LRU PAGE REPLACEMENT ALGORITHM:

A NEW APPROXIMATION IMPLEMENTATION

By
EUNJAE JUNG
Bachelor of Science
Myong Ji University
Seoul, Korea

1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July 1996

LRU PAGE REPLACEMENT ALGORITHM:

A NEW APPROXIMATION IMPLEMENTATION

Thesis Approved:

M NS v -570\-’W wi%oﬁz_(

Thesis Advisot 7/
=57 ; >

Dean of the Graduate College

PREFACE

The purpose of this thesis work was to develop a trace-driven simulation to
investigate the viability of applying a splay tree to a page replacement algorithm (new
implementation). The basic idea of the splay tree is that frequently accessed items are
placed near the root of the tree. This notion is compatible with the basic idea of the LRU
page replacement algorithm. Reference strings consisting of virtual addresses were used as
mput for this simulation. To assess the performance of the splay tree, as applied to the
implementation of the LRU page replacement algorithm, it was compared with other
implementations of LRU approximations such as the clock algorithm and the additional-
reference-bits algorithm. The performance parameters were page fault rate, time and space
complexities, and memory utilization.

Four methods (leftmost, rightmost, highest, and LRU leaf) were used to select a
victim page in the new implementation. Although the algorithm overhead (i.e., the time
and space complexity) was lower in the leftmost and rightmost methods, the number of
page faults and the memory utilization were not as good. The highest and LRU leaf
methods generated the better results in terms of the number of page faults and memory
utilization when compared with the clock and additional-reference-bits algorithms. The
LRU leaf method had the demerit that its overhead was high. The highest leaf method,

which did not need any hardware support, had the most reasonable result over all

iii

performance factors considered. Therefore, the highest leaf method of selectng a
replacement victim in the new implementation using a splay tree could be recommended as

a page replacement algorithm.

v

ACKNOWLEDGMENTS

I would like to express special appreciation to my advisor Dr. Mansur H.
Samadzadeh. He provided essential guidance and inspiration throughout my thesis work.
Dr. Samadzadeh continued to spend endless hours reviewing my work and offering
suggestions for further refinement.

I would like to thank my other committee members, Drs. G. E. Hedrick and
Blayne E. Mayfield. Their time and effort are greatly appreciated.

Finally, I would like to express my sincere thanks to my family for their continued
support. They helped me throughout my MS program. I couldn’t have done it without

their continued love and support.

TABLE OF CONTENTS

Chapter Page
LINTRODUCTION .ciivnunamunnsimsoms s s i baans i 1
IL LITERATURE REVIEW ..ottt as e 5
Red PUABTIP: vt s s s R S R O s s i R 5

2.2 Page Replacemett AlEOTHIING uuwwsommsmvummssmsmrismsssms s s anaist 5 6

2.2.1 Optimal Algorithm ... 6

o B0 0 ey o DL O ———— 7

2.2:3 LIREL AVEORIIIN . oo cvaesmminsssiisonsis i e s s i e va s e i 7

2.2.3.1 Second-Chance Algorithmc..ooooeeiiiiiiiice, 7

2.2.3.2 Additional-Reference-Bits Algorithm 9

3 SPIAY TIER .ot tossinins st S T S s S S e s 10

DAL SPIRIIE . oo somomnimmomssss s s o R AR RS AR RSB R 10

2.3.2 Update Operations on Splay Treecccooveiiieiiiiiieee 12
UL DESIGN AND IMPLEMENTATION ISSUEScinmmmmamrnmssia s 14
3.1 Implementation Platform and Environmentcociviiieeniiinn 14

372 OBJCTUNES suvicmnaainmin s i s s i D s i oy 14

3.3 TPt PATBIINCEREE s snsmssuciaswsminmensisissu soessaississessfsss b S xR SRS SRS AR 15

3.3 T INPUE TTACES ..ooiieiiiiiiieeeeeie ettt e e an 15

3.3.2 ProcesS NUMDET oiviicisinmvmmminisama it R 15

3. 33 MBIOTY S12B ..ccovvcuisoviiini it it s e S s enaainas i 15

3.3 4 Page SIZE ..o 16

3.3.5 Page Fault Handling Timeccoovveiiiiiiciieec e, 17

3.3.6 Page Replacement Adgorithins ..o minm s i meie g 17

3.4 Design of the SUNBIAHON ..o imissiimmssssimssisas s oingsmmmis 18

st L IN BRI A EHERE DN o rumemmeessimaes e e R PR S R 18

3.4.2 Clock AIZOTItRIMooviiiiiec e, 19

3.4.3 Additional-Reference-Bits Algorithmccooeiiiiiiiiiins 20

348 Sehedlg ... cooivuinuaniniaiammas scosisioiesss o i ssswis S 21

25 Joplenentatlon DELAIS ..ovmammmomsmenmemmressm s SRS S 22

P EVALTATION ouinismismnimsim i i i s b s a0 e 27
0] TN s vissoson oo o 5 6 R SO S5 B CRNIA B S ARA i 28

1.1 TSt TTACES ..ottt 28

Chapter Page

B K 2 IO ST, i it ik 0 S A S S A PSR S 29

4.1.3 Time INtervalccooiiiiiiiiiieic e 33

4.1.4 Result 0f the TeStccoociiiiiiiiie i 37

A2 ARRIRIS oo R R S e S R S 38

B2 IOFAPIR o it stinms s o e s R S S A TS 38

S APAL G 1y S OUNUND, SRR 39

4.2.3 Time and Space Complexitiesccoociiiiiioiiiiieiiciiien, 46

4231 Space CompleRily ..o mus i s 46

4.2.3.2 Trie Complexity ... 47

4.2.3.2.1 Searthiliooousonsmmmssmmmanrssssssssssnsemmmassssasaess 48

4.2.3.2.2 Selecting a Victim Pagec.oocveeverennnn 48

4:2. 323 Rebmldif - cnsipnmimusoms i 49

V. SUMMARY AND FUTURE WORKcccooiiiimiiiiiiiieeieitese e e 51
oL SUIBATY ..o s e i R S S P I B S oS 51

S IS WK, 1ot sacesssscsmai s s e A S SR S R N SR AR 52
RERERBMEOES' s s s i s s s i s s o G e iiag s 53
APPENDICES ..o et ataaea eeeeeeeeenanaeneee 55
APPENDEX A GIOBIBIY w3 56
APPENDIX B: Trademark Informationccocooiieriiiiiniineninioiriececeienn 58
APPENDEX. C: Expertiettal Remnlts ... oo sssmssieissmes 59
APPENDES D PROBTAMY LASKUIR, + csvesminisiommsmss Som s e o S e v 72

vii

LIST OF TABLES

Table Page
I Five sampled traces used for the simulationc.ccccooiiiiiiiiiicicie 28
I Minimum number of page faults for different page sizesccccoeeiiiiiennn, 29
III The start points of memory sizes yielding minimum page fault numbers
in each algoTithin ... 30
IV The number of page faults according to memory size
(in the highest leaf method in the new implementation)c.cccooveeiiiieiennnnn 31
V The number of page faults according to memory size
(in the clock algorithm with interval 28,000)cccooiiieiie e, 32
VI The number of page faults according to memory size
(in the additional-reference-bits algorithm with interval 140,000) 32
VII The number of page faults and memory utilization when each process has
163 frames (5% 512* 163 = 417,280 BYLES) -....concivinimsismvsisummanemsmsspsisnsiis 37
VIII The number of page faults and memory utilization when each process has
178 frames (5 * 512 * 178 = 455,680 BYES) ... oveveeeereeieeeeeereeees oo 38
IX Space complexity of each algorithm in the worst casec.cccoooiiiiiiiiin. 47
X Tie complexity of each algorihincununnmssmsmmemssmensssmssiis; 49

viil

LIST OF FIGURES

Figure Page
1 Basic address mapping mechanism with pagingc.occooooiiiiiiiiiiieie 6
P T T —— 8
3.8 ZEZ SEBP ..ottt e ens 10
3D ZUP-TABLCD ..omvnmvisanmsarisus soninssovinssios ot ormesbis oo 0o a s s o S S 11
3.0 ZHBZUR SEEPooeroreravescosnnennssossspesnmssnsensssansanmesssssssnssassersssssnsannennssspassasesssnssssensrares 11
B8 EBEEION 1BF: B ccnccinoscunsasumunicumsssa sunsasss s s A s R e 5 AR AR TR S AR 12
4.b Join of the left and right subtrees of node I and deletion of 5c. 13
5 Data structure of SPlay tre€ccoovmiiiiiiiiiee e 19
6 Data structure of linked list used to contain leavesccccoiiniiiiiiiininn, 19
7 Data structure of circular queue and Hand pointerccooceoiiiieiine 20
8 Datastructure used For 8-bit shift registerowmmaninnssnsammansss 21
9 Data structure used for page table in additional-reference-bits algorithm 21
10 Data stracture used for blocked qUeNE ..o s 22
11 The main menu of the sIMUlAtion ...t 23
12 The number of page faults generated vs. the allocated memory size 27
13 The number of page faults generated as affected by the change of regular time
sitervals 1o the elock AIBODIN ... i s e s S5 G 93 34
14: Expansion of Bigore 13 5om 1010 TDBOUD. ccommmmmmsempmmimasmsmmmsmmpmsmsmemras 34
15 The number of page faults generated as affected by the change of regular time
intervals in the additional-reference-bits algorithm ... 36

1X

Figure

16

| B

18

19

20

21

22

23

24

25

Page
Expansion of Figure 15 from interval 10 to 1,000,000ccocovvvivieeeeneenne. 36
Comparison of page fault numbers for three different algorithms
for a page size of 512 and memory allocation of 417,280 bytesc.ccccoeeeeee 40
Comparison of memory occupancy in the three different algorithms
for a page size of 512 and memory allocation 0f 417,280 bytescccoooe. 41

Comparison of page fault numbers in the four different methods used in the new
implementation for a page size of 512 and for memory allocation of
BT 2B DYRCE) oo st koo o s o e MR A T s o 0 Ao

Comparison of memory occupancy in the four different methods used in the new
implementation for a page size of 512 and for memory allocation of
L T LR IR vccicmmmomsmatosones st i SO0 A S e S RS AP S SR RGBS

Comparison of page fault numbers for three different intervals used in the clock
algorithm with a page size of 512 and memory allocation of 417,280 bytes

Comparison of memory occupancy for three different intervals used in the clock
algorithm with a page size of 512 and memory allocation of 417,280 bytes

Comparison of page fault numbers for three different intervals used in the
additional-reference-bits algorithm for a page size of 512 and memory
AIEOCHEION OF A 17 2 R0 BYEEE, - .o coniuscmscavacsonssniatissoes vsm i isaie s i O S MRS S5 A USRS

Comparison of memory occupancy for three different intervals used in the
additional-reference-bits algorithm for a page size of 512 and memory
allocation 0f 417,280 DYLESccociiiiiiii e

Atypical pase table By ..o R e e

CHAPTER 1

INTRODUCTION

The memory management of a computer system has a significant effect upon its
operating system design [Belady et al. 81] [Deitel 90]. To execute a process, its
instructions and data must be stored in main memory. Because of the restricted size of
main memory, due to the fact that it is expensive relative to secondary memory, the
execution of a process whose address space (i.e., instructions plus data) is larger than
main memory is difficult. Also, as multiprogramming has been used to improve the
utilization of CPU, a single memory (i.e., only main memory) is not large enough to hold
several processes [Silberschatz and Galvin 94]. These problems may be solved by using
virtual memory [Belady 66] [Denning 70].

Silberschatz and Galvin state that “virtual memory is a technique that allows the
execution of processes that may not be completely in memory” [Silberschatz and Galvin
94]. In this scenario, programs, each of which can be larger than main memory, can be
executed. So the programmer does not have to worry about the size of programs. The
operating system keeps parts of the programs and data that are currently in use in main
memory, and those parts that are not expected to be required soon are kept in secondary
memory [Tanenbaum 92]. Virtual memory is specially relevant to multiprogramming

environments. Tanenbaum describes that “while a program is waiting for part of itself to

be swapped in, it is waiting for [/O and cannot run, so the CPU can be given to another
process”. In multiprogramming/time sharing systems, each user has the illusion that (s)he
has a larger and individual memory of her/his own through the virtual memory scheme
[Belady 66] [Denning 70].

The basic idea of the virtual memory concept is separating the virtual addresses
referenced in a running process from the real physical addresses in main memory [Deitel
90]. That is, the virtual address space and the real address space are separated. A
programmer conceptualizes a program in the virtual address space and the operating
system links the program to the real address space locations. Actually, to execute a
process, the virtual addresses of a process must be translated to real addresses dynamically
[Lister and Eager 93].

Demand paging is frequently used to implement the fetching component of virtual
memory management [Silberschatz and Galvin 94]. In paged memory management
scheme, the program and the data for each process are partitioned into equal-sized blocks
called pages and stored in secondary memory. Main memory is also divided into fixed-
sized blocks called frames. The pages and the frames are always the same size [Carr 84)
[Silberschatz and Galvin 94] [Tanenbaum 92]. When a process is executing, a page that is
immediately needed is swapped into main memory and, unless there is a free frame
available, a page deemed not to be needed for a while is swapped out. Thus, if there is no
room in main memory for the page that has to be brought in, the operating system must
choose a page to be removed from main memory, and replace it with the required page

using a page replacement algorithm.

Since Belady’s research on page replacement algorithms [Belady 66], many
algorithms have been introduced (e.g., see [Deitel 90] and [Silberschatz and Galvin 94]).
The LRU (least recently used) replacement algorithm is considered to be close to the
optimal algorithm (see Section 2.2 for a detailed discussion of replacement algorithms).
The implementation of LRU requires special hardware support, which many systems do
not provide, so various LRU approximations are usually used.

Splay tree, which is a self-adjusting binary search tree based on splaying (moving a
referenced node to the root of a tree through a sequence of rotations), was developed by
Sleator and Tarjan [Sleator and Tarjan 85]. As they claim, “splay tree approximately
halves the depth of all nodes along the original path from the accessed node to the root”.
A splay tree does not require the maintenance of height or balance information. Thus it
saves space and is simpler than a balanced tree [Weiss 92]. A splay tree has an amortized
bound of O(log n) per operation [Tarjan 83]. It is at least as efficient as a balanced tree
and especially good in the case of a long sequence of accesses [Sleator and Tarjan 85]
[Udi 89], because a node is likely to be accessed soon again when it is accessed once.
Splay tree is practically useful in many applications [Weiss 92].

Trace-driven simulation is one of the methods that can be used to evaluate the
performance of a system [Poursepanj 94]. This method uses a dynamic sequence of
addresses, which has been compiled during an actual execution, as input instead of actually
executing instructions or generating results. Because designers do not have to be
concerned about producing correct results or other overhead, they can focus on the
performance of the designed system. The trace-driven model is thus frequently used to

evaluate the performance of a proposed system.

The main goal of this thesis was to develop a trace-driven simulation to apply a
splay tree to a page replacement algorithm. To execute the simulation, reference strings
consisting of virtual addresses were used as input. This mew implementation was
compared to traditional LRU approximation implementations.

The rest of this thesis is organized as follows. Chapter II provides a review of
literature related to virtual memory management and splay tree. Chapter III contains the
design and implementation issues. Chapter IV discusses evaluation. Finally, Chapter V

gives the summary and future work.

CHAPTER 11

LITERATURE REVIEW

2.1 Paging

Paging is one of the two common methods of implementing virtual memory (the
other being segmentation). The paging method has two roles [Lister and Eager 93]. One is
to carry out the address mapping procedure and the other is to transfer pages between
main memory and secondary memory. Figure 1 depicts the basic address mapping with
paging. CPU sends virtual addresses to MMU (memory management unit) and MMU
sends physical addresses to main memory after performing address mapping by means of a
page table. The index into the page table is a page number, and the page table has the
location of the page frame ‘p”” which corresponds to page ‘p’. Combining the base address
of ‘p”” and the page offset ‘d’ yields the physical address in main memory.

The address translation mechanism can be represented theoretically as a function
£ V> P u ¢, where V is the set of page numbers in the logical address space of a
process, and P is the set of memory-resident frame numbers for that process [Denning 70].
If xeV is at location x'eP, f{x) = x/, else f{x) = ¢, which means that a page fault has
occurred. In such a case, the processing of the program is interrupted until xeV is loaded
to yield some x’eP, and f{x) = x’". Page replacement algorithms are needed when P is full,

and a page fault has occurred.

MMU

logical address

CPU N p | d

o |d

physical

p m!dn:ss
(p*+ d)

page table

. Main Memory
p : page number in virtual address

d : page offset
p‘: frame number in main memory

Figure 1. Basic address mapping mechanism with paging

2.2 Page Replacement Algorithms

There are many page replacement algorithms. Usually, generating the lowest page
fault rate is considered as the main performance criterion when a replacement algorithm is
chosen for an operating system. The following subsections briefly discuss three major page

replacement algorithms.

2.2.1 Optimal Algorithm

The optimal algorithm, which is usually referred to as OPT or MIN, replaces the
page that is least likely to be used again [Belady 66] [Denning 70]. OPT always has the
lowest page fault rate. Since OPT is an ideal algorithm (it requires future knowledge), it
cannot be actually implemented. It is used to gauge the performance of other replacement

algorithms.

2.2.2 FIFO Algorithm

The FIFO algorithm can be implemented with a FIFO queue that would keep track
of all pages m memory [Silberschatz and Galvin 94]. When memory is full while handling a
page fault, the page at the head of the queue is removed and the new page is added to the
tail of the list. Although the overhead of this algorithm is low, Belady’s anomaly [Belady
et al. 69] can occur. Belady’s anomaly involves a counter-intuitive increase in the page

fault rate as a result of increasing the memory size for a program.

2.2.3 LRU Algorithm

The LRU algorithm replaces the page that has not been referenced for the longest
time [Tanenbaum 92]. It is based on the idea that the page which has been frequently
referenced will probably be called on again in the next few instructions. Although LRU is
considered a good approximation to OPT, the implementation is not easy. It can be
implemented by adding a counter to the addresses generated by the CPU or by keeping a
stack of the page numbers. Both methods have high overheads with or without hardware
support. Operating system designers use LRU approximation algorithms (as discussed in
the following subsections) that are less expensive in terms of software and hardware

overhead.

2.2.3.1 Second-Chance Algorithm

The second-chance algorithm can be considered as a variation of the FIFO
algorithm [Deitel 90]. In the FIFO algorithm, although the oldest page (i.e., the page that

is at the head of the FIFO queue) is heavily used, it must be replaced unconditionally. The

second-chance algorithm can prevent this kind of weakness of the FIFO algorithm. It
investigates the reference bit (X bit) of the oldest page. If the bit is 0, the page is replaced.
If it is 1, the page gets a second chance. When a page gets a second chance, the page is
moved to the end of the FIFO queue and the X bit of the page changes to 0. The load time
of the page also changes to the current time. These steps are repeated until the oldest page
whose X bit is 0 is found. The second-chance algorithm searches for the oldest page which
has not been referenced in the previous time interval (e.g., every 20 or 100 milliseconds).
The approach that uses a circular queue instead of a FIFO queue to implement the
second-chance algorithm is called the clock algorithm. As shown in Figure 2, a circular
queue shaped like a clock holds the pages of a particular process that reside in main
memory, and a hand indicates the oldest page. If the X bit of the oldest page is 1, the bit
changes to 0 and the hand goes to the next page. These steps are repeated until the page
whose X bit is 0 is found. When such a page is found, the new page is inserted at that

position and the hand goes to the next page.

1 0

1reference bit 0

1 0
_

0 premoved
page
required
page

Figure 2. Clock algorithm

In the worst case, if all pages in the FIFO queue or the circular queue have been

referenced in the previous time interval, each of them gets a second chance. Therefore, the

above algorithms (one using a FIFO queue and the other using a circular queue) repeat
until all elements have an X bit of 0; in this case those algorithms emulate the FIFO

algorithm.

2.2.3.2 Additional-Reference-Bits Algorithm

Another approximation to LRU is the additional-reference-bits algorithm. The
ordering information of references for each page can be partially captured by keeping an
8-bit shift register for each page in a page table [Silberschatz and Galvin 94]. The shift
register records the X bits (reference bits) for each page at each time interval as follows.
At each clock interrupt, the shift register is shifted right 1 bit and the current X bit is
inserted as the leftmost bit. If there is a need for a victim selection for replacement, the
page with the lowest value in the shift registers, which roughly indicates whether it has or
has not been used recently, is replaced. If a number of pages have the same lowest value
for their respective shift registers, this algorithm either chooses one of them or replaces all
of them.

The additional-reference-bits algorithm has two main problems that distinguish it
from a true LRU algorithm. One problem is that the order of pages referenced during a
single time interval cannot be determined because only one bit is recorded per time
interval. If some pages were referenced towards the end of a certain interval and one of
them must be replaced, the page with the lowest value will be replaced even though it
might not be the earliest one referenced in that interval. The other problem is that it cannot
distinguish between the pages referenced shortly before 8 time intervals ago (e.g., 9 or 10

time intervals ago) and the pages referenced long time ago (e.g., 100 or 1,000 time

10

intervals ago), because the ordering information is limited to eight instances with an eight-

bit shift register.

2.3 Splay tree

When a sequence of access operations is carried out on a binary search tree, if the
frequently accessed items can be placed near the root of the tree, the total access time can
be reduced. On the assumption that the accessed items are likely to be accessed again
soon, Sleator and Tarjan devised a method of restructuring the tree after each access that
moves the accessed item to the root [Sleator and Tarjan 85]. They also developed an
implementation of splaying. The following two subsections describe splaying and its

implementation [Sleator and Tarjan 85] [Weiss 92].

2.3.1 Splaying

To splay a tree at item I (Figure 3), the following steps are repeated bottom-up
along the access path until I is the root of the tree. In Figures 3.a, 3.b, and 3.c, the circles
indicate single nodes and the triangles indicate subtrees.

1. Zig: If the parent of I, P, is the root of the tree, rotate the edge joining I and the

root. This is the last rotation along the access path.

Figure 3.a Zig step

11

2. Zig-Zag: If the grandparent of I, G, exists and I is right child of P and P is left child of

G (or vice versa), rotate the edge joining I and P and then rotate the edge

joining I and G.

~N-

Figure 3.b Zig-zag step

3. Zig-Zig: If the grandparent of I, G, exists and I and P are either both left children of G
or both right children of G, rotate the edge joining P and G and then rotate the

edge joining I and P.

~

Figure 3.c Zig-zig step

ORLAHONMA STATE UNIVERSITY

‘._=-"- s

12

2.3.2 Update Operations on Splay Tree

The standard update operations on a binary search tree can be implemented using

splaying as outlined below [Sleator and Tarjan 85].

Insert(x,t): To insert item x in tree t, search t for x and then replace the null pointer
reached during the search by a pointer to a new node containing X, and finally
splay the tree at the inserted node. Figure 4.a depicts an insertion.

Join(t1,t2): Let’s assume that all items in tree t2 are greater than all those in tree t1. To
combine tl and t2 into a single tree, search for the largest item x in t1 and
make the root of t1 contain x. Then make t2 the right subtree of the root.
Figure 4.b shows how the right and left subtrees of node I are joined.

Delete(x,t): To delete item x from tree t, search t for the node I containing x and then
replace I with the root, R, of the subtree that will result if the right and left

subtrees of I are joined. Finally, splay the tree at the parent of R. Figure 4.b

depicts a deletion.

Figure 4.a Insertion of 8

13

Figure 4.b Join of the left and right subtrees of node I and deletion of 5

CHAPTER III
DESIGN AND IMPLEMENTATION ISSUES
3.1 Implementation Platform and Environment

The simulation program was implemented on a Sequent Symmetry S/81 in C. The
Symmetry S/81 is a mainframe-class multiprocessor system which has a parallel
architecture using multiple industry-standard microprocessors [Sequent 90]. In its present
configuration, this system has twenty four 80386-20MHZ processors. It also has 104
mega bytes of RAM and 5 giga bytes of total hard disk storage. Each process contains
64K of cache memory. It runs the DYNIX/ptx or DYNIX V3.0 operating system that has
been engineered to incorporate parallel processing features. DYNIX V3.0 supports both
UNIX System V command sets and the Berkeley UNIX, however DYNIX/ptx is

compatible with AT&T System V3.2 only.
3.2 Objective

The main goal of the thesis was to develop a trace-driven simulation to apply a
splay tree as a data structure to implement an LRU approximation page replacement
algorithm. Reference strings consisting of virtual addresses were used as input to this
simulation. The performance of this new implementation was evaluated by comparing it

with two popular LRU approximation algorithms, namely the clock algorithm and the

14

ORFAFHORMA STATE UNIVERSITY

15

additional-reference-bits algorithm. The performance factors for the evaluation were

number of page faults, memory utilization, and time and space complexities.

3.3 Input Parameters

3.3.1 Input Traces

The traces used as input to the simulation were developed at the Parallel
Architecture Research Laboratory of New Mexico State University. They were available

in the public directory of the ftp site tracebase@nmsu . edu.

3.3.2 Process Number

The number of processes is limited to ten (ie., the maximum degree of
multiprogramming is ten). Each process handles one file, which consists of a different

reference string. A user can select the number of processes through a standard input.

3.3.3 Memory Size

A critical parameter in the simulation is the memory size. Excessively large
memory results in no page faults and excessively small memory results in thrashing (the
typical range for the miss rate is from 0.00001% to 0.001% [Hennessy and Patterson 90]).
The degree of multiprogramming is constrained as a consequence of the availability of a
limited number of traces. The memory size too indirectly depends on the traces.

In the absence of historical data, the same traces that were used to drive the
simulation, were used in a pre-processing step to determine a plausible memory size. The

necessary memory size for running each process was obtained by gradually increasing the

16

memory size and considering the start point for each process at which the number of page
faults generated becomes stable (i.e., would not decrease) in the face of further increasing
the memory size. The memory size can also be selected through a standard input.

