
LRU PAGE REPLACEMENT ALGORITHM:

A NEW APPROXIMATION IMPLEMENTATION

By

EUNJAEJUNG

Bachelor of Science

Myong Ji University

Seo~ Korea

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July 1996

Thesis Advisof'

LRU PAGE REPLACEMENT ALGORITIIM:

A NEW APPROXIMATION IMPLEMENTATION

Thesis Approved:

Dean oftbe Graduate College

ii

PREFACE

The purpose of this th,esis work was to develop a trace-driven simulation to

investigate the viability of applying a splay tree to a page replacement algorithm (new

implementation). The basic idea of the splay tree is that fi'equently accessed items are

placed near the root of the tree. This notion is compatible with the basic idea of the LRU

page replacement algorithm. Reference strings consisting ofvirtual addresses were used as

input for this simulation. To assess the performance of the splay tree, as applied to the

implementation of the LRU page replacement algorithm, it was compared with other

implementations of LRU approximations such as the clock algorithm and the additional

reference-bits algorithm. The perfonnance parameters were page fault rate, time and space

complexities, and memory utilization.

Four methods (leftmost, rightmost, highest, and LRU leaf) were used to select a

victim page in the new implementation. Although the algorithm overhead (i.e., the time

and space complexity) was lower in the leftmost and rightmost methods, the number of

page faults and the memory utilization were not as good. The highest and LRU leaf

methods generated the better results in terms of the number of page faults and memory

utilization when compared with the clock and additional-reference-bits algorithms. The

LRU leaf method had the demerit that its overhead was high. The highest leaf method,

which did not need any hardware support, bad the most reasonable result over all

iii

performance factors considered. Therefore, the highest leaf method of selecting a

replacement victim in the new implementation using a splay tree could be recommended as

a page replacement algorithm.

IV

ACKNOWLEDGMENTS

I would like to express special appreciation to my advisor Dr. Mansur H

Samadzadeh. He provided essential guidance and inspiration throughout my thesis work.

Dr. Samadzadeh continued to spend endless hours reviewing my work and offering

suggestions for further refinement.

I would like to thank my other committee members, Drs. G. E. Hedrick and

Blayne E. Mayfield. Their time and effort are greatly appreciated.

Finally, I would like to express my sincere thanks to my family for their continued

support. They helped me throughout my MS program. I couldn't have done it without

their continued love and support.

v

l I~rrRODUCTION 1

Chapter

TABLE OF CONTENTS

Page

II. LITERATURE REVIEW 5

2. 1 Paging 5
2.2 Page Replacement Algorithms 6

2.2.1 Optimal Algorithm 6
2.2.2 FIFO Algorithm 7
2.2.3 LRU Algorithm 7

2.2.3.1 Second-Chance Algorithm 7
2.2.3.2 Additional-Reference-Bits Algorithm 9

2.3 Splay Tree]0
2.3.1 Splaying]0
2.3.2 Update Operations on Splay Tree 12

Ill. DESIGN AND IMPLEMENTATION ISSUES 14

3.1 Implementation Platform and Environment 14
3.2 Objectives 14
3.3 Input Parameters , IS

3.3.1 Input Traces 15
3.3.2 Process Number 15
3.3.3 Memory Size 15
3.3.4 Page Size 16
3.3.5 Page Fault Handling Time 17
3.3.6 Page Replacement Algorithms)7

3.4 Design of the Simulation 18
3.4.1 New Implementation 18
3.4.2 Clock Algorithm]9
3.4.3 Additional-Reference-Bits Algorithm 20
3.4.4 Scheduling 21

3.5 Implementation Details 22

IV. EVALUATION 27

4.1 Testing 28
4. 1.] Test Traces 28

Vl

APPENDIX B: Trademark Information 58

REFERENCES 53

APPENDICES 55

Page

5.1 Summary 51
5.2 Future Work 52

4.1.2 Memory Size 29
4.1.3 Tim.e Interval 33
4.1.4 Result of the Test 37

4.2 Analysis 38
4.2.1 Graphs 38
4.2.2 Observations 39
4.2.3 Tim.e and Space Complexities 46

4.2.3.1 Space Complexity 46
4.2.3.2 Tim.e Complexity 47

4.2.3.2.1 Searching 48
4.2.3.2.2 Selecting a Victim Page 48
4.2.3.2.3 Rebuilding 49

APPENDIX A: Glossary 56

v. SUM:MARY AND FUTURE WORK 51

Chapter

APPENDIX C: Experimental Results 59

APPENDIX D: Program Listing 72

vii

Table

LIST OF TABLES

Page

I Five sampled traces used for the simulation , ,. 28

TI Minimum number ofpage faults for different page sizes 29

TIl The start points ofmemory sizes yielding minimum page fault numbers
in each algorithm 30

IV The number ofpage faults according to memory size
(in the highest leaf method in the new implementation) 31

V The number ofpage faults according to memory size
(in the clock algorithm with interval 28,000) 32

VI The number ofpage faults according to memory size
(in the additional-reference-bits algorithm with interval 140,000) 32

VII The number ofpage faults and memory utilization when each process has
163 frames (5 * 512 * 163 = 417,280 bytes) 37

VIII The number ofpage faults and memory utilization when each process has
178 frames (5 * 512 * 178 = 455,680 bytes) 38

IX Space complexity ofeach algorithm in the worst case 47

X Time complexity ofeach algorithm 49

V11l

Figure

LIST OF FIGURES

Page

B . dd . h' . h .aSlc a ress rnappmg mee arnsm Wit pagmg , 6

2 Clock algorithm 8

3.a Zig step 10

3.b Zig-zag step .1.1

3.c Zig-zig step 11

4.a Insertion of 8 12

4.b Join ofthe left and right subtrees ofnode I and deletion of5 J3

5 Data structure of splay tree 19

6 Data structure of linked list used to contain leaves... 19

7 Data structure of circular queue and Hand pointer 20

8 Data structure used for 8-bit shift register 2 J

9 Data structure used for page table in additional-reference-bits algorithm 21

10 Data structure used for blocked queue 22

11 The main menu of the simulation 23

12 The number ofpage faults generated vs. the allocated memory size 27

13 The number ofpage faults generated as affected by the change ofregular time
intervals in the clock algorithm 34

14 Expansion ofFigure 13 from 10 to 100,000 34

15 The number ofpage faults generated as affected by the change of regular time
intervals in the additional-reference-bits algorithm 36

IX

Figure Page

16 Expansion ofFigure 15 from interval 10 to 1,000,000 36

17 Comparison ofpage fault numbers for three different algorithms
for a page size of512 and memory allocation of417,280 bytes 40

18 Comparison ofmemory occupancy in the three different algorithms
for a page size of 512 and memory allocation of417,280 bytes 41

19 Comparison ofpage fault numbers in the four different methods used in the new
implementation for a page size of 512 and for memory allocation of
417,280 bytes 41

20 Comparison ofmemory occupancy in the four different methods used in the new
implementation for a page size of 512 and for memory allocation of
417,280 bytes 42

21 Comparison ofpage fault numbers for three different intervals used in the clock
algorithm with a page size of 512 and memory allocation of417,280 bytes 44

22 Comparison ofmemory occupancy for three different intervals used in the clock
algorithm with a page size of 512 and memory allocation of417,280 bytes 44

23 Comparison ofpage fault numbers for three different intervals used in the
additional-reference-bits algorithm for a page size of 512 and memory
allocation of 4]7,280 bytes 45

24 Comparison ofmemory occupancy for three different intervals used in the
additional-reference·-bits algorithm for a page size of 512 and memory
allocation of 417,280 bytes 45

25 A typical page table entry 46

x

CHAPTER I

INTRODUCTION

The memory management of a computer system has a significant effect upon its

operating system design [Belady et a1. 81] [Deitel 90). To execute a process, its

instructions and data must be stored in main memory. Because of the restricted size of

main memory, due to the fact that it is expensive relative to secondary memory, the

execution of a process whose address space (i.e., instructions plus data) is larger than

main memory is difficult. Also, as multiprogramming has been used to improve the

utilization of CPU, a single memory (i.e., only main memory) is not large enough to hold

several processes [Silberschatz and Galvin 94]. These problems may be solved by using

virtual memory [Belady 66] [Denning 70].

Silberschatz and Galvin state that "virtual memory is a technique that allows the

execution of processes that may not be completely in memory" [Silberschatz and Galvin

94]. In this scenario, programs, each of wbjch can be larger than main memory, can be

executed. So the programmer does not have to worry about the size of programs, The

operating system keeps parts of the programs and data that are currently in use in main

memory, and those parts that are not expected to be required soon are kept in secondary

memory [Tanenbaum 92]. Virtual memory is specially relevant to multiprogramming

environments. Tanenbaum describes that '\vhile a program is waiting for part of itself to

2

be swapped in, it is waiting for I/O and cannot run, so the CPU can be given to another

process". In multiprogramming/time sharing systems, each user has the illusion that (s)he

has a larger and individual memory of herlhis own through the virtual memory scheme

[Belady 66] [Denning 70].

The basic idea of the virtual memory concept is separating the virtual addresses

referenced in a running process from the real physical addresses in main memory [Deitel

90]. That is, the virtual address space and the real address space are separated. A

programmer conceptualizes a program in the virtual address space and the operating

system links the program to the real address space locations. Actually, to execute a

process, the virtual addresses of a process must be translated to real addresses dynamic.ally

[Lister and Eager 93].

Demand paging is frequently used to implement the fetching component of virtual

memory management [Silberschatz and Galvin 94]. In paged memory management

scheme, the program and the data for each process are pattitioned into equal-sized blocks

called pages and stored in secondary memory. Main memory is also divided into fixed

sized blocks called frames. The pages and the frames are always the same size [Carr 84)

[Silberschatz and Galvin 94] [Tanenbaum 92]. When a process is executing, a page that is

immediately needed is swapped into main memory and, unJess there is a free frame

available, a page deemed not to be needed for a while is swapped out. Thus, if there is no

room in main memory for the page that has to be brought in, the operating system must

choose a page to be removed from main memory, and replace it with the required page

using a page replacement algorithm.

3

Since Belady's research on page replacement algorithms [Belady 66] many

algorithms have been introduced (e.g., see [Deitel 90] and [Silberschatz and Galvin 94]).

The LRU (least recently used) replacement algorithm is considered to be close to the

optimal algorithm (see Section 2.2 for a detailed discussion of replacement algorithms).

The implementation of LRU requires special hardware support, which many systems do

not provide, so various LRU approximations are usually used.

Splay tree, which is a self-adjusting binary search tree based on splaying (moving a

referenced node to the root of a tree through a sequence of rotations), was developed by

Sleator and TaIjan [Sleator and TaIjan 85]. As they claim, "splay tree approximately

halves the depth of all nodes along the original path from the accessed node to the root".

A splay tree does not require the maintenance of height or balance information. Thus it

saves space and is simpler than a balanced tree [Weiss 92]. A splay tree has an amortized

bound of O(log n) per operation [TaTjan 83]. It is at least as efficient as a balanced tree

and especially good in the case of a long sequence of accesses [Sleator and Tatjan 85]

[Udi 89], because a node is likely to be accessed soon again when it is accessed once.

Splay tree is practically useful in many applications [Weiss 92].

Trace-driven simulation is one of tbe methods that can be used to evaluate the

performance of a system [Poursepanj 94]. This method uses a dynamic sequence of

addresses, which has been compiled during an actual execution, as input instead of actually

executing instructions or generating results. Because designers do not have to be

concerned about producing correct results or otber overhead, they can focus on the

performance of the designed system. The trace-driven model is thus frequently used to

evaluate the performance of a proposed system.

4

The main goal of this thesis was to develop a trace-driven simulation to apply a

splay tree to a page replacement algorithm. To execute the simulation, reference strings

consisting of virtual addresses were used as input. lIDs new implementation was

compared to traditional LRU approximation implementations.

The rest of this thesis is organized as follows. Chapter II provides a review of

literature related to virtual memory management and splay tree. Chapter III contains the

design and implementation issues. Chapter IV discusses evaluation. Finally, Chapter V

gives the summary and future work.

CHAPTERU

LITERATORE REVIEW

2.1 Paging

Paging is one of the two common methods of implementing virtual memory (the

other being segmentation). The paging method has two roles [Lister and Eager 93}. One is

to carry out the address mapping procedure and the other is to transfer pages between

main memory and secondary memory. Figure I depicts the basic address mapping with

paging. CPU sends virtual addresses to MMU (memory management unit) and MMU

sends physical addresses to main memory after performing address mapping by means of a

page table. The index into the page table is a page number, and the page table has the

location of the page frame 'pI> which corresponds to page 'p'. Combining the base address

of'p" and the page offset 'd' yields the physical address in main memory.

The address translation mechanism can be represented theoretically as a function

f: V ~ P u ep, where V is the set of page numbers in the logical address space of a

process, and P is the set ofmemory-resident frame numbers for that process [Denning 70].

If XEV is at location x' EP, f{x) = x', else f{x) = ep, which means that a page fault has

occurred. In such a case, the processing ofthe program is inteffilpted until XEV is loaded

to yield some x' EP, and f(x) = x'. Page replacement algorithms are needed when P is full,

and a page fault has occurred.

5

6

Figure 1. Basic address mapping mechanism with paging

There are many page replacement algOlithms. Usually, generating the lowest page

Main Memory

MMU

p : page number in virtual address
d : page offset
pI: frame number in main memory

2.2 Page Replacement Algorithms

The optimal algorit~ which is usually referred to as OPT or MIN, replaces the

logical addres,

CPU ~ P I d I
'\

~

p" Id
/

p'
physical

I ~ address
[pl+ d)

page table

2.2.1 Optimal Algorithm

chosen for an operating system. The following subsections btiefly discuss three major page

cannot be actually implemented. It is used to gauge the performance of other replacement

algorithms.

replacement algorithms.

page that is least likely to be used again [Be1ady 66] [Denning 70]. OPT always has the

fault rate is considered as the main perromlance crite.rion when a replacement algOlithm is

lowest page fault rate. Since OPT is an ideal algorithm (it requires future knowledge), it

7

2.2.2 FIFO Algorithm

The FIFO algorithm can be implemented with a FIFO queue that would keep track

of all pages in memory [Silberschatz and Galvin 94]. When memory is.full while handling a

page fault, the page at the head of the queue is removed and the new page is added to the

tail of the list. Although the overhead of this algorithm is low, Belady's anomaly [Belady

et at 69] can occur. Belady's anomaly involves a counter-intuitive increase in the page

fault rate as a result of increasing the memory size for a program.

2.2.3 LRU Algorithm

The LRU algorithm replaces the page that has not been referenced for the longest

time [Tanenbaum 92]. It is based on the idea that the page which has been frequently

referenced will probably be called on again in the next few instructions. Although LRU is

considered a good approximation to OPT, the implementation is not easy. It can be

implemented by adding a counter to the addresses generated by the CPU or by keeping a

stack of the page numbers. Both methods have high overheads with or without hardware

support. Operating system designers use LRU approximation algorithms (as discussed in

the following subsections) that are less expensive in terms of software and hardware

overhead.

2.2.3.1 Second-Chance Algorithm

The second-chance algorithm can be considered as a variation of the FIFO

algorithm [Deitel 90). In the FIFO algorithm, although the oldest page (i.e., the page that

is at the head of the FIFO queue) is heavily used, it must be replaced unconditionally. The

8

second-chance algorithm can prevent this kind of weakness of the FIFO algorithm. It

investigates the reference bit (X bit) of the oldest page. If the bit is 0, th.e page is replaced.

If it is 1, the page gets a second chance. When a page gets a second chance, the page is

moved to the end of the FIFO queue and the X bit of the page changes to O. The load time

ofthe page also changes to the current time. These steps are repeated until the oldest page

whose X bit is 0 is found. The second-chance algorithm searches for the oldest page which

has not been referenced in the previous time interval (e.g., every 20 or 100 milliseconds).

The approach that uses a circular queue instead of a FIFO queue to implement the

second-chance algorithm is called the clock algorithm As shown in Figure 2, a circular

queue shaped like a clock holds the pages of a particular process that reside in main

memory, and a hand indicates the oldest page. If the X bit of the oldest page is 1, the bit

changes to 0 and the hand goes to the next page. These steps are repeated until the page

whose X bit is 0 is found. When such a page is found, the new page is inselted at that

position and the hand goes to the next page.

In the worst case, if aU pages in the FIFO queue or the circular queue have been

o

oremoved
page

"-.,0
required
page

>
1

Figure 2. Clock algorithm

1reference bit

referenced in the previous time interva~ each of them gets a second chance. Therefore, the

9

above algorithms (one using a FIFO queue and the other using a circular queue) repeat

until all elements have an X bit of 0; in this case those algorithms emulate the FIFO

algorithm

2.2.3.2 Additional-Reference-Bits Algorithm

Another approximation to LRU is the additional-reference-bits algorithm. The

ordering information of references for each page can be partially captured by keeping an

8-bit shift register for each page in a page table [Silberschatz and Galvin 94]. The shift

register records the X bits (reference bits) for each page at each time interval as follows.

At each clock interrupt, the shift register is shifted right 1 bit and the current X bit is

inserted as the leftmost bit. If there is a need for a victim selection for replacement, the

page with the lowest varue in the shift registers, which roughly indicates whether it has or

has not been used recently, is replaced. If a number of pages have the same lowest value

for their respective shift registers, this algorithm either chooses one of them or replaces all

ofthem.

The additional-reference-bits algorithm has two main problems that distinguish it

from a true LRU algorithm. One problem is that the order of pages referenced during a

single time interval cannot be determined because only one bit is recorded per time

interval. If some pages were referenced towards tbe end of a certain interval and one of

them must be replaced, the page with the lowest value will be replaced even though it

might not be the earliest one referenced in that interval. Th.e other problem is that it cannot

distinguish between the pages referenced shortly before 8 time intervals ago (e.g., 9 or 10

time intervals ago) and the pages referenced long time ago (e. g., 100 or 1,000 time

10

intervals ago), because the ordering information is limited to eight instances with an eight

bit shift register.

iM

2.3 Splay tree

2.3.1 Splaying

To spl.ay a tree at item I (Figure 3), the following steps are repeated bottom-up

along the access path until I is tbe root of the tree. in Figures 3.a, 3.b, and 3.c, the circles

indicate single nodes and the triangles indicate subtrees.

)

Figure 3. a Zig step

If the parent of I, P, is the root of the tree, rotate the edge joining I and the

root. lbis is the last rotation along the access path.

A B

1. Zig:

When a sequence of access operations is carried out on a binary search tree, if the

frequently accessed items can be placed near the root of the tree, the total access time can

be reduced. On the assumption that the accessed items are likely to be accessed again

soon, Sleator and TaIjan devised a method of restructuring the tree after each access that

moves the accessed item to the root [Sleator and TaIjan 85]. They also developed an

implementation of splaying. The following two subsections describe splaying and its

implementation [Sleator and TaIjan 85] [Weiss 92].

11

2. Zig-Zag: If the grandparent of I, G, exists and I is right child of P and P is left child of

G (or vice versa), rotate the edge joining I and P and then rotate the edge

joining I and G.

Figure 3.b Zig-zag step

3. Zig-Zig: If the grandparent of I, G, exists and I and P are either both left children of G

or both right children of G, rotate the edge joining P and G and then rotate the

edge joining I and P.

)

A B

Figure 3. c Zig-zig step

12

2.3.2 Update Operations on Splay Tree

The standard update operations on a binary search tree can be implemented using

splaying as outlined below [Sleator and TaIjan 85].

Insert(x,t): To insert item x in tree t, seafch t for x and then replace the null pointer

reached during the search by a pointer to a new node containing x, and finally

splay the tree at the inserted node. Figure 4.a depicts an insertion.

Join(tl,t2): Let's assume that all items in tree t2 are greater than all those in tree t1. To

combine tl and t2 into a single tree, search for the largest item x in t I and

make the root of t I contain x. Then make t2 the right subtree of the root.

Figure 4.b shows how the right and left subtrees ofnode I are joined.

Delete(x,t): To delete item x from tree t, search t for the node I containing x and then

replace I with the root, R, of the subtree that will result if the right and left

subtrees of I are joined. Finally, splay the tree at the parent of R. Figure 4.b

depicts a deletion.

9)
5

Figure 4.a Insertion of 8

13

®
3

1

splay at 7) 2join subtrees
of I

Figure 4.b Join ofthe left and right subtrees ofnode I and deletion of 5

4

3

CHAPTER ill

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

The simulation program was implemented on a Sequent Symmetry S/81 in C. The

Symmetry S/81 is a mainframe-class multiprocessor system which has a parallel

architecture using multiple industry-standard microprocessors [Sequent 90]. In its present

configuration, this system has twenty four 80386-20MHZ processors. It also has 104
,

mega bytes of RAM and 5 giga bytes of total hard disk storage. Each process contains

64K of cache memory. It runs the DYNIX/ptx or DYNIX V3.0 operating system that has

been engineered to incorporate parallel processing features. DYNIX V3.0 supports both

UNIX System V command sets and the Berkeley UNIX, however DYNIXIptx is

compatible with AT&T System V3.2 only.

3.2 Objective

The main goal of the thesis was to develop a trace-driven simulation to apply a

splay tree as a data structure to implement an LRU approximation page replacement

algorithm. Reference strings consisting of virtual addresses were used as input to this

simulation. The performance of this new implementation was evaluated by comparing it

with two popular LRU approximation algorithms, namely the clock algorithm and the

14

15

additional-reference-bits algorithm. The performance factors for the evaluation were

number ofpage faults, memory utilization, and time and space complexities.

3.3 Input Parameters

3.3.1 Input Traces

The traces used as input to the simulation were developed at the Parallel

Architecture Research Laboratory of New Mexico State University. They were available

in the public directory ofthe ftp site tracebase@nmsu. edu.

3.3.2 Process Number

The number of processes is limited to ten (i.e., the maXImum degree of

multiprogramming is ten). Each process handles one file, which consists of a different

reference string. A user can select the number of processes through a standard input.

3.3.3 Memory Size

A critical parameter in the simulation is the memory size. Excessively large

memory results in no page faults and excessively small memory results in thrashing (the

typical range for the miss rate is from 0.00001% to 0.00]% [Hennessy and Patterson 90J).

The degree of multiprogramming is constrained as a consequence of the availability of a

limited number of traces. The memory size too indirectly depends on the traces.

In the absence of historical data, the same traces that were used to drive the

simulation, were used in a pre-processing step to deternrine a plausible memory size. The

necessary memory size for running each process was obtained by gradually increasing the

16

memory size and considering the start point for each process at which the number of page

faults generated becomes stable (i.e., would not decrease) in the face of further increasing

the memory size. The memory size can also be selected through a standard input.

Having determined the memory size necessary for each process, two methods were

used to arrive at the overall memory size for the simulation. The first method consisted of

three steps. The first step was to take the median values among the start points of all

processes obtained by using each approach of each different algorithm The second step

was to calculate the average value ofthese median values. The final step was to decide the

memory size based on the above two steps. The memory size was average value '"

/lumber of processes * page size because the memory was equally partitioned to each

process for the simulation.

The second method had also consisted of three steps. The only a difference was in

the first step compared to the first method. The average value of each process was taken

instead of the median value (with the minimum and maximum values excluded as possible

outliers).

3.3.4 Page Size

The typical range of a page size is from 512 bytes to 8) 92 bytes (Hennessy and

Patterson 90]. Four different page sizes (i.e., 512, 1024, 4096, or 8192) can be selected by

a user.

17

3.3.5 Page Fault Handling Time

The service time required to handle a page fault is the page fault handling time.

When a page fault occurs, the relevant page must be read from secondary memory an.d

the desired position of the page must be accessed [Silberschatz and Galvin 94]. There are

three primary services that need to be performed during a page fault. A service for the

page fault interrupt, a service for reading in the page, and finally a service for restarting

the process. The second service time is much more than the other two service times. The

typical range of memory access times and page fault handling times are from 1 to 10 and

from 100,000 to 600,000 clock cycles, respectively [Hennessy and Patterson 90].

Although the page fault handling time for the simulation was fixed, it can be given by a

user differently through a standard input. For the simulation, the default memory access

time and page fault handling time are 1 and 10,000 clock cycles, respectively.

3.3.6 Page Replacement Algorithms

To investigate the perfonnance of the new LRU approximation implementation

comparatively, two LRU approximation algorithms (i.e., clock and additional-reference-

bits) were also implemented. A user can select any of the three algorithms and observe its

performance by comparing it with the performance of the other two algorithms.

