
TIMING AND AREA OPTIMIZATION

OF CMOS BARREL SHIFTER

By

BYUNGHA JOO

Bachelor of Science

Yonsei Un.iversity

Seoul, Korea

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1996

TIMING AND AREA OPTIMIZATION

OF CMOS BARREL SHIFTER

Thesis Approved:

7! Th is Advisor

~~--

~~c£Js

Dean of the Graduate College

ij

PREFACE

I wish to express sincere appreciation to my adviser, Dr. Louis G.

Johnson. His guidance throughout this research has been precious. My

sincere appreciation extends to my other committee members Dr. George

Scheets, and Dr. Chriswell Hutchens.

I would also like to give my special appreciation to my parents,

Jongheon Joo and Kyungja Cho; my parents-in-law, Jaenam Lee and

Teaksung Yang for their support and encouragement. The strong

encouragement of my brother-in-law, Sunyoung, Lee is also gratefully

appreciated. I want to share this joy with my younger sister, Hyunyee, my

brave son, Myungjoon and my pretty daughter, Yujin.

Finally, thanks also go to my wife, Jeeyoung Lee for her love, many

sacrifices, and precious care for us.

iii

Chapter

I. INTRODUCTION

TABLE OF CONTENTS

Page

1

Design Automation 1
Chapter Description 3

II. LITERATURE REViEW.. 5

Introduction 5
Switch Level CMOS Model.. 5
CMOS Circuit Optimization 7

III. DELAY ESTIMATION 10

Introduction 10
Transistor Model 10
RC Delay Estimation 12

IV. TIMING AND AREA OPTIMIZATION
OF SERIES INVERTING BUFFERS 15

Introduction .. 15
Timing Estimation 15
Area Estimation 18
Simulation Results 20

V. TIMING AND AREA OPTIMIZATION OF BARREL SHIFTER 26

Introduction 26
Overview of Barrel Shifter 26
Layout Parameters 28
Circuit Optimization 31
Optimization Results 37
Comparison to others work 39

IV

Chapter Page

VI. SUMMARY and FUTURE WORKS 48

LITERATURE CITED 50

APPENDIX I 53

APPENDIX II 61

v

Table

LIST OF TABLES

Page

I. MOS Channel Resistance Classification 11

II. Normalized Parameters 15

III. 3 Stage Inverter Optimization 21

IV. 7 Stage Inverter Optimization 23

V. 8 bit Barrel Shifter transize Result 37

VI. transize Process Parameters 39

VII. transize Result of 32 bit Barrel Shifter 40

VIII. transize Result of 8 bit Barrel Shifter 41

IX. iCONTRAST Result of 8 bit Barrel Shifter 42

X. Clocked Inverter Type 8 bit Barrel Shifter Result 45

XI. Computing Time to Optimize 8 bit Barrel Shifter 47

VI

LIST OF FIGURES

Figure Page

1. Series Inverters 1

2. Transistor Model 11

3. MOS Capacitance Model... 12

4. RC Tree 13

5. Capacitance Origin 16

6. Series Inverters for Optimization 16

7. Area Dependency of an Inverter Layout 18

8. Transistor Size of 3 Stage Series Inverters 22

9. Delay and Area Relationship of 3 Stage Series Inverters 23

10. Optimal Point Evaluation of 7 Stage Series Inverters 24

11. Variation of Number of Stage for Series Inverters 25

12. Layout Scheme of Barrel Shifter 27

13. Simplified Schematic of Barrel Shifter 27

14. Function of Standard Layout Blocks 28

15. RC Equivalent Circuit for Barrel Shifter 29

16. Worst Case Data Path in Barrel Shifter 31

17. Schematic of 8 bit Barrel Shifter 38

vii

Figure Page

18. Area and Timing Relationship of 32 bit Barrel Shifter
after transize Optimization 41

19. Area and Timing Relationship of 8 bit Barrel Shifter
after transize Optimization 42

20. Area and Timing Relationship of 8 bit Barrel Shifter
after iCONTRAST Optimization 43

21 . Schematic of 8 bit Barrel Shifter with iCONTRAST Result 44

22. Area and Timing Relationship of Clocked Inverter Type
Barrel Shifter after iCONTRAST Optimization 45

23. Schematic of Clocked Inverter Type 8 bit Barrel Shifter
with iCONTRAST Result 46

viii

CHAPTER I

INTRODUCTION

Design Automation

In a CMOS integrated circuit design, it is time consuming procedure to

determine the proper transistor sizes for the design with circuit simulator. A

lot of iterative simulations are needed to get the best performance of the

design. Making a design faster does not mean just making transistors bigger

to provide more current driving capability.

INVII·1) INVli) INVII+ 1)

Figure 1. Series Inverters

For a CMOS series inverter in figure 1, a bigger size of inv(i) reduces the

delay to inv(i + 1). However, from the inv(i-l)'s standpoint, invli-1) has

bigger load. So, inv(i-1) consumes more time than before.

2

Enlargement of all transistors is not an economical solution and the whole

chip size is restricted by process equipment in fabrication. Also, it may not

improve delay characteristics. The best solution for the designer is to

determine the most effective size for each transistor within a given area.

First of all, size and delay optimization is not the problem of gate level

design but the problem of transistor level. However, SPICE like full transistor

modeling is not effective, because finding the optimal size in big circuits

which have many transistors is important. Full transistor modeling takes too

much time and resource for practical use in very large circuits. Therefore, a

switch level model should be used. :In other words, among the various kinds

of transistor characteristics, the simplified model with selected

characteristics should be employed.

From the literature, the following contributions are of interest. The

transistor is regarded as a current source and its current characteristic is

piece wise linear [Ousterhout, 19851 [Hedenstierna, 1987] [Sakurai, 1990]

[Dutta, 1995]. The signal transferred among transistors is not a step input

but ramp input which has non-zero rise and fall time [Ousterhout, 1985]

[Hedenstierna, 19871 [Sakurai, 1990] [Dutta, 1995]. If capacitors of several

type are represented by a lumped capacitor, some degree of error rate shoulld

be included. A distributed capacitor model has better accuracy [Ousterhout,

19851 [Hedenstierna, 19871 [Sakurai, 19901 [Sapatnekar, 19931. Resistance

of poly gates in wide channel transistors is not negligible for wide or long

3

channel MOSFETs [Sakurai, 1985]. Series or parallel connected transistors

as in nand or nor gates also affect the performance of a circuit [Caisso,

1991] .

There were a lot of efforts to get the optimal value of transistor size. The

law of diminishing returns was used [Lin, 1975]. Some people solved the

problem with lagrangian multipliers [Cirit, 1987] [Hedlund, 1987] [Marple,

1989]. Some papers dealt with a two step iteration method. First, timing is

optimized and then area is optimized with the determined timing restriction

[Chen, 1991] [Dai, 1989]. Recently, convex optimization was applied

[Sapatnekar, 1993].

Previous papers concerned general circuits which have comhinational

gates and sequential logic circuits.

The objective of this paper is to determine whether fast solution finding of

timing and area optimization with a simplified transistor model in a barrel

shifter design which has many inputs and outputs and a repeated structure

can be practical.

Chapter Description

In Chapter II, a literature review is presented which covers switch level

CMOS transistor model and CMOS circuit optimization. In Chapter III, the

basic idea of delay estimation is presented which covers transistor modeling

4

and RC circuit analysis. In Chapter IV, a series of inverters is optimized. In

Chapter V, the barrel shifter is optimized and compared to other work. In

Chapter VI, a summary and conclusion is given.

CHAPTER II

LITERATURE SURVEY

Introduction

This chapter describes the switch level CMOS model and CMOS circuit

optimization.

Switch Level CMOS Model

Delay and area optimization of MOS circuits can be done with a swiltch

level transistor model, and delay estimation of RC circuits. Ousterhout

[Ousterhout, 1985] classified three simplified transistor models -- lumped RC

model, lumped slope model, and distributed slope model. The lumped RC

model is a well-known and simple model. All transistors are substituted with

an equivalent resistor, and all loads are replaced by a single capacitor. The

lumped RC model is the least accurate model among the three models. The

lumped slope model is basically the lumped RC model, but it takes care of

non-zero rise and fall times in the input signal. Effective equivalent

resistance is calculated through interpolation of two resistance values. One

is high-pass equivalent resistance and the other is low-pass equivalent

resistance. The distributed slope model considers distributed capacitance. In

5

6

the Penfield and Rubinstein method [Rubinstein, 1983], capacitors are

considered separately.

Hedenstierna et al. [Hedenstierna, 1987] studied CMOS inverter delay in

response to a ramp input. From their paper, the input signal is defined as

follows.

r 0 , t < 0

V IN = 1s t , 0 < t < r

l1 , t > r

where r= 1/s is the rise time of input voltage ramp.

Sakurai et al. [Sakurai, 1990] introduced an a-power law model. In this

model, the transistor is a piece wise linear current source.

In =

r 0 ,

(lIDO)
V 'J) 0 V /) S ,

J I I) 0 ,

eVes ~ VTff:cut - oft)

(VIJS < VDo:linear)

(VDS ~ Vno:saturation)

In this model, 1'00 and V'DO are modeled in a-powered form. From this

model, they extracted propagation delay estimation. The a-power law has

good accuracy according to their report.

Dutta et al. [Dutta, 1995] improved the a-power law transistor model.

The a-power law transistor model does not g:ive accurate delay estimation

when the input slope is very fast or slow. They also took care of negative

-,

7

delay. Negative delay happens when the input slope is slow and load

capacitance is small so that the output switches faster than the input.

Rubinstein et al. [Rubinstein, 1983] proposed a method that can provide

upper and lower bounds on path delay in RC tree circuits. Lin et al. [Lin,

1985] extended Rubinstein et al.'s method to a general RC network.

Sakurai et al. [Sakurai, 1985] suggested a degradation factor that

accounts for the effect of poly gate sheet resistance on transistor

propagation delay. To make a transistor work properly, the transistor should

have a low degradation factor.

CMOS Circuit Optimization

Lin et al. [Lin, 1975J tried to find optimal transistor size values with a

normalized delay and area equation,

F=(normalized area)(normalized delayl

where k is weight factor. Optimal values are located at the point where F is

minimum.

Hedlund [Hedlund, 1987] was looking for del,ay, area and power

optimization. He used an RC transistor model and applied lagrangian

multipliers to solve the non-linear problem. He minimized the scaling factor

between transistors in adjacent stages. Therefore, the initial P-N transistor

ratio within each stage is unchanged.

8

Cirit [Cirit, 1987] used an RC transistor model and defined area as the

sum of all transistor widths. He built an equation to minimize with lagrangian

multipliers. And then, he tried to get optimized values with a bisection

method.

A two step iteration method was proposed by Dai et al. [Dai, 1989]. At

the first step, the program determines optimum timing for the target circuit,

and then, within the optimal timing, the program minimizes the circuit size.

Marple [Marple, 1989] developed an optimized Ilayout generator. His

program reads a layout database, and represents the circuit in a delay graph

to find the critical path. With lagrangian multipliers, an opt!imized circuit is

extracted. Finally, the program generates the optimized layout.

Cheng et al. [Cheng, 1991] developed iCOACH that is a poly cell based

optimized layout generator. iCOACH considers charge sharing and noise

margin. The circuit is optimized through a two step iterative process.

Sapatnekar et al. [Sapatnekar, 1993J developed iCONTRAST that used a

convex optimization method. The transistor model of the program is a non­

RC delay model. Originally, the delay model proposed by Hedenstierna et

al.'s model was applied. Later, the delay model was changed to the a.-power

law. iCONTRAST minimizes area under a given timing specification.

iCONTRAST consumes a lot of time. According to their paper, to optimize a

9

32 bit adder, it takes about eight hours of execution time on a Sun

SparcStation I.

