQueue::operator delete (void *p)
{

}
II initialize the number of queues to zero before counting the number of
II node, on which we use recursive function, into the queue
int baseQueue::count=O;
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II constructor of each queue in the hierarchical task queue organization
II which is not at the root
queue: : queue (baseQueue *papa)
{

parent=papa;
list=new JobList;
sem key=count++;
semId=sem open((key t)54041);

- - II open the lock to be able to
II use semaphore

delete list;

}

II destructor of each queue in hierarchical task queue organization
II which is not at the root
queue::-queue()
{

}

II return job from this queue
Job* queue: :GetJob()
{

sem_wait(semid, sem_key); II lock the queue first so that there
II is no other processor to be able
II to access this queue

Job *thread=list->get(); II get job from the list member
if (thread==NULL) { II if the list member is empty,

II transfer jobs from the parent queue
slink* f=parent->transfer();
if (f==NULL) { II if still empty, that means no

II more job to execute, so exit
sem signal (semid,sem key);
exit(l); -

}
list->append(f) ;

thread=list->get() ;

II append the list of jobs from parent to
II local list
II re-dequeue the job from list

}
sem signal (semid,sem key) ;11 release lock
return thread; -

II remove a number of jobs from queue for transferring to the
II child queue below
slink* queue::transfer()
{

i++;while (i<DELAY)
if (f==NULL) {

int i=O;
sem_wait(semid,sem_key); II lock the queue first so that no

II other processors can access this queue
slink* f=list->transfer(ProcBelow*Tr);

II get a number of jobs to
II be transferred down the tree
II delay access to the queue
II if the local list is empty,
II transfer again from its parent node

if (parent==NULL) f=NULL;
II if this queue is at root,
II that means all jobs are executed

else{
slink* g=parent->transfer();

II transfer jobs from its parent
if (gl=NULL) {

list->append(g) ;
II append to local list
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f=list->transfer(ProcBelow*Tr) ;
II prepare list of jobs for its child

}
sem signal (semid,sem key) ;11 unlock the queue to let other

- - II processors access the queue
return f; II return the list of jobs to its child

to zero because there is
the beginning

II no parent, so it is set to zero
II create local job list
II reserve semaphore used for the lock

II constructor for the queue at the root of hierarchical task queue
rootQueue: :rootQueue()
{

parent=NULL;
list=new mainList;
sem keyl=count++;
sem-key2=count++;
semld=sem open( (key t)54041);
sem wait (semid, sem-keyl) ;11 initialize

- - II no task at

delete list;

II destructor for the queue at the root of hierarchical task queue
rootQueue: :-rootQueue()
{

}
II move jobs from the root queue down to the tree to child queue
slink* rootQueue::transfer()
{

task=list->remove() ;
if(i==O){

if (task==NULL) {
f=NULL;
break;

}else f=task;
}else{

if (task==NULL)
break;

II create head of the jobs list

II only a few jobs in the root queue
II not as many as expected to be
II transferred

task->next=f->next;
II add a job to the existent list

else

slink *f,*task;
int i=O;
sem wait (semid, sem key2) ;11 mutual exclusion among processors
l*if(parent==NULL)*7 while ( i<DELAY) i++;
for(i=O;i<ProcBelow*Tr;i++) {

sem wait (semid, sem keyl);
- - II wait till there is a job in

II the root queue
II remove a job from the root queue

II no job in root queue

}
f->next=task;
f=task;

}
sem_signal(semid, sem key2);

- II mutual exclusion among processors
return f;

}
II enqueue incoming job to the root queue or to the hierarchical task
queue
void rootQueue: :AppendJob (Job* a)
{

slink* f=new slink(a); II create the node containing the
II incoming job
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list->insert(*f); II insert created node to the local list
sem signal (semid,sem keyl);

- - II signal the semaphore to notify the
II consumer processors

II Hierarchical Task Queue Organization
hier_q: :hier_q(int branch,int processor)
{

leaf=processor;
sub queue=number queue (branch) ;

- - II determine the number of queue needed
II to be created

sem id=sem create((key t)54041,1,sub queue+l);
- - - II create Tock

~array=(baseQueue **)shmalloc(sizeof(baseQueue *)*sub_queue);
II allocate array of queues in
II the organization to be easy to refer to