Having determined the memory size necessary for each process, two methods were
used to arrive at the overall memory size for the simulation. The first method consisted of
three steps. The first step was to take the median values among the start points of all
processes obtained by using each approach of each different algorithm. The second step
was to calculate the average value of these median values. The final step was to decide the
memory size based on the above two steps. The memory size was average value *
number of processes * page size because the memory was equally partitioned to each
process for the simulation.

The second method had also consisted of three steps. The only a difference was in
the first step compared to the first method. The average value of each process was taken
instead of the median value (with the minimum and maximum values excluded as possible

outliers).

3.3.4 Page Size

The typical range of a page size is from 512 bytes to 8192 bytes [Hennessy and
Patterson 90]. Four different page sizes (i.e., 512, 1024, 4096, or 8192) can be selected by

4 user.

17

3.3.5 Page Fault Handling Time

The service time required to handle a page fault is the page fault handling time.
When a page fault occurs, the relevant page must be read from secondary memory and
the desired position of the page must be accessed [Silberschatz and Galvin 94]. There are
three primary services that need to be performed during a page fault. A service for the
page fault interrupt, a service for reading in the page, and finally a service for restarting
the process. The second service time is much more than the other two service times. The
typical range of memory access times and page fault handling times are from 1 to 10 and
from 100,000 to 600,000 clock cycles, respectively [Hennessy and Patterson 90].
Although the page fault handling time for the simulation was fixed, it can be given by a
user differently through a standard input. For the simulation, the default memory access

time and page fault handling time are 1 and 10,000 clock cycles, respectively.

3.3.6 Page Replacement Algorithms

To investigate the performance of the new LRU approximation implementation
comparatively, two LRU approximation algorithms (i.e., clock and additional-reference-
bits) were also implemented. A user can select any of the three algorithms and observe its
performance by comparing it with the performance of the other two algorithms.

There are four different methods which a user can select to implement the new
page replacement algorithm. First, the leftmost leaf page in a splay tree is replaced when a
page replacement is needed. Second, the rightmost leaf page is replaced. Third, the highest
leaf page in a splay tree is replaced. Fourth, the LRU page among the leaves is replaced.

The other two algorithms also have different methods by changing the time

S EINTVERSITY

ORTAHORMA STA

18

intervals. Therefore, each implemented version of each algorithm also can be compared
with the other versions of the same algorithm. The best implemented version of each
algorithm was compared with the best one of the other algorithms when checking the
performance of three algorithms. Regular time intervals were assigned when clock and

additional-reference-bits algorithms were executed.

3.4 Design of the Simulation

The simulation was implemented as a trace-driven model on the Sequent
Symmetry S$/81 machine running the DYNIX/ptx operating system using the C

programming language.

3.4.1 New Implementation

Splay tree was used as a data structure to implement the new LRU page
replacement algorithm. Each node of the splay tree represents a page which is in main
memory. The page table size is thus variable. Since there are no actual address spaces,
there is no a priori information about the page table sizes such as the total number of
pages for each program, as a result there is no simulated disk.

Each process has its own page table which is linked in the form of a splay tree.
Figure 5 gives the data structure used in simulating a page table. A parent pointer was
needed to do a bottom-up pass over an access path when splaying. The original splay tree
does not have to have a height field to compute the height of each node. But when the
method which determines the victim page as the highest leaf was used, the height field was

needed to compare the height of leaves. To implement the method, which determines LRU

T EINTVERSITY

ORT.AFRORA STA

19

leaf as the victim page, all leaves in a splay tree must be linked and implemented as a
queue. Figure 6 gives the data structure used for the list which links all leaves to determine

the LRU leaf among the leaves.

struct stree {
int page num;
int height;

struct stree *right;
struct stree *left;
struct stree ~ *parent;
&
typedef struct stree PAGE TABLEI;

Figure 5. Data structure of splay tree

struct leaf list {
struct stree *]eaf;,
int e flag,
struct leaf list *next,

};

typedef struct leaf list LEAF L;

Figure 6. Data structure of linked list used to contain leaves

3.4.2 Clock Algorithm

A circular queue was used to implement the clock algorithm. Each node of the
queue represents a page which is in main memory. Figure 7 depicts the data structure used
in simulating a circular queue. The rbit field which denotes the reference bit of each page

is set when a page is inserted into main memory or referenced, and is cleared after the

Hd

v
-

ORI AFRORMA STATE UNTVER.

20

regular time interval. The Hand pointer [Tanenbaum 92] points to the oldest page among

the pages in the circular queue (see Subsection 2.2.3.1 for further explanation).

struct circular que {
int rbit;
int page num;
struct circular_que *next;
s
typedef struct circular_que PAGE _TABLE2;
PAGE TABLE2 *Hand[MAX_PROCESS];

Figure 7. Data structure of circular queue and Hand pointer

3.4.3 Additional-Reference-Bits Algorithm

A linked list was used to simulate the page table of each process for the additional-
reference-bits algorithm. Figure 8 is the data structure used to simulate the 8-bit shift
register. The bit field was needed to shift 1 bit and to change the leftmost bit. The victim
page is the page that has the lowest value for its shift register. When several pages have
the same lowest value, the page which had been inserted first in the linked list among the
pages is replaced. To do this, a new page is inserted at the tail of the linked list. Figure 9
gives the data structure used to simulate a page table. The 8-bit shift register is kept as one
field of the page table to get the ordering of page references. When a page is referenced,
the leftmost bit of the shift register is set. The shift register is shifted right 1 bit at each
time interval. The value of the shift register indicates the ordering of page references. To

get this value, union is used.

ORTAHORA STATE UNIVERSITY

21

struct s_reg {
unsigned it unused:7;
unsigned int first:1;
i
typedef struct s reg SHIFT REGISTER

Figure 8. Data structure used for 8-bit shift register

struct add ref {
nt page num;
union shift
unsigned int value:8;
SHIFT REGISTER reg;
} shift_reg;
struct add_ref *next;
3
typedef struct add ref PAGE TABLE3

Figure 9. Data structure used for page table in additional-reference-bits algorithm

3.4.4 Scheduling

Two types of random number generators were used for the scheduling of the
processes. One was used to select a process number and the other was used to select a
length of the reference string according to which the selected process would make
progress. If a page fault occurs during process execution, the process is blocked and
another process is selected and executed as much as dictated by the random amount
generated for headway. At this time, the process which has finished handling a page fault
in the blocked queue has priority to be the next process to be run. If no process is finished

with its page fault handling, the next process is selected at random from among the

TE UNIVERSITY

22

processes that are not blocked. There are two situations when a page fault occurs. One is
when the page, which will be referenced next, does not exist in the memory even though
the memory is not full. The other situation is when the memory is full and the page which
will be referenced next is not memory resident. Figure 10 depicts the data structure used

to implement the blocked queue.

struct blocked que {
nt process_id;
int enter time;
struct blocked que *next;
b
typedef struct blocked que BLOCK Q;

Figure 10. Data structure used for blocked queue

3.5 Implementation Details

The simulation is menu driven. Figure 11 gives the main menu of this simulation.
Input traces of the simulation consist of virtual page numbers. These pages were obtained
by converting virtual addresses to page numbers before the simulation was performed. The
files containing the virtual addresses in dinero+ format were obtained by using anonymous
ftp. This dinero+ format is a common format used for capturing and representing traces
defined at /pub/tracebase4 /r3000/README of the ftp site
tracebase@nmsu.edu as follows: “in addition to the usual type and address fields, a
third field is present that lists the instruction word for instruction fetches”. These files had
been compressed using the “compress” command. They were decompressed by using the

“uncompress” or “gunzip” command. The virtual pages were obtained by dividing virtual

TATE

ORLAHOAMA

23

at__i_t_i_:esses by a certain page size. The names and the lengths of the converted files were

stored in the “traces.dat” file.

MENU

Convert virtual addresses to virtual pages.
Perform the simulation.

Generate graph for page faults.

Generate graph for memory utilization.

Exit the simulation.

Mk WM P

Figure 11. The main menu of the simulation

Several input parameters (i.e., number of processes, memory size, method of
memory allocation, page fault handling time, page size, and page replacement algorithm)
are given by a user to perform each simulation. The process (i.e., process trace) to be
executed and the length of the corresponding reference string to be progressed are
obtained by calls to random number generators. At each clock (i.e., virtual memory access
time), a page is referenced and the number of page faults is computed. Every 500 virtual
clock cycles, the memory occupancy of each process is considered for memory utilization.
To determine whether a page is in main memory, an examination of the page table is
required. If a page fault occurs, the running process gets blocked. The next unblocked
process to be executed is randomly selected if no process that is in the blocked queue
consumes its page fault handling time. If no page fault occurs, the running process
proceeds until finishing the trace length previously obtained randomly.

Each process has its own work space. These work spaces are the same because the
total memory is equally partitioned among the active processes. Each page replacement
algorithm has its own page table implemented by a different data structure. Each page

table is updated in a different way and has its own page replacement algorithm.

TFELYTIIVRS

N £ X

e
:}

-~

ATE LN

»

!

A

o

ORLAFRG

24

In the case of the new implementation, when no page fault occurs (i.e., when the
page that is referenced is in the splay tree), the splay tree is reconstructed using splaying at
the node containing the page. Otherwise, the tree is reconstructed after the page is
inserted as a leaf node.

In the case of the clock algorithm, when no page fault occurs (i.e., when the page
that is referenced is in the circular queue), the reference bit of the page is set. Otherwise,
the page is inserted into the circular queue. Finally, in the case of the additional-reference-
bits algorithm, when no page fault occurs, the lefimost bit of the page is set. Otherwise,
the page is inserted into the linked list while setting the leftmost bit.

When a page fault occurs and there is no more memory available, a victim page is
determined followed by a page replacement algorithm. In the case of the new
implementation, four different methods were used to determine a victim page. The victim
page is one of the leaves in the splay tree in all the four cases. The method of choosing a
victim page as a leftmost leaf or a rightmost leaf is straightforward and the algorithm
overhead is lower than the two other methods. The height field of each node is not
necessary in the leftmost, rightmost, or the LRU leaf choosing method. The method of
choosing the farthest leaf from the root needs the height field to compare the distance of
each node from the root. The height of a node is the distance from the root to the node.
The root of a splay tree is an MRU (most recently used) page and the frequently accessed
pages are placed near the root of the tree. Therefore, the leaf that has the highest height
can be approximately considered an LRU page. The heights of all the nodes of a splay tree
should be computed to know the height of each leaf node. To compute the height of a

certain node, the height of the parent node is needed. So the preorder tree traversal

25

strategy is used. When several leaves have the same highest height, the leftmost leaf is
selected among those leaves. The last method attempts to get the leaf which is an LRU
page from among the current leaves. A queue linking all the leaves is used. To link all the
leaves, this method also traverses the entire tree. If a current leaf was not a leaf at the
previous state, the leaf is inserted at the tail of the queue. If the page which was a leaf at
previous state is not a leaf currently, then the page is removed from the queue. The head
of the queue (i.e., the page that has stayed the longest as a leaf among the pages in the
queue) is considered as the LRU leaf.

The graphs, which express the memory utilization and the number of page fault for
each process, were generated by using BLT routines. Tcl library and blt-wish
installed in the /contrib/bin directory are needed to use BLT on the Oklahoma
State University Computer Science Department’s Sequent Symmetry S/81 running
DYNIX/ptx. This path and the environment variable must be set in .login file (for
/bin/csh users) or .profile file (for /bin/sh or /bin/ksh users) [Ousterhout

94). The following commands are for csh users.

get path={ JConEribIBIn . . cocewn s s o)
setenv TCL_LIBRARY /contrib/lib/tcl
setenv TK LIBRARY /contrib/lib/tk

The X co-ordinates of the graphs represent process numbers, time intervals, or the
number of frames allocated as the domain of each graph. The Y co-ordinates of the graphs
show the number of page faults or the memory occupancy which are given as the results
of the simulation. A graph is shown on the screen (Figure 12) after giving the values of X
and Y co-ordinates. This sample graph shows the change of the number of page faults
affected by the change of memory size in the new implementation using the highest leaf

method of victim page selection. There are two buttons (i.e., Print and Quit) in the graph.

26

If the Print button is pushed, a postscript format file is generated to print the graph. The
name of a postscript file is provided by the user. If the Quit button is selected, the system

terminates displaying the graph retumns to the main menu of the simulation (Figure 11).

“.)F_LA HOAGAR STATE S48 44050 LAY, .

Number of page faults

800

Pageflt5.grph -3
Number of page fanlts vs. namber of frames
To create a postscript file, press the print| button.
Page faults of process 4 (page size:512, highest-leaf)
‘D Highest

< 01

<0

I T T T T
20 40 60
Number of frames allocated

840

To finish, press the quit| button.

Figure 12. The number of page faults generated vs. the allocated memory size

LT

CHAPTER IV

EVALUATION

4.1 Testing

4.1.1 Test Traces

The five traces used as input to the simulation were traces of SPEC92 benchmarks
running on a MIPS R3000 simulator. These traces are available in the directory
/pub/tracebase4/r3000/din/ of the ftp site tracebase@nmsu.edu. The
din directory contains traces in dinero+ format. The five sampled traces were selected
randomly from among the twenty traces that were in that directory (in compressed
format). After converting the files which consist of virtual pages, four sampled traces
except “072.sc.din” were truncated to the length of 1,000,000 references. Table I shows

the names of five sampled files and their lengths.

TABLE I. FIVE SAMPLED TRACES USED FOR THE SIMULATION

Process ID File name Length of reference string
1 039 wave5.din 1,000,000
2 056.ear.din 1,000,000
3 072.sc.din 999,996
4 078.swm256.din 1,000,000
5 093.nasa7.din 1,000,000
28

29

4.1.2 Memory Size

Table I shows the number of unique pages (minimum number of page faults) of

each process for five different page sizes.

TABLE II. MINIMUM NUMBER OF PAGE FAULTS FOR
DIFFERENT PAGE SIZES

Page Sizes
Process ID

512 1024 2048 4096 8192
1 163 98 62 38 25
2 297 162 88 50 27
3 221 137 82 50 33
4 121 74 47 32 19
5 432 228 124 T 39

However these numbers were not the “start points” of the frame numbers (i.e., the
number of allocated frames) to get the minimum number of page faults (see Subsection
3.3.3 for an explanation of the start point). The start point was considered for each
process as having an adequate memory size. The start points were different for different
algorithms and different methods. We can find a start point through graphs similar to
Figure 12. This graph shows the number of page faults according to different memory
sizes for process 4 with 512 bytes as a page. The highest leaf method of the new
implementation algorithm was used to generate the graph. We can observe that the
number of page faults is stable at 121 after the number of frames allocated reaches 60.
This number became a start point and did not agree with the number of unique pages (i.e.,

121) for input trace or process 4.

*TYT 4 FTVES FFATFTT IV VBT NIITYF

(-
N OPALI YR Y NS X

s 4
(i

& v

ORLA

30

Table III shows the start point of each process with 512 bytes as a page. Let us
consider process 4 in Table IIl. The start point of the highest leaf and the LRU leaf
methods in the new implementation was 60, and the start points of the additional-
reference-bits algorithm for different intervals were 60 and 65. These working set sizes
correspond to about half the number of unique pages that process or trace 4 has. On the
other hand, the start points of the leftmost leaf and the rightmost leaf methods in new

implementation were 120 and 110, which were almost similar to the number of unique

pages in trace 4. This means that the start points over the sampled traces of each algorithm

is different for each page replacement algorithm.

TABLE III. THE START POINTS OF MEMORY SIZES YIELDING MINIMUM

PAGE FAULT NUMBERS IN EACH ALGORITHM

Process ID New implementation
(# of unique
pages) Leftmost Rightmost Highest LRU leaf
1(163) 160 163 160 140
2 (297) 297 297 290 280
3(221) 220 220 220 210
4 (121) 120 110 60 60
5 (432) 430 380 130 130
Process ID Clock interval Additional-reference-bits interval
(# of unique
pages) 16800 28000 39200 70000 140000 210000
1(163) 150 135 135 155 155 155
2 (297) 290 290 290 290 260 2090
3(221) 220 220 220 210 190 200
4(121) 110 110 110 60 60 63
5(432) 120 120 125 150 150 150

31

The two memory sizes, which were calculated by the two methods described in

Subsection 3.3.3 over the start points of ten different methods in Table III, were 417,280

bytes (i.e., 163 frames * 5 processes * 512 bytes for a page) from method 1 and 455,680

bytes (i.e., 178 * 5 * 512) from method 2. The page size for the simulation was fixed as

512 bytes. The three Tables below (i.e., IV, V, and VI) show the number of page faults

according to different memory sizes in the three algorithms. The tables for the other

methods of each algorithm appear in Appendix C. 3
1)
3
3
TABLE IV. THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZE &
(IN THE HIGHEST LEAF METHOD IN THE NEW IMPLEMENTATION) :E
Ex
ES
Process Number of frames allocated to each process ‘_:J
el
ID 40 50 60 120 130 150 160 <;
1 322 267 238 174 170 165 163 [q-:f
2 586 372 328 302 301 - B ¢S
3 1661 1347 1076 393 342 278 261
4 198 129 121 - - - -
5 578 539 499 433 432 - -
170 210 220 230 280 290 300
1 - — = — - - -
2 - - - . ’ 297 5
3 253 222 221 s s . .
4 - . - y - - "
5 - - - - - = .

32

TABLE V. THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZE
(IN THE CLOCK ALGORITHM WITH INTERVAL 28,000)

Process Number of frames allocated to each process
D 105 110 115 120 130 135 140
1 173 - 174 173 164 163 -
2 325 324 325 324 - - 323
3 386 327 338 327 317 303 313
= 122 121 - - - - -
5 434 - - 432 - - -
210 215 220 230 285 290 300

] n 5 . - - - .

2 314 313 - 311 300 297

3 222 223 221 - - -

4 - - - - - - -

5 2 E = = & - r

TABLE VI. THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZE
(IN THE ADDITIONAL-REFERENCE-BITS ALGORITHM
WITH INTERVAL 140,000)

Process Number of frames allocated to each process
ID 55 60 130 135 140 145 150
1 289 281 178 - 169 164 -
2 388 384 318 - 317 - 318
3 1295 1170 259 258 263 261 248
4 123 121 - - - - -
5 547 511 433 - - - 432
155 185 190 195 200 285 290
] 163 - - . - - -
2 316 313 - - 312 298 297
3 247 222 221 - - » -
4 - - - o " 5 3
5 E 8 S " s . .

r

AL Al 4

IWE VNG L

& T S - CWTT S FTVER FYRATTYITOTS

URLAMAASA DIAE RS

N T

i3

4.1.3 Time interval

For the simulation of the clock and additional-reference-bits algorithms, the best
time interval range which produces the minimum page fault number was chosen by
running a number of experiments for each algorithm. The two memory sizes, which were
obtained from the two methods described in Subsection 3.3.3 over the start points of the
four different methods for the new implementation in Table III, were used to decide the
best time interval ranges for two algorithms. These were 473,600 bytes (i.e., 185 frames *
5 processes * 512 bytes for a page) from method 1, and 504,320 bytes (i.e., 197 * 5 *
512) from method 2. The best range for the time interval for each algorithm was different
based on the memory allocated. However, only one best range per algorithm was selected
for the simulation because there was no big gap in the two resulting memory sizes. Two
distinct ranges per each algorithm according to two memory sizes did not produced.

In the following discussion, process 3 is considered when the best range of time
intervals in the two algorithms were fixed. The reason being that the two given frame
numbers (i.e., 185 and 197) allocated to each process, were too large to enable one to
observe the changing of the page fault numbers in the case of other processes. Figure 13
depicts the change of page fault numbers according to different time intervals using the
clock algorithm with 473,600 bytes as the memory size. Figure 14 is the enlarged graph of
Figure 13 showing the interval from 10 to 100,000 for finding the best range for the time
intervals. The number of page faults were worst at time intervals 10 and after 1,500,000
as shown in Figure 13. Through Figure 14, the range from 28,000 to 42,000 was roughly
found as the best interval range. Time interval 28,000 was taken as the best interval for the

clock algorithm in the simulation.

y Pafiias 4
r

L e e TR

IFs >

{

IVED ¥ VR ITT TV
oL

B alar e e 2ol

UR AT IR

T

250 -

Number of page faults

230

34

Pk
0 Ly
r T T T T T T T 1] <
0 500000 1000000 1500000. . 2000000
TTIme Intervals MRS

Figure 13. The number of page faults generated as affected by the change of

,L F.:: £t fray voie ghes gy

regular time intervals in the clock algorithm

-,-.,-_.r "

: rwmm.t
Page faults of processs (memory 473600 bytes clock)
|ucmu !
250 ' b
]
= m]
3
&
o m]
o
a8
w 240
o
|
Qo
o
£
=
=z
230
0 20000 40000 60000 sooojo. iy '3100000

Figure 14. Expansmn ofFlgure 13 from 10 to 100 000

Fa b ias 4

CrIvE Y ENL 8 X

ATy

m— ST A FTVER TTATTT VY
of

35

Figure 15 depicts the graph illustrating the change of page fault numbers according
to different time intervals using the additional-reference-bits algorithm with 473,600 bytes
as the memory size. Figure 16 is the enlarged graph of Figure 15 in the interval from 10 to
1,000,000 for finding the best range for the time intervals. The range from 60,000 to
140,000 was roughly found as the best interval range. Time interval 140,000 was taken as
the best interval for the additional-reference-bits algorithm for the simulation.

We can see the points where there are abrupt fluctuations in these Figures (i.e., 13,
14, 15, and 16). These are caused by the behavior of the input trace. These aberrant
points were ignored when the best time interval was considered. Although the graphs are
drawn using straight lines connecting each point to the next point, we could surely observe
vibrations in a single straight line. The best interval point in the best range was decided
after the range was taken. After taking the interval of 28,000 clocks for the clock
algorithm and the interval of 140,000 clocks for the additional-reference-bits algorithm,
the other two intervals for the clock algorithm were taken from -40% (i.e., 16,800) to
+40% (i.e., 39,200) of 28,000, and from -50% (i.e., 70,000) to +50% (i.e., 210,000) of
140,000 in the additional-reference-bits algorithm. The percentages have no empirical or
statistical basis, they can be considered arbitrary.

Appendix C contains the experimental results showing the difference of page fault

numbers according to different intervals with the two given memory sizes in the clock and

additional-reference-bits algorithms. Figures 13 through 16 are based on Appendix C.

[4

£ MNaad

230 UIve Y

Y Ve ale sl Bes: Badaslaatartalaliisiid

AR D

2

f;:r?oeesss (memoré

W4t df.f,\ P o EO ey ,an,\ l"l,pl“‘;l-":;\:."'."- g ’

Figure 15. The number of page faults generated as affected by the change of b
regular time intervals in the additional-reference-bits algorithm E i
el
. s
Pago faults of processs (memory 473600 bytes,add-ro &

0 'zooono 400000 600000 800000 -"-‘idooboo;
3§ s Time ‘Inte!'\mlsg

ViHRY

'..&'\‘

Figure 16. Expansion of Figure 15 from 10 to 1,000, 000

4.1.3 Result of the Test

Two performance factors, the number of page faults and memory utilization, were
obtained to evaluate the performance of the algorithms using the simulation. Table VII
contains the results of each algorithm with 417,280 bytes (163 frames per process) as the
memory size. Table VIII provides analogous results with 455,680 bytes (178 frames per

process). Each number appearing inside parentheses in each table denotes the degree of

memory occupancy as a percentage.

TABLE VII. THE NUMBER OF PAGE FAULTS AND MEMORY UTILIZATION

WHEN EACH PROCESS HAS 163 FRAMES (5 * 512 * 163 = 417,280 bytes)

Process ID New implementation
(# of unique
pages) Leftmost Rightmost Highest LRU leaf
1(163) 163(3.5%) 163(28.4) 163(43.3) 163(43.4)
2 (297) 8760(98.6%) 402(49.8) 301(64.6) 314(66.2)
3(221) 305(4.9%) 820(88.2) 258(54.2) 259(54.1)
4(121) 121(1.8%) 121(14.5) 121(22.0) 121(21.9)
5 (432) 697(9.8%) 649(74.5) 432(84.9) 432(84.9)
Process ID Clock interval Additional-reference-bits interval
(# of unique
pages) 16,800 28,000 39,200 70,000 | 140,000 210,000
1(163) 163(43.1) | 163(43.3) | 163(43.6)| 163(43.2)| 163(43.0)| 163(43.3)
2(297) |317(66.4)| 317(66.8) | 317(67.3)] 315(66.4)| 315(66.3)] 315(66.5)
3(221) | 287(57.5)| 251(52.9) | 275(56.7)| 237(50.8)| 233(49.9)] 246(52.6)
4(121) 121(21.8) | 121(21.9) | 121(22.1)| 121(21.9)| 121(21.8)] 121(21.8)
5(432) |432(85.0) | 432(84.9) | 432(84.8)| 432(84.9)| 432(85.0)] 433(84.9)

YTI™Y
4

¥ IS 2

Frars

Er7Iivd

i
e b P

’.'f:,
m
e

e

AT W
UnRLARIY

TABLE VIII. THE NUMBER OF PAGE FAULTS AND MEMORY UTILIZATION

WHEN EACH PROCESS HAS 178 FRAMES (5 * 512 * 178 = 455,680 bytes)

38

Process ID New implementation
(# of uniquej
pages) Leftmost Rightmost Highest LRU leaf
1(163) 163(3.2) 163(3.4) 163(39.8) 163(39.7)
2(297) | 8738(98.4) 8262(98.3) 301(62.7) 309(63.0)
3 (221) 275(4.4) 587(8.4) 247(49.4) 244(48.6)
4 (121) 121(1.6) 121(1.7) 121(20.1) 121(20.1) .
5 (432) 682(9.5) 634(9.3) 432(82.9) 432(82.9) ks
Process ID Clock interval Additional-reference-bits interval :
(# of unique e
pages) 16,800 | 28,000 | 39200 | 70,000 | 140,000 | 210,000 e
1(163) |163(39.6) | 163(39.7) | 163(39.5)| 163(39.7)| 163(39.6) 163(39.9) L
2(297) |316(64.2) | 316(64.2) | 316(64.3)| 313(64.6)| 313(63.8) 315(64.7) s
3(221) |239(48.0) | 236(47.6) | 234(47.4)| 224(46.0)| 228(46.6) 244(48.9) oA
4 (121) 121(20.0) | 121(20.1) | 121(20.0)| 121(20.1)| 121(20.0) 121(20.2) :;’i
5(432) |432(83.0) | 432(82.9) | 432(83.0)| 432(82.9)| 432(83.0)] 433(82.8) i
€
I
L)
4.2 Analysis
4.2.1 Graphs

The graphs were plotted using BLT which is an extension of Tk [Ousterhout 94].