The purpose of this thesis is to determine whether a simplified automatic

optimization tool can give effective value with significantly small time

compared to iCONTRAST. Results of this study may provide an alternative

to the problem of timing and area optimization in large and repeated pattern

circuits like the barrel shifter.

CHAPTER III

DELAY ESTIMATION

Introduction

Delay calculation for a certain path in a CMOS circuit can be divlided into

two parts. One is the transistor model and the other is the RC tree delay

estimation. For fast calculation, the transistor is modeled as a fixed resistor.

The RC tree delay is considered in the method that was proposed by

Rubinstein et a!. [Rubinstein, 1983].

Transistor Model

The simplest model of MOSFET is a fixed resistor that is controlled by its

gate voltage. When the transistor is off, there is an open circuit. When the

transistor is on, there is a current path with fixed resistance value. This

model has about 25% error compared to SPICE results [Ousterhout, 1985J,

but still gives a benefit on the calculation time.

The resistance of a MOS transistor is proportional to the length and

inversely proportional to its channel width. This is one of the factors that

can make calculation fast. Generally in digital circuits, the minimum channel

length of a process is used. Therefore, the on resistance of a MOS transistor

is only inversely proportional to its width.

10

11

G-I ~-> '~~
5

Figure 2. Transistor Model

A MaS transistor has different resistance values depending upon the

signal value which passes between drain and source. In this paper, the on

resistance of a MaS transistor has four different cases.

Rnl low pass resistance of NMOS
Rnh high pass resistance of NMOS
Rpl low pass resistance of PMOS
Rph high pass resistance of PMOS

Table I. Mas Channel Resistance Classification

The capacitance of a MOSFET is also simplified. A MOS transistor has

capacitance on the gate, drain, and source. These capacitances have

nonlinear characteristics. For the convenience of calculation, all capacitances

are replaced by fixed capacitances.

12

The whole gate capacitance is located between gate and ground when

the transistor is off. When the transistor is on, halves of the gate

capacitance are applied between gate and drain, and gate and source.

s

L _When 1r. is Oft When 1r. is On

Cg: gate capacitance

Figure 3. MaS Capacitance Model

RC Delay Estimation

A CMOS circuit can be replaced by the previous RC model. In the

equivalent circuit, the gate voltage determines the on or off state of the MaS

transistor. Drain and source voltage determine high or low pass resistance

value. From the RC equivalent circuit, delay can be produced in this way

[Chu, 19871.

Tdelay = LRkeCk
k

Figure 4 shows sample of RC tree.

13

VVV

R3
A

C3

"*"'. R4
··~·j,·A·······....
VVV .i C4

R2

p' vv~"'··········
Rl .•..•.. C2 1:.

............. -=-
----YVI/'------------<

C1 ~ ~

"*" C5

INPUT

Figure 4. RC Tree

RC time constants between a certain node e and the input are all added

up at each stage. Then, from the rest of the branches, RC time constants

consist of the resistor which is directly shared between the path to e and the

branch, and the capacitor for the branch node. Total time delay for the RC

tree is the sum of all RC time constants. This method is valid only if all

nodes have same initial voltages.

T INnT," , = Rl' Cl + (R, + R2) .C2 + (RI + R2 + R4) .C4 : time constants ofRCpalh (input to e)

: time constanls ofthe rest ofthe branches

In circuits with transmission gates, both P and N type MOSFET are used

in parallel for improvement of signal transfer. But, because of this structure,

there ,is a resistor loop, so that the RC circuit is no longer a tree. When there

is only one transmission gate, capacitances from the P and N transistor can

be combined by addi,ng them together and the equivalent resistance is a

14

simple parallel combination of the two resistances. This usually makes the

equivalent circuit a tree again.

When there are two or more transmission gates, equivalent capacitance

and resistance are not easily available. Generally when there are two or

more transmission gates, for layout simplicity, there is no interconnection

between Nand P MaS transistors. In this way, the area of diffusion

contacts can be saved. To solve this case, the following assumptions are

needed [Lin, 1984]. The final capacitance can be divided for each path

according the path's current dri'vi,ng capability such that the delay timings for

two path's are the same.

For example, if portion a of the final capacitance is driven by the P type

MaS transilstor, then portion (1-a) of the final capacitance is driven by the N

type MaS transistor. The delay equation for each path can be formed.

Then, since delay timings for both paths are the same, B can be obtained in

terms of Rand C. As a resu'lt, delay timing for transmission gates is

available.

CHAPTER IV

TIMING AND AREA OPTIMIZATION OF SERIES INVERTING BUFFERS

Introduction

Timing and area optimization of series CMOS inverters was performed.

The M 0 S transistor is represented as a resistor and capacitor. The

optimization process used the law of diminishing returns. The law of

diminishing returns was applied to proper level finding of demand and supply

in Economics. Transistor size on both ends of the series inverters was fixed.

Parameter values from a 21lm N-well process was used. The programming

language was MATLAB.

Timing Estimation

Timing and area optimization of series inverters in CMOS technology was

investigated. During the optimization process, resistance and capacitance

values are used in normalized form.

Rpl normalized PMOS resistance, Rp'=Rp·L
where Rp is PMOS channel sheet resistance per unit area

RN ' normalized NMOS resistance, RN' = RN·L
where R N is NMOS channel sheet resistance per unit area

Co' normalized diffusion capacitance
CG' normalized gate capacitance
C1 interconnection capacitance

Table II. Normalized Parameters

J5

16

C1 is independent of channel width of MOS transistor, so it is regarded as a

constant. Capacitances are extracted from diffusion, gate, and

interconnection in layout. Figure 5 shows where each capacitance comes

from.

.---------- ---

c,

Figure 5. Capacitance Origin

Diffusion capacitances (CPOIFF, CNDlfF) are functions of the driving MOS

transistor width and Gate capacitances (CPGATE, CNGATE) are functions of the

driven MOS transistor width.

The series inverters for optimization are shown in figure 6.

II'N(Q 11'N(11 II'N(i)

"IVi
11'N(r'V

L

Figure 6. Series Inverters for Optimization

17

When a MOS transistor is replaced by a resistor and capacitor, the

resistor and capacitor are represented as follows.

R'
Ri=­

Wi

Total path delay can be represented as follows.

(1)

R' R'
=...+ --(eD',Wi - 1+ C, + CG',Wi) + -(CD',Wi + C, + CG',Wi + ,) +

Wi-l Wi

Differentiate both side by Wi to find

,0 < i < n (2)

From (2), the minimum delay point can be derived without any area

consideration.

Or
Let - =0

OWi

=-----

18

Wi = Wi -I'(~~' + Wi + I) where on1ly a positive value of Wi has meaning.

However, this value is not economical, because this Wi does not take into

consideration how much area is used.

Area Estimation

The area of an inverter can be divided into two parts. One is constant

area that ,is essential area. The other is dependent area that varies according

to the width of the MaS transistor.

const.
I >-

dependantconst.
>k

dependantconst.,- -~

I-
I
I

Figure 7. Area Dependency of an Inverter Layout

If the constant area of an inverter is always same for every inverter, the size

of each inverter can be represented as follows.

19

Ai = Ao + A',Wi

where, Ai: size of the i-th inverter

Ao: constant area of the inverter

A ': inverter height

Wi: channel width of the i-th inverter

The total size of the series inverters is

"=~)Ao+ A',Wk)
k=O

Differentiate both sides with respect to Wi

oA
-=A'
OWi

(3)

(4)

From the two differential equations for area and delay, optimization process

will be processed with the law of diminishing returns.

dr ciA
-=-K·-
r . A

r
dr=-K·-·dA

A

Or r oA
-=-K·-·-
OW; A OW;

(2),(4) => (5)

R',CG' R' A'
----2(c, + Cd·Wi + I) =-K'r'-
Wi-I W; A

where K is an arbitrary weight factor.

15)

(6)

20

In 16), A is function of Wi and has L inside. For calculation convenience, (6)

is divided.

A'
M=r'­

A

From (1) and (3)

and,

R',CG' R'
----2(O+CG'·Wi+ I) =-K· M
Wi-J Wi

R'·(Ct+ C(j',Wi+l)
R '·Co'
---+ K, M
Wi - 1

(7)

(8)

(7) and (8) are solved by making a guess at Wi and using the guess in (7) and

the right side of (8) to produce a new guess. This procedure is iterated unti'l

the guesses for Wi converge.

Simulation Results

Using equations (7) and (81, the optimization process was performed in a

2~m CMOS N-well process. Typical values for the simullation are as foll'ows.

Normalized gate capacitance (CG') was 1.68 x 1O-9 F/meter. Normalized

diffusion capacitance (CD') was 0.95 x 10-9 F/meter. Interconnection

capacitance (CI) is the sum of diffusion contact capacitance, metal

21

capacitance and poly capacitance. In this optimization, Interconnection

capacitance was assumed to be constant and typical value is 18fF.

Normalized channel resistance (R') was O.084Q·meter. In this optimization,

Nand P-type MOS transistors were assumed to have the same channel

resistance. The height of the inverter (A') was set to 25j..tm. The essential

area for an inverter was 625 x 10- 12 meter2
. The weight factor (K) for the law

of diminishing returns was set to 1. Three stage series inverters were

optimized. The MOS transistor size of first and last inverter were fixed to

10j..tm and 300j..tm each. The result is shown in table III.

Transistor Name Size (unit: j..tm)
WO 10 (fixed)
W1 48.4357
W2 300 (fixed)

Table III. 3 stage inverter optimization

The size of the MOS transistors in the middle inverter was traced with

various sizes of both end inverters. In figure 8, WO is size of tne first

inverter, W1 is size of the middle inverter, and W2 is size of the last inverter.

22

50454020 25 30 35
wO: width of first inverter

1510

I I • • I I I I

: : : : : : : w2= 0
I It. I I • 1",-'-

- -: t ~ : ~ - .. :- -: ~ ~- ...
I I I I I I ;~l
I I I \ I , ~

: : : ; : :,...........-:
..... - -{- t - -:- t- -~ ~ ~ ..

: : : :/I~: :
I I • I I I ,

I I I • I : I

.. -_ - -; --t --- .. -;- -_ ..--~ -;-_ ... , --:- -_ ... -~---_ ..
I I • / •• I· . './' . . .
: : % : : I

.... - -- -: - f ~ :- _.. - i '
: y/: : :
: //: : I :

------~./.l---t------·l -----~--.--.- ..

A·· ...;....:<~~ .~..=+=t"... +....
I l~: I I

I ..,., I I ."......"...--, I I I •

'/~ I I I I I.... "'./....;: ~ -:- ~ ~ ~ ~ -: ...
/~~l I I I I ••

/" I : : : : : : ~
f I I I I I • I

-,..~- - -: t -:- ~ ~- -; ~ -:- ..
• I I I I I I •
I I I I I I I I
I I I I I I I I

• I I I I I I •

200

180

..... 160
Q)

1::
Q)

140>c
"U
c

120a
u
Q)
(f)

...... 100a

..c
~
.~ 80

~
60

40
I

20
5

Figure 8. Transistor Sizes of 3 Stag,e Series Inverters (unit: Ilm)

In figure 9, the MOS transistor size of middle inverter was traced with

several MOS transistor sizes of the last inverter and one MOS transistor size

of the first inverter. ,*, marks show the optimal point for each combination.

The curves show delay and area relationship when the MOS transistor size of

the middle inverter was changed.

