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ABSTRACT 

This dissertation research consists of three related studies evolving around the 

movement kinematics of mouse-mediated pointing task.  Movement time and error rates are 

the common performance measures used in similar studies.  However, the performance-

oriented approach is not capable of providing information about what happens “during” the 

movement.  It is believed that much can be learned from studying the movement process.  

Investigation of movement process is often done by studying its kinematics, by which can be 

characterized using various measures.  However, despite the common belief, it is suspected 

that certain kinematic measures do not have any relationship with movement performance.  

Therefore, the first study was conducted to determine the kinematics-performance 

relationship of a mouse pointing task. 

Of greater interest are the effects of age and functional abilities on the kinematics of 

aiming movement.  The age effect is often identified as the cause of reduced performance.  

However, some argue the direct cause of such a reduction is actually due to age-related 

changes in functional abilities such as psychomotor ability.  Based on that notion, it is 

hypothesized that the age effect on mouse use will become negligible if the effect of 

psychomotor ability is considered in parallel.  Thus, the second study investigated the effects 

of age on mouse use, including after the psychomotor ability is included.  Since good eye-

hand coordination is required for mouse use, the research will be incomplete without 

considering how varying degree of visual ability can affect movement kinematics.  Following 

along that line, the third study determined kinematic differences between people with low 

vision and those with normal vision. 
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Results from the first study confirmed the suspicion that not all kinematic measures 

reported in the literature were related to performance.  For instance, although peak velocity 

is the most reported measure in the literature, it does not have any effect on performance.  

Kinematic measures correlate with performance are mainly temporal in nature, such as time 

to peak velocity, time to peak acceleration, and time from peak velocity until the end of 

movement.  In the second study, as expected, age effects were detected in various kinematic 

measures.  However, further investigation revealed the differences could in fact be attributed 

to psychomotor ability, but not the age effect per se.  In general, the results confirm the 

notion of age being a surrogate variable, and that the causal relationship is in fact more 

directly related to age-related changes in psychomotor ability.  In the third study, kinematics 

of the initial submovement for the low vision and the normal vision groups are stereotypical.  

However, the homing phase was significantly different between the two groups. 
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CHAPTER 1 

INTRODUCTION 

Despite the advances of computing technology, the mouse remains a primary, if not 

the most important device for interacting with computers.  It has proven to be a useful tool 

in various computing tasks, whether it is browsing the Web or editing text documents.  The 

direct manipulation paradigm offered by the mouse is so intuitive that even the relatively 

new touchpad had to be redesigned to match that of a mouse (MacKenzie, 2003).   

Successful use of a mouse requires well-coordinated motor movements, as well as 

good visual condition.  From a human control system point of view, mouse use is a closed-

loop system characterized by high-level interaction between motor control (output) and 

visual function (input).  In other words, the cursor on the screen provides visual feedback to 

the user who may subsequently control the mouse to produce desired results.  Nevertheless, 

this description is rather simplistic because researchers have shown that the movement is 

more complex than it seems. 

An obvious approach to study motor control and visual function concurrently is by 

observing the eye-hand coordination of the user.  Eye-hand coordination is a generic term 

used to describe the spatial and temporal coupling of a user’s hand and eye movements 

when performing tasks such as using a computer mouse.  Studies of eye-hand coordination 

are not uncommon in human-computer interaction (HCI) research.  Smith, Ho, Ark, & Zhai 

(2000) superimposed cursor positions on eye gaze positions in order to gain insights about 
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the eye-hand coordination of mouse users.  Although mixed results were obtained, the study 

by Smith and colleagues nevertheless represents a rudimentary but yet a logical extension of 

basic research in eye-hand coordination to the HCI domain. 

In the context of the computer mouse, there are various user attributes affecting 

performance.  A variable of significant interest is the age effect.  However, Birren & Renner 

(1977) and Salthouse & Maurer (1996) suggested that, in most cases, the age effect is only a 

surrogate variable.  It is variables such as knowledge, skills, and abilities that have direct 

causality relationship with performance differences.  Such conjecture has been confirmed by 

other researchers.  For instance, Czaja & Sharit (1998) and Smith, Sharit, & Czaja (1999) 

found that the age effect alone did not account for differences in performance of computing 

tasks, but it was the age-related changes in functional abilities that caused such differences.   

Perhaps a more valid approach is to investigate factors that directly affect 

performance (e.g., psychomotor ability and visual functions).  Degraded visual conditions 

due to pathologies such as macular degeneration have been known to affect visual ability.  

Therefore, being an intertwined component of most visuomotor tasks, visual condition is 

expected to contribute to performance differences in mouse use.  Similar arguments can also 

be made in regard to the effects of psychomotor ability, whereby conditions such as cerebral 

palsy would certainly be detrimental to mouse use performance. 

The effects of psychomotor ability have been considered in many studies involving a 

mouse (e.g., Czaja & Sharit, 1998, Hwang, 2001; and Jacko, Vitense, & Scott, 2003).  The 

effects of visual ability on mouse use have also been studied (e.g., Jacko, Dixon, Rosa, Scott, 

& Pappas, 1999; Jacko et al., 2003; Jacko, Barreto, et al., 2000; and Jacko, Rosa, Scott, 
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Pappas, & Dixon, 2000).  Traditionally, endpoint performance measures such as movement 

time and error rate are analyzed in order to make empirical comparisons.  However, such a 

performance-oriented approach is quite limited because it does not offer information as to 

why a particular observation is obtained.  This approach is incapable of providing sufficient 

information regarding the movement process (Chua, Weeks, & Goodman, 2003; Douglas & 

Mithal, 1997; MacKenzie, Kauppinen, & Silfverberg, 2001; and Smith, Ho, Ark, & Zhai, 

2000), and consequently additional insights may be overlooked. 

An alternative to the performance-oriented approach is the process-level approach, 

where the process itself is investigated.  Jagacinski, Repperger, Moran, Ward, & Glass (1980) 

conducted one of the first studies of cursor movement by performing a micro-analysis on 

Fitts’ law using cursor movements controlled by a joystick.  More recent work has led to the 

process approach for studying pointing devices. MacKenzie, Kauppinen, & Silfverberg 

(2001), Mithal & Douglas (1996), and Phillips & Triggs (2001) all have demonstrated that 

there is more information to be gained using such an approach.  The process-level approach 

also has been recently reported in studies that are more applied in nature, including those 

with interest in special populations such as the elderly and people with disabilities (e.g., 

Hwang, Keates, Langdon, & Clarkson, 2004; and Ketcham, Seidler, Van Gemmert, & 

Stelmach, 2002). 

A related area of research is the modeling of aiming movement.  Mouse tasks are 

mainly goal-directed involving aimed movements.  First proposed in a doctoral dissertation 

in the late 19th century, a two-component model of aimed movements posits that the 

movement consists of two phases: the ballistic or open-looped phase in the beginning, 
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followed by the homing phase that is characterized by visually-controlled, overt 

discontinuities in the movement (Elliott, Helsen, & Chua, 2001).  The two-component 

model is currently accepted by many researchers as the most adequate model that describes 

aiming movement.  However, data used in similar studies were usually not stratified 

according to individual differences (e.g., age, psychomotor ability, and visual function).  

Therefore, little is known as to how the two-component model differs for individuals with 

varying degree of abilities. 

In summary, while many factors affecting mouse use performance were uncovered 

from past research, perspectives from “during” the movement were rarely offered.  

Therefore, it was determined that the process-level approach could provide additional 

insights on mouse use based on understanding the effects of age, psychomotor ability, and 

visual ability.  While the process-level approach is not unprecedented, the novelty of the 

current study lies in the fact that individual differences are taken into consideration for 

investigating mouse cursor movement.  Also, it is believed that by identifying the differences 

in the process of aiming movement in respect to age, psychomotor ability, and visual ability 

can facilitate a greater understanding of mouse use from a more diverse population. 
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CHAPTER 2 

RESEARCH KNOWLEDGE BASE 

Mouse use is a process that is influenced by various user abilities, albeit to varying 

extents.  Among these abilities is motor control.  This has to do with effective movement of 

the body through utilization of skeletal muscles, the nervous system, and joints.  

Electromyography (EMG), a technique for detecting muscular electrical potentials, is often 

used for measuring motor activities.  Studies of motor control often overlap with cognitive 

function, as evidenced in Willingham’s (2004, p. 287) definition of motor control as the “. . . 

ability to plan and execute movements.”  Another important aspect of mouse use is visual 

ability.  Vision is the sensory ability that allows detection of light sources, and subsequently 

perception of visual information.  The Snellen visual acuity test and visual field test are some 

common psychophysical techniques for measuring visual ability.  Psychomotor ability also is 

also believed to play a vital role in mouse use performance; Jacko & Vitense (2001) 

suggested psychomotor ability to be a hybrid of cognitive, perceptual, and physical abilities. 

The Venn diagram in Figure 1 illustrates an idealistic representation of the 

relationships between various human abilities in the context of mouse use performance.  It 

should be noted that the diagram scale does not suggest the magnitude of the relationships.  

The diagram posits that variability of mouse use performance may be explained by three 

aspects of human ability, namely: motor control, vision, and cognitive ability.  These abilities 

do not act independently but they can complement each other.  Rather, various functional 
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abilities are integrated with one another to various extents, as depicted in Figure 1.  For 

instance, the intersection of motor control and cognitive ability can be seen as efferent 

motor control where the motor movements are activated as a result of cognitive processing.  

While it is unlikely that coordination between vision and motor control does not involve 

cognition, the two-way intersection between the two functional abilities can be seen as a 

representation of visuomotor function.  Generally, visual perception requires some level of 

cognitive processing; thus it is represented in the intersection between vision and cognitive 

ability.  Finally, psychomotor ability, which has been suggested as a hybrid of all three 

functional abilities (Jacko & Vitense, 2001), is represented in the three-way intersection. 

 
 

Figure 1.  Functional Abilities Influencing Performance of Mouse Use. 
 

2.1. Psychomotor Ability 

Psychomotor generally describes actions that require coordination of various parts of 

the body.  Executive control is needed to facilitate such coordination of multiple body parts. 

This view was reinforced by Jacko & Vitense (2001) who posited that cognitive function is a 



7 
 
 
 

component of psychomotor ability, and that psychomotor ability is in fact composed of a 

combination of cognitive, perceptual, and physical abilities.  Furthermore, Fleishman (1972) 

differentiated psychomotor skill from psychomotor ability.  Ability is referred to as a general 

personal trait that is developed during childhood and adolescence.  It is relatively enduring 

under normal circumstances.  On the other hand, skills pertain to the levels of proficiency 

specific to the task criterion itself.   

There are infinite tasks where good psychomotor ability is necessary.  In the context 

of HCI, psychomotor tasks can be as simple as reaching out to push the power button, or as 

complex as typing on a keyboard.  However, with adequate training, one can type on the 

keyboard with only modest effort.  Fleishman (1975) differentiated psychomotor ability from 

psychomotor skill. Ability is referred to as a general personal trait that is developed during 

childhood and adolescence.  It is relatively enduring under normal circumstances.  On the 

other hand, skills pertain to the levels of proficiency specific to the task.  To illustrate the 

difference, finger dexterity is a type of psychomotor ability that has been linked to the 

psychomotor skill of keyboard typing (Knight & Salvendy, 1992). 

2.1.1. Fleishman’s Taxonomy of Elemental Psychomotor Ability 

Similarly to the cognitive domain, some researchers believe that psychomotor ability 

can be classified into several elemental components.  There have been many attempts to 

identify and to classify these components.  Of these, Fleishman’s taxonomy is the most 

extensive attempt (Merrill, 1972).  Originally developed for use in Air Force personnel 

training and selection, the works by Fleishman and colleagues are based on the assumption 

that certain abilities are required for specific tasks.  Therefore, they believed performance 

could be improved if the task was matched with the required abilities.   
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Fleishman’s, taxonomy was developed using factor analytic methods (Fleishman, 

1975).  Its development process spanned many years, and several hundred laboratory tasks 

were investigated.  The development process began from a large dataset collected from 

laboratory tasks.  The data were then treated as the variables for the subsequent factor 

analysis.  After a fair amount of computation, common variables were delineated from the 

dataset.  The common variables were considered to account for the most variance in task 

performance, and to represent most, if not all, aspects of psychomotor domain.  Multiple 

factors were identified based on the loading of the variables, and subsequently the factors 

were defined and labeled semantically to reflect the communality among the variables.  

These factors were then considered as the elemental components of psychomotor ability.  

Collectively, the labels and pertinent definitions form Fleishman’s taxonomy. 

Depending on the version consulted, Fleishman’s taxonomy contains ten or eleven 

independent psychomotor abilities.  Fleishman & Reily (1992) listed ten abilities: (1) control 

precision, (2) multilimb coordination, (3) response orientation, (4) rate control, (5) reaction 

time, (6) arm-hand steadiness, (7) manual dexterity, (8) finger dexterity, (9) wrist-finger speed, 

and (10) speed-of-limb movement.  These abilities can be assessed using an array of simple 

laboratory tests.  For instance, control precision can be assessed using the rotary pursuit test; 

multilimb coordination can be measured using a two-arm coordination test.  Table 1 

describes the elemental psychomotor abilities as outlined in the taxonomy, as well as the 

appropriate test equipment. 
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Table 1.  Description and Test of Elemental Psychomotor Ability (Fleishman & Reily, 
1992). 
Psychomotor Ability Description Test Equipment 

Control precision • Ability to make highly controlled and precise 
adjustments that are quick or continuous. 

Rotary pursuit test 

Multilimb 
coordination 

• Ability to coordinate movements of two or 
more limbs in a rather static position.   

• Does not involve movements when body is in 
motion. 

Two arm coordination test 

Response orientation • Ability to respond quickly to two or more 
signals, by choosing between two or more 
movements.   

• Also known as choice reaction time. 

Multi-choice reaction time 
apparatus 

Rate control • Ability to adjust equipment control in response 
to change of speed or direction of a target.  

• Only applies to target that is unpredictable. 

Bassin anticipation timer 

Reaction time • Ability to respond to a single signal. 

• Also known as simple reaction time. 

Multi-choice reaction time 
apparatus 

Arm-hand steadiness • Ability to keep arm and hand steady, either 
while moving the arm or while both arm and 
hand are in static position. 

Steadiness tester (groove or 
hole type) 

Manual dexterity • Ability to handle fairly large objects with one 
or both hands. 

• May also include arm-hand movements. 

Minnesota manual dexterity 
test 

Finger dexterity • Ability to make skillful, coordinated finger 
movements. 

• Usually involves handling of small, pin-sized 
objects. 

Purdue pegboard test 

Wrist-finger speed • Ability to make fast and repeated movements 
of the fingers, hands, and wrists. 

• May involves some degree of eye-hand 
coordination. 

Tapping board 

Speed-of-limb 
movement 

• Ability to make quick, gross movements of the 
arms or legs. 

Toggle switch device 

 

Researchers have found the taxonomy useful in several ways.  Knight & Salvendy 

(1992) were among the first authors to suggest the linkage between manual computer tasks 

and elemental psychomotor ability.  Even though Fleishman’s taxonomy was originally 

developed for personnel selection, it was argued that the taxonomy also was useful for 

identifying the skills required for performing computer tasks.  For instance, it was suggested 
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that finger dexterity and wrist-finger speed were required for keyboard typing, whereas 

mouse use was linked to control precision and arm-hand steadiness.  Unlike highly-

controlled settings such as the in the military, it is not feasible to select users to match the 

psychomotor requirements of the task in computing environments.  Thus, a more 

appropriate approach is to provide alternative interaction techniques to accommodate users 

with varying degrees of psychomotor ability. 

Fleishman’s taxonomy also can be used to characterize individual differences.  There 

has been some interest among researchers in creating a new framework for developing user 

interfaces that are adaptable to user needs.  This effort is of particular interest in the area of 

designing for special populations.  Jacko & Vitense (2001) suggested that user profiles, in 

addition to storing information such as user skills, requirements, and preference, should also 

include a database of user abilities.  It was further argued that pathological information, such 

as the type of impairment, is unable to capture real user needs.  Rather, the knowledge of 

impairments should be used to construct a database of functional abilities.  Existing 

classification of psychomotor ability and other functional abilities (i.e., cognitive, perceptual, 

and physical) would allow researchers to model users more systematically.  It was further 

argued that by including information on user abilities a more comprehensive user profile can 

be constructed, which in turn, facilitates the implementation of a more effective adaptive 

user interface. 

Fleishman’s taxonomy also may be used as a reference tool for reporting study 

participants’ psychomotor ability as part of their demographic data.  Phenomena observed in 

behavioral studies may be tied to the population from which study participants are drawn.  
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Therefore, it is important to include demographic and relevant information when reporting a 

study.  This practice allows readers to scrutinizing the generalizability of the study outcomes.  

Some of the most common demographic information reported include age and gender.  

Reporting information about participant characteristics also provides a basis for critical 

comparison of one study to another.  Similar goals also can be achieved by reporting 

participants’ functional abilities, such as psychomotor ability. 

2.1.2. Limitations of Fleishman’s Taxonomy 

Despite its potential, there are some limitations associated with Fleishman’s 

taxonomy.  Other than critiques pointed at the factor analytic methods of which the 

taxonomy was developed, other researchers questioned the applicability and practicality of 

the taxonomy.  In fact, the proponents themselves (Fleishman & Quaintance, 1984) 

cautioned that since the abilities were semantically defined, and despite their best effort to be 

precise, subjectivity is inevitable.  Therefore, interpretation issues may arise when the 

taxonomy is used by researchers other than the original authors.  In addition, Cheong, Pham, 

Phan, & Shehab (2005) argued that there may be some mismatch between the characteristics 

of the standardized test used to characterize psychomotor ability and that of the actual task 

itself.  Characteristics unique to the task context may not match those of the standardized 

test, thus rendering the proposed relationship artificial.  Therefore, the predictive validity of 

psychomotor abilities is an overarching concern.  It is a question of whether the abilities 

specified in Fleishman’s taxonomy are indeed correlated with actual performance in broad 

practical settings. 

Disagreement against Fleishman’s works emerged as soon as the taxonomy was 

published (see Adams, 1987; Alvares & Hulin, 1972; and Bechtoldt, 1962).  There were two 
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primary concerns: statistical and methodological.  The first is related to the factor analytic 

methods used for developing the taxonomy. Unlike other statistical methods, factor analysis 

treats all variables alike.  It is a method for computing the communalities of variables to the 

hypothesized factors.  The method cannot be used for assessing how a set of variables (e.g., 

independent variables) regress to another variable (e.g., dependent variable) because it does 

not make the distinction of independent-dependent variable.  However, Fleishman’s 

taxonomy was developed by identifying common variance in regard to a criterion (i.e., 

dependent) variable, a method not warranted under factor analysis.  The second concern has 

to do with the experimental procedure, specifically the uncorrelated factors (i.e., independent 

factors in the language of the taxonomy) produced.  Even though orthogonal rotation was 

used, Bechtoldt (1962) contended that it was insufficient because the experimental procedure 

did not warrant independence.  This is due to the fact that data were obtained from repeated 

trials, thus disqualifying them from being independent.  There were also additional concerns: 

(1) ambiguous objective of the tests whereby data is collected, (2) possible non-unique 

solution if the data is subjected to factor analysis at a different point of time, and (3) misuse 

of exploratory factor analysis methods. 

2.1.3. Aging, Psychomotor Ability, and Computing Tasks 

Operating under the task requirements approach, psychomotor ability has been 

investigated by researchers for use as performance indicator of computer tasks.  An example 

of such work is Hwang (2001), whose goal was to identify a methodology for evaluating the 

type of pointing devices for patients with upper-limb motor impairments (e.g., cerebral palsy, 

spina bifida, muscular dystrophy, and quadriplegia).  Participant manual dexterity was 

measured using the Minnesota manual dexterity test.  Completion times of the test were later 
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analyzed to determine the correlation with performance using various pointing devices.  The 

significant correlation found between the two measures prompted the conclusion that 

manual dexterity tests could be utilized to select the appropriate pointing devices for people 

with upper-limb motor impairments. 

Czaja & Sharit (1998) investigated performance of a computer data entry task for 

participants aged 20 to 75 years old.  Even though age was significant, it was found that the 

age-related changes in functional abilities, not age per se, caused the performance differences.  

Psychomotor ability, and to a lesser extent, cognitive ability, were found to contribute to the 

variability of task performance.  In a separate study, Smith, Sharit, & Czaja (1999) tested 

participants on a series of computer mouse tasks (i.e., pointing, clicking, double-clicking, and 

dragging).  Participant psychomotor ability was measured using various standardized tests 

(i.e., trail making test, block design test, and grooved pegboard test).  As expected, 

performance differences were detected in regards to age.  However, further investigation 

showed it was age-related changes in psychomotor abilities that accounted for such 

differences.  Said differently, when controlling for differences in psychomotor ability, the age 

effect was no longer a significant factor in driving performance differences. 

There is a large body of research providing alternative explations of the age effect on 

psychomotor ability.  Salthouse & Somberg (1982) attempted to localize the stage that is 

responsible for reduced psychomotor ability.  Stages such as encoding, response selection, 

and execution were found to contribute to the decline.  Other researchers took a more 

biological approach and investigated the role of sensorimotor systems, specifically the central 

nervous system (CNS), muscle composition and activation, and proprioception (for a review, 
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see Ketcham & Stelmach, 2001).  In short, there is no doubt that declines in psychomotor 

ability are associated with aging, which it may in turn contribute to reduced performance in 

computer tasks such as mouse use.  There is some evidence indicating that after controlling 

for basic functional abilities, the age effect on task performance diminishes.  This evidence is 

consistent with the view that the age effect is only a surrogate variable, and that underlying 

abilities are the true causal variables for performance differences (see Birren & Renner, 1977; 

and Salthouse & Maurer, 1996). 

2.2. Visual Condition 

From a human control system point of view, visual information is vital for 

determining subsequent output actions.  Likewise, mouse use also relies heavily on visual 

feedback.  There are many studies that investigate the contribution of vision in non-

mechanized, direct hand movements (e.g., Elliott, Carson, Goodman, & Chua, 1991; Helsen, 

Elliott, Starkes, & Ricker, 1998; and Ricker et al., 1999), and to a lesser extent, computer-

mediated movements such as the use of a mouse (e.g., Chua & Elliott, 1993).  However, 

studies involving participants with limited visual function are relatively scarce.  Jacko and 

colleagues (e.g., Jacko, et al., 1999; Jacko et al., 2003; Jacko, Barreto, et al., 2000; and Jacko, 

Rosa, et al., 2000) are among the few who have investigated computer users with vision 

impairment.  The general objective of their studies was to investigate the impacts of low 

vision on mouse use.  This line of research belongs to the domain of universal access. 

2.2.1. Classifications of Visual Condition 

A framework is needed to allow characterization of visual conditions across a wide 

spectrum, i.e., from normal vision to partial-sighted vision.  An effective scheme is especially 

vital for describing partially sighted vision.  For instance, both cataracts and diabetic 
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retinopathy have been linked to diabetes.  It is therefore possible that a person may suffer 

from multiple eye diseases, and that an individual’s vision may be compromised by 

compound vision loss.  In order to describe consequences of a disease more cohesively, the 

International Classification of Impairments, Disabilities and Handicaps (ICIDH) and the 

International Classification of Functioning, Disability and Health (ICF), have been 

developed by the World Health Organization (WHO).  These frameworks, particularly 

ICIDH, have been shown useful for describing partially sighted vision from multiple 

perspectives. 