There are two kinds of graphs. One is for depicting page fault numbers and the other is for

displaying memory utilization. The graphs showing the page fault numbers have page fault

numbers on the y axis vs. process ID on the x axis. On the other hand, the graphs

representing memory utilization take the percentage of memory occupancy on the y_axis

vs. process ID on the x_axis. Each graph consists of four different types of plots according

to the subject of discussion. Firstly, the graph comparing each algorithm with the other

39

algorithms was represented (Figures 17 and 18). Secondly, the graph comparing one
implementation method with the other methods within the new implementation using splay
tree was given (Figures 19 and 20). Thirdly, the graph comparing the clock algorithm
with itself using different time intervals was obtained (Figures 21 and 22). Finally, the
graph comparing the additional-reference-bits algorithm with itself using other time

intervals was presented (Figures 23 and 24).

4.2.2 Observations

From the below graphs presented in this subsection, the page fault numbers and
memory utilization of different algorithms or, as the case might be, each method of a given
algorithm can be obtained. These graphs are based on a memory size of 417,280 bytes
calculated using method 1 as described in Subsection 3.3.3, a page size of 512 bytes, and
10,000 clocks as page fault handling time. The algorithm (or the method) that has a lower
page fault rate and a higher memory occupancy than the others, is favored and
recommended for improving system performance.

Figure 17 represents the page fault numbers of each process when using three
different page replacement algorithms. The highest leaf method in the new
implementation, interval 28,000 in the clock algorithm, and interval 140,000 in the
additional-reference-bits algorithm were considered for the graph. Figure 18 gives the
memory utilization of each process when using the same methods and algorithms which
were used for Figure 17.

In Figure 17, the number of page faults of process 2 is 301 when using the highest

leaf method in the new implementation. This value is less than 317 and 315, which are

40

generated by the clock and additional-reference-bits algorithms. The number of page faults
for process 3 is 258 which is more than 251 and 233 as generated using the other two
algonthms. The other three processes had the same values for the number of page faults
generated when for all three algorithms. These were the result of the fact that the allocated
memory to each process was big enough to execute the program (see Table III).

Figure 18 shows that the memory occupancy of each process is almost the same
regardless of the algorithm used. Process 4 had the lowest occupancy, one reason being
that the start point of memory after which process 4 has minimum page fault numbers is

less than the other processes.

[AAS A TEENERE ‘w i MO RN AN NI

Page faults over dlfferent algorithms (41 7280 I 51 2) i T
D' Otighestieal
|sciockizeo00)
21400 | t:lAdd-rlf-blu(ﬂOOOO}
o o € |
> 300 o Tkt
a
L 3
o | o "
£ 200 - biiedty
= s i
o -
o
1 2 3 G 4N T e

Figure 17. Comparison of page fault numbers for three different algorithms
for a page size of 512 and memory allocation of 417,280 bytes

Ciddid
I

41

5T 20 Ty At 23T

N o5t

it 41

Memory utization

Figure 18. Companson of memory occuparncy for three different algorithms
for a page size of 512 and memory allocation of 417,280 bytes

N S il
for new Implementatlon.(41

8000

6000

4000 -

2000

Numbe'l:" of page faults

Figure 19. Companson of page fault numbers in the four different methods used in the
new implementation for a page size of 512 and for memory allocation of
417,280 bytes

42
F (TR Y Vi o Bl B W
Memory utlllzatlon for new Implementation (417230 l 51 2)
T4 ‘m.mmt .
/| € Rightmost |
8 O Highest
80 O foLru_tear |
2 1 [
§ o0 - 9
= < [
3 a &8
E‘ a0 -|©
5§
=
20 o4
2 _
" <*
dh > s

Figure 20. Comparison of memory occupancy in the four different methods used in the
new implementation for a page size of 512 and for memory allocation of

417,280 bytes

Figures 19 and 20 contain graphs that compare the different methods in the new
implementation. Figure 19 gives the number of page faults in each method, and Figure 20
depicts the memory utilization.

In Figure 19, the number of page faults for process 2 is 8,760 when using the
leftmost leaf method in the new implementation. This value is much more than the others
that are generated by the other methods. The number of page faults for process 2 is 402
when using the rightmost leaf method in the new implementation. This value is much less
than that of the leftmost leaf method, but not much higher than the other two methods. It
could be conjectured that the shapes of the splay trees which process 2 had generated

were mostly right heavy. Therefore, as expected the leftmost leaf method became not the

43

LRU approximation but the MRU approximation leaf. The highest leaf method appears to
be slightly better than the LRU leaf method.

Figure 20 shows that the memory utilization of process 2, when the leftmost leaf
method was used, is much better than the other three methods. This is caused by the fact
that the number of page faults of process 2 is much more than the others. Therefore,
process 2 certainly should have spent a lot of time handling page faults. Thus the other
processes terminated before process 2. That is the reason the other processes have less
percentages (at most 9.8% for process 5) of the memory utilization compared to
process 2.

Figures 21 and 22 depict the performance of the clock algorithm, and Figures 23
and 24 depict the performance of the additional-reference-bits algorithm. There are three
regular time intervals (i.e., 16,800, 28,000, and 39,200) in the clock algorithm, and three
(i.e., 70,000, 140,000, and 210,000) in the additional-reference-bits algorithm. The best
time interval among these three can be taken for comparison against the new
implementation using splay tree.

There were no major differences in the page fault rate or the memory utilization
when each interval was used in either the clock or the additional-reference-bits algorithm.
This is caused by the fact that the two randomly selected intervals (i.e., +40%, -40% of
the best interval for clock and +50%, -50% for additional-reference-bits) in each algorithm

roughly belonged to the best time interval range.

~ i rts%;!tf,d!;‘;.;!or cloﬂ?
2
T oo |
-
o
b o X
ok
o
T E'-
= o
s
R
3
W i
gyt ~o
L _ Q
g t
Figure 21. Comparison of page fault numbers for three different intervals used in the clock : n
algorithm with a page size of 512 and memory allocation of 417,280 bytes oG
3
:
)
S

T

Figure 22. Comparison of memory occupancy for three different intervals used in the
clock algorithm with a page size of 512 and memory allocation of
417,280 bytes

45

......

400—‘

Number of page fauilts

U' Ohum-moo _
thruﬂm
uwm

CINERGIRGRS

i

u . » N 4
1 2 3 4 5y B Rl
HRrOCee e I e A 3
Figure 23. Comparison of page fault numbers for three different intervals used in the en
additional-reference-bits algorithm for a page size of 512 and memory 0
allocation of 417,280 byles :
Memory utillzation for add ref—bits algorlthm (417280 15512) £ ;"
3 [ointerval-70000 3
80 - | B interval-140000 5
O Interval-210000
£ 1
=) o
N 60 -
5
> &
o
0
§ a0
=
O
1 2 3 4 5

.. Process D

it’kgxgﬁ ﬁ:@ﬁ.ﬁ;m ﬁf‘ﬂi&

Figure 24. Comparison of memory occupancy for three dlﬂ'erent intervals used in the
additional-reference-bits algorithm for a page size of 512 and memory

allocation of 417,280 bytes

46

4.2.3 Time and Space Complexities

The time and space complexities of each algorithm were also considered as

performance factors. The worst case analysis was used to inspect the above complexities.
4.2.3.1 Space Complexity

Usually, the exact fields of a page table, their arrangement, and the size of a PTE
(page table entry) are highly machine dependent [Tanenbaum 92]. For example, there is no
reference bit in the VAX machine [Hennessy and Patterson 90]. For the simulation in this
thesis, the page table was assumed to have the configuration depicted in Figure 25. This
figure gives a typical PTE. Each entry of a page table is basically an architecture-defined

field except for the page frame number [Hennessy and Patterson 90].

X|M| P |V page frame number

X : the reference bit
M : the modify bit indicating whether or not the page is dirty
P : the protection bit(s) indicating what kinds of access is permitted

V : the valid bit (or the present/absent bit) indicating whether or not
the PTE has a valid address

Figure 25. A typical page table entry

To implement the new algorithm that uses splay trees, three software-defined
pointer fields (i.e., right, left, and parent) were added as page table entries. The highest
leaf method had an extra field (i.e., height) to indicate the depth of each node in the tree.
Except the LRU leaf method, the other three methods did not require any extra software

table. To implement the LRU leaf method, one software table implemented as a linked list

47

was used. This linked list contained the leaves in the tree. In the worst case, there are
(/2] (n being the number of nodes in the tree) leaves in a binary tree [Weiss 92]. Each
node of the linked list had three fields (Figure 6). So the extra space complexity of the
LRU leaf method is O(3[n/2T) which equals O(n).

To implement the clock algorithm, one extra pointer field, which indicates the next
entry, was used because a circular queue was implemented using a linked list. So the
space complexity of the clock algrithm is O(n).

An 8-bit shift register was added as an entry of the page table to implement the
additional-reference-bits algorithm for the simulation. The shift register is provided by the
hardware. This algorithm also used a linked list. Therefore an extra pointer field to

indicate next node was used. Table IX shows the space complexity of each algorithm.

TABLE IX. SPACE COMPLEXITY OF EACH ALGORITHM IN THE WORST CASE

Left(right)most leaf | Highest leaf| LRU leaf Clock | Additional-reference-bits

O(n) O(n) O(n) O(n) O(n)

(n: the number of frames allocated = the number of nodes in the tree)

There is no significant difference in the space complexity of the algorithms because
the space complexity of each method in the new implementation equals O(n) by the

property of the big-oh notation.

4.2.3.2 Time Complexity

Time complexity is mainly considered when searching for a page, choose a victim

page, and rebuilding the page table for the simulation.

‘,,\,
AFHIRA DIATN L

4 PP

T

AL,

48

4.2.3.2.1 Searching

The page to be referenced must be searched for regardless of whether it is main
memory or not. In the case of the new implementation, the single search operation needs
O(n) time in the worst case. The reason being that the time complexity of the search
operation for the binary search tree is O(n) in the worst case. Although the O(log n)
bound on any single operation cannot be guaranteed in the splay tree, the operations of
splay tree have O(log n) amortized time. It is more reasonable that the amortized time be
considered when long sequences of operations are processed, as is the case in this trace-
driven simulation.

In the clock and additional-reference-bits algorithms, the search takes O(n) in the

worst case because these algorithms are implemented using linked lists.

4,2.3.2.2 Selecting a victim page

Tree traversal must be done to get the leaves in the tree and to get the height of
each leaf when selecting a victim page in the highest leaf and LRU leaf methods.
Therefore, it takes O(n) to selecting a victim page in the above two methods. In the case
of the LRU leaf method, the leaf queue must be checked to see whether each leaf node in
the current state was a leaf in the previous state during the traversal. The size of the leaf
queue is at most [n/2] (n being the number of nodes in the tree). Therefore O(Ilrnfﬂ)
equals O(n’) taken as the complexity of the LRU leaf method. In the leftmost (rightmost)
leaf method, O(log n) must be taken because only finding the leftmost (rightmost) leaf is

needed.

49

In the clock algorithm, O(n) is taken in the worst case because all nodes must be
traversed when the FIFO emulation occurs.

In the additional-reference-bits algorithm, all nodes in the linked list must be
traversed to get the page which has the smallest value of shift register. So it also takes

O(n) time in the worst case.

4.2.3.2.3 Rebuilding

In the new implementation, whenever a page is referenced, the page table is rebuilt
using splaying. The time complexity of splaying is O(log n) in amortized bound [Sleator
and Tarjan 85]. In the clock algorithm, the reference bits are cleared after each regular
interval. When the time interval is 1 in the worst case, O(n) time is taken whenever a page
is referenced. In the additional-reference-bits algorithm, one bit is shifted right at each time
interval. When the time interval is 1 in the worst case, O(n) time is taken whenever a page

is referenced.

TABLE X. TIME COMPLEXITY OF EACH ALGORITHM

Left(right)most | Highest LRU leaf Clock | Add-ref-bits
Search O(logn) O(log n) O(log n) O(n) O(n)
Choose O(log n) O(n) O(n%) O(n) O(n)
Restruct O(log n) O(log n) O(log n) O(n) O(n)

(n: the number of frames allocated = the number of nodes in the tree)

50

Table X shows that the time complexity of the new implementation except the
LRU leaf method is better than the other two traditional algorithms when the amortized

bound was considered in the new implementation.

-

L1

=2

'R s 7ot b T A
ANHOBADIAILD

o &

APy 4
]l

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

In Chapter I, the significance of memory management, virtual memory, splay tree,
trace-driven simulation, and the main objective of the thesis were stated. Chapter 11
contained a review of the virtual memory management schemes and splay tree operations.
The topics covered in this chapter were paging, page replacement algorithms, splay tree,
and performance evaluation factors. Chapter III presented the implementation platform
and environment, and discussed the input parameters, the fundamental data structures
used, and the implementation details to implement each algorithm. Chapter 1V addressed
the test programs (i.e., the test traces) used as input and the graphs obtained. This chapter
also analyzed the results of the simulation using performance graphs as well as time and
space complexities.

The main goal of the thesis was to develop a trace-driven simulation to apply a
splay tree to implement a page replacement algorithm. To drive the simulation, five traces
consisting of virtual addresses, obtained from New Mexico State University, were used as
input. The new implementation was compared to two traditional LRU approximations
(i.e., clock and additional-reference-bits). The evaluation factors for performance (i.e.,

page faults rate and memory utilization), were analyzed using graphs obtained from the

51

52

results of the simulation. The time and space complexities of the algorithms were also
compared. Four methods were used to select a victim page in the new implementation: the
leftmost leaf, the rightmost leaf, the highest leaf, and the LRU leaf methods. The highest
leaf method, which does not need any hardware support, had the most reasonable result
over the performance factors considered. Therefore, the highest leaf method could be

recommended as a page replacement algorithm.

5.2 Future Work

The simulation (implemented as part of this thesis) handles the case where the
memory is equally divided among processes. Equal allocation would not be an applicable
approach when processes need to allocate memory according to their dynamic behaviors.
If the memory is divided among processes according to the estimated memory amount
which each program needs, higher memory utilization and more tolerable page fault rate
would be expected.

Paralle]l processes were not used in this simulation. Using two paralle] processes
for the new implementation (i.e., one for searching and the other for splaying) would be an

attractive approach to decrease the execution time.

REFERENCES

[Aho et al. 74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, 7The Design and Analysis of
Computer Algorithms, Addison-Wesley Publishing Company, Reading, MA, 1974.

[Aho et al. 87] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms, Addison-Wesley Publishing Company, Reading, MA, 1987.

[Belady 66] L. A. Belady, “A Study of Replacement Algorithms for a Virtual Storage
Computer”, /BM Systems Journal, Vol. 5, No. 2, pp. 78-101, 1966.

[Belady et al. 69] L. A. Belady, R. A. Nelson, and G. S. Shedler, “An Anomaly in Space-
Time Characteristics of Certain Programs Running in a Paging Machine”,
Communications of the ACM, Vol. 12, No. 6, pp. 349-353, June 1969,

[Belady et al. 81] L. A. Belady, R. P. Parmlee, and C. A. Scalzi, “The IBM History of
Memory Management Technology”, /BM Journal of Research and Development,
Vol. 25, No. 5, pp. 491-503, September 1981.

[Carr 84] R. W. Carr, Virtual Memory Management, UMI Research Press, Ann Arbor,
MI, 1984.

[Coffman and Denning 73] E. G. Coffman, Jr. and P. J. Denning, Operating Systems
Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

[Deitel 90] H. M. Deitel, An [ntroduction to Operating Systems, Second Edition,
Addison-Wesley Publishing Company, Inc., Reading, MA, February 1990,

[Denning 70] P. J. Denning, “Virtual Memory”, ACM Computing Surveys, Vol. 2, No. 3,
pp. 153-189, September 1970.

[Dijkstra 76] E. W. Dijstra, A Discipline of Programming, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1976.

[Hennessy and Patterson 90] J. L. Hennessy and D. A. Patterson, Computer Architecture

A Quantitative Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1990.

[Lister and Eager 93] A. M. Listser and R. D. Eager, Fundamentals of Operating
Systems, Fifth Edition, Springer-Verlag, Inc., London, UK, 1993.

53

~\ T

A1 8 A

54

[Nutt 92] G. J. Nutt, Centralized and Distributed Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[Ousterhout 94] J. K. Ousterhout, 7cl and the Tk Toolkit, Addison-Welsey Publishing
Company, Reading, MA, 1994,

[Poursepanj 94] Ali Poursepanj, “The PowerPC Performance Modeling Methodology”,
Communications of the ACM, Vol. 37, No. 6, pp. 47-55, June 1994.

[Sequent 90] Symmetry Multiprocessor Architecture Overview, Sequent Computer
Systems, Inc., 1990.

[Silberschatz and Galvin 94] A. Silberschatz and P. B. Galvin, Operating System
Concepts, Fourth Edition, Addison-Welsey Publishing Company, Reading, MA,
1994,

[Sleator and Tarjan 85] D. D. Sleator and R.E. Tarjan, “Self-Adjusting Binary Search
Tree”, Journal of the ACM, Vol. 32, No. 3, pp. 652-686, July 1985.

[Spice 94] An Intemmational Trace Archive, NMSU Tracebase, New Mexico State
University, Las Cruces, NM, 1994,

[Tanenbaum 92] A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[Tarjan 83] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1983.

[Udi 89] M. Udi, /ntroduction to Algorithms: A Creative Approach, Addison-Wesley
Publishing Company, Reading, MA, 1989.

[Weiss 92] M. A Weiss, Data Structures and Algorithm Analysis, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1992.

P e <SRy

I TICUTATAIN TITVIQ VE

dhodrirpee il RddNa d A FLUNS R »

APPENDICES

¥
&l

4

FAR T

TN}
A h S

55

Amortized Time:

ANSI:

Belady’s Anomaly:

Demand Paging:

Dinero+:

FIFO:
Hit Time:
LRU:

Miss Rate:

MMU:

Muitiprogramming:

APPENDIX A:

GLOSSARY

The average time of an operation over a worst-case sequence of
operations.

American National Standards Institute.

The phenomenon that more page faults occur when the number of
frames allocated to a process is increased.

A simple technique that transports only the pages that are referenced
from secondary memory to main memory.

A common format used for capturing and representing traces defined
at /pub/tracebase4/r3000/README of the fip site
tracebase(@nmsu.edu as follows: “in addition to the usual type and
address fields, a third field is present that lists the instruction word
for instruction fetches”.

When the information of a page in the memory differs from that on
the disk, the page is called dirty.

First In First Out.
The time to access the upper level of the memory hierarchy.
Least Recently Used.

The fraction of memory accesses not found in the memory. This is
sometimes represented as a percentage.

Memory Management Unit.
The existence of several programs on the same machine at the same

time. Several programs are held simultaneously in memory. While a
program is waiting for I/O, another program can use the CPU.

56

~41 1Ay A

\,‘
fFR}

Preorder tree
traversal:

Process:

Reference Bit:

Reference String:

Space Complexity:

Time Complexity:

Time Sharing:

X Bit:

ST

One of the tree traversal strategies. It processes the current node first
and then the left subtree followed by the right subtree sequentially.

A program in execution. A sequence of actions performed by a
program.

A reference bit is associated with each entry in a page table. It is set
by hardware whenever a page is referenced, either for reading or for
writing. Its value is used in several page replacement algorithms.
Referred to sometimes as the X bit.

A sequence of pages which are referenced by a program. It presents
a program's dynamic behavior. If A = { x | x is a page number of a
given program }, then s=X;X;. . . X,, where x; € A, 1 <i<n,isa
reference string.

The space needed by an algorithm expressed as a function of the
size of a problem. Often it expresses the limiting or asymptotic
behavior of an algorithm.

The time needed by an algorithm expressed as a function of the size
of a problem. Often it expresses the limiting or asymptotic behavior
of an algorithm.

A variant of multiprogramming which implies support for multiple
on-line terminals, one for each active user of the system.

Reference bit (see above).

S 1nsA

j,f..h A -

APPENDIX B:

TRADEMARK INFORMATION

DYNIX, DYNIX/ptx: Registered trademarks of the Sequent Computer Systems, Inc.
Sequent, Symmetry: Registered trademarks of the Sequent Computer Systems, Inc.

UNIX: A registered trademark of AT&T.

58

APPENDIX C:

EXPERIMENTAL RESULTS

C-1 The tables for representing the change of page fault numbers according to different
memory sizes in the new implementation (leftmost leaf, rightmost leaf, and LRU leaf
methods), clock algorithm (intervals 16,800 and 39,200), and additional-reference-
bits algorithm (intervals 70,000 and 210,000).

C-2 The tables for representing the change of page fault numbers according to different
intervals in the clock and additional-reference-bits algorithms. Two memory sizes
(ie., 473,600 and 504,320) were used to find the best range of intervals.

59

60

C-1-1 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES

(LEFTMOST LEAF METHOD IN NEW IMPLEMENTATION)

Process Number of frames allocated to each process
ID 110 120 130 150 160 170 210
1 312 248 189 168 163 - -
2 8839 8824 8809 8779 8766 8749 8377
3 2461 1785 1145 634 352 282 240
4 123 121 - - - - -
5 738 729 728 710 700 690 650
220 240 290 300 310 420 430
] u 5 2 . & g 2
2 7320 4513 379 297 - - -
3 221 . . - - - .
4 - i, - - - - -
5 620 - 570 560 550 440 432

C-1-2 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES

(RIGHTMOST LEAF METHOD IN NEW IMLEMENTATION)

Process Number of frames allocated to each process
ID 100 110 120 160 170 210 220
1 225 192 185 164 163 . -
2 11886 9337 6789 12853 10302 349 1941
3 7971 6742 4033 1048 674 236 221
4 128 121 - - - - -
5 726 716 701 652 642 602 592
230 290 300 320 370 380 400
1 > s - - . 5 -
2 330 299 297 - - - -
3 . “ - - " - =
4 - - - - - - -
5 582 522 512 492 442 432 -

F- | .L'I' L 2 A

61

C-1-3 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES
(LRU LEAF METHOD IN NEW IMPLEMENTATION)

Process Number of frames allocated to each process
ID 50 60 100 110 120 130 140
1 265 233 178 175 170 168 163
2 496 474 434 395 361 338 325
3 1424 1114 389 338 318 291 274
4 124 121 - - . - -
5 528 485 434 433 - 432 -
150 200 210 250 270 280 290
320 303 - 300 - 297 -
266 223 221 - - - -

[T R S

62

C-1-4 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES

(CLOCK ALGORITHM WITH INTERVALS 16,800 AND 39,200)

Process Number of frames allocated to each process (with 16,800)

ID 105 110 115 120 135 140 145
1 175 177 175 176 173 165 164
2 324 324 - - - 323 324
3 365 340 343 329 320 317 287
4 122 121 - - - - -

5 434 - - 432 - - -
150 185 205 210 220 285 290

1 163 - - 5 % 3 2

2 - 316 314 - 313 298 297
3 275 235 225 - 221 - B

4 - - - - - - -

5 5 = = § . = =

Process Number of frames allocated to each process (with 39,200)

D 105 110 120 125 130 135 140
1 174 173 166 - 164 163 -
2 321 324 B - - - 323
3 379 351 327 318 310 272 299
4 122 121 . - - . .
5 435 436 434 432 - - -

185 197 210 215 220 285 290
1 z 3 5 s - . -

2 316 - 314 313 - 208 297
3 234 229 225 226 221 - -

4 - - - 5 - e i
5 = 3 - a 3 2 =

63

C-1-5 THE NUMBER OF PAGE FAULTS ACCORDING TO MEMORY SIZES
(ADDITIONAL-REFERENCE-BITS ALGORITHM WITH
INTERVALS 70,000 AND 210,000)

Process Number of frames allocated to each process (with 70,000)
ID 55 60 130 135 140 145 150
1 289 281 178 - 169 164 B
2 369 349 315 - - - -
3 1402 1171 262 272 250 249 252
4 122 121 - - - - -
5 547 499 433 - - - 432
155 160 185 205 210 285 290
1 163 - - - - - -
2 315 - 313 312 - 298 297
3 255 240 222 - 221 - -
4 - “ " . “ = =
5 - - - - - - -
Process Number of frames allocated to each process (with 210,000)
D 60 65 140 145 150 155 160
1 281 263 169 165 164 163 -
2 369 358 315 - - - -
3 1120 1248 249 247 - 254 247
4 122 121 - - - - -
5 509 489 437 433 432 - -
185 195 200 205 285 290 300
- 309 307 - 298 297 -
233 225 221 - - - -

n L W b o=

64

C-2-1-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(ADDITIONAL-REFERENCE-BITS ALGORITHM WITH
MEMORY ALLOCATION 473,600 Bytes)

Process Intervals
ID 10 100 500 1000 5000 8000 10000
1 163 - - = & = -
2 319 - 318 316 = 2 =
3 252 249 - 236 232 230 226
4 121 - - = - - -
5 432 - - = = = =
11000 13000 15000 20000 30000 50000 60000
1 i % 5 = " & =
2 - - - - 313 - 314
3 227 230 229 - - 227 222
4 = S 2 & & = %
5 " " - . - . .
66000 70000 84000 90000 100000 110000 130000
1 " - " - . . -
2 315 313 315 - 313 315 313
3 227 222 225 223 224 222 223
4 = - . - " - -
5 - - - - - 432 433
140000 150000 154000 160000 170000 180000 190000
1 o . - = = - -
2 - - - - - - "
3 222 233 225 223 235 233 239
4 2 a " . - - -
5 432 . . - - - -

65

C-2-1-2 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS

(ADDITIONAL-REFERENCE-BITS ALGORITHM WITH
MEMORY ALLOCATION 473,600 Bytes)

Process Intervals
1D 195000 200000 210000 250000 270000 300000 340000
1 163 - - - - -
2 313 - 319 313 317 -
3 222 224 233 - - 220 235
4 121 - - - - -
5 433 432 433 435 432 - -
350000 360000 400000 500000 1000000
1 - - - - -
2 - 313 - 319 317
3 252 229 237 236 234
4 - - - - -
5 - - - 433 436
2000000 3000000 4000000 10000000 80000000
1 . = = = -
2 319 - B - -
3 - 252 - - -
4 . - . - .
5 437 - - -

66

C-2-2-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITHM WITH MEMORY ALLOCATION 473,600 Bytes)

Process Intervals

ID 10 100 1000 5000 10000 14000 15000

1 163 = = = - s -

2 319 318 317 316 = w =

3 251 250 247 236 - 232 =

4 121 - - - - = 5

5 435 433 432 - - - 2
16800 19600 20000 25000 27000 28000 29000

1 & - = < 2 2 -

% - - - - - - -

3 235 - 236 235 233 231 243

4 - » z - " s "’

5 . - " < . . -
30000 31000 32000 33000 34000 35000 36000

1 - - - . - = -

2 315 316 - - - - -

3 232 234 235 233 246 232 233

4 - - - . - - -

5 - _ - - - - -
37000 38000 39000 39200 40000 42000 50000

1 a < - ’ % = ®

2 - - . - = - -

3 232 - 231 234 236 231 235

4 S - 2 - = g .

5 4 * . 2 = - -

67

C-2-2-2 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITHM WITH MEMORY ALLOCATION 473,600 Bytes)

Process Intervals
ID 60000 70000 80000 100000 500000 600000 700000
1 163 - - - - -
2z 315 316 - - -
3 231 230 235 - 250 251
4 121 . g g . .
5 432 . g - =
800000 1000000 1500000 2000000 3000000 80000000
- 235 251 = & =

wn B W B e

68

C-2-3-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(ADDITIONAL-REFERENCE-BITS ALGORITHM WITH
MEMORY ALLOCATION 504,320 Bytes)

Process Intervals

ID 10 100 500 1000 8000 10000 11000

1 163 - = = - - -

2 319 - 318 316 - - -

3 246 247 246 236 230 226 225

4 121 - - - - - -

5 432 - - - - - -
15000 20000 30000 50000 60000 66000 70000

1 - - - - - - _

2 - - 313 - - 314 313

3 - - - 223 222 223 222

4 - - - - - - -

5 - - - = - 5 -
84000 90000 100000 110000 130000 140000 150000

1 = - - = & = =

2 - 310 313 314 313 313 -

3 - 221 222 221 221 - 225

4 - - - N - - -

5 = . = = . 5 -
154000 160000 170000 190000 196000 200000 210000

1 - = = 5 - - -

2 - - - - - - 307

3 222 221 - - - 222 225

4 “ & 5 . " -

5 - - = - 433 432 433

69

C-2-3-2 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS

(ADDITIONAL-REFERENCE-BITS ALGORITHM WITH

MEMORY ALLOCATION 504,320 Bytes)

Process Intervals
ID 250000 300000 400000 500000 1000000
1 163 = - x =
2 319 317 313 317 319
3 225 - 227 226 229
4 121 - - . .
5 432 - - 436 437
2000000 3000000 5000000 10000000 80000000
- 247 - . .