23

15,----,-----;:;..;::;--....,....--,----:---,----,------,

6

x 10'

w1~ from 10 micro meterito the ·ze ofw2

1 2 345
Area total area of 3 inverters(unit: micro meterll2)

OL.--_--'-__-----JL.-__--'- L.-__--'-__----l

o

Q)

E
i=

.t=
c:
2-
~ 10
Q)

t:::
Q)
>

.!:
(T)

~

OJ
~

2
~

Q) 5
E-

u
Q)
(h

o
c:
~

c:

Figure 9. Delay and Area Relationship for 3 Stage Series Inverters

For a seven stage series inverters, the MOS transistor size of the first

and last inverters are 10l-Lm and 500l-Lm respectively. Table IV shows the

optimization result.

Transistor Name Size
WO 10 (fixed)
W1 17.6032
W2 25.0262
W3 34.4724
W4 54.9984
W5 123.4313
W6 500.000 (fixed)

Table IV. 7 Stage Inverter Optimization (unit: I-Lm)

24

To verify that the result is optimal, the sizes of all middle inverters were

forced to be changed up to ±50% of the optimized value, then delay and

area relationship was observed.

2.55

x 10~

2.25 2.3 2.35 2.4 2.45 2.5
Area: total area of All inverters(unit: micro meterll2)

3.15,------,-----,------.----,---,-----,------,
U

Q) ..,...

en 31, - ~ _ ~ : : ~ ~ .
o . \
c ::::::
C1l \ : : : : : :

.~ 3.05 \·········f············l·············j·············[·············f············l············

.2. \'

~ 3 :::~\::·:::J:::::::::::1::::::::::::r:::::::::::t::::::::::::1::::::::::::1::::::::::::~ 2.95
c \ : : : : : :

\ : : : : : :
<{ 2.9 ·········\~············1·············j·············t·············f············i············

12.85 ~\) .. ····t··).············;···········)············~········ .

i 2.8 [\,,,j. \\L ,.,...., .
-i 2.75 L ~." ',-\ ..L. L L 1... .
....0 :: ••~ : : : :: \: : : :..... : .. : : : :m 2.7 M ••••• _;. "................ .. •••. ;. :,. " ••••••••••••E . .
i= 2.65 L_---i.__--i...-__L_----i-=:::::::i:::=====:J:...._----.J

2.2

Figure 10. Optimal Point Evaluation of 7 Stage Series Inverters

In figure 10, all curves are focusing to one point.

The optimal number of stages was also investigated. With the same

MOS transistor sizes on the ends, number of stages was varied from 3 to

20.

25

7,....----.,...-------r----,....----.,...-------,
~ ~ ~ ~ ! ;*
~ 6.5 ·················r·················T·················-r ~ ..2U

~ 6] 1. t··············/~·)·~············
~ ~ i i * 1~i 55 ······-i(··--t~17i···_·····_··_--

=4:·:_::::_:I--:j:::~~::Z~~_::::J:::::::·::
~ ~ ~ la ~I 4 ·················j··················i···1-0·)I····f··················i·················

E3.5 ·················1··················~··7··········+··················f·················

: 8/* ~ ~
~ 3 (7./*\ (: .
Q.i 2.5 .3 j 6.."C ~ ~ ~ .
E ~, 5 /--* ~ : ~
~ ~~ : : :

2'----..;.;...:........L..-------'------'------....L..-------'
1.5 2 2.5 3 3.5 4

Area: total area of All inverters(unit: micro meterJl.2) x 10'

Figure 11. Variation of Number of Stage for Series Inverters

When the number of stages is four, delay is minimum. And when the

number of stages is three, area is minimum. Though total area is bigger, five

stage series inverters shows faster response than three stage series

inverters.

CHAPTER V

TIMING AND AREA OPTIMIZATION OF BARREL SHIFTER

Introduction

With lagrangian multipliers, timing and area optimization of a barrel

shifter was performed. In this chapter, the layout of the barrel shifter is

divided into several standard layout blocks. That makes it easy to change

the configuration as needed. The program was named transize and written in

C language. Final results are compared to the results from the program

iCONTRAST which was developed by Sapatnekar et al.[Sapatnekar, 1993].

Overview of Barrel Shifter

The basic component of the barrel shifter is a 2 to 1 multiplexer. These

multiplexers are arrayed as shown in figure 12 and 13. In the layout, inputs

are located at the left side, outputs are at the right side, and control signals

are at the top side of the layout. All transistors are placed with their widths

in the horizontal direction, so changing the transistor size of each stage is

easy to accomplish.

26

CONTROL

27

INPUT

-0 - c c
UJ UJ W UJ

Cl Cl Cl

I

Cl
- <l: <l: c(c(

f- f- f- f-
(J) rJl (fl (fl

I I I

OUTPUT

Figure 12. Layout Scheme of Barrel Shifter

The schematic of a barrel shifter is shown in simplified form in figure 13.

A transmission gate does not have signal driving capability. It is only a

resistive switch. Therefore, the signal should be amplified with proper buffer

insertion between multiplexers.

50 s, 52

OUT?

oure

OUT5

OUT4

OUT3

OUT2

OUT'

OUTO

5

Figure 13. Simplified Schematic of Barrel Shifter

28

Layout Parameters

A 21-lm CMOS N-well process was used. Standard layout blocks are an

inverting buffer, a transmission gate multiplexer, and cross over cells which

connect multiplexers. Figure 14 shows the function of the standard layout

blocks. B(i) is the i-th block of inverting buffers, X(i) is the i-th block of cross

over cells, and M(il is the i-th block of multiplexers.

X(i)
I - I

M(i)

X(i+ 1)
-
, 1

'~

M(i+ 1)

X(i +m-1)
1- I

~i>
B(i+m)

M(i+m-1)

m: number of multiplexers

Figure 14. Function of Standard Layout Blocks

For each multiplexer, only one transmi,ssion gate is turned on. The RC

equivalent circuit is showed in figure 15.

29

Pull up
Q

RBnl(i) n-tr on-resistance of inverting buffer
RBphli) p-tr on-resistance of inverting buffer
RMP1li) p-tr on-resistance of multiplexer when low data passing
RMPhli) p-tr on-resistance of multiplexer when high data passing
RMnl(ij n-tr on-resistance of multiplexer when low data passing
RMnhli) n-tr on-resistance of multiplexer when high data passing
Coli) total capacitance connected to inverting buffer output
CM/i) total capacitance connected to multiplexer output

Figure 15. RC Equivalent Circuit for Barrel Shifter

The delay of each case can be estimated with the Elmore delay formula,

Tdei<,v = I Rke Ck.
k

'rise = RBph(i) . CIJ(i) + (RBflh(i) + RMllh(i)1I RMflh(i)) .CM(i)+....

The capacitance driven by buffer is calculated in this equation.

CB(i) =COB(i) + Cx(i) + CIOM(i) + CllM(i)

where Cos(i) : inverting buffer output capacitance
mainly diffusion capacitance

Cx(i) cross over capacitance which is metal capacitance
between inverting buffer and multiplexer

ClOdiJ,ClIdiJ:input capacitance of multiplexer
diffusion capacitance and interconnection capacitance
difference of two parameters is interconnection
capacitance.
CJOM(i) = CIOM + C'IM/I . WMJI(i) + C'IMp .WMp(i)
CJ1M(i) = CflM + C'/MIl' WM/,(i) + C'IMp' WMp(i)

Each multiplexer drives this amount of capacitance.

CM(i) = COM(i) + Cx(i + 1) + CroM(i + 1) + CIIM(i + 1)

30

where Cadi) : output capacitance of multiplexer.

The last multiplexer of each stage drives this amount of capacitance.

CM(i + m - 1) = COM(i + m - 1) + CrB(i + m)

where C,B(i) : gate capacitance of inverting buffer and interconnection

capacitance

The area equation for barrel shifter is as follows

A = LA(i)

= L(Ao(i) + Ax(i) + AM(i))

where AB(i): Inverting buffer area

All(i) = Am + A',(WIIJI(i) + Wn,,(i))
AAiiJ: multiplexer area

AM(i) = AMI + A'.(WMIl(i) + WMP(i))
Ax<'i): cross over area, independent of transistor size. different

cross over cells are needed for each stage.

31

Circuit Opt'mization

There are many signal paths in the barrel shifter. Among them, the data

path is the main concern. Though data can flow through different paths, the

capacitive and resistive loads are always the same. From the low order bit to

the high order bit, the capacitive loads decrease. But, this slight difference

can be ignored. Therefore, the worst case data path can be chosen from low

order bit. The optimization results with the worst data path can be applied

to the whole circuit.

For a sample data path, equations for optimization wiu be derived. In

this optimization, the first and last inverting buffer have fixed transistor size.

For calculation simplicity, all outputs of multiplexers are amplified by an

inverting buffer. Figure 16 shows a sample worst case data path of the

barrel shifter.

X(O/ X(1/
1 r

>~>~
B(O/ ~.' JBm _ J

, ,I

X(N-1J
r

.?' I;j./J
I: B(2/ :r»: 8(N!

MfO/ Mf1/ M(N-1/

Figure 16. Worst Case Data Path in Barrel Shifter

There are N multiplexers and N + 1 inverting buffers. The top and bottom

transmission gates are off and the middle transmission gates are on. The top

32

and bottom transmission gates are considered as a capacitive load for their

diffusion capacitance. The sizes of the top and bottom transmission gates

are equal to size of the middle transmission gates.

Delay between the input and output of the path must be determined for

two uses.

The input rising delay is

T, =T/O + Trl + TI2 + Tr3 + TI4 + TrS + TI6 + Tr7+ .

= I Tr(i) + I T/(i)
i= odd i= evell

The input falling delay is

Tf = Tr0 + TI I + Tr 2 + TI 3 + Tr 4 + Tf 5 .. Tr6 + TI 7 + .

= I TI(i) + I Tr(i)
;=odd i=e,'en

For each stage, ri,se and fall delays are represented as follows.

TI(i) = RHIl/(i)· CI/(i) + (RHJlI(i) + RMII/(i)IIRMPI(i»)' CM(i)

where Cn(i) =Cun(i) + Cx(i) + CiOM(i) + CIIM(i)

CM(i) =COM(i) + Cm(i + 1)

Using a lagrangian multiplier,

where 0 < a < 1 to avoid maximizing delays when minimizing f

f= I[(l-a)'Tr(i)+a''7(i)]+ I[a'Tr(i)+(I-a)''7(i)]
;=odd i=evell

= L [(I-q(i»),rr(i)+q(i).r/(i)]
j

33

where q(i) ={ a

I-a

i=odd

i =even

Minimizing f gives

0= Of =
OWBn(i)

0- Of -- -
OWBp(i)

0= if =
OWMn(i)

(1- q(i - 1») , (RBph(i - 1) +]WJliI(i-I)11 RMpil(i - 1)) ,C' 18/1 +

q(i -1), (RR/I/(i -1) + RMII/(i -l)IIRMp/(i -1)) 0 C' 1811 +

(1- q(i») , Rllpil(i - 1) ° C' OR/I +

[
RB/lI(i) 2 ()]

q(i)· R8/11(i) 0 C' 18/1 - , CH(i) + CM(i)
Rill

(1- q(i -1») ,(RSph(i -1) + RM1Ih(i - 1)ljRMph(i - 1») 0 C'IBp +

q(i -1)' (RIJnI(i -1) + RMJlI(i -l)IIRMI'I(i -1»). C'IBp +

q(i) , RIJIIIU - 1) . C' OBp +

(I (0») flR (0) C" R/lPil(i)2 (C' (') C (0»)]- q 1 . Hl'iI l' IBp-, IJ I + M I

R ""