There are four different methods which a user can select to implement the new

page replacement algorithm. First, the leftmost leaf page in a splay tree is replaced when a

page replacement is needed. Second, the rightmost leaf page is replaced. Third, the highest

leafpage in a splay tree is replaced. Fourth, the LRU page among the leaves is replaced.

The other two algorithms also have different methods by changing the time

18

intervals. Therefore, each implemented version of each algorithm also can be compared

with the other versions of the same al!gorithm The best implemented version of each

algorithm was compared with the best one of the other algorithms when checking the

performance of three algorithms. Regular time intervals were assigned when clock and

additional-reference-bits algorithms were executed.

3.4 Design of the Simulation

The simulation was implemented as a trace-driven model on the Sequent

Symmetry S/81 machine running the DYNIX/ptx operating system using the C

programming language.

3.4.1 New Implementation

Splay tree was used as a data structure to implement the new LRU page

replacement algorithm. Each node of the splay tree represents a page which is in main

memory. The page table size is thus variable. Since there are 00 actual address spaces,

there is no a pliori information about the page table sizes such as the total number of

pages for each program., as a result there is no simulated disk.

Each process has its own page table which is linked in the form of a splay tree.

Figure 5 gives the data structure used in simulating a page table. A parent pointer was

needed to do a bottom-up pass over an access path when splaying. The original splay tree

does not have to have a height field to compute the height of each node. But when the

method which determines the victim page as the h:ighest leaf was used, the height field was

needed to compare the height ofleaves. To implement the method, wh:ich determines LRU

Figure 5. Data structure of splay tree

19

Figure 6. Data structure oflinked list used to contain leaves

*leaf;
e_flag;
*next;

struct leaClist {
struct stree
int
struct leaf list

};
typedef struct leaClist LEAF_L;

struct stree {
int page_num;
int height;
struct stree *right;
struct stree *left;
struct stree *parent;

};
typedefstruct stree PAGE_TABLEl;

A circular queue was used to implement the clock algorithm. Each node of the

queue. Figure 6 gives the data structure used for the list which links all leaves to determine

queue represents a page which is in main memory. Figure 7 depicts the data structure used

3.4.2 Clock Algorithm

the LRU leaf among the leaves.

in simulating a circular queue. The rbit field which denotes the reference bit of each page

leaf as the victim page, all leaves in a splay tree must be linked and implemented as a

is set when a page is inserted into main memory or referenced, and is cleared after the

20

regular time interval. The Hand pointer [Tanenbaum 92] points to the oldest page among

the pages in the circular queue (see Subsection 2.2.3.1 for further explanation).

struct circular_que {
int rbit;
int page_num;
struct circular_que *next;

};
typedef struct circular_que PAGE_TABLE2;
PAGE TABLE2 *Hand(MAX_PROCESS];

Figure 7. Data structure ofcircular queue and Hand pointer

3.4.3 Additional-Reference-Bits Algorithm

A linked list was used to simulate the page table of each process for the additional-

reference-bits algorithm. Figure 8 is the data structure used to simulate the 8-bit shift

register. The bit field was needed to shift I bit and to change the leftmost bit. The victim

page is the page that has the lowest value for its shift register. When several pages have

the same lowest value, the page which had been inserted first in the linked list among the

pages is replaced. To do this, a new page is inserted at the tail of the linked list. Figure 9

gives the data structure used to simulate a page table. The 8-bit shift register is kept as one

field of the page table to get the ordering of page references. When a page is referenced,

the leftmost bit of the shift register is set. The shift register is shifted right 1 bit at each

time interval. The value of the shift register indicates the ordering of page references. To

get this value, union is used.

21

struct s_reg {
unsigned int unused:7;
unsigned int first: 1;

};
typedef struct sJeg SHIFT REGISTER

Figure 8. Data structure used for 8-bit shift register

struct add_ref {
int page_num;
union shift {

unsigned int value:8;
SHIFT REGISTER reg;

} shift_reg;
struct add_ref *next;

};
typedefstruct add_ref PAGE TABLE3

Figure 9. Data structure used for page table in additiol1al-reference-bits algorithm

3.4.4 Scheduling

Two types of random number generators were used for the scheduling of the

processes. One was used to select a process number and the other was used to select a

length of the reference string according to which the selected process would make

progress. If a page fault occurs during process execution, the process is blocked and

another process is selected and executed as much as dictated by the random amount

generated for headway. At this time, the process which has finished handling a page fault

in the blocked queue has priority to be the next process to be fUll. If no process is finished

with its page fault handling, the next process is selected at random from among tbe

______......:..::..0",'"

22

3.5 Implementation Details

files containing the virtual addresses in dinero+ format were obtained by using anonymous

siteftpof the/pub/tracebase4/r3000/READMEat

};
typedefstruct blocked_que BLOCK_Q;

Figure 10. Data structure used for blocked queue

The simulation is menu driven. Figure 11 gives the main menu of this simulation.

struct blocked_que {
int process_id;
int enter_time;
struct blocked_que *next;

tracebase@nmsu . edu as follows: "in addition to the usual type and address fields, a

Input traces of the simulation consist ofvirtual page numbers. These pages were obtained

defined

been compressed using tbe "compress" command. They were decompressed by using the

third field is present that lists the instruction word for instruction fetches". These files had

ftp. This dinero+ format is a common format used for capturing and representin.g traces

to implement the blocked queue.

will be referenced next is not memory resident. Figure 10 depicts the data structure used

the memory is not full. The other situation is when the memory is full and the page which

when the page, which will be referenced next, does not exist in the memory even though

processes that are not blocked. There are two situations when a page fault occurs. One is

by converting virtual addresses to page numbers before the simulation was performed. The

"uncompress" or "gunzip" command. The virtual.£..ages were obtained by dividing virtual
. --...- "......- ..-..._,. ... "'~'- -.. e_

23

addresses by a certain page size. The names and the lengths of the converted files were--- _ _a ...____

stored in the 'lraces.dat" file.

MENU

1. Convert virtual addresses to virtual pages.
2. Perform the simulation.
3. Generate graph for page faults.
4. Generate graph for memory utilization.
5. Exit the simulation.

Figure 11. The main menu ofthe simulation

Several input parameters (i.e., number of processes, memory size, method of

memory allocation, page fault handling time, page size, and page replacement algorithm)

are given by a user to perform each simulation. The process (i.e., process trace) to be

executed and the length of the corresponding reference string to be progressed are

obtained by calls to random number generators. At each clock (i.e., virtual memory access

time), a page is referenced and the number of page faults is computed. Every 500 virtual

clock cycles, the memory occupancy of each process is considered for memory utilization.

To determine whether a page is in main memory, an examination of the page table is

required. If a page fault occurs, the running process gets blocked. The next unblocked

process to be executed is randomly selected if no process that is in the blocked queue

consumes its page fault handling time. If no page fault occurs, the running process

proceeds until finishing the trace length previously obtained randomly.

Each process has its own work space. These work spaces are the same because the

total memory is equally partitioned among the active processes. Each page replacement

algorithm. has its own page table implemented by a different data structure. Each page

table is updated in a different way and has its own page replacement algorithm.

24

In the case of the new implementation, when no page fault occurs (i.e., when the

page that is referenced is in the splay tree), the splay tree is reconstructed using splaying at

the node containing the page. Otherwise, the tree is reconstructed after the page is

inserted as a leaf node.

In the case of the clock algorithm, when no page fault occurs (i.e., when the page

that is referenced is in the circular queue), the reference bit of the page is set. Otherwise,

the page is inserted into the circular queue. Finally, in the case of the additional-reference

bits algorithm, when no page fault occurs, the leftmost bit of the page is set. Otherwise,

the page is inserted into the linked list while setting the leftmost bit.

When a page fault occurs and there is no more memory available, a victim page is

determined followed by a page replacement algorithm. In the case of the new

implementation, four different methods were used to determine a victim page. The victim

page is one of the leaves in the splay tree in all the four cases. The method of choosing a

victim page as a leftmost leaf or a rightmost leaf is straightforward and the algorithm

overhead is lower than the two other methods. The height field of each node is not

necessary in the leftmost, rightmost, or the LRU leaf choosing method. The method of

choosing the farthest leaf from the root needs the height field to compare the distance of

each node from the root. The height of a node is the distance from the root to the node.

The root of a splay tree is an MRU (most recently used) page and the frequently accessed

pages are placed near the root of the tree. Therefore, the leaf that has the highest height

can be approximately considered an LRU page. The heights of all the nodes of a splay tree

should be computed to know the height of each leaf Dode. To compute the height of a

certain node, the height of the parent node is needed. So the preorder tree traversal

25

strategy is used. When several leaves have the same highest height, the leftmost leaf is

selected among those leaves. The last method attempts to get the leaf which is an LRU

page from among the current leaves. A queue linking all the leaves is used. To link all the

leaves, this method also traverses the entire tree. If a current leaf was oot a leaf at the

previous state, the leaf is inserted at the tail of the queue. If the page which was a leaf at

previous state is not a leaf currently, then the page is removed from the queue. The head

of the queue (i.e., the page that has stayed the longest as a leaf among the pages in the

queue) is considered as the LRU leaf

The graphs, which express the memory utilization and the number of page fault for

each process, were generated by using BLT routines. Tel library and blt-wish

installed in the /eontrib/bin directory are needed to use BLT on the Oklahoma

State University Computer Science Department's Sequent Symmetry S/81 running

DYNIX/ptx. This path and the environment variable must be set in . login file (fm

Ibin/esh users) or . prof ile file (for /bin/ sh or /bin/ksh users) [Ousterhout

94]. The following commands are for esh users.

set path= (. . .. / eontrib/bin .)
setenv TeL LIBRARY /eontrib/lib/tel
setenv TK_LIBRARY /eontrib/lib/tk

The X co-ordinates of the graphs represent process numbers, time intervals, or the

number of frames allocated as the domain ofeach graph. The Yeo-ordinates of the graphs

show the number of page faults or the memory occupancy which are given as the results

of the simulation. A graph is shown on the screen (Figure 12) after giving the values of X

and Y co-ordin.ates. TIlls sample graph shows the change of the number of page faults

affected by the change of memory size in the new implemeotatioD using the highest leaf

method ofvictim page selection. There are two buttons (i.e., Print and Quit) in the graph.

26

If the Print button is pushed, a postscript format file is generated to print the graph. The

name of a postscript file is provided by the user. If the Quit button is selected, the system

terminates displaying the graph retwns to the main menu of the simulation (Figure 11).

Number of page faults vs. number of frames
To create a postscript file, press the printIbut1on.

Page faults of process 4 (page size:512, highest-leaf)

800

~

~ GOOQl

~
c.
'Q
~
Ql

.&::

E
:2 400

200

I I I I I I I I ~

20 40 100 ao
Number of frames allocated

To finish, press the quit Ibut1o.n.

Figure 12. The number ofpage faults generated vs. the allocated memory size

IDIl~

N
-....J

CHAPTER IV

EVALUATION

4.1 Testing

4.1.1 Test Traces

The five traces used as input to the simulation were traces of SPEC92 benchmarks

running on a MIPS R3000 simulator. These traces are available in the directory

/pub/tracebase4/r3000/din/ of the ftp site tracebase@nmsu.edu. The

din directory contains traces in dinero+ format. The five sampled traces were selected

randomly from among the twenty traces that were in that directory (in compressed

format). After converting the files which consist of virtual pages, fOUT sampled traces

except "072.sc.din" were truncated to the length of 1,000,000 references. Table I shows

the names of five sampled files and their lengths.

TABLE I. FIVE SAMPLED TRACES USED FOR THE SIMULATION

Process ill File name Length of reference string

1 039.wave5.din 1,000,000
2 056. ear.din 1,000,000
3 072.sc.din 999,996
4 078.swm256.din. 1,000,000
5 093.nasa7.din 1,000,000

28

29

4.1.2 Memory Size

Table IT shows the number of unique pages (minimum number of page faults) of

each process for five different page sizes.

TABLE II. MINIMUM NUMBER OF PAGE FAULTS FOR
DIFFERENT PAGE SIZES

Page Sizes
Process ill

512 1024 2048 4096 8192

1 163 98 62 38 25
2 297 162 88 50 27
3 221 137 82 50 33
4 121 74 47 32 19
5 432 228 124 71 39

However these numbers were not the "start points" of the frame numbers (i.e., the

number of allocated frames) to get the minimum number of page faults (see Subsection

3.3.3 for an explanation of the start point). The start point was considered for each

process as having an adequate memory size. The start points were different for different

algorithms and different methods. We can find a start point through graphs similar to

Figure 12. This graph shows the Dumber of page faults according to different memory

sizes for process 4 with 512 bytes as a page. The highest leaf method of the new

implementation algorithm was used to generate the graph. We can observe that the

number of page faults is stable at 121 after the number of frames allocated reaches 60.

This number became a start point and did not agree with the number of unique pages (i.e.,

121) for input trace or process 4.

30

Table III shows the start point of each process with 512 bytes as a page. Let us

consider process 4 in Table ID. The start point of the highest leaf and the LRU leaf

methods in the new implementation was 60, and the start points of the additional-

reference-bits algorithm for different inteIVals were 60 and 65. These working set sizes

correspond to about half the number of unique pages that process or trace 4 has. On the

other hand, the start points of the leftmost leaf and the rightmost leaf methods in new

implementation were 120 and 110, which were almost similar to the number of unique

pages in trace 4. This means that the start points over the sampled traces of each algorithm

is different for each page replacement algorithm.

TABLE ill. TIIE START POINTS OF MEMORY SIZES YIELDING MINIMUM
PAGE FAULT NUMBERS IN EACH ALGORITHM

Process ID New implementation
(# ofuniqut:

pages) Leftmost Rightmost Highest LRU leaf

1 (163) 160 163 160 140
2 (297) 297 297 290 280
3 (221) 220 220 220 210
4(121) 120 110 60 60
5 (432) 430 380 130 130

Process ID Clock interval Additional-refereoce-bits interval
(# ofuniqu...

pages) 16800 28000 39200 70000 140000 210000

1 (163) 150 135 135 155 155 155
2 (297) 290 290 290 290 290 290
3 (221) 220 220 220 210 190 200
4 (121) 110 110 110 60 60 65
5 (432) 120 120 125 150 150 150

31

The two memory sizes, which were calculated by the two methods described in

Subsection 3.3.3 over the start points often different methods in Table ill, were 417,280

bytes (i.e., 163 frames * 5 processes * 512 bytes for a page) from method 1 and 455,680

bytes (i. e., 178 * 5 * 512) from method 2. The page size for the simulation was fixed as

512 bytes. The three Tables below (i.e., IV, V, and VI) show the number of page faults

according to different memory sizes in the three algorithms. The tables for the other

methods of each algorithm appear in Appendix C.

TABLE IV. THE NUMBER OF PAGE FAULTS ACCORDING TO :MEMORY SIZE
(IN THE IDGHEST LEAF :METHOD IN THE NEW lJ\1PLE:MENTATION)

Process Number of frames allocated to each process

In I 40 50 60 120 130 150 160
I

I
267 174 170 165 1631 322 238

2 586 372 328 302 301 - -
3 1661 1347 1076 393 342 278 261
4 198 129 121 - - - -
5 578 539 499 433 432 - -

170 210 220 230 280 290 300

1 - - - - - - -
2 - - - - - 297 -
3 253 222 221 - - - -
4 - - - - - - -
5 - - - - - - - I

32

TABLE V. THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZE
(IN THE CLOCKALGORITIIM WITH INTERVAL 28,000)

Process Number of frames allocated to each process

ID 105 110 115 120 130 135 140
I

1 173 - 174 173 164 163 -
2 325 324 325 324 - - 323
3 386 327 338 327 317 303 313
4 122 121 - - - - -
5 434 - - 432 - - -

210 215 220 230 285 290 300

1 - - - - - - -
2 314 313 - 311 300 297 -

3 222 223 221 - - - -
4 - - - - - - -
5 - - - - - - -

TABLE VI. THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZE
(IN THE ADDITIONAL-REFERENCE-BITS ALGORITHM

WITH INTERVAL 140,000)

Process Number offrames allocated to each process

ill 55 60 130 135 140 145 150

1 289 281 178 - 169 164 -
384 318 317 318

I
2 388 - -
3 1295 1170 259 258 263 261 248
4 123 121 - - - - -
5 547 511 433 - - - 432

155 185 190 195 200 285 290

] 163 - - - - - -
2 316 313 - - 312 298 297
3 247 222 221 - - - -
4 - - - - - - -

I

5 - - - - - - -

33

4.1.3 Time interval

For the simulation of the clock and additional-reference-bits algorithms, the best

time interval range which produces the minimum page fault number was chosen by

running a number of experiments for each algorithm. The two memory sizes, which were

obtained from the two methods described in Subsection 3.3.3 over the start points of the

four different methods for the new implementation in Table ill, were used to decide the

best time interval ranges for two algorithms. These were 473,600 bytes (i.e., 185 frames *

5 processes * 512 bytes for a page) from method 1, and 504,320 bytes (i.e., 197 * 5 *

512) from method 2. The best range for the time interval for each algorithm was different

based on the memory allocated. However, only one best range per algorithm was selected

for the simulation because there was no big gap in the two resulting memory sizes. Two

distinct ranges per each algorithm according to two memory sizes did not produced.

In the following discussion, process 3 is considered when the best range of time

intervals in the two algorithms were fixed. The reason being that the two given frame

numbers (i.e., 185 and 197) allocated to each process, were too large to enable one to

observe the changing of the page fault numbers in the case of other processes. Figure J3

depicts the change of page fault numbers according to different time intervals using the

clock algorithm with 473,600 bytes as the memory size. Figure 14 i.s the enlarged graph of

Figure 13 showing the interval from 10 to 100,000 for finding the best range for the time

intervals. The number of page faults were worst at time intervals 10 and after 1,500,000

as sho'WD. in Figure 13. Through Figure 14, the range from 28,000 to 42,000 was roughly

found as the best interval range. Time interval 28,000 was taken as the best interval for the

clock algorithm in the simulation.

34

o

250

230

35

Figure 15 depicts the graph illusuating the change ofpage fault numbeIS according

to different time intervals using the additional-reference-bits algorithm with 473,600 bytes

as the memory size. Figure 16 is the enlarged graph of Figure 15 in the interval from 10 to

1,000,000 for finding the best range for the time intervals. The range from 60,000 to

140,000 was roughly found as the best inteIVal range. Time interval 140,000 was taken as

the best interval for the additional-reference-bits algorithm for the simulation.

We can see the points where there are abrupt fluctuations in these Figures (i.e., 13,

14, 15, and 16). These are caused by the behavior of the input trace. These aberrant

points were ignored when the best time interval was considered. Although the graphs are

drawn using straight lines connecting each point to the next point, we could surely observe

vibrations in a single straight line. The best interval point in the best range was decided

after the range was taken. After taking the interval of 28,000 clocks for the clock

algorithm and the interval of 140,000 clocks for the additional-reference-bits algorithm,

the other two intervals for the clock algorithm were taken from -40% (i.e.,]6,800) to

+40% (i.e., 39,200) of 28,000, and from -50% (i.e., 70,000) to +50% (i.e., 210,000) of

140,000 in the additional-reference-bits algorithm. The percentages have no empirical or

statistical basis, they can be considered arbitrary.

Appendix. C contains the experimental results showing the difference of page fault

numbers according to different intervals with the two given memory sizes in the clock and

additional-reference-bits algorithms. Figures 13 through 16 are based on Appendix C.

-
36

Figure 15. The number of page faults generated as affected by the change of
regular time intervals in the additional-reference-bits algorithm

Figure 16. Expansion ofFigure 15 from 10 to 1,000,000

-
37

4.1.3 Result of the Test

Two performance factors, the number ofpage faults and memory utilization, were

obtained to evaluate the performance of the algorithms using the simulation. Table va

contains the results of each algorithm wirth 417,280 bytes (163 frames per process) as the

memory size. Table VIII provides analogous results with 455,680 bytes (178 frames per

process). Each number appearing inside parentheses in each table denotes the degree of

memory occupancy as a percentage.

TABLE VII. THE NUMBER OF PAGE FAULTS AND MEMORY UTILIZATION
WHEN EACH PROCESS HAS 163 FRAMES (5 * 512 * 163 = 417,280 bytes)

Process ID New implementation
(# ofuniqut:

pages) Leftmost Rightmost Highest LRU leaf

, 1 (163) 163(3.5%) 163(28.4) 163(43.3) 163(43.4)
2 (297) 8760(98.6%) 402(49.8) 301(64.6) 314(66.2)
3 (221) 305(4.9%) 820(88.2) 258(54.2) 259(54.1)
4 (121) 121(1.8%) 121(14.5) 121(22.0) 121(21.9)
5 (432) 697(9.8%) 649(74.5) 432(84.9) 432(84.9)

Process ID Clock interval Additional-reference-bits interval
(# ofuniqu...

pages) 16,800 28,000 39,200 70,000 140,000 210,000

1 (163) 163(43.1) 163(43.3) 163(43.6) 163(43.2) 163(43.0) 163(43.3)
2 (297) 317(66.4) 317(66.8) 317(67.3) 315(66.4) 315(66.3) 315(66.5)
3 (221) 287(57.5) 251(52.9) 275(56.7) 237(50.8) 233(49.9) 246(52.6)
4(121) 121(21.8) 121(21.9) 121(22.1) 121(21.9) 121(21.8) 121(21.8)
5 (432) , 432(85.0) 432(84.9) 432(84.8) 432(84.9) 432(85.0) 433(84.9)

38

TABLE VITI. THE NUMBER OF PAGE FAULTS AND MEMORY UTll..IZATION
WHEN EACH PROCESS HAS 178 FRAMES (5 * 512 * 178 = 455,680 bytes)

I

Process ID New implementation
(# ofuniqut

pages) Leftmost Rightmost Highest LRU leaf

1 (163) 163(3.2) 163(3.4) 163(39.8) 163(39.7)
2 (297) 8738(98.4) 8262(98.3) 301(62.7) 309(63.0)
3 (221) 275(4.4) 587(8.4) 247(49.4) 244(48.6)
4 (121) 121(1.6) 121(1.7) i 121(20.1) 121(20.1)
5 (432) 682(9.5) 634(9.3)

I
432(82.9) 432(82.9)

Process ID i Clock interval Additiona1-reference-bits interval
(# ofuniqu I

pages) 16,800 28,000 39,200 70,000 140,000 210,000

1 (163) 163(39.6) 163(39.7) 163(39.5) 163(39.7) 163(39.6) 163(39.9)
2 (297) 316(64.2) 316(64.2) 316(64.3) 313(64.6) 313(63.8) 315(64.7)
3 (221) 239(48.0) 236(47.6) 234(47.4) 224(46.0) 228(46.6) 244(48.9)
4 (121) 121(20.0) 121(20.1) 121(20.0) 121(20.1) 121(20.0) 121(20.2)
5 (432) 432(83.0) 432(82.9) 432(83.0) 432(82.9) 432(83.0) 433(82.8)

4.2 Analysis

4.2.1 Graphs

The graphs were plotted using BLT which is an extension ofTk [Ousterbout 94].

There are two kinds of graphs. One is for depicting page fault numbers and the other is for

displaying memory utilization. The graphs showing the page fault numbers have page fault

numbers on the y_axis vs. process ill on the x_axis. On the other hand, the graphs

representing memory utilization take the percentage of memory occupancy on the y_axis

vs. process ill on the x_axis. Each graph consists offour different types ofplots according

to the subject of discussion. Firstly, the graph comparing each algorithm with the other

39

algorithms was represented (Figures 17 and 18). Secondly, the graph comparing one

implementation method with the other methods within the new implementation using splay

tree was given (Figures 19 and 20). Thirdly, the graph comparing the clock algorithm

with itself using different time intervals was obtained (Figures 21 and 22). Finally, the

graph comparing the additional-reference-bits algorithm with itself using other time

intervals was presented (Figures 23 and 24).

4.2.2 Observations

From the below graphs presented in this subsection, the page fault numbers and

memory utilization ofdifferent algorithms or, as the case might be, each method of a given

algorithm can be obtained. These graphs are based on a memory size of 417,280 bytes

calculated using method 1 as described in Subsection 3.3.3, a page size of 512 bytes, and

10,000 clocks as page fault handling time. The algorithm (or the m.ethod) that has a lower

page fault rate and a higher memory occupancy than the others, is favored and

recommended for improving system performance.