L S S S

70

C-2-4-1 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITHM WITH MEMORY ALLOCATION 504,320 Bytes)

Process Intervals
1D 10 100 1000 5000 10000 14000 16800
1 163 - - - - - =
2 319 318 317 = - 316 -
3 247 246 243 233 - 228 233
4 121 - - - - - -
5 435 433 432 - - = 5
19600 20000 25000 27000 28000 29000 30000
1 % < - - > “ 2
2 - 317 - 316 - - -
3 - - 231 229 227 237 228
4 2 = = i = 5 A
5 " o o < - w =
31000 32000 33000 34000 35000 36000 36400
1 - - - - - - -
9 R - R - - - -
3 23] - 220 241 228 233 Z2T
4 . - 2 = = - .
5 . - - - - - .
37000 38000 39000 39200 40000 42000 60000
1 " “ - " - s .
2 . - - - 317 316 .
3 - 228 227 229 233 228 227
4 _ = . X 2 5 5
5 5 o o " " - -

71

C-2-4-2 THE NUMBER OF PAGE FAULTS ACCORDING TO TIME INTERVALS
(CLOCK ALGORITHM WITH MEMORY ALLOCATION 504,320 Bytes)

Process Intervals
ID 70000 80000 100000 500000 550000 600000 700000
1 163 - - - - - -
2 316 - = & = = =
3 226 231 231 - 241 243 -
4 121 - - - - - -
5 432 . - - : - .

1000000 1500000 5000000 7000000 10000000 80000000

L T~ S R S
(4]
w
.
[Ne]
£
w
'
[
1
[

APPENDIX D:

PROGRAM LISTING

;;/!//f/////////f/f///////////////////////////
Iy LRU page replacement algorithm: A new approximation implementation.

/1

// This program implements a simulation containing a new approach that applies splay tree
// as a data structure to implement the LRU page replacement algorithm. Te evaluate the
// performance of the eplay tree LRU replacement algorithm, two popular LRU approximaticn
// algorithms (i.e., clock algorithm and additional-reference-bits algorithm) are also

// implemented. The performance factors are the number of page faults and memory

// utilization. This simulation is implemented as a trace-driven model. The sampled traces
// developed at "Parallel Arxrchitecture Research Laboratory" of New Mexicc State University
// are used as inpute tc thie simulation.

I
LOLTEEIETTELL T LT TR EE T LR i LI I LT TR i fiiiiiritiriry

I/ TTTITEITTETTET T2 L TR0 20000000 TT T 07 0TI P LI i il it iriiitirrrizilils
//

g Myhead.h

/7

// Thie is the header file to implement the simulation.

LELEETELLEEILEIIEELELILLLLELEEREERLERELLLLEITETLLLLLEIIELLELLL 00 IERTEELLELLEELETE =T

#include <stdiec.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/times.h>

#define YES 1
fidefine NO 0
#define ON 1
#define OFF 0
#define MAX PROCESS 10 /* maximum degree of multiprogramming */

/* Structure that represents a node of a splay tree.
- parent pointer is needed to do a bottom-up pass over an access path when splaying.
- height field is needed to compute the height of each leaf. It is only used to
implement the method that replace a highest leaf node. */

struct stree {

int page_num; /* a page is in the main memory */
int height; /* height of the node */

struct stree *right; /* indicates right child node */
struct stree *left; /* indicates left child node +/
struct stree *parent; /* indicates parent node */

s

typedef struct stree PAGE_TABLELl;

PAGE_TABLE1L *root [MAX_PROCESS] ; /* indicates each root of splay
tree for each process */

72

PAGE_TABLE1l

*High_leaf [MAX_ PROCESS];

/l'

73

indicates each highest leaf node
of splay tree for each process */

/* Structure used to link all leaves in a tree. This link is used to find the least

recently used node among the leaves.

struct leaf list |
struct stree
int e _flag;

*leaf;

struct leaf list
)i

typedef struct leaf_ list LEAF_L;

*next ;

LEAF_L *lghead [MAX_PROCESS] ;
LEAF_L *lgtail (MAX_PROCESS] ;

/* Structure that represents an entry for

implement clock algorithm. */
struct circular_que {
inkt rbit;
int page_num;
struct circular_gque *next;

Y

typedef struct

PAGE_TABLE2
PAGE_TABLE2

*cqhead[MAX_PROCESS]:
*Hand [MAX_PROCESS] ;

PAGE_TABLE2 *before [MAX_ PROCESS] ;

circular_que PAGE TABLE2;

To do this,

/-
/=

/i
J{t

/*
/-

/"
/I

/u

the circular queue. Circular gueue

it should be a queue. */

leaf node =/
to know whether or not the leaf node
existed in the previous tree */

*/
w/

indicates head of leaf queue
indicates tail of leaf gqueue

is used to

reference bit */
a page is in the main memory

»/

head of circular queue */

indicates the entry that has

the oldeat page */

indicates the just previous entry of the
entry indicated by Hand pointer */

/* Structure that represents the 8-bit shift register. This contains ordering information
of references for each page. Bit field is needed to shift 1 bit and to change leftmost

bit. */
struct s_reg {
unsigned int unused:7;
unsigned int first:1l;
¥;

typedef struct s_reg SHIFT_REGISTER;

/=

leftmost bit =/

/* Structure that represents an entry page table to implement additional-reference bits
algorithm. It has an 8-bit shift register. The union is used to know the value of shift

register. */
struct add_ref {
int page_num;

union shift (
unsigned int value:8;
SHIFT_REGISTER reg;
} shift_reg;

struct add_ref *next;

}:

typedef struct add ref PAGE TABLE3;

PAGE_TABLE3] *add_tail [MAX_PROCESS] ;

/l'

/1

8-bit shift register =/

indicates tail of page table */

/* Structure that represents a header of page table */

struct add_table {
int num;
struct add_ref *next;

/* number of pages in main memory */

74
}:
typedef struct add_table HEAD_ PTB3;
HEAD_PTB3 *Add_table [MAX PROCESS] ; /* each head of page table for each
process */
/* Structure that is used to implement the blocked queue */
struct blocked_que {
int process_id; /* process that got blocked «/
int enter_ time; /* time when process enter blocked queue */
struct blocked que *next:; /* point next blocked process */
):
typedef struct blocked_que BLOCK Q:
BLOCK_Q *head; /* head of blocked queue */
BLOCK_Q *tail; /* tail of blocked queue */
/* Glcbal Varables */
int CLOCK; /™ wvirtual clock of system */
int No_process; /* number of processes which execute at the
same time ~/
int Strategy; /* indicates algorithm to perform */
int New method; /* four different methods of the new
implementation */
int interval; /* time interval for the clock and additional
-reference-bits algorithms =/
int Frame [MAX_PROCESS] ; /* number cf frames provided to a process */
int No_in_ tree [MAX PROCESS]; /* number of pages in splay tree */
int No_in_cq[MAX PROCESS] ; /* number of pages in circular queue */

i*f///
/

/7 Perform.c

/7

// This is the main file of the simulation. Input traces are available at the

// tracebase@nmeu.edu using anonymous ftp. These traces are in dinero+ format. These raw
// trace files were converted to pages. The files containing pages were used as input. The
// file names and the lengths of reference strings are stored in file "traces.dat".

LEILLETLELITILLELLEITT RSP T T P LIS EL LRI A I EF T E LRI i i i i iiiiiitiiey
#include "myhead.h"

/* variables used in this file */

int T_frame; /* total number cof frames of main memory */

int Mem_size; /* size of main memory (byta) */

int M_mem_allo; /* method of memory allocation */

int page_size; /* size of page (byte) */

int Pfh_time; /* page fault handling time */

int finish; /* to indicate how many jobs are finished */

int No_blockedQ; /* number of processes in blocked queue */

int Idle_time; /* CPU idle time =*/

int len util; /* index of array to store memory utilizatien
at each virtual time interval */

FILE *fptr [MAX_PROCESS] ; /* file descriptor to indicate each input
trace file; one process executes one file

./

int F_blockQ [MAX PROCESS) ; /* flag to indicate whether or not each
process gets blocked */

int F_finish[MAX PRCCESS] ; /* flag to indicate whether each process was
finished */

int cur_pos [MAX_PROCESS] ; /* current position of file pointer */

int how_much [MAX PROCESS] ; /* length of reference strings that should be
processed */

int amt_done [MAX_ PROCESS] ; /* amount of reference strings performed

within one headway in reference strings

75
(how_much) =/
int No_pagefault [MAX PROCESS] ; /* number of page faults for each process */
char trace_name [MAX PROCESS] [80] ; /* name of input trace file =/
int len_refstr[MAX PROCESS] ; /* length of reference strings for each
proceas */
int amt_performed [MAX_PROCESS] ; /* total amount performed in each process */
float M_util [MAX_PROCESS] ; /* memory utilization at each time interval
*/

/* functions used in this file =/
void GetPage (void) ;

void Perform(veid) ;

void PrintMemutil (void) ;

void ChooseMethod (void) ;

void ChooseInterval (void} ;

void Initialize (void) ;

void CalMemutil (void) ;

void GoToBlockedQ(int run_process,int amount) ;
int ProcessHandling (int run_p,int howmuch) ;
BLOCK_Q *CheckBlockedQ (void) ;

void ClearMem(int run_p];

[LELELLPTERIEEEII TR IS ELLE LI PRI R ELETL IR EL LTI EFTEEL LIS LEEEEALE7E8r 182012111111

/! Function: main()

/7 Purpose : This is the main function of this program. It shows the main memu and
// gets the selection from user. Upon a selection, it calle appropriate
4 functions.

LELEEEELTTTTTETTETTI LTI FEEPEETEETEELELERLELL PR AL i riiiiiriiniiriireie=s

void main(void)

{
int num;
char cnum [81] ;
char c;

ayatem("tput clear"):

printf({"\t asssssssssssssssssssssssssassessssssssswsssssssssas\n");

printf("\t = =\n");
printf("\t = LRU PAGE REPLACEMENT ALGORITHM: =\n"};
printf{"\t = A NEW APPROXIMATION IMPLEMENTATION =\n") ;
printf("\t = =\n") ;
printf("\t = =\n");
princf("\t = =\n") ;
printf("\t = =\n");
printf("\t = =\n");
printf("\t = By: =\n");
printf("\t = Jung, Eunjae =\n");
printf("\t = =\n") ;
printf("\t = =\n") ;
printf("\t = w\BN);
printf("\t = =\n"});
printf("\t = Advisor: =\n");
printf("\t = Dr. M. H. Samadzadeh =\n");
printf ("\t = =\n") ;
printf ("\t = =\n") ;
printf{"\t = s\n");
printf("\t = =\n") ;
printf("\t = =\n");
printf("\k =======s==se=====a=====ssscs==sss=ssssss=ssssama=a=a=\n");

printf (" Enter the any key tc continue:");
scanf ("¥c", &c);

/* main memu for the simulation */
for{;:)
(
printf{"\t (Note: The simulatiocn takes 1 to 2 hours.)\n");
PEAnEE (Mmoo m s oo o e e e \n") ;

76
printf("\t - MENU - \n"});
printf ("\t - - \n");
printf ("\t - 1. Convert virtual addresses to virtual pages. - \n");
printf("\t - 2. Perform the simulation. - \n");
printf("\t - 3. Generate graph for page faults. - \n"):
printf ("\t - 4. Generate graph for memory utilization. - \n");
printf("\t - 5. Exit the simulation. - \n"};
PrAnEE (M — e e oo e mmeemaloo \n");
printf (" Select a number: ");
scanf ("%¥d", &num) ;
switch (num)
{
case 1: GetPagel); /* convert virtual addresses to virtual pages
v
break;
case 2: Perform(); /* perform the simulation using three
different algorithms =/
break;
case 3: PageFaultGraphl(); /* generate the performance graph for page
faults */
break;
case 4: MemUtilGraph() ; /* generate the performance graph for memory
utilization =/
case 5: exit(0): /* exit the simulation */

default: printf("”\n Invalid input, Try again. \n");
gets (cnum) ;
num=0;
break;

}
PILLILLLELLLLETIL L LI IT LTI TP A LTI LA PSP LTI LT AT E L E L AT E i it it isiii

// Function : GetPage()

I Purpose : This function is used to convert virtual addresees to pages. It takes
/7 dinero+ format file as input and writes pages to output file. This
/7 output file is used as input to drive the simulation.

LEEEEERREERZEEETEEELELRLIRELIREEE LS LLEELLELLLLHEEEEP T ET TR I LETIEEETEE i E e i iiiieifelsy

void GetPage (void)

{

FILE *fpl; /* for input file */

FILE *fp2; /* for output file =/

int i,j,line;

char buf (200} ;

char inputfile[80] ; /* name of input file */
char outfile[80]; /* name of output file =/
unasigned long wvirtual; /* wirtual address */
unsigned long page; /* wvirtual pages */

printf ("\n\t ==a=== Convert wvirtual addresses to pages ===== ");
printf ("\n\t Print the filename which has virtual addresses: ");

scanf ("¥a", inputfile) ; /* get name of input file =*/
printf ("\n\t Print the filename to keep the converted pages: ");

pcanf ("¥s8",ocucfile) ; /* get name of output file */
printf{"\n\t Select the page size (512, 1024, 2048, 4096 or 8192): ");
scanf ("%¥d", &page_size); /* get page size */

fpl=fopen(inputfile, "r");
fp2=fopen(outfile, "w");

)

77

line=0; /* to check the length of the reference
string */
while(!feof (fp1))
{
fgets (buf, 200, fp1) ;
secanf (buf, "%¥d¥x%x", &i, &virtual, &3j) ;

page=virtual/page size; /* get the page from virtual address */
fprintf (fp2, "¥d\n", page) ;
line++; /* compute the length of reference string */

memeet (buf 80,'\0');
}
printf (" Length of Reference Strings:%d\n",line);
fclose(fpl);
fclose(fp2);
free(inputfile);
free (cutfile) ;
free (buf) ;

ILTEILELELLETELLLE R LA RLEL T LLFELPTLELEL IR EL L2 LB L LT IL LI 01801000800 101810

I
I
1
£r
I
I
/H
1
I
1
//
/

Function : Perform()
Purpose : This function is used to perform the simulation.

1. Get the input parameter from standard input(keyboard), and get the
file names and the lengths of reference strings of input traces from
file "traces.dat".

2. CPU scheduling - to get a process to be executed, first check if
there is a process that finished its I/0 in blocked queue. If none
exists, using random number generator, a process and the length of
reference stringe to be processed are selected. This is repeated
until all processes finish.

3. Print the performance parameters, number of page faults and memory
utilization, for each process.

PIELLLTTIT LTI T LT L P LT P L P PP LT PRI ELL LS ELE LI P LTI L L i E i i iieirries/

void

(

Perform(veoid)

inkt 1095
FILE =fp;
char buf_etr[100];
int No_ready;
BLOCK_Q *p;
int run p;
int start_pos;
int nextlen;
int block:
/* get input parameters */
printf("\t -------ccmmmeeeao Put the Inpubt -----=-----c-c-ccce=== \n");
valid=0; /* get number of processes */
while(wvalid != 1)
{

printf ("\t * Number of processes (between 1 to 10): ");
scanf ("¥d", &No_process) ;
if (No _process > MAX PROCESS)
{ /* # of processes larger than 10 [(maximum
degree of multiprogramming */
printf ("\n\tError: Maximum # of processes is 10, try again. \n"}:
gets (buf_str);
valid=0;
)
else if(No_process == 0)
{ /* input is invalid */
printf ("\n\tError: Invalid input, try again. \n");
gets (buf_str);
valid=0;

78

else
valid=1;

if { valid a= 1)
{
/* get the file names and the lengthe of
input traces */
fp=fopen("traces.dat", "r");
3=0;
memset (buf_str,80,'\0");
while(!feof (fp))
(
fgets(buf_setr.80,fp);
memeet (trace_name [j],80,'\0');
sscanf (buf_str, "¥s%¥d",trace_name[j],&len_refstr(jl);
J++; /* compute number of input traces */
memset (buf_str,80,'\0');

}

fclose(fp) ;

if ((j-1) < No_process)

(/* number of processes more than number of

input traces */
printf ("\n\tError: # of processes is more than # of
traces (5).\n");
gets (buf_str) ;
valid=0;

}

if (valid == 0)

No_process=0; /* initialize number of processes */
}
valid = 0;
while(valid != 1) /* get the memory size =/
{
printf("\t * Memory Size {(minimum size is 512 * # of processes): ");

scanf ("¥d", &Mem_aize) ;
if (Mem_size < (512%No_process))

{

if (Mem_size == 0) /* input ia inwvalid */
printf ("\n\tError: Invalid input, try again.\n");
else /*memory size is smaller than minimum size */
printf("\n\tError: Memory size is too small, try again.\n");
valid=0;
gets (buf_str) ;
Mem_size=0; /* initialize variable for memory size */
}
else
valid =1;
}
valid=0;
while(valid != 1) /* get the method of memory allocation */

(

printf{"\t * Method of memory allocation.\n");

printf("\t - 1. Propotiocnal\n");
printf("\t - 2. Egaul \n");
printcf ("\t - 3. Exit (return to menu) \n");

printf("\t * Select a method: ");

scanf ("%¥d",&M_mem_allo);

if ((M_mem_allo == 1) || (M_mem_allo == 2) ||
(M_mem_allo == 3))

{

valide=1;
if (M_mem_allo == 3)

}

79

return;
else
{ /* invalid input */
printf ("\n\tError: Invalid input, try again.\n");
valid=0;
gets (buf_str);
M_mem_allo=0; /* initialize variable */

)

if (M_mem_allo == 1)

printf("\n\t Future work! Memory will be allocated equally here.\n");

valid =0;
while(valid != 1) /* get page fault handling time */

{

printf ("\t * Page fault handling time (between 10000 and 600000):"):
ecanf ("%¥d",&Pfh_time) ;

if ((Pfh_time < 10000) || (Pfh_time > 600000))
(
if (Pfh_time == 0) /* input ie invalid =/
printf ("\n\tError: Invalid input, try again.\n");
else /* page fault handlig time is not the trivial
range */
printf ("\n\tError: Too small or toco large, try again.\n");
valid=0;
geta(buf_str);
Pfh_time=0; /* initialize the variable =*/
)
else
valid=1;
}
valid=0;
while(valid != 1) /* get the page size */

{

printf("\t Select the page size (512, 1024, 2048, 4096, or B192): ");
ecanf ("¥d", &page_size);
if((page_size == 512) || (page_size == 1024) ||

(page_size == 2048) || (page_size == 4096) ||

(page_size == 8192))

valid =1;
else
{
if(page_size == 0) /* input is invalid */
printf ("\n\tError: Invalid input, try again.\n"};
else
printf ("\n\t Error: Choose cne among 5 page Bizes, try
again. \n");
valid = 0;
gete (buf_str);
page_size=0;
)
)
valid =0;
while(valid != 1) /* get the algorithm to perform */

{

printf("\t * Page replacement algorithms");

printf ("\n\t - 1. New implementation ");

printf ("\n\t - 2. Clock algorithm ") ;

printf ("\n\t - 3. Additional-reference-bitas algorithm"} ;
printf ("\n\t - 4. Exit (return to menu)");

printf ("\t Select a algorithm: ");

scanf ("%d", &Strategy) ;

switch (Strategy)

(

case 1: ChooseMethodl(); /* in the new implementation */

80

valid=1;
break;
case 2: Chooselnterval(); /* in the clock algorithm */
valid=1;
break;
case 3: Chooselnterval(); /* in the add-ref-bits algorithm =/
valid=1;
break;
case 4: return;
default: printf("\n\t Invalid input, try again. \n");
geta (buf atr);
valid=0;

)

T_frame=Mem_size/page size; /* total frames needed */

if((M_mem_allo == 1) || (M_mem_allo == 2))
/* local allocation: memory is equally
partitioned to each process */

for(i=0;i<No_process;i++)
Frame [i] =T_frame/No_process;

}

Initialize(); /* initialize the global variables */
finish=0; /* number of processes finished */

while (finish < No_process)
({
p=CheckBlockedQ(} ; /* check blocked queue */
if (p == NULL)
/* two cases: 1. No process in blocked gueue.
2. No process which has done
1/0 completely. */

No_ready=No_procesa-No_blockedQ;
if (No_process == (finish+No_blockedQ))

block=YES;
else
block=NO;
if ((No ready == 0) || (block == YES))
{
/* all processes were in the blocked queue or
finished */
Idle_time ++; /* no process is running */
CLOCK++;
if (CLOCK%500 ==0)
CalMemutil () ;
}
else
{

run_p=0;

/* get the process to be executed randomly =/
run_p=rand()¥No_process;
if ((F_blockQ[run_p] != ON) && (F_finish[run_p] != ON))
(
/* get the length of headway in reference
string randomly */
how_much[run_p]=rand()¥len_refstr[run_p];
amt_done [run_p] =0;
nextlen=amt_performed[run_p)] +how_much(run_p];
if (nextlen > len_refstr[run_p))
{

how_much[run_p] =len_refstr [run_pl-

81

amt_performed [run_p] ;
if (how_much[run_p]==0)
{
F_finish[run_p] =ON;
/* compute the number of processes
completed */
finish++;
/* release the memory used the process
completed */
ClearMem(run_p) ;

else /* run a process */
ProcessHandling (run_p, how_much[run_p]);

else

/* there was a procesa that finished its I/0
in the blocked queue */
run_p=p->process_id;
ProcessHandling (run_p,how_much [run_p]l);

)

switch(Strategy) /* write information about input */
{
case 1;: printf("\n\t Algorithm: New Implementation ");
printf (" Method: %d\n", New method) ;
switch (New_method)

{

case 1 : printf(" Method: leftmoet leaf\n");
break;

case 2 : printf(" Method: rightmost leaf\n");
break;

case 3 : printf (" Method: highest leaf\n"):;
break;

case 4 : printf(" Method: LRU leaf\n");
break;

)
break;

case 2 : printf("\n\t Algorithm: Clock algorithm ");
printf (" Interval -> %d\n", interval);

break;
case 1 : printf("\n\t Algorithm: Additional-reference-bits ");

printf(" Interval -> %¥d\n",interval);
break;

}

printf ("\n\t Memory size: %d",Mem_size);
printf ("\n\t Page size: %¥d",page_size);
printf ("\n\t Page fault handling time: %¥d\n",Pfh time);

/* print the number of page faulte for each
process */
printf ("\n\t =s==vrorccnm———- Page Fault Numbers -----=c-cc-ccocca \n ");
for(i=0;i<No_process;i++)
printf ("\t Process ¥d -> %¥d\n",i,No_pagefault[i]);

princf ("\t
printf ("\t CLOCK is %d", CLOCK};
printf("\t IDLE TIME is %d", Idle_time);

/* print the memory utilization */

PrintMemutil() ;
printf("\t

82

}

IMEILITERIELIZTI LI EI 200008000000 F0 080T 0LT02 80011000 170000000070000800000000101110011
/7 Function : PrintMemutil()

I/ Purpose : This function is used to print average memory utilization for each
l/ rocess.