34

()
(RMII/(i)IIRMp/(i))2

.~'I(i)lIlUfpl(i) . C' OMII - R' .CM(i)
III

0= if =
OWMp(i)

o = of
oa

(1- q(i)).[R'ph(i)· (2C' IMp + C'OMp) +

r
q(i) 'l RSIlI(i)· (2C' IMp + C' OMP) +

= Tj - Tr

These equations are for delay minimization only. Area equations need to

be included. In this optimization, delay will be minimized within specified

area Ao. Using lag.rangian multipliers,

g = Tr + a, . (Tf - Tr) + aA . (A - A 0)

where

at is lagrangian multiplier for timing optimization

aA is lagrangian multiplier for area optimization

A is totall area

Ao is target area

Differentiate both sides with respect to W(i)

0; q oA
O=--=--+aA'--

&(i) bW(i) OW(i)

ogo = -- = T/ - Tr
oaf

Area equation is

A = I A(i) = I(A8(i) + Ax(i) + AM(i)) = ACOIWClIII + A'·I Wei)

Differentiate both sides with respect to W(i)

oA 0 "
OW(i) = OW(i) (Aeon,lImli + A"L..JW(i») = A'

With this equation,

35

0- 0; -- -
OWBII(i)

0- 0; -- -
OWBp(i)

(1- q(i -1»). (RIJPh(i -1) + RM/lh(i -1)11 RMph(i -1»)' C' iBlI +

q(i -1)· (RBII/(i -1) + RUIlI(i -1)11 RUI'I(i -1)), C' 1811 +

(1- q(i») . RHph(i - 1) . C' 01]/1 +

[
RiJlll(i)2 ()1

qU), RHIlI(i)· C'IHII - I CH(i) + eMU) J+ aA' A I

Rill

(1- q(i -1)). (RiJPh(i -1) + RUllh(i -1)IIRMph(i -1))' C' IfJp+

q(i -1)· (RH/lI(i -1) + RMnl(i -I}11 RMpl(i -1))' C' IHp +

q(l) . RIJIII(i - 1) , C' onp +

(,)r . , RIJph(i)2(. ,)1
1- q(l) 'lRIJPh(l) ' C /HI' - , CB(l) +CU(l) J+ aA' A'

R ph

36

r
(1- q(i»)'l RBph(i)' (2C' 1M" + C' OM,,) +

q(i). [RB"J(i) ·(2C' (M" + C' OM,,) +

aA' AI

r
(1- q(i»)"l R,Jph(i)' (2C' IMp + C' OMp) +

aA' A'

When aA is zero, the area is not constrained and the delay is a minimum,

The fixed size for the first and last inverter keep the area finite. If aA is

negative, that means the target area is bigger than the minimum delay area.

In that case, the target area may be reduced or set aA to zero. When aA is

positive, the area is less than the minimum delay area and the delay is

37

increased. Thus, a positive aA allows a trade-off between increased delay

and reduced area.

Optimization Results

In this optimization, the barrel shifter has full CMOS transmission gates

and inverting buffers for every two stages of transmission gates to amplify

the data signal. Layout was made with standard layout blocks. That makes

it easy to handle different barrel shifter configurations. All transistors are

oriented in one direction. Therefore, variation of transistor sizes affects the

size of only one side of barrel shifter. Figure 17 shows the schematic of an

8 bit barrel shifter.

For each group, the same value of optimized width is used. In other

words, WBp(O) and WBn(O) in TABLE V are the PMOS and NMOS transistor

widths of the B(O) group transistors.

WBp(O) 4 WBn(O) 4 WMp(1) 4 WMn(l) 5.307
WBp(l) 9.261 WBn(1) 6.712 WMp(2) 4 WMn(2l 4
WBp(2) 8.612 WBn(21 5.543 WMp(3) 4 WMn(31 4
WBp(3) 30 WBn(31 20
Total Area 6732.883789 Jlm L

Total Rising Delay 5.811049 nano seconds
Total Falling Delay 5.806156 nano seconds

Table V. 8 bit Barrel Shifter transize Result (unit:jlm)

38

M(l) ,

B(I),
M(2) \

B(2)
rM(3)

Bn)

O)~
(,~ ~~- -- Jr-- 1"\'

I~r-"'b.. 0- I-iv ...,
~ ~O- ..

Lf~ 10- -I:J' Lt'>-.--
'::...--t>.f -W;- .
-~- -- ""i~ -I'YI- - -

liT'! 6'11 v_
.- :..::.-b..f 1- bJ- -~v_ ,....-

I"'-i~ v- I - ---8:Y -, .--
~ -t>.F :; .--- ~ -tAF~- -- l.-f~ I- ~KJ-- -

r-- a ~~
v_

-. 1-bJ= - -- I:;>,; -~v -
~~ .- KJ- v_ . - -- t:.J' ~~-
I-AF

,

"" -w -- -:hf....- ~

-1~ kY - I - -.- t:.J" -.j8:Y -
~ -tAf -w;- .--.. -oj- r_

.y~
~~

I - - _.
LL - PY~

v_

""'.,j
f-

\.... L
L.... f_ t.oJ:l \L

r-- tlrJb-
\J'V

~ ~~ -. .-
V ~~ '\:J'-

-
~. ""_ -- - -

B

SO): inverting buffer group
M(il: multiplexer group

Figure 17. Schematic of 8 bit Barrel Shifter

Within a given area, optimization process is looking for the fastest

combination of transistor sizes. Process parameters for program transize are

as follows. These values are from 2J.l.rn CMOS N-well process parameters

and the standard layout blocks for the barrel shifter design. These

parameters depend on both the process and the layout style.

39

CIB buffer input constant cap 0.005
;1 CIBn buffer input cap coefficient for Wn 0.0018

CIBp buffer input cap coefficient for Wp 0.0018
COB buffer output constant cap 0.012
COBn buffer output cap coefficient for Wn 0.0026
COBp buffer output cap coefficient for Wp 0.0027
CIOM mux input 0 constant cap 0.012
CI1M mux input 1 constant cap 0.011
CIMn mux input cap coefficient for Wn 0.0026
CIMp mux input cap coefficient for Wp 0.0027
COM mux output constant cap 0.006
COMn mux output cap coefficient for Wn 0.0022
COMp mux output cap coefficient for Wp 0.0025
Rnl low s.ignal resistance coefficient for 1/Wn 26
Rnh high signal resistance coefficient for 1IWn 104
Rph low signal resistance coefficient for l/Wp 56
Rpl high signal resistance coefficient for 1/Wp 156
AlB buffer constant area 480
AIM mux constant area 552
H cell height 24
Cx(O) cross over cap 0
Cx(1) cross over cap 0.006
Cx(2) cross over cap 0.013
Cx(3) cross over cap 0.025
Ax(O) cross over area 0
Ax(1) cross over area 384
Ax(2) cross over area 576
Ax(3) cross over area 1152

Table VI. transize Process Parameters

Comparison to other work

A program developed at the University of Illinois, iCONTRAST finds critical

delay paths using PERT and the delay graph, and uses the convex

optimization method. PERT was originally developed for schedule

management of big projects. Circuit designers employed this technique to

40

delay estimation [Kirkpatrick, 1966]. iCONTRAST converts the given CMOS

circuit to undirected graph. Gate channel of each MOS transistor is replaced

by a net, and the connecti,ons of MOS transistors are considered as nodes.

Using this graph, PERT finds overall delay estimation like schedule

management. iCONTRAST is a general circuit optimization tool, but transize

is dedicated to barrel shifter optimization. Therefore, iCONTRAST gives

individual transistor sizes. In designs with the standard layout blocks,

iCONTRAST may have lower efficiency. Most of timing and area

optimization tools can not consider layout skill or variation of layout scheme,

so direct comparison between the two tools is difficult. Through the

comparisons of computing time and tendency of results, relative comparison

is shown.

32 bit barrel shifter with transize is shown in table VII and figure 18.

Area Rising Falling
15512.17

1
11.0652 10.9000

15857.31! 9.1670 9.1417
16620.21 7.6333 7.7724
17151.37 7.2467 7.3332
17303.75 7.2155 7.2070
18157.72 6.8295 7.0140
18648.52 6.8045 6.8497
19031.86 6.7091 6.8406

Table VII. transize Result of 32 bit Barrel Shifter

41

12 -1- 1 1 I
l' P--l=1I

I
10

U I I I:: I
~

~-l
1-.- Rilling

! 9 -t I.

"H
.- Falling

E
1= I I

-+ 1, j : • --j

I
6 J

I

I -j I
- -J

15000 15500 16000 16500 17000 17500 18000 18500 19000 19500

At~ (.nero mata,'21

Figure 18. Area and Timing Relationship of 32 bit Barrel Shifter after

transize Optimization

8 bit barrel shifter with transize is shown in table VIII and figure 19.

Area Rising Falling
6383.54 6.5415 6.5248
6383.54 6.5415 6.5248
6406.63 6.3008 6.3413
6712.27 5.1399 5.1377
6861.72 4.8605 4.8876
7050.78 4.6667 4.6477
7317.75 4.4769 4.4842
7418.19 4.4467 4.4315
7972.75 4.3000 4.3349
7942.09 4.2875 4.3517
8116.04 4.3295 4.2883

Table VIII. transize Result of 8 bit Barrel Shifter

42

7

6.5

6

u
::
o
i 5.5
E..
E
i=

5

4.5

4

I
I • -_._- -+- ..
I \ I
i

,-- - -- -
I

~I

~-- "- - .-

~ - "--....- .- ...
---"-- - I- -- --I--- -- - - I

l
~-~

Fa~

6500 7CIXJ 7500 8500

Figure 19. Area and Timing Relationship of 8 bit Barrel Shifter after

transize Optimization

The 8 bit barrel shifter with iCONTRAST is shown in table IX and figure

20.

Area Td
1E+ 10 26.90
1E+10 12.00

2227.96 12.20:
876.94 15.50
694.63 17.20
691.93 19.40
664.85 23.10
638.33 22.70
625.97 25.50

Table IX. iCONTRAST Result of 8 bit Barrel Shifter

43

• --+---

-+----j

1100 13Xl 1500 1700 1900 2100 23)) 2500

1><f!1iJ (mao rrelfr"'2J

!!CO700

I
-. -

I

II I
I

I
I

I
I

I

~ I I I II,

I~

\1
-

I ~ I

I~r-----
II r--r-- -- - f--

r-----
I I

r---_r----,
I I

I II _----l- ----"--- - - -

500

10

26

14

u 22
cu
Ul

o
c:
co
c:
Qi
E
f= 18

Figure 20. Area and Timing Relationship of 8 bit Barrel Shifter after

iCONTRAST Optimization

After optimization, iCONTRAST produced irregular size like 291lm, 131lm

and 20/-lm when most of the other transistor sizes are 41lm as shown in

figure 21. It is not an efficient layout. In each stage, the size of the load is

almost the same for every transistor. Therefore, almost the same sizes of

transistors for each stage are expected. One possibl'e reason this happens is

the wrong critical delay path searching on transmission gate circuit.

Actually, the transmission gate has a bi-directional characteristic, but, in this

barrel shifter, only one of two transmission gates is on at any time and data

signals flow only one direction.

OIl

a••,," -

44

Other Tr Size 4

Figure 21. Schematic of 8 bit Barrel Shifter with iCONTRAST Result

45

iCONTRAST might consider backward signal passing on transmission gate.

To verify this assumption, the transmission gates are replaced by clocked

inverters.

Area Td
2738.88 7.94
1363.37 9.99
1037.46 12.00
960.39 14.00
934.85 15.90
928.89 16.80
928.89 16.80
928.89 16.80
928.89 16.80

Table X. Clocked Inverter type 8 bit Barrel Shifter Result

15 +---_
I

" 13 ;­:

I
71-__

soo

I

I

1000 1500

I
-+­

2000 2500

- .
3000

i • T~ 1

Au. (mao ",.... '2)

Figure 22. Area and Timing Relationship of Clocked Inverter Type Barrel

Shifter after iCONTRAST Opt,imization

46

From the result of clocked inverter circuit, transistor sizes are almost regular

for each stage shown in figure 23.