Figure 17 represents the page fault numbers of each process when using three

different page replacement algorithms. The highest leaf method in the new

implementation, interval 28,000 in the clock algorithm, and interval 140,000 in the

additional-reference-bits algorithm were considered for the graph. Figure] 8 gives the

memory utilization of each process when using the same methods and algorithms which

were used for Figure 17.

In Figure 17, the number ofpage faults ofprocess 2 is 301 when using the highest

leaf method in the new implementation. This value is less than 317 and 315, which are

40

generated by the clock and additional-reference-bits algorithms. The number ofpage faults

for process 3 is 258 which is more than 251 and 233 as generated using the other two

algorithms. The other three processes had the same values for the number of page faults

generated when for all three algorithms. These were the result of the fact that the allocated

memory to each process was big enough to execute the program (see Table ill).

Figure 18 shows that the memory occupancy of each process is almost the same

regardless of the algorithm used. Process 4 had the lowest occupancy, one reason being

that the start point of memory after which process 4 has minimum page fault numbers is

less than the other processes.

Figure 17. Comparison ofpage fault numbers for three different algorithms
for a page size of 512 and memory allocation of417,280 bytes

Figure 18. Comparison of memory occupancy for three different algorithms
for a page size of 512 and memory allocation of417,280 bytes

41

'I

4

o
3
, ,

. '-:
2

0 I

'. ('.

1

8000

. '

fI)
=::
::J.e 6000
Q)
tn
eu
C-

'0 4000
:'> ...
'Q)
.a

; E
iJ"'::J 2000

Z

Figure 19. Comparison ofpage fault numbers in the four different methods used in the
new implementation for a page size of 512 and for memory allocation of
417,280 bytes

-
42

t ~)'

"Q
", '0

u

Figure 20. Comparison ofmemoJ)' occupancy in the four different methods used in the
new implementation for a page size of 512 and for memory allocation of
417,280 bytes

Figures 19 and 20 contain graphs that compare the different methods in the new

implementation. Figure)9 gives the number of page faults in each method, and Figure 20

depicts the memory utilization.

In Figure 19, the number of page faults for process 2 is 8,760 when using the

leftmost leaf method in the new implementation. This value is much more than the others

that are generated by the other methods. The number of page faults for process 2 is 402

when using the rightmost leaf method in the new implementation. This value is much less

than that of the leftmost leaf method, but not much higher than the other two methods. It

could be conjectured that the shapes of the splay trees which process 2 had generated

were mostly right heavy. 'Therefore, as expected the leftmost leaf method became not the

------~........

-
43

LRU approximation but the MRU approximation leaf The highest leaf method appears to

be slightly better than the LRU leafmethod.

Figure 20 shows that the memory utilization of process 2, when the leftmost leaf

method was used, is much better than the other three methods. This is caused by the fact

that the number of page faults of process 2 is much more than the others. Therefore,

process 2 certainly should have spent a lot of time handling page faults. Thus the other

processes terminated before process 2. That is the reason the other processes have less

percentages (at most 9.8% for process 5) of the memory utilization compared to

process 2.

Figures 21 and 22 depict the performance of the clock algorithm, and Figures 23

and 24 depict the performance of the additionaJ-reference-bits algorithm. There are three

regular time intervals (i.e., 16,800, 28,000, and 39,200) in the clock algorithm, and three

(i.e., 70,000, 140,000, and 210,000) in the additional-reference-bits algorithm. The best

time interval among these three can be taken for comparison against the new

implementation using splay tree.

There were no major differences in the page fault rate or the memory utilization

when each interval was used in either the clock or the additional-reference-bits algorithm.

This is caused by the fact that the two randomly selected intervals (i.e., +40%, ·40% of

the best interval for clock and +50%, -50% for additional-reference-bits) in each algorithm

roughly belonged to the best time interval range.

44

,r

_ i

I

't ...----.....;----------.....................-----~~~~I~~~~~~I

...

80

,

0
"

~

"'~

< "
,. .' f

~. .. : f'

Figure 21. Comparison ofpage fault numbers for three different intervals used in the clock
algorithm with a page size of 512 and memory allocation of 417,280 bytes

~ . .
t .
{'

~ .'

r

I,

Figure 22. Comparison ofmemory occupancy for three different intervals used in the
clock algorithm with a page size of 512 and memory allocation of
417,280 bytes

400
• '> \.4.' .en-. ,

:<-- :;', ,-;
'as· .);'

; -or, G) .

C) 300a. ;.
_ ! .1~t

0';...
f~
5 200""

Z
{ ·'L.

. ~ (

o

o

45

-,(

i~
(

c
00

;0
m 60
"~
"';;
:::J

~
0
E 0
(1) 40
:E

Figure 24. Comparison of memory occupancy for three different lntervals used in the
additional-reference-bits algorithm for a page size of 512 and memory
aUocation of 417,280 bytes

-

46

4.2.3 Time and Space Complexities

The time and space complexities of each algorithm were also considered as

performance factors. The worst case analysis was used to inspect the above complexities.

4.2.3.1 Space Complexity

Usually, the exact fields of a page table, tlleir arrangement, and the size of a PTE

(page table entry) are highly machine dependent [Tanenbaum 92]. For example, there is no

reference bit in the VAX machine [Hennessy and Patterson 90]. For the simulation in tbis

thesis, the page table was assumed to have the configuration depicted in Figure 25. This

figure gives a typical PTE. Each entry of a page table is basically an architecture-defined

field except for the page frame number [Hennessy and Patterson 90].

__-JEEB P D p_a_g_e_fr_a_rn_e_nu_m__b_er _

X : the reference bit
M : the modifY bit indicating whether or not the page is dirty
P : the protection bit(s) indicating what kinds ofaccess is permitted
V: the valid bit (or the present/absent bit) indicating whether or not

the PTE has a valid address

Figure 25. A typical page table entry

To implement the new algorithm that uses splay trees, three software-defined

pointer fields (i.e., right, left, and parent) were added as page table entries. The highest

leaf method had an extra field (i.e., height) to indicate tbe depth of each node in the tree.

Except the LRU leaf method, the other three methods did not require any extra software

table. To implement the LRU leaf method, one software table implemented as a linked list

".-..-

I

......
~3
t:a.
f

"'""
I~
~

~~
t. .

-

47

was used. This linked list contained the leaves in the tree. In the worst case, there are

1n/zl (n being the number of nodes in the tree) leaves in a binary tree [Weiss 9Z]. Each

node of the linked list had three fields (Figure 6). So the extra space complexity of the

LRU leafmethod is 0(31n/zl) which equals O(n).

To implement the clock algorithm, one extra pointer field, which indicates the next

entry, was used because a circular queue was implemented using a linked list. So the

space complexity of the clock algrithm is O(n).

An 8-bit shift register was added as an entry of the page table to implement the

additional-reference-bits algorithm for the simulation. The shift register is provided by the

hardware. This algorithm also used a linked list. Therefore an extra pointer field to

indicate next node was used. Table IX shows the space complexity of each algorithm.

TABLE IX. SPACE COMPLEXITY OF EACH ALGORITHM IN THE WORST CASE

Left(right)most leaf I Highest leaf LRU leaf Clock Additional-reference-bits
i

O(n) O(n) O(n) O(n) O(n)

(n: the number of frames allocated ~ the number of nodes in the tree)

There is no significant difference in the space comple,aty of the algorithms because

the space complexity of each method in the new implementation equals D(n) by the

property of the big-oh notation.

4.Z.3.Z Time Complexity

Time complexity is mainly considered when searching for a page, choose a victim

page, and rebuilding the page table for the simulation.

48

4.2.3.2.1 Searching

The page to be referenced must be searched for regardless of whether it is main

memory or not. In the case of the new implementation, the single search operation needs

O(n) time in the worst case. The reason being that the time complexity of the search

operation for the binary search tree is O(n) in the worst case. Although the O(log n)

bound on any single operation cannot be guaranteed in the splay tree, the operations of

splay tree have O(log n) amortized time. It is more reasonable that the amortized time be

considered when long sequences of operations are processed, as is the case in this trace-

driven simulation.

In the clock and additional-reference-bits algorithms, the search takes O(n) in the

worst case because these algorithms are implemented using linked lists.

4.2.3.2.2 Selecting a victim page

Tree traversal must be done to get the leaves in the tree and to get the height of

each leaf when selecting a victim page in the highest leaf and LRU leaf methods.

Therefore, it takes O(n) to selecting a victim page in the above two methods. In the case

of the LRU leaf method, the leaf queue must be checked to see whether each leafnode in

the current state was a leaf in the previous state during the traversal. The size of the leaf

queue is at most InJ2l (n being the number of nodes in the tree). Therefore O(nlnl2l)

equals 0(02
) taken as the complexity of the LRU leaf method. In the leftmost (rightmost)

leaf method, O(log n) must be taken because only finding the leftmost (rightmost) leaf is

needed.

.....

-

49

In the clock algorithm, O(n) is taken in the worst case because all nodes must be

traversed when the FIFO emulation occurs.

In the additional-reference-bits algorithm, aU nodes in the linked list must be

traversed to get the page which has the smallest value of shift register. So it also takes

O(n) time in the worst case.

4.2.3.2.3 Rebuilding

In the new implementation, whenever a page is referenced, the page table is rebuilt

using splaying. The time complexity of splaying is O(log n) in amortized bOWld [Sleator

and TaIjan 85]. In the clock algorithm, the reference bits are cleared after each regular

interval. When the time interval is 1 in the worst case, O(n) time is taken whenever a page

is referenced. In the additional-reference-bits algorithm, one bit is shifted right at each time

interval. When the time interval is 1 in the worst case, O(n) time is taken whenever a page

is referenced.

TABLE X. TIME COMPLEXITY OF EACH ALGORITHM

Left(right)most Highest LRU leaf Clock Add-ref-bits

Search O(log n) O(log 0) O(log n) O(n) O(n)

Choose O(log n) O(n) 0(n2
) O(n) O(n)

Restruct O(log n) O(log n) O(log n) O(n) O(n)

(0: the number of frames allocated ~ the number ofnodes in the tree)

(,

i~
(

50

Table X shows that the time complexity of the new implementation except the

LRU leaf method is better than the other two traditional algorithms when the amortized

bound was considered in the new implementation.

""...
~~
~
~).

ft
"'"",

t~
"'l

~i)
;. .

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

In Chapter I, the significance of memory management, virtual memory, splay tree,

trace-driven simulation, and the main objective of the thesis were stated. Chapter 11

contained a review of the virtual memory management schemes and splay tree operations.

The topics covered in this chapter were paging, page replacement algorithms, splay tree,

and penormance evaluation factors. Chapter ill presented the implementation platform

and environment, and discussed the input parameters, the fundamental data structures

used, and the implementation details to implement each algorithm. Chapter IV addressed

the test programs (i.e., the test traces) used as input and the graphs obtained. This chapter

also analyzed the results of the simulation using perfonnance graphs as well as time and

space complexities.

The main goal of the thesis was to develop a trace-dJiven simulation to apply a

splay tree to implement a page replacement algorithm. To drive the simulation, five traces

consisting ofvirtual addresses, obtained from New Mexico State University, were used as

input. The new implementation was compared to two traditional LRU approximations

(i.e., dock and additional-reference-bits). The evaluation factors for penormance (i.e.,

page faults rate and memory utilization), were analyzed using graphs obtained from the

51

52

results of the simulation. The time and space complexities of the algorithms were also

compared. Four methods were used to select a victim page in the new implementation: the

leftmost leaf, the rightmost leaf, the highest leaf, and the LRU leaf methods. The highest

leaf method, which does not need any hardware support, had the most reasonable result

over the performance factors considered. Therefore, the highest leaf method could be

recommended as a page replacement algorithm.

5.2 Future Work

The simulation (implemented as part of this thesis) handles the case where th.e

memory is equally divided among processes. Equal allocation would not be an applicable

approach when processes need to allocate memory according to their dynamic behaviors.

If the memory is divided among processes according to the estimated memory amount

which each program needs, higher memory utilization and more tolerable page fau]t rate

would be expected.

Parallel processes were not used in this simulation. Using two parallel processes

for the new implementation (i.e., one for searching and the other for splaying) would be all

attractive approach to decrease the execution time.

~
~ "",

-

REFERENCES

[Aho et al. 74] A. V. Aho, 1. E. Hopcroft, and 1. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley Publishing Company, Reading, MA, 1974.

[Aho et a1. 87] A. V. Aho, 1. E. Hopcroft, and 1. D. Ullman, Data Structures and
Algorithms, Addison-Wesley Publishing Company, Reading, MA, 1987.

[Belady 66] L. A. Belady, "A Study of Replacement Algorithms for a Virtu.al Storage
Computer", IBM Systems Journal, Vol. 5, No.2, pp. 78-101,1966.

[Beladyet al. 69] L. A. Belady, R A. Nelson, and G. S. Shedler, "An Anomaly in Space
Time Characteristics of Certain Programs Running in a Paging Machine",
Communications ofthe ACM, Vol. 12, No.6, pp. 349-353, June]969.

[Belady et al. 81] L. A. Belady, R. P. Pannlee, and C. A. Scalzi, ''The IBM History of
Memory Management Technology", IBM Journal of Research and Development,
Vol. 25, No.5, pp. 491-503, September 1981.

[Carr 84] R. W. Carr, Virtual Memory Management, UMl Research Press, Ann Arbor,
MI, 1984.

[Coffinan and Denning 73] E. G. Coffman, JT. and P. 1. Denning, Operating Systems
Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

[Deitel 90) H. M. Deitel, An Introduction to Operating Systems, Second Edition,
Addison-Wesley Publishing Company, Inc., Reading, MA, February 1990.

[Denning 70] P. 1. Denning, ''Virtual Memory", ACM Computing Surveys, VoL 2, No.3,
pp. 153-189, September 1970.

[Dijkstra 76] E. W. Dijstra, A Discipline ofProgramming, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1976.

[Hennessy and Patterson 90] 1. L. Hennessy and D. A. Patterson, Computer Architecture
A Quantitative Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1990.

[Lister and Eager 93] A. M. List.ser and R. D. Eager, Fundamentals of Operating
Systems, Fifth Edition, Springer-Verlag, Inc., London, UK, 1993.

53

54

[Nutt 92] G. 1. Nutt, Centralized and Distributed Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[Ousterhout 94] 1. K. Ousterhout, Tel and the Tk Too/kit, Addison-Welsey Publishing
Company, Reading, MA, 1994.

[poursepanj 94] Ali Poursepanj, ''The PowerPC Performance Modeling Methodology",
Communications of the ACM, Vol 37, No.6, pp. 47-55, June 1994.

[Sequent 90] Symmetry Multiprocessor Architecture Overview, Sequent Computer
Systems, Inc., 1990.

[Silberschatz and Galvin 94] A. Silberschatz and P. B. Galvin, Operating System
Concepts, Fourth Edition, Addison-Welsey Publishing Company, Reading, MA,
1994.

[Sleator and TaIjan 85] D. D. Sleator and R.E. TaIjan, "Self-Adjusting Binary Search
Tree", Journal o/the ACM; Vol. 32, No.3, pp. 652-686, July 1985.

[Spice 94] An International Trace Archive, NMSU Tracebase, New Mexico State
University, Las Cruces, NM, 1994.

[Tanenbaum 92] A. S. Tanenbaum, Modem Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[TaIjan 83] R. E. TaIjan, Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1983.

[Udi 89] M. Udi, Introduction to Algorithms: A Creative Approach, Addison-Wesley
Publishing Company, Reading, MA, 1989.

[Weiss 92] M. A. Weiss, Data Structures and Algorithm Analysis, The
BenjaminJCumrnings Publishing Company, Inc., Redwood City, CA, 1992.

APPENDICES

55

-

APPENDIX A:

GLOSSARY

Belady's Anomaly: The phenomenon that more page faults occur when the number of
frames allocated to a process is increased.

Amortized Time:

ANSI:

Demand Paging:

Dinero+:

The average time of an operation over a worst-case sequence of
operations.

American National Standards Institute.

A simple technique that transports only the pages that are referenced
from secondary memory to main memory.

A common format used for capturing and representing traces defined
at /pub/tracebase4/r3000/README of the ftp site
tracebase@n.msu.edu as follows: ''in addition to the usual type and
address fields, a third field is present that lists the instmctioll word
for instruction fetches".

Dirty: When the information of a page in the memory differs from that on
the disk, the page is called dirty.

FIFO: First In FiTst Out.

Hit Time: The time to access the upper level of the memory hierarchy.

LRU: Least Recently Used.

Miss Rate: The fraction of memory accesses not found in the memory. This is
sometimes represented as a percentage.

MMU: Memory Management Unit.

Multiprogramming: The existen.ce of several programs on the same mach.ine at the same
time. Several programs are held simultaneously in memory. While a
program is waiting for I/O, another program can use the CPU.

56

-

Preorder tree
traversal:

Process:

Reference Bit:

57

One of the tree traversal strategies. It processes the current node first
and then the left subtree followed by the right subtree sequentially.

A program in execution. A sequence of actions performed by a
program.

A reference bit is associated with each entry in a page table. It is set
by hardware whenever a page is referenced, either for reading or for
writing. Its value is used in several page replacement algorithms.
Referred to sometimes as the X bit.

Reference String: A sequence of pages which are referenced by a program. It presents
a program's dynamic behavior. If A = { x I x is a page number of a
given program}, then s = Xl X2. . . Xn, where Xi E A,] $ i $ n., is a
reference string.

Space Complexity: The space needed by an algorithm expressed as a function of the
size of a problem Often it expresses the limiting or asymptotic
behavior of an algorithm.

Time Complexity: The time needed by an algorithm expressed as a function of the size
of a problem. Often it expresses the limiting or asymptotic behavior
of an algorithm

Time Sharing: A variant of multiprogramming which implies support for multiple
on-line terminals, one for each active user of the system.

X Bit: Reference bit (see above).

\............

APPENDIXB:

TRADEMARK INFORMATION

--

DYNIX, DYNIX/ptx: Registered trademarks of the Sequent Computer Systems, Inc.

Sequent, Symmetry: Registered trademarks ofthe Sequent Computer Systems, Inc.

UNIX: A registered trademark ofAT&T.

58

.. .~

'f';)...

-

APPENDIXC:

EXPERIMENTAL RESULTS
"

C-l The tables for representing the change of page fault numbers according to different
memory sizes in the new implementation (leftmost leaf, rightmost leaf: and LRU leaf
methods), clock algorithm (intervals 16,800 and 39,200), and additional-reference
bits algorithm (intervals 70,000 and 210,000).

C-2 The tables for representing the change of page fault numbers according to different
intetvals in the clock and additional-reference-bits algorithms. Two memory sizes
(i.e., 473,600 and 504,320) were used to find the best range ofintetvals.

59

C-I-l THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES
(LEFlMOST LEAF METHOD IN NEW IMPLEMENTATION)

60

--

I

Process Number offrames allocated to each process

ID 110 120 130 150 160 170 210
I

1 312 248 189 168 163 - -
2 8839 8824 8809 8779 8766 8749 8377
3 2461 1785 1145 634 352 282 240
4 123 121 - - - - -
5 738 729 728 710 700 690 650

220 240 290 300 310 420 430

1 - - - - - - -
2 7320 4513 379 297 - - -
3 221 - - - - - -
4 - - - - - - -
5 620 - 570 560 550 440 432

C-I-2 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES
(RIGHTMOST LEAF METHOD IN NEW IMLEMENTATION)

I

Process Number of frames allocated to each process

ill 100 110 120 160 170 210 220

1 225 192 185 164 163 - -
2]1886 9337 6789 12853 10302 349]941
3 7971 6742 4033 1048 674 236 221
4 128 121 - - - - -
5 726 716 701 652 642 602 592

230 290 300 320 370 380 400

1 - - - - - - -
2 330 299 297 - - - -
3 - - - - - - -
4 - - - - - - -
5 582 522 5] 2 492 442 432 -

...
:

-

C-1-3 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES
(LRU LEAF METIIOD IN NEW IMPLEMENTATION)

61

--

Process Number of frames allocated to each process

ID 50 60 100 110 120 130 140

1 265 233 178 175 170 168 163
2 496 474 434 395 361 338 325
3 1424 1114 389 338 318 291 274
4 124 121 - - - - -
5 528 485 434 433 - 432 -

150 200 210 250 270 280 290

1 - - - - - - -
2 320 303 - 300 - 297 -
3 266 223 221 - - - -
4 - - - - - - -
5 - - - - - - -

'''''c.........
:~
: "
>.'-.~
.~

.c:;
-"'"
'~......
t)

.~,
• I

...J

C-I-4 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES
(CLOCK ALGORITHM WIlli INTERVALS 16,800 AND 39,200)

62

-

Process Number offrames allocated to each process (with 16,800)

ill 105 110 115 120 135 140 145

1 175 177 175 176 173 \65 164
2 324 324 - - - 323 324
3 365 340 343 329 320 317 287
4 122 121 - - - - -
5 434 - - 432 - - -

150 185 205 210 220 285 290

1 163 - - - - - -
2 - 316 314 - 313 298 297
3 275 235 225 - 221 - -
4 - - - - - - -
5 - - - - - - -

Process Number of frames allocated to each process (with 39,200)

ID lOS 110 120 125 130 135 140

i 1 174 173]66 164 163- -
2 32\ 324 - - - - 323
3 379 351 327 318 310 272 299
4 122 121 - - - - -
5 435 436 434 432 - - -

!

185 \97 210 215 220 285 290

1 - - - - - - -
2 316 - 314 313 - 298 297
3 234 229 225 226 221 - -
4 - - - - - - -
5 - - - - - - -

....
'''1

C-I-5 TIlE NUMBER OF PAGE FAULTS ACCORDING TO :MEMORY SIZES
(ADDITION~REFERENCE-BITS ALGORITHM WITH

INTERVALS 70,000 AND 210,000)

63

-

Process Number offrames allocated to each process (with 70,000)

ill 55 60 130 135 140 145 150

1 289 281 178 - 169 164 -
2 369 349 315 - - - -
3 1402 1171 262 272 250 249 252
4 122 121 - - - - -
5 547 499 433 - - - 432

155 160 185 205 210 285 290

1 163 - - - - - -
2 315 - 313 312 - 298 297
3 255 240 222 - 221 - -
4 - - - - - - -
5 - - - - - - -

Process Number of frames allocated to each process (with 210,000)

ill 60 65 140 145 150 155 160

1 281 263 169 165 164 163 -
2 369 358 315 - - - -
3 1120 1248 249 247 - 254 247
4 122 121 - - - - -
5 509 489 437 433 432 - -

185 195 200 205 285 290 300

1 - - - - - - -
2 - 309 307 - 298 297 -
3 233 225 221 - - - -
4 - - - - - - -
5 - - - - - - -

....

64

C-2-l-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(ADDITIONAL-REFERENCE-BITS ALGORITIIM WITH

MEMORY ALLOCATION 473,600 Bytes)

Process Intervals

ID 10 100 500 1000 5000 8000 10000

1 163 - - - - - -
2 319 - 318 316 - - -
3 252 249 - 236 232 230 226
4 121 - - - - - -
5 432 - - - - - -

11000 13000 15000 20000 30000 50000 60000

1 - - - - - - -
2 - - - - 313 - 314
3 227 230 229 - - 227 222
4 - - - - - - -
5 - - - - - - -

66000 70000 84000 90000 100000 110000 130000

1 - - - - - - -
2 315 313 315 - 313 3J5 313
3 227 222 225 223 224 222 223
4 - - - - - - -
5 - - - - - 432 433

140000 150000 154000 160000 170000 180000 190000

1 - - - - - - -
2 - - - - - - -
3 222 233 225 223 235 233 239

4 - - - - - - -
5 432 - - - - - -

65

C-2-1-2 TIlE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(ADDITIONAL-REFERENCB-BITS ALGORITHM WITH

MEMORY ALLOCATION 473,600 Bytes)

Process IntelVals

ID 195000 200000 210000 250000 270000 300000 340000

1 163 - - - - - -
2 313 - 315 319 313 317 -
3 222 224 233 - - 229 235
4 121 - - . - - -
5 433 432 433 435 432 - -

350000 360000 400000 500000 1000000

1 - - - - -
2 - 313 - 319 317
3 252 229 237 236 234
4 - - - - -
5 - - - 433 436

2000000 3000000 4000000 10000000 80000000

1 - - - . -
2 319 - - - -
3 - 252 - . -

! 4 - - - - -
5 437 - - - -

....
;».:...,

66

C-2-2-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCKALGORITIIM WITH MEMORY ALLOCATION 473,600 Bytes)

Process InteIVals

II) 10 100 1000 5000 10000 14000 15000

1 163 - - - - - -
2 319 318 317 316 - - -
3 251 250 247 236 - 232 -
4 121 - - - - - -
5 435 433 432 - - - -

16800 19600 20000 25000 27000 28000 29000

1 - - - - - - -
2 - - - - - - -
3 235 - 236 235 233 231 243
4 - - - - - - -
5 - - - - - - -

30000 31000 32000 33000 34000 35000 36000

I - - - - - - -
2 315 316 - - - - -
3 232 234 235 233 246 232 233
4 - - - - - - -
5 - - - - - - -

37000 38000 39000 39200 40000 42000 50000

1 - - - - - - -
2 - - - - - - -
3 232 - 231 234 236 23] 235
4 - - - - - - -
5 - - - - - - -

....
'"

67

C-2-2-2 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITHM WITH MEMORY ALLOCATION 473,600 Bytes)

Process Intervals

i
II) 60000 70000 80000 100000 500000 600000 700000

1 163 - - - - - -
2 315 316 - - - - -
3 231 230 235 - - 250 251
4 121 - - - - - -
5 432 - - - - - -

800000 1000000 1500000 2000000 3000000 80000000

1 - - - - - -
2 - - - - - -
3 - 235 251 - - -
4 - - - - - -
5 - - - - - -

--

-..