Although often used interchangeably, the terms “disorder”, “impairment”, 

“disability”, and “handicap” are used in ICIDH for differentiating among various aspects of 

medical condition.  As summarized by Colenbrander (2000), “disorder” refers to 

anatonomical or physiological changes due to the pathology; “impairment” refers to 

functional changes to the organ; “disability” focuses on the functional abilities of the 

individual; “ handicap” refers to the socioeconomic consequences caused by the condition.  

In the context of the visual system, disorder refers to the anatomical and physiological 

changes associated with an eye disease.  For example, age-related macular degeneration 

(AMD) is known to be associated with changes in the macula, the fovea, and the retina.  On 

the other hand, impairment refers to the functional abnormality of the eye.  For instance, 

AMD causes blurred vision, increased sensitivity to glare, and central blind spots.  Outside 

of the biological aspects of the patient, disability refers to the limited ability of the patient to 

perform tasks.  For example, AMD patients were found to spend more time searching for 

information on the computer screen (Jacko et al., 2002).  More broadly, handicap refers to 

the socioeconomic consequences of a disability.  It was reported by Scott et al. (1994) that 
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there was a high risk for decreased functional status and quality of life among ophthalmic 

patients.  Table 2 shows the aspects of vision loss captured by ICIDH, as illustrated in 

Colendrander (2000). 

Table 2.  Aspects of Vision Condition (Colenbrander, 2000). 
The Organ  The Person 

Visual Disorder Visual Impairment  Visual Disability Visual Handicap 

Anatomic changes Functional changes  Skills and abilities Social and economic 
consequences 

Examples: 
Inflammation, astrophy, 
scar 

Examples: Visual acuity, 
contrast sensitivity 

 Examples: Reading, 
writing, daily living, 
mobility 

Examples: Extra effort, 
loss of independence 

 

In applied settings, visual condition is often measured along a functional vision 

dimension.  Eligibility for assistance and intervention programs (e.g., educational assistance, 

tax benefits, and social security assistance) are often based on measures of functional vision.  

Functional vision refers to a person’s ability to use his vision in order to perform daily tasks 

effectively (Flom, 2004).  Common measures of functional vision include visual acuity, visual 

field, color sensitivity, and contrast sensitivity.  Some of the less common measures include 

light sensitivity, oculomotor control, and accommodation.  Among these, visual acuity, visual 

field, and contrast sensitivity are the greatest determinants of the ability to accomplish daily 

tasks (Flom, 2004).  Visual acuity is the ability to see fine details.  It is expressed using the 

Snellen ratio where the numerator represents the distance between the person and the object 

at which the person can recognize the object and the denominator is the distance at which a 

person with normal eyesight can correctly recognize the object.  To illustrate, a person with 

20/40 vision can resolve objects at 20 ft., but the same objects can be resolved by a person 

with normal vision at 40 ft.  Visual field is a three-dimensional sensitivity to differential light 

at various positions, often measured in degree-radius or degree-diameter (Colenbrander, 
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2000).  Color sensitivity is the ability to differentiate colors; it often involves the ability to 

discern two different colors such as green and red, or the ability to discriminate a normal 

range of colors.  Finally, contrast sensitivity is the ability to discern the differences in 

luminance (brightness) between an object and its background.  Contrast sensitivity is 

typically measured using a number of charts such as the Pelli-Robson chart. 

In the United States, the most common classification scheme for visual condition is 

ICD-9-CM (U.S. Department of Health and Human Services [DHHS], 1980), which 

involves ordinal grouping of visual acuity scores.  It is in fact the American adaptation of the 

International Classification of Diseases Ninth Revision (ICD-9) developed by the WHO 

(1977).  A person is considered as being visually impaired when his visual acuity cannot be 

corrected to a level of 20/80.  There are two broad ranges of visual impairments as defined 

in ICD-9-CM, namely low vision and blindness.  Low vision characterizes acuity scores from 

20/80 to 20/1000, whereas a person is considered as being near-blindsighted if he is 

20/1250 or above.  At the end of the continuum is total blindness; that is, no light 

perception is possible in the eyes (see Table 3).  Another classification scheme is the one 

based on visual field.  A person is considered as being visually impaired when his visual field 

is less than 30º; and the severity increases as the degree-radius becomes narrower 

(Colenbrander, 2000).  Similar to that of the visual acuity scheme, the extreme is total vision 

loss (see Table 4). 
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Table 3.  Visual Condition as Classified according to Visual Acuity (DHHS, 1980). 
Visual Condition Ranges of Visual Acuity ( in Snellen Ratio) 

Normal vision 20/12 – 20/25 

Near-normal vision 20/30 – 20/60 

Moderate low vision 20/80 – 20/160 

Severe low vision 20/200 – 20/400 

Profound low vision 20/500 – 20/1000 

Near blindness 20/1250 – 20/2500 

Total blindness No light perception 

 

Table 4.  Visual Condition as Classified according to Visual Field (Colenbrander, 
2000). 
Visual Condition Ranges of Visual Field (in Degree Radius) 

Normal vision 51° – 70° 

Near-normal vision 31° – 50° 

Moderate vision loss 11° – 30° 

Severe vision loss 6° – 10° 

Profound vision loss 3° – 5° 

Near total vision loss Less 

Total blindness No light perception 

 

Corn & Koenig (1996) commented that laboratory-based measures of visual 

functions (i.e., visual acuity and visual field) may not represent the requirements of real-

world tasks.  Despite the skepticisms, such practice seems to be well-received at large (e.g., 

Colenbrander, 2000; Flom, 2004).  In some respects, the concerns are somewhat ameliorated 

by recent studies that have successfully demonstrated the significance of visual functions in 

computing tasks.  A team of researchers (i.e., Scott, Feuer, & Jacko, 2002; Jacko, Barreto, et 

al., 2000; Jacko et al., 1999; and Jacko, Rosa, et al., 2000) have shown visual acuity, contrast 

sensitivity, visual field, and color deficiencies are indeed predictive of the performance of 

mouse use. 
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2.2.2. Aging, Low Vision, and Computing Tasks 

One of the most common conditions of reduced visual function is low vision.  As 

shown in Tables 3 and 4, low vision describes a wide range of visual conditions between 

normal vision and blindness.  Some authors refer to low vision as a condition whereby 

despite the use of corrective devices, visual limitations are still profound.  It should be made 

clear that low vision does not necessarily translate to blindness; it is an umbrella term that 

encompasses a large number of visual impairments.  Only 10% of those who suffer from 

vision loss are functionally blind (Nelson & Dimitrova, as cited in Kraut & McCabe, 2000).  

Functional blindness refers to conditions whereby individuals no longer have useful vision 

and they have to rely on other sensory systems to perform daily activities.  On the other 

hand, people with low vision still retain some useful vision (Lighthouse International, 2001).  

Also referred to as partially sighted, these individuals often rely on corrective techniques and 

devices to perform their daily activities.   

Statistics show that low vision is more prevalent in the older population.  The Eye 

Diseases Prevalence Research Group (2004) reported a steady increase of low vision 

conditions among adults aged 40- to 80-years-old.  A similar trend of visual impairments in 

the older population was also reported by Desai, Pratt, Lentzner, & Robinson (2001, March), 

who reported that 19% of individuals 70 years of age and older were visually impaired.  It 

has even been suggested that vision loss is only second to arthritis as the leading cause of 

disability among older adults (Pegels, as cited in Kraut & McCabe, 2000). 

There are many causes for low vision.  Despite the statistics, aging itself does not 

necessarily lead to vision loss.  Although there are physiological changes in the eyes as one 

ages (Kline & Scialfa, 1996), it is believed that these changes are not the major cause for low 



20 
 
 
 

vision.  For instance, certain aged ocular structures, such as the cornea, present negligible 

effects on visual functions (Klien & Scialfa, 1996).  The main cause for low vision among 

older adults seems to be disease-related.  Among these diseases, AMD, cataracts, glaucoma, 

and diabetic retinopathy are known to be the main causes of low vision (Kraut, 2000).  AMD 

is a condition caused by deterioration of the macula, the central part of the retina responsible 

for visual acuity in the central visual field.  Due to the loss of acuity in the central visual field, 

AMD patients usually have to rely on their peripheral vision (Jacko et al., 2002).  Cataracts 

are associated with clouding of the lens.  Common effects of cataracts include blurred and 

hazy vision, particularly in places with high illumination.  Glaucoma is caused by pressure 

build-up inside the eyeball that damages the optic nerve, which in turn causes loss of 

peripheral vision.  Diabetic retinopathy is caused by the leaking of retinal blood vessels in 

diabetic patients.  Visual impairments due to diabetic retinopathy include blurred vision and 

increased sensitivity to glare.  Descriptions of these diseases are available in Table 5. 

Although less common, low vision may be also caused by age-related 

neurophysiological changes.  Changes in the cornea, aqueous humor, iris and pupil, lens, 

vitreous humor, and the retina have been associated with aging (Kline & Scialfa, 1996); they 

have been linked to various degrees of vision loss, ranging from negligible effects to major 

impairments.  For instance, the aged cornea is found to have little effect on visual function.  

In contrast, the increase in intraocular pressure due to aged aqueous humor has been 

associated with glaucoma. 
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Table 5.  Characteristics of Common Eye Diseases. 
Disease Description Anatomical Structure Involved 

AMD What is affected 

• Central scotoma (blind spots) 

• Blurred vision 

• Sensitivity to glare 
What is not affected 

• Peripheral vision 

• Fovea 

• Macula 

• Retina 

• Lens (if cataracts is present) 

Cataracts What is affected 

• Reduced acuity 

• Reduced contrast sensitivity 

• Hazy vision 

• Increased sensitivity to light and 
glare 

What is not affected 

• Field of vision 

• Scotoma (blind spots) 

• Cornea 

• Pupil 

• Lens 

• Vitreous humor 

Glaucoma What is affected 

• Periphery vision 

• Night blindness 

• Retina 

• Optic nerves 

Diabetic Retinopathy What is affected 

• Central scotoma (blind spots) 

• Blurred vision 

• Sensitivity of glare 
What is not affected 

• Peripheral vision 

• Fovea 

• Macula 

• Retina 

• Lens (if cataracts is present) 

 

Jacko et al. (1999) investigated performance differences along various graphical user 

interface (GUI) attributes for participants with eye diseases such as retinitis pigmentosa, 

albinism, optic neuritis, and myopia.  Participants’ visual conditions were characterized using 

visual function measures, i.e., visual acuity, contrast sensitivity, visual field, and color 

discrimination.  The results indicated that these measures were significant predictors of task 

performance, particularly in regard to icon size and background color.  In another study 

involving AMD patients, Jacko, Barreto, et al. (2000) found that characteristics of cursor 

movement (i.e., movement time and velocity) change as visual acuity changes.  Differences 

in movement time and velocity were detected between fully sighted and partially sighted 

participants; it was also found movement time increases as visual acuity worsens. 
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2.3. Aiming Movement 

Aiming movement is often referred to as goal-directed movement in spatially 

constrained tasks, and is subject to the speed-accuracy tradeoff.  Studies of aiming 

movement have been an ongoing effort since the seminal work by Woodworth (1899) who 

reported a series of experiments to investigate the spatial and temporal behavior of the hand 

in goal-directed aiming movements.  Woodworth’s experiments consisted of an aiming task 

where participants were required to make reciprocal horizontal movements with a pencil on 

a paper rotating at a constant speed (see Elliott, Helsen, & Chua, 2001).  Studies of direct 

aiming movement have been performed involving different human limbs (e.g., arm, fingers, 

the eyes, and the head) and in various conditions, such as underwater and at high altitude 

(for a review, see Plamondon & Alimi, 1997).  The same technique has been used very 

successfully in studies related to performance of computer input devices.  Aiming 

movements with input devices are often referred to as indirect movements because rather 

than pointing directly with the hands, such movements are usually performed with a device 

that mediates between the hand and the computer. 

2.3.1. Fitts’ Pointing Paradigms 

Most studies of aiming movement, particular those involving computer pointing 

devices are influenced by Fitts’ paradigm (MacKenzie, 1992; Soukoreff & MacKenzie, 2004).  

Traditionally, there are two variants: reciprocal and discrete pointing tasks.  The reciprocal 

task involves making back and forth movements between two targets (see Figure 2); it was 

first used in the original Fitts experiment (Fitts, 1954/1992).  A decade later, the discrete 

tapping task was reported in Fitts & Peterson (1964).  In contrast to the reciprocal task, the 

discrete task requires subjects to make only one movement from the starting point to the 
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desired target (see Figure 3).  It is not known whether these two tasks differ significantly in 

terms of their influence on the model’s parameter (i.e., the intercept and the slope).  Perhaps 

the differences are subtle, if any, because a search in the literature failed to return any 

relevant studies. 

 
 

Figure 2.  Fitts’ Reciprocal Pointing Task (Soukoreff & MacKenzie, 2004). 
 
 

 
 

Figure 3.  Fitts’ Discrete Pointing Task (Soukoreff & MacKenzie, 2004). 
 

A recently discovered problem with the classic Fitts’ paradigms is the likelihood of 

movement angle confound (Phillips & Triggs, 2001).  To avoid such bias, a multidirectional 

paradigm was proposed in ISO 9241-9 (International Organization for Standards [ISO], 

2000).  In the paradigm, subjects are required to sequentially click the targets spaced around 
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the circumference of a circle.  The targets are arranged in a way that the movement distance 

from one target to another is approximately the diameter of the circle.  In a clockwise 

direction, the participants is required to first click the topmost target followed by the 

bottommost target and then return to the target adjacent to the first.  Therefore, the 

multidirectional task is similar to a reciprocal task except it is two-dimensional (see Figure 4). 

 
 

Figure 4.  Multidirectional Pointing Task (Soukoreff & MacKenzie, 2004). 
 

Recent developments indicate that the two-dimensional, multidirectional task is 

preferred over the one-dimensional task (e.g., Douglas, Kirkpatrick, & MacKenzie, 1999; and 

Soukoreff & MacKenzie, 2004).  The main rationale for the switch is to avoid directional 

bias towards performance data such as movement time (MT) and throughput (TP).  It 

should be noted that proponents of the multidirectional task are usually interested in aiming 

movements at the performance level.  Studies have been scarce in addressing the question of 

whether different paradigms can affect the process of the movement itself.  There is at least 
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one study (i.e., Keele & Posner, 1968) that found the reciprocal pointing task yields higher 

MT due to the additional time needed to reverse the movement. 

2.3.2. Models of Aiming Movement 

2.3.2.1. Fitts’ Law 

Fitts’ Law is one of the most studied models of aiming movement.  It is a 

psychomotor behavior model that describes the relationship between movement time, 

distance amplitude, and target size.  Movement time (MT) is simply the travel time from one 

point to another.  Distance amplitude (D) is the total displacement traveled, whereas target 

size (W) is usually described as the width of the target.  Simply, the model states that 

movement time has an inverse relationship with distance amplitude but at the same time it is 

directly related to target size  (see Equation 1). 
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Fitts’ law was born from the notion of human information processing that became 

widely accepted during World War II.  Its development is credited to information theory, 

particularly Shannon’s Theorem 17 (Shannon, 1948) on electronic signal-to-noise ratio.  

According to MacKenzie (1992), Fitts’ law is unique in two ways.  First, it views the 

difficulty of a task in terms of the amount of information the task carries, which is 

measurable in bits.  Second, Fitts’ Law considers that a human’s ability to accomplish a task 

is limited by interlocking cognitive and neuromuscular capacities.  Therefore, human 

information capacity was viewed by Fitts as analogous to the channel capacity of an 

electronic system.  When Shannon’s formulation is rewritten in the context of human as an 

information processor, it is represented as Equation 2: 
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MTIDTP /=  (2) 

where index of difficulty (ID) is the logarithmic portion of Equation 1, and is analogous to 

the ratio of signal strength to background noise of an electronic system.  As the result, 

throughput (TP), sometimes referred to as index of performance (IP), represents the 

capacity of human as an information processor; and is measured in bits per second.  TP is a 

composite measure that incorporates the two most important measures of Fitts’ Law: speed 

and accuracy.  The speed-accuracy trade-off is an inherent characteristic in a typical aiming 

movement, because generally it is not possible to be quick and at the same time accurate.  

TP also can be used as a standardized measure for comparing device performance from 

different studies.  Because researchers often use different sets of target parameters (i.e., D 

and W) in their individual studies, MT, which itself is derived from the parameters, cannot 

be used as a standard measure for comparing outcomes from different studies.  TP, on the 

other hand, is free from such contextual dependency; thus it can be used as a standardized 

measure for cross study comparisons.  TP has also been computed as the reciprocal of the 

slope coefficient (1/b) in Equation 1 (e.g., Hwang, 2001). 

After its publication, Fitts’ formulation was immediately appraised by researchers 

from all fields.  Most of the time, an alternative formulation was proposed and subsequently 

was claimed to be a better fit.  To date, there are no less than 14 variations of Fitts’ law (see 

Plamondon & Alimi, 1997).  It is believed that  most variations are highly localized and may 

be overly contextual.  Furthermore, some researchers (Desmurget, Pralanc, & Rossetti, 1997; 

and Heuer, 1997) believe that certain efforts in retrofitting the original formula have resorted 

to number crunching rather than relying on theoretical foundations.   
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In spite of that, there are several alternative formulations that worth mentioning.  

One of the most popular variations is the one proposed by Welford (1960), as shown in 

Equation 3. 
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Another common variation involves replacing the logarithmic portion of Equation 1 

with Shannon’s formulation of ID (see Equation 4).  This ID has direct analogy with the 

electronic signal-to-noise ratio as originally suggested by Fitts (1954/1992), where D as 

analogous to signal strength and W represents the noise.  Proponents of Shannon’s 

formulation include MacKenzie (1989), MacKenzie (1992), and Soukoreff & MacKenzie 

(2004). 
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The ISO 9241-9 standard (ISO, 2000) recommends Equation 4 for calculating degree 

of difficulty associated with selection, pointing, and dragging task, whereas WDID /=  was 

recommended for a tracking task. 

It was later realized that Fitts’ Law, being a performance-level model, is unable to 

capture what happens “during” the movement.  Thus, alternative models were proposed to 

overcome that limitation.  Despite being a century-old, Woodworth’s study laid the 

groundwork in the quest for understanding the process of aiming movement.  Based on his 

experiments, Woodworth suggested that aiming movement can be decomposed into two 

phases: the initial impulse phase and the current control phase (Elliott et al., 2001).  The 
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initial impulse phase is generally ballistic and is programmed to arrive at the vicinity of the 

target, whereas the current control phase is the homing phase and is characterized by 

frequent use of visual information to make adjustments.  A number of contemporary models 

had been proposed since, a notable model was the deterministic iterative corrections model 

proposed by Crossman & Goodeve (1963/1983), which later refined by Keele (1968).  Due 

to the overly restrictive assumption, the deterministic model was later deemed inappropriate 

and it had been largely discarded in favor of the stochastic optimized submovement (SOS) 

model (Meyer, Abrams, Kornblum, Wright, & Smith, 1988; Meyer, Smith, Kornblum, 

Abrams, & Wright, 1990). 

2.3.2.2. The Deterministic Iterative Corrections Model 

Unlike Fitts’ information theoretic approach, Crossman & Goodeve (1963/1983) 

interpreted aiming movements using feedback-control theory.  They suggested that aiming 

movements are deterministic because the model assumes no spatial variability for movement 

endpoints.  The model offers three postulations.  First, it posits that aiming movements 

consist of several discrete ballistic phases, called submovements in Crossman & Goodeve’s 

terminology.  Each of these submovements covers a certain distance between the starting 

point and the end point, and each submovement travels at a constant proportion of the 

distance.  Referring to Figure 5, there are three submovements in the velocity profile of a 

hypothetical aiming movement.  Notice that distance traveled reduces in each successive 

submovement.  In fact, using D to denote the entire distance between starting point and end 

point, the distance covered by the first submovement can be expressed as pD; the second 

submovement would travel p(D – pD) = p(1 – D); then followed by the third submovement 

that travels p(1 – D)2, and so forth.  The movement terminates when it arrives to the inside 
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of the target area.  The second postulation states that each submovement takes an equal 

amount of time to complete.  The third postulation states that the control of submovements 

is based on intermittent visual and kinesthetic feedbacks; such a feedback-control 

postulation was later elaborated by Keele (1968). 

 
 

Figure 5.  Deterministic Iterative Corrections Model (Douglas & Mithal, 1997). 
 

Subscribing to Crossman & Goodeve’s (1963/1983) feedback-control postulation, 

Keele (1968) suggested that given ample time for visual processing, or about 190 ms to 260 

ms (Keele & Posner, 1968), movement corrections (i.e., submovements) can be made based 

on visual feedback.  Aside from visual feedback, kinesthesis was also considered as a 

feedback mechanism.  Kinesthetic feedback is part of the afferent system that includes 

muscles, joints, and touch that provide spatial orientation to movement control.  Even 

though kinesthetic feedback was found to contribute to movement control, most studies 

were inconclusive in determining kinesthetic processing time.  Furthermore, recent studies 

showed kinesthetic feedback alone is not as effective as visual feedback for movement 

control (Meyer et al., 1988).  In addition to visual and kinethestic feedback, preprogrammed 
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motor movement was also suggested to contribute to movement control.  However, the 

degree to which motor programs contribute to movement control it is not known, “[while] 

motor programs may be used in reproducing active movements . . . other cues might also be 

important” (Keele, 1968, p. 399). 

Many inconsistencies in the deterministic model were uncovered in later studies (see 

Meyer et al., 1988; and Meyer et al., 1990).  Contrary to the notion of constant proportion, 

several studies found the duration of the initial submovement is indeed dependent upon 

target width (W) and distance amplitude (D).  Perhaps the most obvious limitation of the 

model is its assumption that submovement endpoints are deterministic (i.e., no variability).  

There is a large amount of evidence proving otherwise.  Furthermore, the model fails to 

account for movement errors (i.e., target misses), which are frequently observed in other 

studies.  Finally, it has been observed that only one or two submovements are needed to 

arrive at the target; this phenomenon cannot be accounted for by the model, because it states 

that the systematic variation in the number of submovements is a function of D/W.  As a 

result, the deterministic iterative corrections model was abandoned in favor of alternative 

models (Elliott et al., 2001). 

2.3.2.3. The Stochastic Optimized Submovement (SOS) Model 

After the rejection of the deterministic iterative corrections model, several other 

models were proposed, e.g., the single correction model, the second-order under-damped 

function, and the impulse variability model (for a review, see Douglas & Mithal, 1997; and 

Elliott et al., 2001).  Current consensus indicates that the stochastic optimized submovement 

(SOS) model developed by Meyer and colleagues (Meyer et al., 1988; and Meyer et al., 1990) 
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is the most appropriate model for describing the process of aiming movement.  Like its 

predecessor, the SOS model operates under the assumption that optimization of aiming 

movement requires a compromise between time and accuracy (i.e., speed-accuracy tradeoff).  