Figure 23. Schematic of Clocked Inverter Type 8 bit Barrel Shifter with

iCONTRAST Result

47

It happens that iCONTRAST finds impractical critical delay paths that do

not consider signal direction in transmission gates. From the result in figure

23, iCONTRAST produced the expected output with signal direction control.

A CMOS circuit is represent in graph by iCONTRAST [Sapatnekar, 1993].

PERT uses a delay graph of MOS circuit [Chen, 1991]. In the delay graph,

iCONTRAST does not consider the signal direction or complementary

relationship of the two transmission gates in a multiplexer. Therefore, the

both transmission gates of a 2 to 1 multiplexer could be turned on at the

same time. Thus, there is a signal path from an input to another input.

However, this signal path does not exist in real circuit and is very long and

large resistive path.

There is a big difference of computing time between transize and

iCONTRAST. Table XI shows computing times for a barrel shifter executed

at a Sun SparcStation 20.

transize real 0.4
user 0.0
sys 0.1

iCONTRAST real 5:30.4
user 5:28.0
sys 0.7

Table XI. Computing Time to Optimize 8 bit Barrel Shifter

CHAPTER VI

SUMMARY AND FUTURE WORKS

Area and timing optimizations of barrel shifters have been investigated

using lagrangian multipliers within reasonable computing time. In order to

find optimal solution values quickly, MOS transistors have been replaced by

resistors and capacitors. The critical delay path was chosen by a heuristic

method for simple calculation. Standard layout bilocks were used in the

layout.

Using the law of diminishing returns, basic behaviors of area and time

trade-offs for MOS transistor were observed. With lagrang.ian multipliers, the

barrel shifter was optimized. The results were compared to iCONTRAST's.

transize computes the optimal sizes faster than iCONTRAST does. Second,

the critical delay path searching in iCONTRAST found an impractical critical

delay path. The RC transistor model, lagrangian multiplier, and circuit

simplification of repeated structure contributed to the quick response time of

transize.

The optimized barrel shifter using iCONTRAST has an abnormally big

transistor. That is because iCONTRAST is looking for critical delay paths

without consideration of signal flowing direction in the transmission gates.

The barrel shifter with clocked inverters does not have that kind of

irregularity in MOS transistor size. There were some variations of transistor

48

49

size because that transistor had a slightly different load than others. Also,

circuits with repeated structure such as the barrel shifter can be more easily

layouted and verified when simplified circuit was used for optimization.

This study only dealt with optimization of a repeated structure circuit

such as the barrell shifter. Also, these results may not be applicable for

general circuits because the standard layout block was used. The RC

transistor model has less accuracy than newly developed model that take

into account non-linearities.

This study gives a basic idea of why dedicated optimization too~ls are

needed. With better transistor models, improvement of critical delay path

finding rules, and linking to layout editor, better optimization tools could be

developed.

REFERENCES

Caisso, J., E. Cerny and N. C. Rumin. (May 1991). "A recursive technique

for computing delays in series-parallel MOS transistor circuits," IEEE

Trans. on Computer-Aided Design, vo!.l O(no. 5): pp.589-595.

Chen, H. Y. and S. M. Kang. (Jan. 1991). "iCOACH: A circuit optimization

aid for CMOS high-performance circuits,1/ Integration, vol. 10: pp.185­

212.

Chu, C. and M. A. Horowitz. (Nov. 1987). "Charge-sharing models for

switch-level simulation,1/ IEEE Trans. on Computer-Aided Design, vol.

CAD-6(no.6): pp.l053-1061.

Cirit, M. A. (June 1987). "Transistor sizing in CMOS circuits," Proc. of 24th

ACM/IEEE Design Automation Conference:pp. 121-124.

Dai, Z. and K. Asada. (May 1989). "MOSIZ: A two-step transistor sizing

algorithm based on optimal timing assignment method for multi-stage

complex gates," Proc. of IEEE 1989 Custom Integrated Circuit

Conference: pp.17 .3.1-17.3.4.

Dutta, S., S. S. M. Shetti and S. L. lusky. (Aug. 1995). "A comprehensive

delay model for CMOS inverters," IEEE J. of Solid-State Circuits,

voI.30(no.8): pp.864-871.

Kirkpatrick, T. I. and N. R. Clark. (March 1966). "PERT as an aid to logic

design," IBM Journal of Res. and Devel., vol. 10: pp.135-141 .

50

51

Hedenstierna, N. and K. O. Jeppson. (March 1987). "CMOS circuit speed

and buffer optimization," IEEE Trans. on Computer-Aided Design, vol.

CAD-6Ino.2): pp.270-281.

Hedlund, K. S. IJune 1987). "Aesop: A tool for automated transistor sizing/'

Proceedings of 24th ACM/IEEE Desig1n Automation Conf.: pp.114-120.

Lin, H. C. and L. W. Linholm. IApril 1975). "An optimized output stage for

MOS integrated circuits," IEEE J. of Solid-State Circuits, vol.SC-

10(no.2): pp.1 06-109.

Lin, T. M. and C. A. Mead. IOct. 1984). "Signal delay in general RC

networks," IEEE Trans. on Computer-Aided Design, voI.CAD-3InoA):

pp.331-349.

Marple, D. (June 1989). I'Transistor size optimization in the taHor layout

system," Proc. of 26th ACM/IEEE Design Automation Conference:

ppA3-48.

Ousterhout, J. K. (July 1985). "A switch-level timing verifier for digital MOS

VLSI," IEEE Trans. on Computer-Aided Design, voI.CAD-4Ino.3):

pp.336-349.

Rubinstein, J., P. Penfield and M. Horowitz. IJuly 1983). "Signal delays in

RC tree network," IEEE Trans. on Computer-aided Design, voI.CAD-2:

pp.202-211.

52

Sakurai, T. and A. R. Newton. (April 1990). "Alpha-power law MOSFET

model and its applications to CMOS inverter delay and other formulas,"

IEEE J. of Solid-State Circuits, voI.25(no.2): pp.584-594.

Sakurai, T. and T. lizuka. (Feb. 1985). "Gate electrode RC delay effects in

VLSI's," IEEE J. of Solid-State Circuits, voI.SC-20(no.1): pp.290-294.

Sapatnekar, S. S. et al. (Nov. 1993). "An exact solution to the transistor

sizing problem for CMOS circuits using convex optimization," IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems,

voI.12(no.11): pp.1621-1634.

APPENDIX I

1. MATLAB Program 1

w2 (micro) ,)
%g' ,wO*le6,wI*le6,w2*le6)

%g' ,wl*le6,Wdiff*le6)

wI (micro)
%g %g

%g

%" This program finds optimal transistor size
% of 3 stage inverter series
clear
clc
%" definitions
% wO gate width of first inverter
%" wI gate width of second inverter
%" w2 gate width of third inverter
% Ci interconnection capacitance
% Cgp normalized gate capacitance Cg'
% Rp normalized gate resistance R'
% Mtaup: differatiation of tau M
% wI=sqrt(Rp*wO*(Ci+Cgp*w2)/(Rp*Cgp+taup*wO)
%" Ap height of inverter
%" AO : minimum size of inverter
% Cdp : normalized drain capacitance Cd'
% Mtaup=Ap/ (3*AO+Ap* (wO+wI+w2)) * (Rp/wO* (Cdp*wO+Ci+Cgp*wI)

+Rp/WI* (Cdp*wI+Ci+Cgp*w2) +Rp/w2* (Cdp*w2+Ci))
% initialization
wO=lOe-6;
wI=le-6
w2=300e-6;
Ci=18e-15;
Cgp=1.68e-9;
Rp=O.084;
Ap=25e-6;
AO=625e-12;
Cdp=O.95e-9;
Wdiff=lOO;
sprintf(' wI (micro) Wdiff(micro) ')

while abs(Wdiff»le-IO,
wIbef=wI;
Mtaup=Ap/(3*AO+Ap*(wO+wI+w2))*(Rp/wO*(Cdp*wO+Ci+Cgp*WI)

+Rp/wI* (Cdp*wI+Ci+Cgp*w2)+Rp/w2* (Cdp*w2+Ci));
wIaft=sqrt(Rp*wO*(Ci+Cgp*w2)/(Rp*Cgp+Mtaup*wO)) j

Wdiff=wIbef-wlaft;
wI=wIaft;
sprintf ('
end

sprintf(' wO(micro)
sprintf (' %g
end

2. MATLAB Program 2

% This program shows transistor size relationship among
% 3 stage inverter series
clear

53

54

clc
clg
% definitions
% wO gate width of first inverter
% wl gate width of second inverter
% w2 gate width of third inverter
% Ci interconnection capacitance
% Cgp normalized gate capacitance Cg'
% Rp normalized gate resistance R'
% Mtaup: differatiation of tau M
% wl=sqrt(Rp*wO*(Ci+Cgp*w2)/(Rp*Cgp+Mtaup*wO)
% Ap height of inverter
% AO : minimum size of inverter
% Cdp : normalized drain capacitance Cd'
% Mtaup=Ap/(3*AO+Ap*(wO+wl+w2))*(Rp/wO*(Cdp*wO+Ci+Cgp*wl)

+Rp/Wl* (Cdp*wl+Ci+Cgp*w2)+Rp/w2* (Cdp*w2+Ci))
% initialization
Ci=l8e-15;
Cgp=l.68e-9;
Rp=O.084;
Ap=25e-6;
AO=625e-12;
Cdp=O.95e-9;
N=5;
w2i=lOOe-6;
w2f=lOOOe-6;
w2d=(w2f-w2i)/N;

for j=l:N,
w2=w2d*j+w2i;
M=50;
wOi=5e-6;
wOf=50e-6;
wOd=(wOf-wOi)/M;

for i=l:M,
wO(i)=wOd*i+wOi;
wlc=le-6;
Wdiff=lOO;

while abs(Wdiff»le-lO,
wlbef=wlc;
Mtaup=Ap/(3*AO+Ap*(wO(i)+wlc+w2))*(Rp/wO(i)*(Cdp*wO(i)

+Ci+Cgp*wlc)+Rp/wlc*(Cdp*wlc+Ci+Cgp*w2)
+Rp/w2*(Cdp*w2+Ci));

wlaft=sqrt(Rp*wO(i)*(Ci+Cgp*w2)/(Rp*cgp+Mtaup*wO(i))) ;
Wdiff=wlbef-wlaft;
wlc=wlaft;
end

wl(i,j)=wlcj
end

end
plot (wO*le6,wl*le6)
xlabel('wO: width of first inverter')
ylabel('wl: width of second inverter')

%title(' wO, wI, and w2 (unit: micron) ,)
for i=I:N,
w2=w2d*i+w2ij
mm=sprintf('w2= %g' ,w2*le6) j
text(O.9*wOf*le6,wI(M,i)*le6,mm)
end

end

3. MATLAB program 3

% This program shows optimal size of middle inverter
clear
clc
clg
% definitions
% wO gate width of first inverter
% wI gate width of second inverter
% w2 gate width of third inverter
% Ci interconnection capacitance
% Cgp normalized gate capacitance Cg'
% Rp normalized gate resistance R'
% Mtaup: differatiation of tau M
% wI=sqrt(Rp*wO*(Ci+Cgp*w2)/(Rp*Cgp+Mtaup*wO)
% Ap height of inverter
% AO : minimum size of inverter
% Cdp : normalized drain capacitance Cd'
% Mtaup=Ap/(3*AO+Ap*(wO+wl+w2»*(Rp/wO*(Cdp*wO+Ci+Cgp*wl)