68

C-2-3-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(ADDITIONAL-REFERENCE-BITS ALGORITIIM WITH

MEMORY ALLOCATION 504,320 Bytes)

Process lntelVals

In 10 100 500 1000 8000 10000 11000

1 163 - - - - - -
2 319 - 318 316 - - -
3 246 247 246 236 230 226 225
4 121 - - - - - -
5 432 - - - - - -

15000 20000 30000 50000 60000 66000 70000

1 - - - - - - -
2 - - 313 - - 314 313
3 - - - 223 222 223 222
4 - - - - - - -
5 - - - - - - -

84000 90000 100000 110000 130000 140000 150000

1 - - - - - - -
2 - 310 313 314 313 313 -
3 - 221 222 221 221 - 225
4 - - - - - - -
5 - - - - - - -

154000 160000 170000 190000 196000 200000 210000

1 - - - - - - -
2 - - - - - - 307
3 222 221 - - - 222 225
4 - - - - - - -
5 - - - - 433 432 433

...

-.,.,.-.,.....;

69

C-2-3-2 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(ADDITIONAL-REFERENCE-BITS ALGORITHM WIlli

MEMORY ALLOCATION 504,320 Bytes)

Process Intervals

ill 250000 300000 400000 500000 1000000

1 163 - - - -
2 319 317 313 317 319
3 225 - 227 226 229
4 121 - - - -
5 432 - - 436 437

2000000 3000000 5000000]0000000 80000000

1 - - - - -
2 - - - - -
3 - 247 - - -
4 - - - - -
5 - - - - -

...

.~

..-

-
70

C-2-4-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITIIM WITH MEMORY ALLOCAnON 504,320 Bytes)

Process Intervals

ID 10 100 1000 5000 10000 14000 16800

1 163 - - - - - -
2 319 318 317 - - 316 -
3 247 246 243 233 - 228 233
4 121 - - - - - -
5 435 433 432 - - - -

19600 20000 25000 27000 28000 29000 30000

1 - - - - - - -
2 - 317 - 316 - - -
3 - - 231 229 227 237 228
4 - - - - - - -
5 - - - - - - -

31000 32000 33000 34000 35000 36000 36400

1 - - - - - - -
2 - - - - - - -
3 231 - 229 241 228 233 227 I

4 - - - - - - -
5 - - - - - - -

37000 38000 39000 39200 40000 42000 60000

1 - - - - - - -
2 - - - - 317 316 -
3 - 228 227 229 233 228 227
4 - - - - - - -
5 - - - - - - -

..
'1

"
;"..
'.,......
•.1

71

C-2-4-2 TIIE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITIIM WITH MEMORY ALLOCATION 504,320 Bytes)

Process Intervals

ill 70000 80000 100000 500000 550000 600000 700000

1 163 - - - - - -
2 316 - - - - - -
3 226 231 231 - 241 243 -
4 121 - - - - - -
5 432 - - - - - -

1000000 1500000 5000000 7000000 10000000 80000000

1 - - - - - -
2 - - - - - -
3 231 243 - - - -
4 - - - - - -
5 - - - - - -

"

"'.
J
.....,
..I

"'..,

II

:V
JI
":'1
t'

~... ~

APPENDIXD:

PROGRAM LISTING

/-//
//
// LRU page replacement algorithm: A new approximation implementation.
//
// This program implements a simulation containing a new approach that applies splay tree
// as a data structure to implement the LRU page replacement algorithm. To evaluate the
// performance of the splay tree LRU replacement algorithm, two popular LRU approximation
// algorithms (i.e., clock algorithm and additional-reference-bits algorithm) are also
// implemented. The performance factors are the number of page faults and memory
// utilization. This simulation is implemented as a trace-driven model. The sampled traces
// developed at "Parallel Architecture Research Laboratory" of New Mexico State University
// are used as inputs to this simulation.

//
//-/

/-//
//
// Myhead.h
//
// This is the header file to implement the simulation.
//-/

~include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/times.h>

..

..(

.~

#define
#define
#define
~define

#define

YES 1

NO 0

ON 1

OFF 0

MAX_PROCESS 10 /* maximum degree of multiprogramming ~/

/- Structure that represents a node of a splay tree.
- parent pointer is needed to do a bottom-up pass over an access path when splaying.
- height field is needed to compute the height of each leaf. It is only used to

implement the method that replace a highest leaf node. -/

wright;
-left;
*parent;

struct stree
int
int
struct
struct
struct

page_num;
height;
stree
stree
stree

/* a page is in the main memory -/
/* height of the node -/
/* indicates right child node */
/* indicates left child node */
/. indicates parent. node ,. /

);
typedef struct stree PAGE_TABLEl;

PAGE_TABLE1 /* indicates each root of splay
tree for each process */

72

1* indicates each highest leaf node
of splay tree for each process *1

/* Structure used to link all leaves in a tree. This link is used to find the least
recently used node among the leaves. To do this, it should be a queue. *1

struct leaf_list
struct stree *leaf;
int e_flag;

/* leaf node *1
/* to know whether or not the leaf node

existed in the previous tree *1
·next ~.

};
typedef struct leaf_list LEAF_L;

LEAF_L *lqhead(MAX_PROCESS) ;
LEAF_L *lqtail[MAX_PROCESsl;

1* indicates head of leaf queue *1
1* indicates tail of leaf queue *1

1* Structure that represents an entry for the circular queue. Circular queue is used to
implement clock algorithm. *1

struct circular_que {
int rbit;
int page_num;
struct circular_que *nexti

/* reference bit */
/* a page is in the main memory *1

};
typedef struct circular_que PAGE_TABLE2;

1* Structure that represents the a-bit shift
of references for each page. Bit field is
bit. *1

PAGE TABLE2
PAGE TABLE2

*cqhead[MAX_PROCESS);
*Hand[MAX_PROCESS];

*before [MAX_PROCESS] ;

1* head of circular queue *1
1* indicates the entry that has

the oldest page *1
1* indicates the just previous entry of the

entry indicated by Hand pointer *1

register. This contains ordering information
needed to shift 1 bit and to change leftmost

."
i1
'I

:~

unsigned int unused:?;
unsigned int first:l;

} ;

typedef struct s_reg SHIFT_REGISTER;

/* leftmost bit *1

1* Structure that represents an entry page table to implement additional-reference bits
algorithm. It has an B-bit shift register. The union is used to know the value of shift
register. */

1* B-bit shift register *1

value:B;
reg;

struct add_ref {
int page_num;
union shift (

unsigned int
SHIFT_REGISTER
) shift_reg;

struct add_ref *next;
} ;

typedef struct add_ref PAGE_TABLE3;

1* indicates tail of page table *1

1* Structure that represents a header of page table *1

struct add_table {
int num;
struct add_ref *next;

I- number of pages in main memory *1

74

} ;

typedef struct add_table HEAD_PTB3;

HEAD_PTB3 *Add table [MAX_PROCESS] ; 1* each he·ad of page table for each
process *1

1* Structure that is used to implement the blocked queue *1

struct blocked_que {
int process id;
int enter_time;
struct blocked_que *next;
} ;

typedef struct blocked_que BLOCK_Q;

BLOCK_Q *head;
BLOCK_Q *tail;

1* Global Varables *1
int CLOCK;
int No-process;

int Strategy;
int New_method;

int interval;

int Frame [MAX_PROCESS] ;
int No_in_tree[MAX_PROCESS];
int No_in_cq[MAX_PROCESS] ;

1* process that got blocked *1
1* time when process enter blocked queue *1
1* point next blocked process *1

1* head of blocked queue *1
1* tail of blocked queue *1

1* virtual clock of system *1
1* number of processes which execute at the

same time *1
1* indicates algorithm to perform *1
1* four different methods of the new

implementation *1
1* time interval for the clock and additional

-reference-bits algorithms *1
1* number of frames prOVided to a process *1
1* number of pages in splay tree *1
1* number of pages in circular queue *1

1..
.i

..
J

1*11I1111II11111I11111111I1111II11111111
II
II Perform.c
II
II This is the main file of the simulation. Input traces are available at the
II tracebase~nmsu.edu using anonymous ftp. These traces are in dinero+ format. These raw
II trace files were converted to pages. The files containing pages were used as input. The
II file names and the lengths of reference strings are stored in file "traces.dat".
I1I1111111111I11I1I1111I111111111I1111I111111I1I11I1111111111111111111111111111111111111*1

#include "myhead.h"

<
)

1* variable.s used in this file *1
int
int
int
int
int
int
int
int
int

FILE

int

int

int
int

int

T_frame;
Mem_size;
M mem_allo;
page_size;
Pfh_time;
finish;
No_blockedQ;
Idle_time;
len_utili

F finish [MAX_PROCESS] ;

cur-pos[MAX_PROCESS] ;
how_much [MAX_PROCESS] ;

1* total number of frames of main memory *1
1* size of main memory (byte) *1
1* method of memory allocation *1
1* size of page (byte) *1
1* page fault handling time *1
1* to indicate how many jobs are finished *1
1* number of processes in blocked queue *1
1* CPU idle time *1
1* index of array to store memory utilization

at each virtual time interval *1
1* file descriptor to indicate each input

trace file; one process executes one file

*1
1* flag to indicate whether or not each

process gets blocked *1
1* flag to indicate whether each process was

finished *1
1* current position of file pointer *1
/* length of reference strings that should be

processed ·1
I· amount of reference strings performed

within one headway in reference strings

int
char
int

int
float

Noyagefault[MAX_PROCESS] ;
trace_name [MAX_PROCESS] [80];
len_refstr[MAX_PROCESS] ;

amtyerformed[MAX_PROCESS] ;
M_util[MAX_PROCESS] ;

75

(how_much) */
/* number of page faults for each process */
/* name of input trace file 0/
/* length of reference strings for each

process */
/* total amount performed in each process 0/
/* memory utilization at each time interval
*/

/* functions used in this file 0/
void GetPage (void) ;
void Perform (void) ;
void PrintMemutil (void) ;
void ChooseMethod(void) ;
void ChooseInterval(void);
void Initialize(void) ;
void CalMemutil (void) ;
void GoToBlockedQ(int runyrocess,int amount);
int ProcessHandling(int runy,int howmuch);
BLOCK_Q *CheckBlockedQ(void);
void ClearMem(int runyl;

/*//
// Function: mainl)
// Purpose: This is the main function of this program. It shows the main memu and
// gets the selection from user. Upon a selection, it calls appropriate
/ functions.
//"/

void main(void)

"
J

,

I
'10...

system("tput clear");
printf(A\t ~.=••=~.~~••a~•••• 2._~~••• aa •••••••••••••••••••• _ •• \n");

printf("\t = -\n");
printf("\t a LRU PAGE REPLACEMENT ALGORITHM: -\n"l;
printf{"\t - A NEW APPROXIMATION IMPLEMENTATION -\n");
printf("\t - -\n"l;
printf("\t a _\nn);
printf(·'\t -\n");
printfl"\t ~ -\n");
printf("\t -\n"l;
printf("\t ~ By: -\n");
printf("\t ~ Jung, Eunjae -\n");
printf("\t -\n");
printf(U\t = -\n");
printf(U\t -\n");
printf("\t ~ -\n");
printf (U\t Advisor: -\n") ;
printf("\t Dr. M. H. Samadzadeh -\n");
printf(u\t ~ _\n U);
printf("\t = =\n");
printf("\t -\n"l;
printf("\t = _\n U);
printf(R\t _\n U);
printf(tl\t ==;====~••C===2=.=====~._=D=a.a==2.~=.=~=••••D=.=a=\n"};
printf (" Enter the any key to continue: U) ;
scanf ("%c" I &c) i

int
char
char

num;
cnuml81J;
c;

"...
~ I

,
-,

/" main memu for the simulation */
for(;;)
{

printf{U\t (Note: The simulation takes 1 to 2 hours.)\n");
printf(u\t --\nU);

76

printf("\t - MENU \n");
printf("\t \n");
printf("\t - 1. Convert virtual addresses to virtual pages. \n");
printf("\t - 2. Perform the simulation. \n");
printf ("\t - 3. Generate graph for page faults. \n") ;
printf("\t - 4. Generate graph for memory utilization. \n");
printf("\t - 5. Exit the simulation. - \n");

printf("\t -- \n");
printf(" Select a number: ");
scanf ("%d", &num) ;
switch(num)
(

case 1: GetPage () ;

break;

case 2: Perform();

break;

case 3: PageFaultGraph();

break;

case 4: MemUtilGraph();

/* convert virtual addresses to virtual pages

*/

/* perform the simulation using three
different algorithms */

/* generate the performance graph for page
faults */

/* generate the performance graph for memory
utilization */

case 5: exit(O);
default: printf("\n

gets (cnum) ;
num=O;
break;

/* exit the simulation */
Invalid input, Try again. \n");

.,
-,
'...,

/*///////////////////1//11/1///1/1111/////1/111/1/////11//11////11/11/11/1//11////11111/11
// Function GetPage()
/1 Purpose This function is used to convert virtual addresses to pages. It takes
// dinero+ format file as input and writes pages to output file. This
// output file is used as input to drive the simulation.
/11///1/1///1/1/1111/11/1//////////11///11/1/1//1//////1//1//1/1/111/////1///111///////1*1

void GetPage(void)

FILE *fp1; /* for input file *1
FILE *fp2; /* for output file */
int i, j, line;
char buf[200};
char inputfile [80l; 1* name of inpu.t file */
char outfile[80} ; /* name of output file */
unsigned long virtual; /* virtual address *1
unsigned long page; 1* virtual pages *1

printf("\n\t ==~=== Convert virtual addresses to pages ~=••• ");
printf("\n\t Print the filename which has virtual addresses: "J;
scanf("%s",inputfile); /* get name of input file */
printf("\n\t Print the filename to keep the converted pages: ");
scanf("%s",outfile); /* get name of output file */
printf("\n\t Select the page size (512, 1024, 2048, 4096 or 8192): ");
scanf("%d", &page_size); /* get page size *1

fp1=fopen(inputfile, "r") ;
fp2-fopen(outfile, "w");

77

line=O;

while(!feof(fpl))
(

/* to check the length of the reference
string */

fgets(buf,200,fpl) ;
sscanf(buf,"~d~x\x",&i,&virtual,&jJ ;
page=virtual/page size; /* get the page from virtual address */
fprintf(fp2, "\d\n-;;",page);
line++; /* compute the length of reference string */

memset(buf,80, '\0');
}
printf (" Length of Reference Strings: \d\n", line) ;
fclose (fpl) ;
fclose(fp2);
free (input file) ;
free (outfilel ;
free (buf) ;

/*//
/ / Function Perform ()
/ / Purpose This function is used to perform the simulation.
// 1. Get the input parameter from standard input (keyboard) , and get the
// file names and the lengths of reference strings of input traces from
/ / file "traces .dat'·.
// 2. CPU scheduling - to get a process to be executed, first check if
// there is a process that finished its I/O in blocked queue. If none
// exists, using random number generator, a process and the length of
// reference strings to be processed are selected. This is repeated
/ / unti,l all processes finish.
// 3. Print the performance parameters, number of page faults and memory
// utilization, for each process.
//*/

"I
\

....
"...
.'

I..'
void Perform (voidl

int
FILE
char
int
BLOCK_Q
int
int
int
int

i, j;

*fp;
buf_str[100] ;
No_ready;
*p;
runJ>;
startJ>os;
nextlen;
block;

/* get input parameters */
printf("\t ------------------ Put the Input -------------------- \n");

valid=O;
while(valid != 1)

/* get number of processes */

(between 1 to 10): ");

)

/* # of processes larger than 10 lmaximum
degree of multiprogramming */

Maximum # of processes is 10, try again. \n");printfl"\n\tError:
gets(buf_str);
valid=O;

printf("\t * Number of processes
scanf ("~d",&NoJ>rocess);
if (NOJ>rocess > ~~_PROCESS

{

else if(NOJ>rocess 2= 0)
/* input is invalid */

printf("\n\tError: Invalid input, try again. \n u);

gets(buf_str);
valid2 0;

-

78

else
valid=l;

if valid aa 1

1* get the file names and the lengths of
input traces "I

fp=fopen ("traces .dat ll , UrI!) ;

j=O;
memset(buf_str,80, '\0');
while (!feof (fp))
(

fgets(buf_str,80,fp);
memeet(trace_name[j],80, '\0');
escanf(buf_str,"~s~d",trace_name[j],&len_refstr(j]);
j++; I" compute number of input traces *1
memset(buf_etr, 80, '\0');

}
fcloee (fp) ;
if ((j-1) < No-procese)

1* number of processes more than number of
input traces "I

printf("\n\tError: # of processes is more than # of
traces (5). \n") ;

gets (buf_strl ;
valid-O; .

I,
•

if (valid =_ 0)
No-process=O; 1* initialize number of processes *1 1

",

printf("\t * Memory Size (minimum size is 512 " # of processes)
scanf("%d",&Mem_size) ;
if (Mem_size < (S12*No-process))

valid = 0;
while(valid J= 1)
(

1* get the memory size *1

II) ;

.'-,
~

.~

(

)

if (Mem size •• 0) 1* input is invalid *1
printf("\n\tError: Invalid input, try again.\n"l;

else I*memory size is smaller than minimum size *1
printf("\n\tError: Memory Bize is too small, try ilgain.\n");

valid=O;
gete(buf_str);
Mem_size=O; 1* initialize variable for memory size *1

else
valid =1;

valid=O;
while(valid != 1)
(

1* get the method of memory allocation *1

printf("\t * Method of memory allocation.\n");
printf (,,\t - 1. Propotional \n") ;
printf("\t - 2. Eqaul \n");
printf ("\t - 3. Exit (return to menu) \n");
printf ("\t * Select a method: ,,);
scanf ("\d", &M_mem_allo) ;
if (M_mem_allo 1) I I (M_mem 30110 == 2) I I

(M_mem_allo == 3))

valid=l;
if (M_IDem_allo == 3)

79

return;
else

/* invalid input */
printf ("\n\tError: Invalid input, try ..gain. \n") ;
valid=o;
gets (buf_str) ;
M_mem_allo=O; /* initialize variable */

)
if M_mem allo == 1)

printf("\n\t Future work! Memory will be allocated equally here.\n");

valid =0;
whilelvalid != 1)
(

/* get page fault handling time */

printfl"\t * Page fault handling time (between 10000 and 600000) :");
scanf("%d".&Pfh_time);
if I (Pfh_time < 10000) II pfh time> 600000))
(

if (pfh_time == 0) /* input is invalid */
printf("\n\tError: Invalid input, tryagain.\n");

else /* page fault handlig time is not the trivial
range */

printf("\n\tError: Too small or too large, tryagain.\n");
valid=O;
gets (buf_strl ;
Pfh_time=O; /* initialize the variable */

else
valid=l;

valid=O;
while(valid != 1)
(

/* get the page size */

I
1,

printf("\t Select the page size (512, 1024, 2046, 4096, or 8192): ,,);
scanf("%d", &page size);
if((page_size -512) II (page_size _. 1024) II

(page_size •• 2048) II (page_size •• 4096) II
(page_size •• 8192 l)

valid -1;
else

if(page size •• 0) /* input is invalid */
printf I "\n\tError: Invalid input, try again. \n") ;

else
printfl"\n\t Error: choose one among 5 page sizes, try

again. \n");
valid = 0;
gets (buf str);
page_size=O;

(

,)

valid =0;
whilelvalid != 1)
{

/* get the algorithm to perform */

printf("\t * Page replacement algorithms");
printf (" \n\t - 1. New implementation ");
printf("\n\t - 2. Clock algorithm "l;
printf("\n\t - 3. Additional-reference-bits algorithm");
printf("\n\t - 4. Exit (return to menu)");
printf ("\t Select a algorithm: ");
scanf("%d",&Strategy) ;
switch (Strategy)
(

case 1: ChooseMethod(); /* in the new implementation */

.........

80

valid=l;
break;

case 2: ChooseInterval(); /* in the clock algorithm */
valid=l;
break;

case 3: Chooselnterval(); /* in the add-ref-bits algorithm */
valid:l;
break;

case 4: return;
default: printf{"\n\t Invalid input, try again. \n");

gets(buf_str);
valid=O;

/* total frames needed */

if ((M_mem_allo == 1) II (M_mem_allo == 2))

/* local allocation: memory is equally
partitioned to each process 0/

for(i=O;i<No-process;i++)
Frame [il=T_frame/No-process;

Initiali ze () ;

finish=O;

while(finish < No-process)
{

p=CheckBlockedQ(};
if (p == NULL)

/* initialize the global variables */
/* number of processes finished */

/* check blocked queue */

/* two cases: 1. No process in bloc.ked queue.
2. No process which has done

I/O completely. */

No_readyaNo-process-No_blockedQ;
if (No-process •• (finish+No_blockedQ»)

block=YES;
else

block=NO;

<
)

if ((No_ready == 0) II
(

block •• YES))

/* all processes were in the blocked queue or
finished */

Idle_time ++; /* no process is running */
CLOCK++;
if(CLOCK%500 ==0)

CalMemutil () ;

else

run-p=O;

/* get the process to be executed randomly */
run-p=rand()%No-process;
if ((F_blockQ[run-p) != ON) && (F_finish[run-pl != ON})
{

/* get the length of headway in reference
string randomly */

how_much(run-p)=rand()%len_refstr[run-pl;
amt_done[run-p] =0;
nextlen=amt-performed[run-pl+how_much[run-pl;
if (nextlen ~ len_refstr[run-p]l
{

81

amt-performed[run-p] ;
if [how_much[run-pl-EO)
{

F_finish[run-p]=ON;
/* compute the number of processes

completed */
finish++;
/* release the memory used the process

completed */
ClearMem(run-pl;

else

else /* run a process */
ProcessHandling(run-p,how_much[run-p));

/* there was a process that finished its I/O
in the blocked queue */

run-p=p->process_id;
ProcessHandling(run-p,how_much[run-p]);

switch(strategy)
{

/* write information about input */

case 1: printf("\n\t Algorithm: New Implementation "l;
print.f (n Met.hod: \d\n", New_method) ;
Bwitch(New_met.hod)
{

case 1 printf (" Met.hod: leftmost leaf\n") ;
break;

case 2 printf (n Method: rightnlost leaf\n") ;
break;

case 3 printf (" Method: highest leaf\nn);
break;

ca,se 4 print! l" Method: LRU leaf\n") ;
break;

}
break;

case 2 : printf("\n\t Algorithm: Clock algorithm ,,);
printf (" Interval -> \d\n", interval);
break;

case 3 printf[n\n\t Algorithm: Additional-reference-bits "l;
printf (" Int,erval -> \d\nn, interval);
break;

}
printf ("\n\t Memory size: \d n,Mem_sizel ;
printfl"\n\t Page size: \d",page_sizeJ;
printf("\n\t Page fault handling time: \d\n",pfh_time);

/* print the number of page faults for each
process */

printf("\n\t ---------------- Page Fault Numbers -----------------\n n);
for(i=O;i<No-process;i++)

printf(u\t Process \d -> \d\n",i,No-pagefault[i);
printf("\t --\n ");
printf (U\t CLOCK is \d", CLOCK);
printf (n\t IDLE TIME is \d", Idle_time);

/* print the memory ut.ilization *j
PrintMemut.il();
printf("\t --\n n);

<
)

82

1*11
I I Function : PrintMemutil ()
I I Purpose: This function is used to print average memory utili zation for each
II process.