The SOS model builds upon previous models (i.e., the deterministic iterative corrections 

model and the impulse variability model), by synthesizing the best feature from each of them.  

It inherits the feedback-control hypothesis from the deterministic model, as well as the 

endpoint variability hypothesis of the impulse variability model (Elliott et al., 2001). 

The most recognizable attribute of the SOS model is the notion of neuromotor noise.  

Due to noise, submovement endpoints may be normally distributed around the center of the 

target.  Feedback systems (i.e., visual sensory, and kinesthetic sensory to a lesser extent) may 

detect movement discrepancies (i.e., overshooting or undershooting) and that causes 

corrective submovements.  To illustrate, Meyer et al. (1988) suggested that a typical aiming 

movement may consist of one or two submovements.  Primary submovement is the initial 

submovement programmed to end within the target.  If the primary submovement ends as 

intended, no secondary submovements are needed.  However, neuromotor noise may 

prevent the initial submovement to arrive at the target as intended and in that case, 

corrective secondary movements are needed.  It was further suggested that a typical aiming 

movement needs only one or two submovements.  Third-order and higher submovements 

are possible; but these are usually absorbed within the secondary submovement.  In general, 

higher-order submovements are quite unlikely and are often observed in special situations 

such as when extremely difficult targets are involved, or when errorless performance is 

required.  The velocity profile of a typical movement is illustrated in Figure 6; the solid lines 
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indicate possible primary submovements, whereas the dotted lines indicate the subsequent 

secondary submovements required if the initial movement misses the target area. 

 
 

Figure 6.  Stochastic Optimized Submovement Model (Douglas & Mithal, 1997). 
 

Other than explaining the process of aiming movement, the SOS model also offers a 

number of quantitative predictions.  The first has to do with the overall movement time 

(MT), as shown in Equation 5: 

W

D
BAMT +=  (5) 

where A and B are non-negative constants.  The second prediction concerns the duration of 

the primary submovement; it is expressed similarly to Equation 5 with the conditions that A1 

< A and B1 < B (see Equation 6): 

W

D
BAMT 111 +=  (6) 

Thus, Equation 6 specifies that primary submovement’s MT is proportional to the ratio of 

target width and distance amplitude.  Meyer et al. (1990) also stated that MT typically 

increases as D increases and W decreases.  The SOS model also states that the proportion of 
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secondary submovements (i.e., the proportion of trials in which secondary submovements 

are needed) increases as the ratio D/W increases.  Similarly, error rate also increases as D/W 

increases. 

There is a general agreement that the SOS model is the best theory for explaining 

aiming movement at the process level.  The model was found to hold for isotonic 

movements; however, there are some differences in opinion on how the model works with 

isometric movements, even among its original proponents (Douglas & Mithal, 1997). 

2.3.3. Kinematic Measures of Aiming Movement 

Kinematics is the study of motion without considering the forces that may cause the 

motion.  Primary kinematic properties are displacement, velocity, and acceleration.  Based on 

these properties, movement kinematics (also known as movement microstructure) can be 

studied in detail and the process of aiming movement can be characterized and understood.  

Furthermore, the correlation between certain kinematic and performance measures allows 

explanation of certain performance differences.  More interestingly, some kinematic 

measures can explain the nature of aiming movement at an entirely different dimension.  

This sentiment was elaborated in MacKenzie et al. (2001).  Citing the use of a trackball to 

control cursor movement, they stated that the trackball has to be flicked quickly to move the 

cursor over a long distance.  On the other hand, the trackball has to be slid gently several 

times when precise cursor movement is needed.  In this case, performance measure such as 

MT is insufficient to reveal what happens during the movement; kinematic measures such as 

displacement and velocity of cursor movement would be more informative.  Furthermore, it 

is also plausible that while there are no differences in performance measures, there can be 

differences in kinematic measures.  For example, older mouse users may take a similar 



34 
 
 
 

amount of time as younger users to complete an aiming movement; however, age-related 

individual differences (e.g., visual condition, motor control ability) may produce large 

differences in movement kinematics. 

The literature shows that kinematic analysis is more prevalent in basic research 

involving limb aiming movement (e.g., Carlton, 1979; Carlton, 1994; Chua & Elliott, 1993; 

Elliott et al., 1991; Helsen et al., 1998; and Ricker et al., 1999).  Recently this approach has 

been adopted in studies involving computer input devices (MacKenzie et al., 2001; Phillips, 

Triggs, & Meehan, 2005; Slocum, Chaparro, McConnell, & Bohan, 2005; and Slocum, 

Thompson, & Chapparo, 2005).  Derived from displacement, velocity, and acceleration 

profiles, there are multiple kinematic measures reported in the literature.  In general, these 

measures are computed from parameters such as distance traveled, peak velocity, peak 

acceleration, and zero crossings.  Tables 6 and 7 summarize some spatial and temporal 

kinematic measures.  It is unclear how these measures relate to eventual performance, 

nonetheless they have been used for describing the process of aiming movement. 
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Table 6.  Spatial Kinematic Measures of Aiming Movement. 
Movement Landmark / 
Parameter 

Kinematic Measure Description 

Distance traveled Proportion of distance 
traveled at PV 

• Reported in Chua & Elliott (1993), Helsen 
et al. (1998), Ketcham et al. (2002), and 
Slocum, Chaparro, et al. (2005) 

• Defined as the ratio of distance traveled at 
PV (primary movement) and total 
movement distance 

• Used as positive indicator for movement 
efficiency  

Peak velocity (PV) PV amplitude • Reported in Chua & Elliott (1993), Elliott 
et al. (1991), Helsen et al. (1998), 
Ketcham et al. (2002), Phillips et al. 
(2005), Ricker et al. (1999), and Slocum, 
Thompson, et al. (2005) 

• Used as positive indicator for movement 
speed 

Peak acceleration (PA) PA amplitude • Reported in Carlton (1994), and Helsen et 
al. (1998) 

• Exact indication unknown 

Zero crossing (ZC) Number of ZC in 
acceleration profile 

• Reported in Phillips et al. (2005) 

• Used for counting number of 
submovements 

 Number of ZC following PV 
in acceleration profile 

• Reported in Chua & Elliott (1993), Elliott 
et al. (1991), and Ketcham et al. (2002) 

• Used for counting number of secondary 
submovements 
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Table 7.  Temporal Kinematic Measures of Aiming Movement. 
Movement Landmark / 
Parameter 

Kinematic Measure Description 

Movement time Gross MT • Reported in Phillips et al. (2005), and 
Slocum, Thompson, et al. (2005) 

• Defined as MT between beginning of 
movement to first zero crossing in velocity 
profile 

 Fine MT • Reported in Slocum, Thompson, et al. 
(2005) 

• Defined as MT from the end of gross MT to 
end of movement 

Peak velocity (PV) Time to PV • Reported in Carlton (1994), Elliott et al. 
(1991), Helsen et al. (1998), Phillips et al. 
(2005), and Ricker et al. (1999) 

• Direct indicator for movement efficiency 

 Time from PV until the 
end of movement 

• Reported in Elliott et al. (1991) 

• Indicates time spent in homing phase 

 Proportion of time to PV • Reported in Chua & Elliott (1993), Helsen 
et al. (1998), Ketcham et al. (2002), and 
Ricker et al. (1999) 

• Defined as the ratio of time to PV and the 
overall time 

Peak acceleration (PA) Time to PA • Reported in Carlton (1994), and Helsen et 
al. (1998) 

• Exact indication unknown 

 Proportion of time to PA • Reported in Helsen et al. (1998) 

• Defined as the ratio of time to PA and the 
overall time 

 

2.3.4. Vision and Aiming Movement 

Visual feedback is generally regarded as more critical than kinesthetic feedback 

(Keele, 1968).  There is a host of studies that investigate the role of visual feedback in aiming 

movement.  Perhaps the most widely cited study is Keele & Posner (1968), who suggested 

190 to 260 ms is needed for corrective action in aiming movement.  About ten years later, 

that figure was revised to 100 ms by Carlton (1981).  Clarification was added by Chua & 

Elliott (1993) who found more time was spent in the deceleration phase (i.e., time from peak 

velocity to end of movement) when visual feedback was available.  They speculated that the 
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additional time was needed to allow visual detection and subsequently error reduction in the 

movement.  It was further suggested that visual feedback occurs primarily after peak velocity, 

and that it is more critical in the latter half of the movement, i.e., when the movement is near 

its target.  Some would argue that the availability of visual feedback in the deceleration phase 

would result in an increased number of corrective submovements (i.e., zero crossings in the 

acceleration profile).  On the contrary, Elliott et al. (2001) pointed out while the initial phase 

(i.e., ballistic phase) of aiming movement is somewhat stereotypical; however, the second 

half (i.e., deceleration phase) is less conforming in terms of its kinematic characteristics.  In 

other words, the presence of visual feedback does not necessarily translates to higher 

number of corrective submovements during the deceleration phase. 

Using eye tracking techniques, researchers were able to investigate the nature of eye-

hand coordination in aiming movements, particularly those involving the hand.  In general, 

many studies found that the eyes usually move towards the target before the limb, and arrive 

at the target first.  Abrams (1992) and Abrams et al. (1990) argued the eye-lead-hand 

behavior in aiming movement is highly dependent on the experimental paradigm used.  In a 

common paradigm, movement targets are not visible on the screen initially but only appear 

during the course of the trial.  The sudden appearance of the target may cause the eyes to 

move towards the target before the hand does.  Yet in a different paradigm, the targets are 

presented ahead of time.  Since the target is known in advance, the eyes would move 

towards the target before the hand (Elliott et al., 2001).  Obviously no matter which 

paradigm is used, irrespective of whether the target is known in advance, the eyes always lead 

the hand.  However, there is very limited, if any, empirical data available to support both 

arguments.  More research is definitely needed. 
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2.4. Mouse Tasks and Mouse Device Parameters 

Task primitive is a description of interaction techniques involving input devices at 

their most elemental level (Foley, Wallace, & Chan, as cited in Hinckley, 2001).  While this 

research has addressed two task primitives essential in mouse tasks (pointing and selecting), 

there are three additional relevant primitives: (1) dragging, (2) drawing or tracing, and (3) 

free-hand input.  Pointing is an action where users move the cursor from one point to 

another.  Selecting is often accomplished by clicking the mouse button.  Dragging can be 

thought as a combination of pointing and selecting; this action often involves holding down 

the mouse button while moving the cursor from one point to another.  Tracing is similar to 

pointing and dragging except the path along which the cursor moves is instrumental for task 

accomplishment (Douglas & Mithal, 1997).  The fifth primitive, free-hand input, is quite 

similar to tracing and can be thought as sequence of tracing actions.  An example of free-

hand input is the action of entering text using a mouse or a stylus.  When evaluating an input 

device researchers usually collect data from more than one task primitive to ensure 

generalizability.  Examples of experimental tasks include tapping task (one dimensional or 

multidimensional), dragging task, steering task, pursuit tracking, freehand drawing, and many 

others (see Hinckley, 2001).  Data from tapping and dragging tasks can be analyzed using 

Fitts’ law.  However, a different formulation may be required for other tasks.  For instance, 

Accot & Zhai (1997) suggested that steering task data should be analyzed using the Steering 

law.  An overview of the appropriate formulation for specific task primitives is available in 

ISO 9241-9 standard (ISO, 2000). 

Some researchers believe certain characteristics of pointing devices are the 

concomitant factors that affect actual performance.  Among them, control order and gain 
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receive the most attention.  Control order refers to the time-based output control by the 

input device.  A zero-order control device is also called a position-control device because 

there is a direct relationship between the device movement and its output; there is a one-to-

one mapping between the input and the output.  A first-order control device is a rate-control 

device, in which controlling the device translates to controlling the speed of the output.  

Higher-order control devices are possible but most computer pointing devices are either 

zero-order or first-order control devices (Douglas & Mithal, 1997).   

Choice of control-order device is an important consideration in the design of a 

computer input device.  Knowledge about the behavior of the device allows an operator to 

plan for successive submovements in order to achieve the ultimate goal (Kantowitz & Sorkin, 

1983).  To elaborate, during the movement trajectory of a pointing task, the operator has to 

decide whether he needs to move faster to avoid undershooting, or slow down to avoid 

overrshooting the target. 

Gain setting is also known as control-display (C/D) ratio, or C/D gain.  It describes 

the control movement needed to produce the desired output movement (Kantowitz & 

Sorkin, 1983).  The idea of C/D ratio is best described by the sensitivity of the device itself.  

For a device that has low sensitivity (or low gain), a given control movement will result in 

limited gain; it is regarded as a device with a high C/D ratio.  On the other hand, for a 

device with high sensitivity (or high gain), the same control movement will produce a much 

larger response; this device has a low C/D ratio.  For most computer input devices, the C/D 

ratio is not constant and it changes according to the order of control for that device.  A rate-

control mouse would move the cursor a greater length if its displacements are sped up; such 
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a mouse is commonly employed in computers running on Microsoft Windows environment. 

Many researchers (Accot & Zhai, 2001; Douglas & Mithal, 1997; Hinckley, 2001; and 

MacKenzie, 1995) believe empirical investigation of gain is obsolete because empirical 

studies (i.e., Jellinek & Card, 1990; Kantowitz & Elvers, 1988; and Lin, Radwin, & 

Vanderheiden, 1992) have found no evidence of gain setting effecting performance while 

using input devices.  It appears that the advantage of gain setting is the impact on the real 

estate required for the input device. 

To summarize further, it is a well-known fact that users often encounter difficulties 

with higher order pointing devices (Birmingham & Taylor, as cited in Kantowitz & Sorkin, 

1983).  Therefore, it is not surprising to say that users typically perform better using a zero-

order control device, such as the mouse.  In addition, C/D gain can be dismissed as a critical 

control parameter in mouse tasks largely because previous studies have found negligible 

influence on the performance of pointing device. 
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CHAPTER 3 

RESEARCH QUESTIONS 

3.1. Background 

Eye-hand coordination is a loose term that describes actions involving finely 

controlled limb movements.  It can be defined as the spatio-temporal coupling between the 

eyes and the hand.  From switching on a light bulb to driving a car, most daily tasks are 

visuomotor in nature.  Therefore, it is not an exaggeration to say that eye-hand coordination 

is fundamental for effective mouse use.  Furthermore, eye-hand coordination is a function of 

visual ability and motor control.  Because executive control is needed to facilitate the 

coordination of visual input and motor output, cognitive ability may also play a part in eye-

hand coordination (see Figure 1).  Age is also known to impact eye-hand coordination.  

Functional abilities have been known to be influenced by the age effect; the age effect is 

subsequently reflected in the performance and characteristics of the task.  The notion of age 

having an indirect effect is not a new idea.  It has been suggested by researchers (Birren & 

Renner, 1977; and Salthouse & Maurer, 1996) that performance differences are not caused 

by age per se, but they are more directly influenced by age-related changes in functional 

abilities.  The intertwined relationships of various factors and their causal relationships (i.e., 

direct or indirect) on mouse use are illustrated in Figure 7. 
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Figure 7.  Inter-relationship of Various Factors and the Influence on Mouse Use. 
 

A performance-oriented approach is commonly employed in research involving 

mouse use.  Such an approach is often dominated by endpoint measures such as movement 

time and error rate.  However, this approach is incapable of providing sufficient information 

regarding the movement process (Chua, Weeks, & Goodman, 2003; Douglas & Mithal, 1997; 

MacKenzie, Kauppinen, & Silfverberg, 2001; and Smith, Ho, Ark, & Zhai, 2000), and 

consequently additional insights may be overlooked.  It is believed that much can be learned 

from studying the process of the movement.  The same approach has been used extensively 

in other domains, particularly in direct aiming movement of a limb (e.g., hand).  However, 

very little research has been done in indirect aiming movement involving the use of a 

mechanized device such as the mouse.  Consequently, this research intends fill the gap, that 

is, to understand the effects of visual function and motor control on mouse use, at a process 

level.  However, exact motor control data is difficult to obtain without specialized equipment 

such as electromygraphy and electrogoniometer.  As a result, motor control was observed 
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indirectly by measuring psychomotor ability.  A drawback of such an approach is the 

inability to partial out the cognitive and visual aspects of psychomotor ability.  Nevertheless 

it is believed that the purpose of this research remains intact: to understand how pertinent 

functional abilities affect the process of mouse use. 

3.2. Specific Questions 

The process of mouse use is the focus of this research.  A common approach in 

characterizing the process is by observing movement kinematics.  There are multiple 

kinematic measures reported in the literature.  However, the kinematics-performance 

relationshis are still unclear.  To elaborate further, the question is: do all kinematic measures 

affect eventual performance?  If not, which specific measures impact performance?  

Determination of various kinematics-performance relationships is addressed in Chapter 4. 

Fundamental psychomotor abilities such as control precision and arm-hand 

steadiness were mentioned by Knight & Salvendy (1992) as important for mouse use.  In 

addition, Hwang (2001) found manual dexterity to correlate with mouse performance.  

Finger dexterity and wrist-finger speed may also be relevant.  Recall that finger dexterity is 

defined as the ability to make skillful and coordinated finger movements (Fleishman & Reily, 

1992).  It is believed that such an ability maybe vital for the operation of a mouse, 

particularly in pressing its buttons.  Wrist-finger speed is thought to be relevant because it 

entails the ability to make fast and repeated movements of the hands and wrist (Fleishman & 

Reily, 1992), in which such movements are common in mouse usage.  This research will 

examine whether certain psychomotor abilities are indeed predictive of mouse use 

performance and most importantly, the underlying process of the movement. 
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Age is often identified as the cause of reduced performance.  However, the direct 

cause of such a reduction has been attributed to age-related changes in functional abilities 

such as psychomotor ability.  Based on that notion, it is hypothesized that the age effect on 

mouse use will become negligible after the effect of psychomotor ability is taken into 

consideration.  This question will be addressed in Chapter 5.   

Largely inspired by a series of studies by Jacko and colleagues (e.g., Jacko, et al., 1999; 

Jacko et al., 2003; Jacko, Barreto, et al., 2000; and Jacko, Rosa, et al., 2000) who have shown 

the impact of low vision on the performance of mouse use, this research will extend their 

findings by investigating the impacts of reduced visual function on the underlying process of 

mouse use.  While reduced performance is certainly associated with low vision, it is still 

unclear how low vision affects the underlying process.  Hence, the specific question is how 

does mouse use behavior for low vision users differ from those with normal vision?  A 

comparative study of mouse use between low vision and normal vision users is presented in 

Chapter 6. 
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CHAPTER 4 

FITTS’ POINTING TASK USING A MOUSE: THE RELATIONSHIP 

BETWEEN MOVEMENT KINEMATICS AND MOVEMENT TIME 

4.1. Introduction 

Despite advances in computing technology, the mouse remains a primary, if not the 

most important device for interacting with computers.  The mouse has proven to be useful 

in various computing tasks, whether it is browsing the Web or editing text documents.  

There are many studies investigating the performance of the mouse, and they generally focus 

on endpoint measures such as movement time and target misses.  Only recently have 

researchers started taking advantage of the additional information that can be gained from 

studying the process of mouse use. 

Among the early studies of cursor movement kinematics is Jagacinski, Repperger, 

Moran, Ward, & Glass (1980); they conducted a micro-analysis of Fitts’ law using data 

collected from cursor movements controlled by a joystick.  Recent studies involving 

movement kinematics by MacKenzie, Kauppinen, & Silfverberg (2001), Mithal & Douglas 

(1996), and Phillips & Triggs (2001) each demonstrated that there is more information to be 

gained using such an approach.  The process-level approach also has been reported in 

studies that are more applied in nature, including those focused toward special populations 

such as the elderly and people with disabilities (e.g., Hwang, Keates, Langdon, & Clarkson, 

2004; Ketcham, Seidler, Van Gemmert, & Stelmach, 2002).  While many agree that a 
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kinematic analysis is critical for improving mouse use performance, the literature reports 

about a dozen different kinematic measures; however, it is not known how those measures 

correspond to actual performance.  This research investigated the kinematics-performance 

relationship, as well as to determine how movement kinematics can affect the eventual 

mouse use performance. 

4.2. Cursor Movement Kinematics 

Kinematics is the study of motions without considering the forces that may cause the 

motion.  Sometimes known as movement microstructure, this information allows 

characterization of the movement process.  Literature shows that kinematic analysis is more 

prevalent in basic research on aiming movements of the upper limbs (e.g., Carlton, 1979; 

Carlton, 1994; Chua & Elliott, 1993; Elliott et al., 1991; Helsen et al., 1998; and Ricker et al., 

1999).  More recently, kinematic analysis began to take a foothold in a number of studies 

involving computer input devices (MacKenzie et al., 2001; Phillips, Triggs, & Meehan, 2005; 

Slocum, Chaparro, McConnell, & Bohan, 2005; and Slocum, Thompson, & Chapparo, 2005). 

There are a host of different kinematic measures reported in the literature.  These 

measures are often computed based on kinematic landmarks such as peak velocity, peak 

acceleration, and zero crossings in the velocity and acceleration profiles.  There are generally 

two families of kinematic measures: spatial and temporal.  Spatial kinematic measures include 

peak velocity, peak acceleration, proportion of distance traveled at peak velocity, and zero 

crossings.  Some temporal kinematic measures reported in the literature include time to peak 

velocity, time from peak velocity until the end of movement, proportion of time to peak 

velocity, time to peak acceleration, and proportion of time to peak acceleration.  Table 8 

further describes these kinematic measures. 
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Table 8.  Selected Kinematic Measures Reported in the Literature. 
Kinematic Measure Description Reported in 

Peak velocity (PV) • The highest magnitude in velocity 
profile, usually occurs during primary 
submovement 

Chua & Elliott (1993), Elliott et al. 
(1991), Helsen et al. (1998), 
Ketcham et al. (2002), Phillips et al. 
(2005), Ricker et al. (1999), 
Slocum, and Thompson, et al. 
(2005) 

Time to PV (TPV) • Difference between time at PV and 
time at the beginning of movement 

• Direct indicator for movement 
efficiency 

Carlton (1994), Elliott et al. (1991), 
Helsen et al. (1998), Phillips et al. 
(2005), and Ricker et al. (1999) 

Proportion of time to 
PV (PROPTPV) 

• The ratio of time to PV (TPV) and 
movement time (MT) 

Chua & Elliott (1993), Helsen et al. 
(1998), Ketcham et al. (2002), and 
Ricker et al. (1999) 

Proportion of distance 
traveled at PV 
(PROPDPV) 

• The ratio of distance traveled at time of 
PV and total distance 

• Also referred to as proportion of 
distance traveled in primary 
submovement 

• Some authors use it as a positive 
indicator for movement efficiency 

Chua & Elliott (1993), Helsen et al. 
(1998), Ketcham et al. (2002), and 
Slocum, Chaparro, et al. (2005) 

Peak acceleration (PA) • The highest magnitude in acceleration 
profile, may occurs during primary or 
secondary submovements 

Carlton (1994), and Helsen et al. 
(1998) 

Time to PA (TPA) • Difference between time at PA and 
time at the beginning of movement 

Carlton (1994), and Helsen et al. 
(1998) 

Proportion of time to 
PA (PROPTPA) 

• The ratio of time to PA and the overall 
time 

Helsen et al. (1998) 

Time from PV until the 
end of movement 
(TPVEND) 

• Difference between time at PV and 
time at the end of movement 

• Indicates time spent in homing phase 

Elliott et al. (1991) 

 

Many studies of movement kinematics are loosely based on the stochastic optimized 

submovement (SOS) model (Meyer et al., 1988; and Meyer et al., 1990).  The model operates 

under the assumption that optimization of aiming movement requires a compromise 

between time and accuracy (i.e., speed-accuracy tradeoff).  According to Elliott et al. (2001), 

the SOS model builds upon the deterministic iterative corrections model (Crossman & 

Goodeve, 1963/1983; and Keele, 1968) and the impulse variability model (Schmidt, Zelaznik, 

Hawkins, Frank, & Quinn, 1979).  The best features from both models were incorporated in 
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the SOS model: the feedback-control hypothesis of the deterministic corrections model, and 

the endpoint variability hypothesis of the impulse variability model.  The feedback-control 

hypothesis posits that the detection of movement discrepancies (i.e., overshooting or 

undershooting) triggers corrective submovements.  Visual sensory is the primary feedback 

mechanism, although kinesthetic sensory also plays a part to a lesser extent.  The endpoint 

variability hypothesis is used to represent the notion of neuromotor noise.  The hypothesis 

posits that movement endpoints are not deterministic but are normally distributed around 

the center of the target. 