+Rp/WI* (Cdp*wI+Ci+Cgp*w2)+Rp/w2* (Cdp*w2+Ci))
% Total delay
% tau=Rp/wO* (Cdp*wO+Ci+Cgp*Wl)+Rp/Wl* (Cdp*wl+Ci+Cgp*w2)

+Rp/w2*(Cdp*w2+Ci)
% Total area
% A=3*AO+Ap*(wO+wl+w2)
% initialization
Ci:18e-15;
Cgp=1.68e-9j
Rp=O.084;
Ap=25e-6j
AO=625e-12j
Cdp=O.95e-9j
wO=lOe-6;
M=IOi
w2i=100e-6j
w2f=1000e-6j
w2d=(w2f-w2i)/Mi

for j=I:M,
w2=w2d*j+w2ij
N=IOOj
wId=(w2-wO)/Nj

for i:l:N,
wl=wld*i+wOj

tau(i,j)=Rp/wO*(Cdp*wO+Ci+Cgp*wl)

55

+Rp/Wl*(Cdp*Wl+Ci+Cgp*w2)+Rp/w2*(Cdp*w2+Ci) i
A(i,j)=3*AO+Ap*(wO+wl+w2) ;
end

wdiff=lOOi
while abs(Wdiff»le-10,
wlbef=wli
Mtaup=Ap/(3*AO+Ap*(wO+wl+w2))*(Rp/wO*(Cdp*wO+Ci+Cgp*wl)

+Rp/Wl* (Cdp*wl+Ci+Cgp*w2)+Rp/w2* (Cdp*w2+Ci));
wlaft=sqrt(Rp*wO*(Ci+Cgp*w2)/(Rp*Cgp+Mtaup*wO));
Wdiff=wlbef-wlafti
wl=wlaft;
end

tauopt(j)=Rp/wO*(Cdp*wO+Ci+Cgp*wl)+Rp/wl*(Cdp*wl+Ci+Cgp*w2)
+Rp/w2*(Cdp*w2+Cil;

Aopt(j)=3*AO+Ap*(wO+wl+w2) ;
end

plot (A*le12,tau*le9,Aopt*le12, tauopt*le9, ,*,)
xlabel('Area: total area of 3 inverters (unit:micro meter~2) ')
ylabel('Time: total time through 3 inverters(unit:nano sec) ')

for i=l:M,
w2=w2d*i+w2ii
mm=sprintf('w2= %g urn' ,w2*le6) i

text(A(1,i)*le12,tau(1,i)*le9,mm)
end

mm=sprintf ('wo= %g micro meter' , wO*le6) ;
text(A(N,M)/3*le12,tau(N,M)*le9,mm)
mm=sprintf('wl= from %g micro meter to the size of w2' ,wO*le6) i

text(A(N,M)/3*le12,tau(N,M)*le9*9/10,mm)
grid
end

4. MATLAB Program 4

% This program finds optimal transistor size of
% multiple stages of inverter series.
clear
clc
% definitions
% W(i): gate width of i-th inverter
% ci interconnection capacitance
% Cgp : normalized gate capacitance Cg'
% Rp normalized gate resistance R'
% Mtaup: differatiation of tau M
% W(i)=sqrt(Rp*W(i-l)*(Ci+Cgp*W(i+l))/(Rp*Cgp+Mtaup*W(i-l))
% Ap height of inverter
% AO : minimum size of inverter
% Cdp : normalized drain capacitance Cd'
% Mtaup=Ap/(m*AO+Ap*(wO+wl+w2))*(Rp/wO*(Cdp*wO+Ci+Cgp*Wl)

+Rp/wl*(Cdp*Wl+Ci+Cgp*w2)+Rp/w2*(Cdp*w2+Ci))
% M : Number of Inverter Stages
% initialization
M=7i

56

57

% size of the first inverter
W(1)=lOe-6i
% size of the last inverter
W(M)=500e- 6 i
% set other inverter's initial value

for i=2 :M-l,
w(i)=W(M) i

end
Ci=lBe-15i
Cgp=1.68e-9;
Rp=O.084;
Ap=25e-6;
AO=625e-12i
Cdp=O.95e-9;
Wdiff=lOO i

Wold=Wi
while abs(Wdiff»le-lO,
Area=M*AO+Ap*sum(W) i

Mtaup=O;
for i=2:M-l,
Mtaup=Mtaup+Rp/W(i-l)*(Cdp*W(i-l)+Ci+Cgp*W(i) ;
end

Mtaup=Mtaup+Rp/W(M) * (Cdp*W(M)+Ci) ;
Mtaup=Ap/Area*Mtaup;

for i=2:M-l,
W(i)=sqrt(Rp*W(i-l)*(Ci+Cgp*W(i+l»/{Rp*Cgp+Mtaup*W(i-l)));
end

Wdiff=O;
for i=2:M-l,
Wdiff=Wdiff+abs(W(i)-Wold(i))i
end

Wold=W;
W*le6
end

W*le6
end

5. MATLAB Program 5

% This program evaluates optimal transistor size.
clear
clc
clg
% definitions
% W(i) gate width of i-th inverter
% ci interconnection capacitance
% Cgp normalized gate capacitance Cg'
% Rp normalized gate resistance R'
% Ap height of inverter
% AO minimum size of inverter
% Cdp normalized drain capacitance Cd'
% M Number of Inverter Stages

~ initialization
Ci=18e-15i
Cgp=1.68e-9i
Rp=O.08 4 i
Ap=25e- 6 i
AO=625e-12i
Cdp=O.95e- 9 i
M=7i
W(1)=lOe-6i
W(M)=500e-6i
~ N : total number of forced error points
N=lOOi
% set optimized value of inverters

for i=2:M-l,
if i==2,
mm=sprintf('Size of %g nd inverter in micron 'ti);
elseif i==3,
mm=sprintf('Size of \g rd inverter in micron 'ti) i

else
mm=sprintf('Size of %g th inverter in micron ',i) i

end
xx=input (mm) i

W(i)=xx*le-6i
end

Worg=Wi
tau=Oi

for i=l:M-l,
tau=tau+Rp/W(i)*(Cdp*W(i)+Ci+Cgp*W(i+l» i

end
tau=tau+Rp/W(M)* (Cdp*W(M)+Ci) i

Area=Oi
for i=l:M,
Area=Area+Ap*W(i) i

end
Area=Area+M*AOi
Topt=taui
Aopt=Areai
% set initial value of other inverter

for j=2:M-l,
W=Worgi

for i=l:N,
W(j)=O.5*Worg(j)+Worg(j)*i/Ni
tau=Oi

for k=l:M-l,
tau=tau+Rp/W(k)* (Cdp*W(k)+Ci+Cgp*W(k+l») i

end
tau=tau+Rp/W(M) * (Cdp*W(M)+Ci) i

Area=Oi
for k=l:M,
Area=Area+Ap*W (k) i

end
Area=Area+M*AOi

58

T(i,j-l)=taui
A(i,j-l)=Areai
end

end
plot(A*le12,T*le9,Aopt*le12,Topt*le9, '*')
xlabel('Area: total area of All inverters (unit:micro meter A 2) ')
ylabel('Time: total time through All inverters (unit:nano sec) ,)
grid
end

6. MATLAB Program 6

% This program finds optimal number of stages
clear
clc
clg
% definitions
% W(i) gate width of i-th inverter
% Ci interconnection capacitance
% Cgp normalized gate capacitance Cg'
% Rp normalized gate resistance R'
% Mtaup: differatiation of tau M
% w(i)=sqrt(Rp*w(i-l)*(Ci+Cgp*w(i+l)/(Rp*Cgp+Mtaup*w(i-l))
% Ap height of inverter
% AD : minimum size of inverter
% Cdp : normalized drain capacitance Cd'
% Mtaup=Ap/(m*AD+Ap*(wD+wl+w2»*(Rp/wO*(Cdp*wO+Ci+Cgp*wl)

+Rp/wl*(Cdp*wl+Ci+Cgp*w2)+Rp/w2*(Cdp*w2+Ci))
% M : Number of Inverter Stages
% initialization

for M=3: 20,
% size of the first inverter

W(1)=10e-6;
% size of the last inverter

W(M)=500e-6i
% set other inverter's initial value

for i=2:M-l,
W(i)=W{M)i
end

Ci=18e-15;
Cgp=1.68e- 9 i
Rp=O. 084 i

Ap=25e-6;
AO=625e-12;
Cdp=O.95e-9;
Wdiff=lOO;
Wold=Wi

while abs(Wdiff»le-10,
Area=M*AO+Ap*sum(W) ;
Mtaup=O;

for i=2:M-l,
Mtaup=Mtaup+Rp/W(i-l)*{Cdp*W(i-l)+Ci+Cgp*W(i») ;

59

end
Mtaup=Mtaup+Rp/W(M) * (Cdp*W(M) +Ci) i

Mtaup=Ap/Area*Mtaup;
for i=2:M-1,
W(i)=sqrt(Rp*W(i-1)

* (Ci+Cgp*W(i+1)/(Rp*Cgp+Mtaup*W(i-1»);
end

Wdiff=O;
for i=l:M,
Wdiff=Wdiff+abs(W(i)-Wold(i) i

end
Wold=W;
W*le6i
end

M;
W*le6;

for i=l:M,
Wopt(M-2,i)=W(i) ;
end

tau=Oi
for i=1:M-1,
tau=tau+Rp/W(i) * (Cdp*W(i)+Ci+Cgp*W(i+1» j

end
tau=tau+Rp/W(M)* (Cdp*W(M)+Ci) ;
Area=O;

for i=l:M,
Area=Area+Ap*W(i) ;
end

Area=Area+M*AO;
Topt(M-2)=tau;
Aopt(M-2)=Area;
end

plot (Aopt*le12,Topt*le9,Aopt*le12,Topt*le9, '*')
for i=1:10,
mm=sprintf('%g' ,i+2);
text(Aopt(i)*le12*29/30,Topt(i)*le9*21/20,mm) ;
end
for i=11:18,
mm=sprintf('%g' ,i+2);
text(Aopt(i)*le12,Topt(i)*le9*19/20,mm) ;
end
xlabel('Area: total area of All inverters(unit:micro meter

A
2) ')

ylabel('Time: total time through All inverters (unit:nano sec) ')
grid
end

60

APPENDIX II

This program is the barrel shifter optimizer, transize.