11*/

void PrintMemutil(void)

int i,j;
float A_mutil[MAX PROCESS);

printf("\n\t ------ Average Memory Utilization -------- "I;
for(i=O;i<No-process;i++)
(

1* compute average memory utilization *1
A_mutil[i]=M_util[il/(floatllen_util;

1* print the average memory utilization */
printf("\n\t Process \d => \f",i,A_mutil[i));

}
printf ("\n") ;

1*11111111/1/1111111/111111111/1111111111/1111/111///1111111/111111/11/11/11/11/1//////111
/ / Funct.ion : ChooseMet.hod()
/1 Purpose: This funct.ion is used t.o choose the method which selects a victim page
/1 in the new implementation.
1/11///1//1///1/////////////11///1/////////1///11/1//1///////1/////////1/1/1//1////1/111*/

void ChooaeMethod(voidl

int valid;
char but [81] ;

valid=o;
while(valid !c 1)
(

printf("\n\t -------------- New Implementation ----------------");
printf("\n\t Select the method");
printf("\n\t 1. Replace the leftmost leaf");
printf("\n\t 2. Replace the rightmost leaf");
print£("\n\t 3. Replace the highest leaf "I;
printf ("\n\t - 4. Replace the LRU leaf: ");
scanf ("\-d", &New_method) ;
if ((New_method <1) I I (New method > 4))
(

gets(buf) ;
print£("\n\tError: Invalid input, tryagain.\n");
valid=O;

else
valid=l;

1* 1/1/1///1/11/11/1/11111/////1//11//1111/111/1////////////11111111111///1///11/1//11//11
// Function Choose Interval (I
1/ Purpose This function is used to get the time interval. The time intervals are
// used in the clock algorithm and the additional-reference-bits
// algorithm.
1111/1/1/11//////111////111///11/1/1/1//////////1111111/1//111111///11111/11111/1/1////1*1

void Chooselnterval(void)

int valid;
char but (81] ;

83

valid=O;
while(valid != l}
{

printf("\n\t * Put the interval (between 1 and 100000000):");

scanf ("\d", &interval);
if (interval == 0)

printf("\n\tError:Invalid input, try again.");
gets (buf) ;
valid=O;

else
valid=l;

/*//
// Function: Initialize()
// Purpose: This function is used to initialize the variables.
//*/

void Initialize(void)

int i;

CLOCK=O;
len_util=O;

Idle_time=O;
No_blockedQ=O;
head=tail=NULL;

for(i=O;i<No-process;i++)
(

amt-performed[iJ=O;

root[iJ~NULL;

Iqhead[iJ-NULL;
lqtail [i1 =NULL;
cqhead[il=NULL;
Hand[i1~NULL;

before [i)=NULL;

Add_table[iJ=(PAGE_TABLE3
Add_table[il->next=NULL;
Add_table[il->num=O;
F_blockQ[il=OFF;
F_finish[i1=OFF;
No_in_cq[i1 =0;

No-pagefault[iJ=O;

/* set virtual clock to 0 */
/* initialize variable for memory utilization

*/
/* initialize cpu idle time */
/* initialize number of processes blocked */
/* initialize header and tail of blocked

queue */

/* initialize the amount of referenoe otring
to be processed */

/* initialize root of splay tree, page table
for new implementation */

/* initialize pointer indicates the highest
leaf */

/* initialize header of leaf queue */
/* initialize tail of leaf queue */
/* initialize header of oircular queue */
/* initialize hand pointer */

/* initialize the header of linked list for
additional-reference-bits algorithm */

*}malloc(sizeof(PAGE_TABLE3);

/* clear flag for process blocked */
/* clear flag for process completed */
/* initialize number of pages in circular

queue */
/* initialize number of pages in splay tree

*/
/* initialize number of page faults */

/"//
// Function: ProcessHandling(}
// Purpose: This is used to manage the running process. When the process executes a
// page, first check whether or not this page is in memory. If the page
/1 does not exist, the runnig process goes to the blocked queue. Else, the

84

// running process continues to execute until it finishes the amount of
/ / reference strings which the. process should progress.
//*/

void ProcessHandling{int run-p,int howmuch)

int
char
int
int

len[MAX_PROCESS];
buf[lOO] ;
page;
page_fault;

free_frame;
*tmp;

/* referenced page */
/* indicates whether or not a page fault

occurs */
/* number of frames available */

fptr [run-pl ;fopen (trace_name [run-pl ,Ur U) ;
fseek (fptr [run-pl ,cur-pos(run-pl ,0); /* go to the current position of file */
while ((!feof(fptr[run-pl) && (amt_done{run-p) < howmuch»
{

fgets(buf,lOO,fptr(run-pl);
sscanf(buf, U\dU,&page);
amt_done [run-p] ++;
amt-performed{run-pl++;
len(run-pl++;

CLOCK++ ;

if ((CLOCK '\ SaO) ;; a)

CalMemutil() ;

/* gets a page to be executed */

/* one clock cycle is used to access the
memory */

/* calculates memory utilization at every sao
clocks */

/* checks if page is in main memory */
page_fault-CheckPageTable(page,run-p);
if (page_fault -= YES)
(

No-pagefault[run-pl++;/* increases the number of page faults */

/* running process will be blocked */
No_blockedQ++;
F_blockQ[run-pl=ON;
GoToBlockedQ(run-p);
cur-pos[run-p}=ftell(fptr[run-p]);
fclose (fptr [run-pl) ;
return;

}
if (feof(fptr[run-p)))

finish++;

else

/* one process is completed */
/* increase the number of processes completed

*/

/* get the current position from the beginning
of the file * /

cur-pos[run-p);ftell{fptr[run-p]);
fclose(fptr[run-pl) ;

/*//
// Function; CalMemutil()
/ / Purpose: This function is used to calculate the memory utilization at every 500
// clocks.
//*/

void CalMemutil{void)

85

int i;
float mul;

for(i~O;i<No-process;i++)

(
sWitch(Strategy)
{

case

case

case

/* calculate memory utilization as the
algorithm*1

1* new implementation *1
1: mul=(float)No_in_tree[iJ/(float)Frame[il;

1* add memory utilization calculated to
compute average value *1

M_util[i}=mul+M_util[i};
break.;

1* clock algoritm *1
2: mul= (float) No_in_cq (ill (float l Frame (il ;

M_util IiI =mul+M_util [iJ ;
break;

1* additional-reference-bits algorithm *1
3: mul=(float)Add_table[i]->num/(floatlFrame[i];

M_util[il=mul+M_util[il;
break.;

1* increase the number of memory utilizations
computed *1

1*11//1111///1/1/111/111/11111111/1/1/////////1/11/11/11111//1//11/1///1111111/1//////1111
1/ Function CheckBlockedQ()
// Purpose This function is used to check the blocked queue whether or not a
1/ blocked process which has been finished its 110 exists. If the process
/1 exists, the process is removed from the blocked queue.
1/1//1111111111111111111//1//111/11/1/1/1/1/111/1111/11/11///11/1111//11111/111/1//11111*1

BLOCK_Q *CheckBlockedQ(void)
(

if (head == NULL)
return (NULL) ;

else

1* no process in the blocked queue *1

1* a blocked process which has been finished
its 110 exists *1

if ((CLOCK - head->enter_time) >= pfh_time)
(

1* removes the process from the blocked queue

*1
tmp=head;
head=head->next;
No_blockedQ--;
F_blockQ[tmp->process_idl-OFF;
return(tmp) ;

else 1* no process which has been finished *1
return (NULL) ;

1*/111/111/11111/1////111/11/11111111/11111111111111111//111/1/1//1//11111/11//11111111111
// Function: GoToBlockedQ
/1 Purpose This function is used to send the process that has the page fault
1/ occurred to the blocked queue.

86

//*/

void GoToBlockedQ(int run-process)

/* creates a new entry "/
new=(BLOCK_Q *)malloc(sizeof(BLOCK_Q);
new->process_id=run-process;
new->enter_time=CLOCK-1;
new->next=NULL;

if
(

else

head == NULL

head=new;
tail=head;

tail->next=new;
tail=tail->next;

/* blocked queue is empty */

/* add new entry to the tail of queue */

/*//
/// Function CheckPageTable()
// Purpose; This function is used to check page table whether or not the page is in
// main memory. If a page fault occurs, return YES. Else, return NO.
//"/

int CheckPageTable (int pag'e, int run-p)

int re;

switch(Strategy)
(

case 1; re a NewApproach (page, runy) ;
break;

case 2 ; re - ClockAlg(page,runy);
break;

case) ; re = AdditionalRefAlg(page,runy);
break;

}
if (re == YES)

return(YES) ;
else

return(NO) ;

/* a page fault occurs */

/* no page fault occurs */

/*//
// Function ClearMem()
// Purpose: This function is used to clear the memory which has been used by a
// process when the process finishes its execution.
//*/

void ClearMem(int runy)

switch (Strategy)
(

case 1; No_in_tree [run-p) =0; /* release the memory used*/
break;

case 2: No_in_cqlrun-pJ=o; /* release the memory used */
break;

case); Add_tablelrunyl->num=O;
break;

87

/*//
//
// Newapp.c
//
// Thia file is to implement new implementation of LRU using aplay tree as page table.
// Thia algorit.hm has 4 different methoda t.o find the victim page which should be
// replaced.
// 1. Leftmoat leaf: Select the leftmoat leaf aa a victim page.
/ / 2. Rightmoat leaf: Select the rightmost leaf as a victim page.
// 3. Highest leaf: Select the leaf which has the highest height. It means the leaf
// is the farthest node from the root.
// 4. LRU leaf: Select the leaf which is LRU among the leaves.
// Not.e : The height of root is o. Each proceas has its own page table. Making the page
// table, checking t.he page fault and replacing a victim page when a page fault occurs are
// included in this file.
//*/

#include "myhead.h"

int

int

/* a flag to indicate whether or not page is
in the tree */

/* the number of leaves in the tree */

/* Functions used in this file */
PAGE_TABLE1 *Search{int page, PAGE_TABLEl *rt, int run-p);
PAGE_TABLEl *Splaying(PAGE_TABLEl *cur,int run-p);
PAGE_TABLE1 *gp(PAGE_TABLEl Ox);
PAGE TABLEl *FindOldPage(PAGE_TABLEl *top,int run-p);
void Insert(PAGE_TABLEl *fa,int page,int run-p);
void RotateLeft(PAGE_TABLE1 *y,int runy);
void RotateRight(PAGE_TABLE1 *y,int runy);
void GetHeight(PAGE_TABLE1 *node,int runy);
void RemovePage(int runy);
void GetLeafQue(int run-p);

/*//
/ / Funct. ion NewApproach ()
/ / Purpose This is main funct.ion of Newapp.c file. Check whether or not the page
// needed immediat.ely is in main memory. If t.he page is not in the tree,
// insert the page into t.he tree. When memory is full, remove t.he victim
// page from the tree. If a page fault is occurred, return YES, else,
// return NO.
//*/

int NewApproach(int page,int. run-p)

PAGE_TABLE1 *newnode;
PAGE TABLEl *top;
PAGE TABLEl *father_node;

int free frame;

/* indicates the parent node of a node
which will be inserted */

/* the number of free frames */

top=root [run-pJ ;
if (top == NULL)
{

/* no page is in main memory */

/* make t.he root. */
newnode=(PAGE_TABLE1 *)malloc(sizeof(PAGE_TABLE1));
newnode->page_num=page;
newnode->right = NULL;
newnode->left = NULL;
newnode->parent NULL;
newnode->height = 0;
top=newnode;
No_in_tree[runy]=l;
root [run-p)=top;

if
(

New_method == 4) /* LRU leaf method */

88

lqhead[run-p]=(LEAF_L *)malloc(sizeof(LEAF L)};
lqhead[run-p]->leaf=newnode;
lqhead[run-p]->next-NULL;
lqtail [run-p] =lqhead(run-pl ;

else

}
return (YES) ; /* a page fault occurs */

s_exist=NO;
father_node=Search(page,top,run-p);
if (father_node == NULL) /* the node exists in memory */

return(NO); /* no page fault occurs */
else

Insert(father_node,page,run-p);
free_frame=Frame[run-p] - No_in_treelrun-pJ;
if (free_frame < 0) /* memory is full */

/* remove the victim page */
Remove Page (run-p) ;

return(YES); /* page fault occurs */

/*////////////1////////1//1///////////
// Function Search ()
// Purpose This function is used to search the node containing the page will be
// executed immediately. If the node is in the tree, splay at the node,
// and NULL is returned. Else, the parent node of the node will contain
// the page is returned.
//1/////////////////1////////////1//////*/

PAGE_TABLEl *Search(int page, PAGE_TABLEl *rt, int run-p}
{

PAGE_TABLEl *top;
PAGE_TABLEl *ret_val;

if (rt •• NULL)
return (NULL) ;

else

if (rt->page_num .- page)

/* the node containing the immediately needed
page is in tree */

/* splay at the node */
top=Splaying(rt,run-p) ;
if (root[run-pl != top)

/* root is changed */

root [run-pl =top;
/* after slpaying, the height of each node

and the leaf queue are changed */
if (New_method == 3) I I (New_method •• 4))
(

top- >height=O;
High_leaf [run-p] =NULL;
GetHeight(top,run-p);

}
if (New_method == 4)

GetLeafQue(run-p) ;

s_exist=YES;
return (NULL) ;

89

else if lrt->page_num < page

1* search right subtree *1
ret_val~Search(page,rt->right,run-p);

if (s_exist s= NO)

if(rt->right==NULL)
return(rt) ;

else
returnlret_vall;

else
return(NULL);

else if (rt->page_num > page

1* search left subtree *1
ret_val=Search(page,rt->left,run-p);
if (s_exist == NO)

if(rt->left == NULL)
return (rt) ;

else
return(ret_val);

}
else

return (NULL) ;

1*1111111111111111//1111111/11/111111////111111//1/1/11//111//1111/111111/1/1//1/1////1///
/1 Function: Insert()
// Purpose: This function is used to insert the node into the tree. Parent node was
JJ already taken during the search operation. So it just links the node to
// the parent and then splay at the inserted node. Because tree is changed
1/ after splaying, the height and the leaf queue are reproduced.
111//11111111/1111////11///11//1111/11///11/11////1/1///1/11//111/11/1/1111/////1///////*/

void Insert(PAGE_TABLEl *fa,int page,int run-l,l

PAGE TABLEl *newnode;
int i;

1* creates a new node *1
newnode=(PAGE_TABLEl *)malloc(sizeof(PAGE_TABLEl);
newnode->page_num = page;
newnode->left=NULL;
newnode->right=NULL;
newnode->parent=fa;
newnode->height=(fa->height)+l;
No_in_tree[run-pl++;

1* links to the parent *1
if (page > fa->page_num)

fa->right=newnode;
else if (page < fa->page_num)

fa->left=newnode;

1* splay the tree at the inserted node *1
root[run-p)=Splaying(newnode,run-p);

if

1* after slpaying, the height of each node
and leaf queue are changed *1

3) II I New method ==4) l

........

90

root[run-pl->height=O;
High_leaf [run-pl=NULL; /* highest leaf is changed */
GetHeight(root[run-pl,run-p);

)
if (New_method ==4)

GetLeafQue(run-p);

/*//
// Function: Splaying()
// Purpose, This function is used to implement splaying. It rebuilds the tree after
// each access that moves the accessed item to the root. To do this,
// zig, zig-zag, zig-zig steps are repeated bottom-up along the access path
// until the accessed item becomes the root of the tree.
//*/

PAGE TABLEl *Splaying(PAGE TABLEl *cur,int run-p)
(- -

PAGE_TABLEl *grandfa;

3

while(cur->parent 1= NULL
(

/* until cur becomes the root */

grandfa=gp (curl ;
if (cur==(cur->parent)->left)
(

if (grandfa == NULL)
/* zig -> rotate the edge joining cur and the

root */
RotateRight(cur->parent,run-p);

else if (cur->parent == grandfa->left)

/* zig-zig -> rotate the edge joining parent
and grand parent and then rotate edge
joining cur and parent */

RotateRight(grandfa,run-p);
RotateRight(cur->parent.run-p) ;

else if (cur->parent _. grandfa->right)

/* zig-zag ->rotate the edge joining cur and
parent and then rotate edge joining cur
and grandparent */

RotateRight(cur->parent.run-p);
RotateLeft(cur->parent.run-p);

else if (cur==(cur->parent)->right)

if (grandfa == NULL) /* zig */
RotateLeft (cur- >parent. run-p) ;

else if (cur->parent == grandfa->right)
/* zig-zig */

RotateLeft(grandfa.run-p);
RotateLeft(cur->parent.run-p);

else if (cur->parent == grandfa->left)
/* zig-zag */

RotateLeft (cur- >parent, run-p) ;
RotateRight(cur->parent,run-p) ;

}
return (cur) ;

91

/*//
// Function: gp()
// Purpose: This function is used to get the address of grandparent node.
////////////////1///1///*/

PAGE TABLEl *gp(PAGE TABLEl ox)
(- -

return(x->parent)->parent); /* returns grandparents of x */

/*///1/////////////////////////////1//
// Function: RotateLeft()
// Purpose: This function is used to rotate the edge joining y and its
// right child.
//1///////////////////1/////1//////////////////1/////////////////////////////////1/////1*/

void RotateLeft(PAGE_TABLEl *y,int run-p)
(

PAGE TABLEl -x;
PAGE_TABLEl -z;

x=y->right;
z=y->parent;

if (z 1= NULL
{

if (z->left == y)
z->left = x

else if (z->right == y)
z->right = x;

}
y->right=x->left;

x->left=y;
x-:>parent ::r Zi

y->parent = x·

it (y->right)= NULL)
(y->right)->parent = y;

/- right child of y *1
/* parent of y */

/* x becomes left child of z */

/- x becomes right child of z */

/* left child of x becomes right child of y

*/
/* y becomes left child of x */
/* parent of x becomes z */
/* parent of y becomes x */

/* change the right of y to y */

1*/1/1//////////////////////1//////////////1//////1//////////////1/11/11////1//1//////////
III Function: RotateRight()
/ I Purpose: This function is used to rotate the edge joining y and its
// left child.
////1///////1//11/1//1/////1//1///////1///1//11////////////////////////////1///11/1/1/1/*/

void RotateRight(PAGE_TABLEl *y,int run-p)

PAGE_TABLEl ox;
PAGE TABLEl *z;

x=y->left;
z=y->parent;

if (z != NULL

if (z->left == y)
z->left = x

else if (z->right == y)
z->right = x;

I
y->left=x->right;
x->right=y;
x->parent = z;

/* left child of y *1
/* parent of y */

92

y- >parent = x;

if (y->left != NULL)
(y->left)->parent =y;

/*//
/ / Function : GetHeight ()
/ / Purpose This function is used to get the height of the each node and to get the
// list of all leaves in the tree. Prefix tree traversal is used because
// the height of the parent must be known to get the height of the node.
//./

void GetHeight(PAGE_TABLEl *node,int run-p)

LEAF_L *tmp,*prev,*newlq,*nleaf;
int exist;

if(node == NULL
return;

else

if (New_method == 3)

if (node == root [run-pl)
/* height of root is 0 */

node- >height=O;
else

/* height of parent must already computed */
node->height=(node->parent)->height+l;

}
if (node->right == NULL) && (node->left =- NULL »)

/* node is leaf */
if New_method == 3)

if (Hi.gh_leaf [runyl •• NULL
High_Ieaf[run-p)-node;

else

/* get the leaf which has the fartest
height */

if (High_leaf [run-p] ->height < node->height)
High_Ieaflrun-pl-node;

else if (New_method == 4)

/* check if the leaf was also a leaf
in the previous state */

tmp=lqhead[runyl;
exist=NO;
while(tmp != NULL)
{

if(node->page_num == (tmp->leaf)->page_num)
(

/* this leaf was also a leaf in previous
state */

exist=YES;
tmp->e_flag=ON;
break;

else
tmp=tmp- >next;

)
if(exist==NO)
{

/* this new leaf is linked to the tail

93

of the leaf queue *1
newlq=(LEAF_L ·)malloc(sizeof(LEAF_L));
newlq->leaf=node;
newlq->e_flag=ON;
newlq->next=NULL;
lqtail[run-pl->next=newlq;
lqtaillrun-pl=newlq;

}
GetHeight(node->left,run-p); /* recursive */
GetHeight(node->right,run-p);

/*/111//1/11/////////1/////11//1//11////1111111/11/11/111/1111111111111111//1/1//11111//11
II Function RemovePage()
II Purpose; This function is used to remove the victim page from the tree when
1/ memory is full and a page fault occurs.
1/111111/1111111/11111111111111111111/111/1/11/1111111111/11/1111111//1/111111111111111/·/

void RemovePage(int run-p)

PAGE TABLEl *top;
PAGE_TABLEl ·old;

top=root [runy] ;
old=FindOldPage(top,run-p);
if(old == (old->parent)->right)

(old->parent)->right=NULL;
else if(old == (old->parent)->left)

(old->parent)->left=NULL;
No_in_treelrunyl--;
free(old);

1* find the victim page *1
1* remove the victim page *1

1*1/1111111/1//1//11/1/11//1111111111111111111111/111/111//111/1111/11111//111/11///111111
/1 Function: FindOldPage(}
/ / Purpose: This function is used to find the victim page.
///11///1///1111/1111/111111/11//111/11/11111111111////1//11111111111111///11//11/11111/·1

PAGE_TABLEl ·FindOldPage(PAGE_TABLEl ·top,int runy)
{

PAGE_TABLEl *node;
int i,max_height;

node=top;
if (New_method == 1) 1* leftmost leaf method *1

while ((node->left != NULL) II (node->right I- NULL))
(1* find the leftmost leaf in the tree *1

iff node->left == NULL)
1* go to right subtree *1

node=node->right;
else

1* go to left subtree */
node=node->left;

)
return(node};

else if (New_method ==2 I*rightmost leaf method *1

while ((node->left != NULL) II (node->right 1= NULL) }
(

I· find the rightmost leaf *1
iff node->right == NULL)

1* go to the left subtree *1

94

node=node->left;
else /* go to the right subtree */

node=node->right:

return (node) ;

else if (New_method == 3)
return(High_leaf(run-p]):

else if (New_method == 4)

/* highest leaf method */

/* LRU leaf method */

/* the head of the queue is a victim page */
node=lqhead(run-pJ->leaf;
lqhead[run-p]=lqhead[run-p)->next;
return (node) ;

/*//
// Function GetLeafQue()
// Purpose This function is used to get the current leaves. Among those
// previous leaves, the leaves which are not the current leaves
// are removed from the leaf queue.
//*/

void GetLeafQue(int run-p)
(

LEAF_L *tmp,*lqtmp,*prev;
int exist;

lqtmp=lqhead(run-p l ;
while(lqtmp != NULL)
{

if (lqtmp->e_flag == OFF)
(

/* entry is not a leaf */

if(lqtmp == lqhead[run_~J)

(/* entry is the head of the queue */
tmp=lqhead[run-pl;
lqhead[run-p)=lqhead[run-pl->next;
lqtmp=lqtmp->next;
free(tmpl;

else

prev->next=lqtmp->next;
tmp=lqtmp;
lqtmp=lqtmp->next:

/* entry is the tail of the queue */
if(tmp == lqtail[run-p])

lqtail [run-p) =prev;
free (tmp) ;

else

lqtmp->e_flag=OFF;
prev=lqtmp;
lqtmp=lqtmp->next;

/*//
//
// Ckago.c

//
// This file is to simulate a clock algorithm. A circular queue was used to contain the

95

II pages in main memory. Hand pointer indicates the oldest page which was referenced. The
II reference bit of each page is cleaned after a certain time interval. User can select
II the time interval.