A typical aiming movement may consist of a primary submovement and a secondary 

submovement (Meyer et al., 1988).  The primary submovement is the initial movement 

preprogrammed to end within the target.  If the primary submovement ends as intended, the 

movement is completed.  However, neuromotor noise may prevent the initial movement to 

arrive at the target as preprogrammed and in that case, a secondary submovement is initiated 

to correct the endpoint.  In regard to the number of submovements, it was speculated that a 

typical aiming movement needs only one or two submovements.  Tertiary and subsequent 

submovements are also possible, but in general they are part of the secondary submovement.  

In addition, higher-order submovements are quite unlikely and often observed in critical 

tasks requiring movements to extremely difficult targets or in tasks that require perfect 

performance (i.e., no tolerance for errors). 

4.3. Research Rationales and Objectives 

While the kinematics of aiming movement can be captured using different kinematic 

measures, the relationship of these measures to the eventual performance is often not 

discussed.  Knowledge of the correlations between certain kinematic characteristics and 
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performance is invaluable for understanding mechanisms that are likely effective in 

improving mouse use performance.   For instance, Hwang, Keates, Langdon, & Clarkson 

(2004) proposed such a concept for the design of mouse input for motor-impaired users 

who demonstrate excessive submovements (i.e., pauses) during aiming movements.  In this 

case, cursor stabilization could be activated to assist mouse use when necessary.  Therefore, 

an adaptive user interface capable of detecting irregularities in movement kinematics can be 

used to invoke corrective measures to improve performance of mouse use.   

This study seeks to determine the relationship between movement kinematics and 

the performance of a mouse-mediated aiming task.  Correlation analyses between kinematic 

measures and movement time will identify the critical kinematic predictors of performance 

and will serve as validation of the works of various researchers who have suggested, but not 

demonstrated, a significant relationship.  Additionally, it was predicted that the kinematics-

performance relationship could differ from one age group to another.  Therefore, the second 

objective was to determine whether the there is any differential impact of age on the 

kinematics-performance relationship. 

4.4. Method 

4.4.1. Participants 

Forty-five healthy participants between 21 and 90 years of age were recruited from 

the local university community, as well as from an independent living center.  To ensure a 

broad representation of age group, fifteen participants were recruited from three age groups: 

younger (M = 25.25 years old, SD = 2.89), middle-aged (M = 50.37 years old, SD = 5.01), 

and older (M = 80.62 years old, SD = 6.16).  Participants were required to have normal or 

near-normal vision, with correction if necessary, with acuity of at least 20/60.  Additionally, 
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older participants were screened for dementia.  All had experience using a computer mouse 

except for one middle-aged participant and two older participants.  Inexperienced 

participants were given ample training in the pointing task. 

4.4.2. Procedure 

The study was conducted at both on-campus and off-campus locations.  All tests 

were conducted in a quiet environment, and were administered on an individual basis.  The 

testing environments provided adequate illumination and comfortable computer work areas.  

Informed consent was obtained from each participant prior to the study.  Prior to testing a 

screening questionnaire (see Appendix A) was administered to characterize computer 

familiarity and any physical limitations that may impede performance of the mouse-based 

task.  Then, participants’ visual acuity was measured using a Snellen chart.  Older participants 

were also screened for dementia using Folstein, Folstein, & McHugh’s (1975) mini-mental 

state exam (see Appendix B).  These criteria were used to exclude participants who scored 

less than 20 points out of 30 possible points. 

Each participant performed six tasks (i.e., five psychomotor tests and a Fitts’ 

pointing task).  The testing order was randomized, with a break of about 2 minutes between 

each task.  The experiment concluded after all tasks were completed. 

4.4.3. Experimental Tasks 

There were two types of experimental tasks: psychomotor tests and a mouse 

pointing task.  Five psychomotor tests were used to measure various elemental psychomotor 

measures as suggested by Fleishman & Reily (1992).  The psychomotor tests included the 

rotary pursuit test (Lafayette Model 2203ET), the grooved type steadiness test (Lafayette 
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Model 32010), the Minnesota manual dexterity test (Lafayette Model 32023), the Purdue 

pegboard (Lafayette Model 32020), and a tapping board (Lafayette Model 32012).  The 

mouse pointing task was a multi-directional reciprocal Fitts’ pointing task, similar to that 

described in Soukoreff & MacKenzie (2004).  The Fitts’ task was operationalized using the 

software program IDTest (International Business Machines [IBM], 1999) to generate stimuli 

for the pointing task.  Participants performed all tasks with their dominant hand. 

4.4.3.1. Psychomotor Tests 

A rotary pursuit test was used to assess participant precision control.  The light 

emitting target was set at 30 rpm rotating in a clockwise direction.  Participants were 

instructed to track the rotating target using a stylus attached to the unit.  Performance was 

measured using time-on-target (TOT) averaged from the four trials; higher TOT indicated 

better precision control.  After two complete practice trials, four repetitions of the same 

duration were completed. 

Participant arm-hand steadiness was measured using the grooved type steadiness test.  

The participants were required to move a stylus along a narrowing channel without touching 

the sides.  After a complete practice trial, participants completed four repetitions.  Error time, 

measured as the contact time between the stylus and the channel walls, was recorded and 

averaged across all four trials; lower error time indicated better arm-hand steadiness. 

The Minnesota manual dexterity test was used to assess participant manual dexterity.  

Two test batteries were administered: turning and displacing.  The turning battery required 

the participant to pick up a peg with one hand, turn the peg while passing it to the other 

hand and then return the peg back to its position with the bottom side facing up.  The 
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battery ended after all pegs were turned.  The displacing battery began with an empty top-left 

hole.  The participant was required to move the peg to the adjacent hole, until all the pegs 

were displaced.  After a complete practice trial, both the turning and the displacing batteries 

were repeated four times.  For each test battery, the sum of completion times from all four 

trials was used as the performance measure lower completion time indicated better manual 

dexterity. 

The assessment of finger dexterity was conducted using the Purdue pegboard.  Two 

test batteries were administered: insertion and assembly.  The insertion battery required the 

participant insert as many pins as he could in 30 s, whereas the participant was given a 

minute to put together as many 4-pin assemblies.  Participants were allowed to practice until 

they were comfortable with the routines.  Four trials were completed of each battery.  Thirty 

seconds were allowed to complete the insertion assembly; one minute was allowed for the 

assembly battery.  The average number of pins inserted was recorded from the insertion 

battery, whereas the average number of parts assembled was recorded from the assembly 

battery.  In both cases, a higher number indicated better finger dexterity. 

Wrist-finger speed was measured using the tapping board.  It was essentially a Fitts’ 

pointing task with two metal plates at either end of the board.  Participants were required to 

tap the metal plates with an attached stylus as fast as they could for 15 seconds.  After two 

complete practice trials, participants performed four trials.  The average number of taps per 

trial was recorded as the performance measure; a higher number of taps indicated better 

wrist-finger speed. 
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4.4.3.2. Mouse Pointing Task 

A multidirectional reciprocal Fitts’ pointing task was generated using IDTest (IBM, 

1999) running on a Windows-based laptop computer with 1280-by-800 pixels screen 

resolution.  The pointing device used was a neutral shaped Microsoft Optical Mouse 

connected to the computer via a universal serial bus (USB) port. 

The targets were circular in shape with a diameter of 30 pixels and were separated by 

either 50, 100, 200, 400, or 650 pixels, thus producing five distance conditions.  Using 

Shannon’s formulation for index of difficulty (ID), log2 ((D + W) / W)), the combinations 

produced five ID values ranging from 1.42 to 4.50 bits.  The targets, each colored black and 

red, were arranged along various angles (i.e., 0, 45, 90, and 135 degrees).  The task required 

participants to point the cursor at the target and then select it using the left mouse button.  

The targets became transparent if successfully acquired.  However, a beep would be audible 

if the participant missed the target. 

Following a practice trial, each distance condition was tested five times at each angle.  

Therefore, each participant was subjected to 100 trials (i.e., 5 distances × 4 angles × 5 

repetitions).  The treatments (i.e., distance-angle combinations) were presented in random 

order (without replacement) for all trials and short breaks were allowed between treatments.  

In each trial, movement time (MT) was recorded as the performance measure.  In addition, 

cursor x-y positions were sampled across time.  Note the sampling of cursor positions was 

event-based.  Each time a mouse movement was detected, the x-y position would be 

recorded by IDTest (B.A. Smith, personal communication, 1 December, 2006).  As a result, 

the sampling rate varied for each trial. 
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4.4.4. Data Interpolation and Smoothing 

Point-to-point cursor displacements were computed from the raw position data 

using the Pythagorean Theorem.  The displacement data were then linearly interpolated at 

200 Hz.  The interpolation produced a dataset with a constant sampling rate, which was 

necessary for subsequent data smoothing.  Data smoothing used a fourth order zero-phase 

shift Butterworth low-pass filter with a cut-off frequency of 6 Hz, which was determined 

using residual analysis.  Data smoothing and the computations of velocities and accelerations 

were based on the techniques described in Winter (2005).  The interpolation and smoothing 

processes were performed using a Microsoft Excel macro (Van Wassenbergh, 2005). 

4.4.5. Cursor Kinematic Measures 

Kinematics of cursor movement was characterized using eight measures: peak 

velocity (PV), peak acceleration (PA), time to peak velocity (TPV), time to peak acceleration 

(TPA), proportion of time to peak velocity (PROPTPV), proportion of distance traveled at 

the time of peak velocity (PROPDPV), proportion of time to peak acceleration (PROPTPA), 

and time from peak velocity until the end of movement (TPVEND).  These measures are 

defined in Table 10.  To avoid misinterpretation of initial jerk as PA, accelerations occurring 

within 10 ms of movement onset were disregarded. 

4.5. Results and Analysis 

Participant psychomotor ability was measured using seven measures, as suggested in 

Fleishman & Reily (1992).  Table 9 provides the means and standard deviations of the 

psychomotor measures for each of the three age groups.  In general the older group was 

associated with reduced psychomotor ability; however, the differences between the younger 

and the middle-aged group were less apparent. 
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Table 9.  Participants’ Psychomotor Measures. 
Age Groupa 

Psychomotor Measure 
Younger Middle-Aged Older 

Precision control (time-on-target in seconds) 

M 11.91 11.05 6.34 

SD 3.69 4.41 3.57 

Arm-hand steadiness (error time in seconds) 

M .31 .25 .71 

SD .20 .19 .64 

Manual dexterityb (completion time in seconds) 

M 171.16 183.86 243.17 

SD 13.62 24.18 31.85 

Manual dexterityc (completion time in seconds) 

M 175.13 257.00 182.89 

SD 15.64 47.02 23.57 

Finger dexterityd (number of pins inserted) 

M 17.07 16.20 12.03 

SD 1.87 1.60 2.44 

Finger dexteritye (number of pins assembled) 

M 43.37 39.35 21.77 

SD 4.87 7.29 5.73 

Wrist-finger speed (number of taps) 

M 62.87 58.50 45.98 

SD 9.50 9.44 10.15 
an = 15 for each group.  bMinnesota manual dexterity test displacement battery.  cMinnesota 
manual dexterity test turning battery.  dPurdue pegboard insertion battery.  ePurdue pegboard 
assembly battery. 

 

4.5.1. Overall Analysis on Kinematics-Performance Correlation 

One of the objectives of this study was to determine the kinematics-performance 

relationship.  Even though kinematics is part of the movement, it was suspected that not all 

kinematic measures correlate with movement performance.  In order to investigate the 

proposition further, a series of overall bivariate correlation (i.e., across all age groups) were 

computed for kinematic measures and movement time (MT), using a sample size of N = 

4500 (i.e., 100 trials × 45 participants).  Correlations with a magnitude larger than |.35| were 

considered to be of practical value; those smaller than |.35| were deemed to have little or no 
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meaning.  Based on that criteria, only TPV-MT (r = .68), TPA-MT (r = .61), and TPVEND 

TPVEND-MT (r = .96) were found to have practical meaning. The correlations PV-MT (r 

= .07), PA-MT (r = .16), PROPDPV-MT (r = .24), PROPTPV-MT (r = -.05), PROPTPA-

MT (r = -.18) were of little importance. 

4.5.2. ANOVAs on Kinematic-Peformance Correlations 

In addition to understanding the overall kinematics-performance relationships, it was 

also of interest to determine whether the relationships differed between age groups.  The 

bivariate correlations that were meaningful (i.e., TPV-MT, TPA-MT, and TPVEND-MT) 

were recalculated according to age group.  For each distance condition (over all angles and 

repetitions), kinematics-MT correlations were computed for each participant.  Because 

Pearson’s correlations are known to be non-normally distributed, they were transformed to 

Fisher’s z-scores (Fisher, 1970); the same technique was also reported in Chua & Elliott 

(1993) and Elliott et al. (1991).  A series of 3 (between-subjects age group, AGE) × 5 

(within-subjects distance condition, DIST) ANOVAs was performed on the z-scores (i.e., 

transformed kinematics-MT correlations).  The between-subjects main effect age (AGE: 

younger, middle-aged, and older) was evaluated using MSSUB(AGE) as the error term, whereas 

the within-subjects main effect distance (DIST: 50, 100, 200, 400, 650 pixels) and the 

interaction AGE × DIST were evaluated using MSCOND*SUB(AGE) as the error term.  Moreover, 

all within-subjects effects were determined with numerator and denominator degrees of 

freedom adjusted using the Huynh-Feldt procedure to circumvent possible violation of the 

sphericity assumption. 
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The variances accounted for by the effects of interest were estimated by the partial 

2
ω̂ .  It should be noted that the computation of partial 2

ω̂  was based on Olejnik & Algina’s 

(2000) recommendation for a similar design (i.e., split-plot design) and is the proportion of 

effect variance to the sum of the error variance and the effect variance.  Computation of 

effect size allows a way to determine whether statistical significance has any practical values.  

According to Cohen’s (1988) guidelines, a value of 1% indicates a small effect, 6% indicates 

a medium effect, and 14% indicates a large effect.  A small significant effect may means little 

from a practical standpoint.  On the other hand, a significant large effect would be worthy in 

terms of its practicality. 

4.5.2.1. TPV-MT Correlation 

DIST and AGE × DIST were found to be significant in regard to the correlation 

magnitudes for TPV-MT, with F4, 168 = 6.18 (p = .0001, partial 2
ω̂ = .069), and F8, 168 = 2.43 

(p = .0167, partial 2
ω̂ = .048), respectively.  Post-hoc multiple comparison was conducted at 

each distance condition to determine if age differences exist.  No practical results were 

obtained, it was concluded that the significant interaction effect AGE × DIST was driven 

more by the DIST effect. 

4.5.2.2. TPA-MT Correlation 

Only DIST was significant (F8, 168 = 4.42, p = .0027, partial 2
ω̂ = .057) in regard to 

the TPA-MT correlation.  Recall that the omnibus test showed non-significance for the main 

effect AGE and the interaction effect AGE × DIST, thus no further analysis was needed. 
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4.5.2.3. TPVEND-MT Correlation 

The magnitudes of the TPVEND-MT correlations were found to vary significantly 

by AGE (F2, 42 = 8.78, p = .0007, partial 2
ω̂ = .515) as well as by DIST (F4, 168 = 13.49, p 

< .0001, partial 2
ω̂ = .182).  Ryan’s MCP was performed to determine pairwise differences 

between age groups, with familywise Type I error rate set at .05.  The error term was 

MSSUB(AGE).  The results showed that the TPVEND-MT correlation for the older group (r 

= .90) was smaller than for the younger (r = .96) and middle-aged (r = .92) groups.  There 

was not a significant difference between the younger and middle-aged groups (see Figure 8). 
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Figure 8.  Plot of TPVEND-MT Correlations for AGE × DIST. 

 

4.6. Discussion 

This study examined whether kinematics measures can adequately predict task 

performance time.  Most studies of movement kinematics employ a one-dimensional 

pointing paradigm whereby pointing movements have been restricted to one angle.  A 
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potential problem associated with this paradigm is the confounding between performance 

and movement angle (Phillips & Triggs, 2001).  To avoid the bias due to movement angle, a 

multidirectional paradigm similar to that prescribed in ISO 9241-9 (International 

Organization for Standards [ISO], 2000) was used.  The findings obtained from this multi-

dimensional task are more generalizable because they do not restrict movement to one angle.  

This study also examined the impact of age on the kinematics-performance relationship.  

While many existing studies (e.g., Ketcham et al. 2002) have reported the relationship 

between age and movement kinematics, this study investigated the relationships from a 

within-group perspective.  More specifically, it was of interest to investigate whether the 

kinematics-performance relationships determined from across age groups remain the same if 

computed from within each group. 

Various kinematic-performance correlations computed across age groups showed 

time to peak velocity (TPV), time to peak acceleration (TPA), and time from peak velocity 

until the end of movement (TPVEND) were correlated with performance.  A lack of 

relationship with performance was observed for other kinematic measures.  Previous 

literature (e.g., Elliott et al., 1991; and Slocum, Chapparo, et al., 2005) had suggested PV, 

TPV, and PROPDPV as predictors for movement efficiency; however, this study was only 

able to confirm only the relationship between TPV and movement time.  Despite being 

reported extensively in the literature, peak velocity (PV) was found to be uncorrelated with 

movement performance.  The lack of correlation between PV and MT appeared to be driven 

by the minimal variance of MT accounted for by PV (see Ketcham et al., 2002).  PV is a 

spatial kinematic measure, while on the other hand MT has to do with temporal kinematics; 
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and that may attribute to the dissociation between the two.  The lack of correlation between 

PA and MT also can be explained with the same reasoning. 

Findings from this study present two implications.  First, if task performance is the 

focus, attention should be given to TPV, TPA, and TPVEND because the results suggested 

they were the determinants of movement time.  Recall that both TPV and TPA are temporal 

kinematics associated with the primary submovement.  Therefore, it is suggested that 

performance can be improved by facilitating quick attainment of PV and PA.  On the other 

hand, TPVEND has to do with time spent in the secondary submovement (i.e., homing 

phase).  To improve performance in this phase of movement, perhaps a stabilizing 

mechanism can be utilized to facilitate target homing.  In the context of designing computer 

input devices, a common strategy for improving performance is to manipulate the 

parameters in Fitts’ law (i.e., target width and distance).  Such manipulation is often limited 

to modifying the design of the graphical user interface (see Balakrishnan, 2004).  Now that 

pertinent kinematic measures have been identified, perhaps hardware can be enhanced to 

facilitate better movement kinematics, and consequently improve mouse use.  Second, even 

though many kinematics measures were found to be uncorrelated with performance, these 

measures have been shown useful for characterizing the process of pointing movement.  A 

number of studies have reported such kinematics differences along a host of different 

dimensions, such as age (e.g., Ketcham et al., 2002), index of difficulty (e.g., Ketcham et al., 

2002), eye-hand coordination (e.g., Helsen et al., 1998), and type of input devices (e.g., 

Slocum, Chaparro, et al., 2005).  It should be noted that this study was based on mouse-

controlled pointing movements, and the kinematics-performance relationships identified 

here may not hold if a different pointing device is of interest.  To further clarify these 
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kinematics-performance relationships and to examine if the significant patterns identified in 

this study can be replicated, this study should be replicated using different pointing devices. 

The age differences among these kinematics-performance relationships were 

somewhat unclear.  In general, we were unable to determine the presence of TPV-MT and 

TPA-MT correlations in any particular age group.  Nevertheless, a significant age effect was 

detected in TPVEND-MT correlations.  For the older group, TPVEND (i.e., time spent in 

homing phase) accounted for 81% of variability in movement performance.  This proportion 

increased to 88% for the younger and middle-aged groups.  It was unclear what caused this 

difference.  Perhaps this could be explained from the perspective of age differences in 

psychomotor ability.  Reduced psychomotor ability among older adults might already 

account for considerable variability in performance, and as a result the contribution of age to 

TPVEND was reduced.  This conjecture was not investigated further and thus it remains a 

question for future research. 
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CHAPTER 5 

KINEMATICS OF MOUSE-MEDIATED AIMING MOVEMENT: 

EFFECTS OF AGE AND PSYCHOMOTOR ABILITY 

5.1. Introduction 

There are various user attributes affecting performance of mouse use.  A variable of 

significant interest is age.  Despite its apparent effects, Birren & Renner (1977) and Salthouse 

& Maurer (1996) suggested that age is only a surrogate variable in most cases.  It is variables 

such as knowledge, skills, and abilities that have direct causal relationships with performance 

level.  Such a conjecture has been confirmed by other researchers.  For instance, Czaja & 

Sharit (1998) and Smith, Sharit, & Czaja (1999) found that age alone did not account for 

differences in performance of computing tasks, but it was the age-related changes in 

functional abilities that caused such differences.  Following along that line, perhaps a more 

valid approach to studying mouse use is to focus on the functional abilities that directly 

affect mouse use performance. 

5.2. Psychomotor Ability 

Successful mouse use requires good psychomotor ability.  From a human control 

system point of view, mouse use is a closed-loop system characterized by the collaboration 

between motor control (output) and visual function (input).  Some researchers believe that 

psychomotor ability can be broken into several elemental components.  In the past, there 

have been many attempts to identify and to classify these components.  Of these, 
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Fleishman’s taxonomy of psychomotor abilities is the most extensive (Merrill, 1972).  

Originally developed for use in air force personnel training and selection, ten elemental 

abilities were listed in Fleishman & Reily (1992): control precision, multilimb coordination, 

response orientation, rate control, reaction time, arm-hand steadiness, manual dexterity, 

finger dexterity, wrist-finger speed, and speed-of-limb movement.  These abilities are 

measurable using an array of standard psychomotor tests.  For instance, control precision 

can be assessed using the rotary pursuit test, and multilimb coordination can be measured 

using a two-arm coordination test.  Table 10 describes some elemental psychomotor abilities 

that maybe relevant to mouse use.  Control precision and arm-hand steadiness were 

mentioned in Knight & Salvendy (1992) as important for mouse use.  In addition, manual 

dexterity was found to correlate with mouse performance by Hwang (2001).  Finger dexterity 

is thought to be pertinent because based on its definition in Fleishman’s taxonomy, it may be 

vital for the operation of a mouse, particularly in pressing its buttons.  Wrist-finger speed is 

thought to be relevant because similar movements are common in mouse use. 