1. Input Data File Sample

0.06 0.014 0.014
0.1 0.05 0.05
0.2 0.25 0.05 0.05
0.2 0.05 0.05
50 300
100 600
408
480
24
3

111 1
111
0.1 0.2 0.4
480 576 1152
4 8 8 20
4 8 8 20
488
488
0.5
0.1
0.0
0.0
7500
0.5
5

50
100

2. Makefile

HOME =

o FILES main.o \
readinit.o \
update.o \
neww.o \
iterate.o \
de1ay.o \
area.o

BINARY transize

LIBS -1m

I FLAGS

61

62

CFLAGS

CC cc

$ (BINARY) : $ (O_FILES)
$(CC) $ (CFLAGS) $ (IFLAGS) -0 $ (BINARY) $ (O_FILES) $ (GENLIB)

$ (LIBS)

.c.o:
$(CC) $ (CFLAGS) $ (IFLAGS) -c $<

transize.h

install:
cp $ (BINARY) $(HOME)/bin

3. transize.h

#define MAXSTAGES 10

/* capacitance coefficients */
float CIBi /*buffer input constant cap*/
float CIBni /*buffer input cap coeff for Wn*/
float CIBPi /*buffer input cap coeff for Wp*/
float COBi /*buffer output constant cap*/
float COBn; /*buffer output cap coeff for Wn*/
float COBPi /*buffer output cap coeff for Wp*/
float CIOMi /*MUX input 0 constant cap*/
float CI1Mi /*MUX input 1 constant cap*/
float CIMn; /*MUX input cap coeff for Wn*/
float CIMp; /*MUX input cap coeff for Wp*/
float COM; /*MUX output constant cap*/
float COMn; /*MUX output cap coeff for Wn*/
float COMp; /*MUX output cap coeff for Wp*/

/* resistance coefficients */
float Rnl; /*low signal resistance coeff for l/Wn*/
float Rnh; /*high signal resistance coeff for l/Wn*/
float Rpl; /*low signal resistance coeff for l/Wp*/
float Rph; /*high signal resistance coeff for l/Wp*/

/* computed quantities */
float CB[MAXSTAGES]; /*buffer output cap for each stage*/
float CM[MAXSTAGES] i /*MUX output cap for each stage*/
float Cx[MAXSTAGES]; /*crossover cap for each stage*/
float RBph[MAXSTAGES]; /*buffer pFET high signal resistance for each
stage*/
float RBnl[MAXSTAGES] i /*buffer nFET low signal resistance for each
stage*/
float RMh[MAXSTAGES]; /*MUX parallel FET high signal resistance for each
stage*/

stages*/
number of inversions from input */

no inverter buffer, 1 inverter buffer present

63

float RMl[MAXSTAGES] i /*MUX parallel FET low signal resistance for each
stage*/
float alphaA; /*Lagrange multiplier for area constraint*/
float alphat; /*Lagrange multiplier for equal time delays*/
float WBn[MAXSTAGES+l]; /*nFET widths for each buffer stage*/
float WBp[MAXSTAGES+l]; /*pFET widths for each buffer stage*/
float WMn[MAXSTAGES] i /*nFET widths for each MUX stage*/
float WMp[MAXSTAGES] i /*pFET widths for each MUX stage*/
float dalphaA; /*change in Lagrange multiplier for area constraint*/
float dalphat; /*change in Lagrange multiplier for equal time delays*/
float dWBn[MAXSTAGESJ; /*change in nFET widths for each buffer stage*/
float dWBp[MAXSTAGES]; /*change in pFET widths for each buffer stage*/
float dWMn[MAXSTAGES]; /*change in nFET widths for each MUX stage*/
float dWMp[MAXSTAGES]; /*change in pFET widths for each MUX stage*/
float Altot; /* total constant area */

/* circuit structure */
int N; /*actual number of
int parity [MAXSTAGES] ; /*
int B[MAXSTAGES]; /* 0

*/
int M[MAXSTAGES]; /* 0 no MUX, 1 = MUX present */
float AO; /* desired circuit area for one bit path*/
float H; /* cell height */

/* convergence parameters */
float dWmax; /*max change in W's in an iteration*/
float Wtol; /*tolerance for W's: dWmax < Wtol */
float ttol; /*tolerance for diff between tr and tf */
float Atol; /*tolerance for area*/
int maxiter; /*maximum number of iterations allowed */
float dWs; /*convergence solving*/
int dWf; /*convergence solving flag*/

4. main.c

#include <stdio.h>
#include <math.h>
#include "transize.h"

main(argc, argv)
int argc;
char *argv[] ;
{

void readint();
void update();
void iterate();
void delay() ;
float area();

FILE *fPi
int i,iterW,itera,iterA;

64

char ans[10];
float tr,tf; /* rise and fall time delay */
float A; /* area */
float alphatnew,alphatold,delt,deltold;
float alphaAnew,alphaAold,delA,delAold;
int beenO;
float delAO;

if (argc > 2) {
fprintf(stderr, "usage:
fprintf(stderr," or
exit (1) ;

}
if (argc == 1)

fp stdini

%s \n", argv [0]) ;
\s filename\n", argv[O]);

}
else

if (fp=fopen(argv[l],lr")) == NULL) {
fprintf(stderr, "cannot open file: %s\n",argv[l]);
exit(l) i

}

readinit (fp) i

update () ;
delay(&tr,&tf)i
A = area() i

printf{"\ninitial rise time %f, initial fall time %f\ninitial area
%f\n",tr,tf,A) ;
delA = Atol + Atol;
iterA 0;
beenO = 0;
while ((fabs(delA) > Atol) && (iterA < maxiter)) {

#ifdef DEBUG
printf("\niterA = %d, alphaA = %f, delA = %f, alphaAold tf,

delAold =%f\n",iterA,alphaA,delA,alphaAold,delAold);
#endif

if (iterA == 1) {
#ifdef DEBUG

printf("iterA 1 branch\n");
#endif

if (dalphaA == 0.0) exit(O);
alphaAold = alphaA;
alphaA = alphaA + dalphaA;
delAold delAi

}
if (iterA > 1) {

#ifdef DEBUG
printf("iterA > 1 branch\n");

#endif
if (delA == delAold) {

fprintf(stderr, "error: infinite alphaA!\n") i

65

exit (1) ;
}
alphaAnew = (alphaAold*delA - alphaA*delAold}/(delA - delAold);
if (alphaAnew <= 0.0) {

if (beenO) {
alphaAnew = (alphaA*delAO}/(delAO - delA);
if (alphaAnew <= 0.0) {

fprintf(stderr,"error: negative alphaA, choose smaller area
or use min delay area.\n");

exit (1) ;

}
else alphaAnew = 0.0;

}
alphaAold = alphaA;
alphaA = alphaAnew;
delAold = delA;

}
#ifde f DEBUG

printf("\niterA = %d, alphaA = %f, delA = %f, alphaAold H,
delAold =%f\n",iterA,alphaA,delA,alphaAold,delAold);
#endif

iterA++;
printf("\n***\n\nalphaA(td)

%f\n",iterA,alphaA) ;

itera = 0;
delt = ttol + ttol;
while ((fabs ldelt) > ttol) && (itera < maxiter)) {

#ifdef DEBUG
printf("\nitera = td, alphat = tf, delt = tf, alphatold tf,

deltoId =%f\n",itera,alphat,delt,alphatold,deltold);
#endif

if (itera == 1) {
#ifdef DEBUG

printf("itera 1 branch\n");
#endif

if (dalphat == 0.0) break;
alphatold = alphati
alphat = alphat + dalphati
deltoId delt;

}
if (itera > 1) {

#ifdef DEBUG
printf("itera > 1 branch\n") i

#endif
if (delt == deltoId) {

fprintf(stderr,"error: infinite alphat!\n") i

exit (1) ;
}
alphatnew
alphatold

(alphatold*delt - alphat*deltold)/(delt - deltoid);
alphat;

66

alphat = alphatnewi
deltoid = delti

}
#ifde f DEBUG

printf("\nitera = %d, alphat = H, delt = H, alphatold H,
deltold =%f\n",itera,alphat,delt,alphatold,deltold) i

#endif
itera++i
printf("\n***\n\nalphat(%d)

%f\n",itera,alphat) i

#ifdef DEBUG
printf("\nDo you wish to continue? (n) :") i
scanf ("%s", ansI i

if (ans[O] != 'yO) exit(O)i
#endif

if ((alphat <= 0.0) I I
fprintf{stderr, "error:

rangel \n", alphat) i
exit (I) i

(alphat >= 1.0)
alphat = %f is out of valid

) {&& (iterW c maxiter)

0;
Wtol + Wtol;
(dWmax > Wtol)

iterW
dWmax
while (

#ifdef DEBUG
printf (" \n buffer nFET widths are: \n") i

for (i=Oiic=Nii++) printf(" %f",WBn[i]) i

printf("\n buffer pFET widths are: \n") i

for (i=Oiic=Nii++) printf{" %f",WBp[i]);
printf("\n MUX nFET widths are: \n");
for (i=OiicNii++) printf(" %f",WMn[i]);
printf("\n MUX pFET widths are: \n") i

for (i=OiicNii++) printf(" %f",WMp[i]) i

delay(&tr, &tf);
printf("\nrising input delay = %f, falling input delay

%f\n",tr,tf) i
#endif

iterW++;
#ifdef DEBUG

printf("\niteration %d\n",iterW);
#endif

iterate() ;
update() i

#ifdef DEBUG
printf("\ndWmax %f\n" ,dWmax) ;

#endif
}
printf("\n\nFinal widths\n"} i
printf("\n buffer nFET widths are: \n") i
for (i=O i ic=N i i++) printf (" %f", WBn [i]) ;

67

printfl"\n buffer pFET widths are: \n");
for li=O;i<=N;i++) printfl" H",WBp[i]);
printf("\n MUX nFET widths are: \n");
for (i=O;i<N;i++) printf(" tf",WMn[i]);
printfl"\n MUX pFET widths are: \n");
for (i=O;i<N;i++) printf(" \f",WMp[i]l;
delay(&tr,&tf) ;
printfl"\nrising input delay = tf, falling input delay

%f\n",tr,tf) ;
A = areal) ;
printf I "\nArea = %f\n" ,A) i

delt = tf - trj

if ldWmax > Wtol) {
printfl"\n\nerror: convergence failed. Increase iterW or

Wtol. \n") ;
exit(l) j

}
if ((dalphat != 0.0) && lfabs(delt) > ttol)) {

printfl"\n\nerror: convergence failed. Increase itera or
ttol. \n");

exit II) ;

}
delA = A - AO;
if ((alphaA == 0.0) && (beenO

delAO delA;
beenO = Ii

0)) {

}
if ((dalphaA != 0.0) && (fabs(delA) > Atol) I (

printfl"\n\nerror: convergence failed. Increase iterA or Atol.\n") i

exit (1) ;

5. area.c

#include "transize.h"

float area()
{

float Ai
int i;

A = Altot;
for (i=O;i<N;i++) {

if (B[i]) {
A += H*(WBn[i] + WBp[i]);

}
if 1M [i]) {

A += H*(WMn[i] + WMp[i]);

}
#ifdef DEBUG

printf("\nA
#endif

return{A) ;

6. delay.c

%f\n",A);

68

#include "transize.h"

void delay(tr,tf)
float *tr, *tf;
{

float tri,tfi;
int i,j;
float f,p,q;
float Rh,Rl;

f = 0.0;
*tr = 0.0;
*tf = 0.0;
for (i=O;i<N;i++J

tri = 0.0;
tfi = 0.0;
if (B [i]) {

tri RBph[i}*CB[i};
tfi = RBnl [i] *CB [i] ;

}
Rh = 0.0;
Rl = 0.0;
for (j=i;;j--)

if (M[j)J{
Rh += RMh[jJ;
Rl += RMl[j] ;

}
if (B[j)){

Rh += RBph[jJ ;
Rl += RBnl[j];
break;

}
#ifdef DEBUG

printf("i %d, Rh
#endif

if (M[iJ) {
tri += Rh*CM[i] ;
tfi += Rl*CM [i] ;

H, Rl %f\n", i,Rh,Rl) ;

}
if (parity [i]) { /* odd * /

*tr *tr + tfi;
*tf = *tf + tri;

p alphat;
q 1.0 - alphati

}
else { /* even */

*tr = *tr + tri;
*tf = *tf + tfi;
P 1.0 - alphati
q = alphat;

}
#ifdef DEBUG

f += p*tri + q*tfii
printf("delay partial f %"f\n" , f) i

#endif
}

#ifdef DEBUG
printf("\nf %"f, tr %C tf %f\n",f,*tr,*tf};