P
LELLTELLIELLITE LTI L EL I IR IR I LI IR TE TR PRSI IL L EL LA EL L1 I00EEIEL T LI EEEETEEE %1

void PrintMemutil (void)
{
int i,5;
fleat A_mutil [MAX_PROCESS] ;

printf ("\n\t ------ Average Memory Utilization -------- wys
for(i=0;i<No_procees;i++)
{

/* compute average memory utilization =/
A mubil([i]=M_util[i]/{float)len_util;
/* print the average memory utilization */
printf ("\n\t Process %d => %f",i, A mutil[i]l);
}
printf ("\n") ;

)

PATELLLEETLEET L TL 2L L7200 EL TR LL LI ELL LI EEL LTI EL L LRI i 7iiiiiiiiitiritiiliel
i Function : ChooseMethod()

/! Purpose : Thie function is used to chooae the method which selecte a viectim page
I/ in the new implementation.

Y NNV IAN

void ChooseMethod(void)
(
int valid;
char buf [81];

valid=0;
while(valid != 1)
{

printf ("\n\t -------------- New Implementation ---------------- ")
printf ("\n\t * Select the method");

printf ("\n\t - 1. Replace the leftmost leaf");

printf ("\n\t - 2. Replace the rightmost leaf");

printf {"\n\t - 3. Replace the highest leaf ");

printf ("\n\t - 4. Replace the LRU leaf: "):

scanf ("¥d", &New_method) ;

if ((New_method <1) || (New_method > 4))

{

gets (buf) ;
printf ("\n\tError: Invalid input, try again.\n");
valid=0;

else
valid=1;

)

I LEELEEL T LRI L LT L EELL LTI LT i i T i iiiiliiitds
f/ Function : Chooselnterval ()

// Purpose : This function is used to get the time interval. The time intervals are
I/ used in the clock algorithm and the additional-reference-bits

I/ algorithm.

LELLTEETEIIELIEEIEE IR ETIT L LT LI EEER IR L ELL LRI PR EEEEEEIEL R P EEEEEL L A1 i)

void Chooselnterval (void)

{

int wvalid;
char buf (81];

83

valid=0;
while{wvalid != 1)
{
printf("\n\t * Put the interval (between 1 and 100000000):"};
acanf ("%d", &interval) ;
if (interval == 0)
{
printf ("\n\tError:Invalid input, try again.");
gets (buf) ;
valid=0;

else
valid=1;

}
IVLELITTTILE L BT TEL L LR LL DL EL LTI ELEL L LLLETLEL I LTI LRI I 1080180101111

// Function : Initialize()
// Purpose : This function is used to initialize the variables.

TIEILIII LI IR ELFLEELELEL I T LT L 8L I T ELLELELELTELPLL LI EEL LI B LI L F LTt id i)

void Initialize(void)

{

int - i;
CLOCK=0; /* set virtual clock to 0 */
len_util=0; /* initialize variable for memory utilization
*
Idle_time=0; /* initialize cpu idle time */
No_blockedQ=0; /* initialize number of processea blocked */
head=tail=NULL; /* initialize header and tail of blocked
queue */
for (i=0;i<No_process;i++)
{
amt_performed([i]=0; /* initialize the amount of reference string
to be processed */
root [i] =NULL; /* initialize rooct of splay tree, page table
for new implementation */
High_leaf [i] sNULL; /* initialize pointer indicates the highest
leaf =/
lghead[i] =NULL; /* initialize header of leaf queue */
lgtail [i] =NULL; /* initialize tail of leaf queue */
cghead [i] =NULL; /* initialize header of circular queue */
Hand[i] =NULL; /* initialize hand pointer */

before [i)=NULL;
/* initialize the header of linked list for
additional-reference-bits algorithm */
Add_table[i]=(PAGE_TABLE3 *)malloc (sizeof (PAGE_TABLE3));
Add_table([i] - >next=NULL;
Add_table[i]->num=0;

F_blockQ[i] =OFF; /* clear flag for process blocked */

F_finish([i] =OFF; /* clear flag for process completed */

No_in_eqli]l=0; /* initialize number of pages in circular
queue */

No_in_tree(1]=0; /* initialize number of pages in splay tree
*/

No_pagefault{i]=0; /* initialize number of page faults */

}
RIIPELEEEEREEEEELEEE LT EE TP IT PR FEEEEEEITEEETTTTLL LTI LIPLELL L i i i riiiriaeiy

/7 Function: ProcessHandling()
!/ Purpose : This is used to manage the running process. When the process executee a
!/ page, first check whether or not this page is in memory. If the page

lr doee not exist, the runnig procees goes to the blocked queue. Else, the

84

// running process continues to execute until it finishes the amount of
L reference strings which the process should progresa.

LELLTTIIIEEI LI LR EL I LR IR EEL L2080 00000000000 T T EL LR T ELTIILEL0210L001E00E0010110%]

roid ProcessHandling(int run_p,int howmuch)
int lenIMAX_PROCESSS;
char buf [100] ;
int page; /* referenced page */
int page_fault; /* indicates whether or not a page fault
ocours */
int free frame; /* number of frames available =/

PAGE_TAELE2 *tmp;

fptr(run_p]=fopen(trace_name[run p],"r");
fseek (fptr[run_p],cur_pos[run p],0); /* go to the current position of file */
Thile((lfeof (fptr(run_p))) && (amt_done(run_p] < howmuch))
fgets (buf, 100, fptr(run_p)});: /* gets a page to be executed */
sscanf (buf, "$¥d", &page) ;
amt_done [run_pl++;
amt_performed{run_pl++;
lenfrun_p]++;

/* one clock cycle is used to access the
memory */
CLOCK++;

if ((CLOCK % 500) == 0) /* calculates memory utilization at every 500
clocks */
CalMemutil () ;

/* checks if page ie in main memory */
page_fault=CheckPageTable (page, run_p):
if (page_fault == YES)
{

No_pagefault [run_p]++;/* increases the number of page faulte */

/* running process will be blocked */
No_blockedQ++;
F_blockQ[run_p] =0ON;
GoToBlockedQ (run_p) ;
cur_pos [run_p)=ftell(fptr[run_p]);
fclose (fptr(run_pl);

return;

)
)
if (feof (fptr[run_p))) /* one process is completed */

finish++; /* increase the number of processes completed

wf

elase
(/* get the current position from the beginning

of the file =/
cur_pos [run_p] =ftell (fptr[run_p]);
fclose (fptr[run_pl);

}

TILPLIILELLILI PP AL LTI L L i T Il EEi LIl it itiiififirilireiiriiiiliriill
/7 Function : CalMemutil()

// Purpose : This function is used to calculate the memory utilization at every 500
!/ clocks.

JILLLLLLLIELLL LI EL DI LLT LI EETLL L PTTLL LTI LTI ei il i~

void CalMemutil (void)

{

85

int is
float mul;

for(i=0;i<No_process;i++)

{

switch(Strategy)

{
/* calculate memory utilization as the
algorithm=*/
/* new implementation */
case 1: mul=(float)No_in tree(i]/(float)Framel[i];
/* add memory utilization calculated to
compute average value #/
M_util[i]=mul+M_util[i];
break;
/* clock algoritm *=/
case 2: mul=(float)No_in_cqlil)/(float)Frame[i];
M util{i]=mul+M_util[i];
break;
/* additional-reference-bits algorithm */
case 3: mul=(float)Add_tableli]->num/(float)Frame[1i];
M util[i)=mul+M_util [i] ;
break;
)
)
len util++; /* increase the number of memory utilizations

computed */

}

L2LLLELIELEL LRI LT E i 7780880870 EE T i i i it iiiftiitiiditrirrireiletiiss
1/ Function : CheckBlockedQ()

'y Purpose : This function is used to check the blocked queue whether or ncot a
i ¢ blocked process which has been finished its 1/0 existe. If the process
/7 exists, the process is removed from the blocked queue.

LELLELIRIIELELLLLLLLLLLLE I I EILEE L LR L EELEL L2770 0 P PRI LTI i T Erd i i iiiiiiitiiniisy/

BLOCK_Q *CheckBlockedQ(void)
{

BLOCK_Q *tmp;

if (head == NULL) /* no process in the blocked queue */
return (NULL} ;
elae
{
/* a blocked process which has been finished
ite 1/0 existe */
if ((CLOCK - head->enter_time) >= Pfh_time)
{
/* removes the process from the blocked queue
2/
tmp=head;
head=head->next ;
No_blockedQ--;
F_blockQ[tmp->process_id] =OFF;
return{tmp) ;
)
else /* no process which has been finished =/
return (NULL) ;
}

)

ILIEEEELELREELEEEEELEL L EIEEIIEETEEEEERPETLTEE LT IL LT AL AP EE LI ELi i i il il i)

L Function : GoToBlockedQ
// Purpose : This function is used to send the process that has the page fault

// occurred to the blocked queue.

86

HLELIETIELTELTEELEL LR IR EL L T2 1AL 00010 0T LT L0110 8000101080001110000000180080100111110%/

void GoToBlockedQ(int run_process)

(

BLOCK_Q *new;

/* creates a new entry */
new= (BLOCK_Q *)malloc(eizeof (BLOCK_Q));
new->process_id=run_process;
new-senter time=CLOCK-1;
new->next=NULL;

if (head == NULL)
{ /* blecked queue is empty =/

head=new;
tail=head;
}
else
{
/* add new entry to the tail of queue */
tail->next=new;
tail=tail->next;
}
}
RLLILEILELLEILERL PP T E T I T LT PP LE LTI L L L i L0 2L il i fiitittirirsltifi
117 Function : CheckPageTable ()
/! Purpose : This function is used to check page table whether or not the page is in
// main memory. If a page fault cccurse, return YES. Else, return NO.

LEELLLELIEIZIIIRILELEERE R I I L LR ELLELLEE L PR LRI EEL L EETEELEERELLRERELELL L ELL LTI]

int CheckPageTable(int page, int run_p)
{

inkt re;

switch(Strategy)

(

case 1: re = NewApproach(page,run_p);

break;
case 2 : re = ClockAlg{page,run_p);
break;
case 3 : re = AdditionalRefAlg(page,run_p);
break;
)
if (re == YES |}
return(¥ES) ; /* a page fault occurs */
else
return(NO) ; /* no page fault occurs */

)
IEPEEERTERELIELELEIEETILEELLE LI ELLTTEEREEE P Ld i a i i iiriididiriidi i irididiitird

/7 Function : ClearMem()
/7 Purpose : This function is used to clear the memory which has been used by a
/7 process when the process finishes its execution.

N R VAT

void ClearMem{int run_p)

{

switch (Strategy)

(

case 1: No_in tree[run p)=0; /* release the memory used*/

break;

case 2: No_in _cqlrun_pl=0; /* release the memory used */
break;

case 3: Add _table[run pl->num=0;
break;

87

)

ﬁ;////f/////////fff//////////////////////////f///!//////!//////f//////////////////////////

// Newapp.c

/1

// This file is to implement new implementation of LRU using splay tree as page table.
// This algorithm has 4 different methods to find the viectim page which should be

// replaced.

1/ 1. Leftmost leaf: Select the leftmost leaf as a victim page.

1/ 2. Rightmost leaf: Select the rightmost leaf as a victim page.

I/ 3. Highest leaf: Select the leaf which has the highest height. It means the leaf
// is the farthest node from the root.

1/ 4. LRU leaf: Select the leaf which is LRU among the leaves.

// Hote : The height of root is 0. Each process has its own page table. Making the page
// table, checking the page fault and replacing a victim page when a page fault occurs are
// included in this file.

LLLIILLETLELIEL DL LI TIPL LR LT LELELLELLLTLL RS L LI L LT LTI ELI I 1200801080001 1=]

#include "myhead.h"

int s_exist; /* a flag to indicate whether or not page is
in the tree =/
int leaf num; /* the number of leaves in the tree =/

/* Functicne used in this file */
PAGE_TABLE1l *Search({int page, PAGE TABLEl *rt, int run_p);
PAGE_TABLEl *Splaying (PAGE_TABLEl *cur,int run_p);
PAGE_TABLE1l *gp (PAGE_TABLEl *x);
PAGE_TABLE1 *FindOldPage (PAGE_TABLE1l *top,int run p);
void Insert (PAGE TABLEl *fa,int page,int run p);
void RotateLeft (PAGE_TABLEl *y,int run_p);
void RotateRight (PAGE_TABLEl *y,int run_p);
void GetHeight (PAGE_TABLEl *node,int run_p);
void RemovePage (int run_p);
void GetLeafQue(int run_p);

N NN

// Function : NewApproach()

/1 Purpose : This is main function of Newapp.c file. Check whether or not the page
// needed immediately is in main memory. If the page ie not in the tree,
/! insert the page into the tree. When memory is full, remove the victim
/! page from the tree. If a page fault is occurred, return YES, else,

// return NO.

LELLETIALTLLLEI L LR ELL LTI T PP PRI LLT i iieiiiriiiriiirisf

int NewApproach(int page,int run_p)
{

PAGE_TABLEl *newnode;

PAGE TAELEl *top;

PAGE_TABLE1l *father node; /* indicates the parent node of a node
which will be inserted */
int free_ frame; /* the number of free frames */

top=roct [run_pl ;
if (kop == NULL) /* no page is in main memory */
{ /* make the root */
newnode= (PAGE_TABLE1l *)malloc(sizeof (PAGE_TABLEl)) ;
newnode->page_num=page;
newnode->right = NULL;
newnode->left = NULL;
newnode->parent = NULL;
newnode-s>height = 0;
top=newnode ;
No_in_tree[run p]=1;
root [run_p]=top;

)

else

88

if (New_method == 4) /* LRU leaf method */
(
lghead[run_p] = (LEAF_L *)malloc(sizeof (LEAF_L)};
lghead[run_p]->leaf=newncde;
lghead[run_p] ->next=NULL;
lgtail [run_p]=1ghead[run_p] ;
}

return(YES) ; /* a page fault occcurs */

s_exiet=NO;
father node=Search(page,top,run_p);
if (father_node == NULL) /* the node exists in memory */

return(NO) ; /* no page fault occcure */
else

{
Insert (father node,page,run_p);
free frame=Frame [run_p] - No_in_tree(run_pl;
if (free_frame < 0) /* memory is full =/
/* remove the victim page */
RemovePage (run_p) ;
return(YES) ; /* page fault occurs */

PALLLELEERTELTETTEIEEETETELELLLLLLLLELLEPTELLLEELLEL IR ILELEIEEL I EEL i L EirEEEritill

Function : Search()

/
1/
//
/Y
£

Purpose

: Thie function ie used to search the node containing the page will be
executed immediately. If the node is in the tree, splay at the ncde,
and NULL is returned. Else, the parent node of the node will contain
the page is returned.

LEEIEEIERIETELELIELET LR EEEEETEELPERIRTEETEEEELLISTELT P PR EEELLELLELLLLLLLLES LN InY

PAGE_TABLE1l *Search(int page, PAGE_TABLEl *rt, int run p)

{

PAGE_TABLE1l *top;
PAGE_TABLE1l *ret_val;

if | rt == NULL)

else

{

return (NULL]) ;

if (rt->page_num == page)
{
/* the node containing the immediately needed
page is in tree */
/* splay at the node */
top=Splaying(rt,run_p);
if (root[run_p] != top)
{ /* root is changed */

root [run_p] =top;
/* after slpaying, the height of each nocde
and the leaf queue are changed */
if { (New_method == 3) || (New _method == 4))
(
top->height=0;
High_leaf [run_p]=NULL;
GetHeight (top, run_p);
)
if (New metheod == 4)
GetLeafQue (run_p) ;
b
8_exist=YES;
return (NULL) ;

89

}
else if (rt->page num < page)
{

/* search right subtree */
ret_val=Search(page,rt->right,run_p);
if (e_exist == NO)

{
if [rt->right==NULL)
return(rt);
else
return(ret_val);

else
return (NULL) ;
}
elee if (rt->page_num > page)
{

/* search left subtree */
ret_val=Search(page,rt->left,run_p);
if (s_exist == NO)

{
if(rt->left == NULL)
return(rt) ;
else
return(ret_val);

else
return(NULL) ;

}

I*IIILLIIIRT LT 0070070 L I L P LR 780000000000 T P i il iiiil70011077717
'y Function : Ineert()

/7 Purpose : This function is used to insert the node into the tree. Parent node was
r/ already taken during the search operation. 8o it just links the node to
1/ the parent and then splay at the inserted node. Because tree is changed
1/ after splaying, the height and the leaf queue are reproduced.

HLEELLETEL LR RELL LI LT EE L i LI E T T E T E LI L b i i iiiitiiiiiliie~/

void Insert (PAGE TABLE1 *fa,int page,int run_p)
{

PAGE_TABLEl *newncde;

int i;

/* creates a new node */
newvnode= (PAGE_TABLE1 *)malloc(sizeof (PAGE_TABLEl)) ;
newnode->page_num = page;
newnode->left=NULL;
newnode->right =NULL;
newnode->parent=£fa;
newnode->height=(fa->height) +1;

No_in_tree[run_p]++;

/* linke to the parent */
if (page > fa->page num)
fa->right=newnode;
elee if (page < fa->page_num)
fa->left=newnode;

/* eplay the tree at the inserted node */
root [run pl=Splaying(newncde, run_p);

/* after slpaying, the height of each node
and leaf queue are changed */
if ((New method == 3) || (New_method ==4))

{

root [run_p] ->height=0;
High leaf [run_p]=NULL; /* highest leaf is changed */
GetHeight (root [run_pl,xrun_p);

)

if (New _method ==4 }
GetLeafQue (run_p};

}

I LLLIITLEIILEIIA LI RIL LI E I T L L A0 ETETE T L LI E 8 i T ELIEI LT ieii8ttilliiliesey
!/ Function : Splaying()

/7 Purpose : This function is used to implement splaying. It rebuilds the tree after
// each access that moves the accessed item to the root. To do this,

/r zig, zig-zag, zig-zig steps are repeated bottom-up along the access path
!/ until the accessed item becomes the root of the tree.

LITIELETITLEL LI LD ELL LB LLL LI ELSEIII LR E LT L EL T I LI A I AL I L2 L8t i

PAGE_TABLE1l *Splaying(PAGE_TABLEl *cur,int run_p)
{

PAGE_TABLEl *grandfa;

while (cur->parent != NULL) /* until cur becomes the root */
{

grandfa=gp (cur) ;

if (cur==(cur->parent)->left)

{

if (grandfa == NULL)
/* zig -> rotate the edge joining cur and the
root */
RotateRight (cur->parent,run_p);

else if (cur->parent == grandfa->left)
{

/* zig-zig -> rotate the edge joining parent
and grand parent and then rotate edge
joining cur and parent */

RotateRight (grandfa, run_p) ;
RotateRight (cur->parent,run_p) ;

}

else if (cur-»>parent == grandfa->right)
(

/* zig-zag ->rotate the edge joining cur and
parent and then rotate edge joining cur
and grandparent */

RotateRight (cur-s>parent, run_p);
RotateLeft (cur->parent,run p);

)

else if (| cur==(cur->parent)->right)
{
if (grandfa == NULL) /* zig */
RotatelLeft (cur->parent,run_p);

else if (cur-s>parent == grandfa->right)

{ /* zig-zig */
RotateLeft (grandfa,run_p) ;
RotateLeft (cur->parent,run_p);

)

else if (cur->parent == grandfa->left)

{ /* zig-zag */
RotateLeft (cur->parent,run p);
RotateRight (cur->parent,run_p);

)
)

return(cur) ;

91

)

IIEITLLELLEEEEI LTI P T IEEL 0000000000000 00 000000880000 8800000007000010100010000000001010710107
i Function : gp()
// Purpose : This function is used to get the address of grandparent node.

LIOHEITTILETEIL LB I LR L LRI R E R IR LT L8P EL I LI LEL IS AL T EEELLETEE LTI EEL12EL10000171010010 1%/

PAGE_TABLEl *gp(PAGE_TABLEl *x]

{
}

IILELLELIIIL LR L LRI EL LT IR ED T I LI L LR L8210 TTEIL LA ELIEiieliieittsy
I/ Function : RotateLeft ()

/! Purpose : This function is used to rotate the edge joining y and its

// right child.

LIVPELELEELITFEIL L IR LTI IL LR LR ERTILL LA LA LI EEL LI LI IR0 T2 8000010000000 I+,

return((x->parent) ->parent) ; /* returns grandparents of x */

void RotateLeft (PAGE_TABLEl *y,int run_p)

{

PAGE_TABLE1l *x; /* right child of y */
PAGE_TABLEl *z; /* parent of y =/
x=y->right;

Z=y->parent;

if (z != NULL)
{
if (z->left == y }

z->left = x ; /* x becomes left child of z */
else if (z->right == y)
z->right = x; /* x becomes right child of z */
}
y->right=x->left; /* left child of x becomes right child of y
kf
x->left=y; /* y becomes left child of x */
X-»parent = z; /* parent of x becomes z */
y->parent = Xx; /* parent of y becomes x */

if (y-»>right != NULL)
(y->right)->parent = y; /* change the right of y to y */

}

I IEEILELITTET IR TE LI L L LRI E I L i I TP L i iiie i iiiiriiss
/17 Function : RotateRight ()

I/ Purpose : This function is used to rotate the edge joining y and its

i/ left child.

LELLLELLLEERIL LI EL LI L LI EEE LR LT LT LTI i i i iirtiilitiisy

void RotateRight (PAGE_TABLE1l *y,int run_p)

{

PAGE_TABLE1 *x; /* left child of y */
PAGE_TABLEl *z; /* parent of y */
x=y->left;

z=y->parent;

if (z != NULL)
{
if (z->left == y)
z->left = x ;
else if (z->right == y)
z-»right = x;
}
y->left=x->right;
x->right=y;
x->parent = Z;

92

y->parent = x;

if { y->left != NULL)
(y->left) ->parent =y;

}

IMITLLLELTIILERLEELE R 2RI R I LI ELTEEEE LR L L LR ELLLLLEL LRI IR EE L b I LE i Lieidititiei
/ Function : GetHeight ()

I/ Purpose : This function is used to get the height of the each node and to get the
I/ list of all leaves in the tree. Prefix tree traversal is used because
I/ the height of the parent must be known to get the height of the node.

LIVETIIELELEL LTI R0 L ELTT LIP3 LI LI TLI AL EE LI 2L LTI ELEI LI TL LI EL !

void GetHeight (PAGE_TABLEl *node,int run_p)
{

LEAF_L *tmp,*prev, *newlq, *nleaf;
int exist;

if (node == NULL)

return;
else
{
if (New_method == 3]
{
if (node == root[run_p])
/* height of root is 0 */
node->height=0;
elese

/* height of parent must already computed */
node-sheight=(node->parent) ->height+1;
}
if ((node->right == NULL) && (node->left == NULL))
{ /* node is leaf */
if (Mew _method == 3)
(
if (High_leaf(run_p] == NULL }
High_leaf [run_p]=node;
else
{
/* get the leaf which has the fartest
height =/
if (High leaf [run_p] ->height < node->height)
High leaf [run_pl =node;

}

else if (New method == 4]

{

/* check if the leaf was aleo a leaf
in the previous state */
tmp=lghead[run_p] ;
exist=NO;
while(tmp != NULL)
{

if (node->page_num == (tmp->leaf)->page_num)

{ /* thie leaf was also a leaf in previous
state */
exist=YES;
tmp->e_flag=0N;
break;
)
elee

tmp=tmp->next ;

)

if (exist==NO)

{

/* this new leaf is linked to the tail

93

of the leaf queue */
newlqg= (LEAF_L *)malloc(sizeof (LEAF_L));
newlqg->leaf=node;
newlqg->e_flag=ON;
newlqg->next=NULL;
lgtail [run_p] ->next=newlq;
lgtail [run_p] =newlq;

!
!
GetHeight (node->left,run_p); /* recursive */
GetHeight (node->right, run_p) ;

!
IILTLELLITL LTI LT T B LTI L LR LTI AL ELLLLPL LRI LI LRI AT EEi I L rtiiit1tdE1i1]

VA Function : RemovePage ()
ris Purpose : Thie function is used toc remove the victim page from the tree when
/1 memory is full and a page fault occurs.

LIPEEIEEITETEERRERIL LT EERETTETLEL LI ELEELELFEER PP PP EEEEELETEERL LTI~

void RemovePage (int run_p)
{
PAGE_TABLEl *top;
PAGE_TABLEl =old;

top=root [run_pl;

eld=FindOldPage (top, run_p) ; /* find the victim page */

if(old == (old->parent)->right) /* remove the wvictim page */
(old->parent) - >right=NULL;

elese if(old == (old->parent)-sleft)
(old-s>parent} ->left=NULL;

No_in_tree(run_pl--;

freel(cld) ;

)

I*IELLELILEL LTI TP I L T TR E T L i L L7 i d i i i iiiriiiidiitiiliddiediriiiiiltiiriiitili
If Function : FindOldPage()
rf Purpose : This function is used to find the victim page.

LIELIPRERTELLLLLLLLLELLLLLLLL LI EIRTERLLELLLLLIL I T EEL I EE LR b b i ii bl i bt =t

PAGE_TABLE1l *FindOldPage (PAGE_TABLEl *top,int run_p)

(

PAGE_TABLE1l *ncde;

int i,max_height;
node=top;
if (New method == 1) /* leftmost leaf method */
{
while{ (node->left != NULL) || (node->right I= NULL))
{ /* find the leftmost leaf in the tree */

if({ node->left == NULL)
/* go to right subtree */
node=node->right;

elee
/* go to left subtree */
node=node->left;

}

return(node) ;
)
else if (New _method ==2) /*rightmost leaf method */
(

while((node->left != NULL} || {node-»right != NULL))

{

/* find the rightmost leaf */
if(nocde->right == NULL)
/* go to the left subtree */

94

node=node->left;
else /* go to the right subtree */
node=node->right;

)

return(node) ;

}

else if (New methed == 23) /* highest leaf method =/
return(High_leaf (run_pl);
elee if (New method == 4) /* LRU leaf method %/

{

/* the head of the queue is a victim page */
node=lghead [run_p] ->leaf;
lghead[run p] =lghead[run_p]->next;
return(node) ;

}

IILEETELELEL IR LTI L LT ETELEL LT E LTI EL LI LEL L L PR L2 i L LI P i i riiiirtiiiiitiri
// Function : GetLeafQue()

/f Purpose : This function ie used to get the current leaves. Among those
/! previcus leaves, the leaves which are not the current leaves
/7 are removed from the leaf queue.