Table 10.  Selected Elemental Psychomotor Abilities (Fleishman & Reily, 1992). 
Psychomotor Ability Description Test Equipment 

Control precision • Ability to make highly controlled and precise 
adjustments that are quick or continuous. 

Rotary pursuit test 

Arm-hand steadiness • Ability to keep arm and hand steady, either 
while moving the arm or while both arm and 
hand are in position. 

Steadiness tester (grooved or 
hole type) 

Manual dexterity • Ability to handle fairly large objects with one 
or both hands. 

• May also include arm-hand movements. 

Minnesota manual dexterity 
test 

Finger dexterity • Ability to make skillful, coordinated finger 
movements. 

• Usually involves handling of small, pin-sized 
objects. 

Purdue pegboard 

Wrist-finger speed • Ability to make fast and repeated movements 
of the fingers, hands, and wrists. 

• May involves some degree of eye-hand 
coordination. 

Tapping board 
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5.3. Characterizing Mouse Use with Cursor Movement Kinematics 

The mouse affords several interaction techniques under the direct manipulation 

paradigm.  These techniques are best captured using a concept known as task primitives 

(Foley, Wallace, & Chan, as cited in Hinckley, 2001).  In essence, task primitives are the most 

elemental interaction techniques a mouse can perform: (1) pointing, (2) selecting, (3) 

dragging, (4) drawing or tracing, and (5) free-hand input.  Pointing is an action where users 

move the cursor display from one point to another; selecting is often accomplished by 

clicking the mouse button.  Dragging, on the other hand, can be thought as a combination 

of pointing and selecting; this action often involves holding down the mouse button while 

moving the cursor over some distance.  Tracing is similar to the pointing and the dragging 

except the path of which the cursor moves is instrumental for task accomplishment 

(Douglas & Mithal, 1997).  The fifth elemental task, free-hand input, is quite similar to 

tracing and can be thought as an action made up of several instances of tracing.  An example 

of free-hand input is the action of entering text using the mouse.  Among the primitives 

listed above, pointing and selecting are the most frequently used techniques. 

Aiming movement is often referred to as spatially constrained goal-directed 

movement.  When performed simultaneously, the actions of point and select resemble a type 

of aiming movement.  For many years studies of aiming movement had been dominated by 

Fitts’ law.  However, as a performance prediction model for pointing tasks, Fitts’ law does 

not explain what happens “during” the movement.  Thus, alternative models were proposed 

to explain the process of the movement.  Some notable models include the deterministic 

iterative corrections model proposed by Crossman & Goodeve (1963/1983) and Keele 

(1968), as well as the stochastic optimized submovement (SOS) model (Meyer, Abrams, 
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Kornblum, Wright, & Smith, 1988; Meyer, Smith, Kornblum, Abrams, & Wright, 1990).  To 

describe briefly, the deterministic model posits that aiming movement consists of several 

discrete ballistic phases (i.e., submovements); the model further assumes no variability in 

movement endpoints.   In the contrast, the SOS model claims that the submovement 

endpoints are not deterministic and they normally distribute around the center of the target.  

Despite their apparent differences, both models focus on the kinematics of aiming 

movements. 

There are more than a dozen kinematic measures reported in the literature.  These 

measures can be computed from kinematic landmarks (e.g., distance traveled, peak velocity, 

peak acceleration, and zero crossings).  Generally there are two families of kinematic 

measures: spatial and temporal.  Spatial kinematic measures include peak velocity, peak 

acceleration, proportion of distance traveled at peak velocity, and zero crossings.  Temporal 

kinematic measures include time to peak velocity, time from peak velocity until the end of 

movement, proportion of time to peak velocity, time to peak acceleration, and proportion of 

time to peak acceleration.  Some of these measures were reported in mouse use studies.  

Even though not all were reported in mouse use literature, they remain relevant, particularly 

if the usage is operationalized using a pointing task.  Table 11 summarizes various kinematic 

measures reported in the literature. 
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Table 11.  Various Kinematic Measures. 
Kinematic Measure Description Reported in 

Peak velocity (PV) • The highest magnitude in velocity 
profile, usually occurs during primary 
submovement 

Chua & Elliott (1993), Elliott et al. 
(1991), Helsen et al. (1998), 
Ketcham et al. (2002), Phillips et al. 
(2005), Ricker et al. (1999), 
Slocum, and Thompson, et al. 
(2005) 

Peak acceleration (PA) • The highest magnitude in acceleration 
profile, may occur during primary or 
secondary submovements 

Carlton (1994), and Helsen et al. 
(1998) 

Time to PV (TPV) • Difference between time at PV and 
time at the beginning of movement 

• Direct indicator for movement 
efficiency 

Carlton (1994), Elliott et al. (1991), 
Helsen et al. (1998), Phillips et al. 
(2005), and Ricker et al. (1999) 

Time to PA (TPA) • Difference between time at PA and 
time at the beginning of movement 

Carlton (1994), and Helsen et al. 
(1998) 

Proportion of time to 
PV (PROPTPV) 

• The ratio of time to PV (TPV) and 
movement time (MT) 

Chua & Elliott (1993), Helsen et al. 
(1998), Ketcham et al. (2002), and 
Ricker et al. (1999) 

Proportion of time to 
PA (PROPTPA) 

• The ratio of time to PA and the overall 
time 

Helsen et al. (1998) 

Proportion of distance 
traveled at the time of 
PV (PROPDPV) 

• The ratio of distance traveled at PV and 
total distance 

• Some authors suggested it as a positive 
indicator for movement efficiency 

Chua & Elliott (1993), Helsen et al. 
(1998), Ketcham et al. (2002), and 
Slocum, Chaparro, et al. (2005) 

Time from PV until the 
end of movement 
(TPVEND) 

• Difference between time at PV and 
time at the end of movement 

• Indicates time spent in homing phase 

Elliott et al. (1991) 

 

5.4. Aging, Psychomotor Ability, and Performance of Computing Tasks 

There is a host of studies that investigates the effects of aging on performance of 

computing tasks.  However, only a few studies consider the perspectives of age-associated 

declines in functional abilities, and how that affects performance.  In Czaja & Sharit (1998), 

subjects aged 20- to 75-years-old were tested with a computer data entry task over a period 

of five consecutive days.  As predicted, the results indicated significant age differences in 

task performance.  However, the age effect alone did not account for the differences in 

performance.  Psychomotor ability, and to a lesser extent, cognitive ability were found to 
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contribute to the variability of task performance as well.  In another words, after the 

performance variance was accounted for by functional abilities, it was demonstrated that age 

had only minimal impact on performance.  In a separate study, subjects of a similar age 

range were tested by Smith, Sharit, & Czaja (1999) on a series of computer mouse tasks (i.e., 

pointing, clicking, double-clicking, and dragging).  As expected, performance differences 

were detected in regard to age.  However, further investigation showed it was the age-related 

changes in psychomotor ability that accounted for such differences.  Both studies 

demonstrated that when controlling for differences in psychomotor ability associated with 

age, a pure age effect no longer accounted for mouse use performance.  In short, there is 

some evidence indicating that after controlling for basic functional abilities, the age effect on 

task performance diminishes.  This evidence is consistent with the view that the age effect is 

only a surrogate variable, and that the underlying abilities are the true causal variables for 

performance differences (see Birren & Renner, 1977; and Salthouse & Maurer, 1996).  

However, it is not known whether the same proposition is also applicable to the kinematics 

of aiming movement. 

5.5. Objectives 

A number elemental psychomotor ability has been suggested to be predictive of 

computing task performance (e.g., Hwang, 2001; Knight & Salvendy, 1992; and Jacko & 

Vitense, 2001).  It was the interest of this study to empirically examine this proposition.  

Although a similar question was addressed previously by Cheong, Pham, Phan, & Shehab 

(2005), this study extends that work by determining the predictability of mouse mediated 

movement kinematics based on various elemental psychomotor abilities. 



68 
 
 
 

Mouse use can be considered a complex psychomotor task; logically its performance 

is subject to age differences.  While many studies (e.g., Smith, Sharit, & Czaja, 1999) found 

age effects in the performance of mouse tasks, it is not known if age differences are present 

in movement kinematics as well.  Currently the effects of age on the kinematics of mouse-

mediated aiming movements are not well-documented.  Ketcham et al. (2002) was the only 

study of similar purpose; however, the aiming movements were mediated using a pen.  

Therefore, the second objective of this study was to determine age-related differences in 

regard to movement kinematics during aiming movements mediated by a mouse. 

Some researchers believe that the effect of age on task performance is in fact 

associated with age-related changes in functional abilities, as demonstrated by Czaja & Sharit 

(1998) and Smith, Sharit, & Czaja (1999).  However, it is not known whether the same is true 

in regard to movement kinematics.  Therefore the current study attempted to separate age-

related differences from differences in psychomotor ability in kinematic performance 

measures.  It was hoped that age would show only minimal, if any, impact on kinematic 

differences after psychomotor ability was considered. 

To summarize, this study has three objectives: (1) to determine whether 

psychomotor measures are predictive of certain kinematic measures of mouse-based cursor 

movement, (2) to determine age group differences in regard to movement kinematics, (3) to 

determine if a true age-effect exists in movement kinematic differences after psychomotor 

ability is considered. 



69 
 
 
 

5.6. Method 

5.6.1. Participants 

Forty-five healthy participants between 21 and 90 years of age were recruited from 

the University of Oklahoma community, as well as from an independent living center.  

Fifteen participants were recruited from three age groups: younger (M = 25.25 years old, SD 

= 2.89), middle-aged (M = 50.37 years old, SD = 5.01), and older (M = 80.62 years old, SD 

= 6.16).  Participants were required to have normal or near-normal vision, with correction if 

necessary.  Their binocular vision was at least 20/60 based on the Snellen chart.  

Additionally, older participants were screened for dementia.  All participants were 

experienced mouse users except for one middle-aged participant and two older participants.  

Inexperienced participants were trained prior to performing the mouse task. 

5.6.2. Procedure 

All tests were conducted in a quiet environment, and were administered on an 

individual basis.  Informed consent was obtained from the participants prior to the study.  

First, a questionnaire (see Appendix A) was administered to gather general demographic 

information and to screen out potential participants who have substantial injuries in their 

upper extremities.  Then, participants’ visual acuity was measured using a Snellen chart.  In 

addition, older participants were screened for dementia using Folstein, Folstein, & 

McHugh’s (1975) mini-mental state exam (see Appendix B).  All participants initially 

recruited passed screening and proceeded to testing. 

All participants performed five psychomotor tests and a pointing task.  The order of 

testing was randomized, with a break of about 2 minutes between each task.  The 

psychomotor tests were the rotary pursuit test (Lafayette Model 2203ET), the grooved type 
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steadiness test (Lafayette Model 32010), the Minnesota manual dexterity test (Lafayette 

Model 32023), the Purdue pegboard (Lafayette Model 32020), and a tapping board task 

(Lafayette Model 32012).  The pointing task was performed using a mouse under the Fitts’ 

paradigm; IDTest (International Business Machines [IBM], 1999) was used for generating 

stimuli.  The experiment concluded after all tasks were completed. 

5.6.3. Experimental Tasks 

Standardized psychomotor tests were used to measure various elemental 

psychomotor abilities (i.e., precision control, arm-hand steadiness, manual dexterity, finger 

dexterity, and wrist-finger speed) as suggested by Fleishman & Reily (1992).  The mouse 

pointing task was operationalized using a multidirectional reciprocal Fitts’ pointing task 

similar to that described in Soukoreff & MacKenzie (2004).  Participants performed all tasks 

with their dominant hand. 

5.6.3.1. Psychomotor Tests 

Rotary Pursuit Test 

A rotary pursuit test was used to assess participants’ precision control.  The test 

consisted of a light emitting target rotating beneath a circular glass template, at 30 rpm in a 

clockwise direction.  The unit was attached with an impulse counter (Lafayette Model 58022) 

and a timer (Lafayette Model 54016), which were used to tally the number of revolutions 

made and to record total time-on-target (TOT), respectively.  The unit was placed at waist 

height.  Standing next to the unit, participants were instructed to track the rotating target 

using a stylus attached to the unit.  To control for undesired variability, all participants were 

asked to position the stylus at the center of the template before each trial.  After two practice 
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trials lasting 30 s each, four repetitions of the same duration were completed.  Short breaks 

were allowed between trials.  The performance measure recorded was TOT averaged across 

the four trials. 

Grooved Type Steadiness Test 

Participants’ arm-hand steadiness was measured using the grooved type steadiness 

test.  The test unit consisted of a narrowing channel in which participants were required to 

move a stylus along without touching the sides.  The unit was placed flat with the channel 

oriented horizontally to the participants, and that the wider end was on participant’s weak 

hand side.  All participants were asked to position the stylus at the wider end before the task 

began.  After a practice trial, participants completed four repetitions.  Error time (i.e., 

contact time between the stylus and the walls) was recorded using an attached timer 

(Lafayette Model 54016), and was averaged across four trials. 

Minnesota Manual Dexterity Test 

The Minnesota manual dexterity test was used to assess participants’ manual 

dexterity.  Participants were asked to stand next to the test board placed on a table directly in 

front of them.  Two test batteries were administered: turning and displacing.  The turning 

battery required the participant to pick up a peg with one hand, turn the peg while passing it 

to the other hand and then return the peg back to its position with the bottom side facing up.  

The battery ended after all pegs were turned.  The displacing battery began with an empty 

top-left hole.  The participant was required to move the peg to the adjacent hole, until all the 

pegs were displaced.  To control for undesired variability, participants were asked to place 

their hand at the first peg before the trial began.  After a practice trial, both the turning and 

the displacing batteries were repeated four times.  Short breaks were allowed between trials.  
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Participants were reminded to complete both test batteries as fast as they could while 

ensuring all pegs were securely inserted.  Performance measures recorded were completion 

times of both test batteries, each averaged across four trials. 

Purdue Pegboard Test 

The assessment of finger dexterity was conducted using the Purdue pegboard test.  

Participants were seated with the pegboard placed directly in front of them.  Two test 

batteries were administered: insertion and assembly.  The insertion battery required 

participants to use their dominant hand to pick up one metal pin at a time from the holding 

cup and then insert it into the holes arranged in two columns.  The assembly battery required 

participants to make an assembly with both hands, using one pin, one collar, and two 

washers.  Practice was allowed until participants were comfortable with the routines, then 

four trials of each battery were completed.  Short breaks were allowed between trials.  

Participants were asked to place their hand near the holding cup before the test began.  

Participants were reminded to complete the test as fast as they could but making sure that all 

parts were securely inserted.  Thirty seconds were given to complete the insertion assembly; 

one minute was allowed for the assembly battery.  The average number of pins inserted was 

measured for the insertion battery; the average number of parts assembled was recorded for 

the assembly battery. 

Tapping Board 

Wrist-finger speed was measured using a tapping board.  The unit was attached to an 

impulse counter (Lafayette Model 58022) for recording the number of taps made with the 

attached stylus.  In a seated position, participants were required to alternately tap the metal 

plates with an attached stylus as fast as they could.  After two practice trials, participants 
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completed four 15-second trials.  The average number of taps from four trials was the 

performance measure. 

5.6.3.2. Mouse Pointing Task 

A multidirectional reciprocal Fitts’ pointing task was generated using IDTest (IBM, 

1999) running on a Windows-based laptop computer with 1280-by-800 pixels screen 

resolution.  The pointing device used was a neutral shaped Microsoft Optical Mouse 

connected to the computer via a universal serial bus (USB) port. 

The targets were circular in shape with a diameter of 30 pixels; they were separated 

from each other by 50, 100, 200, 400, and 650 pixels.  Using Shannon’s formulation, 








 +
=

W
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the combinations produced five values of index of difficulty (ID) ranging from 1.42 to 4.50 

bits.  The targets were arranged along various angles (i.e., 0, 45, 90, and 135 degrees).  The 

task required participants to point the cursor at the target and then select it using the left 

mouse button.  The targets became transparent if successfully acquired.  However, a beep 

sound was audible if the target was missed.  Following a practice trial, each distance 

condition was tested five times at each angle.  Therefore, participants completed 100 trials 

(i.e., 5 distances × 4 angles × 5 repetitions).  The treatments (i.e., distance-angle 

combinations) were randomized for all trials.  Short breaks were allowed between treatments.  

Movement time (MT) was recorded.  In addition, cursor x-y positions were sampled across 

time.  The sampling of cursor positions was event-based.  Each time a mouse movement 
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was detected, the x-y position of the cursor was recorded by IDTest (B.A. Smith, personal 

communication, 1 December, 2006).  As a result, the sampling rate varied in each trial. 

5.6.4. Data Interpolation and Smoothing 

Cursor displacements were computed from the raw position data using the 

Pythagorean Theorem.  The displacement data were then linearly interpolated at 200 Hz. 

The interpolation produced a dataset with a constant sampling rate, which was necessary for 

subsequent data smoothing.  The interpolated data was smoothed using a fourth order zero-

phase shift Butterworth low-pass filter with a cut-off frequency of 6 Hz.  The cut-off 

frequency was determined using residual analysis.  Data smoothing, selection of cut-off 

frequency, and the computations of velocities and accelerations were based on the 

techniques described in Winter (2005).  The interpolation and smoothing processes were 

performed using a Microsoft Excel macro (Van Wassenbergh, 2005). 

5.6.5. Movement kinematics Measures 

Kinematics of cursor movement was characterized using nine measures: peak 

velocity (PV), time to peak velocity (TPV), proportion of time to peak velocity (PROPTPV), 

proportion of distance traveled at peak velocity (PROPDPV), peak acceleration (PA), time 

to peak acceleration (TPA), proportion of time to peak acceleration (PROPTPA), and time 

from peak velocity until the end of movement (TPVEND).  To avoid misinterpretation of 

initial jerk as PA, accelerations that occurred within 10 ms of movement onset were 

disregarded during the identification process of PA. 
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5.7. Results and Analysis 

5.7.1. Age Differences in Psychomotor Ability 

Participants’ psychomotor ability was assessed using seven measures from standard 

psychomotor tests as suggested by Fleishman & Reily (1992).  A series of one-way ANOVAs 

were performed to compare differences among age groups in regard to various psychomotor 

measures.  As expected, age groups were found to be significantly different in regard to all 

psychomotor measures (see Table 12).  Ryan’s multiple comparison procedure (MCP) was 

performed to determine pairwise differences in age group.  In general, the results revealed 

lower psychomotor ability in the older age group when compared to the younger and the 

middle-aged groups.  There was no significant difference between the younger and the 

middle-aged groups in regard to psychomotor ability, such a trend in age differences was 

observed across all psychomotor measures (see Table 12). 
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Table 12.  ANOVAs and Ryan’s MCP on Psychomotor Measures. 
Source df ANOVA F Group Means (Standard Deviation) 

 Precision Control (time-on-target, TOT in seconds) 
Age group (AGE) 2 8.82 11.91 

 
Younger 

11.05 
 

Middle-aged 

6.34 
 

Older 
 

Error 42 (15.26)  
 Arm-Hand Steadiness (error time, ET in seconds) 
Age group (AGE) 2 5.90 .25 

 
Middle-aged 

 

.31 
 

Younger 

.71 
 

Older  

Error 42 (.16)  
 Manual Dexteritya (completion time, CT-D in seconds) 
Age group (AGE) 2 37.26 171.16 

 
Younger  

 

183.86 
 

Middle-aged 

243.17 
 

Older  

Error 42 (594.83)  
 Manual Dexterityb (completion time, CT-T in seconds) 
Age group (AGE) 2 30.53 175.13 

 
Younger  

 

182.89 
 

Middle-aged 

257.00 
 

Older  

Error 42 (1003.51)  
 Finger Dexterityc (number of pins inserted, PIN-I) 
Age group (AGE) 2 27.12 17.07 

 
Younger 

16.20 
 

Middle-aged 

12.03 
 

Older 
 

Error 42 (4.00)  
 Finger Dexterityd (number of pins assembled, PIN-A) 
Age group (AGE) 2 54.09 43.37 

 
Younger 

39.35 
 

Middle-aged 

21.77 
 

Older 
 

Error 42 (36.60)  
 Wrist-Finger Speed (number of taps, TAP) 
Age group (AGE) 2 12.24 62.87 

 
Younger 

58.50 
 

Middle-aged 

45.98 
 

Older 
 

Error 42 (94.10)  

Note.  Values in parentheses represent mean square error.  Underlined groups are not 
significantly different at α = .05. 
aMinnesota Manual Dexterity Test displacement battery.  bMinnesota Manual Dexterity Test 
turning battery.  cPurdue Pegboard insertion battery.  dPurdue Pegboard assembly battery. 

 



77 
 
 
 

5.7.2. Age Differences in Movement kinematics 

Each kinematic measure was evaluated using a 3 (between-subjects age group, AGE) 

× 5 (within-subjects distance condition, DIST) × 4 (within-subjects movement angle, 

ANGLE) × 5 (within-subjects repetition, REPEAT) analysis of variance (ANOVA).  The 

test on the between-subjects effect used MSSUB(AGE) as the error term; the tests on the within-

subjects effects were determined using their respective error terms.  To circumvent possible 

violation of the sphericity assumption, within-subjects effects were determined with 

numerator and denominator degrees of freedom adjusted using the Huynh-Feldt procedure.  

Effect size was also computed for each significant effect.  According to Olejnik & Algina 

(2000), effect size can be defined as the proportion of the sum of the error variance and 

variances of all other effects in the model, 2
η̂ = SSeffect / SStotal.  An effect size of 1% is 

considered a small effect, 6% a medium effect, and 14% indicates a large effect (Cohen, 

1988). 

Subsequent to the omnibus tests, Ryan’s multiple comparison procedure (MCP) was 

performed if age group was significant.  When dealing with the between-subjects effect, the 

error term was approximated using the between-subjects error, or MSSUB(AGE).  For multiple 

comparisons of the simple between-subjects effect at a fixed level of the within-subjects 

factor (i.e., distance condition, movement angle, and trial), the error term was approximated 

using the pooled within-cells error term at that particular level (Maxwell & Delaney, 1990).  

For instance, MSSUB(AGE) at D400 was used as the error term when conducting MCP on the 

between-subjects age effect at D400 (a within-subjects effect). 
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5.7.2.1. Peak Velocity 

Peak velocity (PV) was significantly different in regard to AGE (F2, 42 = 22.75, p 

< .0001, 2
η̂ = .086), ANGLE (F3, 126 = 16.2, p < .0001, 2

η̂ = .005), and DIST (F4, 168 = 

214.43, p < .001, 2
η̂ = .394).  Significance was also detected for the interactions AGE × 

DIST (F8, 168 = 17.99, p < .0001, 2
η̂ = .066) and DIST × ANGLE (F12, 504 = 2.76, p = .0128, 

2
η̂ = .003). 

A series of Ryan’s MCPs was performed on the simple effect AGE at all DIST levels 

(i.e., D50, D100, D200, D400, and D650), using a Bonferroni adjustment of α = .05/5 = .01 

for each level of distance condition.  The older group attained significantly lower PV across 

all distance conditions; however, there was no significant different between the younger and 

the middle-aged groups (see Table 13).  As shown in Figure 9, the older group is increasingly 

disadvantaged as the distance increases. 
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Table 13.  Age Differences in Peak Velocity at Various Distance Conditions. 