#endif
}

7. iterate.c

#include "transize.h"

void iterate(}
{

int i,j;
float p,q;
float a,b; /* d2f/dW2 and df/dW */
float f;
float CL,Rh,Rl;
float alphaxht;

alphaxht = alphaA*Hi
#ifdef DEBUG

f = alphat*RBph[O]*CB[O] + (1.0 - alphat)*RBnl[O]*CB[O];
#endif

for (i=O;i<N;i++) {
#ifdef DEBUG

printf("\n i = %d\n",i};
#endif

if (parity{i]) { /* odd */
P = alphat;
q = 1.0 - alphat;
else { /* even */
p 1.0 - alphat;
q = alphat;

69

}
#ifdef DEBUG

printf ("p
#endif

H, q %f\n" ,p,q) i

/* inverter buffer width changes */

if ((i==O) II (B [i]
dWBn[i] 0;

dWBp[i] 0;
}
else {

CL = CB[i] + CM[i];
for (j=i+l; ;j++) {

if (B[j]) break;
CL += CM[jJ;

}
Rh = 0.0;

Rl = 0.0;

for (j=i-l;;j--)
if (M[j]) {

Rh += RMh [j] j

Rl += RMl[j] j

}
if (B[j]) {

Rh += RBph[jJ ;
Rl += RBnl[jJ;
break;

0)) {

70

COBp) ;

+ q*RBnl[il*COBp;

}
#ifdef DEBUG

printf("Rh = %f, Rl = %f\n",Rh,Rl);
#endif

a (q+q)*RBnl[iJ*RBnl[i]/Rnl*(RBnl[i]/Rnl*CL - COBn);
b alphaxht + q*Rh*CIBn + p*Rl*CIBn +

p*RBph[i]*COBn + q*(RBnl[i]*COBn - RBnl [i]*RBnl[iJ *CL/Rnl } j

#ifdef DEBUG
printf ("df/dWBn = %f, d2f/dWBn2 =%f\n", b, a) ;

#endif
dWBn[i] = -b/a;
a (p+p) *RBph[i] *RBph[i]/Rph* (RBph[iJ/Rph*CL
b = alphaxht + q*Rh*CIBp + p*Rl*CIBp +

p*(RBph[i]*COBp - RBph[iJ*RBph[i]*CL/Rph
#ifdef DEBUG

printf(rodf/dWBp = H, d2f/dWBp2 =%f\n",b,a);
#endif

dWBp[iJ = -b/a;
#ifdef DEBUG

f += p*RBph[i)*CB[iJ + q*RBnl[i)*CB[i];
printf ("partial f = %f\n", f) ;

#endif
}

1* MUX width changes *1
if (M[i) == 0 } {

dWMn [i) 0;

dWMp[i) = 0;
}
else {

CL = CM[i] ;
for (j=i+liij++) {

if (B[j)) break;
CL += CM[j);

}
Rh = 0.0;
Rl = 0.0;
for (j =i ; ; j - -) {

if ((M[j] != 0) && (j != i)) {
Rh += RMh[j] i
Rl += RMl[j);

}
if (B[j)) {

Rh += RBph[j) i
Rl += RBnl[j) i
break;

}
#ifdef DEBUG

printf(rrRh = %f, Rl = H\nrr,Rh,Rl);
#endif

a (p+p)*RMh[i)*RMh[i]/Rnh*(RMh[iJ/Rnh*CL - COMn) +
(q+q) *RMl[i) *RMI [i]/Rnl* (RMl[i)/Rnl*CL - COMn) i

b alphaxht + p*(Rh*(ClMn + CIMn + COMn) + RMh[i]*COMn ­
RMh[i]*RMh[i]/Rnh*CL) +

q*(Rl*(CIMn + ClMn + COMn) + RMl[i]*COMn ­
RMl[i)*RMl[i]/Rnl*CL);
#ifdef DEBUG

printf(rrdf/dWMn H, d2f/dWMn2 =H\n",b,a);
#endif

dWMn[i] = -b/ai
a (p+p)*RMh[i]*RMh[iJ/Rph*(RMh[i]/Rph*CL - COMp) +

(q+q)*RMl [i]*RMl[i]/Rpl* (RMI [i]/Rpl*CL - COMp);
b alphaxht + p*(Rh*(CIMp + ClMp + COMp) + RMh[i]*COMp ­

RMh[i]*RMh[i)/Rph*CL) +
q*(Rl*{CIMp + ClMp + COMp) + RMl[i]*COMp ­

RMl[iJ*RMl[i)/Rpl*CL);
#ifdef DEBUG

printf(rrdf/dWMp H, d2f/dWMp2 =H\n",b,a);
#endif

dWMp[il = -b/a;
#ifde f DEBUG

f += p* (Rh + RMh [i]) *CM [i] + q* (Rl + RMI [i]) *CM [i] ;

printf(rrpartial f = %f\n",f);
#endif

}
}

#ifdef DEBUG
printf (" f %f\n" I f) i

#endif
}

71

8. neww.c

#include <math.h>
#include "transize.h"

float neww(W/dW)
float W,dWi
{

float Wmin 4.0i

W = W + dWj
if (W < Wmin) {

dW = dW + Wmin -Wi
W = Wmini

}
dW = fabs (dW) ;
if (dW > dWmax) dWmax dW;
return (W) i

9. readinit.c

/* reads constants and initial values for variables*/
#include <stdio.h>
#include "transize.h"

readinit(fp)
FILE *fp;
{

int i;
float AIB,AIM,Ax[MAXSTAGES] ;

printf("buffer input cap coeffs CIB, CIBn, CIBp: II);

fscanf(fp,"%f %f %f",&CIB,&CIBn,&CIBp) i

printf("ClB = %f, ClBn = %f , ClBp = tf\n",ClB,ClBn,ClBp);

printf("buffer output cap coeffs COB, COBn, COBp: II);

fscanf(fp,"%f %f tf",&COB,&COBn/&COBp) i

printf("COB = %f, COBn = tf , COBp = %f\n",COB,COBn,COBp);

printf("MUX input cap coeffs ClOM, CllM, ClMn, ClMp: ");
fscanf(fp,"%f %f %f %f",&ClOM,&CI1M,&ClMn,&ClMp) j

printf ("ClOM = H, CllM = H, ClMn = %f, CIBp =

H\n", ClOM, CIlM, ClMn, ClMp) i

printf("MUX output cap coeffs COM, COMn, COMp: II) i

fscanf(fp,"%f %f tf",&COM,&COMn,&COMp) i

printf("COM = H, COMn = H, COMp = H\n",COM,COMn,COMp)i

printf("nFET res coeffs Rnl, Rnh: II) i

fscanf(fp,"%f %f",&Rnl,&Rnh);
printf("Rnl = %£, Rnh = %f\n",Rnl,Rnh);

72

for (i=O;i<=N;i++l fscanf(fp,"%f",&WBp[i]l;
printf("WBp = "l; for (i=O;i<=N;i++l printf(" %f",WBp[i]l;

printf ("\n"l;

printf("initial widths for MUX nFETs: \n");
for (i=O;i<N;i++l fscanf(fp, "%f",&WMn[i]);
printf("WMn = "l; for (i=O;i<N;i++) printf(" %f",WMn[i]);

printf("\n") ;

printf("initial widths for MUX pFETs: \n"l i

for (i=Oii<N;i++l fscanf(fp,"%f",&WMp(ill;
printf("WMp = "l; for (i=Oii<N;i++) printf(" tf",WMp[ill;

printf("\n"l;

printf("initial lagrange multiplier for propagation time: "l i

fscanf(fp,"%f",&alphatl;
printf("alphat = tf\n",alphatl;

printf("initial change in lagrange multiplier for propagation time:
"l;

fscanf (fp, "%f", &dalphatl ;
printf("dalphat = tf\n",dalphatl;

printf("initial lagrange multiplier for area: "l;
fscanf (fp, "%f", &alphaAl ;
printf ("alphaA = %f\n", alphaAl ;

printf("initial change in lagrange multiplier for area: ");
fscanf {fp, ''If'', &dalphaAl ;
printf ("dalphaA = %f\n", dalphaAl ;

printf("desired circuit area: \n");
fscanf(fp, "%f",&AOl;
printf("AO = %-f\n"/AO);

printf("W tolerance: \n ll
);

fscanf (fp, "%f" / &Wtol) ;
printf ("Wtol = %f\n", Wtol) ;

printf("tr,tf diff tolerance: \n");
fscanf(fp, "%f",&ttol) i

printf("ttol = tf\n",ttol);

printf("area tolerance: \n"l;
fscanf (fp, "%f", &Atoll;
printf("Atol = %f\n",Atoll;

printf ("max iterations: \n");
fscanf (fp, lI%d", &maxiterl ;
printf ("maxiter = %d\n" / maxiterl ;

AI tot = 0.0;

74

for (i=Oji<NjiH) {
dWBn[i] = 0.0;
dWBp[i] 0.0;
dWMn [i] 0.0;
dWMp [i] 0 . 0 ;
CB [i] = 0.0 j

CM [i] = 0.0 j

if (i) {

if (B[i]) parity[i] = 1 - parity[i-1] j

else parity[i] = parity[i-l] j

}
else parity[O] = 1;
if (B[i]) Altot += AIBj
Altot += Ax[i) j

if (M[i]) Altot += AIM;

#ifdef DEBUG
printf("parity = II); for (i=Oji<Nji++) printf(" %-d",parity[i]);

printf ("\n II) j

printf("Altot = %-f\n"/Altot) j

#endif
}

10. update.c

#include "transize.h"

void update ()
{

float neww () ;
int i;

/*alphat = alphat + dalphat;*/
dWmax = O.Oj

for (i=Oji<Nji++) {

WBn[i] neww(WBn[i] ,dWBn[i]) j

WBp[i] neww(WBp[i] ,dWBp[i]);
WMn[i] neww(WMn[i] ,dWMn[i]) j

WMp[i] neww(WMp[i] ,dWMp[i]);
}
for (i=O;i<Nji++) {

RBph[i] = Rph/WBp[i] j

RBnl[i] = Rnl/WBn[i];
RMh[i] = 1.0/(WMn[i]/Rnh + WMp[i]/Rph) j

RMl[i] = 1.0/(WMn[i]/Rnl + WMp[i)/Rpl);
if (B [i]) {

CB[i) = COB + COBn*WBn[i) + COBp*WBp[i) + Cx[i];
if (M [i]) CB [i] += ClOM + CIlM + 2. O*Cl.Mn*WMn [i] +

2.0*CIMp*WMp[i) j

else CB(i] += ClB + ClBn*WBn[i+l] + CIBp*WBp[i+1);

75

if (M[i]) {
CM[i] = COM + COMn*WMn[i] + COMp*WMp[i] i

if (B[i+l]) CM[ili += CIB + CIBn*WBn[i+l] + CIBp*WBp[i+l] i

else CM[i] += Cx[i] + CIOM + CIlM + 2.0*CIMn*WMn[i+l] +

2.0*CIMp*WMp[i+l] i

}

76

VITA ?--

Byungha Joo

Candidate for the Degree of

Master of Science

Thesis: TIMING AND AREA OPTIMIZATION OF CMOS BARREL SHIFTER

Major Field: EI!ectrical Engineering

Biographical:

Personal Data: Born in Busan, Korea, November 19, 1965, son of Mr.
Jongheon Joo and Mrs. Kyungja Cho

Educational: Graduated from Posung High School, Seoul, Korea in
February 1984; received Bachelor of Science from Yonsei
University, Seoul, Korea in February 1988; completed requirements
for Master of Science at Oklahoma State University in May, 1996.

Professional Experience: Researcher, (1988-1989) SAMSUNG
Semiconductor and Telecommunication, Kyungki-Do, Korea
Researcher, (1989-19911 SAMSUNG Electronics, Kyungki-Do,
Korea
Associate Staff Researcher, (1991-1993) SAMSUNG Electronics,
Kyungki-Do, Korea