LITLLLEETELELLEIELLLLLLIEITL LI L LTI EE T LELTIT LRSI ETETL L LTI i L i i i~/

void GetLeafQue(int run_p)

{
LEAF_L *tmp, *lgtmp, *prev;
int exist;

lgtmp=1lghead[run_p] :
while (lgtmp != NULL)

if (lgtmp->e_flag == OFF) /* entry is not a leaf */
{

if (lqtmp == lghead[run_p])

{ /* entry ie the head of the gueue */
tmp=1lghead(run_p];
lghead[run_p]=1ghead[run_p]->next;
lgtmp=lqtmp->next;
free(tmp) ;

elae

prev-snext=lgtmp->next ;
tmp=lgtmp;
lgtmp=lgtmp->next;
/* entry is the tail of the gqueue */
if(emp == lgtail [run_p])
lgtail [run_p]=prev;
free{tmp) ;

else

(
lgtmp->e_flag=0FF;
prev=lgtmp;
lgtmp=lgtmp->next;

)

}

IRIIILLEIIIL LRI LI L L LR P 0 E0 L0 L0 T R i L8 0T I 00 i1 i1 i rEiiiiiiifidiftiilry

/f
// Ckage.c

/

// This file is to simulate a clock algorithm. A circular queue was used to contain the

95

// pages in main memory. Hand pointer indicates the cldest page which was referenced. The
// reference bit of each page is cleaned after a certain time interval. User can select
// the time interval.

TIPEIILEIITIIILEE T LRI R LT LRI L LR ELEEL I I LI ELT I LTI ELL I It E2821111101040110101%]

#include "myhead.h"

void AddNewPageCl (int page,int run_p);
void ReplacePageCl(int page,int run p);
void SetRefBit (int run p);

int ClockAlg(int page,int run p);

int SearchCircularQ(int page,int run_p);

ILLPEELILTLEELLEZELTELLRELLEERELLILIILITIEER LTI ILEELIELLELELITILLLLLELLIL L EL LI
// Functiocn : ClockAlgl)

/! Purpose : This is main function of Ckago.c file. It checks if the page needed

// immediately ige in main memory with searching the circular queue. If the
Lt page is not in main memory, and main memory is not full, then insert

/7 the page in the queue. If the main memory is full, replace the wvictim
i page with the page needed scon. If a page fault is occurred, return

// YES, else return NO.

PILETTELLEELTTELL I LLTELLLIRIL T L LT LT LA LS LL LTI ETL LT EE il

int ClockAlg(int page,int run_p)

(

int exist;

if (eghead[run_p} != NULL)

SetRefBit (run_p) ;
exist=SearchCircularQ(page, run_p);
if(exist == YES)

return(NO) ; /* no page_fault occurse */
else
{

if (Frame [run_p] == No_in_cqlrun_p])

/* when memory is full, a viectim page must
replaced */
ReplacePageCl (page, run p) ;

else /* add the new page to page table */
AddNewPageCl (page, run_p) ;
return(YES) ; /* page fault occurred */

1
[RELLETIIIIILELELEIIEIEPEEEEEEEEE LTI Ed i Ed i iiiiiiiiiiiiiriririeiiniiiiisiiziisis

// Function : ReplacePageCl ()

// Purpose : This is used to replace a victim page with the page needed immediately.
/7 When a victim page is chosen, if the reference bit of the page which
I/ Hand pointer indicates is OFF, the page is victim page. Else, Hand

I¥s pointer advances until a reference bit of a page is OFF. The page is
// replaced with the new page.

LIEEEELEEIIEEREEL IR L LR IETERLEETEEEEEEEEEEREELLLLLEELLLLEE LRI i)

void ReplacePageCl(int page,int run_p)

{

PAGE_TABLE2 *new, *tmp;

/* search the victim page */
while (Hand [run_p] ->rbit t= OFF)
{
Hand [run_p] ->rbit=0FF;
before [run_p]=Hand[run_p];
Hand [run_p] =Hand [run_p] ->next;

/* create an entry for a new page */
new= (PAGE_TABLE2 *)malloc(sizeof (PAGE_TABLE2)) ;

96

new->rbit=0N;
new->page num=page;

/* replace the victim page with a new page */

new->next=Hand [run_p] - >next;
tmp=Hand [run_p] ;
before[run p]->next=new;
if (Hand[run p] == cghead(run_p])

cghead [run_p]=new;
Hand [run_p] =new- >next;
before [run_p] =new;
free(tmp) ;

}
I HTELILELLL LT ELRL LI EEE LT L L0 0L E L8 LI EEL L ELEE L i LI E i LL i rtelliie/

// Function : SearchCircularQ()

!/ Purpose : This is used to check if the page to be referenced is in the circular
// queue or not. If the page is in there, the reference bit of this page
/! is set, and return YES. If not,return NO.

LIELITLETELLILEIIIT LD IR ELL L LR EL LD P IL I LI LLE LI T LR T L LEE LTI LTt

int SearchCircularQ(int page,int run p)

{
PAGE_TABLE2 *tmp;
ink exist;
exiet=NO;
tmp=cghead [run_p] ;
if (tmp == NULL)
return (NO) ; /* no page exist in main memory */
else
{
if (emp->page_num == page)} /* check header of circular queue */
{

tmp->rbit=0N; /* et the reference bit */

exiest=YES;

return(YES) ;

1

tmp=tmp->next;

while(tmp != cghead[run_p])
{

if (tmp->page_num == page)

{ /* referenced page is in the main memory */
tmp->rbit=0ON; /* set the reference bit */
exist=YES;
return(YES) ;

}

elee
tmp=tmp->next; /* search the next entry */

}
)
return(NO) ; /* page ie not in curcular queue */
}

PRLLLIEREELELELLELELEEEEELEEELLLLLLLEEIETTELEE IR EPEEELLLL LTI LA L L AL i
I/ Function : SetRefBit ()

/Yl Purpose : This is used to clear the reference bit of each page after a certain

// time interval.

LIELEEEERLEEEEEELLELERTER LI L ELEELTETEEEEEEELEERLLLL LN EEEELELLLLI i i i iiirtstires

void SetRefBit (int run_p)

{

PAGE_TABLE2 *temp;

temp=cghead [run_p] ;
if (interval == 1)

{

97

temp->rbit=0FF;
temp=temp->next;
while(temp != cghead[run_p])

temp->rbit=0FF; /* clear reference bit */
temp=temp->next;

else

if((CLOCK¥interval) == 1)
{ /* clear the reference bit after a certain
time interval =/
temp->rbit=0FF;
temp=temp->next ;
while (temp != cghead[run_p])
{
temp->rbit=0FF;
temp=temp->next ;

}

IPEEPLETEERLIRELELLLLLLLELLLLLELL L REL LI ELLLLLLLELLLIIIIIELELLILLLEELEEE102200001011011101
1/ Function : AddNewPageCl{)

1/ Purpose : This is used to add the new entry containing the immediately needed

4 page to the circular queue.

PILLELITTEITEEIETL LRI L L8700 0 L LD I EPTTL0EEI P8I LI R EI T Eiteielieliitivy

void AddNewPageCl(int page,int run_p)

{

PAGE_TABLE2 *H, *new;

/* create a new entry */
new= (PAGE_TABLE2 *)malloc(sizeof (PAGE_TABLEZ2));
new->page_num=page ;
new->rbit=0N;

H=cqhead[run_p] ;
if(H == NULL) /* circular queue is empty */
{

cghead[run_p]=new;

cghead[run_p] ->next=cghead [run_p] ;

Hand[run_p] =cghead [run_p] ;

before [run_p] =Hand [run_p] ;

No_in_cqglrun_pl=1;

else

/* ineert to the tail of circular queua */
while (H->next != cghead[run_p])
H=H->next;
new->next=H->next;
H->next=new;
No_in_cqglrun_pl = No_in_cqlrun_p]+1;
if (new->next == Hand[run_p])
before {run_pl=new;
}
H=cghead[run_p];

}

P00 LEELEL LT EL LI L L LTI L L L ELL LIt it il iliitriiiiliisizisiaiiidiiliririidiiiniiiisy
//

/7 Addref.c

//

I/

// This file is to implement additicnal-reference-bits algorithm. It can get the ordering

/
I/
I/
/"
s
//
H

98

of page referencee by keeping a 8-bit shift register in each entry of page table. The
shift register records the reference bit for each page at each time interval. At each
clock interrupt, the shift register ie shifted right 1 bit and the current reference
bitas are ineerted as the leftmost bit. The page with the lowest value in the shift
register is least recently used page. When memory is full and a page fault ie occurs,
the page is replaced. If a number of pages have the same lowest value, this program
chooses the page which is a frontier in the page table.

LILIIIILLELILLEI 02020 0L EL DL EL L L LR TR LT LTI LI P L LI PP fiii il ieis]

#include "myhead.h"

/* functiocns used in this file */

int AdditionalRefAlg(int page,int run_p);

void AddNewPageAdd(int page,int run_p);

PAGE_TABLE3 *GetSmallValue(int run_p);

void RemovePageAdd(struct add_ref *remove,int run_p);

ITLLLELLLETTITIILT L LI LTI R PP T L EE L L L PP T LT TP ERREL IR LR T EETEELETEEEEEE

/
/
/f
/
//
/

Function : AdditionalRefAlg()

Purpose : This function is main function of Addref.c file. First, it checks if
the page which to be referenced is in main memory or not. If the page
deoesn't exist, add teo the page table. When memory is full, a LRU page
which has a lowest wvalue is replaced with a new page. If a page fault
ie occured, return YES, else return NO.

Y Ny RN AT

int AdditionalRefAlg(int page,int run p)

{

PAGE_TABLEl *tmp, *remove;
int f exist;

tmp=Add_table[run_p]->next;
f_exist=NO;
if (tmp == NULL) /* no page is in memory */
{
tmp=(struct add_ref *)malloc(sizeof (struct add ref)};
tmp->page_num=page;
tmp->shift_reg.value=0;
tmp->shift reg.reg.first=0N;
tmp->next=NULL;
Add_table[run _p]->next=tmp;
add_tail [run_p]=tmp;
Add_table [run_p] ->num=1;
return(YES) ; /* page fault occurs */

else

while (tmp!=NULL)
{
/* clear reference bit after the time
interval */
if (interval == 1)
{ /* time interval is 1 */
tmp->shift_reg.value=tmp->shift reg.value>>1;
tmp->shift_reg.reg.first=0FF;

else

if((CLOCKY¥interval)==1}
{
tmp->shift_reg.value=tmp->shift_reg.value>>1;
tmp->shift_reg.reg.first=0FF;
}
)
tmp=tmp->next;
}

tmp=Add_table [run_p]->next;

99

while (tmp!=NULL)

if (tmp->page num == page)
/* page is in memory */
/* set the leftmost bit of shift register */
tmp->shift_reg.reg.first=0N;
f exist=YES;
return (NO) ;
)
tmp=tmp->next;
)
if (f_exist != YES)
{
/* page fault occcurs */
if (Add_table[run_p]->num==Frame [run_p])
{
/* Memory is full */
remove=GetSmallValue (run_p);
RemovePageAdd (remove, run_p} ;
AddNewPageAdd (page, run_p) ;
return(YES) ;

AddNewPageAdd (page, run_p) ;
return(YES} ;

}

SLLLLLLILLETITTILLI TSI EL LTI 0L EET L0 T IR i il 171 117101077
I/ Function : AddNewPageAdd()

//f Purpose : This function is used to insert a new page to the page table. A
Yy reference bit is inserted into the leftmost bit of shift register.

LEELEELELLEEELETILTTET I ETEEEET LTI PEELERE LR T LA EEIEET L L L LR EL L 82 d 1t 1Etltlee st

void AddNewPageAdd(int page,int run p)
(

PAGE_TABLE3 *tmp;

/* create a new entry */
tmp= (etruct add_ref #*)malloc(sizeof (struct add_ref));
tmp->page_num=page;
tmp->shift_reg.value=0;
tmp->shift_reg.reg.first=0N; /* register's leftmost bit is ON */
tmp->next=NULL;

/* inasert to page table */
add_tail [run_p]->next=tmp;
add_tail [run p]=tmp;
Add_table(run_p]->num++;

)

IIEITTTETLEEELLLEL LIS LT LELTL P LI EL LR LRI LI r I ii i iriiiisiids
// Function : GetSmallValue{)

Vs Purpose : This function 1s used to get the page which has the smallest value of
// the shift register. It will be a victim page.

LILEHILITETIT L LETEIT PRI L TR LS 18I ELL LT ELTEET TP EL L LT EL T TEI I EE L LT f

PAGE_TABLE3 *GetSmallValue(int run_p)

{

struct add_ref *tmpl,*smallest;

smallest=Add table[run_p] ->next;
tmpl=smallest->next;

)

100

while(tmpl != NULL)
{ /* search has smallest value */
if (emallest->shift_reg.value > tmpl->shift reg.value)
/* compare the value */
smallest=tmpl;
tmpl=tmpl->next; /* check the next entry */

}

return(smallest) ; /* return the smallest wvalue */

S IIETLEELLLETEL LI PP LI LT EE PP EEL R L LR LI PP TEEE 022020 T EI T L riiiriitiletiiili

/
/

Function : RemovePageAdd()
Purpose : This function is used to remove the victim page from the page table.

LILELTTETELERLELLLLLELLTLLLLL 0000000 EPEEEELLEL IR TP EFETEEET I I LTI E R L]

void RemovePageAdd(struct add ref *remove,int run_p)

{

)

PAGE TABLE3 *tmp, *before;

tmp=Add_table[run_p] ->next;
if (remove->page num == tmp->page_num)
{
/* victim page is firet element of linked
list =/
/* remove the victim page */
Add_table[run_p] ->next=tmp->next;
Add_table [run_p]->num--;
free(tmp) ;

else

before=tmp;
Emp=tmp->next ;
while(tmp != NULL)
{ /* search the node which has the samllest
value of 8 bit shift register */
if (remove->page _num == tmp->page_num)
(
/* remove the victim page */
before->next=tmp->next;

freel(tmp);
Add_table(run_p] ->num--;
break;
}
else
{ /* search the next entry */

before=tmp;
tmp=tmp->next;

IRLLLHLTER I EEL LI LETTELL LI L EELL LT LI LTI L LLEL PP T i iiiiiiiry

//
1/
//
1/
//
/!
//
//
1/

Graph.c

Thie file is to generate and to show the graphs using the blt_graph command. The
blt_graph is to create and to manipulate graph widgets. The blt_graph widget plots two
variable data in a window. When we see the graphse, graphs have two push buttons, one 1is
<print> (to make postscript file) and <quit> (to exit the graph display). The number of
page faults and memory utilization of each process in each page replacement algorithm
is viewed on the screen.

TELLEETERLERELELELLELLLLLLLLLLLLLLLELEEELEPRELTELLT L LI PRI T L L it

#include "myhead.h"

101

IEPLELEIERIEETVIELEEE LR EEEELERRRERTLLEEL LI EL L LI L EE L LR R i L LI IEiEEi i iiiiiiittiley

/H
/H
I

Function :
Purpose

PageFaultGraph()

: This function is used to choose a graph which will show the number of
page faults acceording to one comparison basis.

LELLELEELTRTELE LT EL LI ET TSI ELEEL LD LR DAL T L LB LD FLLE LR L1 E0111110070110%1)

PageFaultGraph()

{

int
int
char

re;
valid;
buf [81];

valid=0;
while(valid != 1)

(

printf (*\n\t
printf("\t 1.

printf ("\t
printf ("\t
printf ("\t

printf("\t 2.

printf ("\t

printf ("\t
printf ("\t
printf ("\t

printf ("\t 3.

printf("\t 4.

printf ("\t

printf("\t 5
printf("\t 6.

printf ("\t 7.

printf ("\t

printf("\t 8.

------ Page fault graph ------=----cccmmmmmccaccccaao- \n");

Page faulte of 3 different algorithme. \n");

- New implementation (highest leaf methed).\n");

-~ Clock algorithm.\n");

- Additional-reference-bits algorithm.\n");
Page faults of 4 different methods in the new
implementatien.\n") ;

- Leftmost leaf methed.\n");

- Rightmost leaf methed.\n");

- Higheat leaf methed.\n");

- LRU leaf method.\n"};
Page faults of 31 different intervals in the clock algorithm.
\n");
Page faulte of 31 different intervals in the additional\n");
-reference-bite algorithm.\n");

. Page faults va. Frames allocated.\n");

Page faults va. Regular time intervals in the clock
algorithm.\n");

Page faults ve. Regqular time intervals in the additionali\n");
-reference-bite algorithm.\n");

Exit {(return to menu). \n"):

printf("Select a number: ");
scanf ("%d", &re);

ewitch(re)

(

case

case

case

case

case

case

PageFaultGraphl () ;
/* graph for page faults over
different algorithm */
valid=1;
break:
PageFaultGraph2(};
/* page faults for new implementation */
valid=1;
break;
PageFaultGraphi (re);
/* page faults for clock algorithm */
valid=1;
break;
PageFaultGraph3 (re) ;
/* page faulte for additaional-reference-bite
algorithm */
valid=1;
break;
PageFaultGraphs();
/* page faults va. # of frames allocated */
valid=1;
break;
PageFaultGraph6 (};
/* page faults ve. time interval for clock
algorithm =/
valid=1;

102

break;
case 7: PageFaultGraph7();
/* page faults ve. time intervals for
additional-reference-bits algorithm #/
valid=1;
break;
case 8: return;
default: printf("\n\tError: Invalid Input, try again.\n");
gets (buf) ;
valid=0;
break;

)

IILLELLILLL LI E A E TP EL P I I FL LTI LR LT Rt i i iiiititiiiiirtirii
I/ Function : MemUtilGraph()

I Purpoee : This function ie used to choose a graph which will show the memory

s occupancy according to one comparison basis.

PILELEEELELEELEEIEPEER LR EETEEEITEEEL L EL LTI PR LT EELLEEL L2 12 8800 000012 0010101010101/

MemUtilGraph()

{
int re;
int valid;
char buf[81];

valid=0;
while(valid != 1)

{

printf ("\n\t ------ Memory utilization graph --------=--==---------- \n");
printf("\t 1. Memory utilization in the 3 different algorithms. \n");
printf{"\t - New implementation (highest leaf method) .\n");

printf ("\t - Clock algorithm.\n");

printf ("\t - Additional-reference-bits algorithm.\n");

printf ("\t 2. Memory utilization of 4 different methods in the new
implementation.\n");

printf ("\t - Leftmost leaf metheod.\n");
princf ("\t - Rightmoat leaf method.\n");
printf("\t - Highest leaf method.\n");
printf ("\t - LRU leaf method.\n"};

printf("\t 3. Memory utilization of 3 different intervals in the clock
algorithm.\n");

printf{"\t 4. Memory utilization of 3 different intervals in the
additional\n");

printf ("\t -reference-bite algorithm.\n");

printf("\t 5. Exit {return tc menu). \n ");

printf ("Select a number: ");

scanf ("¥d", &re);

switch(re)
(
case 1: MemUtilGraphl();
/* memory utilization over different
algorithme */
valid=1;
break;
case 2: MemUtilGraph2();
/* memory utilization for the new
implementation =/
valid=1;
break;
case 3: MemUtilGraph3l(re);
/* memory utilization for the clock
algorithm =/
valid=1;
break;

}

103

case 4: MemUtilGraphl(re);

/* memory utilization for the additional-
reference-bite algorithm */

valid=1;

break;

case 5: return;

default: printf("\n\tError: Invalid input, try again. \n");

valid=

0;

gets (buf) ;

break;

PRLLILLLTELIII LRI P LI LT EL LT L L LET L LI ELE LI 2 LT LI tiiieiiietiil

Function : PageFaultGraphl ()

: This function is used to generate the page fault graph over 3 different
algorithms. x-vaules are the process IDe and y-vaules are number of
page faults of each process.

LHELEEEEERRRRERERIRERLELEELL LI ETELL LRSI EOTELLLELLL LR E P10 LT LRI IEEE T I LI~)

*in;
17

/
/! Purpose
I/
l/
PageFaultGraphl ()
{

FILE

int

char

svalue [81];

float wvalue_yl [MAX_PROCESZS] ;
float value_ y2[MAX_PROCESS] ;
float wvalue y3[MAX_ PROCESS] ;
fleat wvalue x[MAX_ PROCESS];
char pefile[81];

char s(81];

char sp_seize(81];

char em_size([81];

int p_eize,mem_size;

int cinterval;

int ainterval;

int valid;

No process=5;

memseet (pafile, 81, NULL) ;

in=fopen("Pageflt.grph", "w");
printf ("\nPut the name of the postecript file: ");
scanf ("%a",pafile);

valid=0

:

while(valid != 1)

{

}

valid=0

/* y values related to new implementation */

/* y values related to clock algorithm =/

/* y values related to additional-reference-
bits algorithm */

/* x values */

/* name of postscript file =/

/* time interval for clock algorithm */

/* time interval for additional-reference-
bits algorithm */

/* indicate that input parameters are valid

=y

/* get the name of postsrcipt file */

printf ("\nPut the page size (512, 1024, 2048, 4056 or 8192): "“);

ecanf ("%¥a",ap_size);
p_size=atoi (ep_size);
if ((p_size == 512)

(p_size == 2048)
(p_size == 8192)
valid =1;
else
{
valid=0;

/* get the page size */
|| (p_size == 1024) ||
|| (p_size == 4096) ||
)

/* input is valid */

/* input is not wvalid =/

printf ("\n\tError: Invalid input, try again\n");

‘

while(valid != 1)

printf ("\nPut the memory size: ");
scanf ("¥s",em_size); /* get the memory size */
mem_aize=at0i(smﬂsizei;
if (mem_size == 0)
{
printf ("\n\tError: Invalid input, try again.\n");
valid=0;

else
valids=1;

)

valid=0;
while(wvalid != 1)
{

printf ("\nPut the interval for the clock algorithm: ");

104

scanf ("%¥s",svalue); /* get the time interval for clock algorithm

*/
cinterval=atoi(svalue);
if (cinterval == 0)
{
printf ("\n\tError: Invalid ipmput, try again.\n");
valids=0;

else
valid=1;

}

valid=0;
while(valid != 1)
{

printf ("\nPut the interval for the additional-reference-bite algorithm:

scanf ("%s",svalue) ; /* get the time interval for additional-
reference-bits algorithm */
ainterval=atoi (svalue);
if (ainterval ==0)
(
printf ("\n\tError: Invalid input, try again.\n");
valid=0;

else
valid=1;

/* get x and y values */
for(i=0; i<No_process; i++)
value x[i]=1+1; /* % values are process IDas */
printf ("\n\t x values are process IDs and y values are # of page faults\n");
printf("\t (Note: If you want exit, put <quit>.) \n");

for(i=0; i<No_proccess; i++)
{
printf("\n Put the yl value (New Implementation}: ");
scanf ("%¥e8",svalue) ;
if (strcmp(evalue, "quit") == 0)
return;
else
value_yl[i] =atof (svalue) ;
/* y values are # of page faults for
new implementation */

}

for(i=0; i<No_process; i++)

(
printf ("\n Put the y2 wvalue (Clock Algorithm): ");
scanf ("¥s8",8avalue) ;

Y

105

if (etrcmp(svalue, "quit") == 0)
return;
else
value_y2[i]=atof (svalue) ;
/* y values are § of page faults for
clock algorithm */
}

for(i=0; i<No_process; i++)
{
printf("\n Put the y3 value (Additional-reference-bite Algorithm): ");
scanf ("¥s",evalue);
if (strcmp(svalue, "quit") == 0)
return;
else
value_y3[i]=atof {svalue);
/* y values are ¥ of page faults for
additional-reference-bits algorithm =/

}

fprincf (in, "#!/contrib/bin/blt_wish -f\n");
fprintf (in,"\n");
fprintf(in,"if [file exists /contrib/libraryl (\n");
fprintf (in," set blt_library /contrib/library\n");
fprintf (in,"}\n");
fprintf (in, "\n"};
fprintf (in, "option add *Blt_htext .Font *Times-Bold-R*14* \n");
/* set the font and size */
fprintf(in, "option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintf(in, "option add *graph.xTitle %cProcess ID %c \n",34,34);
/* title of x axis */
fprintf (in, "option add *graph.yTitle %cNumber of page faults %c \n",634,34);
/* title of y axie */
fprintf (in, "option add *graph.title %cPage faults over different algorithms (%d /
¥d) %c \n",34,mem_size,p_size, 34});
/* title of graph */
fprintf(in, "option add *Blt_graph.legendFont *Times-*-*-8* \n");
strcpy (s, "Number of page faults over different algorithms. ");
RepeatBodyGraphl (in,psefile, s);

fprintf(in," set X {\n"): /* write x values to file for graph */
for(i=0; i<No_process; i++)
fprintf (in, "$£ *,value_x[1]};
fprintf (in, "\n");
fprintf (in, *)\n") ;
fprintf (in, "\n");
fprintf (in, " set Y1 {\n"); /* write y values to file for graph */
for(i=0; i<No_process; i++)
fprintf (in, "%f ", value_yl[i]);
fprintf (in, "\n");
fprintf (in, "}\n");

fprintf (in, "set Y2 (\n"); /* write y values to file for graph */
for(i=0; i<No _proceaa; i++)
fprintf(in, "%£ " ,value y2[i]);
fprintf (in, "\n");
fprintf (in, "}\n");

fprintf (in, "set Y3 (\n"); /* write y values to file for graph */
for(i=0; i<Noc_process; i++)
fprintf (in, "¥f ",value_y3{i]);
fprintf (in, "\n") ;
fprintf (in, "}\n");
fprintf (in, "\n");
fprintf (in, "\n");

fprintf (in, "$§graph element create Highest-leaf -xdata $X -ydata $Y1 %c\n",692);

106

fprintf (in," -aymbol diamond -linewidth 0\n");

fprintf(in, "$graph element create Clock(¥d) -xdata $X -ydata $Y2
¥c\n",cinterval, 92);

fprintf(in," -symbol cross -linewidth 0\n");

fprintf (in, "Sgraph element create Add-ref-bits(%d) -xdata $X -ydata $Y3
%c\n",ainterval, 92):

fprintf (in, " -symbel square -linewidth 0\n");

RepeatBodyGraph2 (in) ;

fclose(in);

syatem("chmed 777 Pageflt.grph');
system("Pageflt.grph") ; /* show the graph */
return;

}
I ALIEEIEILLEE LTI ET L LTI LT EET LTI EL LR E LT EE i iiii 11111174y

Iy Function : PageFaultGraph2()
7/ Purpose : This function is used to generate the page fault graph over 4 different
Iri methodes of the new implementatiocn.