Distance Condition 
Group Means in pixels/s 

(Standard Deviation) 
D50 35.82 

 (25.64) 
Younger 

28.54 
(14.47) 

Middle-aged 

19.16 
(27.13) 
Older 

 
D100 66.09 

 (23.52) 
Younger 

61.15 
(83.27) 

Middle-aged 

37.80 
(29.19) 
Older 

 
D200 132.71 

 (145.52) 
Younger 

101.00 
(45.45) 

Middle-aged 

62.06 
(42.59) 
Older 

 
D400 240.82 

 (240.83) 
Younger 

186.68 
(107.56) 

Middle-aged 

102.65 
(88.55) 
Older 

 
D650 391.66 

 (174.72) 
Younger 

313.94 
(200.22) 

Middle-aged 

132.91 
(98.43) 
Older 
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Figure 9.  Plot of Peak Velocities for AGE × DIST. 
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5.7.2.2. Time to Peak Velocity 

ANOVA indicated significant AGE effects (F2, 42 = 33.71, p < .0001, 2
η̂ = .201), as 

well as DIST effects (F4, 168 = 43.90, p < .001, 2
η̂ = .043) on time to peak velocity (TPV).  

Ryan’s MCP on the main effect AGE revealed significant differences between all age groups. 

As depicted in Figure 10, TPV increased with age from the younger group (M = .129 s, SD 

= .049), to the middle-aged group (M = .182 s, SD = .125), and the older group (M = .325 s, 

SD = .252). 
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Figure 10.  Plot of Time to Peak Velocity for AGE. 

 

5.7.2.3. Proportion of Time at Peak Velocity 

Proportion of time at PV (PROPTPV)  was not significantly different in regard to 

AGE.  Nevertheless, the results showed significant effects for DIST (F4, 168 = 39.44, p 

< .0001, 2
η̂  = .054), REPEAT (F4, 168 = 5.68, p = .0003, 2

η̂ = .005), DIST × ANGLE × 
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REPEAT, (F48, 2016 = 1.56, p = .0342, 2
η̂ = .012), and AGE × DIST × ANGLE × REPEAT 

(F96, 2016 = 1.45, p = .0208, 2
η̂ = .023). 

5.7.2.4. Proportion of Distance Traveled at Peak Velocity 

ANOVA showed significant age effects (F2, 42 = 9.23, p = .0005, 2
η̂ = .011) in regard 

to proportion of distance traveled at peak velocity (PROPDPV).  The remaining effects were 

insignificant.  Ryan’s MCP on the main effect AGE revealed the older group produced larger 

values (M = .717, SD = 2.59) than younger (M = .226, SD = .15) and middle-aged (M = .447, 

SD = 2.13).  There was no significant difference between the younger and the middle-aged 

groups (see Figure 11). 
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Figure 11.  Plot of Proportion of Distance Traveled at Peak Velocity for AGE. 
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5.7.2.5. Peak Acceleration 

Peak acceleration (PA) was significantly affected by AGE (F2, 42 = 4.26, p = .0206, 

2
η̂ = .013) and DIST (F4, 168 = 44.77, p < .0001, 2

η̂ = .012).  Ryan’s MCP was performed to 

determine pairwise differences in AGE.  Again, PA for the older group (M = 1570.9 

pixels/s2, SD = 4106.67) was significantly lower than for the younger (M = 2833.3 pixels/s2, 

SD = 3060.52) and the middle-aged (M = 2884.2 pixels/s2, SD = 7836.83) groups, and there 

there was no difference between the latter two (see Figure 12). 
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Figure 12.  Plot of Peak Acceleration for AGE. 

 

5.7.2.6. Time to Peak Acceleration 

In regard to time to peak acceleration (TPA), significant differences were detected 

for AGE (F2, 42 = 38.64, p < .0001, 2
η̂ = .198), ANGLE (F3, 126 = 5.39, p = .0025, 2

η̂ = .004), 

DIST (F4, 168 = 21.58, p < .0001, 2
η̂ = .021), AGE × DIST (F8, 168 = 4.16, p = .0013, 

2
η̂ = .008), and AGE × ANGLE (F6, 126 = 3.81, p = .0026, 2

η̂ = .006). 
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Ryan’s MCP on age with α = .01 (e.g., Bonferroni adjusted for the levels of distance) 

revealed all three age groups were significantly different at D50.  Furthermore, the older 

group had longer TPA than the younger and the middle-aged groups across all other 

distance conditions; however, there was no significant difference between the younger and 

the middle-aged groups (see Table 14 and Figure 13). 

Table 14.  Age Differences in Time to Peak Acceleration at Various Distance 
Conditions. 

Distance Condition 
Group Means in s 

(Standard Deviation) 
D50 .171 

(.107) 
Younger 

.272 
(.174) 

Middle-aged 

.438 
(.249) 
Older 

 
D100 .196 

(.097) 
Younger 

.254 
(.113) 

Middle-aged 

.430 
(.246) 
Older 

 
D200 .182 

(.105) 
Younger 

.241 
(.129) 

Middle-aged 

.394 
(.228) 
Older 

 
D400 .212 

(.122) 
Younger 

.267 
(.175) 

Middle-aged 

.434 
(.338) 
Older 

 
D650 .224 

(.123) 
Younger 

.324 
(.292) 

Middle-aged 

.570 
(.381) 
Older 

 

 



84 
 
 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D50 D100 D200 D400 D650

Distance Condition (DIST)

T
im

e
 t

o
 P

A
 (

s
)

Younger Middle-aged Older

 
Figure 13.  Plot of Time to Peak Acceleration for AGE × DIST. 

 
 

Due to the significant AGE × ANGLE effect, a second Ryan’s MCP was performed 

on age with α = .0125 (e.g., Bonferroni adjusted for levels of angle) to examine the AGE by 

ANGLE interaction.  Across all movement angles, the older group had longer TPA values 

than the younger and the middle-aged groups; however, there were no significant differences 

between the younger and the middle-aged groups.  The only exception was when ANGLE = 

90°, all three age groups were significantly different than each other (see Table 15 and Figure 

14). 
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Table 15.  Age Differences in Time to Peak Acceleration at Various Movement 
Angles. 

Movement Angle Group Means in s 
(Standard Deviation) 

0° .205 
(.114) 

Younger 

.249 
(.151) 

Middle-aged 

.413 
(.244) 
Older 

 
45° .195 

(.107) 
Younger 

.279 
(.202) 

Middle-aged 

.493 
(.359) 
Older 

 
90° .187 

(.117) 
Younger 

.293 
(.207) 

Middle-aged 

.483 
(.287) 
Older 

 
135° .200 

(.113) 
Younger 

.266 
(.188) 

Middle-aged 

.414 
(.291) 
Older 
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Figure 14.  Plot of Time to Peak Acceleration for AGE × ANGLE. 

 

5.7.2.7. Proportion of Time to Peak Acceleration 

AGE was not significantly different in regard to proportion of time to peak 

acceleration (PROPTPA).  However, ANOVA detected significance for DIST (F4, 168 = 
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128.49, p < .0001, 2
η̂ = .150), REPEAT (F4, 168 = 3.52, p = .0089, 2

η̂ = .002), and AGE × 

ANGLE (F6, 126 = 4.04, p = .0010, 2
η̂ = .006). 

5.7.2.8. Time from Peak Velocity until the End of Movement 

In regard to time from peak velocity until the end of movement (TPVEND), AGE 

was significantly different (F2, 42 = 28.07, p < .0001, 2
η̂ = .277), as were DIST (F4, 168 = 

393.25, p < .0001, 2
η̂ = .219), REPEAT (F4, 168 = 8.58, p < .0001, 2

η̂ = .003), and AGE × 

DIST (F8, 168 = 17.67, p < .0001, 2
η̂ = .020).  Results from Ryan’s MCP with α = .01 (e.g., 

Bonferroni adjusted for levels of distance) indicated that the older group had longer 

TPVEND compared to the younger and the middle-aged group across all distance 

conditions; there were no differences between the latter two groups (see Table 16 and Figure 

15). 

Table 16.  Age Differences in Time from Peak Velocity until the End of Movement at 
Various Distance Conditions. 

Distance Condition Group Means (Time to Peak Acceleration in s) 
D50 .319 

(.084) 
Younger 

.466 
(.243) 

Middle-aged 

.729 
(.313) 
Older 

 
D100 .425 

(.095) 
Younger 

.565 
(.217) 

Middle-aged 

.883 
(.361) 
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Figure 15.  Plot of Time from Peak Velocity to End of Movement for AGE × DIST. 

 

5.7.3. Effect of Age on Movement kinematics Controlling for Psychomotor Ability 

Recall that one of the objectives of this study was to determine whether age still 

exerted significant effect on kinematic measures after functional abilities such as 

psychomotor ability were taken into account.  Only kinematic measures that were 

significantly different in regard to the main age effect were included, i.e.,  peak velocity (PV), 

time to PV (TPV), proportion of distance traveled at PV (PROPDPV), peak acceleration 

(PA), time to PA (TPA), and time from PV until the end of movement (TPVEND).  Other 

measures (i.e., proportion of time at peak velocity (PROPTPV) and proportion of time at 

peak acceleration (PROPTPA)) were excluded because the fact that the age main effect was 

not significant rendered them irrelevant in the current context.  For computation purpose, 

the kinematic measures were aggregated across the 20 trials (i.e., 4 angle × 5 repetition) of 

each distance condition.   
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Recall that seven psychomotor measures were recorded.  However, both CT-D and 

CT-T were measures of manual dexterity obtained from the Minnesota manual dexterity test; 

and PIN-I and PIN-A were measures of finger dexterity obtained using the Purdue 

pegboard test.  For the sake of simplicity, only one measure (i.e., CT-D and PIN-I) from 

each test were used in subsequent analysis.  Precision control (as measured using time-on-

target (TOT)), manual dexterity (as measured using completion time from displacing battery 

(CT-D)), finger dexterity (as measured using number of pins inserted (PIN-I)), and wrist-

finger speed (as measured using number of taps (TAP)) were evaluated for their contribution 

to each kinematic measure using stepwise regression analysis with α = .05 for variable 

entrance and α = .2 for deletion.  The results indicated that CT-D was the only good 

contributor for all kinematic measures, except for TPVEND whereby TAP was also found 

to be a good contributor. 

A series of hierarchical multiple regression was performed with each of the kinematic 

measures as the dependent variable.  As explained in Czaja & Sharit (1998), the technique 

involved computing age-related variances using two regression models.  In the first 

regression, age was entered as the only predictor in the model; this allows the determination 

of total age-related variance accounted for in the dependent variable (i.e., kinematic 

measures).  In the second regression, unique age-related variance was computed by entering 

age after the psychomotor measures had been entered.  Subsequently, the proportion of 

unique age-related variance to total age variance (i.e., [total age variance – unique age 

variance]/total age variance) was computed to determine the specific age effect on the 

kinematic measures.  A high proportion indicates a large overlap between age and 

psychomotor ability, and age alone does not explain the differences in kinematic measures 
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(Salthouse, 1996).  Using this ratio of age-related variances, a high proportions of shared 

variance (i.e., larger than .8) was detected in PV, TPV, PA, and TPA.  Such a high 

proportion indicated that despite the apparent influence of the age effects, differences in 

these measures were in fact caused by age-related changes in psychomotor ability (i.e., 

manual dexterity).  Simply said, age was only a surrogate variable.  However, the results were 

less apparent for PROPDPV and TPVEND and thus the same suggestion did not apply.  

Table 17 summarizes the regression analyses for various kinematic measures. 

Table 17.  Hierarchical Multiple Regression for Various Kinematic Measures. 
Dependent Variable Predictor β R2 Unique R2 

CT-D (Manual dexterity) -.764* .137 .137 
Age -.812 .146 .009 

Total age  .124  
Unique age  .009  

Peak velocity (PV) 

Proportion variance shared  .927+  
CT-D (Manual dexterity) .001* .465 .465 
Age .002* .524 .059 

Total age  .481  
Unique age  .059  

Time to PV (TPV) 

Proportion variance shared  .877+  
CT-D (Manual dexterity) .000 .068 .068 
Age .010* .115 .047 

Total age  .115  
Unique age  .047  

Proportion of distance 
at peak velocity 
(PROPDPV) 

Proportion variance shared  .591  
CT-D (Manual dexterity) -21.744* .056 .056 
Age 6.343 .057 .001 

Total age  .030  
Unique age  .001  

Peak acceleration (PA) 

Proportion variance shared  .967+  
CT-D (Manual dexterity) .002* .558 .558 
Age .002* .609 .051 

Total age  .541  
Unique age  .051  

Time to PA (TPA) 

Proportion variance shared  .906+  
CT-D (Manual dexterity) .006* .455 .455 
TAP (Wrist-finger speed) .005* .466 .011 
Age .004* .486 .020 

Total age  .395  
Unique age  .202  

Time from PV until the 
end of movement 
(TPVEND) 

Proportion variance shared  .489  

Note.  β’s are from final regression model. 
* Significant at α = .05. 
+ Proportion larger than .8. 
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5.8. Discussion 

Several authors have suggested a linkage between psychomotor ability and 

performance of mouse use.  Among the earliest proponents is Knight & Salvendy (1992), 

who suggested that mouse use is dependent on precision control.  Hwang (2001) found 

manual dexterity to correlate with mouse use performance.  The current study differs from 

the previous ones in two ways.  First, various elemental psychomotor measures were 

obtained from across a wide age range.  Also, unlike previous studies where only movement 

time was investigated, this study investigates the relationship between psychomotor ability 

and movement kinematics. 

Age differences were detected in regard to all psychomotor measures, namely: 

precision control, arm-hand steadiness, manual dexterity, precision control, and wrist-finger 

speed.  Decrements in psychomotor ability were only apparent in the older group, and that 

the younger and the middle-aged group were not significantly different.  These results agreed 

with previous findings whereby psychomotor ability was found to be stable across the age 

groups until older ages whereby the deficit becomes apparent (e.g., Kerr, Blais, & Toward, 

1996). 

Age differences were detected in all kinematic measures except for proportion of 

time at peak velocity (PROPTPV) and proportion of time at peak acceleration (PROPTPA).  

In general, post-hoc analysis attributed the overall differences to the older group.  As 

evidenced by age differences in peak velocity (PV) and peak acceleration (PA), it was 

concluded that the primary submovement reduces in the older group.  The data also showed 

time needed to achieve PV and PA (i.e., TPV and TPA) increased as a function of age, which 

was particularly apparent in the older group.  Consequently, the longer time spent in the 
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primary submovement translated to a longer distance traveled at peak velocity (i.e., 

PROPDPV) in the older group.  Many existing studies have reported similar trends in the 

older adults (see Ketcham et al., 2001; and Vercruyssen, 1996) but the current study 

demonstrated that changes in movement kinematics only become clearer in the older age 

group compared to the younger and the middle-aged groups.  During the homing phase, the 

data indicated that the time needed for adjusting the cursor for target acquisition (i.e., 

TPVEND) increased significantly in the older group, albeit no difference was detected 

between the younger and the middle-aged groups.  The homing phase is characterized by 

corrective movements used to adjust overshoots or undershoots.  The corrective movements 

are enabled by visual feedback and kinethestic feedback to a lesser extent (Keele & Posner, 

1968).  Note that all pariticpants regardless of age group had good vision.  Nonetheless, even 

with a good control of the vision, the age effect was rather significant.  Thus, it may 

indicated that there were other factors such as executive control (e.g., the ability to process 

visual information and the subsequent output) may play an important role in this phase. 

The inability to detect significant age effects on proportion of time to peak velocity 

(PROPTPV) can be attributed to the positive correlation between TPV and MT (see 

Chapter 4), and that the differences in TPV in the numerator were occluded by differences 

in MT in the denominator.  As a result, despite the age differences in TPV and MT, the 

PROPTPV in one age group did not deviate much by age group.  A similar argument is also 

applicable in explaining the insignificant age effects on proportion of time to peak 

acceleration (TPA), because TPA and MT are also positively correlated (see Chapter 4).  

Despite their inability to reveal age effects in this study, PROPTPV and PROPTPA have 
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been shown useful in other settings such as the determination of visual feedback during 

aiming movement (see Chua & Elliott, 1993; Helsen et al., 1998; and Ricker et al., 1999). 

Even though age differences were detected in kinematic measures, they did not 

necessarily translate to poorer performance (i.e., longer movement time).  Note that not all 

kinematic measures were correlated with movement time (MT).  Correlation with MT was 

only found in TPV, TPA, and TPVEND.  Hence, this led to a  question: how could age-

related differences be present in some kinematic measures and in movement time, but at the 

same time some of them were uncorrelated (see Chapter 4)?  It is believed that the 

dissociation could be explained by investigating the effects of factors other than age on 

movement kinematics, following the proposition that overt age-related performance 

deficiencies may be in fact caused by age-related changes in functional abilities, and that age 

is only a surrogate variable (Birren & Renner, 1977; Salthouse, 1996; and Salthouse & 

Maurer, 1996).   

Psychomotor ability seemed a plausible functional ability that might cause variability 

in mouse use.  Thus, it was of interest to learn whether age still contributed to the variability 

in kinematic measures after psychomotor ability was taken into account.  Hierarchical 

multiple regression confirmed that an overt age effect shared variance with psychomotor 

ability in respect to several kinematics measures, i.e., PV, TPV, PA, and TPA.  Since these 

measures were also associated with the primary submovment, thus, the results suggested that 

age was not a major contributor to the kinematics of the primary submovement.  Instead, 

the differences could be attributed to age-related changes in psychomotor ability.  However, 

we were unable to make the same conclusion in regard to PROPDPV and TPVEND.  To 
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summarize further, the data indicated that, in general, ballistic submovements were affected 

by age-related differences in psychomotor ability, and not age per se.  However, it was 

unclear as to whether the differences in the secondary submovement, the homing phase, 

were due to age, or due to age-related changes in psychomotor ability. 

It is generally believed that the ballistic primary submovement is preprogrammed 

towards arriving within the target, and that there is little or no involvement of sensory 

feedback.  Manual dexterity (as measured using the Minnesota test) accounted for a large 

portion of the variance in the kinematics of the primary submovement, suggesting that 

differences in this phase could be attributed to the effects of psychomotor ability.  

Psychomotor ability is generally thought of as a hybrid of various functional abilities (i.e., 

vision, motor control, and physical ability).  The next logical steps would be to determine 

whether motor control and other fundamental abilities that makes up psychomotor ability 

are indeed contributing to differences in movement kinematics.   Visual and kinesthetic 

sensory feedback are additional contributing factors during the secondary homing 

submovement (Crossman & Goodeve, 1963/1983; Chua & Elliott, 1993; and Keele, 1968).  

The presence of additional contributing factors may explain the small shared variance 

between age and psychomotor ability.  Because data on visual feedback, thought to be an 

important factor, was not observed in this study, it was unclear whether a larger variance 

could be captured should vision be included. 
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CHAPTER 6 

EFFECTS OF LOW VISION ON THE KINEMATICS OF MOUSE-

MEDIATED POINTING MOVEMENT 

6.1. Introduction 

Low vision is an umbrella term that describes a diverse population of people with 

visual impairments.  Some authors refer to low vision as conditions whereby despite use of 

corrective devices, visual limitations are still profound (Mehr, 1975).  It should be made clear 

that low vision does not necessarily translate to blindness; rather, it is a collection of visual 

impairments.  Only 10% of those who suffer from vision loss are functionally blind (Nelson 

& Dimitrova, as cited in Kraut & McCabe, 2000).  Functional blindness refers to conditions 

where individuals no longer have useful vision and that they have to rely on other sensory 

systems to perform daily activities.  On the other hand, people with low vision still retain 

some useful vision (Lighthouse International, 2001).  Also referred to as people with partial 

sight, these individuals often rely on corrective techniques and devices in their daily activities.  

The Eye Diseases Prevalence Research Group (2004) reported a steady increase of low 

vision conditions among adults aged 40- to 80-year-old.  A similar trend of visual 

impairments in the older population was also reported by Desai, Pratt, Lentzner, & 

Robinson (2001, March).  According to the report, 19% of individuals 70 years of age and 

older were visually impaired and that such impairment increased with age.  Despite the 

statistics, aging itself does not necessarily lead to vision loss.  Although there are 
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physiological changes in the eyes with aging (Kline & Scialfa, 1996), some of these changes 

are not a major cause for low vision.  For instance, certain aging ocular structures, such as 

the cornea, present negligible effects on visual functions. 

There are numerous causes for low vision.  In most cases it is pathological.  Low 

vision is often caused by conditions such as macular degeneration, cataracts, glaucoma, and 

diabetic retinopathy (Kraut, 2000).  These conditions cause a host of different vision 

problems.  Macular degeneration is a condition caused by deterioration of the central part of 

the retina that is responsible for visual acuity in the central visual field.  Cataracts are caused 

by clouding of the lens.  Common cataracts-related conditions include blurred and hazy 

vision in high illumination environments.  Glaucoma is caused by pressure build-up inside 

the eyeball that damages the optic nerve, which in turn causes loss of peripheral vision.  

Diabetic retinopathy is caused by the leaking of retinal blood vessels.  Blurred vision and 

increased sensitivity to glare are common problems associated with diabetic retinopathy.  

Note that the list mentioned above is not exhaustive; they are only a fraction of the 

numerous conditions associated with low vision. 

6.2. Classification of Low Vision 

Since low vision is often associated with one or more eye conditions, a person with 

certain medical conditions may experience a host of different vision losses.  For instance, a 

diabetic patient may suffer from both cataracts and diabetic retinopathy because both 

diseases have been linked to diabetes.  In order to meet the needs for a cohesive way of 

describing consequences of disease, the International Classification of Impairments, 

Disabilities and Handicaps (ICIDH) and the International Classification of Functioning, 

Disability and Health (ICF) were developed by the World Health Organization (WHO).  The 
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frameworks, particularly ICIDH, have been shown useful for describing partially sighted 

vision from multiple perspectives.  Although often used interchangeably, the terms 

“disorder”, “impairment”, “disability”, and “handicap” are used in ICIDH for differentiating 

various aspects of medical condition.  Disorder refers to anatomical or physiological changes 

due to the pathology; impairment refers to functional changes to the organ; disability focuses 

on the functional abilities of the individual; handicap is related to the socioeconomic 

consequences caused by the condition (Colenbrander, 2000). 

Visual condition is often measured along the functional vision dimension in applied 

settings.  Eligibility for assistance and intervention programs (e.g., educational assistance, tax 

benefits, and social security assistance) are often based on measures of functional vision.  

Functional vision refers to a person’s ability to use his vision in order to perform daily tasks 

effectively (Flom, 2004).  Common measures of functional vision include visual acuity, visual 

field, color sensitivity, and contrast sensitivity.  Some less common measures include light 

sensitivity, oculomotor control, and accommodation.  Among these, visual acuity, visual field, 

and contrast sensitivity are the greatest determinants of the ability to accomplish daily tasks 

(Flom, 2004).  Visual acuity is the ability to see fine details; it is expressed using the Snellen 

ratio.  The numerator of the fraction represents the distance between the person and the 

object, whereas the denominator is the distance at which a person with normal eyesight 

could correctly recognize the object.  Thus, a person with 20/40 vision can only resolve 

objects at 20 ft., but the same objects can be resolved by a person with normal vision at 40 ft.  