~access=(baseQueue **)shmalloc(sizeof(baseQueue
*)*proc_numb(branch)) ;

create_hier(NULL,branch); II create Hierarchical Task queue

II Destructor
hier q: :-hier q(){- -

for(int i=O;i<sub queue;i++)
- II

delete q array[i]; II
sem rm(sem id); II
shfree((char *)~array); II
shfree((char *)~access); II

deallocate all queue of task
task queue organization
free the semaphore
free the space used to keep
reference of queues

II overwritten new operator to put object into the shared memory
II in order to be accessible from all processors
void* hier q: : operator new (size t sz){- -

hier_q *p=(hier_q *) shmalloc (sz) ;
return p;

shfree((char *)p);

II overwritten delete operator to
void hier q::operator delete(void
{ -

}

remove object from the shared memory
*p)

II check depth of the tree to help calculating the number
II of nodes in the hierarchical task queue
int hier_q::dept(int number,int branch)
{

}
return count;

int count=O; II
int amount=l;
while (amount<number) { II

amount=amount*branch; II
count++; II

II

depth initially is 0

loop until the amount is
greater than number which is the number
of leaves in the tree

return the depth
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II calculate the number of leaf nodes of the hierarchical task queue
II to determine the number of processors that can access the queue
int hier q: :proc numb(int branch){ - -

int i;
static int key=O;
static int a=O;
static int count=O;

if (a==dept (leaf,branch) ) { II this shows that the recursive function
II reaches the leaf node

count++; II increment the number of leaf nodes
return count+l;

}
for(i=O;i<branch;i++) {

a++;
proc_numb(branch) ;

a--;

II recursive until the function reaches
II the leaf node

}
return count; II return the number of leaf nodes

}
II create Hierarchical Organization
int hier_q: :create_hier(baseQueue *parent,int branch)
{

int i;
static int key=O;
static int a=O;
static int count=O;

baseQueue *currenti

can

int deep=dept(leaf,branch) i

if (parent==NULL) {
~array[key++]=current=new rootQueue() i

II create the queue which
II functions as the root queue in
II the hierarchical task queue

~access[O]=currenti II put the root to the array so
II the task we can producer processor
II access the root queue

}else
~array[key++]=current=newqueue (parent) i

II create the queue which
II function as queue in each
II node in the hierarchical task
II queue

current->SetProcBelow((int)pow(branch,deep-a)/branch) ;
if (a==deep) {

~access[l+count++]= currenti
return count+li

}
for(i=Oii<branchii++) {

a++i
create hier(current,branch) i

- II recursively create queues in
II the hierarchical task queue

a--i
}
return count+li

II calculate the number of queues in the organization
II to determind how many queues have to be created
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int hier_q::number_queue(int branch)
{

int count=O,i:
int d:
d=dept(leaf,branch) : II determind the depth of the

II hierarchical task queue
for(i=O:i<=d:i++) {

count+=(int)pow(branch,i)
}
return count:

II put the job into the Hierarchical Task Queue Organization
void hier q: : enqueue (Job *f)
{ -

rootQueue* temp:
temp=(rootQueue*)~access[O]i

temp->AppendJob(f) i

II remove the job from the Hierarchical Task Queue Organization
Job* hier q: : dequeue (int id}
{ -

queue* temp:
temp=(queue*)~access[id]i

return temp->GetJob():

*1
is*1

*1
*1
*/
*1
*/
*/

after

which
create semaphore
open the semaphore
already create
remove semaphore
close the semaphore
finishing use
lock semaphore
unlock semaphore

int sem rm(int):
int sem=close(int}:

int sem wait (int,ushort) ;
int sem-signal(int,ushort):
int sem=op(int ,int):

/***********************************************************************
FILE: sem.h
FUNCTION: contains a prototype of the semaphore function to be used

in the simulation program
***********************************************************************/
int sem create(key t, int, int);

- - 1*
int sem_open(key_t); 1*

1*
1*
1*
1*
1*
1*

1***************************************************** ******************
FILE: sem.c (adapted from [Steven 90])
FUNCTION: Contains a semaphore implementation to used as a lock

mechanism in the simulation program
************************************************************************

**1
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

#include
extern int

<errno.h>
errno;