ORI VAN

PageFaultGraph2()

{

FILE *in;

int i;

float value_yl[MAX_ PROCESS] ; /* y valuee for leftmost leaf method */
float wvalue_ y2[MAX PROCESS] ; /* y valuee for rightmost leaf method */
float value_y3[MAX_PROCESS] ; /* y values for highest leaf method */
float wvalue y4 [MAX PROCESES]; /* y values for LRU leaf method */
float wvalue_ x[MAX PROCESS]; /* x valuea */

char pefile(81]; /* name of postacript file =/

char al&1];

char svalue [81] ;

int p_size,m_pgize;

int valid; /* indicates that input is wvalid */
No_process=5;

memset (pafile, 81, NULL) ;

in=fopen("Pageflt2.grph", "w");

printf ("\nPut the name of the postscript file: ");

scanf ("¥e",pefile); /* get the name of postscipt file */

valid=0;
while(valid != 1)
{
printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf ("¥s",avalue) ; /* get the page size */
p_size=atoi(evalue);
if ((p_size == 512) |
(p_size == 2043) |
(p_size == B192))
valid =1;

| (p_size == 1024) ||
| (p_size == 4096) ||

else

valid=0;
printf ("\n\tError: Invalid input, try again.\n");

}

valid=0;
while(valid != 1)
(
printf ("\nPut the size of memory: ");
scanf ("%s" ,svalue) ; /* get the memory eize */
m_size=atoi(svalue);
if (m_size == 0) /* input is not wvalid */

{

107

valid=0;
printf ("\n\tError: Invalid input, try again.\n");

else
valid=1;

/* get x and y valuea =/
for(i=0; i<No_process; i++)
value x[i]=i+1; /* x values are process IDs */
printf ("\n\t x values are process IDs and y values are # of page faults\n");
printf("\t (Note: If you want exit, put <quits>.) \n");
for(i=0; i<No_process; i++)

{
printf("\n Put the yl value (Leftmost leaf) : ");
scanf ("¥s",svalue);
if (strcmp(svalue,"quit") == 0)
return;
else
value_yl[i] =atof (svalue) ;
/* y values for leftmoet leaf method */
}

for(i=0; i<No_process; i++)
{
printf ("\n Put the y2 value (Rightmost leaf) : ");
scanf ("%$s",avalue) ;
if (stremp(svalue, "quit") == 0)
return;
else
value_y2Z [i]=atof (svalue) ;
/* y values for rightmost leaf method */
)
for(i=0; i<No_process; i++)
{
printf ("\n Put the y3 value (Highest leaf) : ");
acanf ("¥s",evalue) ;
if (etrcmp(svalue,"quit") == 0)
return;
else
value y3[i]=atof (svalue);
/* y values for highest leaf method =/
}
for(i=0; i<No process; i++)
{
printf ("\n Put the y4 wvalue (LRU leaf) : ");
scanf ("¥s8", evalue) ;
if (strcmp(evalue, "quit") == 0)
return;
else
value y4[i]l=atof (avalue);
/* y values for LRU leaf method */
}

fprintf(in, "#!/contrib/bin/blt_wish -f\n"};

fprintf (in, "\n");

fprintf(in, "if [file existes /contrib/library] {\n");

fprintf (in, " set blt_library /contrib/library\n");

fprintf (in, "}\n");

fprintf(in, "\n");

fprintf(in, "option add *Blt_htext .Font *Times-Bold-R*14* \n"};
/* set the font and size */

fprintf (in, "option add *Blt_text.Font *Times-Bold-R*12* \n");

fprintf(in, "option add *graph.xTitle ¥cPrccess ID %c \n",34.34);
/* title of x axis */

fprintf(in, "option add *graph.yTitle %cNumber of page faults %c \n",634,634);
/* title of y axis */

108
fprintf(in, "option add *graph.title ¥cPage faults for new implementation (%¥d /
td)%¥c \n",34,m_size,p_size,34}; /* title of graph */
fprintf(in, "option add *Blt_graph.legendFont *Times-*-*-8% \n"):
strecpy (s, "Number of page faults for new implemantataion.");

RepeatBodyGraphl (in,psefile,s);
fprintf (in," set X {\n");
for(i=0; i<No_process; i++)
fprintf (in, "$f ",value _x[1i]); /* write x values to the file =/
fprintf (in, "\n") ;
fprintf (in, "}\n");
fprintf (in, "\n");
fprintf({in," set Y1 {\n"); /* write y values for leftmost leaf method to
file =/
for(i=0; i<No_process; i++)
fprintf(in, "$£f ", value_y1[i]);
fprintf (in, "\n") ;
fprintf(in, "}\n");
fprintf(in, "set Y2 (\n"); /* write y values for rightmost leaf method
to file */
for(i=0; i<No_process; i++)
fprintf (in, "¥£f ",value_y2([i]);
fprintf (in, "\n"};
fprintf (in, "}\n") ;
fprintf(in, "aet ¥3 {\n"); /* write y values for highest leaf method */

for(i=0; 1<No_process; i++)
fprintf (in, "$f *",value_y3[i]);

fprintf(in, "\n") ;

fprintf (in, "}\n") ;

fprintf (in, "set Y4 {\n"); /* write y values for LRU leaf method =/
for(i=0; i<No_process; i++)
fprintf (in, "$f ", value_y3[i]);
fprintf (in, "\n") ;
fprintf (in,"}\n");
fprintf (in, "\n");
fprintf (in,"\n");

fprintf (in, "$graph element create Leftmost -xdata $X -ydata $Y1 %c\n",b92);

fprintf{in," -symbol plus -linewidth 0\n");

fprintf (in, "Sgraph element create Rightmost -xdata $X -ydata $Y2 %c'\n",92);
fprintf (in, " -symbol creses -linewidth 0\n");

fprintf (in, "$graph element create Highest -xdata $X -ydata $Y3 %c\n",b92);
fprintf (in, " -symbol square -linewidth 0\n");

fprintf(in, "$graph element create LRU-leaf -xdata $X -ydata $Y4 %c\n",K 92);
fprintf{in, " -pymbol diamond -linewidth 0\n");

RepeatBodyGraph2 (in) ;
fclose(in);

system("chmod 777 Pageflt2.grph");
system("Pageflt2.grph") ; /* show the graph */
return;

}
IELPPHITEIETETTETTTELEEELETIELFEEELE LTI P LT L L LT EL LI ET IR R R I T L L i et

/7 Function : PageFaultGraph3{)
i Purpose : This function is used to generate the page fault graph over 3 different
¥ i intervals in clock or additicnal-reference-bits algorithms.

FHEERETELTEELELTEELELEEEETEERELELELL L PELLELLLLL IR I T E LT LI EELELELT e)

PageFaultGraph3 (int sel)

{
FILE *in; /* file descriptor of file for graph */
int i;

109

float value_yl [MAX_PROCESS] ; /* y values */
float wvalue_y2[MAX_PROCESS] ;
float wvalue_y3[MAX_ PROCESS];

float wvalue_x[MAX_PROCESS] ; /* x values =/

char pefile([81]; /* name of postscript file */
char svalue [81] ;

char s (B1];

int p_size,m_size;

int valid;

No_process=5;

memset (psfile,81,NULL) ;

if (sel == 3)

in=fopen("Pagefltl .grph", "w");
else if (sel == 4)
in=fopen("Pageflt4.grph", "w");
printf ("\nPut the name of the postecript file: "};
scanf ("%¥a",pefile); /* get the name of postscript file */

valid=0;
while(valid != 1)
{
printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf ("%¥s8",svalue) ; /* get the page size */
p_size=atoi(evalue);
if ((p_size == 512) || (p_size == 1024) ||
(p_size == 2048) || (p_size == 4096) ||
{p_size == B8192))
valid =1;
elae

valid=0;
printf ("\n\tError: Invalid input, try again.\n");

)

valid=0;
while({valid != 1)
(
printf ("\nPut the size of memory: ");
ecanf ("%¥8",Bvalue) ; /* get the memory size =/
m_size=atoi (svalue);
if (m_size == 0)
{
valid=0;
printf {("\n\tError: Invalid input, try again.\n");

else
valid=1;

}

for(i=0; i<No_process; 1i++)
value x[i]=i+1; /* get the x values */
printf ("\n\t x values are process IDs and y values are # of page faulte\n");
printf("\t (Note: If you want exit, put <quit>.) \n");
for(i=0; i<No_process; i++)
{
if { sel == 3)
printf("\n Put the yl wvalue (interval 16800) : ");
if (sel == 4)
printf("\n Put the yl value (interwval 70000) : ");
scanf ("¥s8",evalue) ;
if (stremp(svalue,"quit"} == 0)
return;
else
value_yl [i]=atof (svalue) ;
/* get the y valuea */

110

)

for(i=0; i<No_process; i++)
{
if (eel == 3)
printf ("\n Put the y2 value (interval 28000) : ");
if (sel == 4)
printf{"\n Put the y2 value (interval 140000} : "};
scanf ("¥s",svalue);
if (strcmp(evalue, "quit") == 0)
return;
else
value_y2[i] =atof (svalue) ;
/* get the y valuee */

}

for(i=0; i<No_process; i++)
{
if (el ==3)
printf("\n Put the y3 value (interval 39200) : ");
if (sel ==4)
printf ("\n Put the y3 value (interval 210000) : ") ;
scanf ("%a",svalue);
1f (stremp(svalue, "quit") == 0)
return;
else
value y3[i]=atof(svalue);
/* get the y values */

)

fprincf (in, "#!/contrib/bin/blt_wish -f\n");
fprintf (in, "\n") ;
fprintf (in,"if [file exists /contrib/libraryl (\n"):
fprintf (in," set blt_library /econtrib/library\n");
Eprintf(in,“}\n"];
fprintf(in, "\n");
fprintf(in, "option add *Blt_htext .Font *Times-Bold-R*14* \n");
/* set the font and size */
fprintf(in, "option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintf (in, "option add *graph.xTitle YcProcess ID %c \n",34,34);
/* tictle of x axie */
fprintf (in, "option add *graph.yTitle ¥cNumber of page faults %¥c \n",634,34};
/* title of y axis */
if (sel == 3)
fprintf(in, "option add *graph.title %cPage faulta for clock algorithm (%d /
%d}%c \n",34,m_size,p size,34);
/* title of graph =/
else if (eel ==4)
fprintf(in, "option add *graph.title %cPage faults for add-ref-bits
algorithm (%4 / %d)%c \n",34,m _size,p_size,34);
/* title of graph */
fprintf(in, "option add *Blt_graph.legendFont *Times-*-*-8* \n");
if | el == 3)
strcpy (s, "Number of page faults for clock algorithm");
else if (sel ==4)
strcpyl(s, "Number of page faults for add-ref-bite algorithm"};
RepeatBodyGraphl (in,psfile,s);
fprintf(in," set X {\n"); /* write x values to the file */
for(i=0; ic<No process; i++)
fprintf (in, "¥f ",value_x[i]);
fprintf (in, "\n") ;
fprintf{in, "}\n");
fprintf (in, "\n") ;
fprintf(in," set Y1 (\n"); /* write y values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "$f ",value_y1([i]);
fprintf (in, "\n");

111
fprintf (in, "}\n");
fprintf (in, "set Y2 {\n"); /* write y values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "%f ",value_y2[i]);
fprintf (in, "\n") ;
fprintf (in,")\n");
fprintf (in, "set Y2 (\n"); /* write y values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "$f ",value_y3[i]);
fprintf (in, "\n") ;
fprintf {in, "}\n");
fprintf (in, "\n") ;
fprintf (in, "\n") ;
if (sel ==3)
fprintf (in, "$graph element create Interval-16800 -xdata $X -ydata $Y1
fc\n",92);
if (sel ==4)
fprintf {in, "Sgraph element create Interval-70000 -xdata $X -ydata $Yl
tc\n",b92);
fprintf (in," -symbol diamond -linewidth 0\n");
if [(sel == 3)
fprintf (in, "$graph element create Interval-28000 -xdata $X -ydata $Y2
¥c\n", 92);
if (sel ==4)
fprintf (in, "Sgraph element create Interval-140000 -xdata $X -ydata §Y2
tc\n",92);
fprintf (in, " -symbel crosa -linewidth o\n");
if (sel == 3)
fprintf (in, "$graph element create Interval-39200 -xdata $X -ydata 5Y2
Y¥c\n",92);
if (el == 4)
fprintf (in, "S5graph element create Interval-210000 -xdata $X -ydata 5Y3
Yc\n", 92) ;
fprintf (in," -symbol square -linewidth 0\n");
RepeatBodyGraph2 (in) ;
fclose (in);
if (el == 3) /* for clock algorithm */
(
system("chmod 777 Pagefltl.grph");
system{"Pagefltl.grph"); /* generate the graph */
}
else if (el == 4) /* for additiocnal-reference-bite algorithm */
{
system("chmed 777 Pagefltd.grph");
system("Pagefltd.grph") ; /* generate the graph */
)
return;
}
I*ILELEIIELETIL LRI L EEL LT L7 LI E L2 L L L0 T A LI i i ririiiiiriilifeisi
/7 Function : PageFaultGraphS5()
/7 Purpose : This function is used to generate the page fault graph for a process
'l when the number of frames allocated are increased.

LELITIILLEEL LTSI L LTI LR EL LTI T AL L L L i LT PP L7

PageFaultGraph5 ()

{
FILE *in;
int iz
float wvalue_x[100]; /* x values are # of frames allocated */
float wvalue_y1(100]; /* y values are # of page faults */
char pefile[81]; /* name of postscript file =/

char s[81];

112
int n,pnum;
char methd [B1] ; /* algorithm or method */
char avalue[81] ;
int p_size;
int valid;

memset (pefile, 80, NULL) ;

in=fopen("PagefltS.grph", "w");

printf ("\nPut the name of the postscript file:");

scanf ("¥s" ,pefile) ; /* get the name of postscript file */

valid=0;
while(valid != 1)
{
printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf ("%¥8",evalue) ; /* get the page_size */
p_size=atoi(svalue);
if ((p_size == 512 } || (p_size == 1024) ||
(p_size == 2048) || (p_size == 4096) ||
(p_eize == 8192))
valid =1;
else

valid=0;
printf("\n\tError: Invalid input, try again.\n");

}

printf ("\nPut the algorithm or the method:");
scanf("%¥a",methd) ; /* get the algorithm or method =/

valid=0;
while(valid != 1)
{
printf ("\nPut the procees number: ");
scanf ("¥s",svalue);
pnum=atoi (svalue) ; /* get the process number */
if (pnum == 0)
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");

else
valid=1;

)

valid=0;

while(wvalid != 1)}

{
printf ("\nPut the number of points: ");
scanf ("¥s8",esvalue) ;

n=atoi (svalue) ; /* get # of points */
if {n == 0)
(

valid=0;

printf ("\n\tError: Invalid input, try again.\n");

elae
valid=1;

/% get x and y values */
printf ("\n\t x values are # of frames allocated and y values are # of page
faulta\n");
printf("\t (Note: If you want exit, put <quit>.) \n");
for(i=0; ic<n; i++)

{

)

printf{"\n Put the x value: ");
scanf (“¥8",svalue) ;
if (strcmp(svalue, "quit") == 0)

return;
else

value_x[i]l=atof (svalue);

}

for(i=0; icn; i++)

{

/* get x values (# of frames allocated)

printf ("\n Put the y value: ");
scanf ("¥s8",svalue) ;
if (etrcmp(evalue, "quit") == 0)

return;
else

value_yl[i]=atof (svalue);

)

/* get y values (# of page faults) =/

fprintf(in, "#!/contrib/bin/blt_wish -f\n");

fprintf (in, "\n") ;

fprintf(in,"if [file exists /contrib/library] {\n"):

fprintf (in, " set blt_

fprintf (in, "}\n");
fprintf (in, "\n");
fprintf (in, "option add

fprintf (in, "option add
fprintf (in, "option add

fprintf(in, "cption add

fprintf(in, "option add *graph.title %cPage faults of procees ¥d (page size:%d,

library /contrib/library\n");

*Blt_htext.Font *Times-Bold-R*14* \n"};
/* set the font and size =/
*Blt_text.Font *Times-Bold-R*10* \n");

113

v/

*graph.xTitle ¥cNumber of frames allocated %c \n",634,34);

/* title of x axis */
*graph.yTitle %cNumber of page faults ¥c \n",634,34);
/* title of y axis */

%s)%c \n",34,pnum,p_size,methd, 34) ; /* title of graph */

fprintf (in, "option add

*Blt_graph.legendFont *Times-*-%-8* \n");

strcpy(s, "Number of page faulta vs. number of frames");
RepeatBodyGraphl (in,psfile,s) ;

fprintf(in," set X {\n");

for(i=0; i<n; i++)

/* write x values to file */

fprintf (in, "$f ", value x[i]);

fprintf (in, "\n");
fprintf (in, ")\n");
fprintf {in, "\n");

fprintf(in," set Y1 {\n");

for(i=0; i<n; i++)

/* write y values to file */

fprintf (in, "%f ",value _y1li]);

fprintf(in, "\n");
fprintf (in, "}\n") ;
fprintf (in, "\n");
fprintf (in, "\n") ;

fprintf(in, "Sgraph element create Highest -xdata $X -ydata $Y1 %c\n",b92);
fprintf(in," -symbol square -linewidth 1\n"):;

RepeatBodyGraph2 (in) ;
fclose(in);

system("chmod 777 Pageflt5.grph");
system("PagefltS.grph"); /* show the graph */

return;

IRILELIETETELEET I T ELI LT EL I IL LR P T TEI LI ET T AT E LTI i Ty
Function : PageFaultGraphs6 ()
Purpose : This function ie used to generate the page fault graph for

a process when the time intervale are changed in the cleock

/f
/
//

114

1/ algorithm.
LILLEEEERIELL L TEL TR LTI EL DL LL TP EELLLETELI LR8P 2800800000000 000000777%7

PageFaultGraphs ()
{

FILE *in;

int i;

float wvalue_x[100]; /* x values are time intervals for clock
algorithm =/

float wvalue_y[100]; /* y values are # of page faults =/

char pefile([81]; /* name of postscript file */

char e[B81];

char svalue [81]) ;

int n,pnum,m_size,p size;

int valid;

memset (pefile, 81, NULL) ;

in=fopen("Pageflt6.grph", "w") ;

printf ("\nPut the name of the postscript file: "):

scanf ("%¥s",pafile); /* get the name of postacipt file */

valid=0;
while(valid != 1)
{
printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf ("¥a",svalue); /* get the page size */
p_size=atoi(svalue);
if ((p_size == 512) || (p_size == 1024) ||
(p_size == 2048) || (p_size == 409s) ||
)

(p_size == 8192)
valid =1;
else
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");
)
)
valid=0;

while(valid != 1)
{
printf ("Put the process number: ");
scanf ("%8",evalue) ; /* get the name of postescript file */
pnum=atoi (svalue) ;
if (pnum == 0)
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");

else
valid=1;

)

valid=0;
while(valid != 1)
{
printf("Put the size of memory: ");
scanf ("%¥s8",svalue) ; /* get the memory =/
m_seize=atoi (svalue);
if (m_size == 0)
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");

else
valid=1;

115

valid=0;
while(valid != 1)
{
printf ("Put the number of points: ");
scanf ("¥e",evalue);
n=atoi (svalue) ; /* get § of points */
if (n == 0)
(
valid=0;
printf("\n\tError: Invalid imput, try again.\n");

else
valid=1;

}

printf (*\n\t x values are time intervals and y values are # of page faults\n");
printf("\t (Note: If you want exit, put <quit>.) \n");
for(i=0; i<n; i++)
{
printf ("\n Put the x value: ");
scanf ("%¥s", svalue);
if (strcmp(evalue, "quit") == 0)
return;
elee
value_x[i])=atoi(svalue);
/* get x values (time intervals) */

)

for(i=0; i<n; i++)
{
printf("\n Put the y value: ");
scanf ("%¥a",svalue) ;
if (strcmp{svalue, "quit"} == 0)
return;
else
value_y[i]=atoi (svalue);
/* get y values (# of page faults) */

)

fprintf (in, "#!/contrib/bin/blt_wish -f\n");
fprintf (in, "\n");
fprintf (in,"if [file existe /contrib/library] {\n"):
fprintf(in," set blt_library /contrib/library\n");
fprintf (in, "}\n");
fprintf(in, "\n");
fprintf(in, "option add *Blt_htext.Font *Times-Bold-R*14* \n");
fprintf(in, "option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintf(in,"option add *graph.xTitle %cTime intervals %c \n",34,34);
/* title of x axis */
fprintf(in, "option add *graph.yTitle %cNumber of page faults %¥c \n",634,34);
/* title of y axis */
fprintf (in, "option add *graph.title %cPage faults of procees¥d (memocry:%d
bytes,clock)¥c \n", 34,pnum,m_size, 34);
/* title of graph */
fprintf{in, "option add *Blt_graph.legendFont *Times-*-%*-8* \n");
strcpy(s, "Number of page faulta vs. time intervala");
RepeatBodyGraphl{in,psfile,s);

/* print x and y values to the file */
fprintf(in," set X {\n"); /* write x values to the file */
for(i=0; i<n; i++)

fprintf(in,"%f ",value x[i]);
fprintf(in, “\n") ;
fprintf(in, " }\n");
fprintf (in, "\n"};
fprintf (in," set Y {\n"}; /* write y values to file */

116

for{i=0; ien; i++)
fprintf (in, "¥f ",value_y[i]);
fprintf (in, "\n");
fprintf (in,")\n");
fprintf{in, "\n"};
fprintf(in, "\n");

fprintf(in, "Sgraph element create Clock -xdata $X -ydata $Y %c\n",b92);
fprintf(in," -symbol square -linewidth 1\n");
RepeatBodyGraph2 (in) ;

fclose(in) ;

system("chmod 777 Pageflté.grph");
syetem("Pageflté.grph"); /* show the graph =/
return;

}
ILIPLLLLTITEL T IELEL LR DL LRI EL LD LD T L L EL D2 R L0 H DL E L EE R Ei i 1 iiiEll il

fif Function : PageFaultGraph7()

i Purpose : Thies function is used to generate the page fault graph for a process
/7 when the time intervals are changed in the additicnal-reference-bits
it algorithm.

HLEELLLTEELLLLL LTI LT P LA LT E LA LI ETL IR L L EEII e iire s il irr=/

PageFaultGraph7()

(
FILE *in;
int i;
float value _x[100]; /* % values are time intervale for the
additional-reference-bits algorithm =/
float wvalue y[100]; /* vy values are # of page faults */
char pefile(B81]; /* name of the postscript file */
char e[81]);
char svalue [81];
int n,pnum,m_size,p size;
int valid;

memset (pefile, 81, NULL) ;

in=fopen("Pageflt?7.grph", "w");

printf("\nPut the name of the postscript file: ");

scanf ("¥e" ,psfile); /* get the name of postscript file */

valid=0;
while(valid != 1)

(

printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");

scanf ("¥8",evalue) ; /* get the page size */
p_size=atoi (svalue);
if ((p_size == 512) || (p_size == 1024) ||
(p_size == 2048) || (p_size == 4096) ||
(p_size == 8192))
valid =1;
elese
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");
}
}
valid=0;

while(valid 1= 1)
{
printf("Put the proceass number: ");
scanf ("¥a",svalue) ; /* get the # of processes */
pnum=atoi (evalue) ;
if (pnum == 0)

(

117

valid=0;
printf ("\n\tErrer: Invalid input, try again.\n");

elaee
valid=1;

}

valid=0;
while(valid != 1)
{
printf ("Put the size of memory: ");
scanf ("¥s",svalue) ; /* get the memcry size */
m_size=atoi(svalue);
if (m_size == 0)
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");

elee
valid=1;

}

valid=0;
while(valid I= 1)
{
printf ("Put the number of peinta: ");
scanf ("¥a", evalue) ; /* get the § of points */
n=atoi(avalue) ;
if (n == 0)
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");

elase
valid=1;

)

printf ("\n\t x values are time intervals and y values are § of page faulta\n");
printf("\t (Note: If you want exit, put <quit>.) \n");
for(i=0; ien; i++)
{
printf ("\n Put the x value: ");
scanf ("%¥8",svalue) ;
if (strcmp(svalue, "quit") == 0)
return;
else
value x[i]=atoi (svalue);
/* get x values */

}

for(i=0; i<n; i++)
{
printf("\n Put the y value: "};
scanf ("¥s8",evalue) ;
if (strcmp(evalue,"quit") == 0)
return;
else
value y[i]=atoi(svalue);
/* get y valuea */

}

fprintf (in, "#!/contrib/bin/blt_wish -f\n");
fprintf (in, "\n");

fprintf (in,"if (file exista /contrib/library] {\n"):
fprintf (in," set blt_library /contrib/library\n");
fprintf (in, "}\n") ;

fprintf (in, "\n");

fprintf (in, "option add *Blt_htext.Font *Times-Bocld-R*14* \n");
fprintf (in, "option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintf (in, "option add *graph.xTitle ¥cTime intervals %c \n",34,34);
/* title of x axis */
fprintf(in, "option add *graph.yTitle %cNumber of page faults %c \n",34,24);
/* title of y values */
fprintf(in, "option add *graph.title %¥cPage faults of processt%d (memory : %d
bytes,add-ref-bits) ¥c \n",634,pnum,m_size, 34);
/* title of graph */
fprintf (in, "option add *Blt_graph.legendFont *Times-*-*-8+* \n");
strcpy (e, "Number of page faults vs. time intervals");
RepeatBodyGraphl (in,psfile,s) ;

/* print x and y values to the file */
fprintf(in, " set X (\n"); /* write x values to file */
for(i=0; i<n; i++)

fprintf (in, "%f ",value_x[i]);
fprintf (in, "\n") ;
fprintf (in, "}\n");
fprintf (in, "\n"};
fprintf(in," set ¥ (\n"); /* write y values to file */
for(i=0; icn; i++)

fprintf (in, "¥f *,value y[i]);
fprintf (in, "\n") ;
fprintf (in, "}\n");
fprintf (in, "\n");
fprintf (in, "\n");

fprintf (in, "$graph element create Add-ref-bits -xdata $X -ydata $Y %c\n",692);
fprintf (in, " -symbol equare -linewidth 1\n");

RepeatBodyGraph2 (in) ;

fclose(in) ;

system('"chmed 777 Pageflt?.grph);
system("Pageflt?7.grph") ; /* show the graph */
return;

)

PRLLLILELILETLE LI TEL I TR LE LI L LTI AT LI ET LTI L PR L LT Ll iiiiriiiiey
¥ i Function : MemUtilGraphl ()

!/ Purpcose : This function is used to generate the memory utilization
Vi graph over 3 different algorithms. The x values are process
[/ IDe and the y vaules are the memory utilization of each

i process .