Visual field is a three-dimensional sensitivity to differential light at various positions, often 

measured in degree-radius or degree-diameter (Colenbrander, 2000).  Color sensitivity is the 

ability to differentiate colors; it often involves the ability to discern two different colors such 
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as green and red, or the ability to discriminate a normal range of colors.  Finally, contrast 

sensitivity is the ability to discern the differences in luminance (brightness) between an 

object and its background.  Contrast sensitivity is typically measured using a Pelli-Robson 

chart and is expressed as the proportion of the difference between the object and its 

background, and the brightness of the background. 

In the United States, the most common classification scheme for visual condition is 

ICD-9-CM (U.S. Department of Health and Human Services [DHHS], 1980), which 

involves ordinal grouping of visual acuity scores.  It is in fact the American adaptation of the 

International Classification of Diseases (9th Revision), or ICD-9, by the WHO (1977).  A 

person is considered visually impaired when his visual acuity falls beyond 20/80.  There are 

two broad ranges of visual impairments as defined in ICD-9-CM, namely: low vision and 

blindness.  Low vision comprises of acuity scores from 20/80 to 20/1000, whereas a person 

is considered near-blindsighted if the acuity score is 20/1250 or above.  At the end of the 

continuum is total blindness; that is, no light perception is possible in the eyes.  Another 

classification scheme is based on visual field.  A person is considered as being visually 

impaired when his visual field is less than 30º; and the severity increases as the degree-radius 

becomes narrower (Colenbrander, 2000).  Similar to that of the visual acuity scheme, the 

extreme is total vision loss. 

6.3. Low Vision and Computing 

Despite the advances of computing technology, most computing tasks rely heavily 

on visual perception.  While novel interaction techniques such as voice dictation are 

beginning to appear, they are still uncommon in home computers.  In addition, most of 

these techniques require additional learning time; thus rendering it less appealing to users 
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who could still rely on residual vision to complete the task.  In other words, the benefits 

using the voice-dictated user interface do not outweigh the additional cost in learning time.  

Many still opt to use graphical user interface (GUI), albeit sometimes the interaction is 

augmented with accessibility features.  On top of that, the availability of built-in accessibility 

features on modern computer environments has made it more difficult for people with 

residual vision to discard the GUI for alternative interaction paradigms. 

 In a GUI paradigm, the mouse remains the primary device for interacting with 

computers.  Successful use of a mouse requires well-coordinated motor movements, as well 

as good visual feedback.  From a human control system point-of-view, mouse use is a 

closed-loop system characterized by collaboration between motor control (output) and visual 

ability (input).  The mouse cursor on the screen provides visual feedback to the user who 

subsequently exerts control on the mouse to move the cursor to a desired screen location. 

There are many studies that investigate the contribution of vision in non-mechanized, 

direct hand movements (e.g., Elliott, Carson, Goodman, & Chua, 1991; Helsen, Elliott, 

Starkes, & Ricker, 1998; Ricker, Elliott, Lyons, Gauldie, Chua, & Byblow, 1999) and in 

mouse-mediated pointing movements (e.g., Chua & Elliott, 1993).  However, participants 

with limited visual ability are rarely included.  Jacko and colleagues (e.g., Jacko, et al., 1999; 

Jacko et al., 2003; Jacko, Barreto, et al., 2000; Jacko, Rosa, et al., 2000) were among the 

handful of researchers who investigated computer users with visual impairments.  Working 

with participants suffering from retinitis pigmentosa, albinism, optic neuritis, and myopia, 

Jacko et al. (1999) investigated performance differences along various GUI attributes.  

Participants’ visual condition was characterized using visual function measures, i.e., visual 
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acuity, visual field, contrast sensitivity, and color discrimination.  The results indicated that 

measures of visual function were significant predictors of task performance, particularly in 

terms of icon size and background color.  In another study involving participants diagnosed 

with macular degeneration, Jacko, Barreto, et al. (2000) found that, in general, characteristics 

of cursor movement (i.e., movement time and velocity) change as visual acuity changes.  In 

addition to longer movement times, participants with macular degeneration had lower 

movement velocities.  Because participants with macular degeneration were significantly 

older than those with normal vision, it was not clear whether the difference in movement 

velocity was due to the visual condition, or merely due to a general aging effect.  In other 

words, it was possible that the differences were confounded by the aging effect, instead of a 

direct effect of visual condition per se. 

6.4. Kinematics of Pointing Movement 

Most studies of pointing movement are dominated by Fitts’ law.  However, as a 

prediction model for performance of pointing movement, Fitts’ law cannot explain what 

happens “during” the movement.  Thus, alternative models were proposed to explain the 

process of the movement.  Some notable models include the deterministic iterative 

corrections model proposed by Crossman & Goodeve (1963/1983) and Keele (1968), as 

well as the stochastic optimized submovement (SOS) model (Meyer, Abrams, Kornblum, 

Wright, & Smith, 1988; and Meyer, Smith, Kornblum, Abrams, & Wright, 1990).  At present 

time the consensus indicates that the SOS model is the most appropriate model for 

describing the process of aiming movement.  The model operates under the assumption that 

optimization of aiming movement requires a compromise between time and accuracy (i.e., 

speed-accuracy tradeoff).  An attribute that sets the SOS model apart from previous models 
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is the notion of neuromotor noise.  It posits that due to such noise, submovement endpoints 

are normally distributed around the center of the target.  Feedback systems (i.e., visual 

sensory, and kinesthetic sensory in a lesser extent) detect discrepancies (i.e., overshooting or 

undershooting) and invoke corrective submovements. 

A typical pointing movement may consist of one or two components: the primary 

movement and secondary submovement (Meyer et al., 1988).  The primary movement is 

preprogrammed to end within the target.  If the primary movement ends as intended, no 

secondary submovements are needed.  However, neuromotor noise may prevent such 

accuracy.  In that case, one or more secondary submovements are initiated to correct the 

endpoint.  The SOS model posits that a typical aiming movement needs only one or two 

submovements.  Third- and higher-order submovements are also possible; but these higher 

order submovements would be absorbed by the secondary submovement.  Further, higher-

order submovements are quite unlikely and often observed in extra-ordinary situations such 

as movements involving extremely difficult targets and those require error-free performance. 

A way to understand the process of pointing movement is by investigating the 

kinematics of the movement.  Kinematics is the study of motions without considering the 

forces that cause the motion.  The kinematics approach has been reported in recent studies 

involving computer input devices (MacKenzie et al., 2001; Phillips, Triggs, & Meehan, 2005; 

Slocum, Chaparro, McConnell, & Bohan, 2005; and Slocum, Thompson, & Chapparo, 2005).  

There are various kinematic measures reported in the literature, which can be grouped into 

two families: spatial and temporal.  Spatial kinematic measures usually appear in distance 

units such as distance and amplitude, and include peak velocity, peak acceleration, 
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proportion of distance traveled at peak velocity, and zero crossings (see Table 18).  

Temporal measures are strictly time-based and some temporal kinematic measures reported 

in the literature include time to peak velocity, time from peak velocity until the end of 

movement, proportion of time to peak velocity, time to peak acceleration, and proportion of 

time to peak acceleration (see Table 19). 

Table 18.  Spatial Measures of Movement Kinematics. 
Kinematic Measure Description Reported in 

Peak velocity (PV) • The highest magnitude in velocity 
profile, usually occurs during primary 
submovement 

Chua & Elliott (1993), Elliott et al. 
(1991), Helsen et al. (1998), 
Ketcham et al. (2002), Phillips et al. 
(2005), Ricker et al. (1999), 
Slocum, and Thompson, et al. 
(2005) 

Proportion of time to 
PV (PROPTPV) 

• The ratio of time to PV (TPV) and 
movement time (MT) 

Chua & Elliott (1993), Helsen et al. 
(1998), Ketcham et al. (2002), and 
Ricker et al. (1999) 

Proportion of distance 
traveled at PV 
(PROPDPV) 

• The ratio of distance traveled at time of 
PV and total distance 

• Also referred to as proportion of 
distance traveled in primary 
submovement 

• Some authors use it as a positive 
indicator for movement efficiency 

Chua & Elliott (1993), Helsen et al. 
(1998), Ketcham et al. (2002), and 
Slocum, Chaparro, et al. (2005) 

Peak acceleration (PA) • The highest magnitude in the 
acceleration profile, may occur during 
primary or secondary submovements 

Carlton (1994), and Helsen et al. 
(1998) 

Proportion of time to 
PA (PROPTPA) 

• The ratio of time to PA to the overall 
time 

Helsen et al. (1998) 

 

Table 19.  Temporal Measures of Movement Kinematics. 
Kinematic Measure Description Reported in 

Time to PV (TPV) • Difference between time at PV and 
time at the beginning of movement 

• Direct indicator for movement 
efficiency 

Carlton (1994), Elliott et al. (1991), 
Helsen et al. (1998), Phillips et al. 
(2005), and Ricker et al. (1999) 

Time to PA (TPA) • Difference between time at PA and 
time at the beginning of movement 

Carlton (1994), and Helsen et al. 
(1998) 

Time from PV until the 
end of movement 
(TPVEND) 

• Difference between time at PV and 
time at the end of movement 

• Indicates time spent in homing phase 

Elliott et al. (1991) 
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6.5. Research Rationales and Objectives 

Given that vision is still the primary sensory feedback for computer users with low 

vision, it is important to understand the impact of low vision on computing.  To be more 

specific, the objective of this study was to investigate the impact of low vision on mouse use.  

In the past, studies of mouse use often focused on endpoint measures such as movement 

time and target misses.  While a great deal had been learned from these studies (e.g., Jacko, et 

al., 1999; Jacko et al., 2003; Jacko, Barreto, et al., 2000; Jacko, Rosa, et al., 2000), it was 

believed that further insight could be obtained by examining the kinematics of mouse-

mediated pointing movement.  It was hoped that by understanding changes in movement 

kinematics due to limited visual ability, novel techniques could be designed to improve the 

experiences of mouse users with low vision. 

Investigation of mouse use is incomplete without taking into consideration into the 

interrelated factors such as age and psychomotor ability.  There are countless studies that 

report age-related performance differences.  However, some researchers (Birren & Renner, 

1977; and Salthouse & Maurer, 1996) suggest that, in most cases, the age effect is only a 

surrogate variable and that the causality is driven more by relatively immediate factors such 

as knowledge, skills, and functional abilities.  This conjecture had already been shown true by 

Czaja & Sharit (1998) and Smith, Sharit, & Czaja (1999), who concluded that age alone did 

not account for differences in performance of computing tasks, but the differences were 

caused by age-related changes in functional abilities.  A similar conclusion was also reported 

for movement kinematics (see Chapter 5).  The age factor was found to contribute minimally 

to the variance in certain kinematic measures and that the differences in kinematic measures 

were better explained by psychomotor ability (i.e., manual dexterity).  As a result, this study 
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investigated the impact of low vision on the kinematics of pointing movement while 

controlling for the effects of psychomotor ability and age. 

6.6. Method 

6.6.1. Participants 

Ten participants were recruited to form two groups of equal size: low vision and 

normal vision.  Following the strategy reported in Jacko, Rosa, et al. (2000), participants 

from each group was matched individually on age.  As a result, the low vision group had a 

mean age of 47.82 years old (SD = 29.59), and the mean age in the normal vision group was 

47.17 years old (SD = 30.15).  Low vision participants were recruited with assistance from an 

on-campus disability service and a local independent living center.  Potential participants 

were first screened to include only those who experienced less than near-normal vision after 

correction.  However, there was no restriction on the type of condition that caused vision 

problem; thus low vision participants reported a wide range of visual conditions (see Table 

20).  Participants in the normal vision group were required to have at least 20/60 after-

correction Snellen visual acuity.  On the other hand, visual acuity of the low vision 

participants ranged from 20/60 to 20/2400 after correction.  In addition, older participants 

were screened for dementia.  All participants were experienced mouse users. 



104 
 
 
 

Table 20.  Profiles of Low Vision Participants. 
Visual Acuity 

Participant 
Age 

(years) 
Diagnosis and Consequent Condition 

Left Right 
1 81.0 • Cataracts in left eye 

o Blurred and hazy vision 

• Age-related macular degeneration 
(AMD) in the right eye 
o Reduced central visual field 

20/60 Unknown 

2 77.9 • Age-related retina degeneration in both 
eyes 
o Multiple possible conditions, 

including perception of flashing 
lights 

20/85 20/2100 

3 18.8 • Albinism 
o Astigmatism 

• Retina pigmentosa in both eyes 
o Reduced peripheral visual field 

20/2400 20/2200 

4 25.2 • Cataracts in both eyes 
o Blurred and hazy vision 

• Macular degeneration and lens removed 
in right eye 
o Reduced central visual field 
o Distorted light perception 

20/50 20/2350 

5 36.0 • Cataracts, detached retina, and retinitis 
pigmentosa in both eyes 
o Blurred and hazy vision 
o Reduced peripheral visual field 

Unknown Unknown 

Note.  Visual acuity reflects Snellen score after correction. 

6.6.2. Procedure 

All tests were conducted in a quiet environment and on an individual basis.  

Informed consent was obtained from each participant prior to the study.  First, a screening 

questionnaire (see Appendix A) was administered.  Then, participant’s visual acuity was 

obtained using a Snellen chart.  Because the chart had an upper threshold of 20/60, low 

vision participants were asked to provide their visual acuity score, if known.  They were also 

asked about their diagnosis, history of the condition, and the usage of assistive devices.  

Additionally, older participants were screened for dementia using Folstein, Folstein, & 

McHugh’s (1975) mini-mental state exam (see Appendix B).   
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During the experiment, each participant was asked to perform a psychomotor test 

and a pointing task, with a break of about 2 minutes between each task.  The psychomotor 

test was performed on the Minnesota manual dexterity test (Lafayette Model 32023).  The 

pointing task was performed using a mouse under the Fitts’ paradigm; IDTest (International 

Business Machines [IBM], 1999) was used for generating stimuli for the pointing task.  The 

experiment concluded after all tasks were completed. 

6.6.3. Experimental Tasks 

Participants were required to perform two types of experimental tasks: the displacing 

battery of the Minnesota manual dexterity test and a mouse pointing task.  The test was used 

to measure manual dexterity as suggested by Fleishman & Reily (1992).  The mouse pointing 

task was operationalized using a multidirectional reciprocal Fitts’ pointing task similar to that 

described in Soukoreff & MacKenzie (2004).  Participants performed all tasks using their 

dominant hand. 

6.6.3.1. Minnesota Manual Dexterity Test 

The Minnesota manual dexterity test unit consisted of wooden pegs arranged in four 

rows.  A displacing test battery was chosen because it was found to account for the largest 

variability in movement kinematics (see Chapter 5).  To perform the test, participants were 

asked to stand next to the test unit placed on a table directly in front of them.  The test 

began with the top-left hole emptied.  Then the participants were required to fill the top hole 

with the peg directly below it, until the bottom hole of the column is empty.  The bottom 

hole was then filled with the peg from the second column.  For the second column, 

participants were required to fill the empty hole with the peg directly above it until the top 
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hole is emptied.  Similarly, the top hole of the second column had to be filled with the peg 

from the third column.  The test continued in this manner across the board until the 

bottom-right hole was emptied.  After a practice trial, four actual trials were performed.  

Short breaks were allowed between trials.  In addition, participants were asked to place their 

hand at the peg below the top-left hole before the trial began.  Finally, they were reminded 

that if the peg was dropped; it should be picked up and placed in the intended position.  

They were also reminded to complete the test as fast as they could but in the mean time they 

should ensure all pegs were securely placed in the intended holes.  Performance measures 

recorded were completion time averaged from four trials. 

6.6.3.2. Mouse Pointing Task 

A multidirectional reciprocal Fitts’ pointing task was generated using IDTest (IBM, 

1999) running on a Windows-based laptop computer with 1280-by-800 pixels screen 

resolution.  The pointing device used was a neutral shaped Microsoft Optical Mouse 

connected to the computer via a universal serial bus (USB) port. 

The targets were circular in shape with a diameter of 30 pixels; they were separated 

50, 100, 200, 400, and 650 pixels from each other.  Using Shannon’s formulation of Fitts’ 

Law, the combinations produced five conditions with index of difficulty (ID) [log2 ((D + W) 

/ W)] values ranging from 1.42 to 4.50 bits.  The targets, each colored black and red, were 

arranged along various angles (i.e., 0, 45, 90, and 135 degrees).  The task required participants 

to point the cursor at the target and then select it using the left mouse button.  The targets 

became transparent if successfully acquired.  However, a beep sound was audible should the 

intended target was missed.  Following a practice trial, each distance condition was tested 
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five times at each angle.  Therefore, each participant was subjected to 100 trials (i.e., 5 

distances × 4 angles × 5 repetitions).  The treatments (i.e., condition-angle combinations) 

were presented in random order for all trials.  Short breaks were allowed between treatments.  

Movement time (MT) was recorded as the performance measure.  In addition, cursor x-y 

positions were sampled across time using IDTest.  Note that the sampling of cursor 

positions was event-based (i.e., mouse movement).  Each time a mouse movement was 

detected, the x-y position would be recorded by IDTest (B.A. Smith, personal 

communication, 1 December, 2006).  As a result, the sampling rate varied in each trial. 

6.6.4. Data Interpolation and Smoothing 

Point-to-point cursor displacements were computed from the raw position data 

using the Pythagorean Theorem.  The displacement data were then linearly interpolated at 

200 Hz.  The interpolation produced a dataset with a constant sampling rate, which was 

necessary for subsequent data smoothing.  The interpolated data was smoothed using a 

fourth order zero-phase shift Butterworth low-pass filter with a cut-off frequency of 6 Hz.  

The cut-off frequency was determined using residual analysis.  First derivatives were 

obtained from the smoothed displacement data to obtain velocities; second derivatives were 

computed to produce accelerations.  Data smoothing, selection of cut-off frequency, and the 

computations of velocities and accelerations were based on the techniques described in 

Winter (2005).  The interpolation and smoothing processes were performed using a 

Microsoft Excel macro (Van Wassenbergh, 2005). 

6.6.5. Movement kinematics Measures 

In addition to movement time (MT), six kinematic measures were recorded including: 

peak velocity (PV), time to peak velocity (TPV), proportion of distance traveled at peak 
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velocity (PROPDPV), peak acceleration (PA), time to peak acceleration (TPA), and time 

from peak velocity until the end of movement (TPVEND).  The measures were extracted 

from the displacement, velocity, and acceleration profiles of each repetition of the pointing 

movements, based on the definitions in Table 21.  To avoid misinterpretation of the initial 

jerk as PA, accelerations occurred within 10 ms of movement onset were excluded from the 

identification process of PA. 

6.7. Results and Analysis 

A series of 2 (between-subjects visual condition, VISION) × 5 (within-subjects 

distance condition, DIST) × 4 (within-subjects movement angle, ANGLE) × 5 (within-

subjects repetition, REPEAT) analysis of covariance (ANCOVA) were conducted with age 

and manual dexterity (as measured using the Minnesota manual dexterity test) as the 

covariates.  Movement time (MT) and the kinematic measures (i.e., peak velocity (PV), time 

to peak velocity (TPV), proportion of distance traveled at peak velocity (PROPDPV), peak 

acceleration (PA), time to peak acceleration (TPA), and time from peak velocity until the end 

of movement (TPVEND)) were the dependent variables.  The ANCOVAs were analyzed 

with SAS PROC MIXED, using a first-order auto-regressive covariance structure (i.e., 

AR(1)).   

The AR(1) model assumes observations measured repeatedly from a subject are 

highly correlated, and the correlation tends to be stronger particularly when the observations 

are closer to each other in time.  On the other hand, a simple covariance structure, also 

known as compound symmetry, contains a matrix where all variances and covariances are 

equal (Milliken & Johnson, 2002).  As a result, AR(1) is usually preferred over the compound 

symmetry covariance structure in repeated measures analysis.   
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In order to probe for the practical importance of various effects, selected effect size 

was computed.  According to Cohen (1988), an effect size of 1% is considered a small effect, 

6% a medium effect, and 14% indicative of a large effect.  An effect found to be statistically 

significant is of little practical value if the corresponding effect size is negligible (Olejnik & 

Algina, 2000).  Thus, effect size offers a way for determining the practical impact of an effect 

on the dependent variable.  In this study, effect size was calculated as the proportion of the 

variance associated with that effect divided by the total variance of all the pertinent effects in 

the model, 2
η̂ = SSeffect / SStotal

 (Olejnik & Algina, 2000).  Effect size was computed for effects 

significant at α = .05. 

Recall that the impact of low vision on the process of pointing movement was of 

interest in this study; therefore, the analysis was focused on the main effect VISION.  As 

indicated in Table 21, the main effect VISION was significant in regard to movement time 

(MT), time to peak acceleration (TPA), and time from peak velocity until the end of 

movement (TPVEND).  On the other hand, vision was not significant in regard to peak 

velocity (PV), time to peak velocity (TPV), and proportion of distance traveled at peak 

velocity (PROPDPV).  Compared to the normal vision group, the low vision group took 

longer to complete the Fitts’ task.  Subsequent investigation of movement kinematics 

revealed the main effect VISION was significant in regard to TPA and TPVEND; a longer 

TPA and TPVEND was also observed in the low vision group.  However, no group 

differences were detected in regard to other kinematic measures. 

The main effect DIST (i.e., distance amplitude) was significant in regard to several 

measures, including MT, PV, PA, and TPVEND (see Table 21).  The significant DIST effect 
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detected in MT was in accordance with Fitts’ law, which states that MT has a direct 

relationship with DIST.  In regard to PV and PA, the observed distance effect revealed an 

increase in both measures as DIST increased.  The difference in TPVEND due to distance 

follows with the previous correlation analysis (see Chapter 4) which showed a large portion 

of the variability of MT was contributed by TPVEND.  Finally, the remaining main effects 

(i.e., ANGLE and REPEAT), as well as the relevant interaction effects, were not significant. 

Subsequent to the omnibus analysis, post-hoc multiple comparisons were conducted 

as necessary (i.e., when the interaction effect VISION × DIST was significant).  To control 

for Type I error per comparison, a Bonferroni adjustment, α' = .01 was used.  In regard to 

MT, the significance in both the main effect VISION and the interaction effect VISION × 

DIST indicated that the low vision group produced higher MT compared with the normal 

vision group, and that the difference became more profound for the larger target distances 

(i.e., D400 and D650; see Figure 16). 
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Table 21.  Summary of ANCOVAs. 