1111111111//1111/11111111111111111111111111/1111111/1111111111//11111111111111//1///////*/

#include "myhead.h"

void AddNewPageCl(int page,int runy);
void ReplacePageCl(int page,int runy);
void SetRefBit(int runy);
int ClockAlg(int page,iot runy);
int SearchCircularQ(int page,int runy);

/*/////1/1/111111/1///1//111//1/1/1111/111//1//11///1111/1///11////11//1////////1111/1////
// Function ClockAlg()
/1 Purpose This is main function of Ckago.c file. It checks if the page needed
/1 immediately is in main memory with searching the circular queue. If the
II page is not in main memory, and main memory is not full, then insert
1/ the page in the queue. If the main memory is full, replace the victim
1/ page with the page needed soon. If a page fault is occurred, return
1/ YES, else return NO.
1/111////111111/11111111/11/11////1/1//11111/11//111/11/111111//1111//1/11/1///1/111//11*1

int ClockAlg(int page,int runy)

int exist;

if (cqhead[runyl I; NULL)
SetRefBit(runy) ;

exist;SearchCircularQ(page,runy);
if(exist ;; YES)

return (NO) ;
else

/* no page_fault occurs */

if (Frame [runyl No_in_cq[runyl)
/* when n\emory is full, a victim p ge must

replaced *1
ReplacePageCl(page,runyl;

else 1* add the new page to page table */
AddNewPageCl(page,runy);

return(YES); /* page fault occurred */

/*/1/111//////11//1//1/1/11//////1/11//11111//1/1/111/1//1111111/111/////1///1//1/1//11//1
II Function ReplacePageCl()
II Purpose This is used to replace a victim page with the page needed immediately.
II When a victim page is chosen, if the reference bit of the page which
II Hand pointer indicates is OFF, the page is victim page. Else, Hand
II pointer advances until a reference bit of a pa.ge is OFF. The page is
/1 replaced with the new page.
/////11////11111111111/1/1//////111/1111/11//1/1/11//11////11/1////11/11/1//1/1//////1/1*/

void ReplacePageCl(int page,int runy)

PAGE_TABLE2 *new,*tmp;

1* search the victim page *1
while(Hand[runy]-~rbit != OFF
{

Hand[runy]-~rbit;OFF;

before(runy]=Hand[runy];
Hand(runyl;Hand[runyJ-~next;

/* create an entry for a new page */
new=(PAGE_TABLE2 *)malloc(sizeof(PAGE_TABLE2»;

96

new->rbit=ON;
new->page_num=page;

1* replace the victim page with a new page *1
new->next:Hand[run-p]->next;
tmp:Hand [run-pl ;
before[run-p]->next=new;
if (Hand [run-pl := cqhead[run-pJ

cqhead[run-pl=new;
Hand[run-p)=new->next;
before [run-p) =new;
free (tmp) ;

1*11
II Function SearchCircularQ()
II Purpose This is used to check if the page to be referenced is in the circular
II queue or not. If the page is in there, the reference bit of this page
II is set, and return YES. If not,return NO.
1111111111/////1/11/11//1/11/11///11111111//1//11111//1////1/11/1111111/11111/11/1111111*1

int SearchCircularQ(int page,int run-p)

PAGE_TABLE2 *tmp;
int exist;

exist:NO;
tmp=cqhead[run-pl;
if (tmp == NULL)

return (NO) ;
else

if(tmp->page_num == page
(

tmp->rbit=ON;
exist:YES;
return(YES) ;

tmp=tmp->next;
while(tmp != cqhead[run-pJ
{

1* no page exist in main memory *1

1* check header of circular queue *1

1* set the reference bit *1

if(tmp->page_num •• page
(1* referenced page is in the main memory *1

tmp->rhit=ON; 1* set the reference bit *1
exist:YES;
return(YES) ;

}
else

tmp=tmp->next; 1* search the next entry *1

)
return (NO) ; 1* page is not in curcular queue *1

1*1111111111111111111111111111111/111/111/1111/11//11/1/1/1111/11/1//11/1111///11///////1/
II Function SetRefBit()
II Purpose: This is used to clear the reference bit of each page after a certain
/1 time interval.
1/11111111/11/11//1/11/11/1//11/11/1/1111/111/1/111///1/11111/11////111/1//11/1//1///1/1*/

void SetRefBit(int run-p)

·temp;

temp=cqhead[run-p) ;
if (interval == 1)

97

temp->rbit:OFF;
tempmtemp->next;
while(temp !3 cqhead[run-pl
(

)
else

temp->rbit=OFF;
temp-temp->next;

/* clear reference bit */

/* circular queue is empty */

if((CLOCK\interval) •• 1)

(/* clear the reference bit after a certain
time interval */

temp->rbit=OFF;
temp=temp->next;
while(temp != cqhead[run-pJ
(

temp->rbit=OFF;
temp=temp->next;

/*//
// Function AddNewPageCI()
// Purpose: This is used to add the new entry containing the immediately needed
// page to the circular queue.
//*/

void AddNewPageCl(int page,int run-p)
(

PAGE TABLE2 *H,*new;

/* create a new entry */
new=(PAGE_TABLE2 *)malloc(sizeof(PAGE_TABLE2));
new->page_num-page;
new->rbit-ON;
H3 c qheadlrunyJ;
if (H == NULL)
(

cqheadlruny)=new;
cqhead(runy)->next=cqhead[runyl;
Hand[run-p]mcqhead[runy] ;
before [runy] =Hand[run-pl ;
No_in_cq[runyl=l;

else

/* insert to the tail of circular queue */
while(H->next 1= cqhead[runyl)

H=H->next;
new->next=H->next;
H-:>next.::new;
No_in_cq[runy] = No_in_cq[runy] +1;
if (new->next == Hand[runy])

before [runy]=new;
}
H=cqhead[runy) ;

/*//1//1/////////////1//////////////////
//
// Addref.c

//
//
// This file is to implement additional-reference-bits algorithm. It can get the ordering

98

// of page references by keeping a 8-bit shift register in each entry of p~ge table. The
// shift register records the reference bit for each page ~t each time interval. At each
// clock interrupt, the shift register is shifted right 1 bit and the current reference
/ / bits are inserte.d as the leftmost bit. The pageith the lo....est value in the shift
// register is least recently used page. When memory is full and a page f~ult i8 occurs,
// the page is replaced. If a number of pages have the same lowest value, this program
/ / chooses the page which is a front ier in the page ta.ble.
//"/

jjinclude "myhead.h"

/* functions used in this file */
int AdditionalRefAlg (int page, int runy);

void AddNewPageAdd (int page, int runy);
PAGE_TABLEJ *GetSmallValue(int runyl;
void RemovePageAdd(struct add_ref *remove,int runy);

/*//
// Function AdditionalRefAlg(}
// Purpose This function is main function of Addref.c file. First, it checks if
// the page which to be referenced is in main memory or not. If the page
// doesn't exist, add to the page table. When memory is full, a LRU page
// which has a lowest value is replaced with a new page. If a page fault
// is occured, return YES, else return NO.
//*/

int AdditionalRefAlg(int page,int runy)

PAGE_TABLEJ *tmp,*remove;
int f_exist;

tmp=Add_table[runyl->next;
f_exist=NO;
if (tmp == NULL) /" no page is in memory */

tmp=(struct add_ref ')malloc(sizeof(struct ~dd_ref»;

tmp->page_num-page;
tmp->shift_reg.value=O;
tmp->shift_reg.reg.first-ON;
tmp->next~NULL;

Add_table[runyJ->next~tmp;

add_taillrunyl2 tmp;
Add_table[runy]->num-l;
return(YES); /* page fault occurs */

)
else

while (tmp! =NULL)
{

/* clear reference bit after the time
interval */

if (interval == 1)
/* time interval is 1 */

tmp->shift_reg.value=tmp->shift_reg.value»l;
trnp->shift_reg.reg.first-OFF;

else

if I (CLOCK\interval)-=l)
{

trnp->shift_reg.value=tmp->shift_reg.value»l;
tmp->shift_reg.reg.first=OFF;

tmp=tmp->next;
}
tmp-Add_table[runyl->next;

99

while (tmp ! ;,NULL)
{

if (tmp->page_num pagel
1* page is in memory *1
1* set the leftmost bit of shift register *1

tmp->shift_reg.reg.firstcON;
f_exist=YES;
return (NO) ;

tmp=tmp->next;
}
if (f_exist != YES)
(

1* page fault occurs "I
if (Add_table [run-pI->num==Frame[run-p)
{

1* Memory is full *1
remove=GetSmallValue(run-p);
RemovePageAdd(remove,run-p l ;
AddNewPageAdd(page,run-p);
return (YES) ;

else

AddNewPageAdd(page,run-p);
return (YES) ;

1*11
I I Function AddNewPageAdd()
II Purpose: This function is used to insert a new page to the page table. A
I I reference bi t is inserted into the leftmost 'bit of shift register,
11/11/11//1/"/

void AddNewPageAdd(int page,int run-p)
(

PAGE TABLE) *tmp;

/* create a new entry */
tmp=(struct add_ref *)malloc(sizeof(struct add_ref»);
tmp->page_num=page;
tmp->shift_reg.value=O;
tmp->shift_reg.reg.first=ON; /* register's leftmost bit is ON *1
tmp->next=NULL;

1* insert to page table *1
add_tail[run-pl->next=tmp;
add_tail[run-pl=tmp;
Add_table[run-pJ->num~~;

1*11/111111//1/1/111111///////111/1111111/1/111/11//11/1//1//////1/11111111/11/11///11/11/
/1 Function GetSmallValue()
/1 Purpose: This function is used to get the page which has the smallest value of
/1 the shift register. It will be a victim page.
//1////111/1111111111111111/111//1/1111///11/11111111/111//1/11/////1111111111111/11/11/*1

PAGE_TABLE] *GetSmallValue(int run-p)
(

struct add_ref *tmpl,*smallest;

smallest=Add_table[run-pI->next;
tmpl=smallest->next;

5

100

while (tmpl ! ~ NULL)
{ 1* search has smallest value *1

if(smallest->shift_reg.value > tmpl->ahift_reg.value)
1* compare the value */

smallest=tmpl;
tmpl=tmpl->next;

return(smallest);

/* check the next entry */

1* return the smallest value */

/*//////////////////11111////1///////11111/11/11111111//////1/1111111111111111//1111111111
// Function: RemovePageAdd()
// Purpose: This function is used to remove the victim page from the page table.
1/1//111111111111111111//11//11/////1///1/11////////////1/////////1///1/11/////1///111/1*/

void RemovePageAdd(struct add_ref *remove,int run-p)

PAGE_TABLE3 *tmp,*before;

tmp=Add_table[run-pJ->next;
if (remove->page_num ~= tmp->page_num)

/* victim page is first element of linked
list *1

/* remove the victim page */
Add_table[run-p]->nextRtmp->next;
Add_table [run-pl->num--;
free(tmp) ;

else

before=tmp;
tmp=tmp->next;
while(tmp !~ NULL
{ /* search the node which has the samllest

value of 6 bit shift register */
if (remove->page_num •• tmp->page_num)
(

/* remove the victim page */
before->next-tmp->next;
free (tmp);
Add_tablelrun-pl->num--;
break;

)
else
(/* search the next entry */

before=tmp;
tmp=tmp->next;

/*///1/1///////11//11/1111///1/111/1//1111///11/11111/1///1//11/11/1/11111/1111111/1111111
//
// Graph.c

//
1/ This file is to generate and to show the graphs using the bIt_graph command. The
// bIt_graph is to create and to manipulate graph widgets. The bIt_graph widget plots two
/1 variable data in a window. When we see the graphs, graphs have two push buttons, one is
II <print> (to make postscript file) and <quit> (to exit the graph display). The number of
II page faults and memory utilization of each process in each page replacement algorithm
1/ is viewed on the screen.
1//1111////1///11///////////1////11/11/1111////11/11111//1///1/11111/11/1//11///11111/11*1

#include "myhead.h"

101

/*///111//////////////1//////////////1////
/ / Function PageFaultGraphO
// Purpose: This function is used to choose a graph which will show the number of
// page faults according to one comparison hasis.
//*/

PageFaultGraph()
(

int
int
char

rei
valid;
pufI81];

valid=O;
while(valid 1= 1)
(

Regular time intervals in the additional\n");
algorithm. \n") ;
menu). \n");

printf("\t
printf ("\t
printf ("\t
printf ("\t

printf("\t
printf("\t
printf ("\t
printf(OI\t
printf(OI\t

printf("\n\t ------ Page fault graph ------------------------------ \n");
print.f (" \ t 1. Page faults of 3 di fferent algorithms. \n");
printf("\t - New implementation (highest leaf method) .\n Ol);
printf(OI\t - Clock algorithm.\n"l;
printf("\t - Additional-reference-bits algorithm.\n");
printf("\t 2. Page faults of 4 different methods in the new

implementation.\n"l;
- Leftmost leaf method. \n") ;
- Rightmost leaf method.\n Ol);
- Highest leaf method.\n"l;
- LRU leaf method. \n Ol);

3. Page faults of 3 different intervals in the clock algorithm.
\n") ;

4. Page faults of 3 different intervals in the additional\nOll;
-reference-bits algorithm.\n");

5. Page faults VS. Frames allocated.\n");
6. Page faults vs. Regular time intervals in the clock

algorithm. \n Ol);
print£(OI\t 7. Page faults vs.
printf(OI\t -reference-hits
printf("\t 8. Exit (return to
printf ("Select a number: "l;
scanf ("\ d" , &re) ;

switch(re)

case 1: PageFaultGraphl();
1* graph for page faults over

different algorithm */
valid=l;
break;

case 2: PageFaultGraph2();
/* page faults for new implementation */

valid=l;
break;

case 3: PageFaultGraph3(re);
/* page faults for clock algorithm */

valid=l;
break;

case 4: PageFaultGraph3(re);
/* page faults for additaional-reference-bitB

algorithm */
valid=l;
break;

case 5: PageFaultGraph5();
/* page faults VB. # o:f frames allocated */

valid;l ;
break;

case 6: PageFaultGraph6();
/* page faults VB. time interval for clock

algorithm */
valid=l;

printf("\t
printf("\t
printf ("\t
printf ("\t
print! ("\t

102

break;
case 7: PageFaultGraph7();

/* page faults VS. time intervals for
additional-reference-bits algorithm */

valid=l;
break;

case 8: return;
default: printf("\n\tError: Invalid Input, tryagain.\n");

gets (bu£) ;
valid=O;
break;

/*//
// Function MemUtilGraph()
// Purpose: Thia function ia used to choose a graph which will show the memory
// occupancy according to one comparison baais.
//!//!//////*/

MemUtilGraph ()
(

int rei'
int valid;
char buf [81] ;

valid=O;
while(valid != 1)
{

printf("\n\t ------ Memory utilization graph ----------------------- \n");
printf("\t 1.. Memory utilization in the 3 different algorithms. \n");
printf("\t - New implementation (highest leaf method) .\n");
printf("\t - clock algorithm.\n");
printf("\t - Additional-reference-bits algorithm.\n");
printf("\t 2. Memory utilization of 4 different methods in the new

implementation. \n");
- Leftmost leaf method.\n");
- Rightmost leaf method.\n");
- Highest leaf method.\n");
- LRU leaf method.\n"};

3. Memory utilization of 3 different intervals in the clock
algorithm. \n");

printf("\t 4. Memory utilization of 3 different intervals in the
additional\n"l;

printf("\t -reference-bits algorithm.\n");
printf("\t 5. Exit (return to menu). \n ");
printf("Select a number: ,,);
acanf("%'d",&re);

switch(re)
(

case 1: MemUtilGraphl();
/* memory utilization over different

algorithms */
valid=l;
break;

case 2: MemUtilGraph2();
/* memory utilization for the new

implementation */
valid:l;
break;

case 3: MemUtilGraph3(re);
/* memory utilization for the clock

algorithm */
valid=1;
break;

..

103

case 4: MemUtilGraph3(re);
/* memory utilization for the addition.al

reference-bits algorithm */
valid=l;
break;

case 5: return;
default: printf("\n\tError: Invalid input, try again. \nul;

valid=O;
gets (buf) ;
break;

/*/////////////////1/////////////////1///////////////////////////!//I//!//////////////////
// Function PageFaultGraph1()
// Purpose This function is used to generate the page fault graph over 3 different
// algorithms. x-vaules are the process IDs and y-vaules are number of
// page faults of each process.
///////////////!/////////////!//*/

PageFaultGraph1()
(

FILE win;
int
char
float
float
float

float
char
char
char
char
int
int
int

int

svalue(81] ;
value_y1[MAX_PROCESS] ;
value_y2[MAX_PROCESS] ;
value_y3[MAX_PROCESS] ;

value_x [MAX_PROCESS] ;
psfile [81] ;
s [81J ;
sp_size[81J;
sm_size[81] ;
p_size,mem_Bize;
cinterval;
ainterval;

valid;

/* y values related to new implementation */
/* y values related to clock algorithm */
/* y values related to additional-reference

bits algorithm */
/* x values */
/* name of postscript file */

/* time interval for clock algorithm */
/* time interval for additional-reference

bite algorithm */
/* indicate that input parameters are valid

*/

Noyrocess=5;
memset(psfile,81,NULL) ;
in=fopen ("Pageflt .grph", "1'1,,) ;

printf ("\nPut the name of the
scanf("%s",psfile);

valid=O;
while(valid != 1)
{

printf("\nPut the page
scanf("%s",sp_size);
p_size=atoi(sp_size) ;
if (p_size 512)

(p_size == 2048)
(p size == 8192)

valid =1;
else

postscript file: ,,);
/* get the name of postsrcipt file */

size (512, 1024, 2048, 4096 or 8192) : U) i

1* get the page size */

II (p_size -- 1024) "II (p_size === 4096) I'
) /* input is valid */

/* input is not valid */

valid=O;
printf ("\n\tError: Invalid input, try again\n"J ;

valid=O;
while(valid != 1)

104

printf("\nPut the memory size: ");
scanf("\s",sm_sizel; f* get the memory size *f
mem_size=atoi(em_size);
if (mem_size == 0)
{

printf ("\n\tError: Invalid input, try again. \n");
valid=O;

else
valid=l;

valid=O;
while(valid 1= 1)
{

3

printf (" \nPut the interval
scanf ("\s" ,svalue) ;

cinte.rval:atoi (svalue) ;
if (cinterval =: 0)

for the clock algorithm: "l;
/* get the time interval for clocle algorithm

*/

printf("\n\tError: Invalid input, try again. \.n" l ;
valid=O;

}
else

valid=l;

valid=O;
while(valid != 1)
{

printf("\nPut the interval
scanf ("\s", svalue) ;

ainterval=atoi(svalue) ;
if (ainterval ==0)

for the additional-reference-bits algorithm:
f* get the time interval for additional

reference-bits algorithm *f

") ;

printf("\n\tError: Invalid input, try again.\n");
valid=O;

else

/* get x and y values *f
for(i=O; i<No-process; i++)

value_x[i):i+1; f* x values are process IDe *f
printf("\n\t x values are process IDs and y values are # of page faults\n");
printf ("\t (Note: If you want exit, put <quit>.) \n");

for(i=O; i<No-process; i++)
(

printf("\n Put the yl value (New Implementation): "l;
scanf ("\s", svalue) ;
if (strcmp(svalue, "quit") == 0)

return;
else

value_yl[i]=atof(svalue);
f* y values are # of page faults for

new implementation */

for(i=O; i<No-process; i++)

printf("\n Put the y2 value (Clock Algorithm): ,,);
scanf(U%sll,Bvalue) ;

105

if (etrcmp(svalue, "quit") == 0)
returnj

else
value_y2[i)-.tof(svalue);

/* y values are # of page faults for
clock algorithm */

for(i=O; i<No-procees; i++)
(

printf("\n Put the y3 value (Additional-reference-bits Algorithm): ");
scanf("%s",Bvalue);
if (strcmp(svalue, "quit") == 0)

returnj
else

value_y3[i]=atof(svalue) ;
/* y values are I of page faults for

additional-reference-bits algorithm */

fprintf(in, "I!/contrib/bin/blt_wish -f\n");
fprintf(in,"\n") ;
fprintflin."if [file exists /contrib/library] (\n");
fprintf (in," set blt_library /contrib/library\n" l;
fprintf (in, ,,) \n") ;
fprintf(in,"\n");
fprintf{in, "option add *Blt_htext.Font *Times-Bold-R*14* \n"l;

/* set the font and size */
fprintflin,"option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintflin, "option add *graph.xTitle \cProcess ID \c \n",34.34);

/* title of x axis */
fprintf{in,"option add *graph.yTitle \cNumber of page faults \"c \n",34,34);

/* title of y axis */
fprintf(in,"option add *graph.title \"cPage faults over different algorithms (\"d /

\d) %c \n",34,mem_size,p_size,34);
/* title of graph </

fprintflin, "option add *Blt_graph.legendFont *Times-*-<-8< \n"l;
strcpy{s, "Number of page faults over different algorithms. ");
RepeatBodyGraphllin,psfile,s) ;

fprintflin," set X (\n"); /* write x values to file for gr ph */
forli=O; i<No-process; i++l

fprintf(in,"%f ",value_x!i]);
fprintflin, "\n");
fprintflin, ")\n");
fprintf(in, "\n");
fprintflin," set Yl (\n"); /* write y values to file for graph */
forli=O; i<No-process; i++)

fprintf(in,"\"f ",value yl(i]);
fprintf(in, "\n");
fprintf(in,")\n");

fprintf(in, "set Y2 (\n"); /* write y values to file for graph */
for(i=O; i<No-process; i++)

fprintf(in,"%f ",value_y2[iJ);
fprintf(in,"\n");
fprintflin, "}\n");

fprintf(in, "set Y3 (\n"); /* write y values to file for graph */
forli=O; i<No-process; i++)

fprintf(in, "\f ",value_y3{i]);
fprintf(in,"\n");
fprintf(in,")\n");
fprintf (in, "\n") ;
fprintflin,"\n");

fprintf I in, "$graph element create Highest -leaf -xdata $X -ydata $Yl %c\n", 92 l ;

3

106

fprintf (in, " -symbol diamond -linewidth O\n");
fprintf(in, "$graph element create Clock(%d) -xdata $X -ydatiil $Y2

%c\n" ,cinterval, 92) ;
fprintf (in," -symbol cross -linewidth O\n");
fprint f (in, "$graph element create Add- ref -bi ts (%d) -xdata $X -ydata $Y)

%c\n",ainterval,92);
fprintf (in," -symbol square -linewidth O\n");
RepeatBodyGraph2(in);
fclose(in) ;

;

systeml"chrnod 777 Pageflt.grph");
system ("Pageflt . grph") ;
returnj

/* show the graph */

/*//
/ / Funct ion PageFaul tGraph2 ()
/ / Purpose: This function is used to generate the page fault graph over 4 different
// methods of the new implementation.
//*/

PageFaultGraph2()
(

FILE
int
float
float
float
float
float
char
char
char
int
int

"'in;
i;
value_y1(MAX_PROCESS] ;
value_y2[MAX_PROCESS] ;
value_y3[MAX_PROCESS);
value_y4[MAX_PROCESS) ;
value_x [MAX_PROCESSj ;
psflle [81] ;
s (81) ;
svalue(81);
p_size,m_size;
valid;

/* y values for leftmost leaf method */
/* y values for rightmost leaf method */
/* y values for highest leaf method */
/* y values for LRU leaf method */
/* x valu.es */
/* name of postscript file */

/* indicates that input is valid */

Noyrocess=5;
memset(psfile,81,NULL);
in=fopen ("Pageflt2 .grph", "w") ;
printf("\nPut the name of the postscript file: ");
scanf("\s",psfile); /* get the name of postscipt file */

valid=O;
whilelvalid != 1)
{

size (512, 1024, 2048, 4096 or 8192); "I;
/* get the page size */

printf (" \nPut the page
scanf("%s",svalue);
p_size=atoi(svalue);
if I (p_size 512) I I

(p_size == 2048) I I
lp_size == 8192))

valid =1;

(p_size
(p_size

1024) II
4096) II

else

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

valid=O;
while(valid != 1)
(

print f ("\nPut the si ze
scanf("%s",svalue);
m_size=atoi(svalue);
if m size == 0)
(

of memory: ");
/* get the memory size */

/* input is not valid */

validzO;
printf("\n\tError: Invalid input, try again.\n");

)
else

valid:l;