JILLELLLIII IR DL DL 280080 ERLETI PRI LT8RP PT LA EEP L P i T

MemUtilGraphl ()

(

FILE *in;

inkt iz

fleat wvalue yl[MAX_PROCESS]; /* y values for new implementation */

float wvalue_ y2[MAX_PROCESS] ; /* y values for clock algorithm */

float wvalue_y3[MAX PROCESS]; /* vy values for additicnal-reference-bits
algorithm =/

float wvalue_x[MAX PROCESS] ; /* x values =~/

char pefile(81]; /* name of postacript file */

char s[81];

char svalue[B1];

int p_eize,m_size;

ink valid;

No_process=5;

memaet (psfile, 80, NULL) ;

in=fopen ("Memutill.grph", "w") ;

printf("\nPut the name of the postscript file: ");

scanf ("¥e" ,pefile); /* get the name of postascript file */

118

valid=0;
while(valid != 1)

{

119

printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");

scanf ("¥s8",svalue) ;

p_size=atei(svalue);

if ((p_eize == 512) |
(p_size == 2048) |
{p_size == 8192))

(p_size == 1024) |
(p_size == 4096) |

/* get the page size */

|
I

printf{"\n\tError: Invalid input, try again.\n");

valid =1;
else
{
valid=0;
}
}
valid=0;
while(valid != 1)

{

printf ("Put the size of memory: ");

scanf ("%¥a",avalue) ;
m_size=atoi (svalue) ;
if (m_size == 0)

{

valid=0;

/* get the memory size */

printf ("\n\tError: Invalid input, try again.\n");

else
valid=l;

}

printf ("\n\t x values are process IDs and y values are memory utilization\n");
printf("\t (Note: If you want exit, put <quit>.) \n");

for(i=0; i<No process; i++)
value x[i]=i+1;
for(i=0; i<No_process; i++)

{

/* get x and y values */

/* x values are process IDs */

printf ("\n Put the yl value (New implementation): ");

scanf ("¥s",svalue) ;

if (strcmp(svalue, "quit")

return,;
else

/* get y values for the new implementation */

== 0)

value_yl[i]=atoi(svalue);

)

for(i=0; i<No_process; i++)

{

printf("\n Put the y2 walue (Clock algorithm): ");

scanf ("¥a",svalue) ;

if (etrcmp(evalue, "quit")
return;

elee

== 0)

value_y2[i]=atoi (svalue);

)
for(i=0; i<No_process; i++)

{

/* get y values for the clock algorithm */

printf ("\n Put the y3 value (Additicnal-reference-bits algorithm): ");

scanf ("%¥s",svalue) ;

if (strcmp(svalue, "quit")
return;

else

w100)

value y3[i]=ateci(svalue);

/* get y values for the additiocnal-reference-
bits algorithm */

}

120

fprintf(in, "#!/contrib/bin/blt_wish -£f\n");
fprintf (in, "\n");
fprintf(in,"if [file existe /contrib/library] (\n");
fprintf(in," eet blt library /contrib/library\n");
fprintf (in, "}\n");
fprintf (in, "\n") ;
fprintf (in, "option add *Blt_htext.Font *Times-Bold-R*14* \n");
fprintf (in, "option add *Blt_text.Font *Times-Bold-R*12* \n");
fprintf(in, "option add *graph.xTitle %cProcess ID %c \n",634,34);
/* title of x axis */
fprintf (in, "option add *graph.yTitle %cMemory utilization %¥c \n",634,34);
/* title of y axis */
fprintf (in, "option add *graph.title %cMemory utilization over different algorithmse
(¥d / %d)%c \n",34,m_size,p_size,34); /* title of graph */
fprintf(in, "option add *Blt_graph.legendFont *Timeg-*-*-8* \n");
stropy (s, "Memory utilization over different algorithms");
RepeatBodyGraphl (in,psfile) ;

fprintf(in," set X {\n"); /* write x values to the file »/
for(i=0; 1<No_process; i++)
fprintf (in, "$f ",value x[i]);
fprintf(in, "\n");
fprintf (in, "}\n");
fprintf (in, "\n");
fprintf (in, " eet Y1 (\n"); /* write y values to the file */
for(i=0; ic<No_proceess; i++)
fprintf (in, "$f ",value_y1(i]);
fprintf (in, "\n");
fprintf (in, "}\n");

fprintf(in, "set Y2 {\n"); /* write y values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "%£f ",value_y2[1]);
fprintf (in, "\n")};
fprintf(in, "}\n") ;

fprintf (in, "set ¥3 {\n"); /* write y values to the file */
for(i=0; i<No_process; i++)}
fprintf (in, "§f ", ,value y3[i]);
fprintf (in, "\n");
fprint£(in, "}\n");
fprintf (in, "\n") ;
fprintf (in, "\n");

fprintf(in, "$graph element create Highest-leaf -xdata $X -ydata $Y1 %c\n",6 92);

fprintf(in," -symbol diamond -linewidth 0\n");
fprintf (in, "$graph element create Clock(28000) -xdata $X -ydata $Y2 %c\n",6 42);
fprintf (in, " -symbol crosse -linewidth 0\n");

fprintf (in, "Sgraph element create Add-ref-bits(140000) -xdata $X -ydata §Y3
$c\n",92});

fprintf(in," -symbol square -linewidth o\n");

RepeatBodyGraph2 (in) ;

fclose(in) ;

system("chmod 777 Memutill.grph');
system("Memutill.grph") ; /* show the graph */
return;

LLLLLLIIETELELTILLELLELLLLLELILI PRI EI IR E TP EE EPi i i i i Ti L L L i it iittittitief

/
//
v
//

Function : MemUtilGraph2()

Purpose : Thie function is used to generate the memory utilization graph over 4
different methods in the new implemantation. The x values are the
process IDs and the y values are the memory utilization of each process.

LIRTIIELLELIILELIRTEL I LTSRS EL LR LT ELII LI ELLELF LI LS LT AL LE L LRI

121

MemUt ilGraph2 ()

{

FILE *in; /* file descriptor of graph file */

int i;

fleat value_yl [MAX PROCESS] ; /* y values for the leftmost leaf method =~/
float wvalue_y2 [MAX PROCESS]; /* y values for the rightmost leaf method */
float wvalue_y3 [MAX_ PROCESS]; /* y values for the highest leaf method */
float wvalue_y4 [MAX PROCESS); /* y values for the LRU leaf method */
float wvalue x[MAX PROCESS] ; [/* x valuea */

char pefile[81]; /* name of the postscript file */

char e[81];

char svalue[81];

int p_slze,m_size;

int valid;

No_processs=S;

memset (psfile, 80, NULL) ;

in=fopen("Memutil2.grph", "w");

printf ("\nPut the name of the postscript file: ");

scanf ("¥8" ,pefile); /* get the name of postscript file */

valid=0;
while(valid != 1)

(

printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");

scanf ("¥s",avalue) ; /* get the page size */
p_size=atoi (evalue);
if { (p_size == 512) || (p_eize == 1024) ||
(p_size == 2048) || (p_size == 3096) ||
(p_Bize == 8192))
valid =1;
else
{
valid=0;

printf{"\n\tError: Invalid input, try again.\n");

}

valid=0;
while(valid != 1)
{
printf ("Put the size of memory: ");
scanf ("¥e8",svalue) ; /* get the memory size */
m_size=atoi(svalue);
if (m_size == 0)
{
valid=0;
printf ("\n\tError: Invalid input, try again.\n");

else
valid=1;

)

printf ("\n\t x values are process IDs and y values are memory utilization\n");
printf ("\t (Note: If you want exit, put <quit>.) \n"};

/* get the x and y values */
for(i=0; i<No_process; i++)
value x[i)=i+1; /* x values are process IDs */

for(i=0; i<No_process; i++)
{
printf("\n Put the yl1 value (Leftmost leaf methed): ");
scanf ("%¥s8",evalue) ;
if (strcmp(svalue,"quit") == 0)
return;
else

122

value yl[i]=atoi(svalue);
/* get y values for the leftmost leaf
method */
)
for(i=0; i<No_process; i++)
{
printf("\n Put the y2 value (Rightmost leaf method): ");
scanf ("%¥a",svalue) ;
if (strcmp(svalue, "quit") == 0)
return;
elese
value y2[i]=atoi(svalue);
/* get y values for the rightmost leaf
method */

)

for(i=0; i<No_process; i++)

{
printf("\n Put the y3 value (Highest leaf method): ");
pcanf ("¥8", avalue) ;
if (strcmp{evalue, "quit") == 0)
return;
else
value_y3[i]l=atoi (svalue);
/* get y valuea for the highest leaf
method */
}
for(i=0; i<No_process; 1i++)
{

printf ("\n Put the y4 value (LRU leaf method): ");
scanf ("¥s",svalue) ;
if (strcmp(svalue, "quit") == 0)
return;
else
value_v4[i] =atoci(svalue);
/* get y values for the LRU leaf method */

}

fprintf (in, "#!/contrib/bin/blt_wish -f\n");
fprintf (in, "\n");
fprintf(in,"if [file exists /contrib/library] {\n");
fprintf (in, " set blt library /contrib/library\n");
fprintf (in, "}\n") ;
fprintf (in, "\n");
fprintf (in, "opticon add *Blt_htext.Font *Times-Bold-R*14* \n");
fprintf (in, "option add *Blt_text.Font *Times-Bold-R*12* \n"):
fprintf (in, "option add *graph.xTitle %¥cProcess ID ¥c \n", 34,34);
/* title of x axie */
fprintf (in, "option add *graph.yTitle ¥cMemory utilization ¥c \n",634,34);
/* title of y axis =/
fprintf (in, "option add *graph.title %c Memory utilization for new implementation
(¥d / %d}¥c \n",34,m_size,p size,34);
/* title of the graph */
fprintf(in, "option add *Blt_graph.legendFont *Times-*-*-8% \n");
strcpyls, "Memory utilizatiocn of new implementation");
RepeatBodyGraphl (in,psfile,s);

fprintf(in," set X (\n"); /* write x values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "$¥f ",value x[i]);
fprintf (in, "\n") ;
fprintf (in, "}\n");
fprintf{in, "\n");
fprintf (in," set Y1 {\n"}; /* write y values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "%f ",value_yl[il);
fprintf (in, "\n");

123

fprintf (in, "}\n");

fprintf (in, "set Y2 (\n"); /* write y values to the file */
for (i=0; i<No_process; i++)
fprintf(in, "%¥£f ",value_y2(i]);
fprintf (in, "\n");
fprintf (in, "}\n");

fprintf(in, "set ¥3 {\n"); /* write y values to the file =/
for(i=0; i<No _process; i++)
fprintf(in, "$f *,value y3[i]);
fprintf(in, "\n");
fprintf(in, "}\n");
fprintf(in, "set Y4 {\n"); /* write y values to the file */
for(i=0; i<No_process; i++)
fprintf (in, "$f ",value_y4[i]);
fprintf(in, "\n");
fprintf (in, "}\n");
fprintf (in, "\n");
fprintf (in, "\n") ;

fprintf(in, "$graph element create Leftmost -xdata $X -ydata $Y1 %¥c\n",692);

fprintf(in, " -aymbol plus -linewidth 0\n");

fprintf (in, "Sgraph element create Rightmost -xdata $X -ydata $Y2 ¥c\n",92);
fprintf (in," -symbol cross -linewidth 0\n");

fprintf (in, "$graph element create Highest -xdata $X -ydata $Y3 %c\n",652);
fprintf (in, " -seymbol square -linewidth 0\n");

fprintf (in, "Sgraph element create LRU leaf -xdata $X -ydata $Y4 %¥c\n",92);
fprintf(in," -aymbol diamond -linewidth o\n");

RepeatBodyGraph2 (in) ;
felose(in) ;

system("chmod 777 Memutil2.grph");
system("Memutil2.grph") ; /* show the graph */
return;

}
IMTLLLELLELEELEELLEIEFEEREELL LT EEEELEILLEELEREERLLLLLLLLLLLLLRLLLLLII I IILELELLIEiEEEE]

I Function : MemUtilGraph3()

Il Purpose : This function ie used to generate the memory utilization graph for the
I/ 3 different intervals in the clock or the additional-reference-bits
1/ algorithm.

LIEPELLETIII LTI TL AL LR 2L LELLLELLLLEET 770 TLLEREL LT E LI Ei L1280 EfT 0P~

MemUtilGraph3 (int sel)

{

FILE *in; /* file deacriptor of graph file */
int i;
float wvalue_yl [MAX PROCESS]; /* memory occupancy of each process when an

interval is given to either the clock or
additional-reference-bites algorithm */
float wvalue_y2[MAX_ PROCESS] ;
float value_y3[MAX_ PROCESS] ;

float wvalue_ x[MAX_ PROCESS] ; /* x values are process IDs */
char pefile([81]; /* name of the postscript file */
char sl81];

char avalue[81];

int p_8ize,m_size;

int valid;

No_process=5;
memset (pefile, 80, NULL) ;
if (sel == 3)
in=fopen("Memutil3.grph", "w");
else if (Bel ==4 }
in=fopen("Memutils .grph", "w");
printf ("\nPut the name of the postscript file: ");

scanf ("%¥s",pefile) ; /* get the name of postecript file */

valid=0;
while(valid != 1)
(
printf ("\nPut the page size (512, 1024, 2048, 4096 or 8192): ");
scanf ("%¥8",evalue) ; /* get the page size */
p_eize=atoil(svalue) ;
if { (p_size == 512) || (p_size == 1024} |
(p_size == 2048) || (p_size == 4098) |
{p_size == 8192))
valid =1;

|
|
else

valid=0;
printf ("\n\tErrer: Invalid input, try again.\n");

)

valid=0;
while(valid != 1)
(
printf{"Put the size of memory: "):
scanf ("¥a", svalue) ; /* get the memory size */
m_size=atoi{svalue);
if (m_size == 0)

{

valid=0;

printf ("\n\tError: Invalid input, try again.\n");
}
elese

valid=1;

}

printf("\n\t x values are process IDs and y values are memory utilization\n"};
printf("\t (Note: If you want exit, put <gquit>.) \n");
for(i=0; i<No_process; i++)
value x[i]=i+1; /* x values are procesa IDas */
for(i=0; i<No_process; 1i++)
{
if (eel == 3)
printf("\n Put the yl value (interval 16800): ");
if [sel == 4)
printf ("\n Put the yl value (interval 70000): ");
scanf ("%¥s",svalue);
if (strcmp(svalue, "quit") == 0)
return;
elae
value yl[i]=atoi(svalue);
/* get the y values */
)
for(i=0; i<No_process; i++)
{
if (sel == 3)
printf ("\n Put the y2 value (interval 28000): ");
if (sel == 4)
printf ("\n Put the y2 value (interval 140000): ");
scanf ("¥s",svalue) ;
if (strcmp(svalue, "quit") == 0)
return;
else
value y2[il=atoi (svalue);
/* get the y values */
)
for (i=0; i<No_proceas; i++)

{

if (sel == 131)

124

printf ("\n Put the y3 value [interval 39200): "):
if { sel == 4)

printf ("\n Put the y3 value (interval 210000): ");
scanf ("%¥e",svalue) ;
if (strcmp(svalue, "quit") == 0)

return;

else

value_y3[1]=atoi(svalue];

)

/* get the y values */

fprintf (in, "#!/contrib/bin/blt_wish -f\n");

fprintf(in, "\n");

fprintf(in, "if [file exists /contrib/library] {\n"):

fprintf (in, " set
fprintf(in, "}\n"};
fprintf(in, "\n");

fprintf(in, "opticn
fprintf(in, "option
fprintf (in, "option

fprintf(in, "option

i.f(ﬂel=c3]
fprintf(in,
algorithm

else if (sel ==4)
fprintf (in,
algorithm

fprintf (in, "option
if (el == 3)

blt_library /contrib/library\n");

add *Blt_htext.Font *Times-Bold-R*14* \n");

add *Blt_text.Font *Times-Bold-R*12* \n");

add *graph.xTitle %¥cProcess ID %c \n",K634,34);
/* title of x axie */

add *graph.yTitle ¥cMemory utilization %c \n",k34,34);

/* title of y axis */

"option add *graph.title %¥cMemory utilization for clock

(¥d / %d) %c \n",34,m_size,p_size,34);
/* title of the graph */

125

"option add *graph.title %¥cMemory utilization for add-ref-bits

(¥%d / ¥d) %c \n",34,m _size,p_size,b 34);
/* title of the graph */
add *Blt_graph.legendFont *Times-*-*-8* \n");

strcpy(s, "Memory utilization of clock algorithm");

else if (el ==4)

strcpy (e, "Memory utilization of add-ref-bits algorithm");
RepeatBodyGraphl (in,psefile,s) ;

fprintf (in," set X

{\n"); /* write x values to the file

for(i=0; i<No_process; i++)

fprintf (in,
fprintf (in, "\n");
fprintf (in, "}\n");
fprintf (in, "\n");

"§f ", value x[i]);

fprintf(in," set Y1 {\n"); /* write y valuee to the file
for(i=0; i<No process; i++)

fprintf (in,
fprintf (in, "\n") ;
fprintf (in, "}\n");

fprintf (in, "set Y2

“%f ", value y1[i]);

{\n"); /* write y values to the file

for(i=0; i<No_process; i++)
fprintf {in,"%f " ,value_y2[i]);

fprintf(in, "\n") ;
fprintf (in, "}\n");

fprintf (in, "set ¥3

{\n"); /* write y values to the file

for(i=0; i<No_process; i++)

fprintf (in,
fprintf (in, "\n");
fprintf (in, "}\n");
fprintf (in, "\n");
fprintf (in, "\n") ;

if (sel ==3)

fprintf (in, "Sgraph element create Interval-16800 -xdata $X -ydata $Y1

"¥f *,value y3[i]);

$c\n",92);

if(sel ==4)

xf

*/

=f

v

}

126

fprintf (in, "Sgraph element create Interval-70000 -xdata %X -ydata $Y1

tc\na",92);
fprintf(in, " -pymbol diamond -linewidth 0\n");
1f (sel ==3)
fprintf (in, "$graph element create Interval-28000 -xdata $X -ydata $Y2
¥c\n",92);

if (sel ==4)
fprintf(in, "Sgraph element create Interval-140000 -xdata $X -ydata S$¥2

¥c\n",92);
fprintf (in," -aymbol croes -linewidth 0\n"):;
iftﬂﬂl ﬂ=3:|
fprintf(in, "$graph element create Interval-35200 -xdata $X -ydata $Y3
%c\n",92);
if (eel ==4)
fprintf (in, "$graph element create Interval-210000 -xdata $X -ydata $Y3
%$c\n",92);
fprintf(in, " -aymbol square -linewidth 0\n");

RepeatBodyGraph2 (in) ;
fclose(in) ;

if (sel == 3)
{
system("chmod 777 Memutil3.grph");
system("Memutil3.gxrph"); /* show the graph */
)

elese if (sel == 4)

{
system("chmod 777 Memutil4 .grph");
system("Memutild .grph") ; /* show the graph */

}

return;

IXLELELLLEIELIE LI L EE LTI RTEEEELEFEETETEERELLELE LI P EEL LT LTI et

/f
I
1

Function : RepeatBodyGraphl ()
Purpose : This function has the front part of the repeated codes to generate a
graph.

LEELEELELEEEEEELERLLEET LI T EELLLLLLL LTI RE LA LEL LR ERELE LI EEEEEEELE LRI Ex]

RepeatBodyGraphl (FILE *in,char pefile[80],char s[80])

{

fprintf (in,"\n");
fprintf(in,"set visual [winfo screenvisual .] \n");
fprintf (in,"if { $vieual != %cstaticgraytc } { \n",634,324);
fprintf (in, " option add *print.background yellow \n");
/* set the background color of the print
button */
fprintf (in, " option add *quit.background white \n");
/* set the background color of the quit
button */
fprintf (in, "}\n");
fprintf (in,"\n");
fprintf (in, "global graph\n");
fprintf(in, "set graph .graph \n");
fprintf(in,"blt_htext .header -text {%c¥c\n",37,37);
/* create the header part of the graph */
fprintf (in, "%c%c %e \n",37,37,8};
fprintf(in, "To create a postscript file, press the %c%c \n",37,37);
fprintf(in, "button $blt_htext (widget) .print -text print -command {\n“):
fprintf(in, " .graph postscript %s -pagewidth 6i -pageheight 4i -landscape false
\n", pafile);
fprintf (in, " }\n");
fprintf (in, "\n");

127

fprintf (in, "$blt_htext (widget) append Sblt_htext (widget) .print\n");
/* create the print button */
fprintf (in, "¥c¥c button. }\n",37,37};
fprintf (in, "\n") ;
fprintf (in, "blt_graph $graph\n");
fprintf (in, "\n");
fprintf (in, "ble_htext .footer -text (To finish, press the ¥c%c \n",37,37):
/* create the footer of the graph =/
fprintf (in, "button $blt_htext (widget) .quit -text quit -command (destroy
\ny; /* create the quit button */
fprintf (in, "$blt_htext (widget) append $blt_htext (widget) .quit\n");
fprintf (in, "¥c¥c button.¥c¥c\n",37,37,37,37);
fprintf (in, "$blt_htext (widget) -padx 20\n");
fprintf (in, "¥c%c}\n",37,37);

}
IILLIIEELLI I FLLLLLL LS PRI LIRIII T LRI LI T 82T EL L0 0E001110010101111

/7 Function : RepeatBodyGraph2()
I/ Purpose : Thie function is the behind part of the repeated code tc generate a
1/ graph.

LEELETEEEIETLE LT EEETEETTETEEETFEETE R TP ELTTTEL LT E LT LTI AL L i i iiiieir=/

RepeatBodyGraph2 (FILE *in)

{
fprintf(in,"# Sgraph crosshairs set on\n");
fprintf (in, "\n");
fprintf (in, "pack append . %c\n",392);
fprintf (in," .header (padx 20 pady 10 } %c\n",92);
fprintf (in, " .graph [£ill expand)} %c\n",92);
fprintf(in," .footer { padx 20 pady 10 }\n");
fprintf (in, "\n");
fprintf (in, "wm min . 0 0\n");
fprintf (in,"\n") ;
fprintf(in, "bind $graph <Bl-ButtonRelease> (%cW crosshairs toggle }\n",637);
fprintf (in, "\n");
fprintf(in, "proc TurnOnHairs (graph } (\n");
fprintf (in, " bind $graph <Any-Motion> {%cW croseshaire configure -position

@¥c%¥cx, ¥c¥cy}\n",637,37,37,37,37);
fprintf(in, " }\n");
fprintf (in, "\n") ;
fprintf (in, "proc TurnOffHaire | graph } (\n");
fprintf(in," bind $graph <Any-Motion> (%¥cW crosshairs configure -position
@¥c¥cx, ¥c¥eyl\n",37,37,37,37,37);

fprintf(in, " }\n");
fprintf(in, "\n");
fprintf (in, "bind $graph <Enter> { TurnOnHaire ¥c¥cW }\n",37,37);
fprintf (in, "bind $graph <Leave> { TurnOffHairs ¥c¥cW }\n",637,37);
fclose(in) ;

)

I*ILEILILELLITLLE LTI LT L AL LTI LT T LT L EL L I E L FE it iiiii ity
1/ Makefile

// Makefile for new LRU approximation implementation. There are five files to make the

// execution file.

PILEIIIETERTTELLLL LR LTI TI L EEL L LELL LT i iiiiiiiirires

CFLAGS = -0
the: Perform.o Newapp.o Ckago.o Addref.oc Graph.o
ce §(CFLAGS) -o the Perform.o Newapp.o Ckago.o Addref.o Graph.o

VITA
Eunjae Jung
Candidate for the Degree of
Master of Science
Thesis: LRU PAGE REPLACEMENT ALGORITHM: A NEW APPROXIMATION
IMPLEMENTATION
Major Field: Computer Science
Biographical:

Personal Data: Born in Wonju, Feburary 13, 1964, son of Changkun Jung, M.D.,
and Mrs. Sunja Jo Jung.

Education: Received Bachelor of Science in Mathematics from Myong Ji
University, Seoul, Korea, in Feburary 1991; completed requirements for
the Master of Science Degree at the Computer Science Department at
Oklahoma State University in July 1996.

Professional Membership: Korean-American Scientists and Engineers Association.