Dependent Variable Effect F-ratioa p-valueb Effect Size, 
2

η̂  

VISION 36.57 .0009* .102 
DIST 23.56 <.0001* .094 

Movement time (MT) 

VISION × DIST 3.27 .0234* .013 
VISION 2.27 .1830 Not computed 
DIST 83.71 <.0001* .358 

Peak velocity (PV) 

VISION × DIST 6.32 .0007* .028 
VISION 5.18 .0632 Not computed 
DIST .61 .6600 Not computed 

Time to PV (TPV) 

VISION × DIST .94 .4527 Not computed 
VISION .19 .6790 Not computed 
DIST 2.20 .0911 Not computed 

Proportion of distance 
traveled at peak velocity 
(PROPDPV) VISION × DIST 2.71 .0473* .012 

VISION 5.08 .0652 Not computed 
DIST 43.80 <.0001* .161 

Peak acceleration (PA) 

VISION × DIST 4.92 .0033* .018 
VISION 13.68 .0101* .053 
DIST 1.77 .1593 Not computed 

Time to PA (TPA) 

VISION × DIST .46 .7615 Not computed 
VISION 40.64 .0007* .087 
DIST 29.72 <.0001* .108 

Time from PV until the 
end of movement 
(TPVEND) VISION × DIST 4.93 .0033* .018 

Note.  A series of 2 × 5 × 4 × 5 ANCOVAs was performed.  Only VISION, DIST, and their 
interaction were reported because all other effects and corresponding interactions were not 
significant. 
a VISION dfnum = 1, dfden = 6; DIST dfnum = 4, dfden = 32; VISION × DIST dfnum = 4, dfden 
= 32  bα = .05. 
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Figure 16.  Plot of Unadjusted MT for VISION × DIST. 
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Even though the main effect VISION was not significant in regard to PV and PA, 

the interaction effect VISION × DIST was significant (see Table 21).  Post-hoc analysis 

revealed the interaction effect was mainly driven by significant group difference at D650 for 

PV (see Figure 17), and at D400 and D650 for PA (see Figure 18).  Note the main effect 

VISION was not significant in both cases but on the other hand the DIST effect was 

significant.  Thus the data suggested that both PV and PA were more profoundly influenced 

by movement amplitude, rather than visual condition.  Although significant VISION × 

DIST was detected on PROPDPV, no group differences were detected at any movement 

amplitudes. 
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Figure 17.  Plot of Unadjusted PV for VISION × DIST. 
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Figure 18.  Plot of Unadjusted PA for VISION × DIST. 

 

Post-hoc analysis also revealed that group difference in regard to TPVEND was 

more profound at large movement amplitudes (i.e., D400 and D650).  Note that both main 

effects VISION and DIST were significant.  When coupled with the significant interaction 

VISION × DIST, the data suggested while both visual condition and movement amplitude 

affected time spent homing in on the target, the difference between the two visual groups 

was more profound when the targets were further apart (see Figure 19).  In other words, the 

low vision group spent longer time during the homing phase than the normal vision group, 

particularly when the participants had to move a longer distance. 



114 
 
 
 

0

0.5

1

1.5

2

2.5

3

D50 D100 D200 D400 D650

Distance Condition (DIST)

T
P

V
E

N
D

 (
s
)

Normal Low

 
Figure 19.  Plot of Unadjusted TPVEND for VISION × DIST. 

 

In summary, the results indicated group differences in movement performance and 

the kinematics were more profound for larger movement amplitudes.  Longer temporal 

measures (i.e., MT and TPVEND) were observed in the low vision group compared to the 

normal vision group.  These same measures were differentially affected by the combination 

of visual condition (i.e., VISION) and movement amplitude (i.e., DIST).  The differences 

were generally more subtle from D50 through D200, and they became more profound 

starting from D400.  Although no vision group differences on spatial kinematics were 

detected (i.e., PV, PA, and PROPDPV), some differences were detected along the DIST 

effect, particularly at larger movement amplitudes (e.g., D400 and D650). 

6.8. Discussion 

Jacko and colleagues (e.g., Jacko, et al., 1999; Jacko et al., 2003; Jacko, Barreto, et al., 

2000; and Jacko, Rosa, et al., 2000) reported a series of investigation on the effects of low 
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vision on mouse-based interaction with graphical user interface.  In the studies, low vision 

was characterized using various visual function dimensions (e.g., visual acuity and visual 

field).  As expected, the results indicated participants with low vision performed less 

optimally compared to those with normal vision.  However, like many performance-based 

studies, only endpoint measures (i.e., movement time and error rate), were analyzed.  

Unfortunately, endpoint measures are limited in providing intermediary information on the 

movement itself.  In order to gain additional insight about the process of the movement, this 

study employed a multidirectional Fitts’ paradigm, during which movement kinematics were 

captured.  It was hoped that the effects of low vision on the process of mouse use could be 

better understood by investigating the differences in movement kinematics. 

Some vision group differences in movement kinematics were detected.  In general, 

findings from this study were in line with the characterization of goal-directed pointing 

movements using a two-component stochastic optimized submovement (SOS) model (see 

Meyer et al., 1988; and Meyer et al., 1990).  While it was not surprising that the low vision 

group needed more time to complete the pointing task, the fact that the homing phase (as 

measured using time from peak velocity until the end of movement) was slower in the low 

vision group was an interesting finding.  Homing time has been identified (see Chapter 4) as 

a major contributor to overall movement time, thus affecting performance.  Such a notion is 

further verified in the current study because the results indicated that the low vision group 

spent more time during the homing phase.  Because the analyses accounted for psychomotor 

ability, it seems likely that the additional time spent during this phase can be attributed to 

inadequate visual feedback for an efficient homing phase. 
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The results revealed a lack of vision group difference in regard to peak velocity (PV), 

time to peak velocity (TPV), proportion of distance at PV (PROPDPV), and peak 

acceleration (PA).  Following the SOS model, these measures would be representative of the 

initial primary submovement, characterized by its ballistic nature and requiring minimal or 

no visual feedback (Chua & Elliot, 1993).  Both vision groups appeared to achieve peak 

velocity at the same time (i.e., as indicated by the insignificant difference in TPV).  Reduced 

visual function did not deter participants from completing the primary submovement in 

similar time as the normal vision group.  Similar arguments seem to be applicable to findings 

for PROPDPV.  Recall that PROPDPV is indicative of the distance traveled at the end of 

the primary submovement.  Since minimal visual feedback is needed during this phase, 

differences in visual conditions should not result in significant differences on distance; this 

was confirmed by the current study. 

Although debatable, TPA is sometimes used by researchers as an alternative way to 

indicate time spent in the primary submovement.  Therefore, the vision group difference in 

TPA challenges the proposition that the primary submovement is not dependant upon visual 

ability.  It was not known whether TPA was in fact a valid indicator of the primary 

submovement.  Without further investigation, it was difficult to explain why differences were 

detected in TPA.   

Despite differences in movement time, neither the low vision group nor the normal 

vision group differed in terms of PV and PA.  The dissociation with movement performance 

was not surprising because neither of the kinematic measures were correlated with 

movement time as reported in Chapter 4.  The lack of correlation was partly attributed to the 
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fact that MT is a temporal measure, whereas PV and PA are both spatial measures.  In a 

subsequent study (see Chapter 5), both measures were found to be highly influenced by 

psychomotor ability, by which lower PV and PA were observed among participants with 

reduced psychomotor ability.  Recall in the current study psychomotor ability was a covariate, 

and thus its effect was controlled for during the analysis.  The fact that no vision group 

differences were detected in the current study suggests that both measures were related only 

to psychomotor ability and not influenced by visual condition. 

The results also indicated movement time and kinematics were influenced by visual 

condition and movement amplitude (i.e., distance between targets), with profound 

differences detected in larger movement amplitudes.  Low vision had a stronger impact 

when a larger distance had to be traversed.  This was observed not only in the overall 

movement (as seen from MT), a similar impact of visual condition and movement amplitude 

was also seen in the secondary submovement (as seen from TPVEND).  However, the same 

was not true for the primary submovement because the corresponding kinematics (i.e., TPV) 

appeared to be the same regardless of visual condition and movement amplitude.  Perhaps 

the impact in the secondary submovement was due to the low vision group’s limited visual 

feedback, particularly when they had to traverse over a long distance.  The effect was likely 

compounded by having to hone in on the intended target.  It is speculated that the additional 

time observed during the homing phase was due to the need to refocus visual attention from 

the initial point to the intended target.  Since the low vision group was less effective in that 

regard, they needed more time to visually locate the intended target.  Even though a 

significant interaction of vision and distance was also detected along PV and PA, post-hoc 

analysis showed both measures were chiefly influenced by movement amplitude only.   



118 
 
 
 

When the results are taken together, the following speculation is offered.  When 

presented with a target, the participant first obtains a rough visual identification of the target 

location.  The low vision group retains some residual vision, which was enough to allow for 

the initial target identification.  This may explain why no significant difference was detected 

in the primary submovement time (i.e., TPV).  At the same time, the knowledge of the 

general target location would also allow the participant to exert the initial jerk that was 

deemed necessary to arrive at the target.  Note that the psychomotor ability in both groups 

was essentially the same, thus the related kinematics (i.e., PV and PA) were not different.  

On the contrary, visual feedback is an important feedback mechanism during the secondary 

submovement.  Hence, the low vision group performed less effectively during this stage 

compared to the normal vision group, as demonstrated by the difference detected in 

TPVEND. 

An obvious limitation of the current study is that various low vision conditions were 

treated as one group.  There is no doubt that the limitations associated with different low 

vision conditions differ from each other.  Following the framework of the International 

Classification of Impairments, Disabilities and Handicaps (ICIDH), the implications are 

multi-faceted, including the anatomical, functional, skills and abilities, and socio-economical 

(Colenbrander, 2000).  Quantification of low vision along dimensions of functional vision 

such as visual acuity, visual field, contrast sensitivity, and color sensitivity has been 

successfully employed by Jacko and colleagues (e.g., Jacko, et al., 1999; Jacko et al., 2003; 

Jacko, Barreto, et al., 2000; and Jacko, Rosa, et al., 2000) in distinguishing performance 

differences in mouse use.  Low vision is also distinguishable along the quality of the 

“picture” as seen from the eyes.  For instance, a person with macular degeneration may have 
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more trouble with his central vision compared to a person with retinitis pigmentosa whereby 

the peripheral vision is reduced.  Therefore, it is expected that differences in movement 

kinematics can exist even within the low vision group.  Due to the limited number of low 

vision participants in the current study, it was not feasible to further subdivide the group.  

Despite a diverse low vision group was tested, it is worth noting that in general the results 

conformed to the propositions brought forward by the SOS model.  For future research, 

perhaps only a homogeneous low vision group that sees the same “picture” from the eyes, 

thus allowing further understanding of how specific low vision condition can affect aiming 

movement. 
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CHAPTER 7 

GENERAL DISCUSSION 

Mouse use is one of the most studied topics in ergonomics research of computer 

systems.  Perhaps the mouse has been the subject of such extensive research because of its 

endemic use. The direct manipulation paradigm of the mouse is so robust that even the 

relatively new touchpad had to be redesigned to match that of a mouse (MacKenzie, 2003).  

Efficient mouse use requires high-level interaction between motor control (output) and 

visual function (input).  In other words, the cursor on the screen provides visual feedback to 

the user who subsequently controls the mouse to produce desired results.  Many studies 

have examined the effects of aging, psychomotor ability, and visual ability on mouse use.  

Movement time and error rates are often analyzed in similar studies.  However, these 

measures only provide information about the outcomes of the movements; they are unable 

to reveal details of what happens “during” the movement.  This dissertation research fills the 

gap by investigating the effects of various functional abilities (i.e., psychomotor and visual) 

on the process of mouse use, via its movement kinematics. 

Based on the kinematic profiles (i.e., the velocity and the acceleration profiles), 

movement kinematics can be characterized using various measures.  The kinematic measures 

broadly exist in two forms: spatial and temporal.  Spatial kinematic measures are usually 

presented in distance units such as distance and amplitude, whereas temporal measures are 

strictly time-based (see Section 4.2).  Since kinematic measures are captured from the process 
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of the movement, it might be expected that they would correlate with movement 

performance (i.e., movement time).  However, an omnibus correlation analysis confirmed 

that was not the case.  The results indicated only temporal kinematics (i.e., time to peak 

velocity, time to peak acceleration, and time from peak velocity until the end of movement) 

correlated with movement performance (i.e., movement time); none of the spatial kinematics 

showed strong correlation with performance (see Section 4.5.1). 

It was also of interest to determine whether the kinematics-performance correlation 

magnitudes differed from one age group to another.  Selected kinematics-performance 

correlations (those with strong overall correlation) were examined by age group (i.e., younger, 

middle-aged, and older).  Some of these correlations (i.e., time to peak velocity-movement 

time and time to peak acceleration-movement time) became inconsequential, suggesting that 

the age effect was a driving factor, rather than the inherent relationship between the 

kinematics and performance.  The only exception was the correlation between the homing 

time (i.e., time from peak velocity until the end of movement) and performance (i.e., 

movement time), in which strong correlations were observed when separated by age. 

A second study was performed to investigate the effects of age and psychomotor 

ability on movement kinematics.  ANOVAs revealed age differences across different 

kinematic measures.  Overall, kinematics in the older group were significantly different from 

the younger and the middle-aged groups; there were no differences between the younger and 

the middle-aged groups.  Age differences were detected in regard to peak velocity, peak 

acceleration, and proportion of distance traveled at peak velocity.  The older group 

demonstrated lower peak velocity and peak acceleration but a larger proportion of distance 
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traveled at peak velocity compared to the younger and the middle-aged groups.  Since it is 

commonly known that movement time is also influenced by age, one maybe tempted to 

draw a linkage between movement time and peak velocity, peak acceleration, and proportion 

of distance traveled at peak velocity, however, none of the three kinematic measures 

correlated with movement time (see Section 4.5.1).  Note the SOS model states that the 

primary submovement is usually ballistic in nature.  Also note that the older group 

demonstrated lower psychomotor ability compared to the younger and the middle-aged 

groups.  Hence, the age differences in kinematics related to the primary submovement (i.e., 

peak velocity, peak acceleration, and the proportion of distance traveled at peak velocity) can 

be attributed to the older group’s execution of the initial movement, which is less ballistic 

and explosive compared to the younger participants.  This proposition is further supported 

by the significant age effect on temporal measures that are pertinent to the primary 

submovement.  Specifically, time to peak velocity was found to increase with age (see 

Section 5.7.2.2).   

Typical movement velocity and acceleration profiles for the three age groups are 

shown in Figures 20 and 21.  Even though all three groups exhibited stereotypical profiles 

for the primary submovement, the peak velocity (i.e., indicator for the ballistic motion) is 

lower in the older group.  The longer time spent and the larger distance covered during the 

initial submovement (see Section 5.7.2.4) indicates the older group might be using a 

compensation strategy by traversing a larger distance before homing in on the target.  

Another possibility is that the older group simply lacks the ability to move the cursor 

effectively towards the target; this can be attributed to reduced psychomotor ability in the 

older group.  In regard to the deceleration phase, all groups spent a considerable amount of 
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time homing in on the target.  Similar to the ballistic phase, the age difference in the 

secondary submovement was attributed to the longer time in the older group.  The longer 

time associated with the older group may be indicative of the reduced ability to coordinate 

visual feedback with the subsequent motor output (i.e., executive control).  However, 

without the pertinent data, this suggestion remains speculative. 
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Figure 20.  Selected Individual Velocity Profiles. 
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Figure 21.  Selected Individual Acceleration Profiles. 
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It was also of interest to determine whether age was in fact a surrogate variable to 

the kinematic differences.  In other words, the question was whether age was still a 

significant contributor to differences in movement kinematics after psychomotor ability was 

taken into account.  Since reduced psychomotor ability has been associated with aging, the 

question arose as to whether changes in movement performance and kinematics were 

directly caused by changes in functional ability rather than changes in age.  Subsequent 

analyses showed age was not a major contributor to differences in movement kinematics, 

and indeed the differences (except for proportion of distance traveled at peak velocity and 

time from peak velocity until the end of movement time) were attributed to the effects of 

psychomotor ability.  Further investigation indicated there were other factors in addition to 

the age and psychomotor ability that influenced both kinematic measures.  Other possible 

contributing factors may include target parameters such as target size and distance amplitude; 

however, without further analysis it remains speculation. 

A subsequent study was performed to investigate the effects of visual ability on 

movement kinematics.  The results indicated that visual ability did not affect the primary 

submovement, as indicated by the minimal changes to pertinent kinematic measures (i.e., 

peak velocity, proportion of distance traveled at peak velocity, peak acceleration, and time to 

peak velocity).  Even though the low vision group was clearly disadvantaged in terms of 

visual function, their primary submovement was similar to that of the normal vision group.  

This finding was consistent with the proposition of the SOS model that visual feedback 

plays a minimal role during the ballistic phase of movement.  On the other hand, significant 

differences were detected in the homing phase, for which the low vision group was observed 

to spend significantly more time in this secondary submovement.  Again, the findings are 
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supported by the SOS model because the model assumes the homing phase is profoundly 

characterized by the feedback-control mechanism, which requires a high degree of visual 

feedback. 

Based on the findings gathered thus far, an overall picture of mouse-mediated aiming 

movements can be drawn around the SOS model.  Before starting with the aiming 

movement, the participant takes a quick glance at the location of the intended target; a 

similar eye-lead-hand proposition was also suggested by other researchers (e.g., Abrams, 

1992; Abrams, Meyer, & Kornblum, 1990; and Eliott et al., 2001).  Then, based on the initial 

visual estimation, the participant propels the mouse (i.e., cursor) towards the target.  The 

preprogrammed motor movement is highly influenced by the psychomotor ability of the 

participant, which is subject to various factors including the age effect.  Since the initial 

ballistic phase does not require visual feedback, the kinematics remains similar even if the 

participant has reduced visual functions.  Due to neuromotor noise, the preprogrammed 

movement is likely to either overshoot or undershoot.  In either case, the feedback-control 

mechanism begins to operate in the deceleration phase.  The deceleration phase is 

characterized by corrective submovements for error adjustment.  These submovements are 

often aided by visual feedback, and kinethestic feedback to a lesser extent (Keele & Posner, 

1968).  And as suggested, results from this research indicated that visual ability was vital for 

efficient target homing. 

Note that only two of many mouse task primitives were investigated in the current 

research.  In addition to pointing and selecting, there exist other task primitives for mouse-

based computer tasks, including dragging, drawing or tracing, and free-hand input.  Future  
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kinematic analyses of mouse use should of necessity include a wider variety of mouse task 

primitives.   

Certain characteristics of pointing devices are believed to have influence over mouse 

use.  In particular, gain setting (or control-display ratio) is an influential factor in mouse use.  

Gain refers to the amount of control movement needed to produce the desired output 

movement (Kantowitz & Sorkin, 1983).  It has been long established that gain setting is not 

an important factor for influencing mouse performance (see Jellinek & Card, 1990; 

Kantowitz & Elvers, 1988; and Lin, Radwin, & Vanderheiden, 1992).  However, recent 

studies (Thompson, McConnell, Slocum, & Bohan, 2007) report the effects of gain setting 

on certain movement kinematics.  Gain setting was not considered in this research because 

the mouse was operating in the Windows environment which effectively made it a rate-

control mouse.  As a result, gain setting was irrelevant.  Because most mice are rate-control 

devices, it is believed that findings from this research have a greater external validity 

compared to those obtained from a more controlled environment. 
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APPENDIX A 

SCREENING QUESTIONNAIRE 

This questionnaire is part of the screening process designed to recruit participants from the desired population.  Please answer all 
questions to the best of your ability.  Information obtained from this questionnaire will be maintained confidential and will be used 
only to determine your eligibility to participate in this study.  Feel free to ask the administrator if you have any questions. 

 
1.  Gender:  

  Male 
  Female 

 
2.  Which of the following age groups you belong to? 

  18-29  
  40-59  
  65-80 
  None of the above 

 
If so, what is your age?  ___ years ___ months 

 
3.  What is your highest educational level? 

  Some high school 
  High school graduate 
  Some college 
  College graduate (i.e., Associate’s or Bachelor’s) 
  Some graduate school 
  Post-baccalaureate (i.e., Master’s or Doctoral) 

 
4.  Do you use a computer? 
   Yes 
   No 
 
 If YES, how many hours in a week do you typically use a computer? 
    0 – 2 hours 
    3 – 5 hours 
    6 – 10 hours 
    over 10 hours 
  
 If YES, which of the following tasks you do with a computer?  Select all that apply. 

   Internet (e.g., e-mail, web browsing) 
  Using spreadsheet (e.g., financial planning, inventory control) 
  Word processing (e.g., writing letter, creating posters and flyers) 
  Other, please specify: _________________________________ 
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5.  Have you had injury in these?  Select all that apply. 
  Neck 
  Shoulder 

Which side?    Left    Right 
  Arm 

Which side?    Left    Right 
  Hand 

 Which side?    Left    Right 
  Wrist 

 Which side?    Left    Right 
 
 If so, when did that injury occur?  ___ years ___ months ago. 
 
 If so, please describe the nature of the injury. 
 
 __________________________________________________________________ 
 
 Are you still experiencing the symptoms? 
    Yes 
    No 
 
6.  Do you have any limitations due to: 

  Celebral palsy 
  Cumulative trauma disorder (CTD) 
  Parkinson’s disease 

 
 
 

-- END -- 
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APPENDIX B 

MINI-MENTAL STATE EXAM  

(ADAPTED FROM FOLSTEIN, FOLSTEIN, AND MCHUGH, 1975) 

Orientation 
Max. 
Score 

Score Instructions 

What is the (year) (season) (date) (day) 
(month)? 

5  As for the date.  Then proceed to ask other 
parts of the question.  One point for each 
correct segment of the question. 

Where are we: (state) (county) (town) 
(hospital) (floor)? 

5  As for the facility then proceed to parts of 
the question.  One point for each correct 
segment of the question. 

Registration    
Name three objects (bed, apple, shoe).  Ask 
the patient to repeat them. 

3  Name the objects slowly, one second for 
each.  Ask him to repeat.  Score by the 
number he is able to recall.  Take time here 
for him to learn the series of objects, up to 6 
trials, to use later for the memory test. 

Attention and Calculation    
Count backwards by 7s.  Start with 100.  Stop 
after 5. 

5  Score the total number correct. 
(93, 86, 70, 72, 65) 

Alternate question.  Use if subject refuses or is unable to count backward by 7s. 
Spell the word “world” backwards. 5  Score the number of letters in correct order. 

(dlrow = 5, dlorw = 3) 
Recall    

Ask for the objects used in question 2 to be 
repeated. 

3  Score one point for each correct answer. 
(Bed, apple, shoe) 

Language    
1.  Naming: Name this object: Watch, pencil. 2  Hold the object.  Ask patient to name it. 
2.  Repetition: Repeat the following – “No 
ifs, ands, or buts.” 

1  Allow one trial only.  Score one point for 
correct answer. 

3.  Follow a 3-state command: “Take the 
paper in your right hand, fold it in half, and 
put it on the floor.” 

3  Use a blank sheet of paper.  Score one point 
for each part correctly executed. 

4.  Reading: Read and obey the following: 
Close your eyes. 

1  Instruction should be printed on a page.  
Allow patient to read it.  Score by a correct 
response. 

5.  Writing: Write a sentence. 1  Allow patient to write any sentence.  It must 
contain a noun, verb, and be sensible. 

6.  Copying: Copy this design. 1  All 10 angles must be present.  Figures must 
intersect.  Tremor and rotation are ignore. 

 Total 
Score 

 Maximum 30.  Test is not timed.  Scores 
below 20 indicate probable dementia. 

 