/* get x and y values */
for(i:O; i<Noyrocess; i++)

value_xlil-i+l; /* x values are process IDs */
printf("\n\t x values are process IDs and y values are It of page faulta\n");
printf("\t (Note: If you want exit, put <quit>.) \n");
for(i:O; i<Noyrocess; i++)
{

printf ("\n Put the yl value (Leftmost leaf) ") ;
scanf("\s",svaluel;
if (strcmp(svalue,"quit") c: 0)

return;
else

value_yl[i)=atof(svalue);
/* y values for leftmost leaf method */

for(i:O; i<Noyrocess; i++)
{

printf (" \n Put the y2 value (Rightmost leaf) ,,) ;
Bcanf ("%S" I svalue) ;
if (strcmp(svalue, "quit") c= 0)

return;
else

value_y2[i):atof(svalue);
/* y values for rightmost leaf method *f

)
for(i=O; i<Noyrocess; i++)
{

printf("\n Put the y3 value (Highest leaf) ");
ecanf(ll\ell,svalue);
if (strcmp(svalue, "quit") •• 0)

returnj
else

value_y3[i)-atof(svalue);
f* y values for highest leaf method */

}
for(izO; i<Noyrocess; i++)
{

printf ("\n Put the y4 value (LRU leaf) ") ;
scanf("\a",avalue) ;
if (strcmp(svalue, "quit") == 0)

return;
else

value_y4[il=atof(svalue);
/* y values for LRU leaf method *f

fprintf (in, "jj! /contrib/bin/blt_wish - f\n") ;
fprint~(in,"\n");

fprintf (in, "if [file exists / contrib/library) {\n");
fprintf(in," set bIt_library /contrib/library\n");
fprintf(in,"}\n");
fprintf(in, "\n");
fprintf(in,"option add *Blt_htext.Font *Times-Bo.ld-R*l4* \n");

/* set the font and size */
fprintf (in, "option add *Blt_text. Font *Times-Bold-R*l2 * \n");
fprintf (in, "option add *graph. xTitle \cProcess ID %c \n", 34,34) ;

/* title of x axis *f
fprintf(in, "option add *graph.yTitle %cNurnber of page faults %c \n",34,34);

f* title of y axis */

107

108

fprintf(in, "option add *graph.title \cPage faults for new implementation (\d I
\d)\c \n",34,m_size,p_size,34); /* title of graph */

fprintf(in, "option add *Blt_graph.legendFont *Times-*-*-8* \n");
strcpy(s, "Number of page faults for new implemantataion.");
RepeatBodyGraphl (in, psfile, s) ;

/* write x values to the file *1

fprintf(in," set X (\n");
for(i=O; icNo-process; i+~)

fprintf(in,"\f ",value_xli]);
fprintf (in, "\n") ;
fprintf(in, "}\n") ;
fprintf (in, "\n") ;
fprintf (in," set Yl (\n");

for(i=O; icNo-process; i~~)

fprintf(in,"\f ",value_yl[i]);
fprintf(in,"\n") ;
fprintf(in, "}\n");

/* write y values for leftmost leaf method to
file */

for(i=O; icNo-process; i+~)

fprintf(in,"\f ",value_y2[i]);
fprintf (in, "\n");
fprintf(in,"}\n") ;

fprintflin, "set Y2 I\n"); 1* write y values for rightmost leaf method
to file */

fprintf (in, "set Y3 (\n"); /* write y values for highest leaf method "/
for(i=O; icNo-process; i++)

fprintf(in, "\f ",value_y3 [i]);
fprintflin, "\n");
fprintflin, "}\n");

fprintf(in, "set Y4 (\n"); /* write y values for LRU leaf method */
for(i=O; icNo-process; i++)

fprintflin,"\f ",value_y3[i]);
fprintf(in, "\n");
fprintf(in, "}\n");
fprintf(in,"\n") ;
fprintf(in, "\n") ;

fprintf (in, "$graph element create Leftmost -xdata $X -ydata $Yl \c\n", 92) ;
fprintf(in, " -symbol plus -linewidth 0\0");
fprint f (in, "$graph element create Rightmost -xdata $X -ydata $Y2 \c\n", 92) ;
fprintf(in." -symbol cross -linewidth O\n");
fprintf(in,"$graph element create Highest -xdata $X -ydata $Y3 \c\n",92);
fprinti(in," -symbol square -linewidth O\n");
fprintE(in, "$graph element create LRU-leaf -xdata $X -ydata $Y4 \c\n",92);
fprintf (in," -symbol diamond -linewidth O\n");
RepeatBodyGraph2(in);
fclose(in) ;

system ("chmod 777 Pageflt2 .grph") ;
system("Pageflt2.grph"l;
return;

/* show the graph *1

1*///1//1////////////1111/1111111//////////1/111//////////////////////////11//1///////////
// Function PageFaultGraph3()
// Purpose: This function is used to generate the page fault graph over 3 different
// intervals in clock or additional-reference-bits algorithms.
1/1///11///1/////1//1/////11////////1/////////////11//1//1////////1/1///11///////1//11//"/

PageF'aultGraph3 lint sel)
{

FILE *in; /* file descriptor of file for graph */
int i;

float
float
float
float
char
char
char
int
int

value_y1(MAX_PROCESS] ;
value_y2[MAX_PROCESS] ;
value_y3(MAX_PROCESS);
value_x [MAX_PROCESS) ;
psfile [81J ;
svalue[81J;
s [81] ;
p_size,m_sizei
valid;

/* y values */

/* x values */
/* name of postscript file */

109

Noyrocess:5;
memset(psfile,81,NULL);
if (sel == 3)

in=fopen("Pageflt3 .grph", "'011");

else if (sel == 4)
in=fopen("Pageflt4 .grph", "'011");

printf ("\nPut the name of the postscript file: ");
scanf ("'ks" ,psfile); /* get the name of postscript file */

valid=O;
while(valid 1= 1)
{

printf("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf("'ks",svalue); /* get the page size */
p size=atoi(svalue);
if ((p_size 512) II (p_size 1024) II

(p_size =- 2048) II (p_size 4096) II
(p_size == 8192))

valid =1;
else

valid=O;
print f ("\n\ tError: Invalid input, try aga.in. \n") ;

valid=O;
while(valid != 1)
(

printf("\nPut the size
scanf("'ks",svalue);
m_size=atoi(avalue);
if (m size == 0)

of memory: ,,);
/* get the memory size */

valid=O;
printf("\n\tError: Inva.lid input, tryagain.\n");

else
valid=l;

for(i=O; i<Noyrocess; i++l
value_x[il=i+1; /* get the X values */

printf("\n\t x values are process IDs and y values are # of page faults\n");
printf("\t (Note: If you want exit, put <quit>.) \n");
for(i=O; i<Noyrocess; i++)
(

if sel == 3)
printf("\n Put the yl value (interval 16800) "I;

if sel == 4)
printf ("\n Put the y1 value (interval 70000) ,,);

scanf("'ks",svalue);
if (strcmp (svalue, "quit") == 0)

return;
else

value_y1(i)=atof(svalue) ;
/* get the y values */

110

for(i~O; icNo-proceea; i++)
{

if sel ~= 3 J
printf("\n Put the y2 value (interval 28000) : ,,);

if eel =. 4)
printf("\n Put the y2 value (interval 140000) : ");

scanf("%s",svalue);
if (strcmp(svalue,"quit") == 0)

return;
else

value_y2[i]=atof(avalue);
/* get the y values */

for(i=O; icNo-proeeas; i++)
{

if (sel ==3)
printf("\n Put the y3 value (interval 392001 : ");

if (sel ==4)
printf("\n Put the y3 value (interval 210000) : ");

scanf("%a", svalue);
if Istremp(svalue,"quit") 0)

return;
else

value_y3[i]=atof(evalue);
/* get the y values */

fprintf (in, "#! /eontrib/bin/blt_wieh -f\n Ol I ;
fprintf(in,OI\n");
fprintf(in, OI if [file exists feontrib/library] (\n Ol);
fprintf(in," set bIt library /contrib/library\nOlI;
fprintf(in,"}\n"); -
fprintf(in, "\n");
fprintf(in, "option add *Blt_htext.Font *Times-Bold-R*14* \n");

/* set the font and size */
fprintf(in, "option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintf(in,"option add *graph.xTitle %cProeess ID Ike \n",34,34);

/* title of x axis */
fprintf (in, "option add *graph. yTitle \eNumber of page faults \e \n", 34,34) ;

/* title of y axis */
if (sel == 3)

fprintf(in, "option add *graph.title IkePage faulte for clock algorithm ltd f
\d)%e \n",34,m_size,p_size,34);

/* title of graph */
else if (sel =~4)

fprintf(in, "option add *graph.title \cPage faults for add-ref-bits
algorithm (\d / \d)\c \n",34,m_eize,p_size,34);

/* title of graph */
fprintf(in,"option add *Blt_graph.legendFont *Times-*-*-S* \n");
if (sel == 3)

etrcpy(s, "Number of page faults for clock algorithm");
else if (sel .-4)

strcpy(s,"Number of page faults for add-ref-bits algorithm");
RepeatBodyGraphl(in,psfile,s);
fprintf(in," set X (\n Ol); /* write x values to the file */
for(i=O; icNo-proeess; i++)

fprintf(in,"\f ",value_x[i));
fprintf(in, "\n");
fprintf(in, "}\n") ;
fprintf(in,"\n");
fprintf(in," set Yl (\n"); /* write y values to the file */
for(i=O; icNo-process; i++)

fprintf(in,"\f ",value_yl[i]);
fprintf(in,"\n Ol) ;

q

111

fprintf(in, "I\n");

fprintf(in, "Bet Y2 {\n"l; 1* write y values to the file *1
for(i~O; i<NoyroceBB; i++l

fprintflin,"\:f ",value_y2[i]);
fprintf (in, "\n");
fprintf(in, "}\n");

fprintf(in, "Bet Y3 (\n"); 1* write y values to the file *1
for(i~O; i<NoyroceBB; i++l

fprintf (in, "\:f ",value_y3 [i) l ;
fprintf(in, "\n") ;
fprintf(in, "I\n"l;
fprintf(in, "\n");
fprintf(in, "\n");

if (Bel ~~3)

fprintf (in, "$graph element create Interval-16800 -xdata $X -ydata $Yl
\c\n",92);

if (Bel ~~4)

fprintflin, "$graph element create Interval-70000 -xdata $X -ydata $Yl
\:c\n",92);

fprintf (in," -Bymbol diamond -linewidth O\n" l ;
if (Bel ~= 3)

fprintf (in, "$graph element crea.te Interval- 28000 -xdata $X -ydata $Y2
%c\n",92l;

if (Bel =~4)

fprintf(in, "$graph element create Interval-140000 -xdata $X -ydata $Y2
\c\n",92);

fprintf(in, " -Bymbol crOBB -linewidth O\n");
if (Bel C~ 3)

fprintf(in,"$graph element create Interval-39200 -xdata $X -ydata $Y3
\c\n", 92) ;

if (Bel == 4)
fprintf(in, "$graph element create Interval-210000 -xdata $X -ydata $Y3
\c\n",92l;

fprintf(in, " -Bymbol Bquare -linewidth O\n");
RepeatBodyGraph2(in);
fcloBe (in) ;

if (Bel == 3) 1* for clock algorithm *1

ByBtem("chmod 777 Pageflt3.grph");
ByBtem("Pageflt3.grph"); 1* generate the graph *1

else if (Bel =c 4) /* for additional-reference-bits algorithm *1

Bysteml"chmod 777 Pageflt4 .grph");
system (" Pageflt4 . grph") ; /* generate the graph * /

return;

/*/11/11/1//////1////////////////11///1/////////////11/////////////////////////11/1/1/1//1
1/ Function PageFaultGraphS ()
// Purpose: This function iB used to generate the page fault graph for a proceSB
II when the number of frames allocated are increased.
/////11///1//1//1/1///1//////////////1////////////////1/1///////1/////////////////1/////*/

PageFaultGraph5()
{

FILE "'in;
int
float
float
char
char

i;
value_x [100] ;
va.lue_y1[100] ;
pBfile [81] ;
B [81] ;

1* x valueB are # of frameB allocated */
/* y values are # of page faultB */
1* name of pOBtscript file */

int
char
char
int
int

n,pnum;
methd[61];
svalue [61) ;
p_size;
valid;

/* algorithm or method */

112

memset(psfile,60,NULL);
in=fopen ("Pageflt5 .grph oo , "WOO) ;
printf (oo\nPut the name of the postscript file:");
scanf("%s",psfile); /* get the name of postscript file */

valid=O;
while(valid != 1)
{

size (512,1024,2048, 4096 or 8192): 00);

/* get the page_size */
printf ("\nPut the page
Bcanf(lt%af1,Bvalue) ;

p_size=atoi(svalue) ;
if «p_size 512) I I

(p_size == 2046) I I
(p_size == 6192))

valid -1.;

(p_size
(p_size

1024) II
4096) II

else

valid=O;
printf ("\n\tError: Invalid input, try again. \n") ;

printf (" \nPut the algorithm or the method:");
scanf("%s",methd); /* get the algorithm or method */

valid=O;
while(valid != 1)
{

printf (u\nPut the process number: 00);

Bcanf('llsl',Bvalue);
pnum=atoi(svalue); /* get the process number */
if (pnum -. 0)
{

valid-O;
printf ("\n\tError: Invalid input, try again. \n");

}
else

valid=l;

valid=O;
while{ valid != 1)
{

printfC"\nPut the number of points: 00);

scanfC"\sOO,svalue);
n=atoi(svalue); /* get # of points */
if (n == 0)
{

valid.O;
print f ("\n \ tError: I nvalid input, try again. \n 00) ;

}
else

valid=l;

j* get x and y values *j
printf(oo\n\t x values are # of frames allocated and y values are # of page

faults\n U
) ;

printf("\t (Note: If you want exit, put <quit>.) \n U
);

for(i=O; i<n; i++)

II3

printf("\n Put the x value: ");
acanf ("\a", avalue) ;
if (strcmp(avalue, "quit") =,. 0)

return;
else

value_x[i)=atof(avalue);
1* get x values (# of framea allocated) *1

for(i=O; i<n; i++)
{

printf ("\n Put the y value: ");
scanf("\a",avalue);
if (strcmp(svalue, "quit") == 0)

return;
else

value_yl[i)=atof(svalue);
1* get y values (# of page faults) *1

fprintf(in, "#!/contrib/bin/blt_wish -f\n");
fprintf(in, "\n");
fprintflin,"if [file exists Icontrib/library) {\n");
fprintflin," set bIt library Icontrib/library\n");
fprintf(in."}\n"); -
fprintf(in, "\n") ;
fprintf (in, "option add *Blt_htext. Font *Times-Bold-R*14* \n");

1* set the font and size *1
fprintf(in, "option add *Blt_text.Font *Times-Bold-R*lO* \n");
fprintf(in, "option add *graph.xTitle \cNumber of frames allocated \c \n",34,34);

1* title of x axis *1
fprintf (in, "option add *graph. yTitle \cNumber of page faults '<C \n", 34,34) ;

1* title of y axis *1
fprintf(in."option add *graph.title '<cPage faults of process \d lpage .. ize:\d,
\sHc \n u ,34,pnum,p_size,methd,34); 1* title of graph *1
fprintf(in, "option add *Blt_graph.legendFont *Timea-*·*·8* \n");
strcpy(s,uNumber of page faults VB. number of frames U);
RepeatBodyGraphl(in,psfile,s);

fprintflin, " set X {\n"); 1* write x vdlues to file *1
for(i=O; i<n; i++)

fprintf(in, U\f ",value_x[i]);
fprintf(in.u\n") ;
fprintf(in,"}\n");
fprintf(in, "\n");
fprintf(in," set Yl (\n"); 1* write y values to file *1
for(i=O; i<n; i++)

fprintf(in, "\f ",value_yl [i]);
fprintf(in,u\n");
fprintf(in,"}\n U);
fprintf (in, "\n") ;
fprintf(in, "\n");

fprintf(in."$graph element create Higheat -xdata $X -ydata $YI \c\n",92);
fprintf(in," -symbol square -linewidth l\n");
RepeatBodyGraph2(in);
fclose (in) ;

system(Uchmod 777 Pageflt5.grph");
system("Pageflt5.grph U) ;
return;

1* show the graph *1

1*111
II Function PageFaultGraph6()
II Purpose This function is used to generate the page fault graph for
II a process when the time intervals are changed in the clock

// algorithm.
////1//11/1/////////////////////1//1/////1///////////////////////////////////"/

Pag~FaultGraph6()

{
FILE "in;

114

int
float

float
char
char
char
int
int

i;
value_x[100J;

valu~_y[100l;

psfile (81) ;
s [81] ;
svalue(81);
n,pnum,m_size,p_size;
valid;

/" x valu~s ar~ tim~ int~rvals for clock
algorithm *1

/" y valu~s ar~ # of pag~ faults */
/" name of postscript fil~ */

memset(psfile,81,NULL);
in=fopen ("Pageflt6 . grph", "w") ;
printf("\nPut th~ name of the postscript file: ");
Bcanf("\"s",pefile); /* get the name of postscipt fil~ *1

valid=O;
while(valid != 1)
{

printf("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf("%a",svalue); /* get the page size *1
p_size=atoi(svalue);
if «p_siz~ 512) II (p_siz~ 1024) II

(p_siz~ ~~ 2048) II (p_size 4096) II
(p_siz~ S~ 8192))

valid =1;
else

valid=O;
printf("\n\tError: Invalid input, tryagain.\n"l;

valid=O;
while(valid != 1)
{

printf (" Put the proc~ss number: ");
scanf("\"s",svalu~); 1* g~t th~ name of postscript fil~ */
pnum=atoi(svalue);
if (pnum == 0)

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

else
valid=l ;

valid=O;
while(valid != 1)
{

printf("Put the size
scanf("%s",svalue) ;
m_siz~=atoi(svalue) ;
if (m_size == 0)

of memory: ,,);
1* get the memory */

valid=O;
printf ("\n\tError: Invalid input, try again. \n") ;

else
valid=l;

115

valid=O;
while(valid != 1)
{

print f ("Put the number of points: ");
Bcanf("%s",svalue);
n=atoi(evalue); /* get # of points */
if (n == 0)

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

else
valid=1;

printf("\n\t x values are time intervals and y values are # of page faults\n");
printf("\t (Note: If you want exit, put "quit>.) \n");
for(i=O; i<n; i++}
{

printf ("\n Put the x value: ");
scanf("%s",svalue};
if (strcmp(svalue, "quit") == 0)

return;
else

value_x[i]=atoi(svalue};
/* get x values (time intervals) */

for(i=O; i"n; i++)
{

printf (" \n Put the y value: ");
scanf("%s",svalue);
if (strcmp(svalue,"quit") == 0)

return;
else

value_y[i)=atoi(svalue) ;
/* get y values (# of page faults) */

add
add
add

*Blt_htext.Fant *Timee-Bald-R*14* \n");
*Blt_text.Fant *Times-Bald-R*12* \n");
*graph.xTitle \cTime intervals \c \n",34,34);

/* title of x axis */
fprintf(in,"option add *graph.yTitle \cNumber of page faults \c \n",34,34);

/* title of y axis */
fprintf(in,"optian add *graph.title %cPage faults of pracess\d (memary:\d
bytes,clock)\c \n",34,pnum,m_size,34);

/* title of graph */
fprintf(in, "option add *Blt_graph.legendFant *Times-*-*-a* \n");
strcpy(s, "Number of page faults vs. time intervals");
RepeatBodyGraphl(in,psfile,s);

fprintf(in,"#!/contrib/bin/blt_wish -f\n"};
fprintf(in, "\n");
fprintf(in,"if [file exists /contrib/library] {\n"};
fprintf(in, " set bIt_library /contrib/library\n");
fprintf(in,"}\n");
fprintf(in, "\n");
fprintf(in, "option
fprintf (in, "option
fprintf (in, "option

fprintf(in," set X (\n");
far(i=O; i"n; i++)

fprintf(in,""f ",value_x[i]);
fprintf(in, "\n");
fprintf (in, ") \n") ;
fprintf(in, "\n"};
fprintf(in," set Y {\n"l;

/* print x and y values to the file */
/* write x values to the file */

/* write y values to file */

116

for(i.O; i<n; i++)
fprintf (in, "H ",vaIue_y[il);

fprintf(in."\n");
fprintf(in,")\n");
fprintflin,"\n");
fprintflin, "\n");

fprintf(in, "$graph element create clock -xdata $X -ydata $¥ %c\n",92);
fprintf (in, " -symbol square -linewidth 1 \n") ;
RepeatBodyGraph2(in);
fclose(in);

system ("chmod 777 Pageflt6. grph") ;
syetem ("Pageflt6. grph") ;
return;

/* show the graph */

/*//
// Function PageFaultGraph7()
// Purpose This function is used to generate the page fault graph for a process
// when the time intervals are changed in the additional-reference-bits
// algorithm.
//*/

PageFaultGraph7()
(

FILE *in;
int
float

float
char
char
char
int
int

i;
value_x[lOO) ;

value_y[lOOl;
pefile[81);
s [811 ;
svalue[Bl] ;
n,pnum,m_size,p_size;
valid;

/* x values are time intervals for the
additional-reference-bits algorithm */

/* y values are # of page faults */
/* name of the postscript file */

memset(psfile,81,NULL) ;
in=fopen("Pageflt7 .grph", "w");
printf ("\nPut the name of the postscript file: ");
scanf("\s",psfile); 1* get the name of postscript file */

valid=O;
whilelvalid != 1)
(

printf("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf("\s",svalue); 1* get the page size */
p_size=atoi(svalue);
if (lp_size 512) II Ip_size 1024) II

(p_size =. 2048) I IIp_size 4096) I I
(p_size == 8192))

valid =1;
else

valid-O;
printf("\n\tError: Invalid input, tryagain.\n");

valid.O;
while(valid 1= 1)
(

print f ("Put the process
scanf ("%e" I Bvalue) i

pnum=atoilsvalue);
if (pnum == 0)
(

number: II);

/* get the # of processes */

valid-O;
printf("\n\tError: Invalid input, try again.\n");

else

valid=O;
while(valid != 1)
(

117

printf("Put the size
scanfl"\s",svalue);
m_size=atoi(svalue) ;
if (m_size == 0)
(

of memory: ");
/* get the memory size */

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

else

valid=O;
while(valid 1= 1)
{

printf ("Put the number of points: ,,);
scanf("\s",svalue); /* get the II of points */
n=atoi (svalue) ;
if (n == 0)

valid=O;
printf ("\n\tError: Invalid input, try again, \n") ;

else
valid=l;

printf("\n\t x values are time intervals and y values are II of page faults\I1");
printf("\t (Note: If you want exit, put <quit>.) \n Ol

);

for(i=O; i<n; i++l
(

printf(OI\n Put the x value: ");
scanf("\s",svalueJ;
if (strcmp(svalue, "quit Ol

) == a)
return;

else
vaIue_x[i]=atoi(svalue);

/* get x values */

for(i=O; i<n; i++)
(

printf(OI\n Put the y value: ");
scanf(OI%s",svalue);
if (strcmp (evalue, "quit") == 0)

return;
else

value_y[i)=atoi(svalue);
/* get y values */

fprintf(in, "II!/contrib/bin/blt_wish -£\n");
fprintf(in, "\n Ol

);

fprintf (in, "if (file exists /contrib/library] (\n Ol
);

fprintf (in," set bIt_library /contrib/library\n");
fprintf(in, "}\n Ol

);

fprintf(in,OI\n"J;

fprintf(in, noption add *Blt_htext.Font *Times-Bold-R*14* \n");
fprintf(in, "option add *Blt_text..Font *Times-Bold-R*12* \nn);
fprintf(in, "option add *graph.xTitle \"cTime intervals \c \n",34,34);

1* title of x axis *1
fprintf(in, "option add -graph.yTitle \cNumber of page fa.ults \c \n",34,34);

1* title of y values *1
fprintf(in, "option add -graph.title \cPage faults of process\d (memory: \d
bytes,add-ref-bits)\"c \n",34,pnum,m_size,34);

1* title of graph -I
fprintf(in, "option add -Blt_graph.legendFont *Times---*-8* \n"};
strcpy(s,nNumber of page faults vs. time intervals");
RepeatBodyGraphl(in,psfile,s);

118

fprintf(in," set X (\nn);
for(i=O; i<n; i++)

fprintf(in,"\"f ",value_x[iI);
fprintf (in, "\n") ;
fprintf(in,"}\nn);
fprintf (in, "\n");
fprintflin, " set Y (\n");
for(i=O; i<n; i++}

fprintf(in,"\-f ",value_y[il);
fprintf (in, "\nn) ;
fprintf(in,"}\n") ;
fprintf(in,"\n");
fprintf (in, "\n");