#define BIGCOUNT 10000 1* initial value of process counter */

1*
* define the semaphore operation arrays for the semop(} calls
*1



op_endcreate[2] = {
/* decrement [1] (proc counter) with* /
/* undo on exit */
/* then decrement [2] (lock) back to 0 * /

static struct sembuf
2, 0, 0,
2, 1, 0

} ;
static struct sembuf

1, -1,0,

2, -1,0
} ;

op_lock[2] = {
/* wait for [2] (lock) to equal 0
/* then increment [2] to 1 - this
/* locks it

*/
*/
*/
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static struct sembuf
1, -1, 0

} ;

static struct sembuf
2, 0, 0,
2, 1, 0,

1, 1, 0
} ;

static struct sembuf
2, -1, 0

} ;

static struct sembuf
0, 99, 0

} ;

op_open[l] = {
/* decrement [1] (proc counter) with * /
/* undo on exit */

op_close[3] = {
/* wait for [2] (lock) to equal 0 */
/* then increment [2] to 1 - this */
/* locks it * /
/* then increment [1] (proc counter) */

op_unlock[l] = {
/* decrement [2] (lock) back to 0 * /

op op[l] = {
- /* decrement or increment [0] with */

/* undo on exit */
/* the 99 is set to the actual amount*/
/* to add or subtract (positive or */
/* negative) */

/***********************************************************************
* Create a semaphore with a specified initial value.
* If the semaphore already exists, we don't initialize it (of course) .
* We return the semaphore ID if all OK, else return -1.

***********************************************************************/

int
sem create (key, inieval, number)
key-t key;
int- initval; /* used if we create the semaphore */
int number;
{

int i;
register int
union semun {

int val;
struct semid ds
ushort -

semctl_arg;

if (key == IPC PRIVATE)
return (-1) ;

else if (key == (key t)
return(-l); -

again:

id, semval;

*buf;
*array;

/* if key=IPC PRIVATE, */
/* it will create a private semaphore */
-1)
/* value of key error */
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if (id = semget(key, number, 0666 I IPC CREAT)) < 0)
return(-l); /* permission problem or tables full */

semctl arg.val = initval;
for(i=O;i<number;i++) {

if (semctl(id, i, SETVAL, semctl arg) < 0)
perror ("can SETVAL [0] ") ;

}
return (id) ;

int
sem open(key)
key-t key;
{ -

register int id;

if (key == IPC PRIVATE)
return (-1) ;

else if (key == (key_t)
return (-1)

/* if key=IPC_PRIVATE, */
/* it will create a private semaphore */

-1)
/* value of key error */

if (id = semget(key,
return ( -1) ;

0, 0)) < 0)
/* doesn't exist, or the system */
/* resource full */

return (id)

/***********************************************************************
* Remove a semaphore.
* remove semaphore from the system

***********************************************************************/

sem rm(id)
int- id;
{

if (semctl(id, a, IPC RMID, 0) < 0)
/* use IPC RMID to remove */

perror ("can 't IPC_RMID")

/***********************************************************************
* Close a semaphore.
* this function used after we finish using it but do not want to remove
* it from the system because some other process still use it

***********************************************************************/

sem close(id, number)
int- id;
int number;
{

register int
int i;

sem_rm(id)

semval;

/***********************************************************************
* Wait until a semaphore's value is greater than a, then decrement
* it by 1 and return.
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******************************************~******************~**********

/

sem wait(id, Sem_No)
int- id;
ushort Sem No;
{ -

}

/**********************************************************************
* Increment a semaphore by 1.
* Dijkstra's V operation. Tanenbaum's UP operation.

***********************************************************************/

sem signal (id, Sem No)
int- id; -
ushort Sem No;
{ -

}
/*add 1 to the semaphore with id=Sem No */

/**********************************************************************
* General semaphore operations. Increment or decrement by a
* user-specified amount (either positive or negative;
* the amount can't be zero) .
**********************************************************************/

sem op(id, value, Sem_No)
int- id;
int value;
ushort Sem No;
{ -

int temp;
char s [80]

if ( (op_op [0] .sem_op

if

value) == 0)
/* if the value=O that */
/* means no operation */

perror("can't have value == 0");
op op[O] .sem num=Sem No;

- - - /* select the semaphore */
(semop(id, &OP_op[O] , 1) < 0)

/* do the operation */
/* by having the id as an */
/* index specifying whether */
/* wait or signal operation */

perror(s)
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