I- print x and y values to the file *1
1* write x values to file *1

1* write y values to file *1

fprintf (in, "$graph element create Add-rei-bits -xdata $X -ydata $Y \c\n", 92);

fprintf (in," -symbol square -linewidth l\n");
RepeatBodyGraph2(in);
fclose (in) ;

system("chmod 777 Pageflt7.grph n);
system (" Pageflt 7. grph") ;
return;

1* show the graph '1

1·11IIIIIIIIIIIIIIIIIIIIIIIII
II Function: MemUtilGraph1()
II Purpose This function is used to generate the memory utilizat.ion
II graph over 3 different algorithms. The x values are process
II IDs and the y vaules are the memory utilization of each
// process.
II11/11111111111111111111'1

MemUt ilGraphl ()
(

FILE ·in;
int
float
float
float

float
char
char
char
int
int

i;
value_y1[MAX_PROCESS] ;
value_y2[MAX_PROCESS);
value_y3[MAX_PROCESS];

value_x [MAX_PROCESS] ;
psfile[81] ;
s [81] ;
svalue[81] ;
p_size,m_size;
valid;

1* y values for new implementation '1
I' y values for clock algorithm *1
1* y values for additional-reference-bits

algorithm *1
1* x values */
1* name of postscript file *1

Noyrocess=5;
memset(psfile,80,NULL};
in=fopen ("Memutill.grph n, "w") ;
print f (n\nPut the name of the postscript file: ");
scanf(n'k-s",psfile); 1* get t.he name of postscript file'l

119

validaO;
while(valid != 1)
{

printf("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf("\s",svalue); 1* get the page size */
p size=atoi(svalue);
if (p_size 512) II (p_size 1024) II

(p_size =a 2048) II (p_size 4096) II
{p_size a= 8192J)

valid -1;
else

valid=O;
printf("\n\tError: Invalid input, try again.\n");

valid=O;
while(valid != 1)
(

printf("Put the size
acanf("\s",svalue);
m_size=atoi(svalue);
if (m_size == 0)

of memory: ");
1* get the memory size °1

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

}
els",

valid=l;

printf("\n\t x values are process IDs and y values are memory utilization\n");
printf("\t (Note: If you want exit, put <quit:>.) \n");

1* get x and y values *1

1* x values are process IDs *1

value (New impl",m",ntation): ");
/* g",t Y values for the n"'w impl",m",ntation *1

_a 0)

printf ("\n Put the y1
scanf("\a",svalu",);
if (atrcmp(svalue, "quit")

return;

for(i=O; i<No-process; i++)
value_x[i)-i+1;

£or(i=O; i<No-proc",ss; i++)
{

elae
value_y1[i)=atoi(svalue);

}
for(i=O; i<No-process; i++)
{

printf("\n Put the y2 value (Clock algorithm): ");
scan£("\a",svalue);
if (strcmp(svalue, "quit") == 0)

return;
else

value_y2[i)=atoi(svalue);
1* get y values for the clock algorithm *1

}
for(i=O; i<No-procesa; i++)
{

printf ("\n Put the y) value (Additional-r",ference-bita algorithm) ,,);
scanf("\s",svalue);
if (strcmp(svalu"""quit") == 0)

return;
else

value_y3[i)=atoi(svalue);
1* g",t Y values for the additional-reference

bits algorithm *1

120

fprintf(in, "#!/contrib/bin/blt_wish -f\n");
fprintflin, "\n") ;
fprintflin, "if [file exists /contrib/libraryl (\n");
fprintf lin, " set blt library Icontrib/library\n") ;
fprintf (in, ,,) \n") ; -
fprintf(in, "\n");
fprintf(in,noption add *Blt_htext.Font *Times-Bold-R*14* \nn);
fprintf (in, "option add *Blt_text . Font *Times-Bold-R*12· \n" l;
fprintf(in,noption add *graph.xTitle %cProces8 ID \c \n",34,34);

/* title of x axis */
fprintf(in,"option add *graph.yTitle \cMemory utilization %c \n",34,34);

/* title of y axis */
fprintflin, "option add *graph.title \cMemory utilization over different algorithms
(\d / %d)%c \n",34,m_size,p_size,34); /* title of graph */
fprintflin,"option add *Blt_graph.legendFont *Times-*-*-S* \n");
strcpy(s, "Memory utilization over different algorithms");
RepeatBodyGraphllin,psfile);

fprintf(in," set X {\n"); /* write x values to the file */
for(i=O; i<No-process; i++)

fprintf (in, "%f ",value_x[i]);
fprintflin, "\nn);
fprintflin,n}\n");
fprintflin, "\nn);
fprintflin," set Yl (\n"); /* write y values to the file */
for(i=O; i<No-process; i++)

fprintflin,"\f ",value_yl[i);
fprintf(in, "\n");
fprintf(in, "}\nn);

fprintf(in,nset Y2 (\n"); /* write y values to the file */
for(i=O; i<No-process; i++)

fprintf(in,"\f ",value_y2[i]);
fprintflin, "\nn);
fpr~ntf(in,n}\n");

fprintf(in,nset Y3 (\n"); /* write y values to the file */
forli=O; i<No-process; i++}

fprintflin, "\f ",value_y3[il);
fprintf(in, "\nn);
fprintf(in,"}\nn);
fprintf(in, "\n") ;
fprintf(in,"\n");

fprint f (in, "$graph element create Highest -lea.f -xdata $X -ydata $Yl %c\n", 92) ;
fprintf(in," -symbol diamond -linewidth O\nn);
fprintf(in, "$graph element create Clock(2S000) -xdata $X -ydata $Y2 \c\n",92);
fprintf(in, " -symbol cross -linewidth O\n");
fprintf(in, "$graph element create Add-ref-bits(140000) -xdata $X -ydata $Y3

\c\n",92);
fprintflin," -symbol square -linewidth O\n");
RepeatBodyGraph2(in);
fcloselin) ;

systemCnchmod 777 Memutill.grph");
systeml"Memutill.grphn) ;
return;

/* show the graph */

/*/1//1///////
// Function: MemUtilGraph21)
// Purpose: This function is used to generate the memory utilization graph over 4
// different methods in the new implemantation. The x values are the
// process IDs and the y values are the memory utilization of each process.
///////////1/////1///1/1/////////////////11//////1//1/////////////1/////////////////////*/

121

MemUt ilGraph2 (l
{

FILE
int
float
float
float
float
float
char
char
char
int
int

·in;
i·
value_y1(MAX_PROCESS] ;
value_y2[MAX_PROCESS] ;
value_y3[MAX_PROCESS];
value_y4[MAX_PROCESS];
value_x [MAX_PROCESS] ;
psfile[81];
s [81];
svalue[81] ;
p_size,m_size;
valid;

/* file descriptor of graph file */

/* y values for the leftmost leaf method 0/
/0 y values for the rightmost leaf method 0/
/* y values for the highest leaf method 0/
/* y values for the LRU leaf method 0/
/* x values 0/
/* name of the postscript file 0/

Noyrocess=5;
memset(psfile,80,NULL) ;
in=fopen("MemutiI2.grph", "w");

printf ("\nPut the name of the postscript file: ");
scanf("%s",psfile); /* get the name of postscript file 0/

valid=O;
while(valid != 1)
{

size (512, 1024, 2048, 4096 or 6192): ");
/0 get the page size */

print f ("\nPut the page
scanf("\-s",svalue) ;
p size=atoi(svalue);
if «(p_size 512) II

(p_size -- 2048) I I
(p_size -- 8192))

valid =1;

(p_size
(p_size

1024) II
4096) II

else

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

valid=O;
whilelvalid != 1)
{

printf ("Put the size
Bcanf (1'\9 11 revalue) ;

m_size=atoi(svalue);
if (m_size == 0)

of memory: ");
/* get the memory size 0/

valid=O;
printf("\n\tError: Invalid input, try again.\n");

else
valid=l;

printf("\n\t X values are process IDs and y values are memory utilization\n");
printf("\t (Note: If you want exit, put <quit;>.) \n");

/* get the x and y values */
for(i=O; i<Noy·rocess; i++)

value_x[iJ=i+l;

for(i=O; i<Noyrocess; i++)
{

/0 x values are process IDs */

print f (" \n Put the yl value (Leftmost leaf method): "};
scanf("\-s·,svalue};
if (strcmp(svalue, "quit") == 0)

return;
else

122

value_yl[i]=atoi(svalue);
/- get y values for the leftmost leaf

method */
}
for(i=O; i<No-process; i++)
{

printf("\n Put the y2 value (Rightmost leaf method): II);

scant (II \s ", svalue) ;
if (strcmp(svalue,"quit") == 0)

return;
else

value_y2(i]=atoi(svalue):
/- get y values for the rightmost leaf

method */
}
for(i=O; i<No-process; i++)
{

printf("\n Put the y3 value (Highest leaf method): "):
ecanf(lr\s",svalue};

if (strcmp{svalue,"quit") == 0 1
return;

else
value_y3(i]=atoi(svalue);

/- get y values for the highest leaf
method */

}
for(i=O; i<No-process; i++l
{

printf("\n Put the y4 value (LRU leaf method): II);

scant ("\s ", svalue) ;
if (strcmp(svalue,"quit") ~= 0)

return;
else

value_y4Ii]=atoi(svalue) ;
/* get y values for the LRU leaf method -/

add
add
add

*Blt_htext.Font *Times-Bold-R*14* \n");
*Blt_text.Font *Times-Bold-R*12* \n"):
*graph.xTitle \cProcess ID \c \n",34,34);

/* title of x axis */
fprintf(in,"option add *graph.yTitle %cMemory utilization \c \n",34,34);

/* title of y axis */
fprintf(in,"option add *graph.title \c Memory utilization for new implementation

(\d / %d)\"c \n",34,m_size,p_size,34);
/* title of the graph */

fprintf(in,"option add *Blt_graph.legendFont *Times-*-*-S* \n");
strcpy(s,"Memory utilization of new implementation");
RepeatBodyGraphl(in,psfile,e):

fprintf(in,"#!/contrib/bin/blt_wish -f\n");
fprintf(in,"\n");
fprintf(in,"if [file exists /contrib/library) (\n");
fprintf(in," set bIt_library /contrib/library\n"):
fprintf(in, "}\n");
fprintf(in, "\n");
fprintf (in, "option
fprintf(i.n, "option
fprintf(in, "option

fprintf(in," set X I\n"); /* write x values to the file */
for(i=O; i<No-process; i++)

fprintf(in,"\f ",value_xli);
fprintf(in, "\n") ;
fprintf (in, "} \n");
fprintf(in,"\n"l;
fprintf(in," set Yl (\n"); /* write y values to the file */
for(i=O; i<No-process: i++)

fprintf (in, "\f II ,value_yl [i);
fprintf(in."\n");

123

fprintf(in,"}\n");

fprintf(in, "set Y2 (\n"); /* write y values to the file */
forlizO; i<N0-process; i++)

fprintflin,"\f ",value_y2[i] I;
fprintf(in."\n");
fprintf(in, ")\n");

fprintf(in, "set Y3 (\n"); /* write y values to the file */
for(i=O; i<N0-Frocess; i++)

fprintf(in,"%-f ",value_y3[i]);
fprintf(in. "\n");
fprintf(in,"}\n");
fprintf(in, "set Y4 (\n"); /* write y values to the file */
for(i=O; i<No-process; i++)

fprintf(in,"\:f ".value_y4(i]);
fprintf(in,"\n"l;
fprintf(in, "}\n");
fprintf(in, "\n");
fprintf(in, "\n");

fprintf(in, "$graph element create Leftmost -xdata $X -ydata $Yl \c\n",92J;
fprintf(in, " -symbol plus -linewidth O\n");
fprintf(in, "$graph element create Rightmost -xdata $X -ydata $Y2 %c\n",92);
fprintf (in," -symbol cross -linewidth O\n");
fprintf (in, "$graph element create Highest -xdata $X -ydata $Y3 %c\n", 92) ;
fprintf (in. " - symbol square -1 inewidth O\n");
fprintflin, "$graph element create LRU_Ieaf -xdat.a $X -ydata $Y4 \c\n",92);
fprint.flin, " -symbol diamond -linewidth O\n");
RepeatBodyGraph2(in);
fclose(inl;

system ("chmod 777 Memuti12 .grph") ;
system ("MemutiI2 .grph") ;
return;

/* show the graph */

/*///11////1///////////////1
/ / Function MemUtilGraph3 ()
1/ Purpose This function is used to generat.e t.he melnory utilization graph for the
1/ 3 different intervals in the clock or t.he additional-reference-bits
// algorithm.
//1/////////////////////////////1////////1111/*/

MemUtilGraph3(int sell
(

FILE
int
float

float
float
float
char
char
char
int
int

*in;
i;
value_y1[MAX_PROCESS);

value_y2[MAX_PROCESS) ;
value_y3[MAX_PROCESS] ;
value_x [MAX_PROCESS] ;
psfile[81] ;
B(81) ;
svalue[81);
p_size,m_size;
valid;

1* file descriptor of graph file */

/* memory occupancy of each process when an
int.erv.l is given to either the clock or
additional-reference-bits algorithm ./

/. x values are process IDs */
/* name of the postscript file */

No-process=5;
memset(psfile,80.NULL);
if (sel == 3)

in=fopen ("MemutiI3 .grph" , "w") ;

else if (sel ==4)
in=fopen ("Memuti14 .grph" , "w") ;

printf("\nPut the name of the post.script file: D);

scanf("\s".psfile);

valid=O;
while(valid != 1)
(

j* get the name of postscript file *j

124

printf("\nPut the page size (512. 1024. 2048, 4096 or 8192): ");
scanf("\s".svalue); j* get. the page size *j
p size=atoi(svalue);
if «(p_size 512) II (p_size 1024) II

(p_size == 2048) II Ip_size 4096) II
(p_size == 8192))

valid =1;
else

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

valid=O;
while(valid != 1)
(

printf ("Put the size
scanf("\s",svalue);
m_size=atoi(svalue) ;
if (m_size == 0)
(

of memory: ,,);
j* get the memory size *j

valid=O;
printf("\n\tError: Invalid input, tryagain.\n");

else
valid=1;

printf("\n\t x values are process IDs and y values are memory utilization\n"l;
printf ("\t (Note: If you want exit, put <quit>.) \n");
for(i-O; i<No-process; i++l

value_x[i)-i+1; /* X values are process IDs *j
for(i=O; i<No-process; i++)
(

if sel == 3)
print.f ("\n Put the y1 value (interval 16800): ,,);

if sel == 4)
printf("\n Put t.he y1 value (interval 70000): ,,);

scanf("\s",svalue) ;
if (strcmp(svalue,"quit") == 0)

return;
else

value_y1[i) =atoi (svalue) ;
/* get. the y values */

)
for(i=O; i<No-process; i++l
(

if sel == 3)
printf I "\n Put the y2 value (interval 28000): ");

if sel == 4)
printf ("\n Put the y2 value (interval 140000): ");

scanf("%s",svalue);
if (atrcmp(svalue, "quit") == 0)

return;
else

value_y2[i)=atoi(svalue) ;
/* get the y values *j

)
for(i=O; i<No-process; i++l
(

if (sel == 3)

125

printf("\n Put the y3 value (interval 39200): ");
if (eel -= 4)

printf("\n Put the y3 value (interval 210000): ");
ecanf("\e",evalue);
if (etrcmp(evalue,"quit") == 0)

return;
elee

value_y3 [i]=atoi (evalue) ;
f* get the y valuee *f

fprintf (in, "#! fcontribfbin/blt_wieh -f\n" I;
fprintflin,"\n") ;
fprintf(in,"if [file exists fcontrib/library] (\n"l;
fprintf(in," eet bIt_library fcontribflibrary\n"l;
fprintf(in, "}\n");
fprintf(in, "\n");
fprintf(in, "option add *Blt_htext .Font *Timee-Bold-R*14* \n");
fprintf (in, "option add *Blt_text. Font *Timee- Bold-R*12 * \n");
fprintf(in, "option add *graph.xTitle \cProcese 1D %c \n",34,34);

f* title of X axie *f
fprintflin, "option add *graph.y'I'itle \cMemory utilization \c \n".34,34);

/* title of y axis */
if (sel == 3)

fprintf(in, "option add *graph.title \cMemory utilization for clock
algorithm (\d / \dl \c \n",34,m_eize,p_eize,34);

/* title of the graph */
elee if (eel ==4)

fprintf(in."option add *graph.title \cMemory utilization for add-ref-bite
algorithm (\d f \d) 'lic \n".34,m_size,p_eize,34);

f* title of the graph */
fprintf (in, "option add *Blt_graph.legendFont *Timee-*-*-8* \n");
if (sel == 3)

strcpy(s, "Memory utilization of clock algorit.hm");
elee if (eel ==4)

etrcpy(e, "Memory utilization of add-ref-bite algorithm");
RepeatBodyGraphl(in,pefile,e);
fprintflin," set X (\n"); f* write x values to the file *f
for(i=O; i<No-procees; itt)

fprintf(in,"\f ",value_x[i]1 ;
fprintf(in,"\n");
fprintf(in,"}\n");
fprintf(in, "\n");
fprintf(in, " set Yl (\n"l; f* write y values to the file *f
for(i=O; i<No-procees; itt)

fprintf(in,"\f ",value_yl[i]);
fprintf(in, "\n");
fprintf(in, "}\n");

fprintf(in, "set Y2 (\n"); f* write y values to the file *f
for(i=O; i<No-process; itt)

fprintf(in,"\f ",value_y2[i)l;
fprintf(in,"\n");
fprintf(in,"}\n");

fprintf(in, "eet Y3 (\n"); /* write y valuee to the file */
for(i=O; i<No-procees; itt)

fprintf(in,"U ",value_y3 [i]);
fprintf (in, "\n") ;
fprintf(in, "}\n");
fprintf(in,"\n");
fprintf(in, "\n");

if(sel ==3)
fprintflin, "$graph element create Interval-16800 -xdata $X -ydata $Yl

\c\n",92);
if(sel ==4)

126

fprintf(in,"$graph element create Interval-70000 -xdata $X -ydata $Yl
\c\n", 92);

fprintf (in, " -symbol diamond -linewidth O\n");

if(sel =-3)
fprintf(in, "$graph element create Interval-28000 -xdata $X -ydata $Y2

%c\n",92) ;
if(sel ==4)

fprintf(in, "$graph element create Interval-HOOOO -xdata $X -ydata $Y2
%c\n", 92) ;

fprintf(in," -symbol cross -linewidth O\n");

if(sel ==J)
fprintf(in, "$graph element create Interval-)9200 -xdata $X -ydata $YJ

%c\n".92);
if(sel ==4)

fprintf(in, "$graph element create Interval-210000 -xdata $X -ydata $YJ
%c\n",92);

fprintf(in, " -symbol square -linewidth O\n");
RepeatBodyGraph2(in);
fclose(in);

if (sel == 3

system{"chmod 777 Memutil3 .grph");
system("MemutiI3.grph"); /" show the graph "'/

else if (sel == 4)

system{"chmod 777 Memutil4 .grph");
system("MemutiI4.grph U); /* ahow the graph */

return;

/"'///////////////////////////////////11//1/1/1/////111/11/11/11/1111////111//1//11//111111
II Function RepeatBodyGraphl()
1/ Purpose: Thia function haa the front part of the repeated codes to generate a
II graph.
11111//111////1////11/11/1/1/1//1/1111111111/1///111/1111111//1///1/111//11/1/1/11/11111*1

RepeatBodyGraphl(FILE *in,char psfile[801 ,char a[80J)
{

fprintf(in, "\n U
);

fprintf(in, "set visual [winfo screenvisual .J \n"l;
fprintf(in,"if { $visual != \cataticgray\c } { \n",J4,34);
fprintf{in, " option add *print.background yellow \n");

/'" set the background color of the print
button *1

fprintf(in, " option add *quit.background white \n");
/* aet the background color of the quit

button "'/
fprintf(in, "}\n"};
fprintf(in,"\n");
fprintf(in,"global graph\n");
fprintf(in, "set graph .graph \n U);
fprintf(in,"blt_htext .header -text (%c%c\n",37,37);

/* create the header part of the graph *1
fprintf(in, "\c\c ta \n",)7,37,s);
fprintf(in, "To create a postscript file, press the tctc \n",)7,)7);
fprintf(in, "button $blt_htext(widget) .print -text print -command {\n");
fprintf{in," .graph postscript ta -pagewidth 6i -pageheight 4i -landscape falae

\n", pafile);
fprintf(in,U }\n");
fprintf(in. "\n");

127

fprintf(in, "$blt_htext(widget) append $blt_htext(widget) .print\n");
1* create the print button *1

fprintf(in,"\c\-c button. }\n",37,37);
fprintf(in,"\n");
fprintf(in, "bIt_graph $graph\n");
fprintf(in,"\n");
fprintflin,"blt_htext .footer -text (To finish, press the \-c\c \n",37,)7);

1* create the footer of the graph *1
fprintf (in, "button $blt_htext (widget) .quit -text quit -comma.nd (destroy

. }\n"); 1* create the quit button *1
fprintf (in, "$blt_htext (widget) append $blt_htext (widget) .quit \n") ;
fprintf(in,"\c\-c button.\etc\n",37,37,37,)7);
fprintf (in, "$blt_htext. (widget) -padx 20\n");
fprintf(in,"%ete}\n",37,37);

1*11111111/11//1//1//1//11/1//1//11/1111111//11/11111/11/1///1//11/11111/1/11//11/11/11/11
// Function RepeatBodyGraph2()
II Purpose: This function is the behind part of the repeated code to generate a
// graph.
///1/11/111111//111/11/////111////////11///1/11//////11/11//1///////11////111/1////11/11*1

RepeatBodyGraph2lFILE *in)
(

fprintf(in,"11 $graph crosshairs set on\n");
fprintf(in, "\n");
fprintf(in, "pack append. \c\n",92);
fprintf (in," .header (padx 20 pady 10 } \e\n", 92);
fprintf(in, " .graph (fill expand} \-c\n",92);
fprintf(in," .footer { padx 20 pady 10 }\n");
fprintf(in, "\n");
fprintf (in, "wm min . 0 O\n");
fprintf(in, "\n");
fprintf(in, "bind $graph <BI-ButtonRelease> (\eW erosshairs toggle }\n",)7);
fprintf(in, "\n");
fprintf I in, "proe TurnOnHairs (graph) (\n");
fprintflin," bind $graph <Any-Motion> {\cW crosshairs configure -position

",te\ex, \c\cy} \n", 37,37,37,37,37) ;
fprintf(in," }\n");
fprintf (in, "\n") ;
fprintf (in, "proc TurnoffHairs (graph } (\n");
fprintf(in, " bind $graph <Any-Motion> (\eW crosshairs configure -position

@\c\cx, \e\-ey}\n",37,37,37,37,37);
fprintf(in," }\n");
fprintf(in, "\n");
fprintf (in, "bind $graph <Enter> TurnOnHairs \-c\cW }\n", 37,37) ;
fprintf(in, "bind $graph <Leave> TurnOffHairs \-c\eW }\n",37,37);
fclose (in) ;

1*11/111/11/1//11/1//1/11//1/1/11///1//1111/111/11/1111///11/1///1111//1//////1111//1/111/
/1 Makefile
// Makefile for new LRU approximation implementation. There are five files to make the
1/ execution file.
/////1/11//11/1111///1////1///11111//1//1//1//1/1/1/1//1///1///1/111/////111111/1//1////*/

CFLAGS = -0

the: Perform.o Newapp.o Ckago.o Addref.o Graph.o
cc $ (CFLAGS) -0 the Perform. 0 Newapp.o Ckago.o Addref.o Graph.o

\
\ '-.

VITA

Eunjae lung

Candidate for the Degree of

Master of Science

Thesis: LRU PAGE REPLACEMENT ALGORITHM: A NEW APPROXIMATION
IMPLEMENTATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Wonju, Feburary 13, 1964, son ofChangkun Jung, M.D.,
and Mrs. Sunja Jo lung.

Education: Received Bachelor of Science in Mathematics from Myong Ii
University, Seoul, Korea, in Feburary 1991; completed requirements for
the Master of Science Degree at the Computer Science Department at
Oklahoma State University in July 1996.

Professional Membership: Korean-American Scientists and Engineers Association.

